
ARENBERG DOCTORAL SCHOOL
Faculty of Engineering Science

Engineering Software Systems
with Self-Adaptation and
Machine Learning

Federico Quin

Dissertation presented in partial
fulfillment of the requirements for the

degree of Doctor of Engineering
Science (PhD): Computer Science

October 2023

Supervisors:
Prof. dr. Daniel Weyns
Prof. dr. Daniel Hughes

Engineering Software Systems with Self-Adaptation
and Machine Learning

Federico QUIN

Examination committee:
Prof. dr. ir. Paul Sas, chair
Prof. dr. Daniel Weyns, supervisor
Prof. dr. Daniel Hughes, supervisor
Prof. dr. ir. Hendrik Blockeel
Prof. dr. Patrick Decausmaecker
Dr. Sam Michiels
Prof. dr. ir. Jan Goedgebeur
Prof. dr. Ada Diaconescu

(Institut Polytechnique de Paris)

Dissertation presented in partial ful-
fillment of the requirements for the
degree of Doctor of Engineering
Science (PhD): Computer Science

October 2023

© 2023 KU Leuven – Faculty of Engineering Science
Uitgegeven in eigen beheer, Federico Quin, Celestijnenlaan 200A box 2402, B-3001 Leuven (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.

Preface

The completion of this dissertation has been a rewarding journey, made possible through
the support and guidance of numerous individuals who have played important roles in
my academic pursuits.

First and foremost, I would like to express my deepest appreciation to Danny Weyns,
my mentor, for his continuous encouragement, unbounded passion, profound expertise,
and patient guidance throughout this research endeavor. Your belief in my capabilities
has been a driving force behind my academic achievements.

I extend my heartfelt gratitude to my dissertation committee, Sam Michiels, Danny
Hughes, Patrick De Causmaecker, Hendrik Blokeel, Jan Goedgebeur, and Ada
Diaconescu, for their dedication, invaluable insights, and mentorship. Their collective
wisdom has been instrumental in shaping my academic growth and the successful
completion of this dissertation. I would also like to thank Paul Sas for chairing the
examination committee.

I would also like to acknowledge my colleagues and friends, who have provided
unwavering support, encouragement, and understanding during this challenging yet
rewarding pursuit. I explicitly want to thank the following people: Kristof Jannes
for always providing me with an (involuntary) ear to discuss any topic at any time;
Pieter-Jan Vrielynck for his warm and caring presence in the office; Emad Heydari
Beni for always creating an uplifting and funny environment; Michiel Provoost and
Omid Gheibi for both fruitful collaborations and pleasant conversations; Bert Lagaisse
for the frequent coffee breaks with some much-needed distractions; and Nima Rahimi
Foroushani, Justus Fasse, Tobias Reinhard, Niels Mommen, Dorde Markovic, Denis
Carnier for their open and wonderful friend group.

On top of this, I would also like to thank the following people, in no particular order:
Laurens Sion, Martijn Sauwens, Koen Jacobs (MoV), Majid Salehi, Toon Dehaene,
Dimitri Van Landuyt, Koen Yskout, Amin Timany, Sepideh Pouyanrad, Giuseppe
Garofalo, Jan Vermaelen, Brendan Mackenzie, Victor Le Pochat, Jan Vanhoof, Weihong
Wang, Yana Dimova, Gertjan Franken, and many others. To all those whose names
may not appear here but whose encouragement, advice, and friendship have played a
significant role in my academic journey, I offer my heartfelt thanks.

i

ii PREFACE

I would also like to thank my family for their unconditional love and support. I am
especially grateful to my parents, who have always encouraged me to pursue my dreams
and have done everything in their power to provide me with all possible opportunities
to find happiness in my life.

Lastly, I would like to express my deepest gratitude to my girlfriend Jing Xu, for being
there for me during the most challenging times of my academic journey. Your love,
support, and encouragement have been a constant source of strength and inspiration.

Thank you!

– Federico Quin

Abstract

Modern software systems are often deployed in dynamic and uncertain environments,
where the operating conditions of the system are difficult to predict before the system is
in operation. Not attending to these uncertainties may jeopardize the system’s goals. To
mitigate such uncertainties, self-adaptation presents a consolidated approach that adapts
software systems to changing operating conditions. With the increasing complexity of
modern software systems and their environments, it becomes essential to engineer self-
adaptive systems that can deal with this complexity in an efficient manner. A promising
technique that has gained a significant amount of attention in supporting self-adaptation
that can address complexity and scalability concerns is machine learning. It has seen
widespread use, from supporting analysis of adaptation options in self-adaptive systems
to fully encompassing adaptation logic.

In this thesis, we investigate how self-adaptation supported by machine learning can be
used to engineer systems from two complementary perspectives. In the first perspective,
we contribute a systematic literature review on the use of machine learning in self-
adaptive systems. From this literature review we identified a gap in the literature on
systematically dealing with large adaptation spaces that complements model checking
techniques. To address this gap, we contribute an architecture-based solution that
leverages machine learning in conjunction with statistical model checking to efficiently
reduce large adaptation spaces. In the second perspective, we contribute a systematic
literature review on A/B testing with a focus on engineering aspects. From this literature
review we identified a need for the automation of A/B testing, alongside the need for
efficient execution of A/B tests. To address these needs, we contribute an approach that
leverages machine learning and self-adaptation to automate the efficient execution of
pipelines of A/B tests.

iii

Beknopte samenvatting

Moderne softwaresystemen worden vaak ingezet in dynamische en onzekere omgevin-
gen, waarbij de operationele omstandigheden van het systeem moeilijk te voorspellen
zijn voordat het systeem in werking treedt. Wanneer geen rekening gehouden wordt met
deze onzekerheden kunnen de doelstellingen van het systeem in gevaar gebracht worden.
Om dergelijke onzekerheden aan te pakken, biedt zelf-adaptiviteit een geconsolideerde
aanpak die software systemen aanpast aan veranderende operationele omstandigheden.
Met de toenemende complexiteit van moderne softwaresystemen en hun omgevingen
wordt het essentieel om zelf-adaptieve systemen te ontwikkelen die op een efficiënte
manier met deze complexiteit kunnen omgaan. Een veelbelovende techniek die
subtantiële aandacht heeft gekregen in het ondersteunen van zelf-adaptiviteit, en die
complexiteits- en schaalbaarheidsproblemen kan aanpakken, is machine learning. Het
wordt veelvuldig gebruikt, van het ondersteunen van de analyse van adaptatie-opties in
zelf-adaptieve systemen tot het volledig omvatten van adaptiviteitsslogica.

In dit proefschrift onderzoeken we hoe zelf-adaptiveit ondersteund door machine
learning kan worden gebruikt om systemen te ontwikkelen vanuit twee complementaire
perspectieven. In het eerste perspectief dragen we bij met een systematische
literatuurstudie over het gebruik van machine learning in zelf-adaptieve systemen.
Uit deze literatuurstudie hebben we een lacune in de literatuur geïdentificeerd met
betrekking tot het systematisch omgaan met grote adaptatie ruimtes die model checking
technieken aanvullen. Om deze lacune aan te pakken, dragen we een architectuur-
gebaseerde oplossing bij die machine learning combineert met statistische model
checking om grote adaptatie ruimtes efficiënt te verminderen. In het tweede perspectief
dragen we bij met een systematische literatuurstudie over A/B-testen met een focus
op ingenieursaspecten. Uit deze literatuurstudie identificeerden we de behoefte aan
automatisering van A/B-testen, samen met de behoefte aan efficiënte uitvoering van
A/B-tests. Om aan deze behoeften tegemoet te komen, dragen we een aanpak bij
die machine learning en zelf-adaptiveit benut om de efficiënte uitvoering van reeksen
A/B-testen te automatiseren.

v

Contents

Abstract ∼ iii

Beknopte samenvatting ∼ v

Contents ∼ vii

1 Introduction ∼ 1
1.1 Research Background ∼ 4

1.1.1 Self-Adaptation ∼ 6
1.1.2 Machine Learning for Self-Adaptation ∼ 7
1.1.3 A/B testing ∼ 8

1.2 Research Challenges ∼ 11
1.2.1 Machine Learning for Self-Adaptation ∼ 11
1.2.2 A/B Testing ∼ 11

1.3 Research Focus ∼ 12
1.3.1 Research Questions ∼ 13
1.3.2 Research Context ∼ 13

1.4 Research Methodology ∼ 14
1.4.1 Machine learning to reduce large adaptation spaces ∼ 14
1.4.2 Automatic and efficient execution A/B testing pipelines ∼ 16
1.4.3 Contributions ∼ 17
1.4.4 Positioning contributions ∼ 18

1.5 Thesis outline ∼ 18

2 Applying Machine Learning in Self-Adaptive Systems ∼ 21
2.1 Introduction ∼ 22
2.2 Background and Review Focus ∼ 23

2.2.1 MAPE-based Self-adaptation ∼ 24
2.2.2 Machine Learning ∼ 24
2.2.3 Adaptation Problem versus Learning Problem ∼ 25
2.2.4 Importance of Machine Learning in Self-Adaptive Sys-

tems ∼ 26
2.3 Related Reviews ∼ 27
2.4 Summary Protocol ∼ 27
2.5 Results ∼ 29

2.5.1 Demographics ∼ 29
2.5.2 RQ1: What problems have been tackled by machine learning

in self-adaptive systems? ∼ 29

vii

viii CONTENTS

2.5.3 RQ2: What are the key engineering aspects considered when
applying learning in self-adaptation? ∼ 34

2.5.4 RQ3: What are open challenges for using machine learning in
self-adaptive systems? ∼ 42

2.6 Insights Derived from the Study and Threats to Validity ∼ 46
2.6.1 Towards a Design Process for Using Machine Learning in

Self-Adaptive Systems ∼ 46
2.6.2 Opportunities for Future Research ∼ 46
2.6.3 Threats to Validity ∼ 48

2.7 Conclusion ∼ 49

3 Reducing Large Adaptation Spaces Using Machine Learning ∼ 51
3.1 Introduction ∼ 52
3.2 State of the Art and Problem Description ∼ 54

3.2.1 Machine Learning to Support the Analysis of Large Adaptation
Spaces ∼ 54

3.2.2 Reinforcement Learning to Support Decision-making in Self-
Adaptation ∼ 55

3.2.3 Efficient Analysis in Self-Adaptive Systems ∼ 56
3.2.4 Research Problem ∼ 57

3.3 Model of Self-Adaptive System with Adaptation Goals and Running
Example ∼ 59
3.3.1 Model of Self-Adaptive System ∼ 59
3.3.2 Running Example ∼ 60
3.3.3 Adaptation Goals ∼ 60

3.4 Machine Learning To Adaptation Space Reduction ∼ 63
3.4.1 Runtime Architecture of ML2ASR+ ∼ 64
3.4.2 High-level Overview of the ML2ASR+ Workflow ∼ 64
3.4.3 Design Stage of the ML2ASR+ Workflow in Detail ∼ 67
3.4.4 Runtime Stage of the ML2ASR+ Workflow in Detail: Train-

ing ∼ 77
3.4.5 Runtime Stage of the ML2ASR+ Workflow in Detail: Test-

ing ∼ 80
3.5 Algorithms, Models, and Metrics for Evaluating ML2ASR+ ∼ 82

3.5.1 Algorithms and Models for the Design of the Machine
Learning Modules ∼ 83

3.5.2 Metrics for Evaluating Learning Models of ML2ASR+ ∼ 84
3.5.3 Metrics for Evaluating Utility Penalty and Efficiency at

Runtime ∼ 85
3.6 Evaluation ML2ASR+ ∼ 86

3.6.1 Evaluation with DeltaIoT ∼ 88
3.6.2 Evaluation with the Service-Based System ∼ 101

3.7 Discussion ∼ 115
3.7.1 Qualitative Requirements ∼ 117
3.7.2 Insights ∼ 118
3.7.3 Threats to Validity ∼ 119

3.8 Conclusion ∼ 120

4 A/B Testing: A Systematic Literature Review ∼ 123
4.1 Introduction ∼ 124
4.2 Background and related work ∼ 125

4.2.1 Background ∼ 125
4.2.2 Related secondary studies ∼ 128

CONTENTS ix

4.3 Methodology ∼ 130
4.3.1 Research questions ∼ 130
4.3.2 Search query ∼ 131
4.3.3 Search strategy ∼ 131
4.3.4 Search process ∼ 132
4.3.5 Data items ∼ 133

4.4 Results ∼ 136
4.4.1 Demographic information ∼ 136
4.4.2 RQ1: What is the subject of A/B testing? ∼ 137
4.4.3 RQ2: How are A/B tests designed? What is the role of

stakeholders in this process? ∼ 141
4.4.4 RQ3: How are A/B tests executed? What is the role of

stakeholders in this process? ∼ 150
4.4.5 RQ4: What are the reported open research problems in the

field of A/B testing? ∼ 156
4.5 Discussion ∼ 160

4.5.1 Research topics ∼ 161
4.5.2 Environments and tools used for A/B testing ∼ 163
4.5.3 Research opportunities and future research directions ∼ 164
4.5.4 Threats to validity ∼ 165

4.6 Conclusion ∼ 167

5 Automating A/B testing pipelines using SA and ML ∼ 169
5.1 Introduction ∼ 170
5.2 Related Work ∼ 172
5.3 Approach ∼ 173

5.3.1 Requirements ∼ 174
5.3.2 Self-adaptation to Automate A/B Testing Pipelines ∼ 174
5.3.3 Self-adaptation and Machine Learning to Split Populations ∼ 179
5.3.4 Concrete Realization of the Conceptual Architecture ∼ 182

5.4 Evaluation ∼ 185
5.4.1 Evaluation questions ∼ 185
5.4.2 Evaluation metrics ∼ 186
5.4.3 Evaluation Instruments and Settings ∼ 186
5.4.4 Evaluation Results ∼ 189
5.4.5 Discussion and Threats to Validity ∼ 193

5.5 Conclusion and Future Work ∼ 195

6 SEAByTE: a self-adaptive artifact to automate A/B testing ∼ 196
6.1 Introduction ∼ 197
6.2 Background and Positioning of the Artifact ∼ 198

6.2.1 Micro-services ∼ 198
6.2.2 A/B Testing ∼ 198
6.2.3 Positioning of the Artifact ∼ 199

6.3 SEAByTE ∼ 200
6.3.1 Experimental Pipeline ∼ 201
6.3.2 Architecture SEAByTE ∼ 204
6.3.3 Test Scenarios ∼ 207

6.4 Experimentation with the Artifact ∼ 208
6.4.1 Workflow to use the artifact ∼ 208
6.4.2 Results ∼ 209

6.5 On the Applicability of SEAByTE ∼ 209
6.6 Future research directions ∼ 209

x CONTENTS

6.7 Conclusions ∼ 210

7 Conclusion ∼ 213
7.1 Summary of contributions ∼ 214
7.2 Threats to validity ∼ 216
7.3 Future work ∼ 217

7.3.1 Goal evolution in self-adaptive systems supported by machine
learning ∼ 217

7.3.2 Role of A/B testing in self-adaptive systems ∼ 217
7.3.3 Holistic approach to automating A/B testing pipelines ∼ 218

7.4 Concluding reflections ∼ 219

A Appendix ∼ 221
A.1 Applying Machine Learning in Self-Adaptive Systems: A SLR ∼ 221

A.1.1 List of Primary Studies ∼ 221
A.2 Reducing Large Adaptation Spaces ∼ 226

A.2.1 Auxiliary Formal Definitions ∼ 226
A.2.2 Additional Machine Learning Material ∼ 229

A.3 A/B Testing: A Systematic Literature Review ∼ 231
A.3.1 List of Primary Studies ∼ 231

Bibliography ∼ 237

List of publications ∼ 289

Chapter 1

Introduction

In the last few decades, technology has pushed society forward in ways that were
initially hard to imagine. Technology is advancing rapidly, and the use of technology
in people’s everyday life has become increasingly more common. Alongside the
growing advancement of technology, software systems are becoming increasingly
complex. An example of this is the rapid growth in the domain of the Internet-of-
Things [190, 157]. A popular example can be found in modern home appliances such
as refrigerators, washing machines, and thermostats. These devices1 are increasingly
connected to the Internet, providing remote-control functionality to monitor the devices
and change the settings of the devices. The capabilities of such devices are constantly
growing, e.g., Samsung providing among-device artificial intelligence capabilities
within households [166].

Alongside the increasing complexity and capabilities of modern software systems, the
environments in which these systems operate are also becoming increasingly more
complex. Software systems are often deployed in dynamic and uncertain environments,
where the operating conditions of the system are difficult to predict before the system
is in operation. Not attending to these uncertainties may jeopardize the system’s
goals. For example, network interference may affect the availability of the system
if not properly dealt with. To mitigate such uncertainties, self-adaptation presents a
consolidated approach that adapts modern software systems to changing operating
conditions [64, 301, 361].

A foundational work for the field of self-adaptation was presented by Kephart and Chess.
They introduced their vision of autonomic computing [193], motivated by the growing
complexity of engineering software systems. The authors argued that systems should

1Popularly dubbed as smart devices

1

2 INTRODUCTION

be able to autonomously, i.e., without intervention, manage themselves given a set of
high-level objectives, denoted as self-management. The authors further argued that
self-management should be realized through a feedback loop that relieves the system’s
operators from the burden of managing the system. MAPE-K (Monitor-Analyze-Plan-
Execute-Knowledge) is a commonly used pattern to realize such a feedback loop [64,
223, 376]. The MAPE-K pattern consists of four phases: (1) Monitor the system and
its environment, (2) Analyze the monitored data and options to adapt the system, (3)
Plan the adaptation, and (4) Execute the adaptation plan. The Knowledge is a data
structure that is shared and used by the various MAPE components.

Self-adaptation can be realized through two types of mechanisms: following an
internal mechanism, or following an external mechanism [361]. In the case of the
internal mechanism, self-adaptation is realized by embedding the necessary logic and
mechanisms inside the software system itself. An example of how such an internal
mechanism is established is through the use of software exceptions provided by a range
of popular programming languages. As their name suggests, software exceptions serve
the purpose of handling exceptional circumstances a software program needs to tackle.
For the external mechanism, self-adaptation is realized through an external entity that
is responsible for handling the adaptation logic and mechanisms [376]. The adaptation
logic and handling of uncertainties is thus separated from the main software system. A
common example of how such an external mechanism is established is through the use
of a feedback loop that is responsible for monitoring the environment and adapting the
system to changing operating conditions [353, 94]. The system responsible for handling
the adaptation logic and mechanisms is commonly referred to as the Managing System,
and the system that undergoes adaptation is commonly referred to as the Managed
System [14, 134].

Following the seminal vision paper from Kephart and Chess, the field of self-adaptation
gained popularity in the software engineering research community. Through the years,
research in self-adaptation can broadly be summarized in 7 topics, denoted as waves
in [361], as presented in Figure 1.1. For each wave, we elaborate on the core research
topic that has been investigated. Afterward, we position the research presented in this
thesis in the context of the waves.

The first wave marks the starting point of the field of self-adaptation. The need for
self-adaptation stems from the need to build software systems that are able to deal with
uncertainties in operation. Whereas operators of software systems were responsible
for handling uncertainties, self-adaptation enables the automation of tasks that were
previously handled by operators [263, 193].

The second wave follows shortly after the first wave, inspired by the need for a
more comprehensive and systematic undertaking of realizing self-adaptation. The
second wave introduces the concept of architecture-based self-adaptation [210, 142],
where the adaptation logic and mechanisms are separated from the main software

INTRODUCTION 3

1. Automating
Tasks

2. Architecture-based
Adaptation

4. Requirements-
driven Adaptation

3. Runtime
Models

5. Guarantees Under
Uncertainties

6. Control-based
Software Adaptation

systematic engineering
perspective

complexity of
concrete design

theoretical
framework for
self-adaptation

guarantees under
uncertainty

requirements for
feedback loops

requirements of
self-adaptive

systems

uncertainty as
first-class

citizen

link goal models to
feedback loop designs

complexity to provide
assurances

7. Learning from
Experience

growing scale and increasingly
complex levels of uncertainty

KEY

Wave Trigger of wave

Figure 1.1: The seven waves in the field of self-adaptation (borrowed from [361]).

system. An architectural perspective (1) enables a clear separation between goal
management and changing operating conditions, and (2) enables effective decision-
making through architectural models of the system. The separation of the adaptation
logic and mechanisms from the main software system (i.e., Managed System) enables
reusability across different software systems [375].

The third wave tackles concerns related to detailed modeling of the adaptation logic
and mechanisms. The wave introduces the concept of models@runtime [29], putting
forward the use of models during the operation of the system. The models are kept up-
to-date at runtime and are used to reason about the viability and correctness of potential
adaptations to the Managed System. The models@runtime approach is commonly used

4 INTRODUCTION

in the context of architecture-based self-adaptation [176].

The fourth wave focuses on the requirements of self-adaptive systems. In this wave, the
field of self-adaptation explores languages and formalisms to realize requirements
concerning adaptations to the Managed System, and requirements related to the
realization of the self-adaptive system [377, 325].

The fifth wave puts a lens on uncertainties in self-adaptive systems, and their effects
on the guarantees the system can provide. The wave puts forward engineering
considerations for designing self-adaptive systems that are able to systematically deal
with and provide guarantees in the presence of uncertainties [49]. To accomplish this,
the wave explores the use of formal methods to reason about the guarantees the system
provides, and the effects of uncertainties on these guarantees [45, 258].

The sixth wave investigates principles from control engineering to (partially)
alleviate the complexity of providing guarantees under uncertainties in self-adaptive
systems [131, 315]. The wave explores the use of control theory to realize self-adaptive
systems, and the use of control theory to reason about the guarantees the system
provides.

The seventh and final wave explores the use of machine learning in self-adaptive
systems. Motivated by the growing scale of software systems, and the growing
complexity of the environments they operate in, the wave aims to equip self-adaptive
systems with capabilities to learn from experiences to handle and manage uncertainties
more effectively [107, 108, 182].

1.1 Research Background

The work laid out in this thesis is situated in wave 7. We focus on the application of
architectural principles to enable the engineering of complex software systems that can
efficiently deal with such complex environments. Specifically, we apply architecture-
based self-adaptation [142, 374, 263], realized using a feedback loop that follows
the Monitor-Analyze-Plan-Execute (MAPE in short) pattern [193, 107]. To realize
self-adaptation, we follow the external approach.

In this dissertation, we focus on two main topics: machine learning for self-adaptation,
and A/B testing supported by self-adaptation and machine learning.

Machine learning for self-adaptation. Dealing with uncertainties in self-adaptive
systems is a complex task [112, 301]. The complexity stems from the fact that the self-
adaptive system needs to reason about the effects of potential adaptations in the presence
of uncertainties. Additional techniques such as formal verification have been proposed

RESEARCH BACKGROUND 5

to alleviate this complexity [336]. However, formal verification is a computationally
expensive approach, especially when the number of available adaptations is large [365].
Moreover, since self-adaptive systems have to adapt to uncertainties at runtime, the
time available to adapt a system may be limited. To alleviate this scalability issue,
machine learning presents a promising technique.

A/B testing supported by self-adaptation and machine learning The
automation of tasks that were once undertaken by human operators at runtime is at the
core of self-adaptation [263, 193]. A field that can benefit from the automation of tasks
is A/B testing. Administering A/B tests manually can be time consuming [202, 164,
297, 141], motivating the potential for self-adaptation. Moreover, running A/B tests
is cost-intensive2 itself, typically running for multiple weeks [218, 381]. To alleviate
this cost, we explore the use of machine learning to target A/B tests to segments of the
population, reducing the time it takes to draw conclusions from A/B tests.

Our choice to focus on machine learning in the context of self-adaptation is twofold.
Firstly, an essential aspect of self-adaptation is the system’s ability to learn from
previous experiences to better handle uncertainties. Machine learning aligns perfectly
with this objective, as evidenced by a substantial body of research across various
domains [101, 182, 25]. Secondly, machine learning serves as a powerful tool for
addressing complex problems, such as the analysis of very large adaptation spaces [251,
324]. In addition, machine learning encompasses a wide array of techniques, including
supervised, unsupervised, and interactive learning, which can be applied to address
diverse challenges in self-adaptive systems. Each machine learning category also
offers a multitude of unique algorithms, each with its own strengths and weaknesses.
This diversity is particularly beneficial for self-adaptation since the nature of complex
problems can vary significantly from one adaptation problem to another. On the
other hand, our choice to focus on machine learning does not mean that alternative
approaches, such as search-based techniques, would not be viable alternatives.

In the following sections, we first provide some background on self-adaptation. Then
we delve deeper into the two main topics that are central to this thesis: machine learning
for self-adaptation, and A/B testing. Afterward, we highlight the research challenges
we have identified for each topic. Subsequently, we present the research focus in
this thesis and the research questions that we ascertained from the identified research
challenges.

2Cost-intensive in this context refers to the time it takes to be able to draw conclusions from A/B tests,
consequently limiting the number of A/B tests that can be conducted.

6 INTRODUCTION

1.1.1 Self-Adaptation

Self-adaptation is a software principle that equips software systems with mechanisms
to deal with changing operating conditions and circumstances at runtime. Figure 1.2
provides a conceptual view of a self-adaptive system. The figure depicts the following
key elements that are central to self-adaptation: a Managed System, a Managing System,
and an Environment.

Managed System and Managing System. A self-adaptive system is composed
of two elements: the emphManaged System and the Managing System. The Managed
System refers to the software system that is responsible for delivering the core
functionalities of the software system, i.e., that handles the domain goals of the
system. The Managing System is a software system that is responsible for handling the
adaptation logic and adaptation mechanisms to adapt the Managed System, i.e., that
handles the adaptation goals of the system. To accomplish this, the Managing System
is responsible for monitoring both the environment and Managed System, triggering
adaptations to the Managed System whenever the specified adaptation goals are not
achieved. In addition, human operators might still be involved during the adaptation
process [364], e.g., to adjust adaptation goals, or to provide additional information to
the Managing System.

Environment. A self-adaptive system is situated in an environment. The
environment is not directly controlled by a self-adaptive system; rather a self-adaptive
system can only sense and indirectly affect the environment. Since the environment
is not directly controlled, uncertainties may arise that the self-adaptive system has to
mitigate [170]. Examples of uncertainties include fluctuations in the network, changes
in the workload of the system, changes in the requirements of the system, and changes
in the resources available to the system.

Adaptation problem. To meet the adaptation goals of the system, a self-adaptive
system undertakes the task of analyzing and selecting suitable adaptation actions
that satisfy the specified adaptation goals. Examples include: adding a new replica
to the system to deal with increased workload demands [67], changing a system’s
configuration to optimize the system’s performance [179], and recovering components
that failed due to a bug or fault [275]. We refer to the problem of analyzing and selecting
adaptation actions as the Adaptation Problem. To solve the adaptation problem, the
self-adaptive system may utilize additional techniques such as for example formal
modeling [258], and machine learning [107].

RESEARCH BACKGROUND 7

Managed
System

Managing
System

Operator

Environment

Adaptation
Problem

addresses

monitors adapts

Figure 1.2: Conceptual view of self-adaptation.

1.1.2 Machine Learning for Self-Adaptation

To illustrate the role of machine learning in self-adaptation, we expand on the
conceptual view of self-adaptation in Figure 1.3. In addition to the adaptation problem
that the self-adaptive system has to solve, the figure depicts a learning problem that is
solved by machine learning. The learning problem is a sub-problem of the adaptation
problem.

Addressing the adaptation problem is context-dependent, and undertaking the
problem typically involves the use of complementary methods3. One example of
a complementary method is the use of models@runtime [29] that aids the process of
self-adaptation by keeping an up-to-date model of the Managing System to facilitate
reasoning about the viability and correctness of potential adaptations to the system.
Another example of a complementary method is the use of machine learning that
solves a sub-problem of the adaptation problem, i.e., the learning problem. The use of
machine learning in self-adaptive systems has gained growing popularity and covers a
broad range of applications [151].

The learning problem that machine learning can address can cover problems across
all MAPE functions of self-adaptation. Most commonly, machine learning is applied
to tackle learning problems in the Analyzer, Planner, and Monitor functions of the
MAPE loop [151]. In the case of the Analyzer function, examples of the use of

3A complementary method refers to an additional mechanism or tool that is used by the self-adaptive
system to enhance the adaptation process.

8 INTRODUCTION

Managed
System

Managing
System

Operator

Environment

Adaptation
Problem

Learning
Problem

addresses

Machine
Learning

solvesmonitors adapts

Figure 1.3: Conceptual view of self-adaptation supported by machine learning.

machine learning include performing anomaly detection in the monitored data [128],
and reducing large adaptation spaces to a subset of relevant adaptation options [179].
For the Planner function, an example of the use of machine learning is the use of
reinforcement learning to learn a model of the environment and the system [265]. The
model is then used to make predictions of the system’s behavior in the environment,
and to select the most suitable adaptation option using these predictions [251]. Besides
the Analyzer and Planner, machine learning is also frequently used in the Monitor
function. An example of the use of machine learning in the Monitor function is the
processing of monitored data to update knowledge models [209].

1.1.3 A/B testing

Building and maintaining complex software systems is in itself a multi-step and
complex process. To address these challenges, software engineering has developed a set
of common practices to help engineers in building and maintaining complex software
systems. These practices include, but are not limited to, requirements engineering,
software architecture, and software testing. In the past, these practices were typically
applied in a sequential manner, where the output of one practice is used as input for the
next practice. For example, requirements engineering aids in defining the requirements
of a software system, which are then used to define the architecture of the software
system, which is then used to define the test cases for the software system. In more
recent years, software engineers have started to adopt more iterative and incremental

RESEARCH BACKGROUND 9

approaches to software engineering. One such approach is the Development and
Operations (DevOps in short) methodology.

In 2009, the first DevOpsDays conference was held in Ghent, Belgium. The DevOps
movement is a reaction to the traditional sequential approach to software engineering,
and aims to bring together the development and operations teams to work together
throughout the entire software development lifecycle. DevOps comprises a set of tools,
practices and guidelines for software engineers to build, test, and release software faster
and more reliably. The DevOps movement has been growing in popularity since its
inception, and has been adopted by many companies. The DevOps movement has
also been adopted by the software engineering community, and has been the subject of
many research studies.

Key to DevOps is the concept of Continuous Integration and Continuous Deployment
(CICD in short). CICD is the practice of continuously developing and engineering
software, and rapidly deploying software to production [172, 252, 296]. CICD is
supported by a set of tools and practices that enable software engineers to continuously
develop and deploy software. One such key practice is the use of A/B testing [203,
202, 116]. A/B testing enables software engineers to test new features or software
updates in live production environments, providing a way to assess the viability of new
features or software updates and make data-driven decisions [117, 338]. A/B testing is
a practice where two versions of a feature, typically denoted as A and B, are deployed
to production simultaneously. A feature can refer to any element of a software system,
e.g., a variation in the user interface of an application, a variation in an algorithm, and
a newly introduced software functionality in the application. Figure 1.4 depicts an
overview of the A/B testing process.

During deployment of the variants, relevant data is tracked that is used to assess the
merit of the variants. The data that is tracked is typically related to the goals of the
software system, e.g., the number of clicks on a button in the user interface, the number
of users that use a particular functionality in the application, and the time it takes users
to complete a task in the application. The data is then analyzed to assess the viability
of the variants. The version that performs better is then typically selected for further
development or deployment in the software system. A/B testing is a popular practice in
the industry and has been the subject of many research studies.

To illustrate the role of A/B testing in relation to self-adaptation and machine learning
in this dissertation, we expand on the conceptual view of self-adaptation supported
by machine learning in Figure 1.5. Similarly to Figure 1.3, machine learning solves
a learning problem that is a sub-problem of the adaptation problem. The Managed
System is the system under test, i.e., the system in which A/B testing is conducted. The
Managing System is responsible for conducting the A/B testing, including setting up,
monitoring, and analyzing the results of the experiment.

10 INTRODUCTION

A/B test

A

B

- Hypothesis
- Duration
- Sample of population
- A/B metrics
- ...

A/B test
design

A/B test
design phase

Software System

A/B test

A

B

End-User

A/B test
execution phase

Software
variants

Evaluation of
hypothesis (e.g. with

statistical testing)

A/B test
evaluation phase

Designer

A/B test
results

Hypothesis

Follow
-up

Designer

Figure 1.4: Overview of the A/B testing process.

Managed System
(system under test)

Managing
System

Operator

Environment

Adaptation
Problem

Learning
Problem

addresses

Machine
Learning

solvesmonitors (monitors
A/B testing)

adapts (conducts
A/B testing)

Figure 1.5: Conceptual view of self-adaptation supported by machine learning to
enhance A/B testing.

RESEARCH CHALLENGES 11

1.2 Research Challenges

We highlight now the research challenges we have identified in the context of the two
research topics. We zoom in on concrete challenges in the context of machine learning
for self-adaptation and research challenges in the context of A/B testing.

1.2.1 Machine Learning for Self-Adaptation

We zoom in on one particular learning problem that machine learning can effectively
address in the analysis function of the MAPE loop: reducing large adaptation spaces.
Analyzing the viability of a large number of adaptation options can be time-consuming.
Moreover, the analysis of large adaptation spaces may prove to be infeasible due to
the time penalty it incurs to adapt the system that undergoes the adaptation [366]. One
approach to deal with this issue is by reducing large adaptation spaces to a subset of
relevant adaptation options.

Various works have investigated machine learning techniques to reduce adaptation
spaces in self-adaptive systems. Reinforcement learning is one of the popular choices
to realize this [53, 234, 273]. Reinforcement learning is a machine learning technique
that is concerned with learning a policy that maximizes the reward of an agent in an
environment. In the context of adaptation space reduction, reinforcement learning has
been used to learn a policy that selects the most suitable adaptation option for a given
adaptation goal. Other techniques that have been used to reduce adaptation spaces
consist of the use of neural networks [88], and decision trees [107].

However, in these works machine learning is either used to replace the analysis and
planning functions entirely, or the machine learning techniques are entangled in the
analysis process in the MAPE-K loop. This entanglement makes it difficult to utilize
additional techniques in the analysis of the viability of adaptation options, such as
formal verification methods. Additionally, the entanglement in specific processes
makes it difficult to reuse the machine learning techniques across different self-adaptive
systems.

1.2.2 A/B Testing

A/B testing is a popular industry practice and has been the subject of many research
studies. However, the practice of A/B testing is still a manual process, and requires
a significant amount of manual effort to conduct A/B testing [164, 202, 141, 300].
Furthermore, some researchers have suggested automating the A/B testing process [247,
141, 59]. To address this, some preliminary work has been conducted on automating
facets of the A/B testing process [77, 245, 335, 291]. However, the automation of the

12 INTRODUCTION

Self-Adaptation Machine Learning A/B Testing

Research Focus 1 Research Focus 2

supportssupports

Adaptation Problem:

Learning Problem:

Improve qualities

Reduce large
adaptation spaces

Adaptation Problem:

Learning Problem:

Improve qualities

Splitting populations
for A/B tests

Figure 1.6: Research focus of this thesis.

A/B testing process is still in its infancy, and requires further research to be adopted in
practice.

Another challenge particular to A/B testing is the need for efficiency. Efficiency in
this context refers to discovering the true effect of a new feature or software update
as quickly as possible. The need for efficiency is particularly important in the context
of A/B testing, as the longer it takes to discover the true effect of a new feature or
software update, the longer it takes to make data-driven decisions. Moreover, as the
duration of an A/B test increases, the number of A/B tests that can be conducted is
further restricted. Numerous techniques have been proposed to improve the efficiency
of A/B testing. One way of improving the efficiency is by improving the sensitivity
of A/B testing results, e.g., exploiting the time it takes users to get used to novel
features in the analysis of the results [98], and using machine learning techniques [161,
332, 227]. Another technique is the use of additional data to analyze the results of
the A/B tests, such as using periodicity patterns in the user engagement to judge the
results [97], and using regression techniques to reduce the variance in A/B testing
results [274]. However, the use of machine learning has not been explored yet in the
context of targeting A/B testing to a subset of the population that is directly relevant to
the experiment.

1.3 Research Focus

The research in this thesis is divided into two lines, corresponding to the two research
topics presented in the previous section. Figure 1.6 depicts the relation of the topics in

RESEARCH FOCUS 13

this dissertation to the lines of research. For each, we provide a brief outline, and we
elaborate on the concrete adaptation and learning problems that we address.

Self-Adaptation supported by Machine Learning In the first line of research,
we address the challenges identified in the context of machine learning that supports
self-adaptive systems. We concretely focus on the following high-level adaptation
problem: Improve qualities. In other words, self-adaptation is used to improve the
qualities in the Managed System, such as e.g. response time or energy consumption
in an Internet-of-Things application. The learning problem supporting self-adaptation
that we address is the following: Reduce large adaptation spaces. Solving this learning
problem supports self-adaptation by focusing more time on the analysis of relevant
adaptation options, and less time on the analysis of irrelevant adaptation options. In
turn, the Managing System can adapt the Managed System more effectively.

A/B testing supported by Machine Learning and Self-adaptation In the
second line of research, we address the challenges identified in the context of A/B
testing. We focus on the same high-level adaptation problem as in the first line of
research: Improve qualities. The learning problem supporting self-adaptation we
address in this line of research is the following: Splitting populations for A/B tests.
Solving this learning problem supports self-adaptation in its task of conducting efficient
A/B testing by focusing the A/B tests on a subset of the population that is directly
relevant to the A/B test.

1.3.1 Research Questions

Based on the identified challenges and the research focus in this dissertation, we put
forward two research questions. Each research question corresponds to the line of
research presented before. The research questions are as follows:

RQ1: How can machine learning be used to reduce large adaptation spaces of self-
adaptive systems with different types of adaptation goals to perform more
efficient analysis without compromising the goals?

RQ2: How can we automate A/B testing pipelines, and how can machine learning be
used to run A/B testing pipelines more efficiently?

1.3.2 Research Context

14 INTRODUCTION

Assumptions We make the following assumptions in our research that hold for both
lines of research, unless stated differently

• We assume that we have knowledge about the boundaries of the adaptation space
beforehand, i.e., theoretically, we can enumerate the possible adaptation options.

• We assume that boundaries of the adaptation space do not change at runtime.

• We assume that the learning problems we consider are linear, i.e., the learning
problems can be solved using linear machine learning models.

• We assume that the uncertainties we cover are of the type known unknowns [170,
111].

1.4 Research Methodology

In this section, we present the research methodology we followed to answer the research
questions. The research methodology is based on the Design Science Research (DSR in
short) methodology [379, 378]. DSR is a research methodology that is commonly used
in the field of software engineering. DSR is a problem-solving paradigm that aims to
develop and evaluate artifacts that address identified problems. The DSR methodology
consists of six steps, namely (1) Problem identification and motivation, (2) Objective
and solution definition, (3) Design and development, (4) Demonstration, (5) Evaluation,
and (6) Communication. Figure 1.7 presents an overview of the DSR methodology
applied in this dissertation.

The methodology lays out two main tracks, corresponding to the proposed research
questions. The first track is concerned with the use of machine learning to reduce large
adaptation spaces. The second track is concerned with the automation of A/B testing
pipelines, and the efficient operation of those pipelines by using machine learning.

1.4.1 Machine learning to reduce large adaptation spaces

In the first research track, we investigate the use of machine learning to reduce
large adaptation spaces. For problem identification and motivation, we conduct a
systematic literature review to identify the state of research on machine learning in the
field of self-adaptation. A systematic literature review (SLR in short) is a scientific
approach [192, 198] that ensures that the review identifies, evaluates, and interprets
all relevant literature. Systematic literature reviews are conducted using a research
protocol that is developed prior to the execution of the review. The protocol consists of a
rigorous description of the three main phases in a literature review: planning, execution,

RESEARCH METHODOLOGY 15

R
es

ea
rc

h
Q

ue
st

io
n

1
H

ow
 c

an
 m

ac
hi

ne
 le

ar
ni

ng
 b

e
us

ed
 to

 re
du

ce
 la

rg
e

ad
ap

ta
tio

n
sp

ac
es

 o
f s

el
f-a

da
pt

iv
e

sy
st

em
s

w
ith

 d
iff

er
en

t t
yp

es
 o

f a
da

pt
at

io
n

go
al

s
to

 p
er

fo
rm

 m
or

e
ef

fic
ie

nt
an

al
ys

is
 w

ith
ou

t c
om

pr
om

is
in

g
th

e
go

al
s?

R
es

ea
rc

h
Q

ue
st

io
n

2
H

ow
 c

an
 w

e
au

to
m

at
e

A/
B

te
st

in
g

pi
pe

lin
es

, a
nd

 h
ow

 c
an

 m
ac

hi
ne

le
ar

ni
ng

 b
e

us
ed

 to
 ru

n
A/

B
te

st
in

g
pi

pe
lin

es
 m

or
e

ef
fic

ie
nt

ly

D
ef

in
iti

on
 o

bj
ec

tiv
e

an
d

so
lu

tio
n

Pr
ob

le
m

 id
en

tif
ic

at
io

n
an

d
m

ot
iv

at
io

n

Sc
ie

nt
ifi

c
pu

bl
ic

at
io

n
Sy

st
em

at
ic

 L
ite

ra
tu

re
R

ev
ie

w
 o

f M
ac

hi
ne

Le
ar

ni
ng

 in
 S

el
f-

Ad
ap

tiv
e

Sy
st

em
s

[G
he

ib
i e

t a
l.,

 2
02

1]

Sc
ie

nt
ifi

c
pu

bl
ic

at
io

n
Sy

st
em

at
ic

 L
ite

ra
tu

re
R

ev
ie

w
 o

n
A/

B
Te

st
in

g
[Q

ui
n

et
 a

l.,
 P

en
di

ng
]

D
es

ig
n

an
d

de
ve

lo
pm

en
t

D
em

on
st

ra
tio

n
Ev

al
ua

tio
n

C
om

m
un

ic
at

io
n

Pr
em

is
e

Le
ve

ra
gi

ng
 m

ac
hi

ne
le

ar
ni

ng
 to

 fi
lte

r o
ut

ad
ap

ta
tio

n
op

tio
ns

 th
at

 w
ill

no
t s

at
is

fy
 th

e
sy

st
em

's
go

al
s

Pr
em

is
e

Le
ve

ra
gi

ng
 m

ac
hi

ne
le

ar
ni

ng
 a

nd
 s

el
f-a

da
pt

at
io

n
to

 e
xe

cu
te

 A
/B

 te
st

in
g

pi
pe

lin
es

 a
ut

om
at

ic
al

ly,
 a

nd
sp

lit
 th

e
po

pu
la

tio
n

in
to

pa
ra

lle
l p

ip
el

in
es

A
pp

lic
at

io
n

Ap
pl

ic
at

io
n

to
 a

n
ar

tif
ac

t i
n

th
e

Io
T

do
m

ai
n

(D
el

ta
Io

T
[U

sm
an

 e
t a

l.,
 2

01
7]

),
 a

nd
an

 a
rti

fa
ct

 in
 th

e
SB

S
do

m
ai

n
(s

el
f-c

ar
e

ap
pl

ic
at

io
n

[Q
ui

n
et

 a
l.,

20
22

])

A
pp

lic
at

io
n

Ap
pl

ic
at

io
n

to
 a

n
ar

tif
ac

t i
n

th
e

e-
co

m
m

er
ce

 d
om

ai
n

(o
nl

in
e

w
eb

 s
to

re
,

SE
AB

yT
E

[Q
ui

n
et

 a
l.,

20
22

])

C
on

tr
ol

le
d

ex
pe

rim
en

t
Va

lid
at

io
n

of
 th

e
so

lu
tio

n
vi

a
a

co
nt

ro
lle

d
ex

pe
rim

en
t i

n
ea

ch
ar

tif
ac

t

Si
m

ul
at

io
n

ex
pe

rim
en

t
Va

lid
at

io
n

of
 th

e
so

lu
tio

n
vi

a
a

si
m

ul
at

io
n

ex
pe

rim
en

t i
n

th
e

ar
tif

ac
t

Sc
ie

nt
ifi

c
Pu

bl
ic

at
io

n
R

ed
uc

in
g

La
rg

e
Ad

ap
ta

tio
n

Sp
ac

es
 in

Se
lf-

Ad
ap

tiv
e

Sy
st

em
s

U
si

ng
 M

ac
hi

ne
 L

ea
rn

in
g

[Q
ui

n
et

 a
l.,

 2
02

2]

Sc
ie

nt
ifi

c
Pu

bl
ic

at
io

n
Au

to
m

at
in

g
Pi

pe
lin

es
 o

f
A/

B
Te

st
s

w
ith

Po
pu

la
tio

n
Sp

lit
 U

si
ng

Se
lf-

Ad
ap

ta
tio

n
an

d
M

ac
hi

ne
 L

ea
rn

in
g

[Q
ui

n
et

 a
l.,

 P
en

di
ng

]

Fi
gu

re
1.

7:
O

ve
rv

ie
w

of
th

e
D

SR
m

et
ho

do
lo

gy
ap

pl
ie

d
in

th
is

di
ss

er
ta

tio
n.

16 INTRODUCTION

and synthesis. The planning phase consists of defining the research questions, the
search strategy, the inclusion and exclusion criteria, and the data items to be extracted.
The execution phase consists of executing the search strategy, applying the inclusion-
and exclusion criteria, and data extraction. The synthesis phase consists of analyzing
the extracted data and reporting the results to the research community. The protocol
ensures the repeatability of the study and reproducibility of the results.

Based on the findings of the literature review, we define the objective of Research
Question 1, as outlined in Section 1.3.1. We then put forward the premise of the
envisioned solution to the proposed research question: leveraging machine learning to
filter out adaptation options that will not satisfy the system’s goals.

The premise is then evaluated in the context of two application domains: Internet-of-
Things and Service-Based Systems. The evaluation and validation of the approach
happen in the form of a controlled experiment [380]. Controlled experiments presented
a suitable scientific approach to evaluate the approach in the two application domains:
DeltaIoT, an internet-of-things exemplar [175] that simulates a real-world IoT network;
and a simulator of a service-based system in the context of patient self-care [289],
inspired by a popular artifact in the self-adaptation community called Tele-Assistance
System [367]. Finally, the results of the evaluation are then communicated in the form
of a scientific publication titled "Reducing Large Adaptation Spaces in Self-Adaptive
Systems Using Machine Learning" [289].

1.4.2 Automatic and efficient execution A/B testing pipelines

In the second research track, we investigate the automation of A/B testing pipelines,
and the efficient execution of those pipelines by using machine learning. For problem
identification and motivation, we conduct a systematic literature review to identify the
state of research on A/B testing. We refer back to Section 1.4.1 for a description of the
systematic literature review process.

Based on the findings of the literature review, we define the objective of Research
Question 2, as outlined in Section 1.3.1. We then put forward the premise of the
envisioned solution to the proposed research question: leveraging machine learning
and self-adaptation principles to split the population into parallel A/B testing pipelines,
and execute the pipelines automatically.

The premise is then evaluated in the context of a web-store application. The evaluation
and validation of the approach happen in the form of a simulation experiment. We
refer to a simulation experiment as an experiment that is conducted in a simulated
environment or setting where a baseline approach is compared to the proposed approach.
In our case, we compare a baseline approach of A/B testing with our proposed approach
via simulated A/B tests. Simulation experiments presented a suitable scientific approach

RESEARCH METHODOLOGY 17

to evaluate the approach in the context of A/B testing due to the lack of publicly
available industrial datasets. The simulation experiment is conducted using a web-store
application artifact, called SEAByTE, which is specifically designed to conduct A/B
testing. We developed and published this artifact for the research community to validate
self-adaptation approaches in the context of A/B testing [283]. Finally, the results of
the evaluation are then communicated in the form of a scientific publication submitted
for review [281].

1.4.3 Contributions

We now summarize the contributions presented in this thesis, and how each contribution
relates to the presented research question in this thesis. The contributions are laid out
in separate chapters. At the start of each chapter, we additionally give a brief overview
of the presented work alongside key information about the presented work.

Contribution 1. The first contribution is a summarized version of a systematic
literature study that investigates the use of machine learning within the field of self-
adaptation. The summarized version contains snippets of the original publication that
highlight relevant insights and findings leading to the formulation of Research Question
1.

Contribution 2. The second contribution explores an approach to handle large
adaptation spaces named Machine Learning to Adaptation Space Reduction Plus
(ML2ASR+ in short). The chapter provides an answer to Research Question 1 by
laying out an architecture-based self-adaptive solution, supported by a semi-formal
notation, that is able to adapt software systems in the presence of large adaptation
problems using classic machine learning techniques (classification and regression).
The approach is then evaluated in the application domains of Internet-of-Things (IoT)
and Service-Based Systems (SBS).

Contribution 3. The third contribution presents a systematic literature review on
the use of A/B testing. The literature study explores the subject of A/B testing, how
A/B tests are designed and executed, and what open problems remain in the field of
A/B testing. During this literature review, one of the gaps we identified was related to
the automation of aspects of the A/B testing process. This gap leads us to devise and
explore Research Question 2.

Contribution 4. The fourth contribution presents an approach to automate A/B testing
pipelines, leveraging self-adaptation principles and machine learning to automate and
improve the efficiency of the A/B testing process. This chapter addresses Research
Question 2 by providing an architecture to enable the automatic execution of A/B
testing pipelines and enabling parallel running of A/B tests when appropriate. We

18 INTRODUCTION

evaluated the approach in the context of a web-store application, comparing it to a
baseline approach that conducts the A/B testing in a classic sequential way.

Contribution 5. The fifth contribution of this dissertation is an artifact of a web-store
application, with explicit support to conduct A/B testing in the application. We utilized
the artifact to validate the approach presented in Chapter 5.

1.4.4 Positioning contributions

Research track 1. The first research track is situated entirely in the research domain
of self-adaptive systems. The research track consists of two concrete contributions: a
systematic literature review on the use of machine learning to support self-adaptive
systems, positioned in the self-adaptive systems research domain; and ML2ASR+ in
the self-adaptive systems research domain to deal with large adaptation spaces.

Research track 2. The second research track is situated in the research domains of
self-adaptive systems and A/B testing. The research track consists of three concrete
contributions: a systematic literature review on A/B testing positioned entirely in the
A/B testing research domain; AutoPABS for automated and segmented A/B testing
on soft facts within the A/B testing research domain, leveraging concepts from the
self-adaptive systems research domains; and SEAByTE, an artifact for the self-adaptive
systems research domain that enables the validation of self-adaptation approaches in
the context of A/B testing.

1.5 Thesis outline

The remainder of this thesis is structured as follows. Chapter 2 explores the use of
machine learning in the context of self-adaptive systems. This chapter is devoted to
Contribution 1, and is based entirely on an authored prior publication [151].

Chapter 3 introduces an approach to deal with large adaptation spaces in self-adaptation
by leveraging machine learning to reduce the adaptation space to a subset of relevant
adaptation options. This chapter is devoted to Contribution 2, and is based entirely on
an authored prior publication [289].

Chapter 4 investigates A/B testing through the lens of software engineering. This
chapter is devoted to Contribution 3, and is based entirely on a paper under review [286].

Chapter 5 introduces an approach to realize the efficient automated execution of A/B
testing pipelines in the underlying system. This chapter is devoted to Contribution 4,
and is based entirely on a paper under review [281].

THESIS OUTLINE 19

Chapter 6 presents an artifact of a web-store application that enables testing and
validating self-adaptation approaches in the context of A/B testing of the web-store
application. This chapter is devoted to Contribution 5, and is based entirely on an
authored prior publication [283].

Lastly, we conclude the dissertation in Chapter 7, where we summarize the contributions
of this thesis, and discuss opportunities for future work.

Chapter 2

Systematic Literature Review
on Machine Learning in
Self-Adaptation

Publication details. This chapter is based entirely on a journal publication in
the journal Transactions on Autonomous and Adaptive Systems (TAAS) [151].
We present a shortened version by focusing on aspects relevant for this
dissertation. Shortened sections are marked with an ellipsis.

Personal contributions. Conceptualization (20%), Methodology (20%), Data
collection (20%), Validation (30%), Formal analysis and interpretation results
(25%), Writing (25%), Visualization (20%).

Positioning. Recently, we witness a rapid increase in the use of machine
learning techniques in self-adaptive systems. While a body of work on the
use of machine learning in self-adaptive systems exists, there is currently no
systematic overview of this area. This chapter reports the results of a systematic
literature review that aims at providing such an overview. We focus on self-
adaptive systems that are based on a MAPE-based feedback loop. Results show
that machine learning is mostly used for updating adaptation rules and policies
to improve system qualities, and managing resources to better balance qualities
and resources. These problems are primarily solved using supervised and
interactive learning with classification, regression, and reinforcement learning
as the dominant methods. Surprisingly, unsupervised learning that naturally fits
automation is only applied in a small number of studies. Key open challenges in
this area include the performance of learning, managing the effects of learning,
and dealing with more complex types of goals.

21

22 APPLYING MACHINE LEARNING IN SELF-ADAPTIVE SYSTEMS

2.1 Introduction

The ever-growing complexity of software systems that need to maintain their goals 24/7
while operating under uncertainty motivates the need to equip systems with mechanisms
to handle change during operation. An example is a cloud service that needs to satisfy
user performance and minimize operational costs while operating under dynamically
changing workloads. This service may be enhanced with an elasticity module that
adjusts resources with changing workloads.

A common approach to handle change is the use of “internal mechanisms”, such as
exceptions (as a feature of a programming language) and fault-tolerant protocols. The
application of such mechanisms is often domain-specific and tightly bound to the
code. This makes it costly to build, modify, and reuse solutions [142]. In contrast,
change can be handled using “external mechanisms” that are based on the concept of
a feedback loop. An important paradigm in this context is self-organization, where
relatively simple elements apply local rules to adapt their interactions with other
elements in response to changing conditions in order to cooperatively realize the
system goals [169, 268]. Another important paradigm is control-based adaptation that
relies on the mathematical basis of control theory for designing feedback loop systems
and analyzing and guaranteeing key properties [395, 314].

In this chapter, we focus on architecture-based adaptation, which is an extensively
studied and applied approach to handle change [193, 142, 375, 29, 64, 362].
Architecture-based adaptation relies on a feedback loop that monitors the system and
its context and adapts the system to ensure its goals, or degrade gracefully if necessary.
Pivotal in tackling this task is the use of runtime models [142, 29] that enable the
system to reason about (system-wide) change and make adaptation decisions. The
feedback loop localizes the adaptation concerns in separable system elements that can
be analyzed, modified, and reused across systems. Examples of practical applications
of architecture-based adaptation are management of renewable energy production
plants [50], information systems for public administration [320], and automation of the
management of Internet of Things applications [372].

Realizing feedback loops for architecture-based adaptation is in general not a trivial
task. Over the past years, several techniques have been investigated to support the
design and operation of self-adaptation. One of these techniques is search-based
software engineering. For instance, [65] argues for the use of evolutionary computation
to generate and analyze models of dynamically adaptive systems in order to deal
with uncertainties both at development time and runtime. Our focus in this chapter
is on another prominent line of research that applies machine learning techniques in
the design and operation of self-adaptation. We highlight a few of the incentives to
apply machine learning techniques to architecture-based self-adaptive systems. Online
verification of rigorously specified runtime models enables providing guarantees about

BACKGROUND AND REVIEW FOCUS 23

the adaptation decisions. However, formal verification of runtime models for all
possible adaptation options during operation can be time-consuming. We may then use
a learning mechanism to filter the configurations before starting the analysis. Another
challenging aspect is the design of runtime models of complex software systems. These
models may become particularly complicated up to the level that it may be infeasible to
design the models if the structure of the system or its context is not known beforehand.
Hence, the models need to be derived during operation, for which we may use learning
techniques.

At the current point in time, we have a sizeable body of work in this area. Yet,
even though the amount of research that has been conducted on this topic is quite
substantial, there is no clear view of the state-of-the-art. Such an overview is important
for researchers in this area as it will document the current body of knowledge and
clarify open challenges. To tackle this problem, we performed a systematic literature
review [192]. The goal of this study is to provide a systematic overview of the state of
the art on the application of machine learning methods in self-adaptation. The survey is
centered on (i) the problems that motivate the use of machine learning in self-adaptive
systems, (ii) key engineering aspects of learning applied in self-adaptation, and (iii)
open challenges.

The remainder of this chapter is structured as follows. Section 2.2 starts with explaining
the background and outlining the focus of the literature review. In Section 2.3,
we position this review in the landscape of related review work. Section 2.4 then
summarizes the protocol of the study that includes the research questions, the search
string, inclusion and exclusion criteria, the data items that we extracted from the
papers, and the methods we used for the analysis. Section 2.5 reports the results
from the analysis of the collected data, providing answers to the research questions.
In Section 2.6, from the main findings of the literature review, we present an initial
design process for applying machine learning in self-adaptive systems, we present
opportunities for further research, and we discuss threats to validity. Finally, we wrap
up and conclude the chapter in Section 2.7.

2.2 Background and Review Focus

In this section, we briefly introduce self-adaptive software with a MAPE-based feedback
loop, and we summarize the essential dimensions of machine learning methods. Then
we clarify the distinction between an adaptation problem and a learning problem in the
context of this study, and we highlight the importance of the use of machine learning in
self-adaptive systems.

24 APPLYING MACHINE LEARNING IN SELF-ADAPTIVE SYSTEMS

2.2.1 MAPE-based Self-adaptation

This study focuses on self-adaptive systems based on architecture-based adapta-
tion [142, 210, 375]. Such a self-adaptive system comprises a managed system that
is controllable and subject to adaptation, and the managing system that performs the
adaptations of the managed system. The managed system operates in an environment
that is non-controllable. The managing system realizes a feedback loop that comprises
four essential functions: Monitor-Analyze-Plan-Execute that share Knowledge; often
referred to as MAPE-K or MAPE in short [193]. The monitor tracks the managed
system and the environment in which the system operates and updates the knowledge.
The analyzer uses the up-to-date knowledge to evaluate the need for adaptation,
possibly exploiting rigorous analysis techniques [45, 176, 51] or simulations of runtime
models [369]. Such analysis may apply rigorous methods to provide guarantees for the
If adaptation is required, it analyzes alternative configurations of the managed system.
We refer to these alternative configurations as the adaptation options. The planner then
selects the best option based on the adaptation goals and generates a plan to adapt the
system from its current configuration to the new configuration. Finally, the executor
executes the adaptation actions of the plan. It is important to highlight that MAPE
provides a reference model that describes a managing system’s essential functions
and the interactions between them. A concrete architecture maps the functions to
corresponding components, which can be a one-to-one mapping or any other mapping,
such as a mapping of the analysis and planning functions to one integrated decision-
making component.

In this literature review, we consider studies that are based on the MAPE reference
model that maps the MAPE functions (or some of them) to a specific component-based
architecture.

2.2.2 Machine Learning

T. Mitchell defines machine learning as follows: “A computer program is said to learn
from experience E concerning some class of tasks T and performance measure P , if
its performance at tasks in T , as measured by P , improves with experience E” [255].
For example, consider a self-adaptive sensor network that needs to keep packet loss
and latency under given thresholds. The training experience (E) from which we learn
could be the results of the analysis of adaptation options. The task (T) could be a
classification of the adaptation options in two classes: those that are predicted to comply
with the goals (and should be analyzed) and those that are predicted not to comply (and
should not be analyzed). The performance measure (P) to perform this task could be
the comparison of predicted values of packet loss and latency with the threshold values
of the respective adaptation goals. In this example, learning (classification) supports the

BACKGROUND AND REVIEW FOCUS 25

analysis stage of the feedback loop by reducing a large number of adaptation options,
aiming to improve the efficiency of analysis.

In the field of machine learning, a distinction can be made in four dimensions: [310,
28]:

• Unsupervised vs Supervised vs Interactive: An unsupervised learner aims at
finding previously unknown patterns in data sets without preexisting labels. One
of the main methods used in unsupervised learning is cluster analysis. Cluster
analysis identifies commonalities in the data and reacts based on the presence
or absence of such commonalities in new data. A supervised learner learns a
function that maps an input to an output based on example input-output pairs.
The function is inferred from labeled data and can then be used to map new
data. An interactive learner collects the input-output pairs by interaction with
the environment. The learner uses a learning model to make predictions that are
then used to perform actions in the environment. The environment then provides
feedback on the actions that the learner incorporates in its learning model
improving the learning process; a classic example is reinforcement learning.
We refer to the basic dimension that distinguishes unsupervised, supervised, and
interactive learning as learning type.

• Active vs Passive: In active learning, a learning algorithm interactively queries
some information source in the environment (e.g., a user or teacher) to obtain
the desired outputs at new data points. These outputs in turn are used to affect
the environment. A passive learner only perceives the information from the
environment without affecting it.

• Adversarial vs Non-Adversarial: Adversarial learning attempts to fool models
through malicious input. This technique can be applied to attack standard
learning models. An example is an attack in spam filtering, where spam messages
are obfuscated through the manipulation of the text. Non-adversarial learning
has no concept of malicious input.

• Online vs Batch Protocol: In online learning, data becomes available in a
sequential order and is used to update the learning model for future data at
each step. Batch learning on the other hand generates the learning model by
learning on the entire training data set at once.

In the literature review, we consider the four dimensions of machine learning methods.

2.2.3 Adaptation Problem versus Learning Problem

As explained above, in this survey we target software systems that comprise two parts:
a managed system that is adapted by a managing system, as illustrated in Figure 2.1.

26 APPLYING MACHINE LEARNING IN SELF-ADAPTIVE SYSTEMS

The managing system is based on a MAPE-K feedback loop that solves an adaptation
problem. An adaptation problem relates to one or more concerns of a managed system
that typically pertain to quality properties. The MAPE-K feedback loop is supported
by a machine learner that solves a particular learning problem. Hence, in this study,
we look at learning problems that are part of adaptation problems.

Consider the example we used in the introduction of a cloud service as a managed
system. The adaptation problem is to ensure user performance while minimizing
operational costs for the owner under changing workloads. To that end, the cloud
service is extended with an elasticity module. This module realizes a feedback loop that
dynamically adjusts the resources of the cloud service based on changing workloads.
A learning problem in this context may be the prediction of the workload of the cloud
service. Such a learner would support the monitor and analyzer of the feedback loop
of the elasticity module. Hence, the elasticity of the cloud service is realized by the
collaboration of the MAPE-K feedback loop and the machine learner that together
form the managing system.

Learning Problem

MAPE-K

Machine Learner

supports

Managing System

solves

solves
Adaptation
Problem

Managed System

adapts

Figure 2.1: Relation of learning problem and adaptation problem with the components
of the managing system.

2.2.4 Importance of Machine Learning in Self-Adaptive Sys-
tems

A recent book structures the field of self-adaptation in seven “waves” that highlight the
important research areas of the past two decades that have contributed to the current

RELATED REVIEWS 27

body of work [361]. The seventh wave focuses on machine learning techniques as a
means to enhance the realization of a self-adaptive software system. The book argues
that machine learning can be used to support different activities of the MAPE workflow
of self-adaptive systems and highlights three characteristic use cases. The first use case
enhances the monitor function of a self-adaptive system with a Bayesian estimator that
keeps a runtime model up to date. A concrete example is described in [108]. This
simple use case underpins the power of machine learning when dealing with parametric
uncertainties represented in runtime models. The second use case enhances the analyzer
function with a classifier that enables large sets of adaptation options to be reduced at
runtime, improving the efficiency of the analysis phase of self-adaptation. A concrete
example is described in [284]. This use case shows how learning can help to deal with
the complexity that comes with the increasing scale of self-adaptive systems. Finally,
the third use case enhances various feedback loop functions with a learning strategy
that combines fuzzy control and fuzzy Q-learning to adjust and improve auto-scaling
rules of a cloud infrastructure at runtime. An example is described in [182]. This use
case shows how machine learning can help to support decision-making in self-adaptive
systems that are subject to complex types of uncertainties.

These examples underpin the importance of machine learning techniques in self-
adaptive systems. This chapter aims to study the use of machine learning in self-
adaptation in a systematic way in order to document the current body of knowledge in
this area and identify open challenges.

2.3 Related Reviews

. . .

Several reviews related to this study have been published, but they differ in the
methodology used, the domain studied, or the types of feedback loops considered.
Table 2.1 summarizes the related work.

2.4 Summary Protocol

. . .

28 APPLYING MACHINE LEARNING IN SELF-ADAPTIVE SYSTEMS

Table
2.1:Sum

m
ary

ofrelated
review

s
(SL

R
refers

to
System

atic
L

iterature
R

eview
).

R
elated

review
M

ethod
D

om
ain

Type
feedback

loop

K
laine

etal.[347]
L

iterature
review

Self-organizing
netw

orks
C

ontrol-theoretic
D

’A
ngelo

etal.[75]
SL

R
C

ollective
self-adaptive

system
s

D
ecentralized

G
am

bietal.[140]
N

otspecified
C

loud
N

otconstrained
L

orido-B
otran

etal.[237]
N

otspecified
C

loud
N

otconstrained
M

asdarietal.[243]
N

otspecified
C

loud
System

s
in

general
C

uietal.[74]
L

iterature
review

IoT
System

s
in

general
Saputriand

L
ee

[304]
SL

R
Self-adaptive

system
s

System
s

in
general

RESULTS 29

2.5 Results

We now report the results. We start with some general information and then give results
grouped per research question. All data and analysis results of the study are available
on the study website1.

2.5.1 Demographics

. . .

2.5.2 RQ1: What problems have been tackled by machine
learning in self-adaptive systems?

To answer this research question, we analyze the data of the following data items:
Adaptation problem (F7), Learning problem (F8), Application domain (F12).2

Adaptation problem. In a concrete setting, self-adaptation is applied to solve a
particular adaptation problem. This adaptation problem refers to the concerns that the
managing system is dealing with. Previous research has shown that these concerns
relate to quality properties of, and resources used by the system, see e.g., [352, 363].
Table 2.2 lists the adaptation problems we have identified from the papers, illustrated
with examples. The last column shows the number of papers for each type.

Learning problem. A learning problem refers to a concrete problem that needs to be
solved by machine learning in support to realize self-adaptation. Table 2.3 shows the
six types of learning problems that we have identified from the papers. Each type is
illustrated with examples. The last column shows the number of papers for each type
of learning problem.

Adaptation problems versus Learning problems. We can now map adaptation
problems to learning problems. This mapping allows us to identify whether particular
types of adaptation problems delegate particular sub-problems to a machine learner.
Figure 2.2 shows the mapping.

A few observations jump out. First, self-adaptive systems that aim at improving the
qualities of the managed system primarily use learning to solve the problem of updating

1https://people.cs.kuleuven.be/danny.weyns/material/ML4SAS/SLR/
2During the coding process, we used the following terminology. We used the term quality to refer to

non-functional requirements that describe how a system should perform its functions, such as its performance
and reliability. We used the term resource to refer to the means or supplies a software system uses to realize
its functions, such as memory and bandwidth. We used the term cost to refer to monetary aspects, i.e., the
price one has to pay to use or operate a system.

https://people.cs.kuleuven.be/danny.weyns/material/ML4SAS/SLR/

30 APPLYING MACHINE LEARNING IN SELF-ADAPTIVE SYSTEMS

Table 2.2: Adaptation problems illustrated with examples, with the frequencies of
papers (right column).

Adaptation Problem Brief Description with Example #

Improve qualities

This adaptation problem is about improving (i.e.,
optimizing, maintaining, etc.) quality properties of
the system. An example is keeping the response time
low and the reliability high under changing workloads
and the occurrence of unexpected events [107].

44

Balance qualities
with resources

This adaptation problem is about keeping a balance
between improving quality properties of the system and
resources (i.e., CPU, energy, etc.) required to achieve
that improvement. For example, [241] aims at keeping
the latency within a specified range while minimizing
the computational resource required to achieve that.

37

Balance qualities
with cost

This adaptation problem is about keeping a balance
between improving the system’s quality properties and
the cost (i.e., operational, financial, etc.) required
to achieve that. For example, [45] aims at keeping
the failure rate of a service-based workflow below a
specified threshold while minimizing the cost of using
the services.

15

Improve resource
allocation

This adaptation problem is about improving (i.e.,
optimizing, managing, etc.) the system’s resource
consumption. An example is managing the system’s
CPU and memory usage under uncertain workloads of
the system [180].

10

Protect against
cyber threats

This adaptation problem is about automating the
cyber defense of a system by detecting and managing
threats (i.e., intrusion, anomalies, etc.). For instance,
[128] considers cyber defense in fifth-generation
mobile systems by detecting and dealing with system
intrusions.

3

RESULTS 31

Table 2.3: Learning problems illustrated with examples, with the frequencies of papers
(right column).

Learning Problem Brief Description with Example #

Update or change
adaptation rules
or policies

This learning problem is about updating or changing
adaptation rules or policies to support a managing system
when dealing with changing operating conditions. For
example, in [159], the managing system is supported
by a reinforcement learner that dynamically updates
adaptation policies to deal with changing workloads.

36

Predict or analyze
resource usage

This learning problem is about predicting or analyzing
resources that are used by the managed system that affect
the decision-making of the managing system. Examples
are learners that predict the energy consumption of
batteries [234], storage [191], and CPU usage [191].

23

Keep runtime
models
up-to-date

This learning problem is about supporting a managing
system by keeping runtime models up-to-date. Examples
are a model of the environment [331], a performance
model [183], and a reliability model [48].

18

Reduce large
adaptation space

This learning problem is about supporting a managing
system by reducing a large number of adaptation options
(large adaptation space) such that the system can make
more efficient decisions. For instance, [324] and [284]
use learners to predict quality properties of adaptation
options to select options, speeding up analysis.

16

Detect or predict
anomalies

This learning problem is about detecting or predicting
anomalies in the behavior of the system or its environment
that are relevant for adaptation. For example, in [211]
a learner detects abnormal flow of traffic in a traffic
management system, and in [267] a learner identifies
cyber threats in a communication network.

12

Collect unavailable
prior knowledge

This learning problem is about collecting initially
unknown runtime knowledge to support adaptation. For
instance, in [148] a learner builds a performance model to
support the managing system with computing the utility
of different configurations; in [340] a learner identifies
management policies without any prior knowledge.

4

32 APPLYING MACHINE LEARNING IN SELF-ADAPTIVE SYSTEMS

and changing adaptation rules and policies. Second, self-adaptive systems that aim at
protecting against cyber threats exploit learning only to detect or predict anomalies.
Third, self-adaptive systems that aim at balancing qualities with resources used by the
system exploit learners to solve all types of learning problems.

Improve qualities

Balance qualities with resources

Balance qualities with cost

Improve resource allocation

Protect against cyber threats

Collect unavailable prior knowledge

Detect/Predict anomalies

Reduce large adaptation space

Keep runtime models up-to-date

Predict/Analyze resource usage

Update/Change adaptation rules/policies

Adaptation Problems

Le
ar

ni
ng

 P
ro

bl
em

s

20 9 6 1

14 9

9 5 4

8 5 3

5 3 1 3

2 1 1

Figure 2.2: Learning problems versus adaptation problems.

Application domain. Table 2.4 shows the application domains where machine learning
has been applied and evaluated in support of self-adaptation. The results show that
learning has been applied in a wide variety of application domains, yet over 60% of
the papers have studied and validated their work in three domains: cloud, client-server
systems, and cyber-physical systems.

Application domains versus Adaptation problems. Figure 2.3 shows the adaptation
problems solved in different application domains. Improving qualities is the main
adaptation problem considered in all domains, except cloud. This can be expected as
managing resources is vital in cloud applications, so balancing qualities with resources
is the dominant adaptation problem in the cloud domain. Surprisingly, only a small
fraction of the studies in the domains of cyber-physical systems and the internet-of-
things consider resource management as part of the adaptation problem. Cost as an
explicit factor in self-adaptation is mainly considered in client-server systems and
service-based systems (in terms of the price to pay for using services).

RESULTS 33

Table 2.4: Application domains of the collected papers.

Application domain Number

Cloud 33
Client-server system 18
Cyber-physical system 16
Internet-of-things 9
Service-based system 8
Robotics 7
Network management 6
Business process management 4
Remote data mirroring 3
Traffic management 3
Stream processing 2
Grid computing 1
Medical simulation 1
No specific domain 3

Application domains versus Learning problems. It is also interesting to take a look at
the mapping of solved learning problems in different application domains, as shown in
Figure 2.4. One key observation is that learning for updating and changing adaptation
rules and policies is used in all domains, with cloud and client-server systems as the
main domains. The latter resonates with the broad use of rule-based and policy-based
techniques in the two domains. Learning to predict and analyze resource usage on the
other hand is primarily used in the cloud domain only. Learning to keep runtime models
up to date as well as reducing large adaptation spaces are also broadly used across
domains (except in network management). Finally, detecting and predicting anomalies
is primarily applied in network management, but sporadically also in a variety of other
domains.

Answer to RQ1 - What problems have been tackled by machine learning
in self-adaptive systems? We identified five types of adaptation problems
where learning is applied: improve qualities, balance qualities with resources,
balance qualities with cost, improve resource allocation, and protect against
cyber threats. We identified six types of learning problems: update/change
adaptation rules/policies, predict/analyze resource usage, keep runtime models
up-to-date, reduce large adaptation space, detect/predict anomalies, and collect
unavailable prior knowledge. The dominant case where learning is used
to solve adaptation problems is updating and changing adaptation rules and
policies to support improving qualities of the system. Learning to support

34 APPLYING MACHINE LEARNING IN SELF-ADAPTIVE SYSTEMS

Cloud

Client-server system

Cyber-physical system

Internet-of-things

Service-based system

Robotics

Network management

Others

Protect against cyber threats

Improve resource allocation

Balance qualities with cost

Balance qualities with resources

Improve qualities

Application Domains

A
da

pt
at

io
n

P
ro

bl
em

s

4 8 11 6 3 4 2 8

21 5 2 2 2 1 7

2 5 1 1 3 1 2

6 3 1

1 2

Figure 2.3: Adaptation problems versus Application domains.

self-adaptation has been applied in a variety of applications, with cloud, client-
server systems, and cyber-physical systems as the main domains.

2.5.3 RQ2: What are the key engineering aspects considered
when applying learning in self-adaptation?

To answer this research question, we use the data items: MAPE stage(s) supported by
learning (F9), Dimensions of learning methods (F10), and Learning methods used to
support self-adaptation (F11).

MAPE functions supported by learning. Figure 2.5 shows the distribution of
learning methods used to support MAPE functions. The diagram shows that learning
is dominantly used to support the analysis part of the decision-making process in the
feedback loop (in 83 studies). Thirty-six of these studies apply learning in support of
analysis only. A typical example is [284], where machine learning is used to reduce
large adaptation spaces such that only the relevant options need to be analyzed. Besides

RESULTS 35

Cloud

Client-server system

Cyber-physical system

Internet-of-things

Service-based system

Robotics

Network management

Others

Collect unavailable prior knowledge

Detect/Predict anomalies

Reduce large adaptation space

Keep runtime models up-to-date

Predict/Analyze resource usage

Update/Change adaptation rules/policies

Application Domains

Le
ar

ni
ng

 P
ro

bl
em

s

9 10 6 3 2 2 1 4

16 1 3 1 2

3 2 4 1 4 1 5

3 2 1 4 4 3

1 1 2 1 4 3

1 2 1 1

Figure 2.4: Learning problems versus Application domains.

analysis, learning is often used to support planning of the feedback loop (57 studies).
Fifteen of these studies apply learning in support of planning only. For example, [266]
adopted an instance-based learning method to implement a hybrid planning approach
that selects an optimal planning strategy among possible strategies. Learning has
also been used to support monitoring (23 studies), in particular, to update knowledge
models. Ten of these studies apply learning in support of monitoring only. For example,
in [209], monitoring data is pre-processed using a lightweight classifier in order to
learn optimization rules. We only identified one paper [267] where machine learning
was used to support the execution function of the feedback loop (in combination
with planning). In this paper, the authors used a classifier to choose the actuator that
the system should use to adapt. The diagram shows that in a substantial number of
papers (34 in total), learning supports both analysis and planning. An example is
described in [136], where machine learning is applied to generate Event-Condition-
Action rules that are evaluated and subsequently used to make adaptation decisions. A
smaller fraction of the papers (six in total) combine learning to support monitoring and
analysis. Finally, a small number of papers (seven in total) apply learning that spans
monitoring, analysis, and planning. As an example, [27] proposed a proactive learner
that supports monitoring, analysis, and planning by collecting context data, extracting

36 APPLYING MACHINE LEARNING IN SELF-ADAPTIVE SYSTEMS

required data for updating the learning model, and preparing a reasoning module for
the decision-making process.

10

6 7

36

34

15

1

Monitor (23)

Analyze (83)

Plan (57)

Execute (1)

0

Figure 2.5: Distribution of learning methods supporting the MAPE functions.

Learning problems versus MAPE functions. Figure 2.6 maps the learning problems
to MAPE functions. The heat map shows that all types of learning problems are tackled
in support of monitoring, analysis, and planning. As can be expected, the dominant
case is learning used for updating and changing adaptation rules and policies to support
analysis and planning, followed by predicting and analyzing resource usage. Another
observation is the importance of learning used to keep runtime models up-to-date in
support of monitoring and analysis.

Learning dimensions. Figure 2.7 gives an overview of the learning dimensions that
have been applied in the papers. Each layer of the sunburst diagram shows the options
for one of the learning dimensions, where the same value of a dimension is represented
by the same color. The numbers in the diagram are based on the number of learning
tasks that are solved to support self-adaptation. For instance, six learning tasks have
been solved using one or more learning methods that apply online, non-adversarial,
passive, and unsupervised learning. In total 165 learning tasks have been solved in
the 109 papers using a variety of learning methods. We zoom in on the concrete
learning tasks solved by concrete learning methods below. The results show that a
wide variety of combinations of dimensions are applied. The most popular learning
methods used in self-adaptation apply supervised, passive, non-adversarial, and online
learning. In terms of learning type, we observe that supervised learning dominates
(71% of the learning tasks). On the other hand, only a small number of papers apply
unsupervised learning (7% of the learning tasks), which is surprising for self-adaptive

RESULTS 37

Monitor

Analyze
Plan

Execute

Collect unavailable prior knowledge

Detect/Predict anomalies

Reduce large adaptation space

Keep runtime models up-to-date

Predict/Analyze resource usage

Update/Change adaptation rules/policies

MAPE Parts
Le

ar
ni

ng
 P

ro
bl

em
s

5 24 25

2 21 12

11 13 6

3 11 6

2 10 5 1

4 3

Figure 2.6: Learning problems vs. MAPE functions.

systems that aim at automation and dealing with uncertainties that may not have been
anticipated [47]. Example papers that applied unsupervised learning are [101] and
[399], in particular clustering-based learning techniques. Another observation is that
we only encountered two papers that use adversarial learning, namely [194] and [220]
that applied a game-theoretical learning approach.

Learning problems versus learning types. Figure 2.8 shows the mapping of learning
problems to learning types. The results demonstrate that supervised learning is
frequently used for all types of learning problems, but mostly to predict and analyze
resource usage. Interactive learning is also used for all types of learning problems, yet
updating and changing adaptation rules and policies together with keeping runtime
models up-to-date make up 80% of these problems. Unsupervised learning is most
frequently used for detecting and predicting anomalies, but nevertheless supervised is
still used three times more to tackle this learning problem.

Learning methods used to support self-adaptation. Figure 2.9 shows an overview
of concrete learning methods used in self-adaptation. Note that multiple methods
may be used in a single study. Each layer of the sunburst diagram shows a different
level of abstraction of the learning methods. The inner layer groups methods based
on learning type, i.e., the dimension “unsupervised vs. supervised vs. interactive”
(we further elaborate on dimensions of the learning methods below). The layer in the

38 APPLYING MACHINE LEARNING IN SELF-ADAPTIVE SYSTEMS

Supervi
se

d (1
17)

Interactive (37)

Unsupervised(11)

Passive (99)

Active
(18) Active

(36)

Passive (1)

P
as

si
ve

 (1
1)

Non Adversarial

(99)

Non Adversarial
(17)

A
dv

er
sa

ria
l (

1) Non Adversarial

(35)

Adversarial (1)

Non Adversarial (1)

N
on

 A
dv

er
sa

ria
l

(1
1)

Online (76)

B
atch (23)

Online (15)

Ba
tc

h
(2

)
O

nl
in

e
(1

) Online (35)

Online (1)

Batch (1)

O
nl

in
e

(6
)

Batch (5)

Figure 2.7: Distribution of learning dimensions used in machine learning for self-
adaptive systems

middle groups learning methods based on common tasks of machine learning methods,
i.e., classification, regression, reinforcement learning, clustering, and feature learning.
This grouping is based on [310, 28]. Note that one method can be used for multiple
tasks, for instance, support vector machines and deep learning have been used for both
regression and classification. Finally, the outer layer shows concrete learning methods
that were used in support of self-adaptation together with their frequencies (numbers
between brackets). Areas marked with “Other tasks/methods” group other options. For
instance, out of the 37 papers with interactive learning methods, 31 use reinforcement
learning to solve a learning problem; the other six studies use other methods, such as
hidden semi-Markov models and partially observable Markov decision processes. The
diagram shows that the dominating learning method used in support of self-adaptation
is model-free reinforcement learning (29 papers). An example is [13] which utilized
fuzzy Q-learning to reason about new rules from the data collected at runtime. Other
popular learning methods used in self-adaptation are support vector machines (15 times
used; eight for regression and seven for classification), and traditional artificial neural
networks and linear regression (both 14 times used). For instance, [105] exploited a
support vector machine to detect network attacks in cyber-physical systems, [61] used

RESULTS 39

Supervised

Interactive

Unsupervised

Collect unavailable prior knowledge

Detect/Predict anomalies

Reduce large adaptation space

Keep runtime models up-to-date

Predict/Analyze resource usage

Update/Change adaptation rules/policies

Learning Types
Le

ar
ni

ng
 P

ro
bl

em
s

22 21 2

34 3

25 9 2

19 1 2

13 1 4

4 2 1

Figure 2.8: Learning problems vs. Learning types.

an artificial neural network to predict qualities of services such as response time and
throughput of the system, and [80] applied linear regression to predict performance
and power consumption.

Learning problems versus learning tasks. We also looked at the mapping between the
learning problems in support of self-adaptation and the different types of learning tasks
that need to be solved by the learners. Figure 2.10 shows an overview of this mapping.
Regression is frequently used to solve all types of learning problems, but mostly to
predict and analyze resource usage (36% of the problems solved with regression).
Classification is also broadly used, with keeping runtime models up-to-date as the
main learning problem (28% of the problems solved with a classifier). Updating and
changing adaptation rules and policies is the primary learning problem solved by
reinforcement learning (65% of the problems solved by a reinforcement learner).

Distribution of learning tasks over time and number of citations. To conclude, we
look at the distribution of learning types over the years and the impact of the papers
based on the number of citations they generated. For the latter, we used the citations
from Google Scholar on February 2021.3 Figure 2.11 plots the results. We observe that
only seven papers have generated more than 100 citations; four that used supervised
learning [128, 111, 107, 404], two that used interactive learning [340, 45], and one

3We used Google Scholar as it is widely used, but we acknowledge its limitations, such as the inclusion
of self-citations.

40 APPLYING MACHINE LEARNING IN SELF-ADAPTIVE SYSTEMS

Supervise
d (1

17)

Interactive (37)

Unsupervised(11)

Regression (74)

Classification (43)
Reinforcement learning (31)

Othertasks (6)

Clustering(7)

Feature
learning (4)

Linear

regression (14)

Traditional

ANN (14)

Deeplearning (9)

Evolutionary
learning (8)Support vector

machine (8)

CART (7)Bayesian

learning (4)
O

th
er

m
et

ho
ds

 (1
0)

CART (12)

Support vector

machine (7)

K-nearest

neighbor (6
)

Baye
sia

n

learn
ing (5

)

Tr
ad

iti
on

al
ANN (4

)
De

ep
le

ar
ni

ng
 (3

)
O

th
er

m
et

ho
ds

 (6
)

Model-free

reinforcement learning (29)

Other methods (2)

Other
methods (6)

K-means (4)

DBSCAN (2)

HTM (1)

ANN-based
auto encoders (3)

LDA (1)

Figure 2.9: Distribution of learning types, tasks, and methods used in self-adaptive
systems. ANN refers to Artificial Neural Network, HTM to Hierarchical Temporal
Memory, and LDA to Latent Dirichlet Allocation.

paper that used unsupervised learning [128]. Overall, none of the three learning types
seem to have generated clearly more impact (normalized number of citations4 2007-
2019 for supervised learning avg 4.8, std 7.0; interactive learning avg 4.4, std 7.4;
and unsupervised learning avg 6.5, std 11.4.). The plot shows that supervised and
interactive learning have been used frequently over the full period from 2007 to 2019.
Yet, since 2016, we note an increase in the use of supervised learning and a decrease in
interactive learning. Remarkably, after some small attention to the use of unsupervised
learning in the period 2010 to 2013 (three studies), we observe an increase of this type
of learning in the last three years, from 2017 to 2019 (eight studies).

Answer to RQ2 - What are the key engineering aspects considered when
applying learning in self-adaptation? Machine learning is primarily used to

4The number of citations for each paper has been normalized by past years since it was published, i.e.,
normalized number of citations of paper = Google Scholar citation of the paper in 2021/(2021 - publication
year of the paper).

RESULTS 41

Regression

Classification

Reinforcement learning

Clustering

Feature learning

Others

Collect unavailable prior knowledge

Detect/Predict anomalies

Reduce large adaptation space

Keep runtime models up-to-date

Predict/Analyze resource usage

Update/Change adaptation rules/policies

Learning Tasks
Le

ar
ni

ng
 P

ro
bl

em
s

14 8 20 2 1

27 7 3

13 12 5 1 1 4

11 8 1 1 1

5 8 2 2 1

4 2 1

Figure 2.10: Learning problems vs. Learning tasks.

support analysis and planning in self-adaptive systems. The majority of the
papers use supervised or interactive learning; these learners typically exploit
the results of runtime analysis and observed effects of applied adaptations to
learn. The most frequent problem of self-adaptation delegated to learning is
updating and changing adaptation rules and policies (primarily solved using
regression and reinforcement learning). Other important learning problems are
predicting and analyzing resource usage (primarily solved using regression)
and keeping runtime models up-to-date (primarily solved using regression
and classification). The most popular learning method that is applied in self-
adaptive systems is model-free reinforcement learning used for updating and
changing adaptation rules and policies. Adversarial learning on the other hand
is understudied, while this approach has a huge potential to deal with security
concerns in self-adaptation. We observe that supervised and interactive learning
have been used frequently over the years. Unsupervised learning on the other
hand has only been used in a limited number of papers. Yet, this approach
supports detecting novelty in data without any labeling, which can play a key
role in managing complex types of uncertainty. None of the three types of
learning has clearly generated more impact over the years.

42 APPLYING MACHINE LEARNING IN SELF-ADAPTIVE SYSTEMS

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
0

50

100

150

200

250

300

350

400

450
Learning Types

 Supervised
 Interactive
 Unsupervised

Publication Year

N
um

be
r o

f C
ita

tio
ns

Figure 2.11: Distribution of learning types through years and the number of citations
(Google Scholar 2/2022). Each study is represented by a tiny horizontal bar as indicated
in the key. Studies of the same learning type with citation counts close to each other
form thicker bars.

2.5.4 RQ3: What are open challenges for using machine
learning in self-adaptive systems?

To answer this research question, we analyze data items: Limitations (F13) and
Challenges (F14).

Limitations. Table 2.5 lists the limitations reported in the papers. As illustrated in
the extracted quality scores, only a limited number of papers reported limitations of
the applied learning methods. The results show that a variety of limitations of the
learning methods have been reported. The most frequently reported limitation is the
limited scalability of the proposed learning approach. Other reported limitations relate
to impact on qualities, in particular performance and reusability, the scope in terms of
uncertainty and guarantees that can be provided, and the need for expertise of humans
to tune parameters.

Challenges. Table 2.6 lists the challenges reported in the papers. In total 21 papers
(19%) discussed challenges. Consequently, the reported challenges do not represent
consensus or the importance of the challenges. However, most of the challenges apply

RESULTS 43

Table 2.5: Reported limitations of the learning methods applied in the papers.

Scalability
Learning approach is not scalable 6 [48, 267, 61, 44,

340, 339]
No test of scalability due to data sensitivity 1 [302]

Performance
High computation time 3 [212, 189, 340]
High computational load for feedback loop 1 [146]
Slow convergence 1 [241]

Reusability
Solution is domain specific 2 [129, 146]
Applicable for optimization problems only 1 [235]

Uncertainty
Cannot handle new situations 2 [127, 331]
Cannot detect sudden changes 1 [339]

Guarantees
Optimization without satisfying all SLAs 1 [277]
Might be trapped in a sub-optimal solution 1 [276]

Design Need parameter tuning 4 [241, 127, 128,
182]

to many other papers; yet, these authors have not explicitly mentioned them. The
challenges are organized into five groups. Learning performance challenges primarily
relate to timing aspects of learning. Learning effect challenges relate to uncertainties in
terms of the effects of using learning in self-adaptation. Domain-related challenges
are concerned with the characteristics of domains and the transfer of solutions to other
problems. Policy-related challenges relate to the ability of learning methods to support
the principles and rules for decision-making in self-adaptation. Finally, goal-related
challenges relate to the need for machine learning techniques to support adaptation
in practical systems that are characterized by multiple, possible evolving goals. We
now zoom in on a few of the interesting open challenges and outline potential starting
points to tackle them.

An open challenge in machine learning for self-adaptive systems is effect uncer-
tainty [63, 276]. Effect uncertainty refers to uncertain effects on the system that
may occur when a learner selects a configuration or an adaptation plan that is applied
to the system. Relying on the results of machine learning comes with some degree of
(statistical) uncertainty that may affect the decision-making of a self-adaptive system.
Detecting and handling this type of uncertainty is an open challenge. Note that
this challenge is not specific to machine learning methods. However, we raise it
here as many studies have adopted machine learning methods for proactive decision-

44 APPLYING MACHINE LEARNING IN SELF-ADAPTIVE SYSTEMS

Table 2.6: Open challenges for learning in self-adaptation reported in the papers.

Balance time and accuracy 3 [323, 256, 266]Learning
Performance Handle oscillations in early learning

stages
1 [182]

Understand the effect of learning on
adaptation decisions over time

3 [63, 276, 401]
Learning Effect

Guarantees on results of machine
learning

1 [284]

Handle sudden changes 2 [270, 278]
Handle open world changes 1 [355]
Balancing diverse sources of input data 1 [328]
Extend to other application domains 1 [80]

Domain-Related

Define similarity measures to transfer
to other planning problems 1 [266]

Deal with conflicting policies 2 [270, 177]
Policy-Related

Improve policy evolution speed 1 [171]

Handle multiple goals 3 [184, 111, 284]
Goal-Related

Dynamically define utility function 1 [313]

making, where effect uncertainty gets more challenging by the uncertainty introduced
by learning methods.

Learning about open-world changes is another open challenge in self-adaptive systems.
Open world changes have been studied in the field of machine learning under the
umbrella of “lifelong machine learning” [341], in particular in relation to dealing with
new learning tasks. A lifelong machine learner relies on an online learning pipeline
that exploits historical knowledge to evaluate and update an existing learner to deal
with new tasks. It may be possible to exploit such an approach to support a data-driven
self-adaptive system with changes that were not fully anticipated.

In large-scale self-adaptive systems, the feedback loop’s monitor component may be
distributed over many different nodes (for instance sensor nodes) deployed on the
managed system or in the environment. An example is described in [391] where
distributed monitoring components are used in online games that run on a client-
server infrastructure. A crucial aspect of the sensed data on the decision-making for
adaptation is the impact of heterogeneous sensor data [328], which may dynamically
change. Automated weighting of heterogeneous data sources based on the current

RESULTS 45

situation of the system to assure proper decision-making for adaptation is an open
challenge.

One of the characteristic use cases of machine learning is reducing large adaptation
spaces to support efficient analysis of different configurations based on model checking
at runtime, see for instance [284]. An open problem is to understand the impact of the
learning process on the results of the model checker as this will affect the guarantees
of the decisions made by the feedback loop. Such understanding will not only provide
bounds on the expected impact of learning on the guarantees for decision-making
in self-adaptive systems, but it will also pave the way to dynamically balance the
guarantees that are required with the resources that are available to provide them.

Transfer learning focuses on storing knowledge obtained from solving one problem and
applying it to a different but related problem. For example, knowledge gained while
learning to recognize anomalies in one type of communication network could then be
exploited to recognize anomalies in another type of network. Transfer learning can help
self-adaptation by reducing the cost of continuous training and data collection [184].
However, this study highlights that transfer learning has rarely been used in self-
adaptation so far. Inspiration to tackle this open challenge is provided [171].

Another important open challenge when using learning is handling multiple goals.
Different approaches exist to deal with multiple goals in self-adaptation, such as utility
functions [313], (semi-)ordered rules [284], and multi-objective functions [111]. A key
issue of handling multiple goals is balancing time and resource usage with finding a
(close to) optimal solution. Hence, exploring the use of machine learning methods for
efficient multi-objective optimization with guarantees on the precision of the results is
an open challenge in machine learning for self-adaptation.

Answer to RQ3 - What are open challenges for using machine learning
in self-adaptive systems? Based on the reported limitations and challenges,
we identified three broad categories of open challenges. The first category is
about quality-related challenges. These include the scalability and performance
of learning, and the reusability of solutions. The second category is about
effect-related challenges. Central here are guarantees when learning is applied
to support the feedback loop, uncertainties caused by learning, and the effects
of learning on decision-making. The third category is about design challenges.
These include challenges related to the domain at hand, and policy and goal-
related challenges.

46 APPLYING MACHINE LEARNING IN SELF-ADAPTIVE SYSTEMS

Table 2.7: Themes of challenges with concrete focus as reported in the papers.

Challenge Theme Concrete Focus

Qualities Scalability of learning, remove performance penalty
Uncertainty Monitor uncertainty, detect novelty, support open world
Goals Deal with changing goals, conflict of goals, new types of goals
Guarantees Ensure quality goals, avoid sub-optimality, support explainability
Domain / Design Deal with parameter tuning, transfer solutions, reusability of

solution

2.6 Insights Derived from the Study and Threats
to Validity

Based on the insights derived from this systematic literature review we start this section
by outlining an initial design process for applying machine learning in self-adaptive
systems. Then, we discuss a number of remarkable observations of the survey that
open interesting opportunities for future research. Finally, we discuss threats to the
validity of the research presented in this chapter.

2.6.1 Towards a Design Process for Using Machine Learning
in Self-Adaptive Systems

. . .

2.6.2 Opportunities for Future Research

The reported limitations of learning methods applied in self-adaptation (Table 2.5) as
well as the open challenges for this area (Table 2.6) identify a number of shortcomings
of existing learning approaches and highlight demands that may require the use of other
or new learning methods to support self-adaptation. Table 2.7 summarizes the themes
of the reported challenges.

The themes in Table 2.7 take the stance of the stakeholders of self-adaptive systems,
looking from the perspective of the characteristics, demands, and open problems of
these systems. We complement this view now with a set of additional opportunities for
future research. To that end, we took a step back and explored prospects for advancing
the field by looking at opportunities provided by learning methods. In particular, we

INSIGHTS DERIVED FROM THE STUDY AND THREATS TO VALIDITY 47

Table 2.8: Additional opportunities for future research driven by learning methods.

Learning Method Concrete Opportunities

Unsupervised learning Detecting new structures in complex data, support other
learning methods

Active learning Involve stakeholders in decision-making, reduce learning
cost, increase speed of learning

Adversarial learning Improve rules and policies, detect anomalies
Other learning methods Detection of novel phenomena in environment, synchro-

nize execution workflows in complex settings

looked at machine learning methods that received less or no attention in existing work,
and explored how self-adaptation may benefit from further investigation into the use of
these learning methods. Table 2.8 summarizes the opportunities.

Only a small fraction (roughly 10%) of the papers apply unsupervised learning methods.
This is remarkable given that one of the key drivers for applying self-adaptation is
automating tasks in systems that are subject to uncertainty [362]. Since unsupervised
learning methods can work independently of external input and do not require labeled
data, we observe an interesting opportunity here to further explore unsupervised
learning in self-adaptation. Unsupervised learning methods can be used as independent
learning techniques to support self-adaptation; one interesting use case is the detection
of new structures in complex high-dimensional data [106]. Unsupervised learning
methods can also be used to support supervised or even interactive learning methods.
A good example here is auto-encoders that have been used to increase the precision of
other learning methods by providing a denser representation of data [384, 267, 128].

On the other hand, most papers apply passive learning. Active learning methods [309]
interact with the environment or stakeholders to obtain the desired outputs at new data
points. This helps to improve the performance of the machine learner by exploring
the most informative data. In the context of self-adaptation, applying active learning
provides an opportunity to involve stakeholders in the decision-making process, which
has been highlighted as a key aspect of establishing trust [372]. Active learning can be
exploited to reduce the learning cost and increase the convergence speed of learning.
It can also be particularly useful to learn updating goals through interaction with
stakeholders. In this way, the system can gradually learn essential knowledge of the
stakeholder.

Adversarial learning aims at enabling a safe adoption of machine learning techniques
in adversarial settings [216]. An adversarial machine learner tries to fool a learning
model by supplying deceptive input. Adversarial learning can be particularly useful in

48 APPLYING MACHINE LEARNING IN SELF-ADAPTIVE SYSTEMS

domains that are sensitive to privacy and security issues, e.g., for signature detection
and biometric recognition. Our study shows that only two papers have exploited
non-adversarial learning in self-adaptation that both adopt a game-theoretical learning
approach. This observation opens opportunities to exploit various adversarial learning
methods. One example is the use of generative adversarial networks to improve
rules and policies in rule- and policy-based systems, or detect new anomalies for
self-protection.

The majority of papers (85%) apply learning to support decision-making in self-
adaptation, i.e., the analysis and planning functions. The main use cases are updating
and changing rules and policies and predicting and analyzing resource usage. Only
a limited number of papers (14%) apply learning to support monitoring, and here
the main use case is keeping runtime models up-to-date. Only a single paper applies
learning to support execution. This clearly opens opportunities for other use cases. One
interesting opportunity is to use learning to support the detection of novel phenomena
in the environment that have an effect on the self-adaptive system. Tackling this type
of uncertainty is broadly seen as a key challenge in self-adaptive systems [47]. Another
opportunity is to exploit learning in the execution of adaptation plans. In complex
settings, for instance, in large-scale applications with distributed feedback loops, the
workflow and synchronization of adaptation actions are often very difficult to establish
manually. Machine learning can then be exploited to learn the best possible execution
of the workflow under changing conditions.

2.6.3 Threats to Validity

We list the main threats to the validity of this study and the measures we took to
mitigate them.

Internal validity: refers to the extent to which a causal conclusion based on a study is
warranted. Potential bias of reviewers is a common validity threat of literature reviews.
For instance, a reviewer may be biased in the interpretation of fundamental concepts,
i.e., machine learning and self-adaptive system. To mitigate this risk, we took two
measures. First, the three researchers involved in the study defined a protocol before
starting the review process to clarify the definition of fundamental concepts and the
process to follow. Second, the three researchers were involved in the selection of papers,
the data collection, and the analysis. A subset of the papers was handled independently
by two researchers. The decisions on including or excluding papers and collecting data
from the selected papers were based on an agreement between the two researchers. In
case of disagreement, a third researcher was consulted, and after discussion, a decision
was made in consensus.

External validity: refers to the generalizability of findings. Applied to this study, this

CONCLUSION 49

threat is about the generalization of the outcome and conclusions of the literature review.
By limiting the automatic search to three online libraries, we may have missed some
papers. To mitigate this threat, we applied the search string to the main libraries for
publishing research in this area. This aligns with other literature reviews. In addition,
we crosschecked that established venues for publishing papers in self-adaptation are
covered. Furthermore, the search string we used may not provide the right coverage
of papers. We mitigated this threat by starting the search process with pilot searches
to define and tune the search string by collecting data from specific venues via the
scientific search engines and comparing the results with manual inspection of the papers
of the searched venues.

Construct validity: refers to the degree to which a study measures what it aims to
measure. Here, the quality of reporting of studies may be a threat as this element
affects the validity of the collected data. To anticipate this threat, we extracted data
about reporting quality. The analysis of this data shows that the quality of reporting of
the papers is of sufficiently good quality. This result provides a solid basis to derive
conclusions from extracted data. Moreover, to mitigate this threat, we excluded all short
papers and papers that do not provide a minimum level of assessment. For instance,
we excluded [136] although the topic is relevant for our study, but this is a short paper.
Similarly, we excluded [312] since this regular paper does not provide a sufficient level
of assessment.

Reliability: refers to assuring that the research findings can be replicated by another
researcher. Here bias of researchers is also a potential validity threat. As explained
above, to mitigate this threat, we defined a detailed protocol that provides the necessary
guidelines for performing the different steps of the study. Multiple researchers did the
paper selection, data extraction, and analysis. Another technical threat concerns the
methods used to collect papers from search engines. For example, a search engine
may change the operator to select any paper that complies with a query from a star
(*) operator to an “ANY” operator (ignoring the initial version of the operator). To
anticipate this threat, all the review material is available online, enabling replication of
the study.

2.7 Conclusion

This literature review aimed at shining a light on the state of the art of using machine
learning in self-adaptive systems. The review confirms the rapidly growing research
interests in this area. We identified six types of problems in self-adaptation that are
solved by using machine learning: updating and changing adaptation rules and policies,
predicting and analyzing resource usage, keeping runtime models up-to-date, reducing
large adaptation spaces, detecting and predicting anomalies, and collecting unavailable

50 APPLYING MACHINE LEARNING IN SELF-ADAPTIVE SYSTEMS

prior knowledge. These problems are primarily solved to support analysis and planning
in self-adaptation. Supervised and interactive learning dominate, primarily to solve
regression, classification, and reinforcement learning tasks. The reported limitations
and challenges relate to quality properties when learning is used in self-adaptation,
the effects of learning on decision-making, and managing challenging aspects of the
domain at hand.

From the data analysis, we identified an initial process to support designers that want to
apply machine learning in the realization of self-adaptive systems. We defined an open
process that can be extended with new knowledge as we learn more about applying
learning in self-adaptive systems.

Finally, we outlined a number of interesting opportunities for further research in this
area, in particular, managing effect uncertainty, dealing with open world changes,
dealing with distribution and heterogeneity of data, determining the bounds on
guarantees for the adaptation goals implied by the use of machine learning, exploiting
transfer learning to related problems, and finally dealing with more complex types
of adaptation goals. We hope that the results of this systematic literature review will
inspire researchers to tackle these and other problems in this fascinating research area.

Chapter 3

Reducing Large Adaptation
Spaces Using Machine
Learning

Publication details. This chapter is based entirely on a journal publication in
the Journal of Systems and Software (JSS) [289].

Personal contributions. Conceptualization (65%), Methodology (75%),
Software (80%), Validation (80%), Formal analysis and interpretation results
(80%), Writing (60%), Visualization (90%).

Positioning. Modern software systems often have to cope with uncertain
operation conditions, such as changing workloads or fluctuating interference in
a wireless network. For software systems with a large number of adaptation
options, deciding which option to select for adaptation may be time-consuming
or even infeasible within the available time window to make an adaptation
decision. This is particularly the case when rigorous analysis techniques are
used to select adaptation options. One technique to deal with the analysis of
a large number of adaptation options is reducing the adaptation space using
machine learning. In this Chapter, we present ML2ASR+. Central to ML2ASR+
is a configurable machine learning pipeline that supports effective analysis
of large adaptation spaces. We evaluate ML2ASR+ for two applications:
an Internet-of-Things application and a service-based system. The results
demonstrate that ML2ASR+ can be applied to deal with different types of goals
and is able to reduce the adaptation space to make adaptation decisions with
over 90 %, with negligible effect on the realization of the adaptation goals.

51

52 REDUCING LARGE ADAPTATION SPACES USING MACHINE LEARNING

3.1 Introduction

Engineering modern software systems is complex. One of the important factors
that underlie this complexity is the dynamic and complex environment in which
systems need to operate, requiring the systems to deal with uncertain conditions
that are often difficult to predict before they are in operation [153]. These uncertainties
may jeopardize the system’s goals. Network interference can for example affect the
availability of the system if not properly dealt with.

To mitigate such uncertainties, self-adaptation has become prevalent in modern
software systems [64, 301, 361]. Self-adaptation enhances a software system with a
feedback loop mechanism that monitors the system and its environment, resolves the
uncertainties, and adapts the system to maintain its goals, or degrades gracefully if
necessary. Hence, self-adaptive systems consider system goals as first-class runtime
entities; we refer to these goals as adaptation goals. Adaptation goals commonly refer
to quality properties of the system [370].

In this chapter, we apply architecture-based adaptation [263, 142, 210, 374, 242], where
the feedback loop implements four functions: Monitor-Analyze-Plan-Execute (MAPE
in short) [193]. The MAPE functions are centered around Knowledge that typically
includes various forms of runtime models [29], such as architectural models of the
managed system and environment, goal models, and parameterized quality models that
allow predicting qualities of different system configurations. We focus on uncertainties
that can be represented as parameters of runtime models, e.g., stochastic automata or
Markov models. The values of the uncertainty parameters are updated by the monitor
function that monitors the system and its environment. We consider three types of
adaptation goals: threshold goals that require a system to keep a system property
above/below a given threshold, optimization goals that require a system to minimize or
maximize a system property, and setpoint goals that require a system to keep a system
property at a given value or as close as possible to it. An example of a threshold goal
for a client-server system is to keep the failure rate of service invocations below a given
threshold, an example of an optimization goal is to minimize the cost of operation, and
an example of a setpoint goal is to keep the response time of service invocations at a
required level.

Our particular focus is on the analysis function of the MAPE loop that (1) determines
whether the current configuration complies with the adaptation goals, and if this is
not the case, (2) predicts the qualities of alternative configurations. An alternative
configuration is a configuration that can be reached from the current configuration by
applying one or more adaptation actions. We refer to the alternative configurations
as adaptation options, and the set of all adaptation options as the adaptation space.
A common technique used to analyze the adaptation space is formal modeling and
verification. Formal models represent the system and its environment from the angle of

INTRODUCTION 53

one or more quality properties. These quality models are parameterized. One set of
parameters allows the instantiation of the models for a particular configuration of the
system. Another set of parameters represents uncertainties that are instantiated based
on the actual conditions of the system. During analysis, the parameters of the quality
models are instantiated. Commonly used analysis techniques are model checking [45,
51] and runtime simulation [176, 369, 371]. Based on the analysis results, a decision
can then be made to adapt the system compliant with the quality goals. Recently,
there is an increasing use of machine learning techniques to support the adaptation
functions [151].

For systems with a limited number of adaptation options, i.e., small adaptation spaces,
the analysis can be done fairly quickly ensuring that adaptation decisions are made
within the available time frame to handle the dynamics of the system properly. However,
for larger and more complex self-adaptive systems, the time required for analysis may
dramatically increase and formal assessment of the whole adaptation space may not be
feasible in such situations.

Different techniques have been proposed to deal with the problem of analyzing large
adaptation spaces. E.g., Cheng et al. [65] applied search-based software engineering
techniques to generate and analyze models of dynamically adaptive systems in order to
deal with uncertainties both at development time and runtime. Our particular focus in
this chapter is on a conceptually different technique that relies on machine learning to
support the reduction of adaptation spaces, see e.g., [284, 349, 88]. While promising,
current approaches do not provide a systematic solution with first-class support for
reducing large adaptation spaces during operation that is able to handle different types
of goals.

This chapter contributes ML2ASR+, short for “Machine Learning to Adaptation Space
Reduction Plus”, a novel approach for reducing large adaptation spaces.1 ML2ASR+
relies on classic supervised machine learning techniques, particularly classification and
regression. We evaluate ML2ASR+ on two self-adaptive systems in distinct domains
with varying sizes of adaptation spaces. We compare the approach with a reference
approach that exhaustively analyzes the whole adaptation space, and a state-of-the-art
learning-based approach that we developed in previous work [349], called DLASeR,
which exploits deep neural networks to achieve adaptation space reduction. In addition,
we perform a sanity check where we compare ML2ASR+ with an approach that
randomly selects a subset of adaptation options in each adaptation cycle.

The remainder of this chapter is structured as follows. Section 3.2 presents the state of
the art and pinpoints the problem we tackle in this chapter. In Section 3.3, we explain
the model we use for self-adaptation in this chapter, we elaborate on the different

1An initial version of the approach that was limited to only one type of adaptation goal was denoted
ML2ASR [284]. The “+” emphasizes that ML2ASR+ significantly extends ML2ASR. We elaborate on this
in the state-of-the-art overview in Section 3.2.

54 REDUCING LARGE ADAPTATION SPACES USING MACHINE LEARNING

types of adaptation goals, and we introduce a running example. Section 3.4 then
describes the core contribution: ML2ASR+, with its runtime architecture and workflow.
Section 3.5 explains the metrics that we use for evaluating ML2ASR+. In Section 3.6,
we evaluate ML2ASR+ for two application domains. Section 3.7 elaborates on the
results, presents insights, and discusses threats to validity. Finally, we wrap up and
conclude in Section 3.8.

3.2 State of the Art and Problem Description

We have divided the state-of-the-art into three main areas of research. For each area, we
summarize a number of representative efforts and we conclude with the open problems
in the area. From this analysis, we pinpoint the research problem we tackle in this
chapter.

3.2.1 Machine Learning to Support the Analysis of Large
Adaptation Spaces

We start with approaches that apply machine learning to deal with the analysis of large
adaptation spaces.

The FUSION framework learns the impact of adaptation decisions on the system’s
goals [107]. The approach utilizes M5 decision trees to learn the utility functions
that are associated with the qualities of the system. The results show a significant
improvement in analysis. FUSION targets the feature selection space, focusing on
proactive latency-aware adaptations relying on a separate model for each utility. Chen
et al. [62] study feature selection and show that different learning algorithms perform
significantly different depending on the types of quality of service attributes considered
and the way they fluctuate. The work is centered on an adaptive multi-learners technique
that dynamically selects the best learning algorithms at runtime. The focus of this work
is also on features instead of adaptation options. Metzger et al. [250] apply online
learning to explore the adaptation space of self-adaptive systems using feature models
with an emphasis on the adaptation and evolution of adaptation rules.

Jamshidi et al. [179] present an approach that learns a set of Pareto optimal
configurations offline that are then used at runtime to generate adaptation plans. The
approach reduces adaptation spaces, while the system can still apply model checking to
quantitatively reason about adaptation decisions. Camara et al. [53] use reinforcement
learning to select an adaptation pattern relying on two long short-term memory (LSTM)
deep learning models. The focus is on the use of runtime quantitative verification,
with support for threshold goals. Thallium exploits a combination of automated

STATE OF THE ART AND PROBLEM DESCRIPTION 55

formal modeling techniques to significantly reduce the number of states that need to be
considered with each adaptation decision [329]. Thallium addresses the adaptation state
explosion by applying utility bounds analysis. Diallo et al. [88] present a framework
consisting of a MAPE-K feedback loop with an explainable AI module to tackle the
issue of reducing adaptation spaces. Their framework leverages convolutional neural
networks to efficiently reduce adaptation spaces, alongside using explainable AI to
build trust in the system.

In our initial work [284] we applied classification and regression to reduce large
adaptation spaces. The work also only considered threshold goals. In [349], we
investigated the use of deep learning to reduce the adaptation space of self-adaptive
systems. That work focused on handling threshold and optimization goals only.

Open problems. Several approaches that apply machine learning to enhance the runtime
analysis of self-adaptive systems look at a coarse-grained level of system features
rather than a fine-grained level of adaptation options. The approaches that look at
the reduction of large adaptation spaces propose solutions that inherently mix the
reduction of the adaptation space with the way analysis is performed, while other
approaches (including our own earlier work) only consider specific types of adaptation
goals. In conclusion: existing approaches in this area do not provide explicit support
for adaptation space reduction, or they cover only specific types of adaptation goals.

3.2.2 Reinforcement Learning to Support Decision-making in
Self-Adaptation

We look now at reinforcement learning techniques used to support decision-making in
self-adaptation.

Porter et al. [273] study the dynamic composition of software elements using a
reinforcement learning algorithm, covering the analysis and planning stages in the
self-adaptation process. The approach reduces the adaptation space to a single option,
hence integrating adaptation space reduction and decision-making. Idziak et al. [173]
study different machine learning algorithms to deal with the so-called virtual machine
placement problem. These algorithms similarly take over the analysis and planning
stages of the self-adaptation process. Lui et al. [234] use a reinforcement learning
algorithm to improve resource efficiency in autonomous electrified vehicles. Similarly
to the previous two works, the approach reduces the adaptation space to a single option
that is used for decision-making. Bu et al. [40] and Metzger et al. [251] propose
strategies to explore the adaptation options in reinforcement learning algorithms.

Open problems. While relying on different learning techniques compared to the
approaches discussed above, the approaches proposed in this area also inherently
integrate the reduction of adaptation spaces with the decision-making to select the best

56 REDUCING LARGE ADAPTATION SPACES USING MACHINE LEARNING

adaptation options for the goals at hand. An advantage of relying on reinforcement
learning to realize this integration is that it does not require a (formal) model of the
system, which may be a benefit if creating such a model is problematic. In conclusion:
the proposed approaches do not support a separation of concerns between an explicit
and tuneable reduction of adaptation spaces and the decision-making of selecting the
best option.

3.2.3 Efficient Analysis in Self-Adaptive Systems

A number of approaches have been proposed to enhance the efficiency of analysis in
self-adaptive systems.

Filieri et al. [130] propose an approach to generate a static set of expressions from
a reliability model with a set of requirements. By using these expressions more
efficient analysis is possible at runtime. That approach targets formal models based
on PCTL (Probabilistic Computation Tree Logic). Calinescu et al. [46] combine
compositional verification with model checking to effectively adapt large-scale systems.
The authors employ assume-guarantee reasoning to reduce the cost of analyzing system
properties, compared to infeasible exhaustive model checking approaches. Gerasimou
et al. [144] explore caching, lookahead, and nearly-optimal reconfiguration techniques
to optimize the response time and overhead of Runtime Quantitative Verification to
enhance scalability.

Ghahremani et al. [149] look at ways of reducing the cost of realizing self-adaptation in
self-healing systems by combining utility-driven approaches with rule-based adaptation.
Moreno et al. [257] present an approach for proactive latency-aware adaptation that
relies on stochastic dynamic programming to enable more efficient decision-making.
Experimental results show that this approach is close to an order of magnitude
faster than runtime probabilistic model checking to make adaptation decisions while
preserving the same effectiveness.

El-Kassabi et al. [191] use a deep neural network to support proactive system adaptation
by providing predictions of cloud resource usage. The predictions enable the suggestion
of adaptation decisions to anticipate future quality of service violations. Di Sanzo
et al. [87] equip a client-server application with a framework that provides proactive
management of the application. The framework exploits a multitude of machine
learning methods such as linear regression and support vector machines to build and
use failure prediction models at runtime. The predictions are then used to proactively
adapt the system before failures take place. Ghahremani et al. [148] evaluate machine
learning algorithms for the prediction of system utility in adaptive systems, without
relying on detailed system information.

Open problems. The approaches proposed in this area can be structured into three

STATE OF THE ART AND PROBLEM DESCRIPTION 57

groups. The first group focuses on improving the verification process. These approaches
do not deal with the problem of adaptation space reduction but can be combined with
an approach for adaptation space reduction. A second group focuses on alternative
solutions to enhance the efficiency of decision-making in self-adaptive systems. Yet, as
with other related approaches discussed above, these approaches inherently integrate an
implicit reduction of adaptation spaces with the decision-making to select an adaptation
option. A third group applies machine learning techniques to make predictions of
qualities and other properties to support the decision-making process. These solutions
are complementary to the problem of adaptation space reduction. In conclusion: two
groups of related efforts do not solve the problem of adaptation space reduction, but can
be combined with approaches to reduce the adaptation space in order to enhance the
efficiency of analysis; another group of related efforts does not separate the reduction
of adaptation spaces with decision-making.

3.2.4 Research Problem

The analysis of the related work highlights the need for systematic approaches that
provide explicit first-class support for adaptation space reduction while covering
different types of goals. To that end, we formulate the following research question that
we tackle in this work:

How can machine learning be used to reduce large adaptation spaces of
self-adaptive systems with different types of adaptation goals to perform
more efficient analysis without compromising the goals?

To answer the research question, we propose ML2ASR+, a novel approach for
adaptation space reduction. Leveraging classification and regression, ML2ASR+ offers
a modular approach for efficient reduction of adaptation spaces for self-adaptive systems
with threshold, optimization, and setpoint goals. We translate the research question
to six requirements for ML2ASR+ that serve as drivers for devising the solution and
evaluating it.

The first four requirements – reusability, automatic operation at runtime, modularity
adaptation goals, and granularity of adaptation space reduction – are of a qualitative
nature. The last two requirements – negligible utility penalty and efficiency – are of a
quantitative nature.

Reusability. As a first requirement, the solution should be reusable, i.e., the solution
should offer distinct functionalities and modules that can be instantiated and applied
across application domains. We evaluate this requirement by demonstrating that the
proposed solution can be applied to applications in two different domains.

Automatic Operation at Runtime. As a second desirable requirement, we want the

58 REDUCING LARGE ADAPTATION SPACES USING MACHINE LEARNING

solution to operate at runtime without human involvement. We evaluate this requirement
by demonstrating that the proposed solution fully automatically reduces adaptation
spaces at runtime for different application domains.

Modularity Adaptation Goals. As a third requirement, we want the solution to be able
to handle different types of adaptation goals. The approach should be able to handle
independent types of adaptation goals, as well as a combination of different types of
goals in one system. We evaluate this requirement by demonstrating that the proposed
solution can be applied to instances of the same applications with different types and
combinations of adaptation goals.

Granularity of Adaptation Space Reduction. As a fourth requirement, we want our
solution to have the option to specify the granularity of adaptation space reduction, i.e.,
the degree to which the solution reduces the adaptation space. Granularity applies to
optimization and/or setpoint goals, enabling to determine which adaptation options
to include based on well-defined criteria. E.g., for a setting with a setpoint goal, we
may require the solution to find all the adaptation options within a given window
around the setpoint value. Differentiating the granularity offers flexibility when the
available adaptation time may be different under different conditions. We evaluate this
requirement by demonstrating that the proposed solution can be applied for different
levels of granularity of adaptation space reduction.

Negligible Utility Penalty. As a fifth requirement, we desire that the solution reduces the
adaptation space with little or no penalty on the quality properties that are the subject
of adaptation compared to an ideal solution where no adaptation space reduction is
applied. Utility denotes here the effect on the quality properties due to the adaptation
decisions made by using learning. We evaluate this requirement by comparing the
differences in mean values of the relevant quality properties over time with and without
learning. Depending on the type of goal (elaborated in Section 3.3) we either compare
the satisfaction of the goal or compare the difference in the quality tied to that specific
goal. We provide a concrete metric for the evaluation of utility penalty in Section 3.5.

Efficiency. As a sixth and final requirement, the solution should be efficient, i.e., the
adaptation space should be reduced such that the analysis can be performed within the
time window available to make adaptation decisions. We evaluate this requirement by
demonstrating that the proposed solution effectively reduces the adaptation space in two
different domains. We use three metrics to judge the efficiency of the adaptation space
reduction: (1) the Average Adaptation Space Reduction (AASR in short) that compares
the average number of adaptation options selected by learning over multiple adaptation
cycles with the average of the total number of adaptation options over these adaptation
cycles; (2) the total percentage of time saved as a result of the space reduction; and
(3) the percentage of overhead in time of ML2ASR+ due to learning compared to the
verification time required to verify the reduced adaptation space. We provide concrete
metrics for the evaluation of efficiency in Section 3.5.

MODEL OF SELF-ADAPTIVE SYSTEM WITH ADAPTATION GOALS AND RUNNING EXAMPLE 59

3.3 Model of Self-Adaptive System with Adapta-
tion Goals and Running Example

We briefly outline the model for self-adaptation that we use in this research. Then, we
give a simple example of a self-adaptive system that we use as a running case in the
chapter. Finally, we explain different types of adaptation goals.

3.3.1 Model of Self-Adaptive System

Figure 3.1 shows a high-level model of a self-adaptive system as we follow in this
chapter, leveraging on [361].

Managing system

Managed system

Self-adaptive system

monitor

Environment

outputinput

adaptation
goals /
support

adapt

Figure 3.1: Model of a self-adaptive system

A self-adaptive system consists of two parts: a managed system and a managing system.
The managed system can be any regular software-intensive system or a part of it.
Hence, the managed system may refer to an entire system, a subsystem, one or more
components, just a particular feature of a larger system, infrastructure, or resources
used by a system, etc. Other terminology used to refer to self-adaptive systems are
auto-tuned systems, elastic systems, controlled systems, context-controlled systems,
and autonomic systems, among others.

The managed system takes input from an environment and produces output to the
environment. While the managed system can be controlled, the elements in the
environment cannot. The environment may include other software systems, hardware,
communication networks, users, the operating context, and so forth. The managing
system acts upon the managed system with a particular purpose, for instance, to

60 REDUCING LARGE ADAPTATION SPACES USING MACHINE LEARNING

improve its performance when operating conditions change or to deal with errors
that may suddenly appear. The purpose is provided by stakeholders in the form of
adaptation goals. The managing system monitors the managed system and/or its
environment during operation, resolves uncertainties, and based on the adaptation
goals adapts the managed system or parts of it when needed. A common approach to
realize the managing system is by means of combining four basic functions: Monitor-
Analyze-Plan-Execute that share a common Knowledge, which is often referred to as
MAPE-K or MAPE in short [193]. The types of adaptations of the managed system
may range from adjusting parameter settings to architectural re-configurations. Hence,
the managed system needs to provide the necessary support to be monitorable and
adaptable. Operators or other stakeholders may support the managing system in its
tasks, but this is optional.

3.3.2 Running Example

We introduce a small example of a self-adaptive system that we use as a running case
to illustrate ML2ASR+. The managed system in this example is a simple service-based
system that handles service requests of clients through the invocation of a series of
services. These services are deployed on two machines named M1 and M2. The system
has to deal with two uncertainties: fluctuations in network bandwidth and the workload
of both machines respectively. These uncertainties affect three qualities that form the
adaptation goals: the failure rate, response time, and the cost of service requests. To
make sure that the qualities comply with the service level agreements of users, the
system is equipped with a managing system. This managing system realizes a feedback
loop that monitors the service system and has the ability to adapt the distribution of
service requests between M1 and M2.

3.3.3 Adaptation Goals

One of the requirements and a distinct feature of ML2ASR+ is support for different
types of adaptation goals. We start with describing the types of adaptation goals
ML2ASR+ supports one by one, and then we explain how multiple types of goals can
be combined. We illustrate the goals with the running example.

Threshold Goals

The first type of adaptation goal that we cover in this work is a threshold goal. A
threshold goal imposes a restriction on one of the system’s quality properties in the
form of a threshold value that should not be exceeded. Exceeded in this context can

MODEL OF SELF-ADAPTIVE SYSTEM WITH ADAPTATION GOALS AND RUNNING EXAMPLE 61

refer to either an upper bound value that the quality property should not cross, or a
lower bound value that acts as a minimum requirement for the quality property. We
define the satisfaction of a threshold goal T ∈ T with a threshold value x̄ for any value
of the quality property q (or quality value in short) as follows:

T<x̄(q) =
{

True : q < x̄
False : q ⩾ x̄

(3.1)

T>x̄(q) =
{

True : q > x̄
False : q ⩽ x̄

(3.2)

A threshold goal allows a self-adaptive system to categorize adaptation options in two
distinct classes: compliant with the threshold goal or in violation of the threshold goal.
Hence, threshold goals form a perfect candidate for the classification of adaptation
options, a classic supervised machine learning technique.

Example: Applied to the running example, we can define a threshold goal for the
system to keep the failure rate below a given time percentage, say 10%, as shown in
Figure 3.2a. In this case, the set of quality values q that satisfy the threshold goal,
i.e., T<10%(q) = True, correspond to classification class 1, while the set of quality
values q that do not satisfy the threshold goal, i.e., T<10%(q) = False, correspond to
classification class 0.

5 10 15
5

10
15
20

Response time

Fa
ilu

re
ra

te

(a) Example threshold goal of
10 for the failure rate.

0 10 20
5

10
15

Cost

R
es

po
ns

e
tim

e

(b) Example optimization
goal (minimize) for response
time.

5 10 15
0

10
20

Response time

C
os

t

(c) Example setpoint goal of
8 with error margin 1 for the
cost.

Figure 3.2: Example scenarios for each type of adaptation goal.

Optimization Goals

The second type of adaptation goal that we cover is an optimization goal. As the name
suggests, an optimization goal aims to optimize a quality property of the system, which
can either maximize or minimize the value of the quality property. We define the
satisfaction of an optimization goal O ∈ O for any quality value q as follows:

62 REDUCING LARGE ADAPTATION SPACES USING MACHINE LEARNING

Omin(q) =
{

True : q = min({q1, q2, ..., qn})
False : otherwise (3.3)

Omax(q) =
{

True : q = max({q1, q2, ..., qn})
False : otherwise (3.4)

with {q1, q2, ..., qn} the set of quality values of all the adaptation options in the
adaptation space.

The natural approach to predict the values of the quality property and judge the
adaptation options accordingly is regression. After the prediction, different strategies
can be applied to perform the analysis. One strategy is selecting and analyzing a
subset of adaptation options that were predicted to have quality values close to optimal.
This way a small margin of error for the applied regression technique is taken into
account. Another strategy is to restrict the analysis to only the adaptation option with
the optimally predicted value of the quality property. This strategy can be applied
if the time for computing the adaptation option is critical; yet, it may miss the best
adaptation option since the predictions with regression are subject to errors. The
strategy chosen represents the requirement of granularity of adaptation space reduction,
see Section 3.2.4.

Example: For the running example, we can define an optimization goal that minimizes
the response time of service requests to the system, i.e., Omin(q). Here we reduce
the adaptation space by looking at the top 10 adaptation options in terms of predicted
response time.2 Alternatively, we could opt to reduce the adaptation space to just
a single option, when choosing a more strict granularity. Figure 3.2b shows the
optimization goal when we choose to reduce the adaptation space to just one option.

Setpoint Goals

The third and final type of adaptation goal covered in this chapter is a setpoint goal.
A setpoint goal aims to keep the quality property of interest at (or close to) a given
target value (i.e., the setpoint value or just the setpoint). We define the satisfaction of a
setpoint goal S ∈ S with target µ and error margin ϵ for any quality value q as follows:

Sµ,ϵ(q) =
{

True : |q − µ| < ϵ
False : otherwise (3.5)

2In this chapter we define granularity in terms of an absolute number. An alternative approach could
be to define granularity as a percentage of the total number of adaptation options. Using a number has
the advantage that the time and resources required for analysis can be estimated; the advantage of using
percentages is that the relative number of options considered is fixed. So there is a tradeoff between the two
options. The proposed solution can be easily adjusted for both options.

MACHINE LEARNING TO ADAPTATION SPACE REDUCTION 63

For this type of goal, both classification and regression are candidates to predict quality
values. Regression allows the identification of adaptation options with predicted
quality values close to the setpoint value. Classification on the other hand enables
the classification of adaptation options as either (1) being inside the specified epsilon
window around the setpoint value or (2) outside the window.

Example: For the running example, we can specify a setpoint goal to keep the average
cost of service invocations in the system at 8 cents with an error margin of 1 cent, i.e.,
S8c,1c(q), as shown in Figure 3.2c. Depending on the granularity set for adaptation
space reduction, the adaptation space is reduced to adaptation options within a limited
window around the setpoint value.

Combination of Multiple Goals

In practice, self-adaptive systems usually have to deal with multiple adaptation goals.
ML2ASR+ supports adaptation space reduction for an arbitrary set of adaptation goals.
However, in this chapter, we restrict ourselves to combinations of multiple threshold
goals T, multiple setpoint goals S, and a single optimization goal O , representing
a large class of practical systems, as illustrated with the running example and the
cases used for the evaluation of ML2ASR+ in Section 3.6. The combined set of goals,
denoted as G, is defined as:

G = < T,S, {O} > (3.6)

Hence, self-adaptive systems that rely on multi-objective optimization of adaptation
goals to make adaptation decisions are not in the scope of the work presented in this
chapter. The following sections explain in detail how ML2ASR+ reduces adaptation
spaces when a combination of goals G needs to be satisfied.

Example: For the running example, we can combine different types of goals as specified
above, for instance keeping the failure rate below a given threshold while minimizing
the response time of service requests to the system.

3.4 Machine Learning To Adaptation Space Reduc-
tion

We now present ML2ASR+, addressing the research question we presented in
Section 3.2.4. ML2ASR+ is a modular approach for adaptation space reduction in
self-adaptive systems, meaning it can be instantiated in multiple ways, depending
on the needs of the domain at hand. We focus specifically on the use of two classic

64 REDUCING LARGE ADAPTATION SPACES USING MACHINE LEARNING

supervised machine learning methods: classification and regression, applied to systems
with different types of adaptation goals.

We start with presenting the runtime architecture of ML2ASR+ that integrates a
machine learning module in the architecture of a self-adaptive system. Then, we
give a high-level overview of the workflow of ML2ASR+. Finally, we zoom in on the
design time and runtime stages of the workflow.

3.4.1 Runtime Architecture of ML2ASR+

Figure 3.3 shows the high-level runtime architecture of a MAPE-based self-adaptive
system extended with a Machine Learning Module that realizes adaptation space
reduction. The Monitor tracks the uncertainties and properties of the underlying
managed system (1) and updates the information in the Knowledge repository. The
Analyzer then evaluates the need for adaptation, based on the current conditions (2).
When this is the case, the analyzer composes a set of possible adaptation options,
i.e., the configurations that can be reached from the current configuration by applying
adaptation. This set is then passed to the Machine Learning Module (3) that makes
predictions of the adaptation options using the machine learning models. Based on these
predictions and the adaptation goals, the Machine Learning Module filters the options,
reducing the set of adaptation options. These adaptation options are verified by the
Verifier Module using a set of runtime models of the quality properties that correspond
with the adaptation goals (4). The resulting estimates of the quality properties per
adaptation option are then used by the Machine Learning Module to further train its
internal learning models (5), resembling the online learning part of ML2ASR+. The
Planner then evaluates the verified adaptation options, determines the best adaptation
option available based on the adaptation goals, and composes a plan to adapt the
managed system (6). Finally, the Planner triggers the Executor (7) that executes the
steps of the plan adapting the managed system (8).

In the remainder of this section, we explain how the Machine Learning Module is
designed for a problem at hand (design stage of the ML2ASR+ workflow) and how the
module reduces adaptation spaces at runtime (runtime stage).

3.4.2 High-level Overview of the ML2ASR+ Workflow

We start with a high-level overview of the workflow of ML2ASR+, shown in Figure 3.4.
We explain the two stages of the workflow in general here and discuss them in detail in
the next sections.

MACHINE LEARNING TO ADAPTATION SPACE REDUCTION 65

Managed System

Managing System

Monitor Executor

PlannerAnalyzer

Machine Learning
Module Verification Module

1. Track

2. Analyze

3. Reduce
Adaptation Space

5. Online
Learning

4. Verify Reduced
Adaptation Space

Knowledge

6. Plan

7. Execute

8. Adapt

Figure 3.3: General MAPE-K architecture extended with a Machine Learning Module
that reduces adaptation spaces.

Data
Collection

System
Resources

Machine Learning
Module

Identification
Feature

Extraction

Machine
Learning
Module

Design stage

Feature
Extraction

Runtime
Data

Online Learning

Estimated
Qualities

Updated
Machine

Learning Models

Verification Predict and
Filter

Runtime stage

Training?
No

Yes

Machine
Learning Models

Input / OutputActivityStart / End FlowKey

Figure 3.4: High level overview of the workflow of ML2ASR+.

66 REDUCING LARGE ADAPTATION SPACES USING MACHINE LEARNING

The design stage starts with the collection of data from the managed system and its
environment. This data captures information relevant to the adaptation of the system
over a period of time. This includes properties in the environment that affect the
behavior of the system (e.g., actual workloads of the machines in the running example),
system configurations (e.g., the distribution of service requests between the machines),
and quality properties (e.g., the response time of service requests). Besides the system
in operation, other suitable resources can be used to collect the data, such as a simulator
or files with historical data. Next, features are extracted from the data. Features are
measurable properties of the system and its environment that are relevant for self-
adaptation. Uncertainties in the running example are the fluctuating workload of the
machines and the bandwidth of the network. The extracted features are then used for the
identification of the Machine Learning Module. To that end, different configurations of
the Machine Learning Module (based on different types of learning models and other
attributes such as scalers that are used to normalize the collected data) are compared
and the best configuration is selected. The output of the design stage is a Machine
Learning Module that comprises machine learning models with a set of attributes (for
instance scalers) and a predictor with a filter that allows predicting the qualities of
adaptation options that can then be filtered to reduce the adaptation space. The Machine
Learning Module is then ready for deployment and use at runtime.

The runtime stage works in cycles, each representing an opportunity for the system to
perform adaptation. The workflow starts with gathering runtime data from the managed
system and its environment that is relevant for adaptation. An example for the running
example is the actual value of the workload of the two machines used in the service-
based system. From this data, features are extracted, similarly to the design stage, yet
now based on the data collected at runtime. Then two sub-stages are distinguished:
training and testing. Immediately after deployment of the Machine Learning Module,
the machine learning models need to be trained to make accurate predictions about
quality properties in the system, filter the adaptation options, and reduce the adaptation
space. The adaptation options in the running example are determined by the different
settings that are available for distributing service requests between the two machines.
In the training sub-stage, the system does not make any predictions yet. Consequently,
as many adaptation options as possible are analyzed (i.e., the qualities are estimated
using a verifier). Different heuristics can be used to select adaptation options from the
total set, for instance, options may be selected randomly, or the options may be divided
into batches that are analyzed in subsequent slots. The number of cycles that are used
for the training sub-stage is a parameter that is determined during the design stage.

The second sub-stage of the runtime workflow is called testing. During testing, the
trained machine learning models are effectively used to reduce the adaptation space. In
addition, the new verification results for adaptation options of the reduced adaptation
space are used to continue the learning of the machine learning models. In the
testing sub-stage, the Machine Learning Module predicts the quality properties of

MACHINE LEARNING TO ADAPTATION SPACE REDUCTION 67

Start / End
Design stage

Data
Collection

System
Resources

Quality
Vectors

Model
Evaluation

Feature
Selection

Feature
Vectors

Updated
Feature
Vectors

Machine
Learning Module

Parameters

Machine
Learning
Models

Machine
Learning
Module

Evaluation
Metric Values

Model
Selection

Feature
Engineering

Figure 3.5: Workflow of the design stage activities for ML2ASR+.

the adaptation options, and based on these results and the adaptation goals set for the
system, a subset of adaptation options is selected for verification. The verification
results, i.e., estimates of the quality properties of the adaptation options of the reduced
adaptation space, are used for online learning. The updated machine learning models
are then ready to perform adaptation space reduction for the next cycle, and the
verification results can be used by the planner to make an adaptation decision.

In the following sections, we elaborate on the different steps of the two stages of
the workflow. To precisely describe the different activities, we use a lightweight
formalization.

3.4.3 Design Stage of the ML2ASR+ Workflow in Detail

Figure 3.5 describes the workflow of the design stage activities in detail. The design
stage comprises five distinct activities: Data Collection, Feature Selection, Feature
Engineering, Model Evaluation, and Model Selection. The output of the design stage is
a configuration for the Machine Learning Module that can then be deployed and used
to support a self-adaptive system by reducing large adaptation spaces at runtime.

Before explaining the activities in detail, we highlight the software artifacts used for
each activity and the responsibilities of the engineer; the various software artifacts are
at the disposal of the engineer to perform the different activities. Table 3.1 gives an
overview of the artifacts used for the activities with the responsibilities of the engineer.

68 REDUCING LARGE ADAPTATION SPACES USING MACHINE LEARNING

Data collection is initiated by an engineer who selects a system resource and configures
an artifact that is then used to collect data. Feature selection uses the collected data as
input in a feature importance function that is used to filter out unimportant features.
Feature engineering is automatically initiated after feature selection which adjusts
individual feature values according to the feature scaling algorithm. Model evaluation
automatically initiates after feature engineering by taking the updated features and
collected system qualities to run and evaluate different machine learning algorithms.
Lastly, model selection is performed by an engineer who inspects the evaluation metrics
from model evaluation to make a final decision about the configuration of the Machine
Learning Module.

Table 3.1: Responsibilities engineer with supporting software artifacts for the design
stage activities.

Activity Artifacts Responsibilities engineer

Data
collection

System resource with data
collection artifact

Determine system resource and
configure data collection artifact

Feature
selection

Feature importance function Select feature importance function

Feature
engineering

Feature scaling algorithm
implementations

Choose feature scaling algorithm
to use

Model
evaluation

Machine learning algorithm
implementations

Determine machine learning
algorithms to evaluate and
evaluation metrics to measure

Model
selection

Make final decision about
configuration by inspecting
evaluation metrics

Data Collection

During Data collection, data concerning adaptation is gathered from the managed
system and the environment in which the system operates. We categorize the data into
two categories: potential features and system qualities. A potential feature f is any
type of property of the system or the environment that could have an influence on at
least one quality property of the system. A system quality q represents a non-functional
property of the system. Data is collected for a period of time. At each time instance,
the potential features and the associated qualities are collected.

MACHINE LEARNING TO ADAPTATION SPACE REDUCTION 69

We introduce the following definitions3:

Πi = {π1, ..., πn}: A set of adaptation options in the system.

Π = {Π1, ..., Πn}: The set of all sets of adaptation options.

Ui = {u1, ..., un}: A set of uncertainties that can be monitored.

U = {U1, ..., Un}: The set of all possible sets of uncertainties that can be
monitored.

λi = {f1, ..., fn+m}: A set of features comprising n features that represents a
system configuration and m features that represent uncertainties.4 We call λi a
feature vector.

Λi = {λ1, ..., λn}: The set of possible feature vectors.

Λ = {Λ1, ..., Λn}: The set of possible sets of feature vectors.

ϕi = {q1, ..., qn}: A set of qualities of a system. We call ϕi a quality vector.

Φi = {ϕ1, ..., ϕn}: The set of possible quality vectors.

Φ = {Φ1, ..., Φn}: The set of possible sets of quality vectors.

s ∈ S: A system resource, with S the set of all resources of managed systems.

The standard resource used for data collection is the system deployed in its real-world
setting. This resource ensures that the most accurate data is collected to design and
configure the Machine Learning Module. However, collecting real-world data may be
hard, for instance for large-scale distributed systems, or it may be an expensive and time-
consuming process. Alternative approaches can then be applied, such as simulating
the system or using historical data collected from the system. Such techniques may be
more convenient to generate large amounts of data covering a wide range of different
system states. We formally define the CollectData function as follows:

CollectData : S → Λ× Φ
CollectData(s) =< {λ1, ..., λn}, {ϕ1, ..., ϕn} >

Data collection from resource s results in a list of feature vectors {λ1, ..., λn} and
quality vectors {ϕ1, ..., ϕn}. The potential features of λi correspond with quality values
ϕi. The feature vectors and quality vectors provide the input to the next design stage

3We use the variable n in multiple definitions to denote the number of elements in a set. However, each
of the scope of these numbers is a single definition, and values of n can be different in different definitions.

4We use the term potential feature to refer to a feature that may have an effect on any quality property of
the system. A potential feature becomes a feature if it has an actual effect on any quality property of the
system, which is determined during feature selection. We do not distinguish potential features and features
in the formal definition of feature sets.

70 REDUCING LARGE ADAPTATION SPACES USING MACHINE LEARNING

Table 3.2: Excerpt of data collected for the service-based application (abbreviations:
M→Machine, WL→Workload, ABW→Available Bandwidth).

Distribution WL M1 WL M2 ABW M1 ABW M2 Response time

40 75 20 10 10 16ms
50 40 15 50 50 8ms
20 60 80 25 30 14ms
80 5 25 50 75 3ms
50 25 20 70 60 5ms
60 70 40 40 60 11ms

activities.

Example: Table 3.2 shows an excerpt of data collected for the running example
application. Each row defines a feature vector with values for {Distribution, Workload
M1, ..., ABW M2} and a quality vector with values for {Response time}. Note that only
a subset of potential features and qualities are listed in the table for the sake of clarity.
We also consider a small set of feature vectors to keep the example simple. The full
data set includes all the features that may have an impact on the qualities of the system,
as well as all the associated quality values of the system.

Feature Selection

During the next two activities, relevant features are extracted from the collected data,
defined as follows:

ExtractFeatures = EngineerFeatures ◦ SelectFeatures

During Feature selection, the potential features and their respective quality values are
evaluated using a feature selection algorithm. This algorithm analyzes the impact of
individual features on the quality values associated with them. Irrelevant features, i.e.,
features that do not (or only marginally) influence the qualities, can be filtered out.
This will simplify the machine learning model and enhance the performance of the
Machine Learning Module.

It is important to note that Feature selection carries an inherent risk. In fact, the
algorithm determines the relevance of each feature based on its influence on the quality
values, yet this evaluation is based on the data collected during Data collection. If this
data does not cover the scenarios where the feature has an influence on the qualities
of the system, this feature will not be selected. For this reason, we leave Feature
selection as an optional activity in the design stage. It is the task of the engineer to

MACHINE LEARNING TO ADAPTATION SPACE REDUCTION 71

carefully evaluate the data collected from the system to determine whether or not
feature selection should be included. Feature selection is formally defined as follows:

IND = 2{1,...,n}: The set of all possible subsets of indices in the range [1 . . . n].
ind ∈ IND: The set of indices of features that are deemed relevant.

SelectFeatures : Λi × IND → Λj

SelectFeatures({λ1, ..., λn}, ind) =
{λsel

j ⊆ λi | ∀fn ∈ λsel
j : Relevant(fn, ind) = True}

Feature selection uses the Relevant function which uses the set of indices (denoted
as ind) to decide whether individual features of a feature vector should be included
or filtered out. Hence, the features in the resulting feature vector are the subset of the
features in the original feature vector that are relevant.

Example: The results of applying feature selection on the excerpt of the data collected
from our example system (shown in Table 3.2) are shown in Table 3.3. In this case,
feature selection determined that feature ABW 2 has no influence on the response time
and consequently, this feature is excluded.

Table 3.3: Example of performing Feature selection on the data from Table 3.2.

Distribution WL M1 WL M2 ABW M1 ABW M2 Response time

40 75 20 10 10 16ms
50 40 15 50 50 8ms
20 60 80 25 30 14ms
80 5 25 50 75 3ms
50 25 20 70 60 5ms
60 70 40 40 60 11ms

Feature Engineering

During Feature engineering, the concrete values of the features are inspected and
adjusted if this benefits the quality of predictions. As such feature engineering ties
in closely with the next activity: Model selection. A well-known example of feature
engineering is scaling which is used for features with values of varying magnitude,
range, and units. One scaling technique is normalization where values of features are
shifted and re-scaled to fit in a range between 0 and 1 (known as Min-Max scaling).
Another scaling technique is standardization where values of features are centered
around the mean with a unit standard deviation. Formally, feature engineering is
defined as follows:

72 REDUCING LARGE ADAPTATION SPACES USING MACHINE LEARNING

Transform : λi → λj

EngineerFeatures : Λi → Λj

EngineerFeatures({f1, ..., fn}) =
{ fj | fj = Transform(fi), fi ∈ {f1, ..., fn} }

Feature engineering is centered around Transform that transforms the values of the
features according to a concrete engineering method that is used (e.g. scaling with
normalization or with standardization). The result of feature engineering is a set of
normalized features.

Example: Table 3.4 shows an example of feature engineering applied to the selected
features of our running example shown in Table 3.3. In this particular case, the values
of the distribution, workload, and available bandwidth are normalized, i.e., the values
are rescaled to a range between 0 and 1 instead of the original values between 0 and
100.

Table 3.4: Example of performing Feature engineering on the data from Table 3.3. The
engineered feature values are marked in blue.

Distribution WL M1 WL M2 ABW M1 Response time

0.4 0.75 0.2 0.1 16ms
0.5 0.4 0.15 0.5 8ms
0.2 0.6 0.8 0.25 14ms
0.8 0.05 0.25 0.5 3ms
0.5 0.25 0.2 0.7 5ms
0.6 0.7 0.4 0.4 11ms

Evaluation of Models

During the last two activities of the design stage, we identify the machine learning
models of the Machine Learning Module, which is defined as follows:

IdentifyModels = SelectModels ◦ EvaluateModels

We start with Evaluation of models that uses the features extracted from the data of the
system to determine a set of metrics that can be used to evaluate the performance of
different machine learning models (in the next activity). Such metrics are determined
to evaluate learning models per adaptation goal. To that end, a list of potential machine
learning models is composed that combine different learning algorithms with variations

MACHINE LEARNING TO ADAPTATION SPACE REDUCTION 73

on their internal loss and penalty functions5. It is important to note that the selected
algorithms need to support online learning, i.e., have the ability to continue training
and thus update machine learning models after deployment.

Besides the list of machine learning models, two internal parameters of the Machine
Learning Module are evaluated during model evaluation. The first parameter,
exploration rate, represents the percentage of extra adaptation options that are selected
for analysis (by the self-adaptive system) on top of the adaptation options that are
predicted by the Machine Learning Module as being compliant with the adaptation
goals. Exploring an additional percentage of adaptation options ensures that the
Machine Learning Module also relearns a sample of options that may otherwise be
ignored. The second parameter that we evaluate is called warm-up count. This
parameter gives an indication for the number of training cycles that the Machine
Learning Module should consider before it can be used to make meaningful predictions
during operation (i.e., switch from training to testing).

We introduce the following definitions:

M = {m1, ..., mn}: The set of machine learning models to be evaluated.

M: The set of all sets of machine learning models.

E = {e}: The exploration rate internal to the Machine Learning Module.

W = {w}: The warm-up count internal to the Machine Learning Module.

θ: A set of metrics for the evaluation of machine learning models.

Θ: The complete set of possible evaluation metrics.

E: The set of all sets of evaluation metrics for machine learning models.

For the evaluation of the machine learning model, we use a train-test split. Train-test
split is an efficient procedure to estimate the performance of classification or regression
models. The method can be used if a sufficient large labeled dataset is available [18,
128], which applies to our case where such dataset can be obtained from the system
or a simulation as explained above.6 The evaluation of a machine learning model
involves two steps: (1) training the model with a set of feature- and quality vectors
and (2) testing the efficacy of the model by making predictions over a different set of
feature vectors, examining the predictions through analyzing the according machine
learning metrics. This process can range from splitting up the complete data set into
two partitions (a train- and test dataset) to dividing the complete data set into multiple
pairs of train- and test datasets (cross-validation). For the interested reader, we refer

5Whereas loss corresponds to the inaccuracy of predictions as explained above; a penalty expresses the
degree of impact that the loss will have on the model of the learner.

6The dataset of DeltaIoT, the first application used in the evaluation, comprises in total 64800 data points;
the dataset of SBS, the second application, comprises 1350000 data points.

74 REDUCING LARGE ADAPTATION SPACES USING MACHINE LEARNING

to A.2.1 where we present a formal foundation for the former. Model evaluation is then
defined as follows:

EvaluateModels : M× Λ× Φ× E ×W →M× E
EvaluateModels(Mi, ExtractFeatures(Λi, {ind}), Φi, e, w) =

< {m1, ..., mn}, {θ1, ..., θn} >

Model evaluation results in a set of metrics sets, one set per machine learning model.
Recall that metrics are determined per adaptation goal. Hence, we repeat model
evaluation per goal, resulting in a set of evaluation metrics sets for each adaptation goal.
After model evaluation, the metrics are used in the final design stage activity to select
the learning models of the Machine Learning Module that will be used for adaptation
space reduction at runtime.

For model evaluation of threshold goals, we apply classification using two evaluation
metrics: F1-score, and Matthews correlation coefficient. For model evaluation of
setpoint and optimization goals, we apply regression using four evaluation metrics:
the R2-score, mean squared error, median absolute error, and maximum error. We
elaborate on all aforementioned metrics further in Section 3.5.

Selection of Models

In the last activity of the design stage, we select a learning model from the evaluated
learning models relying on the metrics derived from the evaluation of these models.
Selection of models is formally defined as follows:

SelectModels : M× E→M

SelectModels({m1, ..., mn}, {θ1, ..., θn}) = mselected

During model selection, the designer evaluates the metrics for the different machine
learning models to make an informed decision about which model to use at runtime.
This is repeated for each adaptation goal. Once the learning models are selected the
Machine Learning Module can be configured and deployed to be used at runtime (we
explain the elements of a Machine Learning Module configuration below).

Example: Table 3.5 illustrates model evaluation and model selection for our running
case. The data in the table builds on the previous examples and considers three machine
learning models for classification, denoted with Model 1, 2, and 3. To keep it simple,
we restrict the evaluation to a single threshold goal: the response time of service
requests should not exceed 10ms. We also consider the accuracy of the model as a

MACHINE LEARNING TO ADAPTATION SPACE REDUCTION 75

single evaluation metric7. The table at the top shows the predictions of the different
learning models. E.g., the first line for the features with a response time of 16ms
exceeds the threshold goal (of 10ms) and should be classified as 0. This is correctly
done by Model 1 and Model 2, but not by Model 3. The table at the bottom shows the
accuracy of each Model. Based on these results, selecting a model is straightforward:
the engineer selects model 3 in this example which has the highest accuracy.8 In case,
multiple metrics are used, the engineer needs to make an informed decision taking into
account the different results.

Table 3.5: Excerpt of Model selection and Model evaluation in the service-based
application. Values in columns Model 1, 2, and 3 represent the classes of predictions
of the models. Class 0 means that the response time goal is violated, class 1 means that
the goal is achieved. The values of the classes that are predicted correctly are marked
in green; the values of the classes that are predicted incorrectly are marked in red and
are underlined.

Response time Response time
< 10ms? Model 1 Model 2 Model 3

16ms 0 0 0 1
8ms 1 1 1 1

14ms 0 0 1 0
3ms 1 1 1 1
5ms 1 0 0 1

11ms 0 1 0 0

Model 1 Model 2 Model 3

Accuracy 50% 66.6% 83.3%

Setup and Configuration of the Machine Learning Module

After completing the design stage activities, the Machine Learning Module can be set
up and configured. Figure 3.6 shows the architecture of the Machine Learning Module
that comprises four main components.

The Feature constructor is responsible for assembling and extracting feature vectors.
It takes as input a set of adaptation options and the values of uncertainties. The
feature constructor combines this input using Feature composition (we explain this
runtime activity below) and Feature engineering. The output is a set of feature vectors

7Evidently, in practice, multiple metrics will be used, but we simplify this here for illustration purposes.
8Accuracy is computed as the fraction of correct predictions expressed as a percentage.

76 REDUCING LARGE ADAPTATION SPACES USING MACHINE LEARNING

Machine Learning Module

Selected adaptation options

Filter

Verification Module Verified quality estimates

Predictor

Monitored
uncertainties

Predictions Feature
Constructor

Relevant
Feature
Indices

Transform
Function

Exploration Rate

Warm-up Count

Machine
Learning
Models

Feature vectors

Adaptation
options

Setpoint OptimizationThreshold

Analyzer

Figure 3.6: Architecture of the Machine Learning Module; configuration elements are
marked in green dotted boxes.

obtained from the runtime data. The feature constructor is configured using two specific
parameters: the indices of relevant features {ind} (determined in Feature selection)
and a Transform function (determined in Feature engineering).

The Machine Learning Models that are determined during the design stage are
maintained in a data repository. Conceptually, the learning models are part of the
Machine Learning Module. However, in practice, the models may be stored in the
Knowledge repository of the MAPE-K feedback loop.

The Predictor is responsible for making predictions of the adaptation options (i.e.,
the feature vectors produced by the feature constructor). In particular, the predictor
makes predictions about the satisfaction of adaptation goals of the adaptation options
(as specified by the Predict function), leveraging on the machine learning models.
The output of the predictor is a set of predictions for the different adaptation options
that need further filtering. The predictor is configured using the internal parameter
warm-up count that determines the period that is used for training the machine learning
models. We explain the predictor below in the section about testing.

Finally, the Filter is responsible for filtering the adaptation options based on the
predictions for the adaptation goals made by the predictor. Besides determining relevant
adaptation options, the filter selects a subset of additional features to be explored based
on the exploration rate parameter. The output of the filter is a reduced set of adaptation
options that are used for verification. The verification results are then used for online

MACHINE LEARNING TO ADAPTATION SPACE REDUCTION 77

Start / End
Training

Feature
Composition

Online Learning

Adaptation Options
+ Monitored
Uncertainties

Estimated
Qualities

Machine
Learning
Models

Updated
Machine

Learning Models
Verification

Feature
Vectors

Feature
Engineering

Updated
Feature
Vectors

Feature
Selection

Figure 3.7: Workflow of the runtime stage activities in training cycles for ML2ASR+.

learning of the machine learning models. We explain filtering further in the section
about testing below.

3.4.4 Runtime Stage of the ML2ASR+ Workflow in Detail:
Training

The runtime stage consists of two sub-stages: Training followed by Testing. In contrast
to the design stage activities, the runtime stage activities work fully automatic and
require no human input.

We start with Training. Training takes place immediately after deployment when
the Machine Learning Module has not yet learned nor gathered enough data of the
system and its environment to make accurate predictions about the system’s qualities.
Figure 3.7 gives a detailed overview of the workflow of the runtime stage activities
during training. Training is applied for a number of cycles, based on the warm-up
count that was determined during the design stage.

During training, the Machine Learning Module is not reducing the adaptation space
yet. Instead, the available adaptation time of the system is used to formally verify as
many adaptation options as possible, and the verification results are used to train the
learning models of the Machine Learning Module. If not all adaptation options can be
verified within a single time window that is available to make an adaptation decision,
different strategies can be applied to select and verify adaptation options. A simple
strategy selects adaptation options randomly. Another more balanced approach applies
a round-robin strategy to select adaptation options one by one in consecutive time
windows. Yet another strategy applies active learning to choose adaptation options for

78 REDUCING LARGE ADAPTATION SPACES USING MACHINE LEARNING

verification such that the Machine Learning Module can learn more efficiently by e.g.,
selecting options with maximum entropy [309]. ML2ASR+ is flexible and does not
prescribe any particular strategy.

We use the following basic definitions to formally describe the activities of the runtime
stage:

Ωi = {ω1, ..., ωn}: A set of predictions made by a learning model.

Ω = {Ω1, ..., Ωn}: The set of all sets of predictions made by a learning model.

Z: The set of all sets of predictions.

It is important to note that ML2ASR+ currently focuses on handling discrete adaptation
options. System designers can however discretize a continuous adaptation space to
apply ML2ASR+.

In the first activity of training, feature vectors are composed, meaning, the set of
possible adaptation options is combined with the set of uncertainties monitored by the
system. Formally ComposeFeatures is defined as follows:

ComposeFeatures : Π× U → Λ
ComposeFeatures(Πi, Ui) = Λi = {λπ1,Ui

, λπ2,Ui
, ...}

Features composition generates a feature vector that combines the features representing
a system configuration (adaptation option) with the features representing the monitored
uncertainties. The composed features then undergo selection and engineering before
they are used for online learning (see below), resulting in updated feature vectors.

Example: Table 3.6 illustrates the composition of features as well as feature extraction,
i.e., feature selection and feature engineering. The monitored uncertainties include
the workload and available bandwidth of the machines. The different settings of
the distribution of service requests represent here the adaptation options, i.e., system
configurations. Based on feature extraction, the feature ABW M2 is not included in
the updated feature vectors.

To enable online learning, i.e., which is actually a continued training activity, adaptation
options need to be verified, preferably as many as possible (as explained above). We
define Verify as follows:

QM = {qm1, ..., qmn}: A set of formal quality models used to estimate system
qualities.

MACHINE LEARNING TO ADAPTATION SPACE REDUCTION 79

Table 3.6: Example of composed features and application of feature extraction for the
service-based application.

Distribution WL M1 WL M2 ABW M1 ABW M2

0.1 0.4 0.2 0.5 0.3
0.2 0.4 0.2 0.5 0.3
0.3 0.4 0.2 0.5 0.3
0.4 0.4 0.2 0.5 0.3
0.5 0.4 0.2 0.5 0.3
...

Table 3.7: Example of formal verification of a set of adaptation options, marked in
blue.

Distribution WL M1 WL M2 ABW M1 ABW M2 Estimated RT

10 40 20 50 30 3ms
20 40 20 50 30 8ms
30 40 20 50 30 6ms
40 40 20 50 30 11ms
50 40 20 50 30 13ms
...

Q: The set of all sets of formal quality models.

V erify : Π× U ×Q→ Π× Φ
V erify({π1, ..., πn}, {u1, ..., um}, {qm1, ..., qmk}) =

< {π1, ..., πn}, {ϕ1, ..., ϕn} >

Verification generates a set of quality values (one per goal) for each adaptation option.
It is important to note that the quality values for the different adaptation options are
estimates. The accuracy of these estimates is determined by the precision of the quality
models used, the measurements of the uncertainties, and the verification method applied.

Example: Table 3.7 illustrates the verification results of a quality model for the response
time of a sample of adaptation options from our example service-based application.

Lastly, we use the updated feature vectors and the estimated quality vectors to train the
machine learning models. More specifically, we employ online learning to continuously
update and refine the machine learning models during the testing cycles. Online
learning, also referred to as incremental learning, allows a learner to incrementally

80 REDUCING LARGE ADAPTATION SPACES USING MACHINE LEARNING

learn from newly provided data samples. We refer the interested reader to the following
articles [56, 217]. LearnOnline is defined as follows:

LearnOnline : Λ× Φ×M →M

LearnOnline(ExtractFeatures(Λi, ind), Φi, m) = mupdated

Online learning is defined for a single learning model and hence needs to be repeated
for all models. Initially, online learning starts from the model selected during the design
stage (mselected). Online learning then uses the features extracted from the composite
feature vectors that are derived from the runtime data, the quality vectors associated
with the adaptation options obtained from verification, and the model that is subject to
training. The result is an updated learning model.

3.4.5 Runtime Stage of the ML2ASR+ Workflow in Detail:
Testing

Once the machine learning models are trained (based on the warm-up count determined
during the design stage), the Machine Learning Module switches to Testing. As
opposed to training, during testing cycles, the Machine Learning Module uses the
machine learning models to make effective predictions about the qualities of adaptation
options. These predictions can then be used to reduce the adaptation space, improving
the efficiency of the analysis. Figure 3.8 shows the workflow with the activities of the
testing cycles.

Similar to training, feature vectors are composed of adaptation options and monitored
uncertainties. These feature vectors undergo selection and engineering resulting in
updated feature vectors. These feature vectors are then used together with machine
learning models to make predictions about the qualities of the adaptation options. We
define Predict as follows:

Predict : M × Λ→ Λ× Ω
Predict(m, {λ1, ..., λn}) = < {λ1, ..., λn}, {ω1, ..., ωn} >

Predictions are made per machine learning model. Prediction takes as input a learning
model and a set of feature vectors. The result is a set of predictions associated with the
adaptation options (represented as feature vectors). The types of predictions depend
on the machine learning model at hand. For instance, a classifier uses classes as
representations, while a regressor uses values.

Example: Table 3.8 illustrates predictions for a sample of feature vectors done by

MACHINE LEARNING TO ADAPTATION SPACE REDUCTION 81

Start / End
Testing

Feature
Composition

Feature
Vectors

Online Learning

Subset
Estimated
Qualities

Machine
Learning
Models

Updated
Machine

Learning Models

Verification

Feature
Selection

Feature
Engineering

Updated
Feature
Vectors

Monitored
Uncertainties

Reduced Set
Adaptation

Options

Predict

Predictions

Available
Adaptation

Options

Determine
Exploration

Filter

Figure 3.8: Workflow of the runtime stage activities in testing cycles for ML2ASR+.

a classifier that predicts the classes for each feature vector. Class 1 and 0 refer to
predictions for the satisfaction and violation of a threshold goal respectively, as defined
in the examples of the design stage.

Table 3.8: Example of predictions made for feature vectors taken from Table 3.6.

Distribution WL M1 WL M2 ABW M1 Predicted class

0.1 0.4 0.2 0.5 1
0.2 0.4 0.2 0.5 1
0.3 0.4 0.2 0.5 0
0.4 0.4 0.2 0.5 0
0.5 0.4 0.2 0.5 0
...

The predictions made by the machine learning models are then used to filter the
adaptation options. Only the adaptation options that are predicted to meet the adaptation
goals are included for verification. For a full explanation and formal foundation of
the filter operation, we refer the interested reader to A.2.1. To summarize the filter
operation: first adaptation options that are predicted to not meet any of the threshold
or setpoint goals are filtered out. Second, out of the remaining adaptation options,

82 REDUCING LARGE ADAPTATION SPACES USING MACHINE LEARNING

Table 3.9: Example of the selection of adaptation options for verification based on
predictions made in Table 3.8 and an additional set of options to explore (in the excerpt,
only one such option is shown).

Distribution WL M1 WL M2 ABW M1 Predicted class Verify?

0.1 0.4 0.2 0.5 1 Verify
0.2 0.4 0.2 0.5 1 Verify
0.3 0.4 0.2 0.5 0 Explore
0.4 0.4 0.2 0.5 0 Discard
0.5 0.4 0.2 0.5 0 Discard
...

the adaptation space is further reduced according to the specified granularity value
(typically denoted by the letter g from this point on) and the predictions affiliated with
the quality of the optimization goal of the system (if present).

A consequence of the filtering approach is that adaptation options that do not meet all
the adaptation goals are not selected for verification (since these options are filtered
beforehand). However, these adaptation options may be of interest to the system.
To deal with this issue we introduced the internal parameter exploration rate; the
internal parameter that we discussed in Model selection during the design stage. The
exploration rate specifies the percentage of adaptation options that are included for
verification, despite these options being filtered out by the filter. The exploration
rate offers the Machine Learning Module the ability to relearn and correct potentially
outdated predictions. For a formal definition of the selection of explored adaptation
options, we refer to the A.2.1.

Example: Table 3.9 illustrates the application of filtering based on the predictions made
by the Machine Learning Module, as well as extending this set with a selection of
additional adaptation options based on the exploration rate.

3.5 Algorithms, Models, and Metrics for Evaluat-
ing ML2ASR+

Before we present the evaluation of ML2ASR+, we give an overview of the algorithms
and models we used for the design of the learning modules, and we define the metrics
that we use for the evaluation in Section 3.6.

ALGORITHMS, MODELS, AND METRICS FOR EVALUATING ML2ASR+ 83

3.5.1 Algorithms and Models for the Design of the Machine
Learning Modules

For the design of the Machine Learning Modules of the evaluation cases, we evaluated
different machine learning algorithms and models. The selection of the algorithms and
models is based on their common use in the community; for some recent examples
see [86, 143, 5]. In addition, the algorithms and models are supported by the widely
used scikit-learn implementation kit [269] (see for instance [183, 348, 88]) that we
also used for implementing the Machine Learning Module. We summarize now the
algorithms and models that we used in the different design steps.

Feature Extraction Algorithms Feature extraction involves two steps: Feature
selection and Feature engineering. For Feature selection we have used Extremely
Randomized Tree algorithms [147] to determine the importance of individual features
based on their influence on the target values, i.e., the qualities of the system. The
algorithms are based on random forest algorithms (composed of an ensemble of
classical decision trees). On top of the random forest algorithms, the extremely
randomized tree algorithms introduce extra randomness with the objective of reducing
the variance of the machine learning algorithm further (reducing overfitting). We
utilized two implementations of the extremely randomized tree algorithms: an
implementation of the algorithm for classification and an implementation of the
algorithm for regression. After applying the algorithms and detecting relevant features,
we adjusted the collected data accordingly for the subsequent activities. For Feature
engineering we considered 4 scaling algorithms: no scaling algorithm, min-max scaling,
max-abs scaling, and standard scaling. We described the min-max and standard scaler
briefly in Section 3.4.3. The max-abs scaler rescales the feature values in the range
between 0 and 1 relative to their absolute value (e.g. the maximally encountered
absolute feature value rescales to a value of 1).

Machine Learning Models For our evaluation, we considered classification
and regression machine learning models from the scikit-learn library [269] that
are commonly used and support online learning. More specifically, we evaluated
Stochastic Gradient Descent classifiers, Passive-Aggressive classifiers, Perceptron
classifiers, Stochastic Gradient Descent regressors, and Passive-Aggressive regressors.
The Perceptron classifier is a single-layer classifier that utilizes the broadly known
Perceptron algorithm (written and published by Frank Rosenblatt [298]). The Stochastic
Gradient Descent classifier and regressor both use an SGD learning routine to train
their internal models. This learning routine tries to approximate the true gradient of the
regularized training error of the model by analyzing a single training data sample at a
time (based on [295]). The Passive-Aggressive classifier and regressor [71] both utilize
a more aggressive strategy compared to the previously mentioned Perceptron or SGD

84 REDUCING LARGE ADAPTATION SPACES USING MACHINE LEARNING

Table 3.10: List of used machine learning metrics when evaluating classification
machine learning models.

Name Description Objective

F1-score

A combined metric of recall (percentage of samples that were
retrieved using the classifier) and precision (percentage of
samples that were correctly predicted), defined in the interval
[0, 1].

Maximize

MCC

The Matthew’s correlation coefficient: a metric representing
how well the classifier performs compared to making random
predictions, defined in the interval [-1, 1] (-1 representing
completely incorrect predictions, 0 representing on-par
predictions with random predictions, and 1 representing
perfect predictions).

Maximize

models by correcting its model in case the internal loss exceeds a threshold, regardless
of the step size required to amend the model.

It is important to note that ML2ASR+ supports any other type of machine learning
model (classification or regression) that supports online learning and fits within the
architecture as described in Figure 3.6.

3.5.2 Metrics for Evaluating Learning Models of ML2ASR+

Learning models need to be evaluated both during the design stage and the runtime
stage. During design, evaluation is used to select the best model. For hyper-parameter
tuning, we varied a number of parameters, in particular the loss function, penalty
function (if applicable), scaler, exploration rate, and warmup-count for the learners
that we evaluated9 (for the list see Section 3.4.3). During runtime, we monitored the
selected learning models to validate that they perform well after deployment. Table 3.10
and Table 3.11 show the metrics we used for the evaluation of the learning models for
classification and regression respectively.

F1-score combines recall (the percentage of samples that were retrieved by prediction
from a specific class) and precision (the fraction of samples that have been predicted to

9For scenarios with two threshold goals experimental evaluation revealed that using a single classifier to
predict the satisfaction of the two threshold goals was slightly more accurate than using separate classifiers.
Therefore, for such settings, we use a single classifier that classifies the adaptation options into four classes
as follows: C0: No threshold goals are satisfied; C1: Only the first threshold goal is satisfied; C2: Only the
second threshold goal is satisfied; and C3: Both threshold goals are satisfied. We use these classes in the
evaluation in Section 3.6.

ALGORITHMS, MODELS, AND METRICS FOR EVALUATING ML2ASR+ 85

Table 3.11: List of used machine learning metrics when evaluating regression machine
learning models.

Name Description Objective

R2-score
A metric representing how well the model predicts the target
value by looking at the variance of the predictions, defined
in the interval [0, 1].

Maximize

MSE The mean of the squares of errors on predictions made by the
regressor. Minimize

MAE The median absolute error on predictions made by the
regressor, less susceptible to outliers. Minimize

ME The maximum error on predictions made by the regressor. Minimize

be of a specific class that are actually part of that class). The F1-score is defined as a
value in the interval [0, 1]. A higher F1-score means in general a better-performing
classifier. The F1-score is commonly used to judge the performance of classifiers,
e.g., [18, 128]. The Matthews correlation coefficient has a value in the range [-1, 1],
where 1 represents perfect predictions, 0 represents predictions that are equal to random
predictions, and -1 represents incorrect predictions. Hence, this metric enabled us to
compare the predictions made by the machine learning model with an approach that
predicts based on random selections.

The R2-score represents how well the predictions of the model fit the actual quality
values by looking at the variance of the predictions compared to the actual quality
values. The R2-score is defined as a value in the interval [0, 1]. A higher R2-score
indicates that the model is a better fit for the quality under consideration. The mean
squared error refers, as the name suggests, to the mean of the squares of the errors in
predictions made by the regressor. The median absolute error offers an alternative to
the mean squared error, which is not as susceptible to outliers in the predictions. Lastly,
the maximum error gives a good indication of the worst-case prediction made by the
regressor. The R2-score serves as a good general metric for evaluating learning models
(e.g., used in [303]). The other metrics can provide useful insights depending on the
domain and context of the application at hand, see e.g., [132].

3.5.3 Metrics for Evaluating Utility Penalty and Efficiency at
Runtime

Table 3.12 summarizes the metrics for utility penalty and efficiency. We refer to these
metrics as Quantitative Metrics from this point on, since they address the evaluation of

86 REDUCING LARGE ADAPTATION SPACES USING MACHINE LEARNING

Tt

Tr To Tt = Time to verify total
 adaptation space

Tr = Time to verify reduced
 adaptation space

To = Time overhead ML2ASR

Figure 3.9: Time variables used in the efficiency metrics.

the Negligible Utility Penalty and Efficiency requirements, which are both quantitative
by nature (see Section 3.2.4). The utility penalty metric is used to address the Negligible
Utility Penalty requirement of ML2ASR+. In the utility penalty formula, n equals
the total number of adaptation cycles, qi

o represents the quality value in cycle i which
would have been chosen in an optimal situation and qi

c represents the quality value in
cycle i chosen by our proposed solution.

To address the Efficiency requirement of ML2ASR+, we define three metrics: average
adaptation space reduction, learning time overhead, and overall time saved. In the
formula of average adaptation space reduction (AASR), selected represents the average
number of adaptation options selected by learning over multiple adaptation cycles,
and total represents the average of the total number of adaptation options over these
adaptation cycles. For the remaining formulas, the parameters Tx refer to one of the
time units as defined in Figure 3.9.

3.6 Evaluation ML2ASR+

We evaluate and benchmark ML2ASR+ on two cases from different domains:
DeltaIoT [175] and a Service-Based System that is based on TAS [367]. DeltaIoT
is a small IoT system with only threshold and optimization goals and a rather small
adaptation space of 216 adaptation options. The Service-Based System is a more
challenging case with threshold, setpoint, and optimization goals and an adaptation
space of 13500 adaptation options.

We start with the evaluation with DeltaIoT and then look at the Service-Based System.
We present the results of the evaluation for different scenarios. For the runtime stage,
we focus on the evaluation of the requirements with quantitative metrics: utility penalty,
average adaptation space reduction, overall time saved, and learning time overhead.
We elaborate on the other requirements in the discussion in Section 3.7.

Both applications are evaluated using a simulator. Simulations are run on a computer

EVALUATION ML2ASR+ 87

Ta
bl

e
3.

12
:T

he
ev

al
ua

tio
n

m
et

ri
cs

us
ed

th
ro

ug
ho

ut
th

e
ev

al
ua

tio
n

se
ct

io
n.

N
am

e
D

es
cr

ip
tio

n
Fo

rm
ul

a
O

bj
ec

tiv
e

U
til

ity
Pe

na
lty

Th
e

av
er

ag
e

di
ff

er
en

ce
in

th
e

va
lu

e
of

qu
al

ity
pr

op
er

tie
so

f
th

e
sy

st
em

ob
ta

in
ed

by
ap

pl
yi

ng
th

e
re

fe
re

nc
e

ap
pr

oa
ch

,
D

L
A

Se
R

,a
nd

M
L

2A
SR

+.

∑ n i
=

0
|q

i o
−

q
i c
|

n
M

in
im

iz
e

Av
er

ag
e

A
da

pt
at

io
n

Sp
ac

e
R

ed
uc

tio
n

T
he

av
er

ag
e

pr
op

or
tio

n
of

ad
ap

ta
tio

n
op

tio
ns

th
at

w
er

e
fil

te
re

d
by

D
L

A
Se

R
an

d
M

L
2A

SR
+.

(1
−

s
e
le

c
te

d
to

ta
l

)×
10

0
M

ax
im

iz
e

Le
ar

ni
ng

Ti
m

e
O

ve
rh

ea
d

T
he

av
er

ag
e

pr
op

or
tio

n
of

ad
di

tio
na

lt
im

e
in

tr
od

uc
ed

by
D

L
A

Se
R

an
d

M
L

2A
SR

+
at

ru
nt

im
e.

(
T

o

T
o

+
T

r
)×

10
0

M
in

im
iz

e

O
ve

ra
ll

Ti
m

e
Sa

ve
d

T
he

av
er

ag
e

pr
op

or
tio

n
of

to
ta

lt
im

e
sa

ve
d

of
D

L
A

Se
R

an
d

M
L

2A
SR

+
(t

ak
in

g
in

to
ac

co
un

to
ve

rh
ea

d)
co

m
pa

re
d

to
th

e
re

fe
re

nc
e

ap
pr

oa
ch

.
(1
−

T
r

+
T

o

T
t

)×
10

0
M

ax
im

iz
e

88 REDUCING LARGE ADAPTATION SPACES USING MACHINE LEARNING

system with an AMD Ryzen 7 Pro 3700u CPU with 13.7GB of RAM. For the
learning approaches, we have used the implementations of the Scikit-Learn algorithms
(classifiers, regressors, scalers) [269]. The full replication package is available online.10

3.6.1 Evaluation with DeltaIoT

We start with introducing DeltaIoT. Then we present two evaluation scenarios and
we explain the benchmarks we use. Next, we present the results of the design stage
activities and finally the results of the runtime stage activities.

DeltaIoT Application

DeltaIoT is a small Internet-of-Things (IoT) application that offers a smart environment
monitoring service. The application is developed by VersaSense.11 The IoT network
comprises 15 Long-Range (LoRa) motes that are deployed at the KU Leuven Computer
Science Campus as shown in Figure 3.10. Each mote is equipped with a sensor
(temperature, RFID, and infrared) that periodically collects data and sends this data to
a gateway. An end-user application processes the data allowing users to monitor the
Campus area and take action when needed.

The network uses time-synchronized communication organized in cycles. Each cycle
consists of a number of communication slots between a sender and a receiver mote.
The slots are allocated from the leaf nodes of the network towards the gateway. Each
mote has an internal buffer to store its own generated data and data received from other
motes. When a mote is allocated a communication slot, it sends the data of the buffer
to the receiving mote of the slot.

Uncertainties We consider two important types of uncertainties: dynamics in the
traffic load and interference of the wireless network. Dynamics in the traffic load
result from variations in the frequency that sensors take samples and transmit data. For
example: a temperature sensor collects and sends measurements periodically, while an
RFID sensor only sends data when it is available, e.g., when a person scans an RFID
badge. As a result, the load of packets that need to be sent to the gateway fluctuates.
Interference of the wireless network arises from dynamic conditions in the environment,
such as weather conditions or the presence of other wireless networks. Interference may
result in the loss of packets communicated over the link. Figure 3.11 shows excerpts

10https://people.cs.kuleuven.be/danny.weyns/material/ML2ASR/
11www.versasense.com

https://people.cs.kuleuven.be/danny.weyns/material/ML2ASR/
www.versasense.com

EVALUATION ML2ASR+ 89

Figure 3.10: Deployment of DeltaIoT at the KU Leuven campus.

0 50
Cycle

0.0

0.2

0.4

0.6

0.8

1.0

Tr
af

fic
 lo

ad

0 50
Cycle

40

30

20

10

0

10

SN
R

Figure 3.11: Example of traffic load generated by mote 13 and network interference on
the link between mote 12 and mote 3 over 100 cycles.

with data of both types of uncertainties over a period of time. This data is based on
measurements of DeltaIoT in the field.12

Quality Goals Besides what the network should do, i.e., collecting data at the
gateway, stakeholders of DeltaIoT also have demands on how this is done, i.e., the

12Network interference is represented as the Signal-to-Noise ratio (SNR). An SNR below 0 may lead to
the loss of packets.

90 REDUCING LARGE ADAPTATION SPACES USING MACHINE LEARNING

quality of the transmission. We consider three quality goals of DeltaIoT: packet loss,
latency, and energy consumption. As explained above, packet loss depends on network
interference. Latency depends on the traffic load in the network since only a limited
number of packets can be transmitted during a time slot. The remaining packets remain
in the buffers for communication in the next slot, causing delays in the transmission
of data. Lastly, energy consumption depends on the number of packets that motes
need to communicate and the power that is used to communicate packets. Evidently,
stakeholders prefer to keep the packet loss, latency, and energy consumption low.
However, these qualities are conflicting, for instance, using less energy (lower power)
over a network link may result in higher packet loss as the signal may get lost in the
noise along the link.

Adaptation of the IoT Network To ensure quality goals during operation,
DeltaIoT offers a management interface that is connected to the gateway. This interface
can be used to observe the behavior of the network (e.g., the interference along links, the
packets lost over a time period, etc.) and change the settings of the motes in the network.
Here, we consider two types of settings. First, the power used to transmit packets over
an outgoing link of a mote can be set in a range [0 . . . 15] (0 is minimum power and 15
maximum power). Sending packets with a higher power setting reduces the chance of
packets being lost over a noisy link, but it consumes more power. Second, for motes
with more than one outgoing link, the distribution of the packets over these links can
be set. This way, the transmission of packets along paths with high interference or high
traffic can be reduced or avoided, yet the packets may follow a longer path requiring
more energy. Since motes in DeltaIoT have at most two parent motes, we consider the
following distribution settings for these motes: 0 − 100, 20 − 80, 40 − 60, 60 − 40,
80− 20, and 100− 0. An example configuration is shown in Figure 3.10 (bottom right
corner). Here a power setting of 5 is used for the upper link that transmits 20% of the
packets, and a power setting of 9 is used for the bottom link that transmits 80% of the
packets.

Without self-adaptation, an operator is responsible for ensuring the quality goals by
monitoring the network and adjusting the settings using the management interface.
This is a tedious and costly task that is often not very efficient. To that end, we
add a managing system (MAPE feedback loop) to the system that connects with the
management interface to automate the adaptation of the settings. We use such a setting
for the evaluation of ML2ASR+.

Evaluation Setup

For the evaluation with DeltaIoT, we used a simulation of the network with 15 motes
as shown in Figure 3.10. We applied 300 communication cycles of the network that

EVALUATION ML2ASR+ 91

correspond with a wall clock time of around three days. We used uncertainty profiles
for the traffic load of motes and network interference that are based on measurements
of the physical network. For the traffic load, motes generate between 0 to 10 packets
per cycle. The level of interference (SNR) fluctuates between -40dB and +15dB.
Figure 3.11 shows two example profiles we used.

Adaptation Goals We devised two evaluation scenarios with learning tasks for
different adaptation goals summarized in Table 3.13. In scenario 1, learning needs to
predict and filter adaptation options based on these two threshold goals. In scenario 2,
learning needs to additionally predict and filter adaptation options for an optimization
goal. Note that a threshold goal that should keep the average packet loss under 10%
over a period of 12 hours, implies that on average 90% of the transmitted packets
should be received by the gateway. On the other hand, a threshold goal that should
keep the average latency under 5% over a period of 12 hours, implies that on average
at least 95% of packets generated in a cycle should be received by the gateway within
that cycle.

Adaptation Settings Adaptation options are composed in each cycle following
two steps. Firstly, the power setting is determined for each link of each mote. These
settings are determined such that the current Signal to Noise ratio (SNR) over each
link is at least 0dB. The adaptation options are then determined based on the possible
distribution settings for outgoing links of motes with two parents (0−100, 20−80, etc.).
As such, the complete adaptation space for the DeltaIoT case consists of 63 = 216
adaptation options.13 The MAPE feedback loop and the quality models have been
designed as networks of timed automata models. These models are directly executed at
runtime using the ActivFORMS execution engine [174]. The analysis of the adaptation
options is performed using the runtime models by applying statistical model checking
at runtime using runtime statistical model checking with Uppaal-SMC [79].

Benchmarks We benchmark ML2ASR+ using three approaches. First, we use a
baseline approach that analyzes the whole adaptation space without using machine
learning. Second, we use a competing approach, called DLASeR, that applies a deep
neural network to reduce adaptation spaces [349].14 We have rerun the results presented
in [349] to ensure that the same settings were used to compare ML2ASR+ and DLASeR.

13The power setting for each individual mote remains fixed within a single adaptation cycle. As such,
adaptation options vary based on the different distribution settings. For the configuration of DeltaIoT, there
are six variations of distribution settings for a mote with two parents, and there are three motes that have two
parents, hence the total of 216 adaptation options.

14We selected [349] since this approach is conceptually similar to ML2ASR+, relying on learning to
provide first-class support for adaptation space reduction. Most other related approaches mix adaptation
space reduction with decision-making, while our main focus is on adaptation space reduction. Since the

92 REDUCING LARGE ADAPTATION SPACES USING MACHINE LEARNING

Table
3.13:E

valuation
scenarios

forD
eltaIoT

w
ith

the
adaptation

goals
considered

forlearning.

A
daptation

goal1
A

daptation
goal2

A
daptation

goal3

Scenario
1

Threshold:
the

average
packet

loss
over

12
hours

should
not

exceed
10%

of
the

m
essages

sent.

Threshold:
the

average
latency

over12
hours

should
notexceed

5%
ofthe

cycle
tim

e.
N

/A

Scenario
2

Threshold:
the

average
packet

loss
over

12
hours

should
not

exceed
10%

of
the

m
essages

sent.

Threshold:
the

average
latency

over12
hours

should
notexceed

5%
ofthe

cycle
tim

e.

O
ptim

ization:
the

average
en-

ergy
consum

ption
over12

hours
should

be
m

inim
ized.

EVALUATION ML2ASR+ 93

Third, as a sanity check, we used an approach that selects a subset of adaptation options
randomly. We average the obtained results over 10 runs to reduce variability. We
highlight the results of this random approach separately and focus on statistically
relevant differences.

In the next sections, we start with the evaluation results of the design stage. Then
we present the results of the runtime stage. To conclude, we summarize the machine
learning activities in both stages.

Design Stage Evaluation with DeltaIoT

Data Collection We collected data from 300 cycles of DeltaIoT to derive the
machine learning modules for both scenarios, each cycle containing 216 data points.
Experiments showed that 300 cycles for the design stage activities ensured that the
learners performed well during runtime. As explained in Section 3.4, the collected data
consists of a set of feature vectors that represent adaptation options with uncertainties,
and quality vectors that represent the qualities of the corresponding adaptation options.

Feature Extraction After collecting the data, we applied Feature extraction. The
first activity, Feature selection, removes features from the collected feature vectors
that do not have an influence on the resulting qualities in the system. Based on feature
extraction 34 of the original 65 individual features were selected as relevant. For
instance, all features related to SNR were selected. An example of a feature that
was not selected is the load of motes that generate a constant number of packets,
for instance, motes that periodically track the temperature in the environment. Next,
we use the pruned data to perform the second activity of feature extraction: Feature
engineering. For both scenarios, we selected the Min-Max scaler for threshold goals.
For the optimization goal, no scaler was selected as this provided the best results. As
Feature engineering closely ties with Model selection we explain the results below.
Section 3.5.1 describes how Feature extraction was done. For detailed results, we refer
to the website with the replication package.

Machine Learning Model Identification In the first activity, Model evaluation,
we evaluated three different types of classifiers and two types of regressors. For the
second activity, Model selection, we closely examined the evaluation metrics for each
model to make a decision on the learning models to be used at runtime; Section 3.5.2
describes how this was done. Table 3.14 summarizes the chosen machine learning

preliminary version of ML2ASR [284] only supports one type of goal, we have not used it as a benchmark in
this study.

94 REDUCING LARGE ADAPTATION SPACES USING MACHINE LEARNING

Table 3.14: Summary of the chosen machine learning models during Model evaluation
and Model selection for DeltaIoT (abbreviations: F1→F1-score, MCC→Matthews
Correlation Coefficient, R2→R2-score, MSE→Mean Squared Error, MAE→Median
Average Error, ME→Maximum Error, Pl→ Packet loss, La→Latency, Ec→Energy
Consumption, S1→Scenario 1, S2→Scenario 2).

Goal(s) Model Metrics

S1 T Pl
<10%, T La

<5%
SGD Classifier (log loss, l1 penalty)

MinMax Scaler
F1: 0.818, MCC: 0.715

S2
T Pl

<10%, T La
<5%

SGD Classifier (log loss, l1 penalty)

MinMax Scaler
F1: 0.818, MCC: 0.715

O Ec
min

Passive Aggressive Regressor
(squared epsilon insensitive loss)

No Scaler

R2: 0.833, MSE: 0.004,
MAE: 0.043, ME: 0.269

models and their corresponding metric values obtained during the evaluation process.
A.2.2 provides a detailed description of the chosen machine learning models.

Exploration Rate and Warm-up Count Finally, we tested different exploration
rates (extra random adaptation options selected for verification) and warm-up counts
(the number of training cycles to initialize the learning model) that are required for the
runtime stage, see Section 3.5.2. We selected 5% as the exploration rate and 45 cycles
(of 300) as the warm-up count. For detailed results, see Appendix A.2.

Runtime Stage Evaluation with DeltaIoT

Hypothesis For the evaluation of the runtime stage of ML2ASR+ with DeltaIoT we
use the following hypotheses:

H1: The utility penalties when applying ML2ASR+ are negligible compared to the
reference approach.

H2: The utility penalties when applying ML2ASR+ is not significantly higher
compared to DLASeR.

H3: ML2ASR+ significantly reduces the adaptation space and hence the time required
for verification compared to the reference approach.

EVALUATION ML2ASR+ 95

Table 3.15: Values of the machine learning metrics for the runtime stage evaluation
of the machine learning models of DeltaIoT (abbreviations: Pl→Packet loss, La→
Latency, Ec→Energy Consumption, S1→Scenario 1, S2→Scenario 2).

F1-score Matthews correlation
coefficient

S1 T Pl
<10%, T La

<5% 0.757 0.646

S2 T Pl
<10%, T La

<5% 0.743 0.608

R2-score Mean squared
error

Median absolute
error Maximum error

S1 O Ec
min 0.799 0.0045 0.0446 0.270

H4: The reduction of adaptation spaces with ML2ASR+ is not significantly lower
compared to DLASeR, nor does ML2ASR+ require significantly more time for
adaptation space reduction.

Granularities for Adaptation Space Reduction with an Optimization Goal
In scenario 2, ML2ASR+ predicts the energy consumption in the network (optimization
goal), on top of predicting packet loss and latency (threshold goals). After filtering
out options that are predicted to satisfy the threshold goals (be of class C3, see
Section 3.5.2), ML2ASR+ reduces the adaptation space further based on the energy
consumption predictions. We evaluate two cases: a reduction to at most 25 options and
at most 10 options, corresponding to granularity values of 25 and 10, respectively.

Quality of the Learning Models Table 3.15 summarizes the results for the quality
of the machine learning models during runtime. The F1-score acquired is 0.757 and the
Matthews Correlation Coefficient is 0.646 in scenario 1. This is in line with what we
expect when comparing to the metrics retrieved during Model selection in the design
stage: an F1-score of 0.818 and a Matthews Correlation Coefficient of 0.715. For
scenario 2 we obtained similar results for classification, albeit slightly worse results due
to the increased reduction of the adaptation space. The regressor, which handles the
energy consumption optimization goal, has an R2-score of 0.799, a mean squared error
of 0.0045, a median absolute error of 0.0446, and a maximum error of 0.27. Overall,
the results in the runtime stage are good, showing similar results to other studies [260,
22].

96 REDUCING LARGE ADAPTATION SPACES USING MACHINE LEARNING

Table 3.16: Values of the metrics for the runtime stage evaluation of requirements of
DeltaIoT (abbreviations: Pl→ Packet loss, La→Latency, Ec→Energy Consumption,
S1→Scenario 1, S2→Scenario 2, G→Granularity).

Utility penalties AASR Overall time
saved

Time
overheadPl La Ec

S1
N/A 0.045% 0.025% N/A 56.5% 62.81% 0.05%

S2 G 25 0.091% 0.073% 0.008mC 88.5% 90.82% 0.26%
G 10 0.515% 0.299% 0.019mC 95.4% 96.37% 0.56%

Summary of Results for Quantitative Metrics Table 3.16 summarizes the results
of the evaluation for the quantitative metrics. We discuss these results now in detail.

Utility Penalties Figure 3.12 shows the results for utility penalties. Note that the
reference approach that exhaustively verifies all adaptation options provides optimal
adaptation15. First, we take a closer look at the threshold goals. Afterward, we look at
the optimization goal.

Threshold Goals When inspecting the results in detail, we notice that the values for
the threshold goals with ML2ASR+ are very close to those obtained with the reference
approach. The average values of the penalties are respectively 0.045% and 0.025%
for packet loss and latency in scenario 1, and 0.515% and 0.299% for the worst-case
of scenario 2 with a granularity value of 10. The marginal increases that result from
adaptation space reduction with ML2ASR+ do not impede on the satisfaction of both
goals compared to the reference approach in scenario 1 and scenario 2 with a granularity
of 25. On the other hand, in scenario 2 with a granularity of 10, we notice that the
threshold goals were not satisfied in 7 additional adaptation cycles after adaptation
space reduction took place (cycles for which the reference approach does not violate
the requirements). These results show that a lower granularity that substantially reduces
the adaptation space for analysis may result in penalties for the quality properties of
interest. This trade-off has to be carefully considered when making decisions about the
granularity of adaptation space reduction.

Comparing the results of ML2ASR+ with DLASeR, we observe that the satisfaction of
the threshold goals is not impeded in both scenarios as opposed to the few violations in
scenario 2 with a granularity value of 10 when using ML2ASR+ (which corresponds

15Note that due to the nature of the application, in some adaptation cycles, no adaptation option might
exist that meets both threshold goals.

EVALUATION ML2ASR+ 97

Reference ML2ASR+ DLASeR

6

8

10

12

14

16

18

20

Pa
ck

et
 lo

ss
 (%

)

Reference ML2ASR+ DLASeR

0

1

2

3

4

5

La
te

nc
y

(%
)

Reference ML2ASR+
g=25

ML2ASR+
g=10

DLASeR
4

6

8

10

12

14

16

18

20

Pa
ck

et
 lo

ss
 (%

)

Reference ML2ASR+
g=25

ML2ASR+
g=10

DLASeR

0

2

4

6

8

10

La
te

nc
y

(%
)

Reference ML2ASR+
g=25

ML2ASR+
g=10

DLASeR

12.6

12.7

12.8

12.9

13.0

13.1

13.2

En
er

gy
 c

on
su

m
pt

io
n

(m
Co

ul
om

b)

Figure 3.12: Utility penalties for scenario 1 (top) and scenario 2 (bottom) of DeltaIoT
compared to the reference approach and DLASeR.

to the strategy DLASeR employs: rank adaptation options based on predicted energy
consumption, and subsequently look for adaptation options that meet both threshold
goals).

Optimization Goal The results for the optimization goal show that the differences
between the average values of energy consumption with the reference approach
(12.719mC), ML2ASR+ (12.723mC), and DLASeR (12.724mC) are marginal. This
indicates that the reduced adaptation space most of the time also includes the adaptation
option with the lowest energy consumption. For scenario 2 we observe values
of 0.008mC and 0.019mC with ML2ASR+ for granularity values of 25 and 10,
respectively. Here we also notice a similar trade-off between granularity values and
utility penalty: a more fine-grained reduction carries the risk of adapting the system
less optimally compared to a less constrained strategy. Note that the penalty compared
to the reference approach is still acceptable (12.719mC mean energy consumption for
the reference approach, 12.727mC for ML2ASR+ with a granularity value of 25 and
12.739mC for ML2ASR+ with a granularity value of 10) considering the significant
time gain that both approaches offer (see below). For DLASeR we observe an average

98 REDUCING LARGE ADAPTATION SPACES USING MACHINE LEARNING

12.6 12.7 12.8 12.9 13.0 13.1 13.2 13.3

O energy consumption
min

Random
(10 runs,

g=10)

ML2ASR+
g=10

Figure 3.13: Comparison of energy consumption for 10 random runs compared to
ML2ASR+ in scenario 2 of DeltaIoT.

energy consumption of 12.769mC with a utility penalty for energy consumption of
0.038mC, meaning that ML2ASR+ performs quite well compared to the competing
approach.

Sanity Check with Random Approach We compared ML2ASR+ with a simple
approach that randomly selects adaptation options (using an average of 10 random
runs). For the threshold goals, packet loss and latency, both approaches satisfy the
goals in both scenarios. However, the results show that the random approach violates
the threshold goals for 28 adaptation cycles (of a total of 300 cycles), which is 16
cycles more compared to ML2ASR+. For the optimization goal of energy consumption
in scenario 2, the Wilcoxon signed rank statistical test [380] showed a significant
difference between the random approach and ML2ASR+ both for each random run and
on the average of 10 random runs (for the latter we measured a p-value of 1.2e−15 with
alpha level 0.05)16. Figure 3.13 shows the distribution of the energy consumption of the
IoT networks in scenario 2 with both approaches. The average energy consumption with
the random approach is 12.800mC compared to an energy consumption of 12.739mC
for ML2ASR+. While the differences in the absolute value of energy consumption are
relatively small, the difference is statistically relevant. The second case will show that
for more complex application scenarios, the impact is practically relevant.

16We add the caveat here that the results of these tests are not a general claim: the findings confirm a
statistical difference in the 10 random runs we did, but this claim may not necessarily hold for other sets of
10 random runs.

EVALUATION ML2ASR+ 99

Hypotheses H1 (negligible utility penalties compared to reference
approach) and H2 (utility penalties not significantly higher compared to
DLASeR). The results show that the utility penalties when applying ML2ASR+
are negligible compared to the reference approach. ML2ASR+ with a low
granularity value in one scenario did not satisfy the threshold goals in all cycles,
emphasizing the importance of a good selection of granularity. Comparing
ML2ASR+ with DLASeR, we notice that the utility penalties remain negligible
for both threshold goals and the optimization goal. In conclusion, we can
accept hypotheses H1 and H2.

Average Adaptation Space Reduction Figure 3.14 (left) shows the size of the
adaptation spaces for the three evaluated approaches. During the first 45 training cycles,
when the Machine Learning Module of ML2ASR+ is not exploited, all adaptation
options are analyzed (multiple data points overlapping at 216 adaptation options for
ML2ASR+). In the case of DLASeR, there is only a single entry at 216 adaptation
options corresponding to the only training cycle.

Applying ML2ASR+ results in an Average Adaptation Space Reduction (AASR) of
56.5% for scenario 1, 88.5% for scenario 2 with a granularity value of 25, and 95.4%
with a granularity value of 10. For scenario 1 this means that, on average, more than
half of the adaptation options available in the adaptation space are filtered out before
verification is applied. For scenario 2, we obtained results that match in most cases the
granularity value.

For DLASeR we obtain an Average Adaptation Space Reduction of 58.8% for scenario
1, a result similar to the one obtained with ML2ASR+. However, for scenario 2,
DLASeR works differently: the approach relies on deep learning models starting
with predicting the energy consumption of all adaptation options; then it iterates over
the adaptation options (from low energy consumption predictions to high) until an
adaptation option is found that meets both threshold goals. This way, DLASeR achieves
an average adaptation space reduction of 94.19% in scenario 2.

Learning Time Overhead Figure 3.14 (right) shows the overhead introduced by
ML2ASR+ (red and yellow lines) and DLASeR (blue line). The learning overhead
is on average less than 1% of the total time necessary to both reduce and verify the
reduced adaptation space for ML2ASR+ in both scenarios. Concretely, the overhead of
ML2ASR+ is at most 4.28ms, which is less than 10% of the time required to verify a
single adaptation option. We conclude that this overhead is negligible compared to the
time necessary to verify the selected subset of adaptation options.

100 REDUCING LARGE ADAPTATION SPACES USING MACHINE LEARNING

Reference ML2ASR+ DLASeR
0

50

100

150

200

Nu
m

be
r o

f a
da

pt
at

io
n

op
tio

ns

Size adaptation space

0 50 100 150 200 250 300
Cycle

0

5000

10000

15000

20000

25000

30000

Ti
m

e
(m

s)

Overall verification time
Reference
DLASeR

ML2ASR+

0 50 100 150 200 250 300
Cycle

0

500

1000

1500

2000

2500

3000

3500

4000

Ti
m

e
(m

s)

Overhead learning
DLASeR
ML2ASR+

Reference ML2ASR+
g=25

ML2ASR+
g=10

DLASeR
0

50

100

150

200

Nu
m

be
r o

f a
da

pt
at

io
n

op
tio

ns

0 50 100 150 200 250 300
Cycle

0

5000

10000

15000

20000

25000

30000

Ti
m

e
(m

s)

Reference
DLASeR

ML2ASR (g=25)
ML2ASR (g=10)

0 50 100 150 200 250 300
Cycle

0

1000

2000

3000

4000

5000

6000

Ti
m

e
(m

s)

DLASeR
ML2ASR (g=25)
ML2ASR (g=10)

Figure 3.14: Number of verified adaptation options with ML2ASR+ and DLASeR (left),
overall time used (middle) and overhead (right) compared to the reference approach
for scenario 1 (top row) and scenario 2 (bottom row) of DeltaIoT.

DLASeR on the other hand introduces a slightly higher overhead of 8.34% in scenario
1. Even though this number is higher, it is important to bear in mind that the overhead is
still a minor part of the overall time required for verification of the reduced adaptation
space. However, for scenario 2 we notice a significantly higher overhead of 45.96%
for DLASeR due to the strategy DLASeR employs for adaptation space reduction.
Even though DLASeR reduces the adaptation space to a small subset, the overhead is
significantly higher than ML2ASR+.

Overall Time Saved Figure 3.14 (middle) shows the overall time used to analyze
all the adaptation options in each cycle with the reference approach (green), and the
time used to reduce and verify the adaptation space with ML2ASR+ (red and yellow)
and DLASeR (blue). We observe that in scenario 1 ML2ASR+ saves more than half of
the time (62.81%) for verifying the reduced adaptation space compared to the reference
approach. This observation is in line with the average adaptation space reduction,
resulting in a significant time gain compared to the reference approach. DLASeR
shows results that are also in line with the average adaptation space reduction, albeit
slightly worse due to the higher overhead introduced by the approach (62.59% of

EVALUATION ML2ASR+ 101

the time saved). Similarly, for scenario 2 we observe results closely aligned with the
adaptation space reduction metric since the learning time is negligible: 90.82% and
96.37% for granularity values 25 and 10 respectively. For DLASeR in scenario 2 we
notice an average time saved of 89.69%.

Hypotheses H3 (significant reduction of adaptation spaces and time gain)
and H4 (adaptation space reduction comparable to DLASeR). ML2ASR+
realizes a significant reduction of the adaptation space of 56.5% for scenario 1
and over 90% for scenario 2, resulting in an overall time saving for analysis of
62.81% compared to the reference approach in scenario 1 and again over 90%
for scenario 2. ML2ASR+ and DLASeR realize a similar adaptation space
reduction in scenario 1 and scenario 2 with a granularity value of 10. Yet,
the time required for adaptation space reduction with ML2ASR+ is negligible
(< 1%), and small to significantly larger for DLASeR (8.34% to 45.96%). In
conclusion, we can accept hypotheses H3 and H4.

Summary of the design stage and runtime stage machine learning activities

Table 3.17 summarizes the number of inputs, features, objective variables and metrics
of the learning activities for DeltaIoT in each of the design stage and runtime stage
activities.

3.6.2 Evaluation with the Service-Based System

We present now the evaluation results of the second case: a service-based system. We
follow the same structure: we start by introducing the application, evaluation scenarios,
and the benchmarks we use. Then, we present the results of the design stage activities
and finally the results of the runtime stage activities.

Service-Based System Application

Self-care enables patients to self-manage their illness [32, 294]. We consider a concrete
example of a smartwatch application that analyzes data of patients and visualizes the
result for the patient [367]. Our focus is on the underlying service-based system that
processes patient data. Figure 3.15 describes the workflow of this system.

The system consists of a set of services that perform tasks. The services are composed
of a workflow with two main branches. The “sleep branch” analyzes the data of patients

102 REDUCING LARGE ADAPTATION SPACES USING MACHINE LEARNING

Table
3.17:T

he
num

berofinputs,features,objective
variables,and

m
etrics

forthe
activities

ofthe
m

achine
learning

pipeline
of

scenario
2

ofD
eltaIoT

in
the

design
and

runtim
e

stage.T
he

prediction
colum

n
is

m
arked

in
red

to
indicate

thatitis
notused

yet
in

the
training

cycles.
T

he
num

ber
of

inputs
for

online
learning

is
determ

ined
by

the
num

ber
of

options
thatcould

be
verified

by
the

V
erifier.A

bbreviations:“fvectors”→
feature

vectors,“q
vectors”→

quality
vectors,“Pl”→

packetloss,“E
c”→

energy
consum

ption,“L
a”→

latency.

D
esign

stage
R

untim
e

stage
Feature

E
xtraction

M
achine

L
earning

M
odelIdentification

Feature
E

xtraction
Prediction

Verification
O

nline
L

earning

N
um

ber
of

inputs
300

∗
216

fvectors
300

∗
216

q
vectors

300
∗

216
fvectors

300
∗

216
q

vectors
216

fvectors
216

fvectors
216

fvectors
X

fvectors
X

q
vectors

N
um

ber
of

features
65

features
34

features
65

features
34

features
x

65
features

O
bjective

variables
1.Pl+

L
a

class
2.E

c
value

1.Pl+
L

a
class

2.E
c

value
x

1.Pl+
L

a
class

2.E
c

value
x

1.Pl+
L

a
class

2.E
c

value

M
etrics

x
1.F1,M

C
C

2.R
2,M

SE
,M

A
E

,M
E

x
x

x
x

EVALUATION ML2ASR+ 103

Self-Care
Service

Sleep Analysis
Service

Activity Analysis
Service

Exercise-Diet
Service

Exercise
Service

Diet
Service

Data Visualizer
Service

100 - p

p

25%

75%

Service Provider 2

Service Provider 1

Service Provider 3

33% 33% 34%

100% 0%

100% 50% 50%

100% 66% 34%0%

0% 100%

Figure 3.15: Workflow of the Service-Based System health monitoring and processing
application. Blue percentages denote an example system configuration of the
application (further elaborated on in Section 3.6.2).

when they sleep that can be visualized for the patient afterward. The “awake branch”
analyzes data from different activities, processing the data using exercise and diet
services and visualizing the results to the patient. Each branch fulfills its tasks using
different services. For example, Exercise service processes activity data regarding
exercises and makes recommendations. Similarly, the Diet service processes activity
data regarding dietary information and makes recommendations. The Exercise-Diet
service combines both these responsibilities in a single service providing an alternative
path in the workflow.

The workflow defines service types that need to be instantiated. Three different service
providers offer such service instances. These instances are marked in the workflow by
small colored rectangles at the top of each service symbol. Service instances differ in
the qualities they provide (e.g., response time) and also the cost of using them. During
operation, a concrete set of service instances is selected and used to handle incoming
service requests.

Uncertainties Each service provider is characterized by two parameters in our
evaluation: its workload and the available bandwidth of its network. Both these
parameters fluctuate at runtime representing uncertainties. These fluctuations in turn
affect the qualities of the service instances they provide, including the failure rate,
response time, and cost (see below). Figure 3.16 shows the models we used for the
fluctuations of the qualities of service instances per service provider. Failure rate and
cost increase with higher load, while response time decreases with lower bandwidth.

104 REDUCING LARGE ADAPTATION SPACES USING MACHINE LEARNING

0 20 40 60 80 10050

75

100

125

150

Load (%)

Fa
ilu

re
ra

te
sc

al
in

g
(%

)

SP 1
SP 2
SP 3

0 20 40 60 80 10075

100

125

150

Available bandwidth (%)

R
es

po
ns

e
tim

e
sc

al
in

g
(%

)

SP 1
SP 2
SP 3

0 20 40 60 80 10050
100
150
200
250
300
350

Load (%)

C
os

ts
ca

lin
g

(%
) SP 1

SP 2
SP 3

Figure 3.16: Effect of load and available bandwidth of individual service providers
(SPs) on system qualities.

Besides fluctuations in workload and the available bandwidth, the system has to deal
with an additional uncertainty, namely the distribution of service requests for sleep
analysis (sleep branch) or activity analysis (awake branch). This distribution, denoted
by the value p in the workflow, may change over time depending on the patient’s
behavior.

Quality Goals In the evaluation, we consider three key qualities for stakeholders
of the service-based system: the failure rate of service invocations, the response time,
and the cost of invocations. Each service instance is characterized by a specific failure
rate, response time, and cost. Hence, the overall quality values for service requests are
determined by the individual service instances that are selected to handle these requests.
In particular, the overall failure rate is determined by the multiplication of each failure
rate associated with the selected service instances. As an example, assume we invoke
two service instances, each characterized by a failure rate of 5%. The overall failure
rate of a service request then corresponds to 1− (0.95 ∗ 0.95) = 0.0975, i.e., 9.75%.
The overall response time of service requests is simply determined by the sum of the
individual response times associated with these selected service instances. Similarly,
the overall cost is determined as the sum of the costs associated with individual service
instances.

Clearly, stakeholders want to keep the failure rate, response time, and cost as low as
possible. Yet, these qualities conflict. Invoking a service with a lower failure rate
and/or lower response time will usually imply a higher cost. However, the selection of
services is complicated by uncertainties. For instance, the cost to invoke a service of a
service provider may increase when the service provider is under heavy load. Similarly,
the failure rates and the response times of the provided service instances fluctuate in
time.

EVALUATION ML2ASR+ 105

Adaptation of the Service-Based System Given the fluctuations in load and
available bandwidth of service providers and changes in patient behavior, the selection
of service instances may be changed dynamically based on the changing conditions.
To that end, the system can be configured such that the requests are distributed in a
particular way over different instances. In the evaluation setting, we use service types
with 2 and 3 instances. For services with 2 instances, the system offers 3 possible
configurations: 0/100%, 50/50%, and 100/0%. For services with 3 instances, there are
10 possible configurations: 0/0/100%, ..., 0/33/67%, ... 100/0/0%. This way, preference
can be given to services with better actual quality values, or services can even be
(temporally) avoided if necessary. In addition, the parameter α that determines which
path is taken in the awake branch (distinct services for the exercise and diet tasks or a
combined service) can be set to one of four values: 0%, 25%, 50%, 75%, and 100%.
Figure 3.15 shows (on top of the general workflow) an example configuration of the
workflow (with concrete selections for service instances and α set to 25%).

Without self-adaptation, it is practically infeasible for an operator to change the service
selection dynamically. Hence, the only option for an operator would be to allocate a
predefined set of possible service instances to the system and perform a coarse-grained
adaptation. However, this would result in a sub-optimal solution or even worse in case
particular services would fail unexpectedly. To that end, we add a managing system
(MAPE-based feedback loop) to the system that monitors the changing conditions and
adapts the service instances of the workflow dynamically when needed to maintain the
stakeholder goals (failure rate, response time, and cost).

Evaluation Setup

We used a simulation of the setup as shown in Figure 3.15. We considered 30.000
service requests that are generated sequentially and processed individually by the
system. Adaptation is triggered every 100 requests, resulting in 300 feedback loop
iterations. The workload and available bandwidth are modeled as stochastic variables
that gradually change during the operation of the system (between 0 and 100%). The
change in values occurs by sampling a normal distribution with a standard deviation of
1.7, increasing or decreasing the bandwidth and workload of service providers. The
factor p is initially set at 50% and is modeled similarly to the workload and available
bandwidth.

Adaptation Goals We devised two scenarios of the service-based application as
illustrated in Table 3.18. In scenario 1 we consider three adaptation goals: two threshold
goals and an optimization goal. Learning first filters out adaptation options based on the
threshold goals, and subsequently orders and reduces the adaptation space according to

106 REDUCING LARGE ADAPTATION SPACES USING MACHINE LEARNING

the optimization goal. In scenario 2, learning has to deal with all three types of goals
(threshold, setpoint, and optimization).

Adaptation Settings The adaptation space for the Service-Based System is fixed.
The adaptation options are determined based on the distribution of available service
instances per service type and the setting of α. Concretely, the total adaptation space
comprises 5 ∗ 10 ∗ 10 ∗ 3 ∗ 3 ∗ 3 = 13500 adaptation options.17 Similarly to the
DeltaIoT case, we designed a MAPE feedback loop and quality models as networks
of timed automata models that are directly executed using ActivFORMS [174]. For
the analysis of the parameterized quality models, the feedback loop applies statistical
model checking at runtime using Uppaal-SMC [79].

Benchmark We benchmark ML2ASR+ again with a reference approach that
analyzes the whole adaptation space without using learning and with DLASeR [349],
a state-of-the-art approach. As a sanity check, we use again an approach that selects
adaptation options randomly over a set of runs to reduce variability. It is important
to note that the results for the different approaches are obtained from identical
configurations and parameter settings of the application. For ML2ASR+ and DLASeR
the data is collected during simulation. Yet, for the reference approach, the data is
collected during the design stage since analyzing the complete adaptation space for one
cycle takes around 2 hours.

In the next sections, we start with the results of the design stage. Then we present the
results of the runtime stage. To conclude, we summarize the machine learning activities
in both stages.

Design Stage Evaluation with the Service-Based System

Data Collection, Feature Extraction, Machine Learning Model Identification
The design stage activities for the Service-Based System followed the same procedure
as the activities for DeltaIoT (see Section 3.6.1). First, we collected data from the
system used to derive the machine learning modules for both scenarios. This data
consisted of a set of feature vectors (composed of adaptation options and uncertainties
in the application) and a set of quality vectors. We collected data for 100 adaptation
cycles corresponding to 10.000 service requests, each adaptation cycle containing
13500 data points. Then we performed Feature extraction. During Feature selection,
all 22 features were selected as relevant, e.g., all features concerning the distribution of

17The numbers are composed following the description in Section 3.6.2: 5 represents the number of
instantiations for α, 10 represents the number of options for services with 3 instances (in total 2) and 3
represents the number of options for services with 2 instances (in total 3).

EVALUATION ML2ASR+ 107

Ta
bl

e
3.

18
:S

ys
te

m
sc

en
ar

io
s

w
ith

th
ei

ra
da

pt
at

io
n

go
al

s
fo

rt
he

se
lf

-c
ar

e
ap

pl
ic

at
io

n.

G
oa

l1
G

oa
l2

G
oa

l3

Sc
en

ar
io

1
Th

re
sh

ol
d:

th
e

av
er

ag
e

fa
ilu

re
ra

te
sh

ou
ld

no
te

xc
ee

d
10

%
.

Th
re

sh
ol

d:
th

e
av

er
ag

e
re

sp
on

se
tim

e
sh

ou
ld

no
te

xc
ee

d
10

m
s.

O
pt

im
iz

at
io

n:
th

e
av

er
ag

e
co

st
sh

ou
ld

be
m

in
im

iz
ed

.

Sc
en

ar
io

2
Th

re
sh

ol
d:

th
e

av
er

ag
e

fa
ilu

re
ra

te
sh

ou
ld

no
te

xc
ee

d
10

%
.

Se
tp

oi
nt

:
th

e
av

er
ag

e
re

sp
on

se
tim

e
sh

ou
ld

be
ke

pt
at

10
m

s.
O

pt
im

iz
at

io
n:

th
e

av
er

ag
e

co
st

sh
ou

ld
be

m
in

im
iz

ed
.

108 REDUCING LARGE ADAPTATION SPACES USING MACHINE LEARNING

Table 3.19: Summary of the chosen machine learning models during Model evaluation
and Model selection in the Service-Based System; Abbreviations: F1→F1-score,
MCC→Matthews Correlation Coefficient, R2→R2-score, MSE→Mean Squared
Error, MAE→Median Average Error, ME→Maximum Error, Fr→ Failure rate, Rt→
Response time, C→Cost, S1→Scenario 1, S2→Scenario 2

Goal(s) Model Metrics

S1

T Fr
<10%, T Rt

<10ms
SGD Classifier

(hinge loss, l1 penalty)
No Scaler

F1: 0.895, MCC: 0.812

O C
min

Passive Aggressive Regressor
(squared epsilon insensitive loss)

No Scaler

R2: 0.906, MSE: 1.753,
MAE: 0.901, ME: 5.981

S2

T Fr
<10%

SGD Classifier
(hinge loss, elasticnet penalty)

Standard Scaler

F1: 0.933, MCC: 0.866

S Rt
10ms,ϵ=0.25ms

Passive Aggressive Regressor
(squared epsilon insensitive loss)

No Scaler

R2: 0.860, MSE: 0.035,
MAE: 0.123, ME: 0.976

O C
min

Passive Aggressive Regressor
(epsilon insensitive loss)

No Scaler

R2: 0.906, MSE: 1.753,
MAE: 0.901, ME: 5.981

service requests over service instances and all the features concerning the load of the
service providers. During Feature engineering, we determine which scaling algorithms
to use to adjust feature values, following Section 3.5.1. Lastly, for Model evaluation
and Model selection, we evaluated and selected machine learning models based on the
criteria listed in Section 3.5.2.

Table 3.19 summarizes the results for both scenarios, including the selected scaling
algorithms, the selected classifier and regressor models, and their corresponding
machine learning metric values obtained during model evaluation. We refer to A.2.2
for a detailed description of the chosen machine learning models.

Exploration Rate and Warm-up Count Finally we selected 5% as the exploration
rate (extra random adaptation options selected for verification) and 60 cycles (of 300)
as the warm-up count (the number of training cycles to initialize the learning model).
For detailed results, see A.2.2.

EVALUATION ML2ASR+ 109

Runtime Stage Evaluation with the Service-Based System

Hypothesis For the evaluation of the runtime stage activities of ML2ASR+ we use
the same hypotheses H1 to H4 as for DeltaIoT, see Section 3.6.1. However, we test
hypothesis H2 (the utility penalties when applying ML2ASR+ is not significantly
higher compared to DLASeR) and H4 (the reduction of adaptation spaces with
ML2ASR+ is not significantly lower compared to DLASeR, nor does ML2ASR+
requires significantly more time for adaptation space reduction) only for scenario 1 as
DLASeR does not support setpoint goals yet.

Granularities for Adaptation Space Reduction with an Optimization Goal
In both scenarios, ML2ASR+ has to deal with an optimization goal to keep the cost in
the application minimal. After filtering out adaptation options based on the predicted
satisfaction of threshold and setpoint goals in the system, ML2ASR+ further reduces
the adaptation space based on the cost predictions. We evaluate two cases for each
scenario: a reduction to at most 1000 adaptation options and a reduction to at most 100
adaptation options. This corresponds to granularity values 1000 and 100.

Quality of the Learning Models Table 3.20 shows the results for the quality
of the learning models at runtime. We highlight the most important metrics. The
classifier used to make predictions for both threshold goals in scenario 1 (failure rate
and response time) has an F1-score of 0.841, and the classifier used to predict the
failure rate threshold goal in scenario 2 has an F1-score of 0.935. The regressor used to
predict the optimization goal in scenario 1 (cost) has an R2-score of 0.862. For scenario
2, the regressor used to predict the setpoint goal (response time) has an R2-score of
0.902 and the regressor used to predict the optimization goal (cost) has an R2-score
of 0.913. These results confirm that the machine learning models can make accurate
predictions for the quality properties of the system.

Summary of Results for Quantitative Metrics Table 3.21 summarizes the
evaluation results for the quantitative metrics for the Service-Based System. We
discuss these results now in detail.

Utility Penalties Figure 3.17 shows the results for the utility penalties for both
scenarios when applying ML2ASR+ with a granularity value of 1000 in red and
a granularity value of 100 in orange, and DLASeR in blue (only for scenario 1).
Subsequently, we zoom in on the threshold goals, setpoint goal, and optimization goals.

110 REDUCING LARGE ADAPTATION SPACES USING MACHINE LEARNING

Table 3.20: Values of the machine learning metrics for the runtime stage evaluation of
the machine learning models of the Service-Based System (abbreviations: Fr→ Failure
rate, Rt→Response time, C→Cost, S1→Scenario 1, S2→Scenario 2).

F1-score Matthews correlation
coefficient

S1 T Fr
<10%, T Rt

<10% 0.841 0.737

S2 T Fr
<10% 0.935 0.863

R2-score Mean squared
error

Median absolute
error

Maximum
error

S1 O C
min 0.862 4.680 1.266 15.059

S2 S Rt
10ms,0.25ms 0.913 2.970 1.123 11.251
O C

min 0.902 0.039 0.130 1.212

Table 3.21: Values of the metrics for the runtime stage evaluation of requirements
of the Service-Based System (abbreviations: Fr→Failure rate, Rt→Response time,
C→Cost, S1→Scenario 1, S2→Scenario 2, G→Granularity).

Utility penalties AASR Overall
time saved

Time
overheadFr Rt C

S1 G 1000 0.134% 0.107ms 1.381c 92.59% 92.60% 0.04%
G 100 0.190% 0.229ms 2.653c 99.26% 99.26% 0.38%

S2 G 1000 0.138% 0.001ms 1.589c 93.13% 93.13% 0.05%
G 100 0.157% 0.003ms 1.764c 99.26% 99.26% 0.48%

Threshold Goals The graphs show us that each approach satisfies the threshold
goals for all chosen adaptation options in both scenarios. For ML2ASR+ with
granularity values 1000 and 100, we notice utility penalties for the failure rate in
the interval [0.13%, 0.19%] and utility penalties for the response time in the interval
[0.1ms, 0.23ms]. With DLASeR we notice (for scenario 1) generally lower utility
penalties lower than ML2ASR+: 0.002% for failure rate and 0.04ms for response time.
Note that a higher utility penalty value for failure rate or response time value here
is not necessarily relevant or negative since the threshold goals remain satisfied after
adaptation space reduction.

EVALUATION ML2ASR+ 111

Reference ML2ASR+
g=1000

ML2ASR+
g=100

DLASeR
8.8

9.0

9.2

9.4

9.6

9.8

10.0

Fa
ilu

re
 ra

te
 (%

)

Reference ML2ASR+
g=1000

ML2ASR+
g=100

DLASeR

8.00

8.25

8.50

8.75

9.00

9.25

9.50

9.75

10.00

Re
sp

on
se

 ti
m

e
(m

s)
Reference ML2ASR+

g=1000
ML2ASR+

g=100
DLASeR

18

20

22

24

26

28

30

32

Co
st

 (c
)

Reference ML2ASR+
g=1000

ML2ASR+
g=100

7.0

7.5

8.0

8.5

9.0

9.5

10.0

Fa
ilu

re
 ra

te
 (%

)

Reference ML2ASR+
g=1000

ML2ASR+
g=100

9.2

9.4

9.6

9.8

10.0

Re
sp

on
se

 ti
m

e
(m

s)

Reference ML2ASR+
g=1000

ML2ASR+
g=100

20

25

30

35

40

Co
st

 (c
)

Figure 3.17: Utility penalties for scenario 1 (top) and 2 (bottom) of the Service-Based
System compared to the reference approach and DLASeR.

Setpoint Goal For the setpoint goal defined in scenario 2, we similarly notice that
none of the chosen adaptation options violate the goal. The utility penalty for the
response time of this goal with ML2ASR+ lies in the interval [0.001ms, 0.003ms],
showing that the effect of adaptation space reduction is negligible.

Optimization Goals Looking at the cost optimization goal, we see penalties that
lay in the interval [1.38c, 2.66c]. In scenario 1, we notice a utility penalty of 0.436c for
DLASeR, which is slightly better than ML2ASR+. We also observe that the results of
ML2ASR+ with a granularity value of 100 are slightly worse compared to a granularity
with a value of 1000. This can be explained by the additional restriction put on the
reduced adaptation space size: the resulting adaptation space is on average 10 times
smaller compared to a granularity value of 1000, leaving fewer adaptation options to
be selected from to apply self-adaptation.

Sanity Check with Random Approach We compared ML2ASR+ with batches
of 10 runs of an approach that randomly selects adaptation options. For the threshold

112 REDUCING LARGE ADAPTATION SPACES USING MACHINE LEARNING

goals, failure rate and response time in scenario 1, and failure rate only in scenario
2, the random approach manages to always select at least one adaptation option that
satisfies the goals. For the optimization goal in both scenarios and the setpoint goal
in scenario 2, the Wilcoxon signed rank tests showed statistically significant results
between ML2ASR+ and the batches of 10 runs with the approach that randomly selects
adaptation options (p-values of 4.88e−21 for cost in scenario 1, 1.44e−4 for response
time in scenario 2, and 2.55e−66 for cost in scenario 2). Note that we could not identify
statistically relevant differences for the response time in scenario 2 for all individual
runs with the approach that randomly selects adaptation options. Figure 3.18 shows
the distributions for the optimization and setpoint goals of the IoT network in the
two scenarios.18 The average cost (optimization goal) for scenario 1 is 24.58c with
ML2ASR+ compared to 26.38c with random selection (Random), a difference of 1.8c
(6.82%). For scenario 2, the values are 25.57c with ML2ASR+ compared to 31.51c
with Random, a difference of 5.94c (18.85%). For the average response time (setpoint
goal at 10ms±0.25ms), we noticed that the approach that randomly selects adaptation
options violated on average the goal in 48 cycles (of a total of 300 cycles) compared to
no cycles for ML2ASR+. These results show that ML2ASR+ performs substantially
better for more complex adaptation scenarios compared to an approach that randomly
selects adaptation options.

Hypotheses H1 (negligible utility penalties compared to reference
approach) and H2 (utility penalties not significantly higher compared
to DLASeR). The results show that the utility penalties incurred by ML2ASR+
are negligible compared to the reference approach. Specifically, the penalties
for cost (optimization goal) are very low in both scenarios (at most 1.589mC
and 2.653mC with granularity values of 1000 and 100, respectively). A smaller
granularity value reduces the adaptation space significantly but implies higher
utility penalties. The satisfaction of the threshold and setpoint goals remains
unaffected with ML2ASR+. The slight increase in cost is acceptable, especially
considering that it is not feasible to use the reference approach in practice
due to time constraints. In scenario 1, DLASeR shows slightly better results
compared to ML2ASR+ with a granularity value of 1000 (with a cost penalty of
1.381c vs 0.436c). However, this cost is acceptable considering that DLASeR
does not support all types of adaptation goals yet. In conclusion, we can
accept hypotheses H1 (for scenarios 1 and 2) and H2 (for scenario 1) in the
Service-Based System application.

18Note that similar to the results for DeltaIoT, we cannot generalize the statistical differences we observe
between ML2ASR+ and the random approach to other sets of random runs.

EVALUATION ML2ASR+ 113

17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0

Random
(10 runs,

g=100)

ML2ASR+
g=100

9.4 9.5 9.6 9.7 9.8 9.9 10.0 10.1

Random
(10 runs,

g=100)

ML2ASR+
g=100

20 25 30 35 40

Random
(10 runs,

g=100)

ML2ASR+
g=100

O
co

st
m
in

S
resp

o
n

se
tim

e
1
0
m
s
,ε=

0
.2

5
m
s

O
co

st
m
in

Figure 3.18: Comparison of results for ML2ASR+ and random selection of adaptation
options (10 runs) in scenario 1 (optimization goal top graph) and scenario 2 (setpoint
goal middle graph, and optimization goal bottom graph) of the Service-Based System.

Average Adaptation Space Reduction Figure 3.19 (left) shows the number of
adaptation options remaining after reduction. We used a warm-up count of 60 cycles
for both ML2ASR+ and DLASeR. The total number of options in these training cycles
is limited by the available time for adaptation (30m for the Service-Based System).
Note that the reference approach is not subject to this time restriction for the purpose
of evaluation; i.e., the reference approach fully analyzes the whole adaptation space
with 13500 adaptation options, which is infeasible in practice due to time constraints.
During testing, the number of adaptation options with ML2ASR+ is restricted by the
granularity value, here 1000 and 100. This results in an Average Adaptation Space
Reduction of 92-93% and 99% respectively in both scenarios. For DLASeR in scenario
1, we observe a similar Average Adaptation Space Reduction of 92.66%.

Learning Time Overhead Figure 3.19 (right) shows the learning time overhead
introduced by ML2ASR+ with the two evaluated granularity values, and DLASeR
(scenario 1). The overhead of ML2ASR+ is very small compared to the overall
verification time (the overhead for learning is denoted in ms, while overall verification

114 REDUCING LARGE ADAPTATION SPACES USING MACHINE LEARNING

Reference ML2ASR+
g=1000

ML2ASR+
g=100

DLASeR
0

2000

4000

6000

8000

10000

12000

14000

Nu
m

be
r o

f a
da

pt
at

io
n

op
tio

ns

Size adaptation space

0 50 100 150 200 250 300
Cycle

0

2000

4000

6000

8000

Ti
m

e
(s

)

Overall verification time
Reference
DLASeR

ML2ASR+ (g=1000)
ML2ASR+ (g=100)

0 50 100 150 200 250 300
Cycle

500

1000

1500

2000

2500

Ti
m

e
(m

s)

Overhead learning
DLASeR
ML2ASR+ (g=1000)
ML2ASR+ (g=100)

Reference ML2ASR+
g=1000

ML2ASR+
g=100

0

2000

4000

6000

8000

10000

12000

14000

Nu
m

be
r o

f a
da

pt
at

io
n

op
tio

ns

0 50 100 150 200 250 300
Cycle

0

2000

4000

6000

8000

Ti
m

e
(s

)

ML2ASR+ (g=1000)
ML2ASR+ (g=100)

Reference

0 50 100 150 200 250 300
Cycle

500

1000

1500

2000

2500

Ti
m

e
(m

s)

ML2ASR+ (g=1000)
ML2ASR+ (g=100)

Figure 3.19: Number of verified adaptation options when using ML2ASR+ (left),
overall time used (middle), and overhead (right) compared to the reference approach
and DLASeR for scenario 1 (top row) and scenario 2 (bottom row) of the Service-Based
System.

time is denoted in s). Specifically, the overhead for both granularity values accounts for
less than 0.5% of the time required to reduce and verify the adaptation space. In absolute
terms, ML2ASR+’s overhead is capped at approximately 500ms during online training
cycles. The learning time overhead of DLASeR in scenario 1 is substantially higher
compared to ML2ASR+ with a granularity value of 1000 (with close to equal Average
Adaptation Space Reduction). Yet, the overhead remains minor compared to the overall
verification time; the overhead of DLASeR is 0.30% of the overall verification time. In
absolute terms, the overhead of DLASeR is capped at approximately 2200ms during
the training cycles as well.

Overall Time Saved Figure 3.19 (middle) shows the overall time used to analyze
the (selected) adaptation options. We can clearly see that the overall verification time is
significantly reduced, closely aligned to the corresponding Average Adaptation Space
Reduction. Concretely, we observe an overall time saved of approximately 92-92%
and 99% using ML2ASR+ with granularity values 1000 and 100 respectively. For

DISCUSSION 115

DLASeR, we notice an overall time saved of 92.62%, which is in line with ML2ASR+
for a granularity value of 1000 in scenario 1.

Summary of the design stage and runtime stage machine learning activities

Table 3.22 summarizes, similarly to the DeltaIoT case before, the number of inputs,
features, objective variables, and metrics for the Service-Based System. Note that
no features are removed by Feature Extraction since all features were deemed to be
relevant (hence the table cells being marked in gray).

Hypotheses H3 (significant reduction of adaptation spaces and time
gain) and H4 (adaptation space reduction comparable to DLASeR). The
evaluation shows that ML2ASR+ significantly reduces the adaptation space:
up to a reduction of 99% depending on the specified granularity value. Paired
with this, up to 99% of the time used by the reference approach is saved,
closely aligned with the average adaptation space reduction, since the overhead
introduced by ML2ASR+ is minimal (constituting less than 0.5%). For
scenario 1, DLASeR obtains a similar Average Adaptation Space Reduction
(92.66% vs 92.59%) and overall time saved (92.62% vs 92.60%) compared
to ML2ASR+ with granularity value 1000. ML2ASR+ with granularity value
1000 outperforms DLASeR on learning overhead with a value of 0.04% vs
0.30%. As such, we can accept hypothesis H3 for scenarios 1 and 2, and H4
for scenario 1 in the Service-Based System.

3.7 Discussion

In Section 3.2.4, we described the research question targeted in this work and we listed
the desirable requirements for an approach to tackle the research question. To that end,
we proposed ML2ASR+. In the evaluation, we assessed the quantitative requirements.
We now discuss the remaining qualitative requirements, answer the research question,
highlight insights obtained from this research endeavor, and conclude with a discussion
of threats to validity.

116 REDUCING LARGE ADAPTATION SPACES USING MACHINE LEARNING

Table
3.22:T

he
num

berofinputs,features,objective
variables,and

m
etrics

forthe
m

achine
learning

pipeline
ofscenario

2
ofthe

Service-B
ased

System
in

the
design

and
runtim

e
stage.The

prediction
colum

n
is

m
arked

in
red

to
indicate

thatitis
notbeing

used
yetin

the
training

cycles.T
he

num
berofinputs

foronline
learning

is
determ

ined
by

the
num

berofoptions
thatcould

be
verified

by
the

V
erifier.A

bbreviations:“fvectors”→
feature

vectors,“q
vectors”→

quality
vectors,“Pl”→

packetloss,“E
c”→

energy
consum

ption,“L
a”→

latency.

D
esign

stage
R

untim
e

stage
Feature

E
xtraction

M
achine

L
earning

M
odelIdentification

Feature
E

xtraction
Prediction

Verification
O

nline
L

earning

N
um

ber
of

inputs
100

∗
13500

fvectors
100

∗
13500

q
vectors

100
∗

13500
fvectors

100
∗

13500
q

vectors
13500

fvectors
13500

fvectors
13500

fvectors
X

fvectors
X

q
vectors

N
um

ber
of

features
22

features
22

features
22

features
22

features
x

22
features

O
bjective

variables

1.Frclass
2.R

tvalue
3.C

value

1.Frclass
2.R

tvalue
3.C

value
x

1.Frclass
2.R

tvalue
3.C

value
x

1.Frclass
2.R

tvalue
3.C

value

M
etrics

x
1.F1,M

C
C

2.R
2,M

SE
,M

A
E

,M
E

3.R
2,M

SE
,M

A
E

,M
E

x
x

x
x

DISCUSSION 117

3.7.1 Qualitative Requirements

Reusability With reusability, we refer to the ability of ML2ASR+ to be instantiated
and applied over multiple application domains. To demonstrate that we have covered
this requirement, we demonstrated the applicability of ML2ASR+ to the Internet
of Things domain and the Service-Based Systems domain. In both applications,
we analyzed the performance of ML2ASR+ in two evaluation scenarios, while also
assessing different granularity values. From the results, we can conclude that ML2ASR+
has the ability to handle both applications and the different evaluation scenarios.

Automatic Operation at Runtime To evaluate the second requirement, we make
a distinction between the design stage and the runtime stage of the approach. In the
design stage, the system requires manual input from the system developer(s) to properly
configure the Machine Learning Module, as described in section 3.4.3. Hence this
step is not completely automated. Once the Machine Learning Module is deployed,
no further input or intervention is necessary from the system operators. This is also
demonstrated in the evaluation: during operation ML2ASR+ reduces the adaptation
space without any input from an operator or system developer. ML2ASR+ thus satisfies
this requirement.

Modularity Adaptation Goals To evaluate the ability of ML2ASR+ to deal
with different combinations of adaptation goals, we specifically investigate whether
ML2ASR+ is able to deal with threshold, setpoint, and optimization goals. In our
evaluation, we defined four scenarios that combine different types of goal types for two
different applications. This way, we ensured that different combinations of the three
types of adaptation goal types are assessed. We conclude that ML2ASR+ supports
dealing with all the goal types in the evaluated application scenarios.

Granularity of Adaptation Space Reduction With granularity we refer to the
degree to which ML2ASR+ is able to reduce adaptation spaces, i.e., selecting a
specified number or percentage of adaptation options from the original adaptation
space. ML2ASR+ allows the specification of a granularity value that constrains the
size of the reduced adaptation space. We have demonstrated this for both applications
in different evaluation scenarios with granularity values of 10, 25, 100, and 1000. We
can thus conclude that ML2ASR+ satisfies this last requirement as well.

118 REDUCING LARGE ADAPTATION SPACES USING MACHINE LEARNING

Answer to research question "How can machine learning be used to reduce
large adaptation spaces of self-adaptive systems with different types of
adaptation goals to perform more efficient analysis without compromising
the goals?" This work demonstrates how classic supervised machine learning
techniques can be used to reduce the adaptation space to a more manageable
subset. After designing the Machine Learning Module, ML2ASR+ initializes
the learning models, trains the models during warm-up, and then uses the
models to make predictions about the satisfaction of adaptation goals for
individual adaptation options. ML2ASR+ uses classification to predict the
satisfaction of a threshold or setpoint goals, and regression to predict the
quality value associated with an adaptation option. ML2ASR+ provides the
means to reduce the adaptation space with the specified granularity value; this
flexibility enables the approach to adjust with the available time window to
perform adaptation. Empirical evaluation shows that ML2ASR+ drastically
reduces the time required for analysis with a negligible effect on the satisfaction
of the adaptation goals in our evaluated systems.

3.7.2 Insights

We share several insights we obtained during the design and evaluation of ML2ASR+:

• When handling multiple adaptation goals, there is a risk that errors in learning
models propagate further with each prediction. Accumulating prediction errors
may ultimately reduce the efficacy of the approach.

• The overhead introduced by the learning approach directly links with the selected
granularity value. Even for small granularity values, the gain in time required
for analysis is significant. Yet, such a setting may also have a significant impact
on utility penalties. Hence, the right choice for setting the granularity value is
important and requires experimentation.

• It is important to highlight that the use of linear machine learning models is not
a “one size fits all” solution. The effectiveness of the approach depends on the
underlying relation between input data (features) and output (qualities). If this
relation cannot be properly modeled linearly, other approaches such as DLASeR
that rely on deep neural networks may be preferable as these approaches capture
these intrinsic relations better. It is however important to keep in mind that other
approaches may follow different workflows and carry their own drawbacks. For
instance, DLASeR follows different steps in its design stage and runtime stage
workflows and the approach introduces a larger learning overhead compared to
ML2ASR+.

DISCUSSION 119

• ML2ASR+ relies on the assumption that the (formal) models that are used to
estimate quality properties of the underlying system provide reliable and correct
results. A quality model that cannot handle concept drift or evolution of the
system may yield data that does not capture the real system accurately. This
can affect the performance of the machine learning models. Yet, extracting data
directly from the real system rather than the (formal) model is not a solution
as this data is inherently limited since only a single adaptation option can be
applied each cycle. However, exploiting the data retrieved from the real system
to detect issues with the model and adapt or evolve the models dynamically is an
option; we leave this as future work.

• For the validation of ML2ASR+, we trained the learning models both during
the design stage and the runtime stage. In theory, it would be possible to
generate all the data and train machine learning models entirely during the
design stage. However, due to the exponential growth of the adaptation
space when considering all possible uncertainty values in combination with
the available adaptation options in the system, generating all the data and training
machine learning models would be infeasible in practice. Therefore, we used
a representative sample of the data to apply design stage training and then
collected additional data after startup to continue the training according to the
actual system configuration and uncertainties at runtime.

• In this work, we considered setpoint goals based on a small window ϵ, resembling
similarities with steady-state error in control-based approaches [314]. Any
configuration within this window complies with the goal. An interesting option
for future work is to refine this view and consider the option closest to the
setpoint as the optimal one. Combined with an optimization goal this will lead
to a multi-objective optimization problem.

3.7.3 Threats to Validity

The empirical evaluation of ML2ASR+ is subject to threats to validity. For each threat,
we discuss potential critiques of this study and we explain how we dealt with those.

Internal Validity To make sure that we can draw a causal conclusion based on
the study, we took several measures. Concerning the contribution, we specified the
approach formally, providing a basis to define that the approach works as described.
Concerning the evaluation, we have applied the same settings of the simulator with
the same settings for the application parameters when comparing ML2ASR+ with the
other approaches. This is particularly relevant in settings with stochastic behavior. As

120 REDUCING LARGE ADAPTATION SPACES USING MACHINE LEARNING

such we provide a basis for deriving the conclusions of comparing the approaches. We
also provide a replication package [288] for other researchers to validate the results.

External Validity External validity concerns the generalization of the results beyond
the scope of the study. This study contributes an architectural approach for adaptation
space reduction in self-adaptive systems that is centered on the Machine Learning
Module with a corresponding workflow. This approach uses classical supervised
machine learning techniques to support the adaptation process. Since we have applied
and evaluated ML2ASR+ to a limited set of scenarios with particular characteristics
and types of uncertainties, we cannot make general claims about the efficacy of the
approach in other settings. To mitigate this threat to some extent, we have evaluated
the approach in two distinct domains with different challenges regarding adaptation
space reduction for different combinations of adaptation goals.

Construct Validity With construct validity we analyze whether we have obtained
the right measures to answer the proposed research question. To minimize threats to
construct validity we provided an explicit definition of six requirements to be evaluated.
For several of these requirements, we defined concrete metrics that enabled us to
evaluate the performance of the approach empirically (in terms of efficiency and
overhead). Several of these metrics are based on established practice for the evaluation
of learning approaches. In addition, the formal specification of ML2ASR+ provides
a rigorous description of how the approach works. Nevertheless, we acknowledge
that other metrics may have been considered for evaluating the appropriateness of
adaptation space reduction.

Conclusion Validity Threats to conclusion validity concern reaching an incorrect
conclusion about a relationship in the observations. To mitigate conclusion validity
threats, we applied ML2ASR+ in different scenarios of different domains with
different characteristics. Based on a set of well-defined metrics, the results confirm
the observation that ML2ASR+ is effective for adaptation space reduction in self-
adaptive systems. In addition, we have made all code and experimental data publicly
available [288] to reproduce the experiments in order to confirm the findings.

3.8 Conclusion

In this chapter we presented ML2ASR+, a novel approach to analyze large adaptation
spaces more effectively by exploiting classic supervised machine learning techniques to

CONCLUSION 121

reduce adaptation spaces on the fly. ML2ASR+ extends the basic MAPE-K architecture
with a Machine Learning Module that supports the Analyzer component by reducing
the adaptation space to a manageable subset. In particular, the Machine Learning
Module filters adaptation options that are predicted to not meet the adaptation goals
in the system. We have demonstrated the effectiveness and viability of ML2ASR+ in
our evaluation in two different application domains. We evaluated the effectiveness of
ML2ASR+ in reducing the adaptation space as well as the overhead introduced by the
approach. The results showed that the overhead introduced by ML2ASR+ is minimal
compared to the time required to verify the remaining subset of filtered adaptation
options. On top of this, the penalty in system qualities is negligible when choosing
a new system configuration from the reduced adaptation space. In future work, we
plan to investigate adaptation space reduction in decentralized self-adaptive systems
where multiple feedback loops need to coordinate the analysis. In the long term, we
plan to expand our study on the use of machine learning and self-adaptive systems, and
investigate how evolutionary learning can be used to support self-adaptation in systems
that are exposed to unanticipated changes, requiring system evolution. First ideas in
this direction are reported in [337].

Chapter 4

A/B Testing: A Systematic
Literature Review

Publication details. This chapter is based entirely on a journal article that is
under submission [286].

Personal contributions. Conceptualization (80%), Methodology (80%), Data
collection (70%), Validation (80%), Formal analysis and interpretation results
(90%), Writing (90%), Visualization (100%).

Positioning. A/B testing is widely used in practice to enable data-driven
decision-making for software development. While a few studies have explored
different facets of research on A/B testing, no comprehensive study has been
conducted on the state-of-the-art in A/B testing. To address this gap and
provide an overview of the state-of-the-art in A/B testing, this chapter reports
the results of a systematic literature review that analyzed 141 primary studies.
The research questions focused on the subject of A/B testing, how A/B tests are
designed and executed, what roles stakeholders have in this process, and the
open challenges in the area. Analysis shows that the main targets of A/B testing
are algorithms, visual elements, and workflow and processes. Stakeholders
have three main roles in the design of A/B tests: concept designer, experiment
architect, and setup technician. Stakeholders have two main roles during A/B
test execution: experiment coordinator and experiment assessor. The main
reported open problems are related to the enhancement of proposed approaches
and their usability. From our study we derived three interesting lines for future
research: strengthening the adoption of statistical methods in A/B testing,
improving the process of A/B testing, and enhancing the automation of A/B
testing.

123

124 A/B TESTING: A SYSTEMATIC LITERATURE REVIEW

4.1 Introduction

Iterative software development and time to market are crucial to the success of software
companies. Central to this is innovation by exploring new software features or
experimenting with software changes. In order to enable such innovation in practice,
software companies often employ A/B testing [203, 118, 229, 156]. A/B testing, also
referred to as online controlled experimentation or continuous experimentation, is a
form of hypothesis testing where two variants of a piece of software are evaluated
in the field (ranging from variants with a slightly altered GUI layout to variants of
software with new features). In particular, the merit of the two variants is analyzed
using metrics such as click rates of visitors of websites, members’ lifetime values
(LTV) in a subscription service, and user conversions in marketing [187, 358, 100].
A/B testing is extensively used in practice, including large and popular tech companies
such as Google, Meta, LinkedIn, and Microsoft [342, 358, 227, 387].

Even though A/B testing is commonly used in practice, to the best of our knowledge, no
comprehensive empirically grounded study has been conducted on the state-of-the-art
(i.e., state-of-research in contrast to state-of-the-practice) in A/B testing. Such a study
is crucial to provide a systematic overview of the field of A/B testing to drive future
research forward. Three earlier studies [17, 16, 297] explored a number of aspects of
research on A/B testing, such as research topics, type of experiments in A/B testing, and
A/B tooling and metrics. Yet, these studies do not provide a comprehensive overview
of the state-of-the-art that provides deeper insights in the types of targets to which A/B
testing is applied, the roles of stakeholders in the design of A/B tests, the execution of
the tests, and the usage of the test results. These insights are key to positioning and
understanding A/B testing in the broader picture of software engineering. To tackle this
issue, we performed a systematic literature review [192]. Our study aims to provide
insights into the state of research in A/B testing as a basis to guide future research.
Practitioners may also benefit from the study to identify potential improvements in A/B
testing in their daily practices.

The remainder of this chapter is structured as follows. Section 4.2 provides a brief
introduction to A/B testing and discusses related secondary studies. In Section 4.3, we
outline the research questions and summarize the methodology we used. Section 4.4
then presents the results, providing an answer to each research question. In Section 4.5,
we reflect on the results of the study, report insights, outline opportunities for future
research, and outline threats to validity. Finally, Section 4.6 concludes the chapter.

BACKGROUND AND RELATED WORK 125

4.2 Background and related work

4.2.1 Background

A/B testing is a method where two software variants, denoted as variant A and variant B,
are compared by evaluating the merit of the variants through exposure to the end-users
of the system [322]. To compare the variants, a hypothesis is formulated together with
an experiment to test it, i.e., the actual A/B test. As opposed to regular software testing,
A/B testing takes place in live systems. Figure 4.1 shows the general process of A/B
testing with three main phases.

The first phase of A/B testing concerns the design of an A/B test. In this experiment
design, a range of parameters is specified, such as: the hypothesis, the sample of the
population the experiment should be targeted to, the duration of the experiment, and
the A/B metrics that are collected during the experiment. The A/B metrics are used to
determine the merit of each variant during the experiment. Examples of A/B metrics
include the click-through rate (CTR), number of clicks, and number of sessions [99].

The second phase of A/B testing consists of the execution of the A/B test in the running
software system. Both variants are deployed in a live system, and the sample of the
population is split among both variants. During the execution, the system keeps track
of relevant data to evaluate the experiment after it finishes (according to the specified
duration). Relevant data may directly correspond to the specified A/B metrics, or it may
indirectly enable advanced analysis in the evaluation stage to gain additional insights
from the conducted A/B tests.

The third phase of A/B testing comprises the evaluation of the experiment. After the
A/B test is finished, the original hypothesis is tested, typically with a statistical test,
such as a students test or Welsh’s t-test [163, 350]. Based on the outcome of the test,
the designer can then take follow-up actions, for instance initiating a rollout of a feature
to the entire population or designing new A/B variants to test in subsequent A/B tests.

Controlled experiments vs A/B testing

Traditionally, a controlled experiment is an empirical method that enables systematical
testing of a hypothesis [72]. Two types of variables are distinguished in controlled
experiments: independent and dependent variables. Independent variables are variables
that are controlled during the experiment to test the hypothesis, for instance, a state-
of-the-art and a newly proposed approach to solve a particular design problem by a
control group and a treatment group respectively. Dependent variables are variables
that are measured during the experiment to compare the results of both the control and
treatment group, for instance, the fault density and productivity obtained in a design

126 A/B TESTING: A SYSTEMATIC LITERATURE REVIEW

A/B test

AB

- H
ypothesis

- D
uration

- Sam
ple of population

- A/B m
etrics

- ...

A/B test
design

A
/B

 test
design phase

Softw
are System

A/B test

AB

End-U
ser

A
/B

 test
execution phase

Softw
are

variants

Evaluation of
hypothesis (e.g. w

ith
statistical testing)

A
/B

 test
evaluation phase

D
esigner

A/B test
results

H
ypothesis

Follow
-up

D
esigner

Figure
4.1:G

eneralA
/B

testing
process.

BACKGROUND AND RELATED WORK 127

task. After conducting the experiment, the hypothesis is tested and conclusions are
drawn based on the results; for instance, a newly proposed design approach has a
significantly lower fault density compared to the state-of-the-art approach, but more
research is required concerning productivity. Controlled experimentation is widely
used across all types of scientific fields, such as psychology [70], pharmaceutics [244],
education [72], and nowadays also in software engineering [318, 78, 139].

Whereas controlled experiments are typically performed offline in a controlled setting,
A/B testing uses controlled experiments to evaluate software features or variants on the
end-users of a running system. For this reason, A/B testing is often referred to as online
controlled experimentation [206, 115]. The aim of A/B testing lies in testing hypotheses
in live software systems where end-users of these systems form the participants or
population of the experiment. Examples of hypotheses that are tested in A/B testing
often relate to improving user experience (UX) [290], improving user interface (UI)
design [354], improving user click rates [4], or evaluating non-functional requirements
in distributed services [19].

DevOps and A/B testing

Development Operations (DevOps in short) has gained popularity in recent years [125].
DevOps consists of a set of practices, tools, and guidelines to efficiently and effectively
manage and carry out different tasks during software life cycles. This ranges from the
process of software development to the deployment and management of software at
runtime. Automation of software processes plays a central part in DevOps to make life
easier for developers and ease the burden of software development in general.

Common practices that are part of the DevOps lexicon are continuous integration
and continuous deployment (CICD in short) [172]. CICD consists of the automation
of software testing, software integration and building, and deployment of software,
effectively reducing manual labor required by developers and easing the burden of
deploying software. In a similar vein, continuous experimentation [392] aims at
continuously setting up experiments in software systems to test new software variants.
Put differently, continuous experimentation enriches the software development process
by enabling a data-driven development approach (e.g., by measuring user satisfaction
of new software features early on in development). To achieve this, A/B testing is used
to set up and evaluate online controlled experiments in the software system. Fabijan et
al. [118] for example perform a case study on the evolution of scaling up continuous
experimentation at Microsoft, providing guidelines for other companies to conduct
continuous experimentation.

128 A/B TESTING: A SYSTEMATIC LITERATURE REVIEW

4.2.2 Related secondary studies

We start with a summary of secondary studies related to the study presented in this
chapter. Then we pinpoint the aim of the study presented in this chapter to provide a
systematic overview of the state-of-the-art in A/B testing.

Summary of related reviews.

We grouped related studies into three classes: studies with a focus on technical aspects
of A/B testing, studies focusing on social aspects of A/B testing, and studies concerned
with A/B testing in specific domains.

Technical aspects of A/B testing Rodriguez et al. [296] performed a systematic
mapping study on continuous deployment of software-intensive services and products.
The authors identify continuous and rapid experimentation as one of the factors that
characterize continuous deployment, and elaborate on this through the lens of the
deployment of these experiments and DevOps practices associated with it. Ros and
Runeson [297] put forward a mapping study on continuous experimentation and A/B
testing. The authors explore research topics, organizations that employ A/B testing,
and take a deeper look at the type of experimentation that is conducted. Auer and
Felderer [16] conducted a systematic mapping study on continuous experimentation.
The authors put a focus on the research topics, contributions, and research types,
collaboration between industry and academia, trends in publications, popularity in
publications on A/B testing, venues, and paper citations. Recently, Auer et al. [17]
presented a systematic literature review on A/B testing and continuous experimentation,
leveraging the results from previous mapping studies [297, 16]. The authors apply
forward snowballing on a set of papers to compose the list of primary studies for
the review. They then explore the core constituents of a continuous experimentation
framework and the challenges and benefits of continuous experimentation. Closely
related, Erthal et al. [110] conducted a literature review by applying an ad-hoc search,
followed by snowballing on the initial set of identified papers. The study places
emphasis on defining continuous experimentation and exploring its associated processes.
While the authors acknowledge A/B testing as one of the strategies for achieving
continuous experimentation, this literature review does not delve into the technical
aspects of A/B testing.

Social aspects of A/B testing An important social aspect of A/B testing is
obtaining user feedback. A significant portion of A/B tests revolves around prioritizing
and optimizing the user experience. We identified two studies that focus on this social
aspect. Fabijan et al. [120] present a literature review on customer feedback and data

BACKGROUND AND RELATED WORK 129

collection techniques in the context of software research and development. The authors
highlight existing techniques in the literature to obtain customer feedback and organize
data collection, in which software development stages the techniques are used, and
what the main challenges and limitations are for the techniques. One of the techniques
outlined by the authors is A/B testing, which can serve as a valuable tool to obtain user
feedback on prototypes. Fabijan et al. [121] discuss the challenges and implications
of the lack of sharing customer data within large organizations. One specific case
presented by the authors underpins critical issues that manifest from not sharing
qualitative customer feedback in the pre-development stage with the development stage,
forcing developers to repeat the collection of user feedback or to develop products
without this information.

A/B testing in specific domains Beyond A/B testing at Internet-based companies,
the use of A/B testing is reported in various other domains. An example is the
domain of embedded systems. Mattos et al. [246] explore challenges and strategies
for continuous experimentation in embedded systems, providing both industrial- and
research perspectives. Another domain is Cyber-Physical Systems (CPS). Giaimo et
al. [154] present a systematic literature review on the state-of-the-art of continuous
experimentation in CPS, concluding that the literature focuses more on presented
challenges rather than proposing solutions to the challenges.

Summary Existing secondary studies examined A/B testing with a focus on realizing
tests, associated processes, and the types of experimentation conducted. However,
these studies have a particular focus, or they lack a rigorous search process to identify
relevant studies. Existing studies fall short in providing insights in the target of A/B
testing (i.e., ”what” is the subject of testing), the roles of stakeholders in designing and
executing A/B tests, and the utilization of A/B test results.

Aim of the study.

To tackle the limitations of existing studies, we performed an in-depth literature study.
We define the aim of this study using the Goal Question Metric (GQM) approach [23]:

Purpose: Study and analyze

Issue: The design and execution of A/B testing

Object: In software systems

Viewpoint: From the view point of researchers.

130 A/B TESTING: A SYSTEMATIC LITERATURE REVIEW

Concretely, we aim to investigate the subject of A/B testing, how A/B tests are designed
and executed, and what the role is of stakeholders in the different phases of A/B testing.
Finally, we also aim to obtain insights into the research problems reported in the
literature.

4.3 Methodology

This study uses the methodology of a systematic literature review as described in [192].
This methodology describes a rigorous process to review the literature for a topic of
interest. The process ensures that the review identifies, evaluates, and interprets all
relevant research papers in a reproducible manner. The literature review consists of
three main phases: planning, execution, and synthesis. During planning a protocol is
defined for the study [285], which includes the motivation for the study, the research
questions to be answered, sources to search for papers, the search string, inclusion- and
exclusion criteria, data items to be extracted from the primary studies1, and analysis
methods to be used. During execution the search string is applied as specified in the
protocol, the inclusion and exclusion criteria are applied to identify the primary studies,
and all the data items are extracted from these papers. Lastly, during synthesis the
extracted data is analyzed and interpreted to answer the research questions and to obtain
useful insights from the study.

We conducted the systematic literature review with four researchers. Further details
on the process of the literature review (e.g. the roles the researchers play in the
literature review) are summarized in the following sections. A complete description
of the protocol, with all collected data and the data analysis, is available at the study
website [285].

4.3.1 Research questions

To realize the aim of this study (”Study and analyze the design and execution of A/B
testing in software systems from the viewpoint of researchers.”), we put forward four
research questions:

RQ1: What is the subject of A/B testing?

RQ2: How are A/B tests designed? What is the role of stakeholders in this process?

1We use the term “research paper” to refer to papers that we considered for the application of inclusion
and exclusion criteria in the SLR, and the term “primary study” for the research papers that we selected for
data extraction.

METHODOLOGY 131

RQ3: How are A/B tests executed and evaluated in the system? What is the role of
stakeholders in this process?

RQ4: What are the reported open research problems in the field of A/B testing?

With RQ1, we investigate the subject of A/B testing, i.e., the (part of the) system
to which an A/B test is applied. Examples include A/B tests on program variables,
application features, software components, subsystems, the system itself, and the
infrastructure used by the system. We also investigate the domains in which A/B testing
is used.

With RQ2, we investigate what is defined and specified in A/B tests before they are
executed in the system. We look at the metrics used, and whether statistical methods
are used in the experiments and if so which methods. We also investigate which
stakeholders are involved in this process and what is their role (e.g., users of the
system influencing the tests that should be deployed, or architects deciding on which
population the A/B tests should be run).

With RQ3, we investigate how A/B tests are executed in the system, and the results
are evaluated. More specifically, we look at the way in which data is collected for
evaluation in the test, the evaluation of the A/B test itself (using the collected data and,
if applicable, the result of a statistical test), and the use of the test results (e.g., decision
about selection of target, input for maintenance, trigger for next test in a pipeline).
We also explore the role stakeholders have during this process of A/B testing (e.g.,
operators deciding when to finish an experiment).

With RQ4, we identify open research problems in the field of A/B testing. The problems
can be derived from descriptions of limitations of proposed approaches in the reviewed
papers, open challenges, or outlines of future work on A/B testing.

4.3.2 Search query

We first identified a list of relevant terms for A/B testing from a number of known
publications [197, 160, 205, 203, 195, 99]. We then identified and applied a gold
standard [400] to tune the terms. For a detailed description of the relevant terms and
application of the gold standard, we refer to the research protocol [285]. Figure 4.2
(top) displays the final search query after applying the gold standard.

4.3.3 Search strategy

The search query was executed in October 2022. The search query was applied to the
title and abstract of each paper in the sources (not case-sensitive). The automatic search

132 A/B TESTING: A SYSTEMATIC LITERATURE REVIEW

IEEE

ACM

Elsevier

Wiley

Data cleaning and
duplicate filtering

862

722

2,343

17

Inclusion/exclusion
criteria

3,944

2,379

Thorough paper
review (whole text +
quality assesment)

Snowballing

279

137

Data extraction +
synthesis

141

 "A?B test*" OR "A?B experiment*" OR "continuous experiment*" OR
 (("online experiment*" OR "online controlled experiment*" OR "concurrent experiment*" OR
 "randomi?ed experiment*") AND NOT ("participant?" OR "experimental stud*"))
 OR
 (("deploy*") AND ("click rate" OR "click?through rate" OR "number of clicks" OR "absence time" OR
 "number of sessions" OR "number of queries" OR "time to click" OR "session time"))

Application
search query

Figure 4.2: Primary studies selected for the systematic literature review.

resulted in 3, 944 papers, as shown in Figure 4.2. After filtering duplicate papers and
selecting only journal versions of extensions of conference versions, 2, 379 research
papers are left for further processing.

4.3.4 Search process

After collecting the papers, we applied the following inclusion criteria:

IC1: Papers that either (1) have a primary focus on A/B testing (or any of its known
synonyms) or (2) describe and apply (new) design(s) of A/B tests; for example
introducing a proof-of-concept;

IC2: Papers that include an assessment of the presented A/B tests, either by providing
an evaluation through simulation with artificial data or field data, or through
running one or more field experiments in a real system;

IC3: Papers written in English.

METHODOLOGY 133

We defined IC1 such that we only include works that are relevant to the posed research
questions, i.e., it is essential that the work focuses on A/B testing or their design and
evaluation. Note that IC1 includes papers that address and present solutions to known
challenges in A/B testing. IC2 ensured that only papers are included that contain data
related to the design and/or running of A/B tests. Lastly, we only included papers that
are written in English with IC3.

Besides the inclusion criteria above, we also applied the following exclusion criteria:

EC1: Papers that report (systematic) literature reviews, surveys (using questionnaires),
interviews, and roadmap papers;

EC2: Short papers (≤ 4 pages)2, demos, extended abstracts, keynote talks, and
tutorials;

EC3: Papers with a quality score ≤ 4 (explained in Section 4.3.5).

EC4: Papers that provide no or only a very brief description of the A/B testing design
process or execution process.

EC1, EC2, and EC3 excluded papers that do not directly contribute new technical
advancements, preliminary works that have not been fully developed yet, or works that
are not of sufficient quality. In this literature review, we focus on mature, state-of-the-
art research in the field of A/B testing to answer the research questions. EC4 excluded
works that do not contain essential information to answer the research questions.

Papers that satisfied all inclusion criteria and none of the exclusion criteria were
included as primary studies in the literature study. The application of inclusion and
exclusion criteria to the titles and abstracts of the research papers resulted in 279 papers.
A thorough reading of the papers further reduced the number of papers to 137. In
addition to the research papers retrieved via the search string and filtered by applying
inclusion/exclusion criteria, we applied snowballing on the cited works of these papers
to capture potentially missed papers. With snowballing we discovered 4 additional
papers, bringing the final number of primary studies to 141, as shown in Figure 4.2.

4.3.5 Data items

To be able to answer the research questions, we extract the data items listed in Table 4.1.
For each data item, we provide a detailed description.

D1-4: Authors, year, title, and venue used for documentation purposes.

2Papers published in the Lecture Notes in Computer Science format with < 8 pages are also considered
short.

134 A/B TESTING: A SYSTEMATIC LITERATURE REVIEW

Table 4.1: Collected data items to answer the research questions

Identifier Data item Purpose

D1 Authors Documentation
D2 Year Documentation
D3 Title Documentation
D4 Venue Documentation
D5 Paper type Documentation
D6 Authors sector Documentation
D7 Quality score Documentation
D8 Application domain RQ1
D9 A/B target RQ1
D10 A/B test type RQ2
D11 Used metrics RQ2
D12 Statistical methods employed RQ2
D13 Role of stakeholders in the experiment design RQ2
D14 Additional data collected RQ3
D15 Evaluation method RQ3
D16 Use of test results RQ3
D17 Role of stakeholder in experiment execution RQ3
D18 Open problems RQ4

D5: The type of paper. Options include: focus paper (focus on A/B testing itself,
i.e., modifications, suggestions, or enhancements to the A/B testing process),
or applied paper (application and evaluation of A/B testing in real software
systems).

D6: The sector of the authors of the primary study used for documentation (based
on the author’s affiliation). Options include Fully academic, Fully industrial,
and Mixed.3

D7: A quality score for the reporting of the research [242]. The quality score is
defined on the following items: Problem definition of the study, Problem
context (relation to other work), Research design (study organization),
Contributions and study results, Derived insights, Limitations. Each item
is rated on a scale of three levels: explicit description (2 points), general
description (1 point), or no description (0 points). Therefore, the quality score
is defined on a scale of 0 to 12 [239].

D8: The application domain that is used in relation to A/B testing in the primary
study. Initial options include E-commerce, Telecom, Automotive, Finance,
and Robotics. Further options were derived during data collection.

3Academic refers to affiliations that are eligible to graduate master and/or PhD students.

METHODOLOGY 135

D9: The target of A/B tests describes the element that is subject of A/B
testing. Initial options include an algorithm, a user interface, and application
configurations. Further options were derived during data collection.

D10: The type of A/B test corresponds to the number of A/B variants and the way in
which they are tested. Initial options include Single (classic) A/B test, Single
multivariate A/B test, Manual sequence of classic A/B tests, Manual sequence
of multivariate A/B tests, Automated sequence of classic A/B tests, Automated
sequence of multivariate A/B tests. Additional options were derived during
data collection.

D11: The metrics that are used in the A/B tests. Initial options include Click rate,
Click-through rate, Number of clicks, Number of sessions, Number of queries,
Absence time, Time to click, and Session time. Additional options were
derived during data collection.

D12: The statistical method that is employed to evaluate the data obtained through
the A/B test, if any. Initial options include a Student test, a Proportional test,
and No statistical test. Further options were derived during data collection.

D13: The role of stakeholders in the experiment design. Initial options include
Determining A/B test goal/hypotheses, Determining A/B test duration, and
Tuning A/B test variants. Further options are derived during data collection.

D14: Additional data that is collected during the execution of an A/B test (in addition
to direct or indirect A/B metric data). Examples include User geo-location,
Browser type, and Timestamps of invocations or requests. Further options are
derived during data collection.

D15: The evaluation method used in the primary study4. Initial options include an
Illustrative example, Simulation, and Empirical evaluation.

D16: The use of the test results gathered from A/B tests. Examples include
Subsequent A/B test execution, Subsequent A/B test design, Feature rollout,
and Feature development. Further options are derived during data collection.

D17: The role of stakeholders in the process of executing A/B tests. Initial options
include A/B test alteration (adjusting individual A/B tests), A/B test triggering
(starting subsequent A/B tests manually), A/B test supervision (monitoring
A/B tests execution), No involvement, Unspecified. Further options are
derived during data collection.

D18: Reported open problems. Open problems are derived from the reported
challenges, limitations, and threats to validity. Options are derived during data
collection.

4We distinguish data retrieved from empirical evaluation in a live system from data retrieved from
simulation or an illustrative example to provide targeted insights into the execution of A/B tests during data
analysis of the SLR.

136 A/B TESTING: A SYSTEMATIC LITERATURE REVIEW

Table 4.2: Paper types of the primary studies.

Type Number of
occurrences

Focus 90
Applied 51

Table 4.3: Author backgrounds of the primary studies.

Background Number of
occurrences

Academic 26
Industry 72
Mixed 43

4.4 Results

We start with demographic information about the primary studies. Then we zoom in on
each of the research questions.

4.4.1 Demographic information

Demographic information is extracted from data items Paper type (D5), Authors sector
(D6), and Quality score (D7).

Of the 141 primary studies, 90 (63.8%) have a focus on A/B testing itself, while 51
(36.2%) apply A/B testing or use it for evaluation purposes, see Table 4.2.

A majority of 72 primary studies (51.1%) have industrial authors, see Table 4.3. Forty-
three studies (30.5%) have a mix of industry and academic authors, and 26 studies
(18.4%) are from academic authors only.

Figure 4.3 shows the distribution of quality scores with an average of 8.81 [±1.58].
This shows that the reporting of the research in the primary studies is of good quality.
Since all papers passed the threshold of 4, none of the papers had to be excluded for
the extraction of data to answer the research questions.

RESULTS 137

5 6 7 8 9 10 11 12
0

5

10

15

20

25

30
Nu

m
be

r o
f o

cc
ur

re
nc

es
Quality score

Figure 4.3: Quality scores of the primary studies.

4.4.2 RQ1: What is the subject of A/B testing?

To answer this research question, we look at the following data items: Application
domain (D8), and A/B target (D9).

Application domain Table 4.4 lists the application domains of the primary studies.
The average number of domains is 1.13 (131 primary studies applied A/B testing in one
domain, three studies in two domains, six studies in three domains, and one study in four
domains). Nine studies do not mention any domain. We observe that the most popular
application domain is the Web (38 occurrences). Typical examples are social media
platforms, such as Facebook [232] or LinkedIn [390], news publishers [396, 119], and
multimedia services, such as movie streaming at Netflix [10]. The second most popular
domain is search engines (35 occurrences), with studies conducted at Yandex [98, 97],
Bing [91, 238], Yahoo [7, 334], among others. A/B testing is also actively applied
in E-commerce (27 occurrences), with examples from retail giant Amazon [109], the
fashion industry [57], and C2C (consumer-to-consumer) businesses, such as Etsy [188]
and Facebook marketplace [342]. Next we observe the application of A/B testing
in what we group under ”interaction” (22 occurrences), with digital communication
software, such as Snap [386] and Skype [119], user-operating system interaction [162,
116], and application software, such as an App store [76] and mobile games [393].
Lastly, we note the financial application domain (16 occurrences), including studies
at Yahoo finance [403] and Alipay [43], transportation (4 occurrences) at for instance

138 A/B TESTING: A SYSTEMATIC LITERATURE REVIEW

Table 4.4: Identified application domains for A/B testing.

Application
domain

Number of
occurrences

Web 38
Search engine 35
E-commerce 27
Interaction 22
Finances 16
Transportation 4
Other 8
N/A 9

Didi Chuxing [137]. Other domains are education (3 occurrences) [293] and robotics
(2 occurrences) [247], among others.

A/B target The target of the A/B test denotes the element that is subject to testing
and of which (at least) two variants are compared. Table 4.5 lists the A/B targets we
identified from the primary studies, with a description and examples for each. The
average number of A/B targets is 1.21 (120 primary studies applied A/B testing to one
element, 26 studies to two elements, and 24 studies to three elements). Note that studies
with more than one A/B target typically apply these in multiple experiments. The
dominating targets of A/B testing are algorithm, visual elements, and workflow/process
which together make up 86.2% of all A/B targets reported in the primary studies.
Notable, 32 primary studies did not specify a particular A/B target, for example using
datasets from two prior A/B tests in the paper’s evaluation without clarifying the details
of these tests [385].

Application domain vs A/B target We can now map the application domains
with the targets of A/B testing. This analysis provides insights into which elements
or components are typically the subject of A/B testing in particular domains, or
alternatively which A/B targets remain unexplored in particular domains. Table 4.6
presents this mapping. We highlight a number of key observations:

• A/B testing of algorithms is applied across all application domains and
for all major domains it is the primary target of A/B testing. Commonly
tested algorithms include feed ranking algorithms for social media websites,
recommendation algorithms for news/multimedia websites, search ranking

RESULTS 139

Table 4.5: Identified A/B targets, with description.

A/B target Description Occ.

Algorithm Updated version of an algorithm such as a rec-
ommendation algorithm [396], a search ranking
algorithm [196], or an ad serving algorithm [21].

58

Visual elements Changes to visual components such as updates to
a website layout [39] or a general user interface
update [89].

33

Workflow /
process

Alteration to the workflow of an application, e.g. the
addition of a feedback button to a dashboard [233],
or a change in a user workflow, e.g. the process of a
virtual assistant tool [208].

28

Back-end Optimization of a software component that is
not directly visible to the user, such as testing
server optimizations [274] or adjusting application
parameters for better performance [119].

10

New application
functionality

Newly introduced functionality, such as a new widget
on a web-page [59] or additional content that is
presented to the user after performing a search
query [238].

6

Other This category comprises three other A/B targets:
different timing and content of emails sent [394],
varying educational resources presented to the
user [293], and the page configuration of a web-
site [351].

3

Unspecified The target of the A/B test was not specified in the
study.

32

140 A/B TESTING: A SYSTEMATIC LITERATURE REVIEW

algorithms for search engines, and advertisement serving algorithms both in
the Web and search engine application domains.

• A/B testing of visual elements is particularly popular for search engines (16
studies) compared to other application domains such as Web (with only 6 studies).
Typical examples include changes to the font color of search engine results [201]
and changing the position of advertisements on the result page [249].

• Workflow and process elements as A/B targets are commonly applied across
the major domains. This target is particularly popular for the Web and E-
commerce (with 8 and 7 studies, respectively). Typical examples are changes
to the process in which best-performing advertisements are determined in JD’s
advertisement platform, China’s largest online retailer [359], and changes to the
order assignment policy for on-demand meal delivery platforms [225].

• For the Web and search engines, all types of A/B targets are applied. The main
focus for the Web is on algorithms and workflow/processes, while the focus
for search engines is on algorithms, visual elements, and back-end. For the
Web, we notice only a single primary study with back-end as the A/B target.
This study targets different microservice configurations in A/B testing in order
to tune individual microservices for performance improvements [327]. On the
other hand, for search engines, we only noted three primary studies that target a
workflow or process in A/B testing. One study evaluated a change of wording
in digital advertisements [30], one study evaluated a change in advertisement
strategies [163], the last study evaluated the option to pay for ”sponsored search”
(to prioritize search results) [31].

• For e-commerce, we noticed that A/B testing is mainly used to test changes
to ranking and recommendation algorithms, and to processes such as virtual
assistants. Notably, we only identified a single primary study that evaluated
changes to the user interface [226].

• A/B testing for back-end optimizations was identified to be most common for
search engines, while we did not identify a paper in the e-commerce and finances
domain where A/B testing was used for back-end changes.

RESULTS 141

Table 4.6: Application domain × A/B target

Application
domain

A/B target
Algorithm Visual

elements
Workflow
/ process

Back-
end

New
app.
func.

Other

Web 17 6 8 1 3 0
Search engine 17 16 3 6 2 0
E-commerce 10 2 7 0 0 1
Interaction 5 6 2 2 1 0
Finances 7 2 4 0 1 0
Transportation 2 0 0 1 1 0
Other 2 1 3 0 0 2

Research question 1: What is the subject of A/B testing? The main
targets of A/B testing are algorithms, visual elements, workflow and processes,
and back-end features. A/B testing is commonly applied in the domains
of the Web, search engines, e-commerce, interaction software, and finances.
Algorithms are consistently tested across these domains. Visual elements are
predominantly evaluated in search engines, and counter-intuitively not in e-
commerce. Workflow and processes are popular A/B targets in the Web and
e-commerce domains. On the other hand, back-end features such as server
performance are popular targets for search engines.

4.4.3 RQ2: How are A/B tests designed? What is the role
of stakeholders in this process?

To answer the second research question, we look at the following data items: A/B test
type (D10), Used metrics (D11), Statistical methods employed (D12), and Role of
stakeholders in the experiment design (D13).

Design of A/B tests

To answer the first part of RQ2 (How are A/B tests designed?), we take a deeper look
at the design of the A/B tests, focusing on the type of A/B tests, A/B metrics, and
statistical methods used in the A/B tests.

142 A/B TESTING: A SYSTEMATIC LITERATURE REVIEW

Single classic
A/B test

Multi-armed
A/B test

Sequence of
A/B tests

Multivariate
A/B test

Unspecified
0

20

40

60

80

Nu
m

be
r o

f o
cc

ur
re

nc
es

Type of A/B test

Figure 4.4: Identified A/B test types.

A/B test type. The type of A/B tests includes single classic A/B tests with two
variants, A/B tests composed of more than two variants (denoted as multi-armed A/B
tests), multivariate A/B tests where combinations of elements are tested in one A/B test,
and sequences of all these types. Figure 4.4 shows the frequencies of these different
A/B test types extracted from the primary studies.

Overall, we identified 155 occurrences of A/B test types, i.e., an average of 1.13
occurrences per primary study (123 studies considered a single type of A/B test, 17
studies considered two types, and one study considered three test types). The majority
of the primary studies employed single classic A/B testing with a control variant and
a treatment variant (95 occurrences). These standard tests are used to test a variety
of targets. The second most common type of A/B test is a multi-armed A/B test
(30 occurrences). This type of test is composed of more than two variants under
test; for example one control variant as baseline and three treatment variants with a
distinct version each. These tests are commonly used to evaluate multiple versions of a
recommendation algorithm, e.g., [317, 333], and to test different advertisement serving
algorithms, e.g., [346]. The third most common type of A/B test is a sequence of classic
A/B tests (24 occurrences). Examples here include the comparison of multiple variants
in a manually executed sequential style (as opposed to a multi-armed A/B test where
all variants are deployed simultaneously) [123], manually testing multiple iterations
of machine learning algorithms sequentially [228], and automatically executing a
sequence of A/B tests to handle controlled feature release in DevOps [308]. The last
identified A/B test type is the multivariate A/B test (6 occurrences). This type of test

RESULTS 143

evaluates various combinations of multiple features. As opposed to a multi-armed A/B
test, a multivariate A/B test enables testing variants of more than a single feature in a
singular A/B test. An example is the comparison of different combinations of varying
GUI elements [89].

A/B metrics. Table 4.7 lists the A/B metrics that we extracted from the primary
studies. In total, 493 occurrences of A/B metrics were reported in the primary studies.
With a total of 198 experiments spread over 141 studies, this gives an average of
2.12 metrics per experiment5 (ranging from 1 to 8 metrics per experiment). The
most common group of A/B metrics are engagement metrics (225 occurrences) that
refer to the number of conversions6, number of user sessions, time users are present
on the website, and metrics related to the usage of the application or website (e.g.
number of posts rated, number of bookings made).7 The second largest group are
click metrics (82 occurrences). Examples include the number of clicks, clicks per
query, and good click rate8. The third group of A/B metrics we identified are metrics
related to monetization, i.e., revenue and cost (64 occurrences). Examples include
number of purchases, order value, revenue per e-mail opening, and advertisement cost.
The next group is performance metrics (50 occurrences). Examples include a simple
response time of an application, bandwidth used, end-to-end latency, or playback delay
of audio. The remaining groups are metrics that track unwanted effects in the A/B
tests (34 occurrences, e.g. abandonment rate or the number of un-subscriptions), views
(21 occurrences, e.g. the number of page views or the number of product views), and
user feedback (17 occurrences, e.g. the number of customer complaints or verbatim
feedback).

Statistical methods Table 4.8 groups the types of statistical methods used for A/B
tests in the primary studies. The most commonly used statistical method is hypothesis
tests that test for equality (94 occurrences in total). The main test used in this group is a
student t-test, e.g. [163, 156]. Other tests in this group are the Kolmogorov-Smirnov test,
e.g., [311], Mann-Whitney test, e.g., [306], and Wilcoxon signed-rank test, e.g., [350].
Out of the 94 occurrences of this type of hypothesis test, 37 primary studies did not
report the concrete test used in the analysis of the results9. The second most commonly
used method is bootstrapping (11 occurrences). This method constructs multiple
datasets by resampling the original dataset [98]. The newly constructed datasets are

5We excluded experiments and corresponding metrics of primary studies that analyzed a large number of
previously conducted A/B tests.

6A conversion is a desired action taken in the A/B test.
7Note that some of the primary studies do not specify explicitly the A/B metrics due to business sensitivity.

Based on the available information in the study, we have included these in general engagement metrics.
8Good clicks are described as clicks that are meaningful during the search query session [35].
9However, these studies did report p-values alongside the results, or explicitly refer to confidence intervals

and statistically significant results of the A/B tests.

144 A/B TESTING: A SYSTEMATIC LITERATURE REVIEW

Table 4.7: Identified A/B metrics.

A/B metric Number of
occurrences

Engagement metrics 225
Click metrics 82
Monetary metrics 64
Performance metrics 50
Negative metrics 34
View metrics 21
Feedback metrics 17

Table 4.8: Statistical methods employed during A/B testing.

Statistical methods employed Number of
occurrences

Hypothesis - equality 57
Hypothesis - equality (concrete method unspecified) 37
Bootstrapping 11
Hypothesis - inference 8
Goodness of fit 8
Correction method 7
Estimator 6
Hypothesis - independence 5
Regression method 2

then typically used for equality hypothesis testing. The key benefit of this technique
is the sensitivity improvements gained in the analysis of the results. However, a big
drawback of the technique is that it is computationally expensive, especially for larger
datasets [233]. The third most commonly used statistical method is a hypothesis
test that tests for inference and goodness of fit (both 8 occurrences). Examples of
inference hypothesis tests include using Bayesian analysis approach to ensure multiple
simultaneously running experiments do not interfere [200], and a Bayesian approach
to infer the causal effect of running ad campaigns [20]. Examples of goodness of fit
methods include sequential testing methods that are based on likelihood ratio tests [188],
and a Wald test [186]. The remaining groups are correction methods (7 occurrences)
with e.g. Bonferroni correction [398]; custom estimators for observations in A/B
testing (6 occurrences), e.g., an estimator that takes variances into account [232];
hypothesis tests for independence (5 occurrences), containing χ2 tests [334]; and
regression methods (2 occurrences), e.g. CUPED [100].

RESULTS 145

Role of stakeholders

To address the second part of RQ2 (What is the role of stakeholders in the design of
A/B tests?), we analyze the role stakeholders play in the design of A/B tests.

Roles of stakeholders Table 4.9 lists the different roles of stakeholders in the
design of A/B tests that we extracted from the primary studies, associated with
tasks, descriptions, and examples. We identified three main roles: concept designer
(127 occurrences), experiment architect (111 occurrences), and setup technician (31
occurrences). The role Concept designer consists of conceptualizing new ideas for A/B
testing. The role of Experiment architect consists of calibrating technical parameters of
the experiment such as the experiment duration. The role of Setup technician consists of
taking the necessary steps required to allow the execution of the A/B test. The top task
of the concept designer is designing and tuning variants of A/B tests (67 occurrences).
The top task of the experiment architect is determining the duration of A/B tests (60
occurrences). Finally, the main task of the setup technician is performing post-design
activities of A/B tests (25 occurrences).

Cross analysis A/B test design

We discuss two mappings of data items: The role stakeholders take in the design of
A/B tests versus A/B test type; and the A/B metrics used in experiments versus the
statistical methods employed.

Tasks of stakeholders vs A/B test type The mapping of stakeholder’s tasks in
the design of A/B tests across types of A/B tests is shown in Table 4.10. We observe
the following:

• The primary tasks of stakeholders across all types of A/B tests are the design and
tune of variants, determining the duration of experiments, the population, and
the goal or hypothesis. These numbers confirm that these are essential design
tasks for any A/B test.

• A majority of the studies that use multi-armed A/B testing and sequence of A/B
tests report the design and tuning of variants as an important stakeholder task
(22 and 13 occurrences respectively). Since these types of tests involve multiple
variants under test, the studies often specify more details about the variants and
the reasoning behind choosing which variants to test.

• Determining the goal or hypothesis for A/B testing is frequently mentioned for
multi-armed A/B tests (17 occurrences). In contrast to conventional two-variant

146 A/B TESTING: A SYSTEMATIC LITERATURE REVIEW

Table 4.9: Roles and tasks of stakeholders in the design of A/B tests (Occ short for the
number of occurrences).

Role Task Task description Occ.

Design and
tune variants

Designing and tuning the variants to test. Examples
are tweaking the A/B variants [317], or designing
A/B variants for different kinds of populations (e.g.,
old vs new users) [36].

67

Determine
goal or
hypothesis

Formulating the goal or hypothesis of the A/B test
itself. Examples include the specification of a
goal to find the better-performing news selection
algorithm [103] or the specification of a pre-
determined hypothesis for the A/B test [6].

48

C
on

ce
pt

de
si

gn
er

(1
27

)

Perform pre-
design
actions

Actions that are taken before designing the A/B
test. Examples include providing motivation for A/B
tests [351] or performing offline A/B tests before
moving to online A/B testing [158].

12

Determine
duration

Determining the duration of the A/B test. Examples
include choosing a fixed experiment duration (e.g., 1
week) [6] or via an explicit expiration date [229].

60

E
xp

er
im

en
ta

rc
hi

te
ct

(1
11

)

Determine
population
assignment

Determining the population that should take part
in the A/B test. Examples include a simple 50/50
split of all users [381], an assignment where the
target population is determined over a two-week
period [393], or an assignment where network effects
have to be taken into account [225].

51

Perform post-
design
actions

Actions that are taken after completing the design
of the A/B test. Examples include performing A/A
testing prior to running the A/B test [403, 76],
validation of the A/B test design [233], or scheduling
the execution of the A/B test [351].

25

Se
tu

p
te

ch
ni

ci
an

(3
1)

Perform
metric
analysis and
initialization

Analyzing and potentially initializing metrics for the
A/B test. An example consists of instantiating a
custom A/B utility metric with negative and positive
weights tied to the user’s actions during a search
session [238].

6

RESULTS 147

Ta
bl

e
4.

10
:T

as
ks

of
st

ak
eh

ol
de

rs
×

A
/B

te
st

ty
pe

Ta
sk

Te
st

ty
pe

(t
ot

al
oc

c.
)

Si
ng

le
cl

as
si

c
A

/B
te

st
(9

5)
M

ul
ti-

ar
m

ed
A

/B
te

st
(3

0)
Se

qu
en

ce
of

A
/B

te
st

s(
24

)
M

ul
tiv

ar
ia

te
A

/B
te

st
(6

)

D
es

ig
n

an
d

tu
ne

va
ri

an
ts

33
22

13
2

D
ur

at
io

n
45

9
11

2
Po

pu
la

tio
n

as
si

gn
m

en
t

37
7

8
2

G
oa

l/h
yp

ot
he

si
s

27
17

8
2

Po
st

-d
es

ig
n

ac
tio

ns
12

1
5

0
Pr

e-
de

si
gn

ac
tio

ns
6

4
2

1
M

et
ri

c
an

al
ys

is
/in

it.
5

1
0

0

148 A/B TESTING: A SYSTEMATIC LITERATURE REVIEW

A/B testing that typically involves a control variant and an altered variant aimed
at improving the control variant, multi-armed A/B tests involve more than two
variants, so practitioners often formulate hypotheses regarding the potential
performance of each variant.

• Post-design actions are more often reported for sequences of A/B tests (5
instances). For instance, one primary study mentions modeling the sequence of
A/B tests [308], another study mentions determining the success condition of
the A/B tests before executing them [335], and another study refers to providing
an outcome range of the A/B tests [338].

• Only a few primary studies report pre-design actions and metrics analysis and
initialization, independently of the type of A/B test.

A/B metrics vs statistical methods used The statistical methods used across
different types of A/B metrics are shown in Table 4.11.

• Engagement metrics and click metrics are used across all types of statistical
methods.

• The concrete method used for hypothesis testing of equality is often not specified
across all types of A/B metrics. For monetary and performance metrics in
particular, a majority of studies do not mention the concrete hypothesis testing
method (8 and 11 occurrences, respectively). This might be due to the sensitivity
of reporting results for these types of metrics.

• Negative metrics are primarily used for hypothesis equality tests (10 and 8
occurrences for hypothesis equality and hypothesis equality with no method
specified respectively).

• Hypothesis method for independence is most frequently used for the monetary
metrics, yet, the use is uncommon (3 instances).

• The use of feedback metrics is also uncommon and if used, the specific statistical
method used is not reported (5 occurrences).

RESULTS 149

Ta
bl

e
4.

11
:S

ta
tis

tic
al

m
et

ho
ds

×
A

/B
m

et
ri

cs
(H

sh
or

tf
or

hy
po

th
es

is
)

M
et

ho
d

M
et

ri
c

E
ng

ag
.

C
lic

k
M

on
et

ar
y

N
eg

at
iv

e
Pe

rf
.

V
ie

w
Fe

ed
ba

ck

H
-e

qu
al

ity
31

14
7

10
4

7
2

H
-e

qu
al

ity
(u

ns
p.

)
24

12
8

8
11

5
5

B
oo

ts
tr

ap
pi

ng
9

2
2

3
3

1
1

H
-i

nf
er

en
ce

5
1

0
0

1
0

0
G

oo
dn

es
so

ffi
t

5
1

2
1

0
0

0
C

or
re

ct
io

n
m

et
ho

d
4

1
1

1
2

0
1

E
st

im
at

or
4

1
2

1
0

1
0

H
-i

nd
ep

en
de

nc
e

2
2

3
0

0
1

0
R

eg
re

ss
io

n
m

et
ho

d
1

1
1

0
0

1
0

150 A/B TESTING: A SYSTEMATIC LITERATURE REVIEW

Research question 2: How are A/B tests designed? What is the role
of stakeholders in this process? The primary type of A/B test is a single
classic A/B test, followed by multi-armed A/B tests and sequences of A/B tests.
Engagement metrics are the dominating type of A/B metrics used in A/B testing.
Other prominent A/B metrics include click, monetary, and performance metrics.
Hypothesis testing for equality is by far the most commonly used statistical
method used in A/B testing. Remarkably, about 40 % of these studies that test
equality do not specify the concrete method they use for that. Stakeholders have
two main roles in the design of A/B tests: concept designer and experiment
architecture. Less frequently reported is the third role of setup technician.

4.4.4 RQ3: How are A/B tests executed? What is the role
of stakeholders in this process?

Execution of A/B tests

To address the first part of RQ3 (How are A/B tests executed?), we analyze the data
collected during A/B tests, the evaluation methods used, and the use of A/B tests.

Data collected Table 4.12 lists the classes of data collected during the execution of
A/B tests. We identified four types of data. Product or system data is most commonly
reported in primary studies (48 occurrences). This data class includes the type of
browser used by the end-user, the operating system of the end-user, hardware-specific
information of the device used to interact with the application, and general information
related to the usage of the system (e.g. tracking information about item categories of
products in an e-commerce application, and types of search queries processed during
the A/B test). The second most popular is user-centric data (26 occurrences). This
class contains data related to how the end-user interacts with the system as well as
personal information of end-users. Examples include scrolling characteristics of users
on a web application, the navigation history of end-users, user feedback, and using
age or current occupation of the end-user during analysis. The third most commonly
reported class is spatial-temporal data (20 occurrences) which groups data related to
geographic location and time-related data. Examples include timestamps of requests to
an application, the creation date of accounts that take part in the A/B test, and spatial
information such as the country and region of end-users. Lastly, a few primary studies
report the use of secondary data (6 occurrences). Data in this class correspond to A/B
metrics that do not serve as main evaluation metrics for A/B tests. Examples are the
number of clicks or page views that are used for additional analysis after conducting
the A/B tests.

RESULTS 151

Table 4.12: Data collected for the A/B tests.

Data collected Number of
occurrences

Product/system data 48
User-centric data 26
Spatial-temporal data 20
Secondary data 6

Table 4.13: Evaluation method used in the primary studies.

Evaluation method Number of
occurrences

Empirical evaluation 100
Simulation based on real empirical data 26
Simulation 15
Illustrative example 10
Case study 5
Theoretical 1

Evaluation method Table 4.13 summarizes the identified evaluation methods. The
vast majority of primary studies provide results from an empirical evaluation (100
occurrences), i.e., executing A/B tests in live systems. A substantial number of studies
use historical data from previously conducted A/B tests to simulate new A/B tests
(26 occurrences), while a handful of studies (15 occurrences) use simulations without
historical data as their evaluation method. Lastly, a few studies use illustrative examples
(10 occurrences), case studies (5 occurrences), and a single primary study provides a
theoretical evaluation [249].

Use of test results Table 4.14 lists the use of test results extracted from the primary
studies. Use of test results refers to what stakeholders do with the obtained data and
analyses of A/B tests, such as using the results to design additional A/B tests. As
the table shows, the main usages of A/B test results are the selection and rollout of a
feature (71 and 24 occurrences respectively). A number of studies aim at validating the
effectiveness of the A/B testing process itself (12 occurrences). The use of test results
to trigger a subsequent A/B test seems not very well explored (4 occurrences).

152 A/B TESTING: A SYSTEMATIC LITERATURE REVIEW

Table 4.14: Use of test results gathered from A/B test execution.

Use test results Description Occ.

Feature
selection

The results of the A/B test are used to determine
which variant presents an improvement to the application.
Examples include selecting a new version of a ranking
algorithm [271, 59] or a recommendation algorithm [135],
and selecting a different visual design [9].

71

Feature rollout The results of the A/B test are used to determine if the
rollout of a feature should be continued or halted, as for
example outlined by practitioners at Microsoft [383, 102].

24

Continue feature
development

The results of the A/B test are used as a driving force
for further feature development, e.g. fine-tuning newly
proposed A/B metrics based on periodicity patterns after
obtaining promising results [97], and further developing
personalization methods [7].

17

Subsequent A/B
test design

The results of the A/B test are used for future A/B test
design, for example suggesting alternative A/B variants to
test in future A/B tests [208], and designing a new A/B
test to further test the quality of an A/B metric prediction
model10 [272].

15

Validation effec-
tiveness of A/B
testing process

The results of the A/B test are used to demonstrate
the effectiveness of the newly proposed or improved
A/B testing approach by the authors. Examples include
evaluating a newly proposed counterfactual framework to
run seller-side A/B tests in two-sided marketplaces [342],
and the validation of a new statistical methodology for
continuous monitoring of A/B tests [187].

12

Validation of a
RQ

A/B testing is used to validate a research question put
forward by the authors. One example consists of investigat-
ing the hypothesis under which circumstances companies
should pay for advertising in search engines [31].

10

Bug detection /
fixing

The results of the A/B test are used to detect potential bugs
or validate bug fixes, e.g. probing for data quality issues in
A/B tests of ML models to uncover potential bugs [228].

5

Subsequent A/B
test execution

The results of the A/B test are used to execute subsequent
A/B tests, e.g. using the results of A/B tests to automatically
determine which subsequent A/B tests to execute [335].

4

Unspecified The use of the test results was not specified in the study. 24

RESULTS 153

Role of stakeholders

To address the second part of RQ3 (What is the role of stakeholders in this process?),
we analyze the role of stakeholders in A/B test execution.

Roles of stakeholders Table 4.15 lists the different roles of stakeholders in the
A/B test execution we have extracted from the primary studies with associated tasks,
a description, and examples. We identified two main roles: experiment contributor
(40 occurrences) and experiment assessor (37 occurrences). The role Experiment
contributor consists of managing the A/B test execution. The role Experiment assessor
consists of evaluating the A/B test results and potentially undertaking additional actions.
The top task of the experiment contributor is experiment supervision (19 occurrences).
The top task of the experiment assessor is experiment post-analysis (17 occurrences).

Cross analysis A/B test execution

We take a deeper look at two mappings of data items related to the execution of A/B
tests: Use of test results with the tasks of stakeholders in the execution of A/B tests;
and the evaluation method with the tasks of stakeholders in the execution of A/B tests.

Use of test results vs Tasks of stakeholders in the execution of A/B tests
The first mapping we analyze relates to the use of test results and the tasks stakeholders
undertake in the execution of A/B tests. The results are shown in Table 4.16. We
highlight some key observations:

• Experiment supervision is applied regardless of the usage of test results. For
feature rollout as a use of A/B test results, the task of experiment supervision is
often mentioned. Supervision takes on a key task in this context to ensure that the
rollout happens in a hazard-free manner (i.e., no harm is caused to users) [383,
59].

• The task of experiment post-analysis is typically only reported for experiments
that are fully complete (i.e., do not go through additional rounds of iteration). In
the primary studies where the results of the A/B tests are used for subsequent
A/B test design, no instances were identified where stakeholders take the task of
performing post-analysis on the results of the experiments.

• For subsequent A/B test design, the task of experiment triggering is often
mentioned. This is to be expected since the newly designed A/B tests also
need to be executed. Additionally, A/B test termination is also mentioned often
(e.g., terminating an experiment due to bad results [165]).

154 A/B TESTING: A SYSTEMATIC LITERATURE REVIEW

Table
4.15:Identified

roles
and

concrete
tasks

ofstakeholders
during

the
execution

ofA
/B

tests.

R
ole

Task
Task

description
O

cc.

E
xperim

entsupervision
M

onitoring
and

closely
follow

ing
up

on
the

execution
ofA

/B
tests

[335,93].
19

E
xperim

entalteration
A

ltering
aspects

of
the

A
/B

test
during

its
execution.

E
xam

ples
include

adjusting
the

population
assignm

entof
the

experim
ent[76],oradjusting

the
A

/B
variantsthem

selves[338].

12

Experiment contributor (40)

E
xperim

entterm
ination

Stopping
A

/B
tests

w
hen

deem
ed

necessary.
E

xam
ples

include
m

anually
stopping

A
/B

tests
w

hen
sufficient

data
is

collected
[208],orstopping

the
experim

entearly
w

hen
harm

is
observed

[200].

9

E
xperim

entpost-analysis
Variousstepsthatare

taken
afteranalyzing

the
resultsofthe

A
/B

test.E
xam

ples
include

double
checking

results
from

executed
A

/B
tests

[156],
perform

ing
a

deeper
analysis

of
suspicious

results
[119],or

perform
ing

bias
reduction

techniques
on

the
retrieved

data
from

the
A

/B
tests

[233].

17

E
xperim

enttriggering
Starting

the
execution

of(subsequent)A
/B

tests
[383,39].

13

Experiment assessor (37)

O
ther

T
his

category
encom

passes
a

few
niche

tasks,
such

as
docum

enting
the

findings
and

learning
from

conducting
the

A
/B

test[321],rerunning
A

/B
tests

[238],orincorporating
user

feedback
in

the
analysis

ofthe
A

/B
tests

[229].

7

RESULTS 155

Table 4.16: Use of test results × Tasks of stakeholders in the experiment execution
("cont. feature dev." is short for "continue feature development", "val. eff." is short for
"validation of effectiveness", and "val. of a RQ" is short for "validation of a research
question").

Use
Task Super-

vision
Post-

analysis Triggering Alteration Termin-
ation

Feature selection 8 11 6 8 4
Feature rollout 10 4 6 6 4
Cont. feature dev. 7 3 5 2 3
A/B test design 6 0 5 2 3
Val. eff. A/B testing 1 2 1 1 1
Val. of a RQ 1 1 0 1 1
Bug detection/fixing 4 0 3 2 2
A/B test execution 1 0 1 0 0

• In the case of bug fixing and detection, stakeholders typically supervise
experiments (either to detect possible bugs in the code or ensure the bugfix is
effective) [117], and trigger the experiments (i.e. launch an experiment explicitly
to fix a known bug in the application) [228].

Evaluation method vs Tasks of stakeholders in the execution of A/B tests
In addition, we analyze the tasks stakeholders undertake during the execution of A/B
tests across the evaluation methods. This mapping is shown in Table 4.17. We highlight
a number of key takeaways:

• All tasks that stakeholders undertake in the execution of A/B tests are widely
encountered in the case of empirical evaluation.

• For the method of simulation based on real empirical data, the task of post-
analysis is reported more often than any other task. An example is looking for
outliers in the analysis of the results of A/B tests, and using historical experiments
to confirm its effectiveness [167].

• Primary studies that use simulation as an evaluation method rarely specify the
tasks stakeholders undertake in the execution of A/B tests. We hypothesize that,
since simulations allow for a more controlled way of conducting A/B tests, the
tasks stakeholders undertake after the design of A/B tests are not pertinent.

• The only stakeholder task reported for theoretical evaluation is experiment
alteration (primary study [249]).

156 A/B TESTING: A SYSTEMATIC LITERATURE REVIEW

Table 4.17: Evaluation method × Tasks of stakeholders in the test execution ("emp.
sim." short for "simulation based on real empirical data", "ill." short for "illustrative").

Method
Task Super-

vision
Post-

analysis Triggering Alteration Termin-
ation Other

Empirical 14 13 10 10 6 6
Emp. sim. 2 4 1 0 1 0
Simulation 1 1 1 0 0 0
Ill. example 2 0 1 2 2 1
Case study 0 0 0 0 0 0
Theoretical 0 0 0 1 0 0

Research Question 3: How are A/B tests executed in the system? What is
the role of stakeholders in this process? The main types of data collected
during the A/B test execution relate to the product/system, users, and spatial-
temporal aspects. The dominating evaluation method used in A/B testing is
empirical evaluation, but a relevant number of studies also use simulation. A/B
test results are primarily used for feature selection, followed by feature rollout,
and continued feature development. (Automatic) subsequent A/B test execution
is only used marginally. The main reported roles of stakeholders in A/B test
execution are experiment contributor (with experiment supervisor as the main
task) and experiment assessor (with experiment post-analysis as the main task).

4.4.5 RQ4: What are the reported open research problems in
the field of A/B testing?

To answer research question 4, we analyze the results of data item Open problems
(D18).

Table 4.18 presents a categorization of open problems we have identified in the primary
studies. For each category, we devised concrete sub-categories of open problems. We
elaborate on each type of open problem with illustrative examples.

Evaluation-related open problems

First, we established three sub-categories of open problems that are related to the
evaluation of the proposed approach: (1) extensions to the evaluation of the approach
presented in the primary study, (2) a more thorough analysis of the approach presented

RESULTS 157

Table 4.18: List of identified open problems.

Open problem
category Open problem sub-category Number of

occurrences

Extend the evaluation 21
Provide thorough analysis of approach 16Evaluation-related
Other evaluation-related 34

Add process guidelines 9Process-related Automate process 7

Enhance scalability 7Quality-related Enhance applicability 6

in the primary study, and (3) Other evaluation-related open problems in the primary
study.

Extend the evaluation Drutsa et al. [97] explore periodicity patterns in user
engagement metrics, and their influence on engagement metrics in A/B tests. Moreover,
the authors put forward new A/B metrics that take such periodicity patterns into
account, resulting in a more sensitive A/B test analysis. The authors evaluated the
proposed metrics on historical A/B test data from Yandex, though they state that further
evaluation of the approach could be carried out in different domains such as social
networks, email services, and video/image hosting services. From a slightly different
point of view, Barajas et al. [20] developed a technique to determine the causal effects
of marketing campaigns on users, putting the focus on the campaign itself rather than
only focusing on the design of advertisement media. The authors put forward specific
guidelines on randomizing and assigning users to advertising campaigns, and provide
a technique to estimate the causal effect the campaigns have on the users under test.
As a point of future work, the authors posit a different evaluation question concerning
what would have happened if the technique would have been applied to the whole
population.

Provide thorough analysis of approach An example of this category is
mentioned by Peska and Vojtas [272]. The authors put forward a way of evaluating
recommendation algorithms in small e-commerce applications both offline and
online via A/B testing. The approach compares the results of offline evaluation of
recommendation algorithms with the results of online A/B testing of the algorithms.
Moreover, the authors then used these data to build a prediction model to determine the
promising recommendation algorithms more effectively due to the knowledge obtained

158 A/B TESTING: A SYSTEMATIC LITERATURE REVIEW

from online A/B testing. As future work, the authors list that further work is necessary
to verify the causality of an effect observed in the analysis of offline and online A/B
testing data. In another primary study written by Madlberger and Jizdny [240], the
authors perform an analysis of the impact of social media marketing on click-through
rates and customer engagement. To accomplish this, they run multiple social media
marketing campaigns using A/B testing, evaluating hypotheses related to the impact of
visual and content aspects of advertisements on the click rates of end-users. For future
research, the authors report that a more comprehensive investigation is necessary to
ascertain why some hypotheses in the study have been rejected.

Other evaluation-related An example of other evaluation-related open problems
is laid out by Gruson et al. [158]. The authors propose a methodology based on
counterfactual analysis to evaluate recommendation algorithms, leveraging both offline
evaluation and online evaluation via A/B testing. The approach comprises A/B testing
recommendations to a subset of the population, and using the results of these tests to
de-bias offline evaluations of the recommendation algorithm based on historical data.
In regards to open problems, the authors mention exploring additional metrics for the
approach, as well as potential improvements that can be made to the estimators they
use in the approach. Another example is specified by Ju et al. [188], who present an
alternative to standard A/B testing with a static hypothesis test by putting forward a
sequential test. Classically in A/B testing, the hypothesis of the test is tested after a
fixed time and conclusions are made based on the final result. The sequential test put
forward by the authors does not have a predetermined number of observations, rather at
multiple points during the experiment, the test determines whether the hypothesis can
be accepted, rejected, or if more observations are required. For future work, the authors
wish to support A/B/n experiments in their approach, as well as extend the procedure
for data that follows a non-binomial distribution. In a final example, Gui et al. [160]
study ways of dealing with interference of network effects in the results of A/B tests.
One of the fundamental assumptions of A/B testing is that users are only affected by
the A/B variant they are assigned to. However, network effects can undermine this
assumption due to interaction between users in the population. The authors demonstrate
the presence of network effects at LinkedIn and propose an estimator for the average
treatment effect that also takes potential network effects into account. As a line of
future research, the authors want to investigate ways of enhancing the approach such
that it can deal with more real-life phenomena.

Process-related open problems

Second, we established two sub-categories of open problems that are process-related:
(1) guidelines to the A/B testing process and (2) automation of aspects of the A/B
testing process.

RESULTS 159

Add process guidelines In an effort to provide more nuanced A/B testing guidelines
in the e-commerce domain, Goswami et al. [156] discuss controlled experiments to
make decisions in the context of e-commerce search. Considerations such as how to
prioritize projects for A/B testing for smaller retailers and how to conduct A/B tests
during holiday time are left as open questions. A different primary study covering
the benefits of controlled experimentation at scale is presented by Fabijan et al. [117].
In this study, the authors present multiple examples of conducted A/B tests, and the
corresponding lessons learned from these experiments. One of the listed open problems
in the study relates to providing "guidance on detection of patterns between leading
and lagging metrics".

Automate process Mattos et al. [247] present a step towards automated continuous
experimentation. The authors put forward an architectural framework that accom-
modates the automated execution of A/B tests and the automated generation of A/B
variants. To validate the framework, an A/B test was conducted with a robot. One of
the open challenges laid out in the study comprises the ability to automatically generate
hypotheses for A/B tests based on the collected data. Duivesteijn et al. [102] present
A&B testing, an approach that leverages exceptional model mining techniques to target
A/B variants to subgroups in the population under test. As opposed to deploying the
best-performing variant of the A/B test, the authors put forward running both variants (if
ample resources are available) and targeting specific variants to individual users based
on their inferred subgroups. One of the potential avenues for future research consists
of the development of a framework that would enable automated personalization of
websites supported by A/B testing.

Quality-related open problems

Lastly, we established two sub-categories of open problems that are quality-related: (1)
enhancing scalability of the proposed approach, and (2) enhancing the applicability of
the approach.

Enhance scalability One example of this is presented by Zhao et al. [403]. To obtain
a causal explanation behind the results of A/B tests, the authors propose segmenting
the population, and consequently analyzing the results of the A/B test in individual
segments. For future work, the authors mention developing a more scalable solution
that integrates the approach into their existing experimentation platform. To address
online experimentation specifically for cloud applications, Toslali et al. [343] introduce
Jackpot, a system for online experimentation in the cloud. Jackpot supports multivariate
A/B testing and ensures proper management of interactions in the cloud application
during the execution of A/B tests. As a venue for future work, the authors mention

160 A/B TESTING: A SYSTEMATIC LITERATURE REVIEW

ways of dealing with the limited scalability of multivariate experimentation due to the
number of potential experiments increasing exponentially with the number of elements
to be tested.

Enhance applicability One such study explores A/B testing in the automotive
industry [236]. The study addresses concerns relating to the limited sample sizes of
A/B tests obtain due to the limited nature of participants that can take part in A/B
tests in the industry. To overcome this hurdle, the authors provide specific guidelines
for performing A/B testing and determining the assignment of users to either the
control or treatment variant in the test. However, one limitation pertains to requiring
pre-experimental data to ensure a balanced population assignment between both A/B
variants. In an effort to increase sensitivity in A/B testing, Liou and Taylor [232]
propose a new estimator for A/B testing that takes the variance of individual users
into account. To realize this, pre-experiment data of individual users is analyzed and
variances are computed. To validate the approach a sample of 100 previously conducted
A/B tests were collected and analyzed using the new approach. A big limitation noted
by the authors is that "a stronger assumption about the homogeneity of the treatment
effect" is required for the approach to remain unbiased.

Research Question 4: What are the reported open research problems
in the field of A/B testing? The most commonly reported open problems
directly related to the proposed approach, in particular improving the approach,
extending the approach, and providing a thorough analysis. Other less
frequently reported open problems related to the A/B testing process, in
particular adding guidelines for the A/B testing process, and automating
the process. Finally, a number of studies report open problems regarding
quality properties, specifically enhancing the scalability and applicability of
the proposed approach.

4.5 Discussion

In this section, we discuss a number of additional insights we obtained. We start with
the research topics studied by the primary studies. Next, we look at environments
and tools used for A/B testing. Then we report a number of opportunities for future
research. We conclude with a discussion of threats to the validity of the study.

DISCUSSION 161

Table 4.19: Research topics of primary studies.

Topic Occ. Primary studies

Application of A/B testing 51

[396, 262, 207, 225, 21, 20, 249, 389, 218,
330, 76, 155, 137, 109, 35, 394, 231, 123, 346,
334, 135, 381, 390, 58, 319, 2, 6, 300, 333, 8,
215, 327, 317, 393, 31, 57, 9, 240, 7, 253, 103,
213, 305, 271, 39, 264, 279, 356, 138, 3, 397]

Improving efficiency of
A/B testing 20 [1, 59, 274, 382, 41, 195, 99, 84, 96, 196, 89,

97, 98, 232, 221, 188, 30, 167, 82, 126]

Beyond standard A/B testing 18 [385, 83, 187, 100, 342, 168, 238, 299, 158,
308, 272, 60, 247, 163, 102, 245, 68, 335]

Concrete A/B testing
problems 17 [307, 160, 387, 228, 326, 93, 359, 19, 226,

236, 156, 43, 343, 306, 208, 224, 52]
Pitfalls and challenges
of A/B testing 13 [204, 199, 113, 119, 386, 92, 388, 248, 12, 91,

233, 311, 201]
Experimentation frameworks
and platforms 13 [321, 345, 229, 350, 230, 10, 293, 162, 36, 81,

403, 398, 338]
A/B testing at scale 9 [200, 357, 118, 383, 186, 351, 165, 117, 116]

4.5.1 Research topics

During data extraction of the 141 primary studies, we noted the general subject matters
of the primary studies and categorized the primary studies along 7 research topics.
Table 4.19 summarizes these 7 topics. Note that studies share overlapping topics. We
will now briefly explain each category and provide a few examples from the primary
studies.

Application of A/B testing

The main focus of the primary study is the use and application of A/B testing as
an evaluation tool for the main subject matter of the study (e.g. evaluation new
recommendation algorithms, interface redesigns, etc11).

11See data item A/B target in Section 4.4.2 for specific references.

162 A/B TESTING: A SYSTEMATIC LITERATURE REVIEW

Improving the efficiency of A/B testing

This topic is about improving the process of A/B testing by exploring ways of improving
sensitivity in A/B testing data [96, 274, 382, 195], investigating sequential testing
techniques to stop A/B tests as soon as reasonable [188, 196, 1], proposing techniques
to detect invalid A/B tests12 [59], and using extra data such as periodicity patterns in
user behavior to improve A/B testing [97].

Beyond standard A/B testing

This topic is about techniques that go beyond standard A/B testing, such as the use
of new types of A/B metrics [385, 100, 238], use of counterfactuals in the evaluation
of A/B tests13 [342, 299], investigating ways of automating parts of the A/B testing
process [308, 247, 245, 335], improving or altering the A/A testing process [168, 60],
and investigating ways of combining offline- and online A/B testing [158, 272].

Concrete A/B testing problems

This topic includes A/B testing in specific domains and specific types of A/B testing.
Examples include A/B testing for the e-commerce domain [208, 156], network A/B
testing or A/B testing in marketplaces [226, 160, 43], A/B testing in the CPS domain
with digital twins [93], and A/B testing for mobile applications [224, 387].

Pitfalls and challenges of A/B testing

This topic is about pitfalls related to conducting A/B testing [113, 199, 92, 91], or
(particular domain-related) challenges related to A/B testing [388, 248, 233].

Experimentation frameworks and platforms

This topic covers papers that present an A/B testing platform [229, 338, 321], or a
framework concerning aspects related to the A/B testing process such as a framework
for detecting data loss in A/B tests [162], a framework for the design of A/B tests [81],
or a framework for personalization of A/B testing [345].

12Invalid refers to badly designed experiments or misinterpretation of the results retrieved from the
experiment.

13Counterfactual analysis provides answers to the cause and effect of the treatment group and their
corresponding outcomes, compared to what would have happened if the treatment would not have been
applied.

DISCUSSION 163

Table 4.20: Environments and tools used for A/B testing.

Environment Number of
occurrences

In-house experimentation system 20
Research tool or prototype 13
Commercial A/B testing tool 10
Commercial non A/B testing tool 7
User survey 1

A/B testing at scale

Primary studies under this topic focus on conducting A/B testing at a large scale, e.g.,
considerations for conducting A/B testing at scale [186, 351, 165], process models or
guidelines for A/B testing at scale [118, 383], or concrete scalable solutions such as a
scalable statistical method for measuring quantile treatment effects for performance
metrics in A/B tests [357].

4.5.2 Environments and tools used for A/B testing

In addition to the research topics covered in the primary studies, we also analyze the
environments and tools that were used to realize A/B testing, see Table 4.20.

The most commonly mentioned type of environment is an in-house experimentation
system for A/B testing (20 occurrences), for instancem dedicated environments
developed by companies such as Microsoft [228], Google [338], eBay [351], and
Etsy [188]. These environments broadly support executing A/B tests. Furthermore,
some primary studies describe concrete features of the experimentation system to
help design A/B tests, e.g. controlling for bias during the specification of A/B
tests in Airbnb’s Experimentation Reporting Framework [221]. Next, we observe
research tools and prototypes (13 occurrences). Examples include a tool to perform
online cloud experimentation [343], a research prototype for A/B testing implemented
in NodeJS [308], a tool for A/B testing with decision assistants [208], and a
tool that enables automatic execution of multiple A/B tests [335]. The remaining
environments we identified were commercial A/B testing tools (10 occurrences), e.g.,
Optimizely [253], and Google Analytics [39]; commercial tools not related to A/B
testing (7 occurrences), e.g., Crazy egg [39], a heat mapping tool used to design A/B
variants, and using Yahoo Gemini (advertisement platform) to test different advertising
strategies [240]; and a user survey (1 occurrence) to determine which A/B variants to
test by conducting a preliminary survey.

164 A/B TESTING: A SYSTEMATIC LITERATURE REVIEW

4.5.3 Research opportunities and future research directions

From our study, we propose a number of potential future research directions in the
field of A/B testing. Concretely, we provide three lines of research: research on further
improving the general process of A/B testing, research on automating aspects of A/B
testing, and research on the adoption of proposed statistical methods in A/B testing.

Improving the A/B testing process

One future direction relates to taking considerations when running many A/B tests
at once [338]. Plenty of studies cover this topic by e.g., discussing lessons learned
in unexpected A/B test results that were caused by other A/B tests that were running
in parallel [113], or manually checking for possible effects of running A/B tests by
analyzing the deployed A/B tests in the system [351]. Yet, we did not encounter a study
that puts forward a systematic approach to tackle this problem.

Another avenue for future research is about improving the sensitivity in A/B tests
by, e.g., combining different sensitivity improvement techniques as pointed out by
Drutsa et al. [96], enabling proactive prediction of user behavior in A/B tests based
on historical data [97], and a deeper study of A/B test estimators to achieve better
sensitivity as mentioned by Poyarkov et al. [274].

The last avenue for future research in improving the A/B testing process relates to
providing further guidelines and designing principles for choosing and engineering
A/B metrics. We highlight two primary studies that mention open problems related to
this opportunity: Kharitonov et al. [195] put forward learning sensitive combinations
of A/B metrics as a general open problem, and Duan et al. [100] discuss investigating
dynamics between surrogate metrics and the actual underlying metric.

Automation

In an effort to establish continuous experimentation, multiple studies put forward steps
companies can take to develop an experimentation culture, e.g. [118, 388, 114]. In
light of expanding this experimentation culture, (partial) automation of the A/B testing
process is essential to enable and empower continuous experimentation [59, 156]. Initial
research on automation of steps in the A/B testing has been conducted, for example,
presented by Tamburrelli et al [335] and Mattos et al. [247], see Sections 4.5.1 and 4.4.5.
Yet the present state of research on this topic suggests that further investigation and more
in-depth solutions are necessary to fully exploit the automated design and execution of
A/B tests. Additionally, a number of open problems still remain that could facilitate and
enable automated experimentation, e.g., determining which A/B tests to prioritize at

DISCUSSION 165

execution [156], and automatically generating insights related to the rationale and cause
of experiment results to experiment developers to guide product development [388].

Adoption and tailoring statistical methods

Even though a number of primary studies discuss bootstrapping as a technique to
evaluate the results of A/B tests [345, 2, 156], bootstrapping remains largely unexplored
in A/B testing, despite the fact that this statistical method has the potential to improve
the analysis of A/B test results [186, 19]. Moreover, bootstrapping can present an
invaluable tool to provide statistical insights into the results of the tests which could
e.g. not be obtained by a standard equality testing method [104]. However, one big
downside of bootstrapping is that it is computationally expensive [233]. Alongside the
adoption of known statistical methods, designing and tailoring new statistical methods
to accommodate particular experimentation scenarios presents an interesting research
direction. One example is mentioned by Kharitonov [196], who put forward designing a
custom statistical test for non-binomial A/B metrics. Another example concerns taking
into account "the effects from multiple treatments with various metrics of interest" to
tailor the approach presented by Tu et al. [345] for optimal treatment assignments in
A/B testing by leveraging causal effect estimations.

Besides a limited number of primary studies employing bootstrapping in the analysis
of A/B tests, a significant number of studies mention statistically significant results
or p-values in the analysis of conducted A/B tests without specifying the concrete
statistical test used (37 occurrences). Moreover, a considerable number of studies do
not report anything related to statistical analysis (47 occurrences). We argue that this
information is important to report in research publications and urge authors to specify
the concrete statistical methods used14 to obtain the results in the studies.

4.5.4 Threats to validity

In this section, we list potential threats to the validity of the systematic literature
review [11].

Internal validity

Internal validity refers to the extent to which a causal conclusion based on a study
is warranted. One threat to the internal validity is a potential bias of researchers that
perform the SLR, which may have an effect on the data collection and the insights

14Or alternatively an explicit mention of lack of statistical methods used.

166 A/B TESTING: A SYSTEMATIC LITERATURE REVIEW

derived in the study. In order to mitigate this threat, we involved multiple researchers
in the study. Multiple researchers were responsible for selecting papers, extracting data,
and analyzing results. In each step, cross-checking was applied to minimize bias. Extra
researchers were involved if no consensus could be found. Additionally, we defined a
rigid protocol for the systematic literature review.

External validity

External validity refers to the extent to which the findings of the study can be
generalized to the general field of A/B testing. A threat to the external validity of this
systematic literature review is that not all relevant works are covered. To mitigate
this threat, we searched all main digital library sources that publish work in computer
science. Secondly, we defined the search string by including all commonly used
terms for A/B testing to ensure proper retrieval of relevant works. Lastly, we also
applied snowballing on the selected papers from the automatic search query to uncover
additional works that might have been missed.

Conclusion validity

Conclusion validity refers to the extent to which we obtained the right measure and
whether we defined the right scope in relation to what is considered research in the field
of A/B testing. One threat to the conclusion validity is the quality of the selected studies;
studies of lower quality might produce insights that are not justified or applicable to the
general field of A/B testing. To mitigate this threat, we excluded short papers, demo
papers, and roadmap papers from the study. Furthermore, we evaluated a quality score
for each selected paper. Papers with a quality score ≤ 4 were excluded from the study.

Reliability

Reliability refers to the extent to which this work is reproducible if the study would be
conducted again. To mitigate this threat, we make all the collected and processed data
available online. We also defined a specific search string, a list of online sources, and
other details in the research protocol to ensure reproducibility. The bias of researchers
also poses a threat here, influencing that similar results would be retrieved if the
systematic literature review would be conducted again with a different set of reviewers.

CONCLUSION 167

4.6 Conclusion

A/B testing supports data-driven decisions about the adoption of features. It is widely
used across different industries and key technology companies such as Google, Meta,
and Microsoft. In this systematic literature review, we identified the subjects of
A/B tests, how A/B tests are designed and executed, and the reported open research
problems in the literature. We observed that algorithms, visual elements, and changes
to a workflow or process are most commonly tested, with web, search engine, and
e-commerce being the most popular application domains for A/B testing. Concerning
the design of A/B tests, classic A/B tests with two variants are most commonly used,
alongside engagement metrics such as conversion rate or number of impressions as
metrics to gauge the potential of the A/B variants. Hypothesis tests for equality testing
are broadly utilized to analyze A/B test results, and bootstrapping also garners interest
in a few primary studies. We devised three roles stakeholders take on in the design of
A/B tests: Concept designer, Experiment architect, and Setup technician. Regarding the
execution of A/B tests, empirical evaluation is the leading evaluation method. Besides
the main A/B metrics, data concerning the product or system, and user-centric data are
collected the most to conduct a deeper analysis of the results of the A/B tests. A/B
testing is most commonly used to determine and deploy the better-performing A/B
variant, or to gradually roll out a feature. Lastly, we devised two roles stakeholders take
on in the execution of A/B tests: Experiment contributor, and Experiment assessor.

We identified seven categories of open problems: improving proposed approaches,
extending the evaluation of the proposed approach, providing a thorough analysis of
the proposed approach, adding A/B testing process guidelines, automating the A/B
testing process, enhancing scalability, and enhancing applicability. Leveraging these
categories and observations made during the analysis, we provide three main lines of
interesting research opportunities: developing more in-depth solutions to automate
stages of the A/B testing process; presenting improvements to the A/B testing process
by examining promising avenues for sensitivity improvement, systematic solutions to
deal with interference of many A/B tests running at once, and providing guidelines and
designing principles to choose and engineer A/B metrics; and lastly the adoption and
tailoring of more sophisticated statistical methods such as bootstrapping to strengthen
the analysis of A/B testing further.

Acknowledgement

We thank Michiel Provoost for his support to this study.

Chapter 5

Automating A/B Testing
Pipelines with Population
Split

Publication details. This chapter is based entirely on a conference article that
is under submission [281].

Personal contributions. Conceptualization (80%), Methodology (80%),
Software (100%), Validation (70%), Formal analysis and interpretation results
(70%), Writing (70%), Visualization (100%).

Positioning. Traditionally, A/B tests are conducted sequentially, with each
experiment targeting the entire population of the corresponding application.
This approach can be time-consuming and costly, particularly when the
experiments are not relevant to the entire population. To tackle these problems,
we introduce a new self-adaptive approach called AutoPABS, short for
Automated Pipelines of A/B tests using Self-adaptation, that (1) automates the
execution of pipelines of A/B tests, and (2) supports a split of the population
in the pipeline to divide the population into multiple A/B tests according to
user-based criteria, leveraging machine learning. We started the evaluation
with a small survey to probe the appraisal of the notation and infrastructure of
AutoPABS. Then we performed a series of tests to measure the gains obtained
by applying a population split in an automated A/B testing pipeline, using an
extension of the SEAByTE artifact.

169

170 AUTOMATING A/B TESTING PIPELINES USING SA AND ML

5.1 Introduction

A/B testing, also referred to as online controlled experimentation, continuous
experimentation, bucket testing, or randomized experimentation, forms a crucial part
of modern software businesses such as Google, Amazon, or Meta. A/B testing supports
businesses to grow and innovate their customer-facing software applications [342, 358,
227, 338, 229, 387, 219]. The aim of A/B testing is to make data-driven decisions
to improve the products offered to customers. In essence, A/B testing compares two
different versions of a software product or service, variant A and variant B, by exposing
them to end-users and evaluating the performance of each variant. Unlike traditional
software testing methods, A/B testing takes place within live systems and provides
real-world data that organizations can use to make well-informed decisions [197, 322,
85].

The A/B testing process comprises three phases: design, execution, and analysis [178].
The design of the A/B test consists of defining key parameters such as the hypothesis
to compare the variants, experiment duration, the assignment of users to both variants
and metrics to be collected are defined (designed phase). We refer to the group of
users that take part in the A/B test as the A/B test population. The metrics, such as
click-through rate, number of clicks, and number of sessions [26, 200], are used to
quantify the performance of each variant during the experiment. Once the experiment
is designed, both variants are deployed in the live system and the population is split
between them (execution phase), as shown in Figure 5.1. The system tracks relevant
data during the test, and after the experiment is complete, the hypothesis is tested using
a statistical test, e.g. a Student’s t-test or Welsh’s t-test [238, 274, 156]. The test results
provide valuable insights into the performance of each variant, and organizations can
use this information to make decisions about which variant to use (analysis phase).

Population

A/B test

Variant A

Variant B

Figure 5.1: Example of 50/50 population assignment in the execution of an A/B test.

Traditionally, A/B tests are administered manually, and the results of the tests are
analyzed sequentially [300, 334]. This process can be costly and time-consuming [202,

INTRODUCTION 171

164, 297, 141]. Different researchers have therefore argued for further automating the
A/B testing process [156, 59, 117, 247, 214, 141]. Automating A/B testing is the first
challenge we aim to tackle in this chapter. Furthermore, conducting A/B tests on the
entire population may not be optimal and even result in irrelevant outcomes due to
the diverse characteristics of the population [388, 402]. Although previous work has
looked into a segmented analysis of A/B tests [403], the execution of the A/B tests
themselves do not target particular segments of the population. Yet, targeting specific
segments of the population for A/B testing can increase the efficiency of the analysis
of A/B test results. Targeting A/B tests to specific segments of their user base is the
second challenge we aim to tackle in this chapter. These challenges are also confirmed
by a recent systematic literature review we performed on A/B testing [286]. This brings
us to the following problem statement we tackle in this chapter:

How can we automate A/B testing pipelines and run them efficiently?

To address this problem, we propose a self-adaptive solution called AutoPABS
(Automated Pipelines of A/B tests using Self-adaptation) that handles the deployment,
monitoring, analysis, and execution of pipelines of A/B tests automatically. AutoPABS
interprets the outcome of A/B tests to initiate subsequent tests specified in the pipeline.
To enhance efficiency, we introduce population splits to A/B testing pipelines to target
A/B tests to specific segments of the population. We focus on segmenting a population
based on the properties or behaviors of users, leveraging machine learning. Segmenting
the population enables multiple parts of an A/B testing pipeline to be executed in
parallel improving the efficiency of the test execution. We evaluate the usefulness of
AutoPABS with a small survey and test the gains of a population split for an online
web-store application.

In contrast to most research on self-adaptation that aim at novel approaches for
engineering self-adaptive systems, AutoPABS takes a complementary angle and aims
at supporting a key task of software engineers using self-adaptation, in particular
enhancing the automation of executing A/B testing pipelines. This aligns with
recent initiatives, such as Self-Adaptation 2.0 [42] that argues for an equal-to-equal
relationship between self-adaptation and AI, benefiting one another, and self-adaptation
that is applied to deal with degraded machine-learning components to maintain system
utility [55].

This chapter presents the following three contributions:

• A specification and notation for A/B testing pipelines

• A self-adaptive architecture that enables automated execution of A/B testing
pipelines

• A population split component that enables more efficient A/B pipeline execution

172 AUTOMATING A/B TESTING PIPELINES USING SA AND ML

The chapter is structured as follows. Section 5.2 describes related work on automating
A/B testing and the use of machine learning in A/B testing. In Section 5.3, we
present AutoPABS, the new approach for automating pipelines of A/B tests using
self-adaptation and we introduce population splits in pipelines. In Section 5.4, we
present the evaluation of AutoPABS. Finally, we wrap up and look at future research
directions in Section 5.5.

5.2 Related Work

We discuss a selection of related work for the two main lines of related research: the
automation of A/B testing pipelines and the use of machine learning in A/B tests. Then,
we position our work in the current landscape of research.

Automation of A/B testing pipelines. Automation of A/B testing has received
limited attention in the literature. Tamburelli et al. [335] approach A/B testing as
an optimization problem that is solved using automated search. Developers annotate
program features and the framework automatically generates, selects, and enacts A/B
variants. Mattos et al. [245] put forward an architecture framework to model automated
experimentation in software systems that they briefly evaluate in a human-robot context.
Fabijan et al. [114] describe an iterative software engineering process to accelerate the
use of A/B testing from experience at Microsoft, Outreach, and Booking.com, lowering
the human cost of A/B testing and accelerating innovation. Researchers have also
studied A/B tests and automated deployment based on principles of workflow and task
orchestration. Révész et al. [291] target long-term A/B tests and automated deployment
in the context of CI/CD, leveraging container orchestration systems to realize the
approach. In an alternative setting, a challenging issue concerning automating A/B
tests involves the identification of machine learning models that achieve satisfactory
results in a live context [344] (as opposed to offline evaluation based on historical
data [37, 230, 158]). To that end, Dai et al. [77] present an approach that automatically
selects machine learning models to A/B test in live systems, giving priority to promising
models. Another perspective of automating A/B testing pipelines is the gradual roll-out
of software releases. Schermann et al. [308] present a modeling approach that supports
a gradual roll-out of live testing of a system by setting up multiple sequential A/B tests.
The Follow-The-Best-Interval algorithm proposed by Munoz et al. [261] handles the
roll-out process automatically. Gerostathopoulos et al. [145] present a tool for end-to-
end optimization of a target system, providing a basis for a system to self-optimize
through automated experimentation.

Related industrial efforts include Feature Flags and Argo Rollouts. Feature Flags [124]
are if/else controls in a code base. This industrial approach enables faster and safer
development, making it easy to manage features without pushing a change by separating

APPROACH 173

deployment from release. Argo Rollouts [15] enables a user to run two versions of
an application for a specific duration and perform an analysis of their application, for
instance, start a baseline and canary deployment in parallel, and compare the metrics
produced by the two.

Use of machine learning in A/B tests. Several researchers have used machine learning
to improve the execution of A/B tests. One such case is learning sensitive metric
combinations in A/B testing [195]. Other work looks at increasing the sensitivity in
A/B testing, yielding more reliable and faster outcomes. Guo et al. [161] and Syrgkanis
et al. [332] use linear regression predictions of experiment outcomes alongside variance
estimators to improve variance reduction in A/B testing, leading to more precise
inferences with less data. Poyarkov et al. [274] propose a similar approach using
boosted decision tree regression. From a different angle, Li et al. [227] make use
of diversified historical data and machine learning to make predictions on the A/B
metrics of A/B tests, but without running the tests on live systems. Conversely, Zhao et
al. [401] employ unsupervised learning techniques in the analysis phase of A/B testing
to classify users based on their behavior and analyze test results accordingly.

Positioning and Challenges Tackled. The state-of-the-art in A/B testing points to
the labor-intensiveness of setting up, analyzing, and conducting A/B tests. Hence
an important challenge is further automation of A/B testing. In addition, current
research highlights that A/B tests are costly to run in live software systems (A/B tests
are typically run for a long time to obtain ample observations). This underpins the
challenge of running A/B tests more efficiently, for instance by using machine learning
to improve the sensitivity of the A/B tests. Our work aims at contributing to these two
challenges, on the one hand by exploiting self-adaptation as a means to automate the
execution of A/B testing pipelines and on the other hand through support for splitting
populations to focus testing leveraging machine learning.

5.3 Approach

We now present AutoPABS, the new approach to automate pipelines of A/B tests with
support for population splits. We start with outlining the requirements for a solution.
Then, we explain how we automate the execution of pipelines of A/B tests using
self-adaptation. Next, we zoom in on splitting a population in a pipeline leveraging
machine learning. Lastly, we present a concrete implementation of AutoPABS.

174 AUTOMATING A/B TESTING PIPELINES USING SA AND ML

5.3.1 Requirements

The requirements for a solution to automate the execution of pipelines of A/B tests
with support for population split are:

R1 To provide a specification for modeling pipelines of A/B tests;

R2 To design a conceptual architecture that automates the execution of the modeled
pipelines of A/B tests;

R3 To provide a specification for modeling a population split in a pipeline of A/B
tests;

R4 To design an extended conceptual architecture to support population splits when
executing a pipeline of A/B tests.

As an additional requirement, R5, an infrastructure is required that implements the
extended conceptual architecture.

5.3.2 Self-adaptation to Automate A/B Testing Pipelines

AutoPABS leverages the principles of self-adaptation [64, 223, 222, 361] to automate
the execution of pipelines of A/B tests. AutoPABS adds a feedback loop [193, 376]
(managing system) on top of a running system (managed system) that is responsible
to deploy and execute a pipeline of A/B tests. AutoPABS assumes that the managed
system is ”A/B testing-enabled” meaning, i.e., it is endowed with capabilities to deploy,
monitor, and run A/B tests during operation.

We explain self-adaptation in AutoPABS in two steps. First, we present a specification
to model pipelines of A/B tests (tackling requirement R1). Second, we present the
conceptual architecture of AutoPABS focusing on the automated execution of pipelines
of A/B tests (tackling requirement R2).

Specification to model pipelines of A/B tests. To support modeling an A/B testing
pipeline, we put forward a simple specification. Figure 5.2 shows a visual notation of
the different elements for a basic example of an A/B testing pipeline. Subsequently, we
explain the specification of an A/B test, transition rules, and an A/B testing pipeline.

Specification A/B test

AB-test = < Exp-length, AB-assignment, Hypothesis, {AB-metrics}, Stat-test >

The experiment length of an A/B test (Exp-length) denotes the number of observations
or the duration of the test required to complete the experiment. The A/B assignment (AB-

APPROACH 175

A/B testing
pipeline

A/B test Transition rule

Start End

Figure 5.2: Visual notation of an A/B testing pipeline

assignment) specifies the proportions of the population that use variant A and variant
B, respectively. The hypothesis (Hypothesis) is the supposition that is put forward
before the A/B test is conducted. The A/B metrics ({AB-metrics}) are quantifiable
measures used to validate the hypothesis. The statistical test (Stat-test) is used to
test the hypothesis once the A/B test finishes (due to the number of observations or
duration).

Specification transition rule

Trans-rule = < Assoc-AB-test, Cond-stat, Subseq-AB-test >

A transition rule applies to an A/B test, i.e., the associated A/B test (Assoc-AB-test)
or the End element that ends the pipeline (see below). The conditional statement
(Cond-stat) is a boolean expression on the outcome of the associated A/B test. The
subsequent A/B test (Subseq-AB-test) is the next A/B test in the pipeline that should be
started if the conditional statement is satisfied. Algorithm 1 describes the semantics of
a transition rule given an A/B test and the result of the test.

Algorithm 1 Test the application of a transition rule.

1: procedure RULE-APPLIES(trans-rule, result, AB-test)
2: return
3: AB-test = trans-rule.Assoc-AB-test and
4: trans-rule.Cond-stat.test(result) = true
5: end procedure

Specification of A/B testing pipeline

AB-test-pl = < {AB-test}, {Trans-rule}, Start, End >

176 AUTOMATING A/B TESTING PIPELINES USING SA AND ML

An A/B testing pipeline consists of a set of A/B tests ({AB-test}) and a set of transition
rules ({Trans-rule}). The start element (Start) points to the first A/B test in the pipeline,
and the end element (End) marks the end of the pipeline execution. The end element
is of the type A/B test. The set of transition rules defines the execution flow of the
pipeline, based on the results of the executed A/B tests. It is the responsibility of
the designer to create consistent transition rules that ensure a proper execution of the
pipeline. Algorithm 2 describes the semantics of the automatic execution of A/B testing
pipelines.

Algorithm 2 Automatically execute A/B testing pipelines.

1: procedure EXECUTEPIPELINE(pipeline)
2: test← pipeline.Start
3: while test ̸= End do
4: res← Deploy(test)
5: next← End
6: for rule in pipeline.Trans-rule do
7: if Rule-Applies(rule, res, test) then
8: next← rule.Subseq-AB-test
9: break

10: end if
11: end for
12: test← next
13: end while
14: end procedure

The execution of the A/B testing pipelines starts with the initial A/B test on line 2. Until
the End of the pipeline is not encountered (line 3), the current A/B test is deployed and
the result of the A/B test is collected (line 4). The result of the A/B test is used to test
the condition of the transition rules and to identify the next A/B test (lines 6-9). If the
next A/B test is End, the execution of the A/B testing pipeline stops (as explained, we
assume a consistent set of designed rules).

Conceptual architecture. We present now the conceptual architecture of AutoPABS.
We start with the viewpoint of setting up and initiating a pipeline. Then we look at the
viewpoint of the execution of a pipeline of A/B tests.

Architecture: Setting up and initiating a pipeline Figure 5.3 shows the
architecture of AutoPABS with a focus on setting up and initiating a pipeline of A/B
tests. The process is initiated by an operator. After deploying the A/B testing pipeline
specification at the pipeline workflow logic (1), the operator triggers the managing
system to initiate the pipeline (2). The start component then initializes the current
A/B test with the first A/B test of the pipeline (3). Next, start requests the planner

APPROACH 177

Managing System

Monitor Analyzer

5. Store actions

Planner

7. Fetch actions

Executor

Knowledge

Monitored
A/B metrics

Deployment
actions

Monitored
requests

A/B test
results

Current
A/B test

Configuration
actions

Managed
System A/B test deployment

A/B routing
component

A/B variant A

A/B variant B

9.2 Deploy routing component

1. Deploy A/B testing pipeline specification

Pipeline workflow logic

End

3. Initialize
first A/B test

Start

6. Execute actions

A/B tests Transition
rules

Operator

8. Load A/B variants and routing component

Variant
repository

2. Start

4. Generate deployment and
configuration actions of initial A/B test

10. Configure routing component
11. Start A/B test

9.1 Deploy A/B
variants

Figure 5.3: Architecture from the viewpoint of setting up and initiating an A/B testing
pipeline

to generate the deployment and configuration actions to deploy the A/B variants and
the routing component for the first A/B test (4). The planner stores the actions in the
knowledge repository (5). Start then triggers the executor to execute these actions
(6). To that end, the executor fetches the actions (7) and loads the A/B variants and
the routing component from the variant repository (8). Then the executor deploys the
A/B variants (9.1) and the A/B routing component (9.2). Finally, the executor uses the
configuration actions to configure the A/B routing component (10). This completes the
setup and initialization of the A/B testing pipeline. The executor can then start the first
A/B test of the pipeline (11).

Architecture: Executing a pipeline Figure 5.4 shows the architecture of
AutoPABS with a focus on the execution of an A/B testing pipeline. We assume
that the A/B test on the left-hand side is currently in execution and that this test

178 AUTOMATING A/B TESTING PIPELINES USING SA AND ML

M
anaging System

3. Analyze

2. U
pdate A/B m

etrics
and requests

M
onitor

8. Plan
Analyzer

13. Execute
Planner

Executor

Know
ledge

M
anaged

System

4. C
heck com

pletion
of A/B test

14. C
ollect deploym

ent
and configuration actions

9. C
ollect

transition rules
+ result

statistical test

M
onitored

A/B m
etrics

D
eploym

ent
actions

M
onitored

requests

A/B test results

1. Probe A/B m
etrics

and requests

5. C
ollect hypothesis,

statistical test, and
A/B m

etrics

7. W
rite result

statistical test

6. Validate test
hypothesis

12. Store deploym
ent

and configuration actions

C
urrent

A/B test

10. Test condition
transition rules

11. C
om

pose deploym
ent

and configuration actions

C
onfiguration

actions

17. D
eploy new

A/B variants

18. C
onfigure routing

com
ponent

A/B test deploym
ent (current)

A/B routing
com

ponent

A/B variant A

A/B variant B

Pipeline w
orkflow

 logic

A/B tests
Transition

rules

End
Start

Variant
repository

16. Load A/B variants

A/B test deploym
ent (next)

A/B routing
com

ponent

A/B variant A

A/B variant B

15. R
estore initial deploym

ent

Figure
5.4:A

rchitecture
from

the
view

pointofexecuting
an

A
/B

testing
pipeline

APPROACH 179

uses the number of requests as the length of the experiment, while the A/B test on
the right-hand side is the next A/B test. The monitor of the managing system starts
with probing the status of the A/B metrics of the A/B test currently running and the
number of requests invoked on the A/B variants (1); it then uses this data to update
the knowledge repository of the managing system (2). Next, the monitor triggers the
analyzer (3). The analyzer checks whether the number of invoked requests is sufficient
to end the current A/B test (4). If this is the case, the process completes (not shown
in Figure 5.4). Otherwise, the analyzer fetches the hypothesis, the statistical test, and
the A/B metrics (5). The analyzer then tests the hypothesis (6), writes the result of the
test to the knowledge repository (7), and triggers the planner (8). The planner collects
the transition rules of the pipeline and the result of the statistical test (9) and tests the
conditions of the transition rules (10). The planner then composes the deployment and
configuration actions (11), stores the actions in the knowledge repository (12), and
triggers the executor (13). The executor collects the deployment and configuration
actions (14). It then restores the initial deployment of the components involved in the
current A/B test (15). Finally, if the next step in the pipeline is the execution of a new
test, the A/B variants are loaded (16) and deployed (17) and the routing component is
configured for the new A/B test (18). Otherwise, if the next step in the pipeline is the
end of the execution, the stakeholders are informed that the execution of the pipeline
has been completed and that the results of the A/B tests are available (not shown in
Figure 5.4).

5.3.3 Self-adaptation and Machine Learning to Split Popula-
tions

AutoPABS supports a split of the population in an A/B testing pipeline according to
predefined criteria. In this chapter, we focus on segmenting a population based on
properties or behaviors of users. This segmentation can then be used to target tailored
A/B tests based on the appropriate property or type of user. AutoPABS leverages self-
adaptation and machine learning techniques to support population splits. Segmenting
the population offers an important benefit in terms of the efficiency of executing A/B
testing pipelines: multiple parts of an A/B testing pipeline can be executed in parallel
if the population segments assigned to each part of the pipeline are mutually exclusive,
i.e., users are guaranteed to only be eligible for a single A/B testing pipeline.

We follow a similar structure as the section outlining the use of self-adaptation to
automate the execution of pipelines to explain population splits in AutoPABS. We
present a specification to model a population split (tackling requirement R3). Then,
we present the conceptual architecture of AutoPABS focusing on population splits
(tackling requirement R4).

180 AUTOMATING A/B TESTING PIPELINES USING SA AND ML

Population
split entry

Population
split exit

Figure 5.5: Visual notation population split in a simple pipeline

Specification to model pipelines of A/B tests. To support modeling a population split,
we present a simple specification. Figure 5.5 shows a visual notation of a population
split used in a basic example of an A/B testing pipeline.

We first explain the specification of a population split. Afterward, we extend the
specification of an A/B testing pipeline with population splits.

Specification population split

Pop-split = < Pop-split-entry, Pop-split-exit >

A population split (Pop-split) consists of an entry (Pop-split-entry) and an exit (Pop-
split-exit). We specify both parts now in detail, starting with the entry.

Pop-split-entry = < Split-prop, {Sub-pipeline}, {Cond-stat} >

Sub-pipeline = < Subpl-ID, Start, {AB-test}, {Trans-rule} >

The split property (Split-prop) defines the attribute on which the population is
segmented. An example is the likelihood that a user makes a purchase on a website.
In this example, machine learning could be used to predict the likelihood of making
purchases based on the behavior of the user on the website. The population is then
segmented and assigned to a list of sub-pipelines ({Sub-pipeline}) based on the split
property. A sub-pipeline contains a unique identifier (Subpl-ID). Additionally, it
consists of a set of A/B tests ({AB-test}) with a starting AB test (Start) as the first
test of the sub-pipeline, and a set of transition rules ({Trans-rule}). Since these
sub-pipelines can be executed in parallel, they should not interfere to ensure the
satisfaction of the SUTVA [388, 160]. (i.e., not involve shared components). Ensuring
this constraint is the responsibility of the designer of the pipeline. The assignment
of population segments to tests depends on the satisfaction of the specified set of
conditional statements {Cond-stat}, one per subsequent A/B test.

The exit of a population split is defined as:

Pop-split-exit = < {Assoc-trans-rule}, Subseq-AB-test >

An exit has an associated set of transition rules (Assoc-trans-rule) that correspond

APPROACH 181

to the completion of the different sub-pipelines determined by the population split.
After the exit of the population split, the A/B testing pipeline continues execution
with its remaining part, i.e., the execution of the next A/B test or the execution ends
(Subseq-AB-test).

Updated specification A/B testing pipeline Lastly, we update the specification
for an A/B testing pipelines that accommodates for population splits:

AB-test-pl = < {AB-test}, {Trans-rule}, {Pop-split}, Start, End >

An A/B testing pipeline comprises next to a set of A/B tests and transition rules also a
set of population splits ({Pop-split}) that enable the enclosed sub-pipelines to run in
parallel.

Algorithm 3 describes the semantics of the application of a population split in A/B
testing pipelines. We distinguish between the execution of a population split entry and a
population split exit. The execution of a population split entry starts with instantiating a
new knowledge component for each sub-pipeline (line 4). In each knowledge instance,
the population split adds a specific routing configuration according to the population
split property and the conditional statement of the sub-pipeline (line 5). Lastly, the
population split entry starts the parallel execution of the sub-pipelines (line 7). The
execution of a population split exit removes the knowledge instances for each sub-
pipeline from the knowledge repository (line 14). Afterward, the A/B testing pipeline
continues with the next activated A/B test in the pipeline (line 16).

Architecture with population split. Figure 5.6 shows the architecture of AutoPABS
with a focus on population splits. We assume that the A/B test on the left in the
managed system (denoted by A/B test deployment (current)) is in operation. Steps 1
through 8 remain identical to the steps outlined in Figure 5.4. Once the planner is
triggered, it collects the transition rules, results of the statistical test, and population
splits from the knowledge (9). The planner then tests the conditions of the transition
rules (10) and, if one of the transition rules is satisfied, composes the deployment and
configuration actions (11). If the transition rule results in a regular A/B test, the flow as
described in Figure 5.4 continues. However, if a rule of a population split is satisfied,
the planner prepares the knowledge and adds two knowledge instances; one for each
sub-pipeline in the population split (12). Then, the planner stores the deployment
and configuration actions in the knowledge (13), and triggers the executor (14). The
executor collects the deployment and configuration actions from the knowledge (15). It
then restores the initial deployment of the components involved with the A/B test (16).
The executor then fetches the A/B variants for the sub-pipelines and the population
split component (17). Next, it deploys and configures the population split component
for the sub-pipelines (18). Finally, the executor deploys the new A/B variants for both

182 AUTOMATING A/B TESTING PIPELINES USING SA AND ML

Algorithm 3 Apply a population split.

1: procedure EXECUTESPLITENTRY(split)
2: entry← split.Pop-split-entry
3: for sub-pl, cond in (entry.Sub-pipeline,

entry.Cond-stat) do
4: k← Knowledge.addInstance(sub-pl.Subpl-ID)
5: k.configureRouting(cond, entry.Split-prop)
6: end for
7: ExecutePipelines(entry.Sub-pipeline)
8: end procedure
9:

10: procedure EXECUTESPLITEXIT(split)
11: pipelines← split.Pop-split-entry.Sub-pipeline
12: ids← pipelines.Subpl-ID
13: for id in ids do
14: Knowledge.removeInstance(id)
15: end for
16: Deploy(split.Pop-split-exit.Subseq-AB-test)
17: end procedure

sub-pipelines (19) and configures both routing components (20). The sub-pipelines can
then start executing in parallel.

5.3.4 Concrete Realization of the Conceptual Architecture

We implemented the conceptual architecture leveraging the SEAByTE [283] artifact
that provides basic support for the automatic execution of pipelines of A/B tests
applied to the domain of microservice-based systems (tackling R5). To implement
the conceptual architecture of AutoPABS, we extended the blueprints of experiments,
transition rules, and pipelines in SEAByTE and added a blueprint for a population
split. Then we extended the implementation of the managing system and we added
a population split component to SEAByTE. We focus here on the realization of the
population split. For further details, we refer to the SEAByTE website.1

Blueprint population split with machine learning Listing 5.1 shows an example
of the blueprint of a population split for the microservice-based application of
SEAByTE.

1https://people.cs.kuleuven.be/danny.weyns/software/SEAByTE/

https://people.cs.kuleuven.be/danny.weyns/software/SEAByTE/

APPROACH 183

M
an

ag
in

g
Sy

st
em

Kn
ow

le
dg

e
Kn

ow
le

dg
e

in
st

an
ce

 (s
ub

-p
ip

el
in

e-
2)

Kn
ow

le
dg

e
in

st
an

ce
 (s

ub
-p

ip
el

in
e-

1)

3.
 A

na
ly

ze

2.
 U

pd
at

e
A/

B
m

et
ric

s
an

d
re

qu
es

ts

M
on

ito
r

8.
 P

la
n

An
al

yz
er

14
. E

xe
cu

te
Pl

an
ne

r
Ex

ec
ut

or

M
an

ag
ed

Sy

st
em

4.
 C

he
ck

 c
om

pl
et

io
n

of
 A

/B
 te

st
15

. C
ol

le
ct

 d
ep

lo
ym

en
t

an
d

co
nf

ig
ur

at
io

n
ac

tio
ns

9.
 C

ol
le

ct
tra

ns
iti

on
 ru

le
s,

re

su
lt

st
at

is
tic

al
te

st
, p

op
ul

at
io

n
sp

lit
s

1.
 P

ro
be

 A
/B

 m
et

ric
s

an
d

re
qu

es
ts

5.
 C

ol
le

ct
 h

yp
ot

he
si

s,

st
at

is
tic

al
 te

st
, a

nd

A/
B

m
et

ric
s

7.
 W

rit
e

re
su

lt
st

at
is

tic
al

 te
st

6.
 V

al
id

at
e

te
st

hy

po
th

es
is

13
. S

to
re

 d
ep

lo
ym

en
t

an
d

co
nf

ig
ur

at
io

n
ac

tio
ns

10
. T

es
t c

on
di

tio
n

tra
ns

iti
on

 ru
le

s
11

. C
om

po
se

 d
ep

lo
ym

en
t

an
d

co
nf

ig
ur

at
io

n
ac

tio
ns

19
. D

ep
lo

y
ne

w

A/
B

va
ria

nt
s

20
. C

on
fig

ur
e

ro
ut

in
g

co
m

po
ne

nt
s

A/
B

te
st

 d
ep

lo
ym

en
t (

cu
rre

nt
)

A/
B

ro
ut

in
g

co
m

po
ne

nt

A/
B

va
ria

nt
 A

A/
B

va
ria

nt
 B

Va
ria

nt
re

po
si

to
ry

17
. L

oa
d

A/
B

va
ria

nt
s

an
d

po
pu

la
tio

n
sp

lit
 c

om
po

ne
nt

A/
B

te
st

 d
ep

lo
ym

en
t (

su
b-

pl
-2

)

A/
B

ro
ut

in
g

co
m

po
ne

nt

A/
B

va
ria

nt
 A

A/
B

va
ria

nt
 B

16
. R

es
to

re
 in

iti
al

 d
ep

lo
ym

en
t

Kn
ow

le
dg

e
in

st
an

ce
 (i

ni
tia

l)

M
on

ito
re

d
A/

B
m

et
ric

s
D

ep
lo

ym
en

t
ac

tio
ns

M
on

ito
re

d
re

qu
es

ts

A/
B

te
st

 re
su

lts

C
ur

re
nt

A/

B
te

st

C
on

fig
ur

at
io

n
ac

tio
ns

C
ur

re
nt

po

pu
la

tio
n

sp
lit

Pi
pe

lin
e

w

or
kf

lo
w

 lo
gi

c

A/
B

te
st

s
Tr

an
si

tio
n

ru
le

s

En
d

St
ar

t

Po
pu

la
tio

n
sp

lit
s

A/
B

te
st

 d
ep

lo
ym

en
t (

su
b-

pl
-1

)

A/
B

ro
ut

in
g

co
m

po
ne

nt

A/
B

va
ria

nt
 A

A/
B

va
ria

nt
 B

Po
pu

la
tio

n
sp

lit
co

m
po

ne
nt

18
. D

ep
lo

y
an

d
co

nf
ig

ur
e

po
pu

la
tio

n
sp

lit
 c

om
po

ne
nt

12
. A

dd
 k

no
w

le
dg

e
in

st
an

ce
s

Fi
gu

re
5.

6:
A

rc
hi

te
ct

ur
e

fr
om

th
e

vi
ew

po
in

to
fe

xe
cu

tin
g

an
A

/B
te

st
in

g
pi

pe
lin

e
w

ith
po

pu
la

tio
n

sp
lit

184 AUTOMATING A/B TESTING PIPELINES USING SA AND ML

{
"name": "Population-split-purchases-prediction",
"splitProperty": "purchase-likelihood",
"pipelines": ["Review-pipeline", "Recommendation-pipeline"],
"conditionalStatements": [{"==", 0}, {"==", 1}],
"nextComponent": "end",
"splitComponent": {
"serviceName": "purchase-prediction-component",
"imageName": "ml-purchase-filter"

}
}

Listing 5.1: Example blueprint of a population split.

The elements in the blueprint of population splits are:

• name: The name of the population split component.

• splitProperty: The property on which the population will be segmented.

• pipelines: The name of the pipelines to be started, in {Sub-pipeline} of a
population split entry. In the example, we consider two sub-pipelines.

• conditionalStatements: The conditions that determine which segments of the
population will take part in the designated A/B testing pipelines, corresponding
to {Cond-stat} in the population split entry. In the example, users classified with
a purchase likelihood of 0 will take part in the review pipeline, while users with
a likelihood of 1 will take part in the recommendation pipeline.

• nextComponent: The component that follows after completing all pipelines in
the population split.

• splitComponent: The population split component that is responsible for exposing
an API that classifies users on the provided split property. The population split
component is deployed in docker with the given service name from the provided
image name.

Realization of the population split component Figure 5.7 shows the population
split component supported by the enhanced version of SEAByTE during deployment.
Before deployment in the live system (not shown in Figure 5.7), a classification machine
learning model is loaded into the population split component. Prior to this, the model
is trained using historically labeled user data. In our example, the feedback loop
was responsible for keeping track of historical data in the application, and using this
data to train the machine-learning model. At runtime, user requests are collected
by the population split API (1). The API invokes a query with the split property to
the population divider (2). The population divider then uses the trained classification
machine learning model to predict the classification of the user (3). Next, the population

EVALUATION 185

Population split component

Classification
machine learning

model

Population split API

3.Predict user
classification

1. Request

4. Invoke
request

Population
divider

2. Query
split property

5. Dispatch
request

Figure 5.7: Architecture of the population split component

divider invokes the request for the predicted class using the population split API (4)
that then dispatches the request to the sub-pipeline of that class (5).

5.4 Evaluation

We start with presenting the results of a short survey with experts on the usefulness of
the notation and infrastructure of AutoPABS. Then we present the results of a series
of tests that we performed to measure the gain obtained when using an automated
A/B testing pipeline with a population split compared to a sequential pipeline. We
also report the runtime overhead caused by a population split. For the tests, we use a
scenario that we implemented in SEAByTE. We conclude the section with a discussion
and analysis of threats to validity.

5.4.1 Evaluation questions

The evaluation aims at answering the following four evaluation questions:

EQ1: How do people knowledgeable in the topic appraise the usefulness of the notation
of AutoPABS to model pipelines of A/B tests with population splits?

EQ2: How do people knowledgeable in the topic appraise the usefulness of the
infrastructure of AutoPABS to execute pipelines of A/B tests with population
splits?

EQ3: What is the reduction in the number of requests that we can obtain to get
statistically significant results of A/B tests in pipelines with population splits
compared to sequential pipelines?

186 AUTOMATING A/B TESTING PIPELINES USING SA AND ML

Table 5.1: Metrics to answer the evaluation questions

Question Metric Description

EQ3 Reduction
in requests

Difference in number of requests to obtain statistically
significant results (from where p ≤ 0.05) of an
automatically executed pipeline of A/B tests with and
without population split.

EQ4 Overhead

The time it takes (i) to train the machine learning
model of the population split component, (ii) to deploy
the population split component, (iii) to classify a
request for a population split.

EQ4: How much overhead do population splits introduce before and during executing
A/B testing pipelines?

5.4.2 Evaluation metrics

To answer EQ1 and EQ2 we use a single questionnaire where experts could express
their appraisal for AutoPABS on a five-point Likert scale. To answer EQ3 and EQ4
we run experiments on a concrete system using the metrics of Table 5.1. The results
report the median from 15 runs. All evaluation materials with results are available on
the SEAByTE website.

5.4.3 Evaluation Instruments and Settings

Population and questionnaire for answering EQ1 and EQ2. We invited 32 experts
to participate in the questionnaire and received 19 valid answers. Thirteen answers
(68.4%) were from academics with practical experience (on average 2.29 years of
experience in the software industry) and 6 answers (31.6%) were from practitioners (on
average 9.58 years of experience in the software industry). The online questionnaire
started with a brief introduction of AutoPABS. Then we asked the participants to
answer the following questions:

Q1 How useful is automating A/B testing pipelines?

Q2 How useful is a population split in A/B testing?

Q3 How useful is the notation to specify A/B testing pipelines?

EVALUATION 187

Product review
update

(nb. of checkouts)

Extra
checkouts

No extra
checkouts

Recom. algorithm
update

(nb. of clicks)

New interface style
(user feedback

rating)

User
feedback OK

User feedback
not OK

Figure 5.8: Pipeline for evaluating sequential runs of A/B tests

Q4 How useful is an implementation that supports running A/B testing pipelines
automatically?

In addition for validity of the answers, we asked participants how familiar they are with
self-adaptation and A/B testing.

Scenarios for answering EQ3 and EQ4. For the approach without population split
we used the pipeline shown in Figure 5.8. The pipeline starts with an A/B test on a new
style of a user interface of a web-store application. If the new style is favored by users,
a new A/B test is launched that tests if users are more likely to purchase products when
product reviews are presented at checkout, which may be an incentive for users to buy
if they are hesitant to purchase at checkout. If this leads to more checkouts, a new
A/B test is launched that evaluates a new version of the recommendation algorithm
with the aim of serving better-targeted recommendations. The hypothesis is that the
new algorithm is more effective at generating recommendations that result in more
purchases.

For AutoPABS with a population split we used the pipeline shown in Figure 5.9. After
successful completion of the A/B test of the new interface style (first A/B test of
the pipeline), users are split between two pipelines according to their likelihood of
purchasing something in the web store. To that end, the population split uses a classifier
to make predictions about the likelihood of a user making a purchase. Users that are
predicted to make a purchase take part in the recommendation A/B test and the others
take part in the review A/B test. Since users belong to a single class, the review A/B
test and the recommendation A/B test can run in parallel.

Data sets. We use publicly available datasets to (1) predict the likelihood of a user
making a purchase in the web-store, and (2) to model user behavior in user profiles.

Customer propensity to purchase. The first dataset2 consists of 455, 401 labeled data
samples, each with a user identifier, 23 features describing actions taken by the user

2https://www.kaggle.com/datasets/benpowis/customer-propensity-to-purchase-data

https://www.kaggle.com/datasets/benpowis/customer-propensity-to-purchase-data

188 AUTOMATING A/B TESTING PIPELINES USING SA AND ML

Product review
update

(nb. of checkouts)

No extra
checkouts

Extra
checkouts

Recom. algorithm
update

(nb. of clicks)

Extra
clicks

No extra
clicks

Negative
prediction

Positive
prediction

New interface style
(user feedback

rating)

User
feedback OK

User feedback
not OK

Purchase
likelihood
Purchase
likelihood

Figure 5.9: Pipeline for evaluating AutoPABS with population split

(e.g. requested information about a product) or characteristics of the user (e.g. the
device used to visit the web-store), and a label about whether the user made a purchase
in the web-store. Of all data samples, 4.2% are labeled positively, i.e. a customer
that made a purchase. We used 25% of the data samples to train the machine learning
model; the remaining 75% was used to model the user behavior in the web store.

User profiles. The second dataset3 contains 10, 000 data samples of an A/B test about
the revenue obtained from users. In variant A 1.605% of users make a purchase, while
in variant B 1.435% of users make a purchase. The third dataset4 contains 120, 000
data samples with clicks of users. Of all samples, 14.70% of users produce clicks in
variant A, while 16.17% of users produce clicks in variant B. We designed the user
profile using these data sets.

Test environment. We implemented the pipelines in the extended version of SEAByTE.
The tests were run on a machine with a 2 x Intel(R) Xeon(R) CPU E5-2680 v4 @
2.40GHz processor and 16GB of RAM.

For the population split component, we used a Stochastic Gradient Descent (SGD)
classifier. The classifier is trained by estimating the gradient of the loss for the training
samples, and iteratively updating its model to minimize this loss. In our evaluation, we
employed an implementation of the classifier from the scikit-learn library [269]. The
test setup and a replication package are available at the SEAByTE website.

For the evaluation of the approaches for sequential- and parallel A/B testing pipelines

3https://www.kaggle.com/datasets/sergylog/ab-test-data
4https://www.kaggle.com/datasets/sergylog/ab-test-aggregated-data

https://www.kaggle.com/datasets/sergylog/ab-test-data
https://www.kaggle.com/datasets/sergylog/ab-test-aggregated-data

EVALUATION 189

we used custom-developed solutions for A/B test execution (incl. user assignment, A/B
metric tracking, and hypothesis testing). To the best of our knowledge, existing A/B
testing tools such as Split.io, VWO, or Convert5 do not offer support for implementing
a population split component as described in our approach, hence restricting us from
evaluating the parallel A/B pipeline in these tools. To ensure consistency in the
execution of both pipelines, we also chose to execute the sequential A/B testing
pipeline using our custom-developed solution, exploiting the same code for running,
monitoring, and analyzing the A/B tests.

5.4.4 Evaluation Results

Survey Results (EQ1 and EQ2) From the 19 valid answers6, the average score for
familiarity with self-adaptation was 4.11 and for familiarity with A/B testing was 3.21
on a Likert scale: 0 not familiar ... 5 an expert. These results show that the participants
have the required knowledge to provide valid answers.

We obtained an average score of 4.16 [± 0.69] for the usefulness of automating A/B
testing pipelines (Q1), while the score for the usefulness of population split was 4.21
[± 0.85] (Q2) both on a Likert scale: 0 not useful ... 5 highly important. This underpins
the importance of the research problem.

EQ1: Usefulness notation For the usefulness of the notation of AutoPABS that
supports modeling A/B testing pipelines with population splits (Q3), we obtained a
score of 3.72 [± 0.75]. This result shows that the participants appraise the usefulness
of the notation provided by AutoPABS.

EQ2: Usefulness infrastructure For the usefulness of AutoPABS’s infrastructure
to run A/B testing pipelines with population splits (Q2) we obtained a score of 4.21
[± 0.71]. These results show that the participants appraise the importance of the
infrastructure provided by AutoPABS.

Results of the Tests (EQ3 and EQ4) We start with the results for the reduction in
number of requests to get statistically significant results of A/B tests in pipelines with
population splits compared to sequential pipelines. Then we look at the results for
overhead caused by population splits.

5https://www.split.io/, https://vwo.com/, https://www.convert.com/
6We removed four additional answers from participants that expressed that they have no basic knowledge

of either self-adaptation or A/B testing.

https://www.split.io/
https://vwo.com/
https://www.convert.com/

190 AUTOMATING A/B TESTING PIPELINES USING SA AND ML

Table 5.2: Reduction number of required requests (EQ3)

Pipeline A/B test
Number of

requests (until
p ≤ 0.05)

Total requests
required

Sequential

S1 Recommendation
update 112,000 112,000

S2 Review update 27,000 27,000

Total (SUM S1 + S2) 139,000

Parallel

S1 Recommendation
update 1,000 24,038

S2 Review update 26,000 27,128

Total (MAX P1, P2) 27,128

EQ3: Reduction in the required number of requests with population splits
Since both A/B testing pipelines used in the evaluation (sequential Figure 5.8, and
parallel Figure 5.9) start with a common A/B test that targets the whole population,
the results of this A/B test are the same for both pipelines. Hence, we focus on the
results of the two other A/B tests: the adjusted product review update A/B test and
the adjusted recommendation algorithm A/B test. Table 5.2 summarizes the results
(median values of number of requests over 15 runs).

For the review update A/B test, we observe a small difference in favor of the test with
the population split. The review update A/B test in the sequential pipeline obtains
a statistically significant result at 27, 000 requests, versus 26, 000 requests for the
pipeline with population split. The results show that the population split component
assigned 95.84% of the requests to the review update A/B test. The reduction in the
number of requests to finish the A/B test with population split is 3.70%.

For the recommendation update A/B test, we observe a large improvement in favor
of the population split. Sequential execution obtains a statistically significant result
after 112, 000 requests. Parallel execution immediately reaches statistical significance
after 1, 000 requests. The population split component assigned 4.16% of the requests
to the recommendation update A/B test. The reduction in the number of requests
for the recommendation update A/B test is 99.11%. This very high number shows
that the machine learning component is able to separate the two classes of users very
well. The requests invoked on the recommendation update A/B test ensure that the test
quickly obtains a statistically significant result. Figure 5.10 illustrates the progress of
the p-values for the experiment of the recommendation update A/B test.

EVALUATION 191

25K 50K 75K 100K 125K 150K 175K 200K
Number of requests

0.0

0.1

0.2

0.3

0.4

0.5

0.6
M

ed
ia

n
p-

va
lu

e

Recommendation update A/B test
Sequential
Parallel

0 2K 4K 6K 8K 10K
0.000

0.005

0.010

0.015

Figure 5.10: Median p-values in the recommendation update A/B test for the sequential
and parallel pipelines (detail top right)7

Lastly, we look at the total number of requests required to complete the two tests
with sequential and parallel execution. The execution with the sequential pipeline
requires a total of 139, 000 requests to finish the execution of the two A/B tests with
statistically significant results, i.e., the sum of 27, 000 and 112, 000 for the review
update and recommendation A/B test, respectively. The execution of the pipeline with
the population split finished after 27,128 requests in total, i.e., the total number of
requests required to obtain statistically relevant results (26,000 and 1,000). Figure 5.11
illustrates the progress of the p-values over the requests to complete the tests. The
overall gain in required requests with population split is 80.48%. We conclude that
splitting a population based on the specific behavior of users realizes a significant
improvement in required requests to complete the tests with significant results.

EQ4: Overhead introduced by population splits Table 5.3 provides an overview
of the overhead introduced by a population split during preparation and operation.

Preparing the population split component consists of two steps: training the learning
model and deploying the component. To train the machine learning model, historically
labeled data is used. In the evaluation setting, this data was derived from the data sets we
used. Training the machine learning model took on average 324 ms. The deployment

7The regression lines denote a polynomial fit over the data.

192 AUTOMATING A/B TESTING PIPELINES USING SA AND ML

20K 40K 60K 80K 100K 120K
Number of requests (total)

0.0

0.1

0.2

0.3

0.4

0.5

M
ed

ia
n

p-
va

lu
e

End parallel pipeline End sequential pipeline

Number of requests to complete sequential and parallel executions
Review update (seq.)
Recommendation update (seq.)
Review update (par.)
Recommendation update (par.)

Figure 5.11: Progress of sequential and parallel execution for both the review update
and recommendation update A/B tests7

Table 5.3: Overhead population split component (EQ4)

Overhead type Timing
Overhead

(average, in msec)

Training classifier Offline 324
Component deployment Deployment 6433
Prediction user class Runtime 0.3

EVALUATION 193

time of the population split component heavily depends on its implementation. In
the case of SEAByTE, we use Docker to create and start a container that contains
the population split component as a micro-service. The creation and startup took on
average 1433 ms. In addition, Docker waits 5 sec (fixed) to check that the container is
healthy. This resulted in a total average deployment time of 6433 msec. This overhead
is not relevant compared to the time it takes to run A/B tests in practice.

During operation, the population split component classifies the population (e.g.,
purchasing or non-purchasing) using the trained classifier model. Predicting the class
of a user took less than a millisecond (0.3 msec). This time is also negligible compared
to the time it takes to run A/B tests in practice.

5.4.5 Discussion and Threats to Validity

Discussion We start with critical reflections on the tests.

• The significant increase in efficiency with a population split results from i) the
ability to run the review and recommendation updates in parallel, and ii) the
population split allows for targeted A/B testing to relevant segments of the
population.

• The performance and accuracy of the machine learning model affect the result of
the method: a model that makes bad predictions will divide a population wrongly
thus affecting the results of the A/B tests. The model used in the evaluation
performed very well, demonstrating the benefits of population splits for targeted
A/B tests.

• The introduction of a population split introduces additional latency to the
processing of requests. This extra latency can be detrimental to the user
experience as noted by practitioners at Booking.com [25]. Hence, the designer
needs to ensure that the time the machine learning model takes to produce
predictions is acceptable to the users.

• Besides the evaluation scenario of this chapter, the population split component
could also be used to detect undesirable outcomes of A/B tests early in specific
population segments. In case an A/B test on a population segment produces
regressive results, practitioners can specify that the A/B pipeline should shut
down prematurely. Otherwise, A/B testing can continue on the other population
segments, if desired.

• Creating a labeled dataset to train the classifier can also carry a substantial cost.
We leave delving into this topic more comprehensively for future work.

• In the evaluation, we split the population into binary segments. However,
AutoPABS does not impose this limitation. Future work could explore dividing

194 AUTOMATING A/B TESTING PIPELINES USING SA AND ML

the population into more than two segments, or explore the use of unsupervised
learning to split the population to avoid the need for labeled datasets.

Threats to validity We discuss construct and external validity threats of both the survey
and the tests.

Construct validity The questionnaire probed the usefulness of automating A/B
testing pipelines and population split in general and the support offered by AutoPABS
in particular. Since we used closed questions, the participants were not able to
provide nuances in their answers. Moreover, we provided only a brief introduction to
AutoPABS, so the participants may not fully grasp the usefulness of the notation and
infrastructure. We acknowledge that the validity of the small survey may be limited.
However, we believe that the results provide a first good indication. To obtain deeper
insight, additional studies are needed where participants effectively use the notation
and infrastructure.

To measure the reduction in requests in the tests, we defined statistical significance from
the point where p ≤ 0.05 of the experiments of A/B tests. We used the median values
over 15 runs to account for stochasticity in the data. The number 15 was empirically
determined and may differ for other settings.

Internal validity To evaluate AutoPABS, we used publicly available datasets to
model the behavior of users in the web store. However, limited information is available
about the origin of the datasets (as mentioned by others [343]), raising a threat to the
internal validity of the results. To fully mitigate this threat, an industrial case study
should be conducted.

External validity The questionnaire only involved 19 participants with mixed
knowledge and experience in self-adaptation and A/B testing. A more extensive
survey and more participants would enhance the generalization of the results.

Since we only evaluated the approach for one concrete scenario in the context of a web
store, we cannot make general claims about the applicability of the approach in different
contexts. We anticipate that the technology and domain used for the evaluation are
particularly relevant for contemporary software systems. In addition, we used external
data sets to avoid bias. Lastly, we also provide a replication package [282] that is
available for other researchers to replicate the results.

To answer EQ4, we measured (1) the time it took to train the machine learning model
used in the population split component and (2) the time it took to deploy the component

CONCLUSION AND FUTURE WORK 195

and use the component at runtime. We acknowledge that these measurements depend
on the algorithms and technology used.

5.5 Conclusion and Future Work

Leveraging self-adaptation and machine learning, we presented AutoPABS, a new
approach to automating the execution of pipelines of A/B tests with support for splitting
populations. We specified the elements of AutoPABS and based on that presented a
conceptual architecture. We instantiated this architecture extending the SEAByTE
artifact. A small survey underpins the relevance of the approach and its usefulness.
Test results on a realistic micro-service application show that AutoPABS accelerates
the identification of statistically significant results of the A/B tests in the required
number of requests with 80.48% compared to traditional sequential tests on the general
population. In future work, we plan to study the identification of user groups without
having access to labeled data leveraging unsupervised learning. This opens possibilities
of automatically setting up A/B tests by experimenting with the target group of the A/B
tests, without explicitly specifying the complete A/B tests in the pipeline. We also plan
to investigate ways of incorporating and potentially altering the A/A testing process in
the approach. Lastly, we aim to provide a full-fledged tool for specifying A/B testing
pipelines with AutoPABS along with a framework to execute the pipelines that can be
tailored to the domain and needs at hand.

Chapter 6

SEAByTE: A Self-adaptive
Micro-service System Artifact
for Automating A/B Testing

Publication details. This chapter is based entirely on a conference artifact
publication in the International Symposium on Software Engineering for Self-
Adaptive Systems (SEAMS) [283].

Personal contributions. Conceptualization (80%), Methodology (70%),
Software (100%), Validation (70%), Formal analysis and interpretation results
(70%), Writing (50%), Visualization (80%).

Positioning. Micro-services are a common architectural approach to software
development today. An indispensable tool for evolving micro-service systems
is A/B testing. In A/B testing, two variants, A and B, are applied in an
experimental setting. By measuring the outcome of an evaluation criterion,
developers can make evidence-based decisions to guide the evolution of their
software. In this chapter, we contribute a novel artifact that aims at enhancing
the automation of an experimentation pipeline of a micro-service system relying
on the principles of self-adaptation. Concretely, we propose SEAByTE, an
experimental framework for testing novel self-adaptation solutions to enhance
the automation of continuous A/B testing of a micro-service based system. We
illustrate the use of the SEAByTE artifact with a concrete example.

196

INTRODUCTION 197

6.1 Introduction

Micro-services are nowadays a commonly used architectural approach to software
development [133]. A micro-service architecture comprises small independent services
that communicate over well-defined APIs. These services are usually owned by
small, self-contained teams. Since each service performs a single function and
runs independently, services can be easily updated, deployed, and scaled to meet
changing demands. As such, a micro-service architecture naturally supports continuous
deployment (CD) [185]. CD is based on the principles of agile development [90] and
DevOps [254] and leverages continuous integration (CI) [252] that automates tasks
such as compiling code, running tests, and building deployment packages. Among the
benefits of CI/CD are rapid innovation, shorter time-to-market, increased customer
satisfaction, continuous feedback, and improved developer productivity.

One of the key concerns of CI/CD is increasing the agility of development teams in
terms of testing, updating, maintaining and deploying software. Understanding user
engagement and satisfaction of product features or variants plays an important role
in this. A/B testing, also called bucket testing or controlled experimentation [202,
297], offers a solution to this concern: comparing two variants, A and B, and test
if the statistical distribution of a property of A is different from that of B [203].
By focusing on different properties in an experimental setting and systematically
measuring the outcome, developers can make evidence-based decisions to guide
software evolution. This is especially useful for (micro-)service based software with
large user volumes [297]. Conducting experiments in iterations is known as continuous
experimentation (CE) [122]. Recent studies highlight the need for enhanced automation
of continuous experimentation as one of the key challenges in this area [296, 297].

In this chapter, we contribute a novel artifact that aims at enhancing the automation
of continuous experimentation of a micro-service system using the principles of self-
adaptation. In particular, we propose SEAByTE, an experimental framework that
can be used for testing novel self-adaptation solutions to enhance the automation of
continuous A/B testing of a micro-service based system.

The remainder of this chapter is structured as follows. In Section 6.2, we summarize
the principles of micro-services and A/B testing and position SEAByTE in the
landscape of self-adaptive system artifacts. Section 6.3 presents the artifact with
scenarios. Section 6.4 illustrates the application of the artifact for one of the scenarios.
Section 6.5 discusses the applicability of the artifact, Section 6.6 discusses future
research directions, and Section 6.7 wraps up.

198 SEABYTE: A SELF-ADAPTIVE ARTIFACT TO AUTOMATE A/B TESTING

6.2 Background and Positioning of the Artifact

We briefly introduce the basics of micro-services and A/B testing, and then highlight
how SEAByTE complements the existing artifacts for engineering self-adaptive
systems.

6.2.1 Micro-services

A micro-service is a small independent piece of software that performs a single function
(i.e., a business capability) and communicates with other micro-services via well-
defined interfaces [95]. Each service in a micro-services architecture can be developed,
deployed, operated, and scaled independently, without affecting other services. Services
do not need to share any code with other services, hence they promote decentralized
governance. When a change of a certain part of a micro-service based application is
needed, only the related service(s) can be modified and redeployed without the need to
modify and redeploy the entire application.

Key players that migrated towards a micro-service architecture include Amazon, Netflix,
eBay, and Twitter [34, 33]. Yet, micro-service architecture also comes with challenges,
such as determining the right size of micro-services, front-end integration, and failure
management (need for self-healing) [181].

6.2.2 A/B Testing

A/B testing is a systematic approach to compare the use of two versions of a system
and determining which of the two variants is preferred according to some criterion.
More specifically, an A/B test consists of a randomized controlled experiment where
experimental units (e.g., users) are assigned to one of two variants, called A and B, that
are expected to influence some metric of interest. This metric, the overall evaluation
criterion, provides a quantitative measure of the experiment’s objective (in the form of
a hypothesis). To compare the two variants, statistical hypothesis testing is commonly
used. The choice of the tests (and their power) depends on the (assumed) distribution
of the data. For instance, for Gaussian distributed data the unpaired t-test can be used.
If the distribution is unknown, the Mann-Whitney U test can be used. A key aspect
is the randomization applied to experimental units to map them to variants. Proper
randomization is important to ensure that the populations are assigned to the different
variants are statistically similar such that causal effects can be determined with high
probability. Prerequisites for A/B testing are: (1) experimental units can be assigned
to different variants with no (or little) interference; (2) there are enough experimental
units (e.g., users), usually thousands, (3) the key metrics are agreed upon and can

BACKGROUND AND POSITIONING OF THE ARTIFACT 199

be practically evaluated, (4) experimental units can be easily assigned to variants
(e.g., server-side software is much easier to change than client-side). Continuous
experimentation refers to pipelines of experiments. Often, the analysis results may
trigger the need for additional (analysis) and follow-up experiments. Setting up such
pipelines is a challenge for current experimentation platforms, see e.g., [164].

A/B testing has been extensively used, ranging from user interface element testing,
testing product pricing, evaluating personalized recommendations, testing product
features, and more generally evaluating the impact of changes made to software
products and services. Online controlled experiments are today common practice and
are heavily used in practice [164].

Multi-variant testing is similar to A/B testing, but the tests then use more than two
versions at the same time. Yet, the current focus of SEAByTE is on two-variant testing
(A/B).

6.2.3 Positioning of the Artifact

At the time of writing, the community of engineering self-adaptive systems has
produced 27 artifacts. According to the SEAMS artifacts website1,2 these artifacts
provide “examples, challenge problems, and solutions that the community can use to
motivate research, exhibit and evaluate solutions and techniques, and compare results.”

Of the 27 artifacts, only three have a specific focus on service-based systems: Znn.com,
TAS, and SWIM. Znn.com [66] is centered on a web server system that provides a
simplified news site. The testing environment simulates the slash-dot effect which are
periods of abnormally high traffic that overload the system. TAS [367] is an exemplar
of a service-based system (SBS). SBSs are widely used in e-commerce, online banking,
e-health, and many other applications. In these systems, services offered by third-party
providers are dynamically composed into workflows delivering complex functionality.
SBSs increasingly rely on self-adaptation to cope with the uncertainties associated with
third-party services, as the loose coupling of services makes online reconfiguration
feasible. SWIM [259] is an exemplar for the evaluation and comparison of self-
adaptation approaches for Web applications. The exemplar simulates a web application
(simulating a 60-server cluster subject to millions of requests) that can be used as
a target system with an external adaptation manager interacting with it through its
TCP-based interface.

While the existing artifacts produced by the community aim at supporting research on
novel approaches for engineering self-adaptive systems, SEAByTE takes a different
angle and provides an artifact that aims at supporting research on novel approaches

1https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/
2ZENODO: https://zenodo.org/communities/seams/?page=1&size=20

https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/
https://zenodo.org/communities/seams/?page=1&size=20

200 SEABYTE: A SELF-ADAPTIVE ARTIFACT TO AUTOMATE A/B TESTING

Basket
µService

 Web Store

Checkout
µService

Recommendation
µService

Pricing
µService

Webapp
µService

Authentication
µService

Inventory
µService

Session
µService

End-user

History
µService

Basket
µService

Figure 6.1: Architecture of the Web Store Application.

for a key task of software engineers using self-adaptation, in particular enhancing
the automation of evolution with A/B testing. This aligns with recent initiatives of
other researchers such as Self-Adaptation 2.0 [42] that argues for an equal-to-equal
relationship between self-adaptation and AI, benefiting one another. Another example
is discussed in [55] where self-adaptation is applied to deal with degraded machine-
learning components to maintain system utility.

6.3 SEAByTE

SEAByTE provides an Internet Web Store composed of multiple micro-services.
Figure 6.1 shows the architecture of the Web Store of SEAByTE. The Web Store
serves end-users that perform purchases via the website of the store. When an end-user
invokes a request, the Webapp service will authenticate the user, start a session, retrieve
the price of the listed product, and update the inventory. Then the checkout service
will be invoked that gives an overview of the products present in the basket of the user,
provides recommendations for the user, and finally adds the purchase to the history of
the user. This closes the session. Practically, the web-services are implemented using
the Java Spring framework, with each service running in a separate Docker container.
The implementation of the Web Store artifact, an installation and usage guide, and a
concrete example are available at the SEAByTE website [282].

SEABYTE 201

6.3.1 Experimental Pipeline

SEAByTE aims to enhance the automation of the evolution of the micro-service system
using a series of A/B tests. Central to this automation is an experimental pipeline that
comprises two basic elements: experiments and transition rules. The artifact provides
templates to define both experimental pipelines and transition rules.

Experiments

An experiment comprises:

• ID: identifier experiment

• variantA: the first variant

• variantB: the second variant

• userProfile: the profile specifying end-user behaviors

• ABAssignment: mapping of end-users to variants

• samples: the number of samples used for the test

• metrics: the set of metrics

• statisticalTest

– hypothesis: the hypothesis of the experiment
– pValue: the p-value for the test3

– type: the type of statistical test of the experiment
– result: the result variable of the experiment

Listing 6.1 shows an example of an experiment with ID “Upgrade v1.0.0 - v1.1.0” for
the artifact.

{
"Upgrade v1.0.0 - v1.1.0": {
"variantA": "ws-recommendation-service:1.0.0",
"variantB": "ws-recommendation-service:1.1.0",
"userProfile": "Standard",
"ABAssignment": {

"weightA": 50,
"weightB": 50

},

3The specified p-value decides, after collecting the specified number of samples for both variants, if
the test can be rejected based on the observed p-value. The result of the test will either be ’reject’ or
’inconclusive’.

202 SEABYTE: A SELF-ADAPTIVE ARTIFACT TO AUTOMATE A/B TESTING

"samples": 20000,
"metrics": ["ResponseTime_A", "ResponseTime_B"],
"statisticalTest": {

"hypothesis": "ResponseTime_A == ResponseTime_B",
"pValue": 0.025,
"type": "welsh’s t-test",
"resultingVariable": "result-wt-test"

}
}

}

Listing 6.1: Example specification of experiment in SEAByTE.

This experiment compares the performance of two variants of the Web Store that
implement different versions of the recommendation service, see Figure 6.3. Version
1.0.0 of the recommendation service uses the history to provide recommendations to the
user, while version 1.1.0 exploits also information about the current purchase to provide
recommendations. The experiment uses a user profile that generates user requests. The
requests are randomly assigned to the two versions, 50% each. The experiment tracks
the requests with their response time. The statistical test compares the mean values of
the response times of the invocations of both versions using a Welsh’s t-test [360]. The
artifact uses the Apache Commons Mathematics Library for statistical testing [69]. The
result of the test (accept or reject the hypothesis) is recorded in the resulting variable.

Transition Rules

A transition rule comprises:

• ID: identifier of the rule

• fromExperiment: identifier current experiment

• toExperiment: identifier of the next experiment

• conditions: the conditions to make a transition from the current experiment to
the next experiment (that depends on the result of the current experiment).

to-experiment = "end" is a reserved value that indicates the end of an experimental
pipeline and returns the control to the operator. Empty conditions indicate that the
transition from the current to the next experiment is taken unconditionally.

Listing 6.2 shows an example of the specification of a transition rule for the artifact.

{
"Performance OK": {
"fromExperiment": "Upgrade v1.0.0 - v1.1.0",

SEABYTE 203

"toExperiment": "Clicks v1.0.0 - v1.1.0",
"conditions": [{

"leftOperand": "result-wt-test",
"operator": "!=",
"rightOperand": "reject"

}]
}

}

Listing 6.2: Example specification of a transition rule.

This transition rule is applied once the Upgrade v1.0.0 - v1.1.0 experiment is finished.
It checks whether the result of the test was accepted, and if so, it starts the Clicks v1.0.0
- v1.1.0 experiment.

Experimental Pipeline

Finally, an experimental pipeline comprises the following:

• setup: identifier of the setup for the pipeline4

• start: the identifier of the experiment that starts the pipeline

• experiments: the set of experiment identifiers

• rules: a set of transition rule identifiers

Figure 6.2 shows a graphical representation of an example of an experimental pipeline,
and Listing 6.3 shows how this pipeline is specified for the artifact.

The experiment starts with preparing the Web Store according to the specified setup.
Then, the Upgrade v1.0.0 - v1.1.0 experiment that checks the performance overhead in
response time that is generated by the upgrade of the Web Store to version v1.1.0 is
executed. If the performance is acceptable (i.e., version 1.1.0 of the Web Store generates
no significant overhead in response time compared to version 1.0.0), the transition via
the rule “Performance OK” is taken and the pipeline starts the Clicks v1.0.0 - v1.1.0
experiment. Otherwise, the transition via the rule “Performance Overhead” is taken and
the execution of the pipeline ends. The Clicks experiment checks whether users perform
a significant number of extra clicks on recommendations for version 1.1.0 compared to
version 1.0.0. If this is not the case, the transition “No Extra Clicks” is taken and the
execution of the pipeline ends. Otherwise, the Purchases v1.0.0 - v1.1.0 experiment
is started via the “Extra Clicks” rule. This last experiment compares the purchase
behavior of the user with both variants and reports the result to the operator, completing

4A setup comprises the necessary steps to be taken to get the managed system ready for conducting
experiments (further explained in Section 6.3.2).

204 SEABYTE: A SELF-ADAPTIVE ARTIFACT TO AUTOMATE A/B TESTING

Upgrade
v1.0.0 - v1.1.0

Clicks
v1.0.0 - v1.1.0

Purchases
v1.0.0 - V1.1.0

Performance
OK

No Extra
Clicks

Performance
Overhead

Extra Clicks

Figure 6.2: Example of an experimental pipeline.

the execution of the experimental pipeline. Based on the results the stakeholders can
then decide whether or not to upgrade the Web Store, or set up additional experiments
if needed.

{
"setup": "Recommendation_upgrade",
"start": "Upgrade v1.0.0 - v1.1.0",
"experiments": [
"Upgrade v1.0.0 - v1.1.0",
"Clicks v1.0.0 - v1.1.0",
"Purchases v1.0.0 - v1.1.0"

],
"rules": [
"Performance OK",
"Performance Overhead",
"Extra Clicks",
"No Extra Clicks"

]
}

Listing 6.3: Example specification of experimental pipeline.

6.3.2 Architecture SEAByTE

SEAByTE adds a MAPE-K based feedback loop [193, 376] on top of the Web
Store application that supports the automatic execution of an experimental pipeline.
Figure 6.3 shows the architecture of SEAByTE illustrated for a scenario with two
variants of the Recommendation service, A and B. We explain the main components
now.

SEABYTE 205

Web Store

Basket
µService

Pricing
µService

History
µService

Recommendation
µService 1.0.0

Recommendation
µService 1.1.0

A

B

A/B
Component

Webapp
µService

Authentication
µService

Inventory
µService

Session
µService

Feedback loop

Dashboard

update data
current experiment

collect data
current experiment

Monitor

read data current
experiment

write experiment
results

Analyzer Planner

initiate
experiment

Executor

Knowledge

read transition
rules

transition
next step

Probe Effector

User profile

Operator

Data current
experiment

Experimental pipeline

Experiments

Current
Experiment

load & start the
experimental pipeline

show experiment
results

configure & start
experiment

configure
Web Store

Experiment
resultsTransition rules

Checkout
µService

Request
Originator

Figure 6.3: Architecture of SEAByTE.

User Profile

A user profile represents end-users of the Web Store; it defines the behavior of the
users. Behavior refers to the actions taken by users and includes both the invocation of
requests and feedback provided by users based on the completed requests. SEAByTE
provides a template to specify user profiles. Listing 6.4 shows an example instance of
the profile template.

The example shows the profile for a standard user that specifies different aspects of
the behavior of the users when visiting the website of the store: purchasing goods,
browsing the store, exploring recommendations, and their effect. A profile can include
different types of users. User profiles can be derived from different sources such as
domain knowledge, historical data, or based on tests. The request originator component

206 SEABYTE: A SELF-ADAPTIVE ARTIFACT TO AUTOMATE A/B TESTING

exploits the user profile to generate the requests for the web store according to the
specified parameters in the profile.

{
"user-profile-regular" : {
"Standard": {

"count": 1000,
"mean-seconds-between-request": 15,
"probability-purchase": 0.25,
"recommendation-click-probability": 0.2,
"recommendation-purchase-probability": 0.05,
"bonus-recommendation-click-B": 0.1,
"bonus-recommendation-purchase-B": 0.05

},
"frivolous": {

...
}

}
}

Listing 6.4: Example specification of a user profile.

A/B Component

The A/B component determines the test setup with A and B variants and manages
the routing of invocations to the two variants. The A/B test setting will be configured
before the execution of the experimental pipeline starts (via the dashboard, see below).
The concrete routing to the A and B variants will be configured for each concrete
experiment (the responsibility of the effector, see below).

Probe and Effector

The probe is responsible for collecting data of experiments, while the effector is
responsible for setting up the web store and managing the AB component. Listing 6.5
shows a basic API of the probe and effector.

Probe
+ List<URLRequest> getRequestHistory(String ABName, String variant)

Effector
+ void clearABComponentHistory(String ABName)
+ void setABRouting(String ABName, int a, int b)
+ void deploySetup(String setupName)
+ void removeSetup(String setupName)

Listing 6.5: The provided API for the probe and effector.

SEABYTE 207

The probe provides a method to collect the history of the requests of the active
experiment of the service invocations per variant. A request contains information
about the response time, the requested URL, and the client ID. The effector enables
setting up an experiment, including configuring the A and B setting and the routing for
the variants, and clearing the history of the AB component.

Feedback Loop

The feedback loop is responsible for executing an experimental pipeline, see Figure 6.3.
The knowledge comprises a specification of the pipeline with the experiments and
transition rules, the configuration of the current experiment, a repository to store data
of the current experiment, and the experiment results. The monitor collects the data
of the running experiment and updates the knowledge repository accordingly. When
the experiment is completed, the analyzer applies the statistical test and writes the
experiment result to the knowledge. The planner then applies the transition rules to
the result of the last experiment and determines the next step in the experimental
pipeline. Based on that, the executor initiates the next experiment, or alternatively,
the experimental pipeline ends. The artifact provides abstract implementations of the
feedback loop elements with an example.

Dashboard

The dashboard gives the operator access to the test environment, enabling: (1)
configuration of the Web Store to run an experimental pipeline, (2) loading and starting
an experimental pipeline, (3) monitoring the execution of an experimental pipeline,
and (4) showing the results. Figure 6.4 shows an excerpt of the dashboard to monitor
the progress of the execution of an experimental pipeline. The box plot at the bottom
shows a live representation of the response times for versions A and B.

6.3.3 Test Scenarios

Table 6.1 shows the test scenarios supported by SEAByTE. Each scenario introduces
increasingly difficult challenges. The challenges focus on three key aspects of A/B
testing: system upgrades (S1 and S2), price setting (S3), and segmentation (S4 and S5).
The artifact provides a full specification for concrete instances of scenarios S1 and S2,
and a basic implementation supporting the other scenarios.

208 SEABYTE: A SELF-ADAPTIVE ARTIFACT TO AUTOMATE A/B TESTING

Figure 6.4: Excerpt of the dashboard of SEAByTE.

6.4 Experimentation with the Artifact

6.4.1 Workflow to use the artifact

Using the artifact comprises the following steps:

• Specify the experimental pipeline with the experiments and transition rules

• Configure the Web Store with the variants to be tested

• Configure the feedback loop to prepare the execution of the experimental pipeline

• Load the experimental pipeline via the dashboard

• Deploy the Web Store configuration and the feedback loop via the dashboard
and start the experimental pipeline

ON THE APPLICABILITY OF SEABYTE 209

• Collect the experiment results and make a decision

6.4.2 Results

We applied the steps above for the configuration with two variants of the recommen-
dation service shown in Figure 6.3. We applied the experimental pipeline shown in
Figure 6.2 using the specifications of the different elements illustrated above.

We conducted the “Upgrade v1.0.0 - v1.1.0” experiment that compared the distributions
of the response time of the two variants for 20k samples. After the 20k samples were
collected, we observed that the null hypothesis (response time of v1.1.0 similar to
response time v1.0.0) could not be rejected. The pipeline thus continues with the next
experiment: “Clicks v1.0.0 - v1.1.0”. For more details and additional results, we refer
to the project website [282].

6.5 On the Applicability of SEAByTE

SEAByTE targets the automation of continuous experimentation of micro-service
systems. The artifact aims for a high level of reality of a practical micro-services system,
yet, several aspects of real-world systems are emulated, including user behavior and
system load. The artifact supports A/B testing for both functional and non-functional
aspects. It also supports human involvement in the form of human feedback, which is a
crucial aspect of A/B testing in practice.

SEAByTE comes with five scenarios; the code and specifications of two scenarios
are shipped with the artifact. For the other scenarios, the artifact provides a basic
implementation. Yet, the artifact does not exclude research on new scenarios.

It is important to balance the design of an experimental pipeline. Automatically
running multiple experiments may result in a negative experience for some users [200].
Furthermore, it may accumulate errors in statistical tests, which need to be considered
when defining p-values for subsequent tests.

6.6 Future research directions

The current version of SEAByTE supports the basics for setting up experimental
pipelines for A/B testing using a feedback loop. We highlight several opportunities
for future research beyond these basics. A first opportunity is to incorporate user
feedback into the experimental pipeline, akin to one of the test scenarios presented

210 SEABYTE: A SELF-ADAPTIVE ARTIFACT TO AUTOMATE A/B TESTING

in Table 6.1. A second opportunity is to identify classes of users to target A/B
tests for specific subgroups. Here self-adaptation can be combined with machine
learning to identify such classes and determine which class users belong to [284, 151].
Incorporating user feedback in this setting can also play a crucial role in developing
a suitable adaptation strategy. A third opportunity for future research could be the
automatic identification of A/B experiments that can be set up and run in the application.
This can range from trying out different GUI layouts to testing different algorithms
(similar to the recommendation algorithm tested in Section 6.3). A fourth and last
opportunity is supporting multiple experiments simultaneously. Since running multiple
A/B experiments can be a risk (experiments may affect each other), care has to be
taken. Self-adaptation is a perfect candidate to deal with such concerns. Self-adaptation
can also play a crucial role in dealing with a large space of potential experiments that
need to be run. Self-adaptation can further help in identifying the experiments that
are most likely to have a high impact on the overall business goals of the system, and
determining in which order to run the experiments.

6.7 Conclusions

We presented SEAByTE, a novel artifact that applies self-adaptation [361] to enhance
the automation of A/B testing to support the evolution of micro-service systems. In
contrast to existing artifacts that target novel approaches to engineer self-adaptive
systems, SEAByTE exploits self-adaptation as a means to solve a key task of software
engineers of service-based systems: automating continuous experimentation. We hope
that the research community will use the SEAByTE to evaluate research advances
in the application of self-adaptation to support software engineers of micro-service
systems. The artifact is available via the project website [282].

CONCLUSIONS 211

Ta
bl

e
6.

1:
Te

st
sc

en
ar

io
s

fo
rS

E
A

B
yT

E

ID
N

am
e

D
es

cr
ip

tio
n

M
et

ri
c

S1
B

as
ic

se
rv

ic
e

up
gr

ad
e

Ex
pe

rim
en

ta
lp

ip
el

in
e

w
ith

tw
o

ve
rs

io
ns

of
a

si
ng

le
m

ic
ro

-s
er

vi
ce

R
es

po
ns

e
tim

e
of

se
rv

ic
e

in
vo

ca
tio

ns

S2
A

dv
an

ce
d

se
rv

ic
e

up
gr

ad
e

Ex
pe

rim
en

ta
lp

ip
el

in
e

w
ith

tw
o

ve
rs

io
ns

of
a

si
ng

le
m

ic
ro

-s
er

vi
ce

R
es

po
ns

e
tim

e
of

se
rv

ic
e

in
-

vo
ca

tio
ns

an
d

us
er

be
ha

vi
or

S3
Se

tti
ng

pr
od

uc
tp

ri
ce

E
xp

er
im

en
ta

l
pi

pe
lin

e
th

at
de

te
rm

in
es

th
e

ri
gh

t
pr

ic
e

fo
r

a
pr

od
uc

tw
ith

th
e

ai
m

to
m

ax
im

iz
e

th
e

re
ve

nu
e

A
pp

re
ci

at
io

n
of

th
e

pr
ic

e
of

pu
rc

ha
se

s
by

th
e

us
er

s

S4
B

as
ic

se
gm

en
ta

tio
n

E
xp

er
im

en
ta

lp
ip

el
in

e
th

at
de

te
rm

in
es

a
se

gm
en

ta
-

tio
n

st
ra

te
gy

fo
rt

w
o

va
ri

an
ts

ba
se

d
on

th
e

ag
e

of
en

d-
us

er
s

Pr
ef

er
en

ce
s

of
va

ria
nt

s
us

in
g

us
er

fe
ed

ba
ck

S5
A

dv
an

ce
d

se
gm

en
ta

tio
n

E
xp

er
im

en
ta

lp
ip

el
in

e
th

at
de

te
rm

in
es

a
se

gm
en

ta
-

tio
n

st
ra

te
gy

fo
rt

w
o

va
ri

an
ts

ba
se

d
on

th
e

ag
e

an
d

ge
og

ra
ph

ic
lo

ca
tio

n
of

en
d-

us
er

s

Pr
ef

er
en

ce
s

of
va

ria
nt

s
us

in
g

us
er

fe
ed

ba
ck

Chapter 7

Conclusion

This chapter concludes this dissertation. We provide a summary of the context of the
presented research presented, a summary of the contributions, and we discuss potential
avenues for future work. Lastly, we conclude with two personal reflections.

In this dissertation, we investigated how self-adaptation supported by machine learning
can be used to engineer modern software systems. With the increasing complexity
of modern software systems and the environments they operate in, engineering such
software systems presents numerous challenges. The field of self-adaptation presents a
consolidated approach to address these challenges. The research field of self-adaptation
has contributed numerous approaches to support the engineering of resilient software
systems that can effectively deal with uncertainties during operation. However, several
challenges remain to engineer self-adaptive systems that can deal with the increasing
complexity of modern software systems and their environments in an efficient manner.

In light of these challenges, we explored two complementary perspectives. Each
perspective was explored in a corresponding research track. In the first research
track, we addressed the challenge of efficiently dealing with large adaptation spaces in
self-adaptive systems. Although several approaches had been proposed to deal with
large adaptation spaces, the approaches lacked the desired level of reusability. The
approaches were either entangled with the adaptation logic, or tailored to specific types
of systems. To address this challenge, we explored how the application of machine
learning can be used to provide a more efficient self-adaptation process, ultimately
leading to the ability to offer better adaptations to the managed system.

In the second research track, we addressed the challenge of automatically and efficiently
executing A/B testing pipelines. In practice, A/B testing is a time-consuming process
and manual process. Although some approaches had been proposed to automate

213

214 CONCLUSION

A/B testing, the automated execution of A/B testing remained an open challenge.
Additionally, improving the efficiency of A/B testing remains a perpetual challenge.
To address these challenges, we explored how machine learning and self-adaptation
can be applied to automate the execution of A/B testing pipelines and to improve the
efficiency of A/B testing.

7.1 Summary of contributions

Research track 1

Contribution 1: SLR Machine Learning in Self-Adaptive Systems

The first contribution in this thesis was a systematic literature review on the use of
machine learning to realize self-adaptive systems, covered in Chapter 2. The literature
review explored the types of machine learning utilized to support self-adaptation
alongside the concrete problems they solve, contributing a clear overview of which
machine learning techniques are used to solve different types of problems. Additionally,
the literature review identified a number of open challenges and opportunities, which
resulted in the definition of research question 1 of this dissertation:

How can machine learning be used to reduce large adaptation spaces of
self-adaptive systems with different types of adaptation goals to perform
more efficient analysis without compromising the goals?

Contribution 2: ML2ASR+

In the second contribution, we presented ML2ASR+, a novel approach to handle large
adaptation spaces of self-adaptive systems with different types of adaptation goals,
covered in Chapter 3. The approach contributes a self-adaptive architecture with a
formal foundation, introducing a Machine Learning Module in the architecture to select
a subset of relevant adaptation options. The approach was evaluated in two domains:
(1) the Internet-of-Things, and (2) Service-Based-Systems. With this contribution, we
can formulate an answer to research question 1:

We presented ML2ASR+, a novel approach to reduce large adaptation
spaces of self-adaptive systems with different types of adaptation goals.
ML2ASR+ leverages supervised machine learning techniques to reduce
large adaptation spaces of self-adaptive systems with different types of
adaptation goals. Moreover, ML2ASR+ efficiently achieves adaptation

SUMMARY OF CONTRIBUTIONS 215

space reduction with negligible impact on system qualities, and without
requiring input from end users at runtime.

Research track 2

Contribution 3: SLR A/B Testing

The third contribution in this thesis was a systematic literature review on A/B
testing, covered in Chapter 4. The literature review presented an overview of several
engineering aspects related to designing and executing A/B tests, contributing an
overview of various A/B testing aspects such as the application domains, types of
A/B tests, and roles stakeholders undertake in A/B testing. Additionally, the literature
review identified several open challenges and future research directions, which resulted
in the definition of research question 2 of this dissertation:

How can we automate A/B testing pipelines, and how can machine learning
be used to run A/B testing pipelines more efficiently?

Contribution 4: AutoPABS

In the fourth contribution, we presented AutoPABS, a novel approach for automatically
and efficiently executing A/B testing pipelines, covered in Chapter 5. The approach
contributes a notation of A/B testing pipelines and population splits, and an architectural
solution to realize the automatic execution of A/B testing pipelines. A small survey
supported the relevance and usefulness of the approach, and the approach was evaluated
in the e-commerce domain. With this contribution, we can formulate an answer to
research question 2:

We presented AutoPABS, an approach that leverages self-adaptation
principles and machine learning to (1) automate the execution of A/B
testing pipelines, and (2) split populations in A/B testing to improve
efficient execution of the A/B tests. AutoPABS sets up A/B tests in the
managed system, monitors the deployed A/B tests, collects data from
the A/B tests, and analyzes the results when the A/B tests are completed.
Moreover, AutoPABS introduces a population split component to A/B
testing pipelines, enabling splitting up populations to specific A/B tests to
improve the efficiency of A/B testing. To realize the splitting, AutoPABS
leverages supervised machine learning techniques.

216 CONCLUSION

Contribution 5: SEAByTE

The fifth contribution presented in this thesis is a technical contribution of an artifact
named SEAByTE, presented in Chapter 6. SEAByTE comprises two parts: (1) a micro-
service based web application of an online web-store and (2) a barebones self-adaptive
system supporting the execution of A/B testing pipelines supported by a dashboard for
operators. The artifact puts realism at the forefront by simulating real network traffic
supported by user profiles. We used SEAByTE to evaluate AutoPABS in Contribution
4, in support to answer research question 2.

7.2 Threats to validity

We highlight the key threats to validity for each research track. For an elaborate
discussion on the threats to the validity of the individual contributions, we refer back to
the respective chapters of these contributions.

Researh track 1 Contribution 2 presented ML2ASR+ for adaptation space reduction
in self-adaptive systems. In the approach we used classical supervised machine learning
techniques to support the adaptation process. We applied and evaluated ML2ASR+
to a limited set of scenarios with particular characteristics and types of uncertainties,
presenting a threat to the external validity of the approach. To mitigate this threat
to some extent, we evaluated the approach in two domains with different challenges
regarding adaptation space reduction for different combinations of adaptation goals.
However, to fully confirm the generalizability of the approach further evaluation in
different domains is essential.

Research track 2 Contribution 4 presented AutoPABS for automating efficient
execution of A/B testing pipelines. The questionnaire we used to probe for the
usefulness of automating A/B testing pipelines and population splits used closed
questions, meaning that the participants were not able to provide nuanced answers.
Moreover, we provided only a brief introduction to AutoPABS, presenting potential
threats to construct validity. To mitigate this threat additional larger studies are required
where participants can fully exploit the notation and infrastructure.

Additionally, we only evaluated AutoPABS in one scenario in the context of an online
web-store. This presents a threat to external validity, since we cannot make general
claims about the applicability of the approach for different contexts. We anticipated
that the technology and domain used for the evaluation are particularly relevant for

FUTURE WORK 217

contemporary software systems. However, a more extensive evaluation of the approach
in different domains is crucial to claim generalizability of AutoPABS.

7.3 Future work

Lastly, we present three lines of future work that we derived from the contributions in
this dissertation.

7.3.1 Goal evolution in self-adaptive systems supported by
machine learning

The first avenue for future work lies in the use of machine learning to support goal
evolution in self-adaptive systems [64, 223]. Several approaches have provided
accommodations for evolving adaptation goals, e.g., MORPH [38], a reference
architecture for self-adaptation that explicitly models goal evolution as one of the key
components in the architecture; SimCA* [316], a control-based approach that supports
basic goal evolution during a Goal Update Phase; ActivFORMS [373], an approach that
supports making changes at runtime to the feedback loop, including making changes
to adaptation goals of the self-adaptive system; and Carwehl et al. [54], presenting an
approach for runtime verification of self-adaptive systems that can deal with changing
requirements. However, these approaches do not provide accommodations for goal
evolution in the presence of machine learning.

Steps to enable support for goal evolution in the presence of machine learning
include: (1) retraining machine learning models to accommodate for updated or
new adaptation goals, (2) providing considerations for updating data stored in the
Knowledge component of the MAPE loop, and (3) adjusting MAPE components
(which leverage machine learning) to deal with evolving goals. Furthermore, goal
evolution in the presence of machine learning also has implications for the guarantees
that the self-adaptive system can provide. For example, the guarantees provided by the
self-adaptive system might change when the goals evolve and the machine learning
models are not updated satisfactorily. This presents another interesting avenue for
future work.

7.3.2 Role of A/B testing in self-adaptive systems

A second track of future work we present lies in the additional use of A/B testing in
self-adaptive systems. In this dissertation, we focused on the use of self-adaptation to
realize automatic execution of A/B testing pipelines, and the use of machine learning

218 CONCLUSION

to improve the efficiency of A/B testing. In these scenarios, self-adaptation is used
to realize A/B testing. Conversely, an aspect we did not explore yet is the use of
A/B testing1 as an additional mechanism to realize self-adaptation in a data-driven
manner. Limited work has explored the role of A/B testing within self-adaptation. One
study exploits self-adaptation principles to realize DevOps process adoption within the
context of digital twins for cyber-physical systems (CPS in short) [93]. The approach
presented by the authors enables A/B testing in the CPS. The study does not explore
the use of A/B testing to realize self-adaptation. We envision that A/B testing can be
used to evaluate adaptation plans and actions. Furthermore, we see potential in the
use of A/B testing to support lifelong learning [150], where A/B testing could be used
as an additional measure to deal with concept drift, catastrophic forgetting, and other
challenges that arise in lifelong learning.

On a similar note, several challenges remain to conduct A/B testing in the embedded
systems domain. Self-adaptation has been used to alleviate runtime concerns (i.e.,
dealing with uncertainties), e.g., in the Internet-of-Things [176, 24], yet A/B testing
has not been exploited to its full capacity in this domain. As presented by Mattos
et al. [246], numerous open challenges hinder widespread adoption in the embedded
systems domain, presenting a promising direction for future work.

7.3.3 Holistic approach to automating A/B testing pipelines

A third avenue for future work lies in the development of a holistic approach to automate
A/B testing pipelines. In this dissertation, we presented AutoPABS, an approach to
automate and efficiently execute A/B testing pipelines. The approach presented an
initial step towards automating A/B testing pipelines. However, several challenges
remain to fully automate A/B testing pipelines. For example, the approach does not
incorporate known pitfalls and challenges in A/B testing, e.g., diagnosing sample ratio
mismatches (SRM) [119], and Simpson’s paradox [73]. Additionally, we did not deeply
explore the role of humans during the experiment design and execution of A/B testing
pipelines in the approach. A deeper understanding of these roles is crucial to fully
automate A/B testing pipelines.

On top of this, opportunities for future work in improving AutoPABS lie in exploring
the use of unsupervised learning to split populations in A/B testing pipelines. As
opposed to splitting the population based on a specified split property such as the
likelihood of purchasing products in a web store, unsupervised learning can be used
to split populations based on unknown properties. Another opportunity for improving
AutoPABS lies in devising a method to incorporate A/A testing in the presence of
population splitting. A/A testing is a technique to control for bias in A/B testing before

1Interleaving experiments also present as an alternative approach to A/B testing in particular scenarios
where conventional A/B testing cannot be effectively utilized.

CONCLUDING REFLECTIONS 219

running the actual A/B test [168, 60]. However, challenges arise when the population
for A/B testing is split based on properties at runtime, rendering A/A testing infeasible.
Additional research is required to solve this challenge.

7.4 Concluding reflections

Arriving at the end of this dissertation, I would like to reflect back on the journey that
ultimately led to this dissertation. I have learned a significant amount during these 4
years, both in terms of research and personal development. Hoping that the previous
200+ pages of this dissertation have sufficiently covered the research part, I would like
to focus on the personal development side in this last section.

If I would have to highlight one thing that I have learned during these 4 years, it
would be the importance and value of feedback. It is the key ingredient to improve
yourself and your work. Feedback can be used to fully develop and fledge out ideas, to
identify issues and shortcomings early on, and to improve your skills. This also applies
particularly to feedback from others: each individual has their own perspective and
expertise, judging things from a different angle.

A second point that I would like to address is feelings of self-doubt and skepticism.
For this, I put forward the following controversial statement: self-doubt and skepticism
can be useful emotions. The caveat in the previous statement of course being: in
moderation. A positive side of self-doubt is the resulting push to be more thorough
in your efforts, aiming to deliver high-quality work. Too much self-doubt on the
other hand feels more like a roadblock than anything else. Personally I have found
that dealing with feelings of self-doubt and skepticism is a matter of putting things
into perspective. For example: you were accepted as a PhD researcher, so you must
be doing something right. Another example: accepted research has been thoroughly
reviewed by fellow researchers, which deemed the work as a valuable contribution to
the community. Awareness of these feelings and learning to put things into perspective
have helped me immensely in my PhD journey.

I sincerely hope these reflections can be of use to others as well.

Appendix A

Appendix

A.1 Systematic Literature Review on Machine
Learning in Self-Adaptation

A.1.1 List of Primary Studies

Title Venue Year

Comparison of Decision-Making Strategies for Self-Optimization in
Autonomic Computing Systems

TAAS 2012

MARC: A Resource Consumption Modeling Service for Self-Aware
Autonomous Agents

TAAS 2017

Fault Monitoring with Sequential Matrix Factorization TAAS 2015
Generating Adaptation Rules of Software Systems: A Method Based
on Genetic Algorithm

ICMLC 2018

To Adapt or Not to Adapt?: Technical Debt and Learning Driven
Self-Adaptation for Managing Runtime Performance

ICPE 2018

Adaptive model learning for continual verification of non-functional
properties

ICPE 2014

SATISFy: Towards a Self-Learning Analyzer for Time Series
Forecasting in Self-Improving Systems

FAS*W 2018

A Concept for Proactive Knowledge Construction in Self-Learning
Autonomous Systems

FAS*W 2018

Meta-Learning for Realizing Self-x Management of Future Networks IEEE Access 2017
Framework for Building Self-Adaptive Component Applications
Based on Reinforcement Learning

SCC 2018

221

222 APPENDIX

Introducing Deep Learning Self-Adaptive Misuse Network Intrusion
Detection Systems

IEEE Access 2019

A Self-Adaptive Deep Learning-Based System for Anomaly Detection
in 5G Networks

IEEE Access 2018

Self-Adaptation Applied to MQTT via a Generic Autonomic
Management Framework

ICIT 2019

Instance-Based Learning for Hybrid Planning FAS*W 2017
An algorithm for online planning to improve availability and
performance of self-adaptive websites

CFIS 2017

Towards History-Aware Self-Adaptation with Explanation Capabili-
ties

FAS*W 2019

Protecting Cyber Physical Systems Using a Learned MAPE-K Model IEEE Access 2019
Reinforcement Learning-Based Predictive Control for Autonomous
Electrified Vehicles

IV 2018

Machine Learning Meets Quantitative Planning: Enabling Self-
Adaptation in Autonomous Robots

SEAMS 2019

A Reinforcement Learning-Based Framework for the Generation and
Evolution of Adaptation Rules

ICAC 2017

A Learning Approach to Enhance Assurances for Real-Time Self-
Adaptive Systems

SEAMS 2018

Adding Self-Improvement to an Autonomic Traffic Management
System

ICAC 2017

A self-adaptation framework for dealing with the complexities of
software changes

ICSESS 2017

Losing Control: The Case for Emergent Software Systems Using
Autonomous Assembly, Perception, and Learning

SASO 2016

Two-Level Autonomous Optimizations Based on ML for Cardiac
FEM Simulations

ICAC 2018

Adaptive runtime response time control in PLC-based real-time
systems using reinforcement learning

SEAMS 2018

Adaptivity at every layer: a modular approach for evolving societies
of learning autonomous systems

SEAMS 2008

Autonomic Software Product Lines (ASPL) ECSA 2010
Learning to sample: exploiting similarities across environments to
learn performance models for configurable systems

FSE 2018

Learning revised models for planning in adaptive systems ICSE 2013
Knowledge Base K Models to Support Trade-Offs for Self-Adaptation
using Markov Processes

SASO 2019

Learning a Dynamic Re-combination Strategy of Forecast Techniques
at Runtime

ICAC 2015

Efficient analysis of large adaptation spaces in self-adaptive systems
using machine learning

SEAMS 2019

A Learning-Based Framework for Engineering Feature-Oriented Self-
Adaptive Software Systems

TSE 2013

Transfer Learning for Improving Model Predictions in Highly
Configurable Software

SEAMS 2017

APPLYING MACHINE LEARNING IN SELF-ADAPTIVE SYSTEMS: A SLR 223

An Analysis of Decision-Making Techniques in Dynamic, Self-
Adaptive Systems

SASO 2014

All Versus One: An Empirical Comparison on Retrained and
Incremental Machine Learning for Modeling Performance of
Adaptable Software

SEAMS 2019

Training Prediction Models for Rule-Based Self-Adaptive Systems ICAC 2018
Learning non-deterministic impact models for adaptation SEAMS 2018
FUSION: a framework for engineering self-tuning self-adaptive
software systems

FSE 2010

RaM: Causally-Connected and Requirements-Aware Runtime Models
using Bayesian Learning

MODELS 2019

Adaptive Execution of Continuous and Data-intensive Workflows
with Machine Learning

Middleware 2018

Fuzzy Self-Learning Controllers for Elasticity Management in
Dynamic Cloud Architectures

QoSA 2016

Handling Uncertainty in Self-Adaptive Software Using Self-Learning
Fuzzy Neural Network

COMPSAC 2016

Supporting the Self-Learning of Systems at the Network Edge with
Microservices

SSI 2019

Multi-Model Deep Learning for Cloud Resources Prediction to
Support Proactive Workflow Adaptation

IEEE Cloud
Summit

2019

A self-learning strategy for artificial cognitive control systems INDIN 2015
SLOPE: A Self Learning Optimization and Prediction Ensembler for
Task Scheduling

WiMob 2018

Self-Learning Production Systems (SLPS) — Energy management
application for machine tools

ISIE 2013

Machine Learning for Achieving Self-* Properties and Seamless
Execution of Applications in the Cloud

NCCA 2015

Driving skill analysis using machine learning The full curve and curve
segmented cases

ITST 2012

Self-Learning approach to support lifecycle optimization of
Manufacturing processes

IECON 2013

Managing Uncertainty in Autonomic Cloud Elasticity Controllers IEEE Cloud
Computing

2016

Self-Adaptive and Online QoS Modeling for Cloud-Based Software
Services

TSE 2017

Elasticat: A load rebalancing framework for cloud-based key-value
stores

HiPC 2012

Energy Efficiency in Machine Tools - A Self-Learning Approach SMC 2013
Model-based reinforcement learning approach for planning in self-
adaptive software system

IMCOM 2015

Self-evolvable knowledge-enhanced IoT data mobility for smart
environment

IML 2017

TSLAM: A Trust-enabled Self-Learning Agent Model for Service
Matching in the Cloud Market

TAAS 2019

SLICE: self-learnable IoT common software engine IOT 2018

224 APPENDIX

An adaptive prediction approach based on workload pattern
discrimination in the cloud

JNCA 2017

A Reconfiguration Algorithm for Power-Aware Parallel Applications TACO 2016
Effective Decision Making in Self-adaptive Systems Using Cost-
Benefit Analysis at Runtime and Online Learning of Adaptation
Spaces

ENASE 2019

Self-Learning Production Systems: Adapter Reference Architecture FAIM 2013
Decentralized Planning for Self-Adaptation in Multi-cloud Environ-
ment

ESOCC 2015

IDES: Self-adaptive Software with Online Policy Evolution Extended
from Rainbow

Computer and
Information
Science
(Book)

2012

Rationalism with a dose of empiricism: combining goal reasoning
and case-based reasoning for self-adaptive software systems

Requirements
Engineering
Journal

2015

Adaptive process control based on a self-learning mechanism in
autonomous manufacturing systems

JAMT 2012

A Q-Leaning-Based On-Line Planning Approach to Autonomous
Architecture Discovery for Self-managed Software

OTM 2008

A three-phase decision making approach for self-adaptive systems
using web services

CASM 2018

Architectural Homeostasis in Self-Adaptive Software-Intensive Cyber-
Physical Systems

ECSA 2016

Towards Self-adaptation Planning for Complex Service-Based
Systems

ICSOC 2013

Risk management for self-adapting self-organizing emergent multi-
agent systems performing dynamic task fulfillment

AAMAS 2014

Synthesis and Verification of Self-aware Computing Systems Self-Aware
Computing
Systems
(Book)

2017

PRESC 22 : efficient self-reconfiguration of cache strategies for
elastic caching platforms

Computing 2013

Avionics Self-adaptive Software: Towards Formal Verification and
Validation

ICDCIT 2019

Self-* programming: run-time parallel control search for reflection
box

Evolving Sys-
tems

2013

A Model-Based Approach to Dynamic Self-assessment for Automated
Performance and Safety Awareness of Cyber-Physical Systems

IMBSA 2017

Automatic Adaptation of SOA Systems Supported by Machine
Learning

DoCEIS 2013

VM Reservation Plan Adaptation Using Machine Learning in Cloud
Computing

Journal
of Grid
Computing

2019

APPLYING MACHINE LEARNING IN SELF-ADAPTIVE SYSTEMS: A SLR 225

Machine learning-based auto-scaling for containerized applications Neural
Computing
and
Applications
(Journal)

2019

A Model for Using Machine Learning in Smart Environments GPC 2011
A cognitive/intelligent resource provisioning for cloud computing
services: opportunities and challenges

Soft Comput-
ing

2019

An autonomic resource provisioning framework for efficient data
collection in cloudlet-enabled wireless body area networks: a fuzzy-
based proactive approach

Soft Comput-
ing

2019

An autonomic approach for resource provisioning of cloud services Cluster Com-
puting

2016

Toward Proactive Learning of Multi-layerd Cloud Service Based
Application

CLOSER 2016

Utilizing Twitter Data for Identifying and Resolving Runtime
Business Process Disruptions

OTM 2018

A Self Healing Microservices Architecture: A Case Study in Docker
Swarm Cluster

AINA 2019

Performance Comparison of Deep VM Workload Prediction
Approaches for Cloud

ICCAN 2018

Towards Automated Analysis and Optimization of Multimedia
Streaming Services Using Clustering and Semantic Techniques

MACE 2010

Building Autonomic Elements from Video-Streaming Servers JNSM 2019
PSO-based novel resource scheduling technique to improve QoS
parameters in cloud computing

Neural
Computing
and
Applications
(Journal)

2019

On the use of hybrid reinforcement learning for autonomic resource
allocation

Cluster Com-
puting

2007

IO dependent SSD cache allocation for elastic Hadoop applications SCIS
(Jorunal)

2018

Architecting Dependable Systems with Proactive Fault Management Architecting
Dependable
Systems VII
(Book)

2010

An autonomic provisioning framework for outsourcing data center
based on virtual appliances

Cluster Com-
puting

2008

An Auto-Scaling Cloud Controller Using Fuzzy Q-Learning -
Implementation in OpenStack

ESOCC 2016

Mobile Apps with Dynamic Bindings Between the Fog and the Cloud ICSOC 2019
A Self-Learning Scheduling in Cloud Software Defined Block Storage CLOUD 2017
Self-Adaptive Learning PSO-Based Deadline Constrained Task
Scheduling for Hybrid IaaS Cloud

TASE 2014

Dynamic adaptation of policies using machine learning CCGRID 2016

226 APPENDIX

A self-learning approach for validation of runtime adaptation in
service-oriented systems

SOCA 2017

Self-adaptation for Mobile Robot Algorithms Using Organic
Computing Principles

ARCS 2013

Using a recurrent artificial neural network for dynamic self-adaptation
of cluster-based web-server systems

APIN 2017

A Control-Theoretic Approach to Self-adaptive Systems and an
Application to Cloud-Based Software

LASER 2013

A Nash equilibrium based decision-making method for internet of
things

JAIHC 2019

Building Automated Data Driven Systems for IT Service Management JNSM 2017
Catch-up TV forecasting: enabling next-generation over-the-top
multimedia TV services

MTAP 2017

Dynamic QoS Management and Optimization in Service-Based
Systems

TSE 2011

A.2 Reducing Large Adaptation Spaces

A.2.1 Auxiliary Formal Definitions

Model training (split train-test)

To enable the evaluation of learning models, one option is to split the data set into 2
parts: a training data set and a testing data set. We define a split function as follows (tr
short for training and te short for testing):

Map : Λi → Φi is a function that maps a system state, represented by a feature
vector, to the qualities of the system, represented by a quality vector.

Split : Λ× Φ×W → Λ× Φ× Λ× Φ
Split(Λo, Φo, w) = < Λtr, Φtr, Λte, Φte > with

Λtr ∪ Λte = Λo and Φtr ∪ Φte = Φo and
|Λtr| = w ∗ |Λo| and |Φtr| = w ∗ |Φo| and
∀λi ∈ Λtr: Map(λi) = ϕi with ϕi ∈ Φtr and
∀λj ∈ Λte: Map(λj) = ϕj with ϕj ∈ Φte

The training data set is used to train the machine learning models, while the testing
data set is used to test and validate the trained machine learning models. This testing is
conducted by comparing the predictions made to the actual quality values in the form
of machine learning evaluation metrics.

REDUCING LARGE ADAPTATION SPACES 227

Exploration

We formally define the selection of explored adaptation options as follows:

DetermineExploration : Π× E → Π
DetermineExploration({π1, ..., πn}, e) = Πe with

Πe{πi ∈ {π1, ..., πn} | πi /∈ Πfiltered } and
|Πe| = e ∗ |{π1, ..., πn}|

The set Πfiltered refers to the set of adaptation options that were predicted by the
machine learning models to satisfy the adaptation goals. Hence, we explore adaptation
options outside the set of adaptation options that were already selected for verification.
It is important to note that adaptation options that are predicted to meet all system
goals should be given priority in case of insufficient time to verify all the included
adaptation options. The logic is that the explored adaptation options should not hinder
the verification of adaptation options with greater promise.

Filter

We formally define filtering as follows:

G = {g}: The granularity that defines an upper bound on the size of the filtered
adaptation space.

Gs ∈ G: The specific set of adaptation goals of the system.

Filter : Π× Z×G×G→ Π
Filter(Πi, {Ω1, ..., Ωn}, g,Gs) = Πj where Πj ⊆ Πi and |Πj | ⩽ g

Filtering takes a set of adaptation options, a set of quality predictions, a granularity
value that puts a bound on adaptation space reduction, and an adaptation goal. The
result is a reduced set of adaptation options.

The criteria for filtering adaptation options vary depending on the type of quality goals
that are evaluated. In particular, filtering handles three types of operations, one for each
type of adaptation goal. The first type of filter operation filters adaptation options that
do not comply with a threshold goal in the system. Formally, the filter operation for
a threshold goal T ∈ T with a threshold value x̄ for any quality value q is defined as

228 APPENDIX

follows:

fT<x̄
= {π1, π2, ..., πn} 7→ {πf1 , πf2 , ..., πfm

} where

T<x̄(qk) = True, k ∈ {f1, f2, ..., fm}

fT>x̄
= {π1, π2, ..., πn} 7→ {πf1 , πf2 , ..., πfm

} where

T>x̄(qk) = True, k ∈ {f1, f2, ..., fm}

The second type of filter operation relates to setpoint goals in the system. We define the
filter operation that filters adaptation options according to setpoint goal S with target µ
and error margin ϵ for any quality value q as follows:

fSµ,ϵ
= {π1, π2, ..., πn} 7→ {πf1 , πf2 , ..., πfm

} where

m ≤ g and
m∑

i=0

∣∣qfi − µ
∣∣ = min({

∑
k∈K

|qk − µ| | K ⊆ Π and |K| = m})

Lastly, the filter deals with up to one optimization goal. We define the filter operation
for an optimization goal O for quality values q as follows:

fO
min

= {π1, π2, ..., πn} 7→ {πf1 , πf2 , ..., πfm
} where

m ≤ g and
m∑

i=0
qfi

= min({
∑
k∈K

qk} | K ⊆ Π and |K| = m)

fOmax
= {π1, π2, ..., πn} 7→ {πf1 , πf2 , ..., πfm} where

m ≤ g and
m∑

i=0
qfi

= max({
∑
k∈K

qk} | K ⊆ Π and |K| = m)

In our research, we use filters that combine the different filter operations in a predefined
order. In particular, the filter first filters adaptation options that violate threshold goals.
Next, it filters adaptation options that violate the setpoint goals of the system. Finally,
it filters the options based on a single optimization goal. We restrict filtering to a single
optimization goal to avoid conflicting scenarios when multiple optimization goals are
specified in the system. Equation A.1 specifies how we define the main filter operation:

F = fO ◦ ... ◦ fS2
◦ fS1

◦ ... ◦ fT2
◦ fT1

(A.1)

In case any of the types of adaptation goals are not applicable, that type is ignored by
the filter.

REDUCING LARGE ADAPTATION SPACES 229

Table A.2: Design stage model selection for the DeltaIoT application in the two system
scenarios: scenario 1 (top), and scenario 2 (bottom). MCC: Matthews Correlation
Coefficient; MSE: Mean Squared Error; MAE: Median Absolute Error; ME: Maximum
Error

Scenario 1 T packet loss
<10% , T latency

<5%

ML algorithm SGD Classifier
Loss function Log
Penalty function l1
Scaler type MinMax Scaler
Exploration rate 5%
Warm-up count 45

Metrics F1: 0.818 [0.022, 0.818]
MCC: 0.715 [-0.004, 0.716]

Scenario 2 T packet loss
<10% , T latency

<5% O energy consumption
min

ML algorithm SGD Classifier Passive Aggressive Regressor
Loss function Log Squared Epsilon Insensitive
Penalty function l1 N/A
Scaler type MinMax Scaler None
Exploration rate 5% 5%
Warm-up count 45 45

Metrics F1: 0.818 [0.022, 0.818]
MCC: 0.715 [-0.004, 0.716]

R2: 0.833 [-1.091, 0.854]
MSE: 0.004 [0.004, 8.8e24]
MAE: 0.043 [0.040, 4e12]
ME: 0.269 [0.241, 9e12]

A.2.2 Additional Machine Learning Material

Table A.2, Table A.4, and Table A.3 summarize the scalers and models selected for
evaluation scenarios in both applications. The numbers between square brackets
indicate the boundaries of the evaluation metric values for the alternative options that
were not selected. For both applications and scenarios, the warm-up count is selected
from 30, 45, and 60, and the exploration rate is selected from 5% and 10%.

230 APPENDIX

Table
A

.3:D
esign

stage
m

odelselection
forthe

Service-B
ased

System
application

in
the

second
system

scenario.

Scenario
2

T
failure

rate
<

10%
S

response
tim

e
10

m
s
,ϵ=

0
.25

m
s

O
cost

m
in

M
L

algorithm
SG

D
C

lassifier
Passive

A
ggressive

R
egressor

Passive
A

ggressive
R

egressor
L

ossfunction
H

inge
Squared

E
psilon

Insensitive
E

psilon
Insensitive

Penalty
function

E
lasticnet

N
/A

N
/A

Scaler
type

Standard
Scaler

N
one

N
one

E
xploration

rate
5%

5%
5%

W
arm

-up
count

60
60

60

M
etrics

F
1:

0.933
[0.293,0.934]

M
C

C
:

0.866
[-0.028,0.867]

R
2:

0.860
[-5

.0
e 25,0.868]

M
SE

:
0.035

[0.033,1
.4

e 25]
M

A
E

:
0.123

[0.119,2
.8

e 12]
M

E
:

0.976
[0.975,1

.5
e 13]

R
2:

0.906
[-7

.8
e 23,0.908]

M
SE

:
1.753

[1.706,1
.4

e 25]
M

A
E

:
0.901

[0.859,2
.7

e 12]
M

E
:

5.981
[5.981,1

.3
e 13]

A/B TESTING: A SYSTEMATIC LITERATURE REVIEW 231

Table A.4: Design stage model selection for the Service-Based System application in
the first system scenario.

Scenario 1 T failure rate
<10% , T response time

<10ms O cost
min

ML algorithm SGD Classifier Passive Aggressive Regressor
Loss function Hinge Squared Epsilon Insensitive
Penalty function l1 N/A
Scaler type None None
Exploration rate 5% 5%
Warm-up count 60 60

Metrics F1: 0.895 [0.000, 0.895]
MCC: 0.812 [-0.112, 0.812]

R2: 0.906 [-7.8e23, 0.908]
MSE: 1.753 [1.706, 1.4e25]
MAE: 0.901 [0.859, 2.7e12]
ME: 5.981 [5.981, 1.3e13]

A.3 A/B Testing: A Systematic Literature Review

A.3.1 List of Primary Studies

Table A.5: List of primary studies.

ID Ref. Title

1 [1] A Nonparametric Sequential Test for Online Randomized Experiments
2 [307] Detecting Network Effects: Randomizing Over Randomized Experiments
3 [204] Unexpected Results in Online Controlled Experiments
4 [59] How A/B Tests Could Go Wrong: Automatic Diagnosis of Invalid Online

Experiments
5 [274] Boosted Decision Tree Regression Adjustment for Variance Reduction in Online

Controlled Experiments
6 [199] Trustworthy Online Controlled Experiments: Five Puzzling Outcomes Explained
7 [200] Online Controlled Experiments at Large Scale
8 [382] Non-Stationary A/B Tests
9 [160] Network A/B Testing: From Sampling to Estimation
10 [385] False Discovery Rate Controlled Heterogeneous Treatment Effect Detection for

Online Controlled Experiments
11 [113] Experimentation Pitfalls to Avoid in A/B Testing for Online Personalization
12 [83] Statistical Inference in Two-Stage Online Controlled Experiments with

Treatment Selection and Validation
13 [41] Consistent Transformation of Ratio Metrics for Efficient Online Controlled

Experiments

232 APPENDIX

14 [357] CONQ: CONtinuous Quantile Treatment Effects for Large-Scale Online
Controlled Experiments

15 [119] Diagnosing Sample Ratio Mismatch in Online Controlled Experiments: A
Taxonomy and Rules of Thumb for Practitioners

16 [321] IPEAD A/B Test Execution Framework
17 [187] Peeking at A/B Tests: Why It Matters, and What to Do about It
18 [195] Learning Sensitive Combinations of A/B Test Metrics
19 [99] Practical Aspects of Sensitivity in Online Experimentation with User

Engagement Metrics
20 [387] Evaluating Mobile Apps with A/B and Quasi A/B Tests
21 [84] On Post-Selection Inference in A/B Testing
22 [100] Online Experimentation with Surrogate Metrics: Guidelines and a Case Study
23 [96] Future User Engagement Prediction and Its Application to Improve the

Sensitivity of Online Experiments
24 [118] The Evolution of Continuous Experimentation in Software Product Develop-

ment: From Data to a Data-Driven Organization at Scale
25 [386] How to Measure Your App: A Couple of Pitfalls and Remedies in Measuring

App Performance in Online Controlled Experiments
26 [196] Sequential Testing for Early Stopping of Online Experiments
27 [89] Shrinkage Estimators in Online Experiments
28 [342] A Counterfactual Framework for Seller-Side A/B Testing on Marketplaces
29 [97] Periodicity in User Engagement with a Search Engine and Its Application to

Online Controlled Experiments
30 [228] Evolving Software to be ML-Driven Utilizing Real-World A/B Testing:

Experiences, Insights, Challenges
31 [98] Using the Delay in a Treatment Effect to Improve Sensitivity and Preserve

Directionality of Engagement Metrics in A/B Experiments
32 [168] A Cluster-Based Nearest Neighbor Matching Algorithm for Enhanced A/A

Validation in Online Experimentation
33 [232] Variance-Weighted Estimators to Improve Sensitivity in Online Experiments
34 [92] A Dirty Dozen: Twelve Common Metric Interpretation Pitfalls in Online

Controlled Experiments
35 [221] Winner’s Curse: Bias Estimation for Total Effects of Features in Online

Controlled Experiments
36 [388] From Infrastructure to Culture: A/B Testing Challenges in Large Scale Social

Networks
37 [188] A Sequential Test for Selecting the Better Variant: Online A/B Testing, Adaptive

Allocation, and Continuous Monitoring
38 [326] Unbiased Experiments in Congested Networks
39 [345] Personalized Treatment Selection Using Causal Heterogeneity
40 [238] Beyond Success Rate: Utility as a Search Quality Metric for Online Experiments
41 [396] Algorithms and System Architecture for Immediate Personalized News

Recommendations
42 [229] Experimentation in the Operating System: The Windows Experimentation

Platform

A/B TESTING: A SYSTEMATIC LITERATURE REVIEW 233

43 [350] AB4Web: An On-Line A/B Tester for Comparing User Interface Design
Alternatives

44 [262] Real-World Product Deployment of Adaptive Push Notification Scheduling on
Smartphones

45 [207] Mining the Stars: Learning Quality Ratings with User-Facing Explanations for
Vacation Rentals

46 [93] Towards Digital Twin-Enabled DevOps for CPS Providing Architecture-Based
Service Adaptation & Verification at Runtime

47 [359] Adaptive Experimentation with Delayed Binary Feedback
48 [230] Unifying Offline Causal Inference and Online Bandit Learning for Data Driven

Decision
49 [10] Beyond Data: From User Information to Business Value through Personalized

Recommendations and Consumer Science
50 [225] Learning to Bundle Proactively for On-Demand Meal Delivery
51 [21] Measuring Dynamic Effects of Display Advertising in the Absence of User

Tracking Information
52 [20] Marketing Campaign Evaluation in Targeted Display Advertising
53 [249] Whole Page Optimization: How Page Elements Interact with the Position

Auction
54 [293] The MOOClet Framework: Unifying Experimentation, Dynamic Improvement,

and Personalization in Online Courses
55 [389] Split-Treatment Analysis to Rank Heterogeneous Causal Effects for Prospective

Interventions
56 [218] Promoting Positive Post-Click Experience for In-Stream Yahoo Gemini Users
57 [299] Predicting Counterfactuals from Large Historical Data and Small Randomized

Trials
58 [330] Multi-Source Pointer Network for Product Title Summarization
59 [76] Beyond Relevance Ranking: A General Graph Matching Framework for Utility-

Oriented Learning to Rank
60 [158] Offline Evaluation to Make Decisions About PlaylistRecommendation

Algorithms
61 [162] Trustworthy Experimentation Under Telemetry Loss
62 [155] The Netflix Recommender System: Algorithms, Business Value, and Innovation
63 [308] Bifrost: Supporting Continuous Deployment with Automated Enactment of

Multi-Phase Live Testing Strategies
64 [137] CompactETA: A Fast Inference System for Travel Time Prediction
65 [19] Design and Analysis of Benchmarking Experiments for Distributed Internet

Services
66 [109] Learning to Rank in the Position Based Model with Bandit Feedback
67 [35] VisRel: Media Search at Scale
68 [394] Behavioral Consequences of Reminder Emails on Students’ Academic

Performance: A Real-World Deployment
69 [231] Content Recommendation by Noise Contrastive Transfer Learning of Feature

Representation
70 [123] External Evaluation of Ranking Models under Extreme Position-Bias
71 [346] Tackling Cannibalization Problems for Online Advertisement

234 APPENDIX

72 [334] Filling Context-Ad Vocabulary Gaps with Click Logs
73 [135] Practical Lessons from Developing a Large-Scale Recommender System at

Zalando
74 [381] How Airbnb Tells You Will Enjoy Sunset Sailing in Barcelona? Recommenda-

tion in a Two-Sided Travel Marketplace
75 [390] Modeling Professional Similarity by Mining Professional Career Trajectories
76 [58] Social Incentive Optimization in Online Social Networks
77 [319] Ad Close Mitigation for Improved User Experience in Native Advertisements
78 [272] Off-Line vs. On-Line Evaluation of Recommender Systems in Small E-

Commerce
79 [2] LASER: A Scalable Response Prediction Platform for Online Advertising
80 [6] The Role of Relevance in Sponsored Search
81 [300] Contextual Bandit Applications in a Customer Support Bot
82 [383] Safe Velocity: A Practical Guide to Software Deployment at Scale using

Controlled Rollout
83 [333] When Relevance is Not Enough: Promoting Diversity and Freshness in

Personalized Question Recommendation
84 [226] Interference, Bias, and Variance in Two-Sided Marketplace Experimentation:

Guidance for Platforms
85 [248] Automotive A/B testing: Challenges and Lessons Learned from Practice
86 [36] A/B Testing at SweetIM: The Importance of Proper Statistical Analysis
87 [81] A Framework Model to Support A/B Tests at the Class and Component Level
88 [186] Statistical Reasoning of Zero-Inflated Right-Skewed User-Generated Big Data

A/B Testing
89 [236] Size matters? Or not: A/B testing with limited sample in automotive embedded

software
90 [351] Scalable Data Reporting Platform for A/B Tests
91 [30] Applying Bayesian parameter estimation to A/B tests in e-business applications

examining the impact of green marketing signals in sponsored search advertising
92 [8] Experiment-driven improvements in Human-in-the-loop Machine Learning

Annotation via significance-based A/B testing
93 [165] The Anatomy of a Large-Scale Experimentation Platform
94 [12] Demystifying dark matter for online experimentation
95 [156] Controlled experiments for decision-making in e-Commerce search
96 [215] Evaluating usability of a web application: A comparative analysis of open-source

tools
97 [60] Faster online experimentation by eliminating traditional A/A validation
98 [91] Pitfalls of long-term online controlled experiments
99 [327] SoftSKU: Optimizing Server Architectures for Microservice Diversity @Scale
100 [117] The Benefits of Controlled Experimentation at Scale
101 [317] Context Adaptation for Smart Recommender Systems
102 [393] Whales, Dolphins, or Minnows? Towards the Player Clustering in Free Online

Games Based on Purchasing Behavior via Data Mining Technique
103 [233] Enterprise-Level Controlled Experiments at Scale: Challenges and Solutions
104 [31] Should companies bid on their own brand in sponsored search?

A/B TESTING: A SYSTEMATIC LITERATURE REVIEW 235

105 [167] A Probabilistic, Mechanism-Indepedent Outlier Detection Method for Online
Experimentation

106 [403] Inform Product Change through Experimentation with Data-Driven Behavioral
Segmentation

107 [247] Your System Gets Better Every Day You Use It: Towards Automated Continuous
Experimentation

108 [57] Fashion Recommendation Systems, Models and Methods: A Review
109 [9] Subject Line Personalization Techniques and Their Influence in the E-Mail

Marketing Open Rate
110 [240] Impact of promotional social media content on click-through rate - Evidence

from a FMCG company
111 [7] Related Entity Expansion and Ranking Using Knowledge Graph
112 [43] LinkLouvain: Link-Aware A/B Testing and Its Application on Online Marketing

Campaign
113 [253] Ascend by Evolv: Artificial intelligence-based massively multivariate conversion

rate optimization
114 [398] A new framework for online testing of heterogeneous treatment effect
115 [343] JACKPOT: Online experimentation of cloud microservices
116 [163] Digital Marketing Effectiveness Using Incrementality
117 [306] Business process improvement with the AB-BPM methodology
118 [103] A genetic algorithm for finding a small and diverse set of recent news stories on

a given subject: How we generate aaai’s ai-alert
119 [213] Measuring the value of recommendation links on product demand
120 [116] Experimentation growth: Evolving trustworthy A/B testing capabilities in online

software companies
121 [311] Online Evaluation of Bid Prediction Models in a Large-Scale Computational

Advertising Platform: Decision Making and Insights
122 [305] AB-BPM: Performance-driven instance routing for business process improve-

ment
123 [102] Have It Both Ways—From A/B Testing to A&B Testing with Exceptional Model

Mining
124 [245] More for Less: Automated Experimentation in Software-Intensive Systems
125 [68] Regression Tree for Bandits Models in A/B Testing
126 [271] When the Crowd is Not Enough: Improving User Experience with Social Media

through Automatic Quality Analysis
127 [39] Pixel efficiency analysis: A quantitative web analytics approach
128 [208] A/B Testing in E-commerce Sales Processes
129 [264] A Method for the Construction of User Targeting Knowledge for B2B Industry

Website
130 [279] Validating Mobile Designs with Agile Testing in China: Based on Baidu Map

for Mobile
131 [356] User Latent Preference Model for Better Downside Management in

Recommender Systems
132 [335] Towards Automated A/B Testing
133 [201] Seven rules of thumb for web site experimenters

236 APPENDIX

134 [224] Enabling A/B Testing of Native Mobile Applications by Remote User Interface
Exchange

135 [338] Overlapping Experiment Infrastructure: More, Better, Faster Experimentation
136 [138] Optimizing price levels in e-commerce applications: An empirical study
137 [52] Facilitating Controlled Tests of Website Design Changes: A Systematic

Approach
138 [3] Soft Frequency Capping for Improved Ad Click Prediction in Yahoo Gemini

Native
139 [82] Objective Bayesian Two Sample Hypothesis Testing for Online Controlled

Experiments
140 [126] Test & Roll: Profit-Maximizing A/B Tests
141 [397] Improving Library User Experience with A/B Testing: Principles and Process

Bibliography

[1] Vineet Abhishek and Shie Mannor. “A Nonparametric Sequential Test for
Online Randomized Experiments”. In: Proceedings of the 26th International
Conference on World Wide Web Companion. WWW ’17 Companion. Perth,
Australia: International World Wide Web Conferences Steering Committee,
2017, pp. 610–616. ISBN: 9781450349147. DOI: 10.1145/3041021.3054196
(pp. 161, 162, 231).

[2] Deepak Agarwal, Bo Long, Jonathan Traupman, Doris Xin, and Liang Zhang.
“LASER: A Scalable Response Prediction Platform for Online Advertising”.
In: Proceedings of the 7th ACM International Conference on Web Search
and Data Mining. WSDM ’14. New York, New York, USA: Association
for Computing Machinery, 2014, pp. 173–182. ISBN: 9781450323512. DOI:
10.1145/2556195.2556252 (pp. 161, 165, 234).

[3] Michal Aharon, Yohay Kaplan, Rina Levy, Oren Somekh, Ayelet Blanc,
Neetai Eshel, Avi Shahar, Assaf Singer, and Alex Zlotnik. “Soft Frequency
Capping for Improved Ad Click Prediction in Yahoo Gemini Native”. In:
Proceedings of the 28th ACM International Conference on Information
and Knowledge Management. CIKM ’19. Beijing, China: Association for
Computing Machinery, 2019, pp. 2793–2801. ISBN: 9781450369763. DOI:
10.1145/3357384.3357801 (pp. 161, 236).

[4] Michal Aharon, Oren Somekh, Avi Shahar, Assaf Singer, Baruch Trayvas,
Hadas Vogel, and Dobri Dobrev. “Carousel Ads Optimization in Yahoo
Gemini Native”. In: Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. KDD ’19. Anchorage,
AK, USA: Association for Computing Machinery, 2019, pp. 1993–2001. ISBN:
9781450362016. DOI: 10.1145/3292500.3330740 (p. 127).

[5] Mir Shahnawaz Ahmad and Shahid Mehraj Shah. “Supervised Machine
Learning Approaches for Attack Detection in the IoT Network”. In: Internet of
Things and Its Applications. Springer, 2022, pp. 247–260. DOI: 10.1007/978-
981-16-7637-6_22 (p. 83).

237

https://doi.org/10.1145/3041021.3054196
https://doi.org/10.1145/2556195.2556252
https://doi.org/10.1145/3357384.3357801
https://doi.org/10.1145/3292500.3330740
https://doi.org/10.1007/978-981-16-7637-6_22
https://doi.org/10.1007/978-981-16-7637-6_22

238 BIBLIOGRAPHY

[6] Luca Aiello, Ioannis Arapakis, Ricardo Baeza-Yates, Xiao Bai, Nicola Barbieri,
Amin Mantrach, and Fabrizio Silvestri. “The Role of Relevance in Sponsored
Search”. In: Proceedings of the 25th ACM International on Conference on
Information and Knowledge Management. CIKM ’16. Indianapolis, Indiana,
USA: Association for Computing Machinery, 2016, pp. 185–194. ISBN:
9781450340731. DOI: 10.1145/2983323.2983840 (pp. 146, 161, 234).

[7] Ryuya Akase, Hiroto Kawabata, Akiomi Nishida, Yuki Tanaka, and Tamaki
Kaminaga. “Related Entity Expansion and Ranking Using Knowledge Graph”.
In: Complex, Intelligent and Software Intensive Systems. Ed. by Leonard Barolli,
Kangbin Yim, and Tomoya Enokido. Cham: Springer International Publishing,
2021, pp. 172–184. ISBN: 978-3-030-79725-6 (pp. 137, 152, 161, 235).

[8] Rafael Alfaro-Flores, José Salas-Bonilla, Loic Juillard, and Juan Esquivel-
Rodríguez. “Experiment-driven improvements in Human-in-the-loop Machine
Learning Annotation via significance-based A/B testing”. In: 2021 XLVII
Latin American Computing Conference (CLEI). 2021, pp. 1–9. DOI: 10.1109/
CLEI53233.2021.9639977 (pp. 161, 234).

[9] Joana Almeida and Beatriz Casais. “Subject Line Personalization Techniques
and Their Influence in the E-Mail Marketing Open Rate”. In: Information
Systems and Technologies. Ed. by Alvaro Rocha, Hojjat Adeli, Gintautas
Dzemyda, and Fernando Moreira. Cham: Springer International Publishing,
2022, pp. 532–540. ISBN: 978-3-031-04829-6 (pp. 152, 161, 235).

[10] Xavier Amatriain. “Beyond Data: From User Information to Business Value
through Personalized Recommendations and Consumer Science”. In: Proceed-
ings of the 22nd ACM International Conference on Information & Knowledge
Management. CIKM ’13. San Francisco, California, USA: Association for
Computing Machinery, 2013, pp. 2201–2208. ISBN: 9781450322638. DOI:
10.1145/2505515.2514701 (pp. 137, 161, 233).

[11] Apostolos Ampatzoglou, Stamatia Bibi, Paris Avgeriou, Marijn Verbeek, and
Alexander Chatzigeorgiou. “Identifying, categorizing and mitigating threats
to validity in software engineering secondary studies”. In: Information and
Software Technology 106 (2019), pp. 201–230. ISSN: 0950-5849. DOI: 10.
1016/j.infsof.2018.10.006 (p. 165).

[12] Nirupama Appiktala, Miao Chen, Michael Natkovich, and Joshua Walters.
“Demystifying dark matter for online experimentation”. In: 2017 IEEE
International Conference on Big Data (Big Data). 2017, pp. 1620–1626. DOI:
10.1109/BigData.2017.8258096 (pp. 161, 234).

[13] Hamid Arabnejad, Pooyan Jamshidi, Giovani Estrada, Nabil El Ioini, and
Claus Pahl. “An Auto-Scaling Cloud Controller Using Fuzzy Q-Learning -
Implementation in OpenStack”. In: Service-Oriented and Cloud Computing.
Ed. by Marco Aiello, Einar Broch Johnsen, Schahram Dustdar, and Ilche

https://doi.org/10.1145/2983323.2983840
https://doi.org/10.1109/CLEI53233.2021.9639977
https://doi.org/10.1109/CLEI53233.2021.9639977
https://doi.org/10.1145/2505515.2514701
https://doi.org/10.1016/j.infsof.2018.10.006
https://doi.org/10.1016/j.infsof.2018.10.006
https://doi.org/10.1109/BigData.2017.8258096

BIBLIOGRAPHY 239

Georgievski. Cham: Springer International Publishing, 2016, pp. 152–167.
ISBN: 978-3-319-44482-6. DOI: 10.1007/978-3-319-44482-6_10 (p. 38).

[14] Paolo Arcaini, Elvinia Riccobene, and Patrizia Scandurra. “Modeling and Ana-
lyzing MAPE-K Feedback Loops for Self-Adaptation”. In: 2015 IEEE/ACM
10th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems. 2015, pp. 13–23. DOI: 10.1109/SEAMS.2015.10 (p. 2).

[15] Argo-Rollouts. https://argoproj.github.io/argo-rollouts/. 2023 (p. 173).

[16] Florian Auer and Michael Felderer. “Current State of Research on Continuous
Experimentation: A Systematic Mapping Study”. In: 2018 44th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA). Los
Alamitos, CA, USA: IEEE Computer Society, Aug. 2018, pp. 335–344. DOI:
10.1109/SEAA.2018.00062 (pp. 124, 128).

[17] Florian Auer, Rasmus Ros, Lukas Kaltenbrunner, Per Runeson, and Michael
Felderer. “Controlled experimentation in continuous experimentation: Knowl-
edge and challenges”. In: Information and Software Technology 134 (2021),
p. 106551. ISSN: 0950-5849. DOI: 10.1016/j.infsof.2021.106551 (pp. 124,
128).

[18] Alia Ayoub and Amal Elgammal. “Utilizing Twitter Data for Identifying
and Resolving Runtime Business Process Disruptions”. In: On the Move to
Meaningful Internet Systems. OTM 2018 Conferences. Ed. by Hervé Panetto,
Christophe Debruyne, Henderik A. Proper, Claudio Agostino Ardagna,
Dumitru Roman, and Robert Meersman. Cham: Springer International
Publishing, 2018, pp. 189–206. ISBN: 978-3-030-02610-3. DOI: 10.1007/978-
3-030-02610-3_11 (pp. 73, 85).

[19] Eytan Bakshy and Eitan Frachtenberg. “Design and Analysis of Benchmarking
Experiments for Distributed Internet Services”. In: Proceedings of the 24th
International Conference on World Wide Web. WWW ’15. Florence, Italy:
International World Wide Web Conferences Steering Committee, 2015,
pp. 108–118. ISBN: 9781450334693. DOI: 10 . 1145 / 2736277 . 2741082
(pp. 127, 161, 165, 233).

[20] Joel Barajas, Jaimie Kwon, Ram Akella, Aaron Flores, Marius Holtan,
and Victor Andrei. “Marketing Campaign Evaluation in Targeted Display
Advertising”. In: Proceedings of the Sixth International Workshop on Data
Mining for Online Advertising and Internet Economy. ADKDD ’12. Beijing,
China: Association for Computing Machinery, 2012. ISBN: 9781450315456.
DOI: 10.1145/2351356.2351361 (pp. 144, 157, 161, 233).

[21] Joel Barajas, Jaimie Kwon, Ram Akella, Aaron Flores, Marius Holtan,
and Victor Andrei. “Measuring Dynamic Effects of Display Advertising in
the Absence of User Tracking Information”. In: Proceedings of the Sixth
International Workshop on Data Mining for Online Advertising and Internet

https://doi.org/10.1007/978-3-319-44482-6_10
https://doi.org/10.1109/SEAMS.2015.10
https://argoproj.github.io/argo-rollouts/
https://doi.org/10.1109/SEAA.2018.00062
https://doi.org/10.1016/j.infsof.2021.106551
https://doi.org/10.1007/978-3-030-02610-3_11
https://doi.org/10.1007/978-3-030-02610-3_11
https://doi.org/10.1145/2736277.2741082
https://doi.org/10.1145/2351356.2351361

240 BIBLIOGRAPHY

Economy. ADKDD ’12. Beijing, China: Association for Computing Machinery,
2012. ISBN: 9781450315456. DOI: 10.1145/2351356.2351364 (pp. 139, 161,
233).

[22] Luciano Baresi, Giovanni Quattrocchi, and Nicholas Rasi. “Federated Machine
Learning as a Self-Adaptive Problem”. In: 2021 International Symposium on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS). Los
Alamitos, CA, USA: IEEE Computer Society, May 2021, pp. 41–47. DOI:
10.1109/SEAMS51251.2021.00016 (p. 95).

[23] Victor R. Basili, Gianluigi Caldiera, and Dieter H. Rombach. “The Goal
Question Metric Approach”. In: vol. I. John Wiley & Sons, 1994 (p. 129).

[24] Jacob Beal, Mirko Viroli, Danilo Pianini, and Ferruccio Damiani. “Self-
Adaptation to Device Distribution in the Internet of Things”. In: ACM Trans.
Auton. Adapt. Syst. 12.3 (Sept. 2017). ISSN: 1556-4665. DOI: 10.1145/3105758
(p. 218).

[25] Lucas Bernardi, Themistoklis Mavridis, and Pablo Estevez. “150 Successful
Machine Learning Models: 6 Lessons Learned at Booking.Com”. In: 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining.
KDD ’19. Anchorage, AK, USA: Association for Computing Machinery, 2019,
pp. 1743–1751. ISBN: 9781450362016. DOI: 10 . 1145/3292500 . 3330744
(pp. 5, 193).

[26] Narayan Bhamidipati, Ravi Kant, and Shaunak Mishra. “A Large Scale
Prediction Engine for App Install Clicks and Conversions”. In: ACM
on Conference on Information and Knowledge Management. 2017. ISBN:
9781450349185. DOI: 10.1145/3132847.3132868 (p. 170).

[27] Kay Bierzynski, Pavel Lutskov, and Uwe Assmann. “Supporting the Self-
Learning of Systems at the Network Edge with Microservices”. In: Smart
Systems Integration; 13th International Conference and Exhibition on
Integration Issues of Miniaturized Systems. 2019, pp. 1–8 (p. 35).

[28] Christopher Bishop. Pattern recognition and machine learning. springer, 2006
(pp. 25, 38).

[29] Gordon Blair, Nelly Bencomo, and Robert France. “Models@ run.time”. In:
Computer 42 (Nov. 2009), pp. 22–27. DOI: 10.1109/MC.2009.326 (pp. 3, 7,
22, 52).

[30] Tobias Blask. “Applying Bayesian parameter estimation to A/B tests in e-
business applications examining the impact of green marketing signals in
sponsored search advertising”. In: 2013 International Conference on e-Business
(ICE-B). 2013, pp. 1–8 (pp. 140, 161, 234).

[31] Tobias Blask, Burkhardt Funk, and Reinhard Schulte. “Should companies bid
on their own brand in sponsored search?” In: Proceedings of the International
Conference on e-Business. 2011, pp. 1–8 (pp. 140, 152, 161, 234).

https://doi.org/10.1145/2351356.2351364
https://doi.org/10.1109/SEAMS51251.2021.00016
https://doi.org/10.1145/3105758
https://doi.org/10.1145/3292500.3330744
https://doi.org/10.1145/3132847.3132868
https://doi.org/10.1109/MC.2009.326

BIBLIOGRAPHY 241

[32] Thomas Bodenheimer, Kate Lorig, Halsted Holman, and Kevin Grumbach.
“Patient Self-Management of Chronic Disease in Primary Care”. In: JAMA :
the journal of the American Medical Association 288 (Dec. 2002), pp. 2469–75.
DOI: 10.1001/jama.288.19.2469 (p. 101).

[33] Justus Bogner, Jonas Fritzsch, Stefan Wagner, and Alfred Zimmermann. “In-
dustry practices and challenges for the evolvability assurance of microservices”.
In: Empirical Software Engineering 26.104 (July 2021), pp. 24–35. ISSN: 1573-
7616. DOI: 10.1007/s10664-021-09999-9 (p. 198).

[34] Justus Bogner, Jonas Fritzsch, Stefan Wagner, and Alfred Zimmermann.
“Microservices in Industry: Insights into Technologies, Characteristics, and
Software Quality”. In: Companion Int. Conference on Software Architecture
Companion. 2019. DOI: 10.1109/ICSA-C.2019.00041 (p. 198).

[35] Fedor Borisyuk, Siddarth Malreddy, Jun Mei, Yiqun Liu, Xiaoyi Liu, Piyush
Maheshwari, Anthony Bell, and Kaushik Rangadurai. “VisRel: Media Search at
Scale”. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining. KDD ’21. Virtual Event, Singapore: Association
for Computing Machinery, 2021, pp. 2584–2592. ISBN: 9781450383325. DOI:
10.1145/3447548.3467081 (pp. 143, 161, 233).

[36] Slava Borodovsky and Saharon Rosset. “A/B Testing at SweetIM: The
Importance of Proper Statistical Analysis”. In: 2011 IEEE 11th International
Conference on Data Mining Workshops. 2011, pp. 733–740. DOI: 10.1109/
ICDMW.2011.19 (pp. 146, 161, 234).

[37] Léon Bottou, Jonas Peters, Joaquin Quiñonero-Candela, Denis X. Charles,
D. Max Chickering, Elon Portugaly, Dipankar Ray, Patrice Simard, and Ed
Snelson. “Counterfactual Reasoning and Learning Systems: The Example of
Computational Advertising”. In: Journal of Machine Learning Research 14.101
(2013), pp. 3207–3260. URL: https://jmlr.org/papers/v14/bottou13a.html
(p. 172).

[38] Victor Braberman, Nicolas D’Ippolito, Jeff Kramer, Daniel Sykes, and
Sebastian Uchitel. “MORPH: A Reference Architecture for Configuration and
Behaviour Self-Adaptation”. In: Proceedings of the 1st International Workshop
on Control Theory for Software Engineering. CTSE 2015. Bergamo, Italy:
Association for Computing Machinery, 2015, pp. 9–16. ISBN: 9781450338141.
DOI: 10.1145/2804337.2804339 (p. 217).

[39] Alex Brown, Binky Lush, and Bernard J. Jansen. “Pixel efficiency analysis: A
quantitative web analytics approach”. In: Proceedings of the Association for
Information Science and Technology 53.1 (2016), pp. 1–10. DOI: 10.1002/
pra2.2016.14505301040 (pp. 139, 154, 161, 163, 235).

https://doi.org/10.1001/jama.288.19.2469
https://doi.org/10.1007/s10664-021-09999-9
https://doi.org/10.1109/ICSA-C.2019.00041
https://doi.org/10.1145/3447548.3467081
https://doi.org/10.1109/ICDMW.2011.19
https://doi.org/10.1109/ICDMW.2011.19
https://jmlr.org/papers/v14/bottou13a.html
https://doi.org/10.1145/2804337.2804339
https://doi.org/10.1002/pra2.2016.14505301040
https://doi.org/10.1002/pra2.2016.14505301040

242 BIBLIOGRAPHY

[40] Xiangping Bu, Jia Rao, and Cheng-Zhong Xu. “Coordinated Self-Configuration
of Virtual Machines and Appliances Using a Model-Free Learning Approach”.
In: IEEE Transactions on Parallel and Distributed Systems 24.4 (2013),
pp. 681–690. DOI: 10.1109/TPDS.2012.174 (p. 55).

[41] Roman Budylin, Alexey Drutsa, Ilya Katsev, and Valeriya Tsoy. “Consistent
Transformation of Ratio Metrics for Efficient Online Controlled Experiments”.
In: Proceedings of the Eleventh ACM International Conference on Web Search
and Data Mining. WSDM ’18. Marina Del Rey, CA, USA: Association for
Computing Machinery, 2018, pp. 55–63. ISBN: 9781450355810. DOI: 10 .
1145/3159652.3159699 (pp. 161, 231).

[42] Tomáš Bureš. “Self-Adaptation 2.0”. In: 2021 International Symposium on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS). 2021,
pp. 262–263. DOI: 10.1109/SEAMS51251.2021.00046 (pp. 171, 200).

[43] Tianchi Cai, Daxi Cheng, Chen Liang, Ziqi Liu, Lihong Gu, Huizhi Xie,
Zhiqiang Zhang, Xiaodong Zeng, and Jinjie Gu. “LinkLouvain: Link-Aware
A/B Testing and Its Application on Online Marketing Campaign”. In: Database
Systems for Advanced Applications. Ed. by Christian S. Jensen, Ee-Peng Lim,
De-Nian Yang, Wang-Chien Lee, Vincent S. Tseng, Vana Kalogeraki, Jen-
Wei Huang, and Chih-Ya Shen. Cham: Springer International Publishing, 2021,
pp. 499–510. ISBN: 978-3-030-73200-4 (pp. 137, 161, 162, 235).

[44] Radu Calinescu, Marco Autili, Javier Cámara, Antinisca Di Marco, Simos
Gerasimou, Paola Inverardi, Alexander Perucci, Nils Jansen, Joost-Pieter
Katoen, Marta Kwiatkowska, Ole J. Mengshoel, Romina Spalazzese, and
Massimo Tivoli. “Synthesis and Verification of Self-aware Computing
Systems”. In: Self-Aware Computing Systems. Ed. by Samuel Kounev,
Jeffrey O. Kephart, Aleksandar Milenkoski, and Xiaoyun Zhu. Cham: Springer
International Publishing, 2017, pp. 337–373. ISBN: 978-3-319-47474-8. DOI:
10.1007/978-3-319-47474-8_11 (p. 43).

[45] Radu Calinescu, Lars Grunske, Marta Kwiatkowska, Raffaela Mirandola,
and Giordano Tamburrelli. “Dynamic QoS Management and Optimization
in Service-Based Systems”. In: IEEE Transactions on Software Engineering
37.3 (May 2011), pp. 387–409. ISSN: 0098-5589. DOI: 10.1109/TSE.2010.92
(pp. 4, 24, 30, 39, 53).

[46] Radu Calinescu, Shinji Kikuchi, and Kenneth Johnson. “Compositional
Reverification of Probabilistic Safety Properties for Large-Scale Complex
IT Systems”. In: Large-Scale Complex IT Systems. Development, Operation
and Management. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 303–329. ISBN: 978-3-642-34059-8. DOI: 10.1007/978-3-642-34059-
8_16 (p. 56).

https://doi.org/10.1109/TPDS.2012.174
https://doi.org/10.1145/3159652.3159699
https://doi.org/10.1145/3159652.3159699
https://doi.org/10.1109/SEAMS51251.2021.00046
https://doi.org/10.1007/978-3-319-47474-8_11
https://doi.org/10.1109/TSE.2010.92
https://doi.org/10.1007/978-3-642-34059-8_16
https://doi.org/10.1007/978-3-642-34059-8_16

BIBLIOGRAPHY 243

[47] Radu Calinescu, Raffaela Mirandola, Diego Perez-Palacin, and Danny Weyns.
“Understanding Uncertainty in Self-adaptive Systems”. In: 2020 IEEE
International Conference on Autonomic Computing and Self-Organizing
Systems (ACSOS). 2020, pp. 242–251. DOI: 10.1109/ACSOS49614.2020.
00047 (pp. 37, 48).

[48] Radu Calinescu, Yasmin Rafiq, Kenneth Johnson, and Mehmet Emin Bakır.
“Adaptive Model Learning for Continual Verification of Non-Functional
Properties”. In: Proceedings of the 5th ACM/SPEC International Conference
on Performance Engineering. ICPE ’14. Dublin, Ireland: Association for
Computing Machinery, 2014, pp. 87–98. ISBN: 9781450327336. DOI: 10 .
1145/2568088.2568094 (pp. 31, 43).

[49] Radu Calinescu, Danny Weyns, Simos Gerasimou, Muhammad Usman Iftikhar,
Ibrahim Habli, and Tim Kelly. “Engineering Trustworthy Self-Adaptive
Software with Dynamic Assurance Cases”. In: IEEE Transactions on Software
Engineering 44.11 (2018), pp. 1039–1069. DOI: 10.1109/TSE.2017.2738640
(p. 4).

[50] J. Cámara, P. Correia, R. de Lemos, D. Garlan, P. Gomes, B. Schmerl, and
R. Ventura. “Incorporating architecture-based self-adaptation into an adaptive
industrial software system”. In: Journal of Systems and Software 122 (2016),
pp. 507–523. ISSN: 0164-1212. DOI: 10.1016/j.jss.2015.09.021 (p. 22).

[51] Javier Cámara, David Garlan, Gabriel A. Moreno, and Bradley Schmerl.
“Analyzing Self-Adaptation Via Model Checking of Stochastic Games”. In:
Software Engineering for Self-Adaptive Systems III. Assurances. Ed. by
Rogério de Lemos, David Garlan, Carlo Ghezzi, and Holger Giese. Cham:
Springer International Publishing, 2017, pp. 154–187. ISBN: 978-3-319-74183-
3. DOI: 10.1007/978-3-319-74183-3_6 (pp. 24, 53).

[52] Javier Cámara and Alfred Kobsa. “Facilitating Controlled Tests of Website
Design Changes: A Systematic Approach”. In: Web Engineering. Ed. by Martin
Gaedke, Michael Grossniklaus, and Oscar Díaz. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 370–378. ISBN: 978-3-642-02818-2 (pp. 161,
236).

[53] Javier Cámara, Henry Muccini, and Karthik Vaidhyanathan. “Quantitative
Verification-Aided Machine Learning: A Tandem Approach for Architecting
Self-Adaptive IoT Systems”. In: Proceedings International Conference on
Software Architecture, ICSA. 2020, pp. 11–22. DOI: 10.1109/ICSA47634.
2020.00010 (pp. 11, 54).

[54] Marc Carwehl, Thomas Vogel, Genaina Rodrigues, and Lars Grunske.
“Runtime Verification of Self-Adaptive Systems with Changing Requirements”.
In: 2023 IEEE/ACM 18th Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS). Los Alamitos, CA, USA: IEEE Computer

https://doi.org/10.1109/ACSOS49614.2020.00047
https://doi.org/10.1109/ACSOS49614.2020.00047
https://doi.org/10.1145/2568088.2568094
https://doi.org/10.1145/2568088.2568094
https://doi.org/10.1109/TSE.2017.2738640
https://doi.org/10.1016/j.jss.2015.09.021
https://doi.org/10.1007/978-3-319-74183-3_6
https://doi.org/10.1109/ICSA47634.2020.00010
https://doi.org/10.1109/ICSA47634.2020.00010

244 BIBLIOGRAPHY

Society, May 2023, pp. 104–114. DOI: 10.1109/SEAMS59076.2023.00024
(p. 217).

[55] Maria Casimiro, Paolo Romano, David Garlan, Gabriel A. Moreno, Eunsuk
Kang, and Mark Klein. “Self-Adaptation for Machine Learning Based
Systems”. In: European Conference on Software Architecture. Vol. 2978. CEUR
Workshop Proceedings. 2021. URL: https://ceur-ws.org/Vol-2978/saml-
paper6.pdf (pp. 171, 200).

[56] Gert Cauwenberghs and Tomaso Poggio. “Incremental and Decremental
Support Vector Machine Learning”. In: Proceedings of the 13th International
Conference on Neural Information Processing Systems. NIPS’00. Denver, CO:
MIT Press, 2000, pp. 388–394 (p. 80).

[57] Samit Chakraborty, Md. Saiful Hoque, Naimur Rahman Jeem, Manik Chandra
Biswas, Deepayan Bardhan, and Edgar Lobaton. “Fashion Recommendation
Systems, Models and Methods: A Review”. In: Informatics 8.3 (2021). ISSN:
2227-9709. DOI: 10.3390/informatics8030049 (pp. 137, 161, 235).

[58] Guangde Chen, Bee-Chung Chen, and Deepak Agarwal. “Social Incentive
Optimization in Online Social Networks”. In: Proceedings of the Tenth
ACM International Conference on Web Search and Data Mining. WSDM
’17. Cambridge, United Kingdom: Association for Computing Machinery,
2017, pp. 547–556. ISBN: 9781450346757. DOI: 10.1145/3018661.3018700
(pp. 161, 234).

[59] Nanyu Chen, Min Liu, and Ya Xu. “How A/B Tests Could Go Wrong:
Automatic Diagnosis of Invalid Online Experiments”. In: Proceedings of
the Twelfth ACM International Conference on Web Search and Data Mining.
WSDM ’19. Melbourne VIC, Australia: Association for Computing Machinery,
2019, pp. 501–509. ISBN: 9781450359405. DOI: 10.1145/3289600.3291000
(pp. 11, 139, 152, 153, 161, 162, 164, 171, 231).

[60] Russell Chen, Miao Chen, Mahendrasinh Ramsinh Jadav, Joonsuk Bae, and
Don Matheson. “Faster online experimentation by eliminating traditional A/A
validation”. In: 2017 IEEE International Conference on Big Data (Big Data).
2017, pp. 1635–1641. DOI: 10.1109/BigData.2017.8258098 (pp. 161, 162,
219, 234).

[61] Tao Chen and Rami Bahsoon. “Self-Adaptive and Online QoS Modeling
for Cloud-Based Software Services”. In: IEEE Transactions on Software
Engineering 43.5 (2017), pp. 453–475. DOI: 10.1109/TSE.2016.2608826
(pp. 38, 43).

[62] Tao Chen and Rami Bahsoon. “Self-adaptive and online QoS modeling
for cloud-based software services”. In: IEEE Transactions on Software
Engineering 43.5 (2016), pp. 453–475. DOI: 10.1109/TSE.2016.2608826
(p. 54).

https://doi.org/10.1109/SEAMS59076.2023.00024
https://ceur-ws.org/Vol-2978/saml-paper6.pdf
https://ceur-ws.org/Vol-2978/saml-paper6.pdf
https://doi.org/10.3390/informatics8030049
https://doi.org/10.1145/3018661.3018700
https://doi.org/10.1145/3289600.3291000
https://doi.org/10.1109/BigData.2017.8258098
https://doi.org/10.1109/TSE.2016.2608826
https://doi.org/10.1109/TSE.2016.2608826

BIBLIOGRAPHY 245

[63] Tao Chen, Rami Bahsoon, Shuo Wang, and Xin Yao. “To Adapt or Not to
Adapt? Technical Debt and Learning Driven Self-Adaptation for Managing
Runtime Performance”. In: Proceedings of the 2018 ACM/SPEC International
Conference on Performance Engineering. ICPE ’18. Berlin, Germany:
Association for Computing Machinery, 2018, pp. 48–55. ISBN: 9781450350952.
DOI: 10.1145/3184407.3184413 (pp. 43, 44).

[64] Betty H. C. Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi,
Jeff Magee, Jesper Andersson, Basil Becker, Nelly Bencomo, Yuriy Brun,
Bojan Cukic, Giovanna Di Marzo Serugendo, Schahram Dustdar, Anthony
Finkelstein, Cristina Gacek, Kurt Geihs, Vincenzo Grassi, Gabor Karsai,
Holger M. Kienle, Jeff Kramer, Marin Litoiu, Sam Malek, Raffaela Mirandola,
Hausi A. Müller, Sooyong Park, Mary Shaw, Matthias Tichy, Massimo Tivoli,
Danny Weyns, and Jon Whittle. “Software Engineering for Self-Adaptive
Systems: A Research Roadmap”. In: Software Engineering for Self-Adaptive
Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 1–26. ISBN:
978-3-642-02161-9. DOI: 10.1007/978-3-642-02161-9_1 (pp. 1, 2, 22, 52,
174, 217).

[65] Betty H.C. Cheng, Andres Ramirez, and Philip K. McKinley. “Harnessing
evolutionary computation to enable dynamically adaptive systems to manage
uncertainty”. In: 2013 1st International Workshop on Combining Modelling
and Search-Based Software Engineering (CMSBSE). 2013, pp. 1–6. DOI: 10.
1109/CMSBSE.2013.6604427 (pp. 22, 53).

[66] Shang-Wen Cheng. “Rainbow: Cost-Effective Software Architecture-Based
Self-Adaptation”. In: PhD Thesis Carnegie Mellon University, CMU-ISR-08-
113. 2008 (p. 199).

[67] Shang-Wen Cheng, David Garlan, and Bradley Schmerl. “Evaluating the
effectiveness of the Rainbow self-adaptive system”. In: 2009 ICSE Workshop
on Software Engineering for Adaptive and Self-Managing Systems. 2009,
pp. 132–141. DOI: 10.1109/SEAMS.2009.5069082 (p. 6).

[68] Emmanuelle Claeys, Pierre Gançarski, Myriam Maumy-Bertrand, and Hubert
Wassner. “Regression Tree for Bandits Models in A/B Testing”. In: Advances
in Intelligent Data Analysis XVI. Ed. by Niall Adams, Allan Tucker, and
David Weston. Cham: Springer International Publishing, 2017, pp. 52–62.
ISBN: 978-3-319-68765-0 (pp. 161, 235).

[69] Commons-Math. Apache Commons Mathematics Library. https://commons.
apache.org/proper/commons-math/ (p. 202).

[70] Rafael Costa, Elie Cheniaux, Pedro Rosaes, Marcele Carvalho, Rafael Freire,
Márcio Versiani, Bernard Range, and Antonio Nardi. “The effectiveness of
cognitive behavioral group therapy in treating bipolar disorder: A randomized
controlled study”. In: Revista brasileira de psiquiatria (São Paulo, Brazil :

https://doi.org/10.1145/3184407.3184413
https://doi.org/10.1007/978-3-642-02161-9_1
https://doi.org/10.1109/CMSBSE.2013.6604427
https://doi.org/10.1109/CMSBSE.2013.6604427
https://doi.org/10.1109/SEAMS.2009.5069082
https://commons.apache.org/proper/commons-math/
https://commons.apache.org/proper/commons-math/

246 BIBLIOGRAPHY

1999) 33 (June 2011), pp. 144–9. DOI: 10.1590/S1516-44462011000200009
(p. 127).

[71] Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and
Yoram Singer. “Online Passive-Aggressive Algorithms”. In: Journal of
Machine Learning Research 7 (Mar. 2006), pp. 551–585 (p. 83).

[72] John Creswell and Timothy Guetterman. Educational Research: Planning,
Conducting, and Evaluating Quantitative and Qualitative Research, 6th Edition.
New York, NY, USA: Pearson, Feb. 2018. ISBN: 9780134519395 (pp. 125,
127).

[73] Thomas Crook, Brian Frasca, Ron Kohavi, and Roger Longbotham. “Seven
Pitfalls to Avoid When Running Controlled Experiments on the Web”.
In: Proceedings of the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. KDD ’09. Paris, France: Association
for Computing Machinery, 2009, pp. 1105–1114. ISBN: 9781605584959. DOI:
10.1145/1557019.1557139 (p. 218).

[74] Laizhong Cui, Shu Yang, Fei Chen, Zhong Ming, Nan Lu, and Jing Qin.
“A survey on application of machine learning for Internet of Things”. In:
International Journal of Machine Learning and Cybernetics 9.8 (Aug. 2018),
pp. 1399–1417. ISSN: 1868-808X. DOI: 10.1007/s13042-018-0834-5 (p. 28).

[75] Mirko D’Angelo, Simos Gerasimou, Sona Ghahremani, Johannes Grohmann,
Ingrid Nunes, Evangelos Pournaras, and Sven Tomforde. “On Learning in
Collective Self-Adaptive Systems: State of Practice and a 3D Framework”. In:
2019 IEEE/ACM 14th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS). May 2019, pp. 13–24. DOI:
10.1109/SEAMS.2019.00012 (p. 28).

[76] Xinyi Dai, Yunjia Xi, Weinan Zhang, Qing Liu, Ruiming Tang, Xiuqiang He,
Jiawei Hou, Jun Wang, and Yong Yu. “Beyond Relevance Ranking: A General
Graph Matching Framework for Utility-Oriented Learning to Rank”. In: ACM
Trans. Inf. Syst. 40.2 (Nov. 2021). ISSN: 1046-8188. DOI: 10.1145/3464303
(pp. 137, 146, 154, 161, 233).

[77] Zhenwen Dai, Praveen Ravichandran, Ghazal Fazelnia, Ben Carterette,
and Mounia Lalmas-Roelleke. “Model selection for production system via
automated online experiments”. In: vol. 2020-December. 2020. URL: https:
//www.scopus.com/inward/record.uri?eid=2-s2.0-85108405793%5C&
partnerID = 40 % 5C & md5 = 2a08fa5f662c442b711e0f999cf23618 (pp. 11,
172).

[78] Maya Daneva, Daniela Damian, Alessandro Marchetto, and Oscar Pastor.
“Empirical research methodologies and studies in Requirements Engineering:
How far did we come?” In: Journal of Systems and Software 95 (2014), pp. 1–9.
ISSN: 0164-1212. DOI: 10.1016/j.jss.2014.06.035 (p. 127).

https://doi.org/10.1590/S1516-44462011000200009
https://doi.org/10.1145/1557019.1557139
https://doi.org/10.1007/s13042-018-0834-5
https://doi.org/10.1109/SEAMS.2019.00012
https://doi.org/10.1145/3464303
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85108405793%5C&partnerID=40%5C&md5=2a08fa5f662c442b711e0f999cf23618
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85108405793%5C&partnerID=40%5C&md5=2a08fa5f662c442b711e0f999cf23618
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85108405793%5C&partnerID=40%5C&md5=2a08fa5f662c442b711e0f999cf23618
https://doi.org/10.1016/j.jss.2014.06.035

BIBLIOGRAPHY 247

[79] Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikučionis, and Danny
Bøgsted Poulsen. “Uppaal SMC tutorial”. In: International Journal on Software
Tools for Technology Transfer 17.4 (2015), pp. 397–415. ISSN: 1433-2787. DOI:
10.1007/s10009-014-0361-y (pp. 91, 106).

[80] Daniele De Sensi, Massimo Torquati, and Marco Danelutto. “A Reconfiguration
Algorithm for Power-Aware Parallel Applications”. In: ACM Transactions on
Architecture and Code Optimization 13.4 (Dec. 2016). ISSN: 1544-3566. DOI:
10.1145/3004054 (pp. 39, 44).

[81] Wagner S. De Souza, Fernando O. Pereira, Vanessa G. Albuquerque, Jorge
Melegati, and Eduardo Guerra. “A Framework Model to Support A/B Tests
at the Class and Component Level”. In: 2022 IEEE 46th Annual Computers,
Software, and Applications Conference (COMPSAC). 2022, pp. 860–865. DOI:
10.1109/COMPSAC54236.2022.00136 (pp. 161, 162, 234).

[82] Alex Deng. “Objective Bayesian Two Sample Hypothesis Testing for Online
Controlled Experiments”. In: Proceedings of the 24th International Conference
on World Wide Web. WWW ’15 Companion. Florence, Italy: Association
for Computing Machinery, 2015, pp. 923–928. ISBN: 9781450334730. DOI:
10.1145/2740908.2742563 (pp. 161, 236).

[83] Alex Deng, Tianxi Li, and Yu Guo. “Statistical Inference in Two-Stage
Online Controlled Experiments with Treatment Selection and Validation”. In:
Proceedings of the 23rd International Conference on World Wide Web. WWW
’14. Seoul, Korea: Association for Computing Machinery, 2014, pp. 609–618.
ISBN: 9781450327442. DOI: 10.1145/2566486.2568028 (pp. 161, 231).

[84] Alex Deng, Yicheng Li, Jiannan Lu, and Vivek Ramamurthy. “On Post-
Selection Inference in A/B Testing”. In: Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining. KDD ’21. Virtual Event,
Singapore: Association for Computing Machinery, 2021, pp. 2743–2752. ISBN:
9781450383325. DOI: 10.1145/3447548.3467129 (pp. 161, 232).

[85] Alex Deng and Xiaolin Shi. “Data-Driven Metric Development for Online
Controlled Experiments: Seven Lessons Learned”. In: Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. KDD ’16. San Francisco, California, USA: Association for Computing
Machinery, 2016, pp. 77–86. ISBN: 9781450342322. DOI: 10.1145/2939672.
2939700 (p. 170).

[86] Niranjana Deshpande and Naveen Sharma. “Composition Algorithm Adapta-
tion in Service Oriented Systems”. In: Software Architecture. Ed. by Henry
Muccini, Paris Avgeriou, Barbora Buhnova, Javier Camara, Mauro Caporuscio,
Mirco Franzago, Anne Koziolek, Patrizia Scandurra, Catia Trubiani, Danny
Weyns, and Uwe Zdun. Springer International Publishing, 2020, pp. 170–179.
ISBN: 978-3-030-59155-7. DOI: 10.1007/978-3-030-59155-7_13 (p. 83).

https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1145/3004054
https://doi.org/10.1109/COMPSAC54236.2022.00136
https://doi.org/10.1145/2740908.2742563
https://doi.org/10.1145/2566486.2568028
https://doi.org/10.1145/3447548.3467129
https://doi.org/10.1145/2939672.2939700
https://doi.org/10.1145/2939672.2939700
https://doi.org/10.1007/978-3-030-59155-7_13

248 BIBLIOGRAPHY

[87] Pierangelo Di Sanzo, Alessandro Pellegrini, and Dimiter R. Avresky. “Machine
Learning for Achieving Self-* Properties and Seamless Execution of Appli-
cations in the Cloud”. In: Proceedings of the 2015 IEEE 4th Symposium on
Network Cloud Computing and Applications. NCCA ’15. USA: IEEE Computer
Society, 2015, pp. 51–58. ISBN: 9781467377416. DOI: 10.1109/NCCA.2015.
18 (p. 56).

[88] Alhassan Boner Diallo, Hiroyuki Nakagawa, and Tatsuhiro Tsuchiya. “Adapta-
tion Space Reduction Using an Explainable Framework”. In: 2021 IEEE 45th
Annual Computers, Software, and Applications Conference (COMPSAC). 2021,
pp. 1653–1660. DOI: 10.1109/COMPSAC51774.2021.00247 (pp. 11, 53, 55,
83).

[89] Drew Dimmery, Eytan Bakshy, and Jasjeet Sekhon. “Shrinkage Estimators in
Online Experiments”. In: Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. KDD ’19. Anchorage,
AK, USA: Association for Computing Machinery, 2019, pp. 2914–2922. ISBN:
9781450362016. DOI: 10.1145/3292500.3330771 (pp. 139, 143, 161, 232).

[90] Torgeir Dingsøyr, Sridhar Nerur, VenuGopal Balijepally, and Nils Brede Moe.
“A decade of agile methodologies: Towards explaining agile software
development”. In: Journal of Systems and Software 85.6 (2012). Special Issue:
Agile Development, pp. 1213–1221. ISSN: 0164-1212. DOI: 10.1016/j.jss.
2012.02.033 (p. 197).

[91] Pavel Dmitriev, Brian Frasca, Somit Gupta, Ron Kohavi, and Garnet
Vaz. “Pitfalls of long-term online controlled experiments”. In: 2016 IEEE
International Conference on Big Data (Big Data). 2016, pp. 1367–1376. DOI:
10.1109/BigData.2016.7840744 (pp. 137, 161, 162, 234).

[92] Pavel Dmitriev, Somit Gupta, Dong Woo Kim, and Garnet Vaz. “A Dirty
Dozen: Twelve Common Metric Interpretation Pitfalls in Online Controlled
Experiments”. In: Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. KDD ’17. Halifax, NS,
Canada: Association for Computing Machinery, 2017, pp. 1427–1436. ISBN:
9781450348874. DOI: 10.1145/3097983.3098024 (pp. 161, 162, 232).

[93] Jürgen Dobaj, Andreas Riel, Thomas Krug, Matthias Seidl, Georg Macher, and
Markus Egretzberger. “Towards Digital Twin-Enabled DevOps for CPS Pro-
viding Architecture-Based Service Adaptation & Verification at Runtime”. In:
Proceedings of the 17th Symposium on Software Engineering for Adaptive and
Self-Managing Systems. SEAMS ’22. Pittsburgh, Pennsylvania: Association
for Computing Machinery, 2022, pp. 132–143. ISBN: 9781450393058. DOI:
10.1145/3524844.3528057 (pp. 154, 161, 162, 218, 233).

https://doi.org/10.1109/NCCA.2015.18
https://doi.org/10.1109/NCCA.2015.18
https://doi.org/10.1109/COMPSAC51774.2021.00247
https://doi.org/10.1145/3292500.3330771
https://doi.org/10.1016/j.jss.2012.02.033
https://doi.org/10.1016/j.jss.2012.02.033
https://doi.org/10.1109/BigData.2016.7840744
https://doi.org/10.1145/3097983.3098024
https://doi.org/10.1145/3524844.3528057

BIBLIOGRAPHY 249

[94] Simon Dobson, Spyros Denazis, Antonio Fernández, Dominique Gaïti, Erol
Gelenbe, Fabio Massacci, Paddy Nixon, Fabrice Saffre, Nikita Schmidt, and
Franco Zambonelli. “A Survey of Autonomic Communications”. In: ACM
Trans. Auton. Adapt. Syst. 1.2 (Dec. 2006), pp. 223–259. ISSN: 1556-4665. DOI:
10.1145/1186778.1186782 (p. 2).

[95] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Mazzara,
Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. “Microservices: Yester-
day, Today, and Tomorrow”. In: Present and Ulterior Software Engineering.
Ed. by Manuel Mazzara and Bertrand Meyer. Cham: Springer International
Publishing, 2017, pp. 195–216. ISBN: 978-3-319-67425-4. DOI: 10.1007/978-
3-319-67425-4_12 (p. 198).

[96] Alexey Drutsa, Gleb Gusev, and Pavel Serdyukov. “Future User Engagement
Prediction and Its Application to Improve the Sensitivity of Online Experi-
ments”. In: Proceedings of the 24th International Conference on World Wide
Web. WWW ’15. Florence, Italy: International World Wide Web Conferences
Steering Committee, 2015, pp. 256–266. ISBN: 9781450334693. DOI: 10.1145/
2736277.2741116 (pp. 161, 162, 164, 232).

[97] Alexey Drutsa, Gleb Gusev, and Pavel Serdyukov. “Periodicity in User
Engagement with a Search Engine and Its Application to Online Controlled
Experiments”. In: ACM Trans. Web 11.2 (Apr. 2017). ISSN: 1559-1131. DOI:
10.1145/2856822 (pp. 12, 137, 152, 157, 161, 162, 164, 232).

[98] Alexey Drutsa, Gleb Gusev, and Pavel Serdyukov. “Using the Delay in
a Treatment Effect to Improve Sensitivity and Preserve Directionality of
Engagement Metrics in A/B Experiments”. In: Proceedings of the 26th
International Conference on World Wide Web. WWW ’17. Perth, Australia:
International World Wide Web Conferences Steering Committee, 2017,
pp. 1301–1310. ISBN: 9781450349130. DOI: 10 . 1145/3038912 . 3052664
(pp. 12, 137, 143, 161, 232).

[99] Alexey Drutsa, Anna Ufliand, and Gleb Gusev. “Practical Aspects of Sensitivity
in Online Experimentation with User Engagement Metrics”. In: Proceedings
of the 24th ACM International on Conference on Information and Knowledge
Management. CIKM ’15. Melbourne, Australia: Association for Computing
Machinery, 2015, pp. 763–772. ISBN: 9781450337946. DOI: 10.1145/2806416.
2806496 (pp. 125, 131, 161, 232).

[100] Weitao Duan, Shan Ba, and Chunzhe Zhang. “Online Experimentation with
Surrogate Metrics: Guidelines and a Case Study”. In: Proceedings of the 14th
ACM International Conference on Web Search and Data Mining. WSDM ’21.
Virtual Event, Israel: Association for Computing Machinery, 2021, pp. 193–201.
ISBN: 9781450382977. DOI: 10.1145/3437963.3441737 (pp. 124, 144, 161,
162, 164, 232).

https://doi.org/10.1145/1186778.1186782
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1145/2736277.2741116
https://doi.org/10.1145/2736277.2741116
https://doi.org/10.1145/2856822
https://doi.org/10.1145/3038912.3052664
https://doi.org/10.1145/2806416.2806496
https://doi.org/10.1145/2806416.2806496
https://doi.org/10.1145/3437963.3441737

250 BIBLIOGRAPHY

[101] Francisco Duarte, Richard Gil, Paolo Romano, Antónia Lopes, and Luís
Rodrigues. “Learning Non-Deterministic Impact Models for Adaptation”. In:
Proceedings of the 13th International Conference on Software Engineering for
Adaptive and Self-Managing Systems. SEAMS ’18. Gothenburg, Sweden: Asso-
ciation for Computing Machinery, 2018, pp. 196–205. ISBN: 9781450357159.
DOI: 10.1145/3194133.3194138 (pp. 5, 37).

[102] Wouter Duivesteijn, Tara Farzami, Thijs Putman, Evertjan Peer, Hilde J. P.
Weerts, Jasper N. Adegeest, Gerson Foks, and Mykola Pechenizkiy. “Have It
Both Ways—From A/B Testing to A&B Testing with Exceptional Model
Mining”. In: Machine Learning and Knowledge Discovery in Databases.
Ed. by Yasemin Altun, Kamalika Das, Taneli Mielikäinen, Donato Malerba,
Jerzy Stefanowski, Jesse Read, Marinka Žitnik, Michelangelo Ceci, and
Sašo Džeroski. Cham: Springer International Publishing, 2017, pp. 114–126.
ISBN: 978-3-319-71273-4 (pp. 152, 159, 161, 235).

[103] Joshua Eckroth and Eric Schoen. “A genetic algorithm for finding a small and
diverse set of recent news stories on a given subject: How we generate aaai’s
ai-alert”. In: 2019, pp. 9357–9364. URL: https://www.scopus.com/inward/
record.uri?eid=2- s2.0- 85090801224%5C&partnerID=40%5C&md5=
f3391d595e00df8a0cba7802c9043ebd (pp. 146, 161, 235).

[104] Bradley Efron and Robert J. Tibshirani. An Introduction to the Bootstrap. CRC
Press, 1994. ISBN: 9781000064988. URL: https://books.google.be/books?
id=MWC1DwAAQBAJ (p. 165).

[105] Ibrahim Elgendi, Md. Farhad Hossain, Abbas Jamalipour, and Kumudu S.
Munasinghe. “Protecting Cyber Physical Systems Using a Learned MAPE-K
Model”. In: IEEE Access 7 (2019), pp. 90954–90963. ISSN: 2169-3536. DOI:
10.1109/ACCESS.2019.2927037 (p. 38).

[106] Ehsan Elhamifar and René Vidal. “Sparse Subspace Clustering: Algorithm,
Theory, and Applications”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 35.11 (2013), pp. 2765–2781. DOI: 10.1109/TPAMI.
2013.57 (p. 47).

[107] Ahmed Elkhodary, Naeem Esfahani, and Sam Malek. “FUSION: A Framework
for Engineering Self-Tuning Self-Adaptive Software Systems”. In: Proceedings
of the Eighteenth ACM SIGSOFT International Symposium on Foundations of
Software Engineering. FSE ’10. Santa Fe, New Mexico, USA: Association for
Computing Machinery, 2010, pp. 7–16. ISBN: 9781605587912. DOI: 10.1145/
1882291.1882296 (pp. 4, 6, 11, 30, 39, 54).

[108] Ilenia Epifani, Carlo Ghezzi, Raffaela Mirandola, and Giordano Tamburrelli.
“Model Evolution by Run-Time Parameter Adaptation”. In: Proceedings of
the 31st International Conference on Software Engineering. ICSE ’09. USA:
IEEE Computer Society, 2009, pp. 111–121. ISBN: 9781424434534. DOI:
10.1109/ICSE.2009.5070513 (pp. 4, 27).

https://doi.org/10.1145/3194133.3194138
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090801224%5C&partnerID=40%5C&md5=f3391d595e00df8a0cba7802c9043ebd
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090801224%5C&partnerID=40%5C&md5=f3391d595e00df8a0cba7802c9043ebd
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090801224%5C&partnerID=40%5C&md5=f3391d595e00df8a0cba7802c9043ebd
https://books.google.be/books?id=MWC1DwAAQBAJ
https://books.google.be/books?id=MWC1DwAAQBAJ
https://doi.org/10.1109/ACCESS.2019.2927037
https://doi.org/10.1109/TPAMI.2013.57
https://doi.org/10.1109/TPAMI.2013.57
https://doi.org/10.1145/1882291.1882296
https://doi.org/10.1145/1882291.1882296
https://doi.org/10.1109/ICSE.2009.5070513

BIBLIOGRAPHY 251

[109] Beyza Ermis, Patrick Ernst, Yannik Stein, and Giovanni Zappella. “Learning
to Rank in the Position Based Model with Bandit Feedback”. In: Proceedings
of the 29th ACM International Conference on Information & Knowledge
Management. CIKM ’20. Virtual Event, Ireland: Association for Computing
Machinery, 2020, pp. 2405–2412. ISBN: 9781450368599. DOI: 10 . 1145 /
3340531.3412723 (pp. 137, 161, 233).

[110] Vladimir M. Erthal, Bruno P. de Souza, Paulo Sérgio M. dos Santos, and
Guilherme H. Travassos. “A Literature Study to Characterize Continuous
Experimentation in Software Engineering”. In: 2022. URL: https ://www.
scopus.com/inward/record.uri?eid=2-s2.0-85137064966%5C&partnerID=
40%5C&md5=04240b73ab90eb841083173be558b33f (p. 128).

[111] Naeem Esfahani, Ahmed Elkhodary, and Sam Malek. “A Learning-Based
Framework for Engineering Feature-Oriented Self-Adaptive Software Sys-
tems”. In: IEEE Transactions on Software Engineering 39.11 (Nov. 2013),
pp. 1467–1493. ISSN: 2326-3881. DOI: 10.1109/TSE.2013.37 (pp. 14, 39, 44,
45).

[112] Naeem Esfahani, Ehsan Kouroshfar, and Sam Malek. “Taming Uncertainty
in Self-Adaptive Software”. In: Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software
Engineering. ESEC/FSE ’11. Szeged, Hungary: Association for Computing
Machinery, 2011, pp. 234–244. ISBN: 9781450304436. DOI: 10.1145/2025113.
2025147 (p. 4).

[113] Maria Esteller-Cucala, Vicenc Fernandez, and Diego Villuendas. “Experi-
mentation Pitfalls to Avoid in A/B Testing for Online Personalization”. In:
Adjunct Publication of the 27th Conference on User Modeling, Adaptation
and Personalization. UMAP’19 Adjunct. Larnaca, Cyprus: Association for
Computing Machinery, 2019, pp. 153–159. ISBN: 9781450367110. DOI: 10.
1145/3314183.3323853 (pp. 161, 162, 164, 231).

[114] Aleksander Fabijan, Benjamin Arai, Pavel Dmitriev, and Lukas Vermeer. “It
takes a Flywheel to Fly: Kickstarting and Growing the A/B testing Momentum
at Scale”. In: 2021 47th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA). 2021, pp. 109–118. DOI: 10 . 1109 /
SEAA53835.2021.00023 (pp. 164, 172).

[115] Aleksander Fabijan, Pavel Dmitriev, Helena Holmstrom Olsson, and Jan Bosch.
“The Online Controlled Experiment Lifecycle”. In: IEEE Software 37.02 (Mar.
2020), pp. 60–67. ISSN: 1937-4194. DOI: 10.1109/MS.2018.2875842 (p. 127).

[116] Aleksander Fabijan, Pavel Dmitriev, Colin McFarland, Lukas Vermeer,
Helena Holmström Olsson, and Jan Bosch. “Experimentation growth: Evolving
trustworthy A/B testing capabilities in online software companies”. In: Journal
of Software: Evolution and Process 30.12 (2018). e2113 JSME-17-0210.R2,

https://doi.org/10.1145/3340531.3412723
https://doi.org/10.1145/3340531.3412723
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137064966%5C&partnerID=40%5C&md5=04240b73ab90eb841083173be558b33f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137064966%5C&partnerID=40%5C&md5=04240b73ab90eb841083173be558b33f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137064966%5C&partnerID=40%5C&md5=04240b73ab90eb841083173be558b33f
https://doi.org/10.1109/TSE.2013.37
https://doi.org/10.1145/2025113.2025147
https://doi.org/10.1145/2025113.2025147
https://doi.org/10.1145/3314183.3323853
https://doi.org/10.1145/3314183.3323853
https://doi.org/10.1109/SEAA53835.2021.00023
https://doi.org/10.1109/SEAA53835.2021.00023
https://doi.org/10.1109/MS.2018.2875842

252 BIBLIOGRAPHY

e2113. DOI: 10.1002/smr.2113. eprint: https://onlinelibrary.wiley.com/doi/
pdf/10.1002/smr.2113 (pp. 9, 137, 161, 235).

[117] Aleksander Fabijan, Pavel Dmitriev, Helena Holmström Olsson, and Jan Bosch.
“The Benefits of Controlled Experimentation at Scale”. In: 2017 43rd
Euromicro Conference on Software Engineering and Advanced Applications
(SEAA). 2017, pp. 18–26. DOI: 10.1109/SEAA.2017.47 (pp. 9, 155, 159, 161,
171, 234).

[118] Aleksander Fabijan, Pavel Dmitriev, Helena Holmström Olsson, and Jan
Bosch. “The Evolution of Continuous Experimentation in Software Product
Development: From Data to a Data-Driven Organization at Scale”. In:
Proceedings of the 39th International Conference on Software Engineering.
ICSE ’17. Buenos Aires, Argentina: IEEE Press, 2017, pp. 770–780. ISBN:
9781538638682. DOI: 10.1109/ICSE.2017.76 (pp. 124, 127, 161, 163, 164,
232).

[119] Aleksander Fabijan, Jayant Gupchup, Somit Gupta, Jeff Omhover, Wen Qin,
Lukas Vermeer, and Pavel Dmitriev. “Diagnosing Sample Ratio Mismatch
in Online Controlled Experiments: A Taxonomy and Rules of Thumb for
Practitioners”. In: Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. KDD ’19. Anchorage,
AK, USA: Association for Computing Machinery, 2019, pp. 2156–2164. ISBN:
9781450362016. DOI: 10.1145/3292500.3330722 (pp. 137, 139, 154, 161,
218, 232).

[120] Aleksander Fabijan, Helena Holmström Olsson, and Jan Bosch. “Customer
Feedback and Data Collection Techniques in Software R&D: A Literature
Review”. In: Software Business. Ed. by João M. Fernandes, Ricardo J. Machado,
and Krzysztof Wnuk. Cham: Springer International Publishing, 2015, pp. 139–
153. ISBN: 978-3-319-19593-3. DOI: 10 .1007/978 - 3 - 319 - 19593 - 3_ 12
(p. 128).

[121] Aleksander Fabijan, Helena Holmström Olsson, and Jan Bosch. “The Lack
of Sharing of Customer Data in Large Software Organizations: Challenges
and Implications”. In: Agile Processes, in Software Engineering, and
Extreme Programming. Ed. by Helen Sharp and Tracy Hall. Cham: Springer
International Publishing, 2016, pp. 39–52. ISBN: 978-3-319-33515-5. DOI:
10.1007/978-3-319-33515-5_4 (p. 129).

[122] Fabian Fagerholm, Alejandro Sanchez Guinea, Hanna Mäenpää, and Jürgen
Münch. “The RIGHT model for Continuous Experimentation”. In: Journal
of Systems and Software 123 (2017), pp. 292–305. ISSN: 0164-1212. DOI:
10.1016/j.jss.2016.03.034 (p. 197).

https://doi.org/10.1002/smr.2113
https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.2113
https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.2113
https://doi.org/10.1109/SEAA.2017.47
https://doi.org/10.1109/ICSE.2017.76
https://doi.org/10.1145/3292500.3330722
https://doi.org/10.1007/978-3-319-19593-3_12
https://doi.org/10.1007/978-3-319-33515-5_4
https://doi.org/10.1016/j.jss.2016.03.034

BIBLIOGRAPHY 253

[123] Yaron Fairstein, Elad Haramaty, Arnon Lazerson, and Liane Lewin-Eytan.
“External Evaluation of Ranking Models under Extreme Position-Bias”. In:
Proceedings of the Fifteenth ACM International Conference on Web Search and
Data Mining. WSDM ’22. Virtual Event, AZ, USA: Association for Computing
Machinery, 2022, pp. 252–261. ISBN: 9781450391320. DOI: 10.1145/3488560.
3498420 (pp. 142, 161, 233).

[124] Feature-Flags. https://www.split.io/product/feature-flags/. 2023 (p. 172).

[125] Rico de Feijter, Rob van Vliet, Erik Jagroep, Sietse Overbeek, and Sjaak
Brinkkemper. Towards the adoption of DevOps in software product organiza-
tions: A maturity model approach. Tech. rep. Utrecht University, 2017 (p. 127).

[126] Elea McDonnell Feit and Ron Berman. “Test & Roll: Profit-Maximizing A/B
Tests”. In: Marketing Science 38.6 (2019), pp. 1038–1058. DOI: 10.1287/
mksc.2019.1194 (pp. 161, 236).

[127] Dawei Feng and Cecile Germain. “Fault Monitoring with Sequential Matrix
Factorization”. In: ACM Trans. Auton. Adapt. Syst. 10.3 (Oct. 2015). ISSN:
1556-4665. DOI: 10.1145/2797141 (p. 43).

[128] Lorenzo Fernández Maimó, Ángel Luis Perales Gómez, Félix J. García
Clemente, Manuel Gil Pérez, and Gregorio Martínez Pérez. “A Self-Adaptive
Deep Learning-Based System for Anomaly Detection in 5G Networks”. In:
IEEE Access 6 (2018), pp. 7700–7712. ISSN: 2169-3536. DOI: 10 . 1109 /
ACCESS.2018.2803446 (pp. 8, 30, 39, 40, 43, 47, 73, 85).

[129] Matteo Ferroni, Andrea Corna, Andrea Damiani, Rolando Brondolin, John D.
Kubiatowicz, Donatella Sciuto, and Marco D. Santambrogio. “MARC: A
Resource Consumption Modeling Service for Self-Aware Autonomous Agents”.
In: ACM Trans. Auton. Adapt. Syst. 12.4 (Nov. 2017). ISSN: 1556-4665. DOI:
10.1145/3127499 (p. 43).

[130] Antonio Filieri, Carlo Ghezzi, and Giordano Tamburrelli. “Run-time Efficient
Probabilistic Model Checking”. In: Proceedings of the 33rd International
Conference on Software Engineering. ICSE ’11. Waikiki, Honolulu, HI, USA:
ACM, 2011, pp. 341–350. ISBN: 978-1-4503-0445-0. DOI: 10.1145/1985793.
1985840 (p. 56).

[131] Antonio Filieri, Henry Hoffmann, and Martina Maggio. “Automated Design
of Self-Adaptive Software with Control-Theoretical Formal Guarantees”. In:
Proceedings of the 36th International Conference on Software Engineering.
ICSE 2014. Hyderabad, India: Association for Computing Machinery, 2014,
pp. 299–310. ISBN: 9781450327565. DOI: 10.1145/2568225.2568272 (p. 4).

[132] Benito E Flores. “A pragmatic view of accuracy measurement in forecasting”.
In: Omega 14.2 (1986), pp. 93–98. ISSN: 0305-0483. DOI: 10.1016/0305-
0483(86)90013-7 (p. 85).

https://doi.org/10.1145/3488560.3498420
https://doi.org/10.1145/3488560.3498420
https://www.split.io/product/feature-flags/
https://doi.org/10.1287/mksc.2019.1194
https://doi.org/10.1287/mksc.2019.1194
https://doi.org/10.1145/2797141
https://doi.org/10.1109/ACCESS.2018.2803446
https://doi.org/10.1109/ACCESS.2018.2803446
https://doi.org/10.1145/3127499
https://doi.org/10.1145/1985793.1985840
https://doi.org/10.1145/1985793.1985840
https://doi.org/10.1145/2568225.2568272
https://doi.org/10.1016/0305-0483(86)90013-7
https://doi.org/10.1016/0305-0483(86)90013-7

254 BIBLIOGRAPHY

[133] Paolo Di Francesco, Ivano Malavolta, and Patricia Lago. “Research on
Architecting Microservices: Trends, Focus, and Potential for Industrial
Adoption”. In: IEEE International Conference on Software Architecture. 2017.
DOI: 10.1109/ICSA.2017.24 (p. 197).

[134] João M. Franco, Francisco Correia, Raul Barbosa, Mário Zenha-Rela, Bradley
Schmerl, and David Garlan. “Improving self-adaptation planning through
software architecture-based stochastic modeling”. In: Journal of Systems and
Software 115 (2016), pp. 42–60. ISSN: 0164-1212. DOI: 10.1016/j.jss.2016.
01.026 (p. 2).

[135] Antonino Freno. “Practical Lessons from Developing a Large-Scale Rec-
ommender System at Zalando”. In: Proceedings of the Eleventh ACM
Conference on Recommender Systems. RecSys ’17. Como, Italy: Association
for Computing Machinery, 2017, pp. 251–259. ISBN: 9781450346528. DOI:
10.1145/3109859.3109897 (pp. 152, 161, 234).

[136] Alexander Frömmgen, Robert Rehner, Max Lehn, and Alejandro Buchmann.
“Fossa: Learning ECA Rules for Adaptive Distributed Systems”. In: 2015 IEEE
International Conference on Autonomic Computing. July 2015, pp. 207–210.
DOI: 10.1109/ICAC.2015.37 (pp. 35, 49).

[137] Kun Fu, Fanlin Meng, Jieping Ye, and Zheng Wang. “CompactETA: A Fast
Inference System for Travel Time Prediction”. In: Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining.
KDD ’20. Virtual Event, CA, USA: Association for Computing Machinery,
2020, pp. 3337–3345. ISBN: 9781450379984. DOI: 10.1145/3394486.3403386
(pp. 138, 161, 233).

[138] Burkhardt Funk. “Optimizing price levels in e-commerce applications: An
empirical study”. In: 2009, pp. 37–43. URL: https : //www. scopus . com/
inward/record.uri?eid=2- s2.0-74549181430%5C&partnerID=40%5C&
md5=6dfdde67b807b3964c62fc8c1929dcf0 (pp. 161, 236).

[139] Matthias Galster and Danny Weyns. “Empirical Research in Software
Architecture: How Far have We Come?” In: 2016 13th Working IEEE/IFIP
Conference on Software Architecture (WICSA). Los Alamitos, CA, USA: IEEE
Press, 2016, pp. 11–20. DOI: 10.1109/WICSA.2016.10 (p. 127).

[140] Alessio Gambi, Giovanni Toffetti, and Mauro Pezzè. “Assurance of Self-
adaptive Controllers for the Cloud”. In: Assurances for Self-Adaptive Systems:
Principles, Models, and Techniques. Ed. by Javier Cámara, Rogério de Lemos,
Carlo Ghezzi, and Antónia Lopes. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 311–339. ISBN: 978-3-642-36249-1. DOI: 10.1007/978-
3-642-36249-1_12 (p. 28).

https://doi.org/10.1109/ICSA.2017.24
https://doi.org/10.1016/j.jss.2016.01.026
https://doi.org/10.1016/j.jss.2016.01.026
https://doi.org/10.1145/3109859.3109897
https://doi.org/10.1109/ICAC.2015.37
https://doi.org/10.1145/3394486.3403386
https://www.scopus.com/inward/record.uri?eid=2-s2.0-74549181430%5C&partnerID=40%5C&md5=6dfdde67b807b3964c62fc8c1929dcf0
https://www.scopus.com/inward/record.uri?eid=2-s2.0-74549181430%5C&partnerID=40%5C&md5=6dfdde67b807b3964c62fc8c1929dcf0
https://www.scopus.com/inward/record.uri?eid=2-s2.0-74549181430%5C&partnerID=40%5C&md5=6dfdde67b807b3964c62fc8c1929dcf0
https://doi.org/10.1109/WICSA.2016.10
https://doi.org/10.1007/978-3-642-36249-1_12
https://doi.org/10.1007/978-3-642-36249-1_12

BIBLIOGRAPHY 255

[141] Juan Cruz Gardey and Alejandra Garrido. “User Experience Evaluation through
Automatic A/B Testing”. In: Proceedings of the 25th International Conference
on Intelligent User Interfaces Companion. IUI ’20. Cagliari, Italy: Association
for Computing Machinery, 2020, pp. 25–26. ISBN: 9781450375139. DOI:
10.1145/3379336.3381514 (pp. 5, 11, 171).

[142] David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley Schmerl, and
Peter Steenkiste. “Rainbow: Architecture-Based Self-Adaptation with Reusable
Infrastructure”. In: Computer 37.10 (Oct. 2004), pp. 46–54. ISSN: 0018-9162.
DOI: 10.1109/MC.2004.175 (pp. 2, 4, 22, 24, 52).

[143] V. Geetha Lekshmy, P. A. Vishnu, and P. S. Harikrishnan. “Adaptive IoT
System for Precision Agriculture”. In: Inventive Computation and Information
Technologies. Ed. by S. Smys, Valentina Emilia Balas, and Ram Palanisamy.
Singapore: Springer Singapore, 2022, pp. 39–49. ISBN: 978-981-16-6723-7.
DOI: 10.1007/978-981-16-6723-7_4 (p. 83).

[144] Simos Gerasimou, Radu Calinescu, and Alec Banks. “Efficient Runtime
Quantitative Verification Using Caching, Lookahead, and Nearly-optimal
Reconfiguration”. In: Proceedings of the 9th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems. SEAMS 2014.
Hyderabad, India: ACM, 2014, pp. 115–124. ISBN: 978-1-4503-2864-7. DOI:
10.1145/2593929.2593932 (p. 56).

[145] Ilias Gerostathopoulos, Ali Naci Uysal, Christian Prehofer, and Tomas Bures.
“A Tool for Online Experiment-Driven Adaptation”. In: 2018 IEEE 3rd
International Workshops on Foundations and Applications of Self* Systems
(FAS*W). 2018, pp. 100–105. DOI: 10.1109/FAS-W.2018.00032 (p. 172).

[146] Ilias Gerostathopoulos, Dominik Skoda, Frantisek Plasil, Tomas Bures,
and Alessia Knauss. “Architectural Homeostasis in Self-Adaptive Software-
Intensive Cyber-Physical Systems”. In: Software Architecture. Ed. by Bedir
Tekinerdogan, Uwe Zdun, and Ali Babar. Cham: Springer International
Publishing, 2016, pp. 113–128. ISBN: 978-3-319-48992-6. DOI: 10.1007/978-
3-319-48992-6_8 (p. 43).

[147] Pierre Geurts, Damien Ernst, and Louis Wehenkel. “Extremely randomized
trees”. In: Machine Learning 63 (2006), pp. 3–42. DOI: 10.1007/s10994-006-
6226-1 (p. 83).

[148] Sona Ghahremani, Christian M. Adriano, and Holger Giese. “Training
Prediction Models for Rule-Based Self-Adaptive Systems”. In: 2018 IEEE
International Conference on Autonomic Computing (ICAC). Sept. 2018,
pp. 187–192. DOI: 10.1109/ICAC.2018.00031 (pp. 31, 56).

https://doi.org/10.1145/3379336.3381514
https://doi.org/10.1109/MC.2004.175
https://doi.org/10.1007/978-981-16-6723-7_4
https://doi.org/10.1145/2593929.2593932
https://doi.org/10.1109/FAS-W.2018.00032
https://doi.org/10.1007/978-3-319-48992-6_8
https://doi.org/10.1007/978-3-319-48992-6_8
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1109/ICAC.2018.00031

256 BIBLIOGRAPHY

[149] Sona Ghahremani, Holger Giese, and Thomas Vogel. “Efficient Utility-Driven
Self-Healing Employing Adaptation Rules for Large Dynamic Architectures”.
In: 2017 IEEE International Conference on Autonomic Computing (ICAC).
2017, pp. 59–68. DOI: 10.1109/ICAC.2017.35 (p. 56).

[150] Omid Gheibi and Danny Weyns. “Lifelong Self-Adaptation: Self-Adaptation
Meets Lifelong Machine Learning”. In: Proceedings of the 17th Symposium
on Software Engineering for Adaptive and Self-Managing Systems. SEAMS
’22. Pittsburgh, Pennsylvania: Association for Computing Machinery, 2022,
pp. 1–12. ISBN: 9781450393058. DOI: 10.1145/3524844.3528052 (p. 218).

[151] Omid Gheibi, Danny Weyns, and Federico Quin. “Applying Machine Learning
in Self-Adaptive Systems: A Systematic Literature Review”. In: ACM Trans.
Auton. Adapt. Syst. 15.3 (Aug. 2021). ISSN: 1556-4665. DOI: 10.1145/3469440
(pp. 7, 18, 21, 53, 210, 289).

[152] Omid Gheibi, Danny Weyns, and Federico Quin. “On the Impact of Applying
Machine Learning in the Decision-Making of Self-Adaptive Systems”. In:
2021 International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS). 2021, pp. 104–110. DOI: 10.1109/SEAMS51251.
2021.00023 (p. 290).

[153] Carlo Ghezzi. “The Fading Boundary between Development Time and Run
Time”. In: 2011 IEEE Ninth European Conference on Web Services. 2011,
pp. 11–11. DOI: 10.1109/ECOWS.2011.33 (p. 52).

[154] Federico Giaimo, Hugo Andrade, and Christian Berger. “Continuous exper-
imentation and the cyber–physical systems challenge: An overview of the
literature and the industrial perspective”. In: Journal of Systems and Software
170 (2020), p. 110781. ISSN: 0164-1212. DOI: 10.1016/j.jss.2020.110781
(p. 129).

[155] Carlos A. Gomez-Uribe and Neil Hunt. “The Netflix Recommender System:
Algorithms, Business Value, and Innovation”. In: ACM Trans. Manage. Inf.
Syst. 6.4 (Dec. 2016). ISSN: 2158-656X. DOI: 10.1145/2843948 (pp. 161,
233).

[156] Anjan Goswami, Wei Han, Zhenrui Wang, and Angela Jiang. “Controlled
experiments for decision-making in e-Commerce search”. In: 2015 IEEE
International Conference on Big Data (Big Data). Los Alamitos, CA, USA:
IEEE Press, 2015, pp. 1094–1102. DOI: 10.1109/BigData.2015.7363863
(pp. 124, 143, 154, 159, 161, 162, 164, 165, 170, 171, 234).

[157] Samuel Greengard. The Internet of Things. Massachusetts Institute of
Technology Press, 2015. ISBN: 9780262527736. URL: https://mitpress.mit.
edu/9780262527736/the-internet-of-things/ (p. 1).

https://doi.org/10.1109/ICAC.2017.35
https://doi.org/10.1145/3524844.3528052
https://doi.org/10.1145/3469440
https://doi.org/10.1109/SEAMS51251.2021.00023
https://doi.org/10.1109/SEAMS51251.2021.00023
https://doi.org/10.1109/ECOWS.2011.33
https://doi.org/10.1016/j.jss.2020.110781
https://doi.org/10.1145/2843948
https://doi.org/10.1109/BigData.2015.7363863
https://mitpress.mit.edu/9780262527736/the-internet-of-things/
https://mitpress.mit.edu/9780262527736/the-internet-of-things/

BIBLIOGRAPHY 257

[158] Alois Gruson, Praveen Chandar, Christophe Charbuillet, James McInerney,
Samantha Hansen, Damien Tardieu, and Ben Carterette. “Offline Evaluation to
Make Decisions About PlaylistRecommendation Algorithms”. In: Proceedings
of the Twelfth ACM International Conference on Web Search and Data Mining.
WSDM ’19. Melbourne VIC, Australia: Association for Computing Machinery,
2019, pp. 420–428. ISBN: 9781450359405. DOI: 10.1145/3289600.3291027
(pp. 146, 158, 161, 162, 172, 233).

[159] Xiaodong Gu. “IDES: Self-adaptive Software with Online Policy Evolution
Extended from Rainbow”. In: Computer and Information Science 2012. Ed. by
Roger Lee. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 181–195.
ISBN: 978-3-642-30454-5. DOI: 10.1007/978-3-642-30454-5_13 (p. 31).

[160] Huan Gui, Ya Xu, Anmol Bhasin, and Jiawei Han. “Network A/B Testing: From
Sampling to Estimation”. In: Proceedings of the 24th International Conference
on World Wide Web. WWW ’15. Florence, Italy: International World Wide Web
Conferences Steering Committee, 2015, pp. 399–409. ISBN: 9781450334693.
DOI: 10.1145/2736277.2741081 (pp. 131, 158, 161, 162, 180, 231).

[161] Yongyi Guo, Dominic Coey, Mikael Konutgan, Wenting Li, Chris Schoener,
and Matt Goldman. “Machine Learning for Variance Reduction in Online
Experiments”. In: Advances in Neural Information Processing Systems. Ed. by
M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
Vaughan. Vol. 34. Curran Associates, Inc., 2021, pp. 8637–8648. URL:
https : / / proceedings . neurips . cc / paper _ files / paper / 2021 / file /
488b084119a1c7a4950f00706ec7ea16-Paper.pdf (pp. 12, 173).

[162] Jayant Gupchup, Yasaman Hosseinkashi, Pavel Dmitriev, Daniel Schneider,
Ross Cutler, Andrei Jefremov, and Martin Ellis. “Trustworthy Experimentation
Under Telemetry Loss”. In: Proceedings of the 27th ACM International
Conference on Information and Knowledge Management. CIKM ’18. Torino,
Italy: Association for Computing Machinery, 2018, pp. 387–396. ISBN:
9781450360142. DOI: 10.1145/3269206.3271747 (pp. 137, 161, 162, 233).

[163] Shubham Gupta and Sneha Chokshi. “Digital Marketing Effectiveness Using
Incrementality”. In: Advances in Computing and Data Sciences. Ed. by Mayank
Singh, P. K. Gupta, Vipin Tyagi, Jan Flusser, Tuncer Ören, and Gianluca
Valentino. Singapore: Springer Singapore, 2020, pp. 66–75. ISBN: 978-981-15-
6634-9 (pp. 125, 140, 143, 161, 235).

[164] Somit Gupta et al. “Top Challenges from the First Practical Online Controlled
Experiments Summit”. In: SIGKDD Explor. Newsl. 21.1 (May 2019), pp. 20–35.
ISSN: 1931-0145. DOI: 10.1145/3331651.3331655 (pp. 5, 11, 171, 199).

[165] Somit Gupta, Lucy Ulanova, Sumit Bhardwaj, Pavel Dmitriev, Paul Raff,
and Aleksander Fabijan. “The Anatomy of a Large-Scale Experimentation
Platform”. In: 2018 IEEE International Conference on Software Architecture

https://doi.org/10.1145/3289600.3291027
https://doi.org/10.1007/978-3-642-30454-5_13
https://doi.org/10.1145/2736277.2741081
https://proceedings.neurips.cc/paper_files/paper/2021/file/488b084119a1c7a4950f00706ec7ea16-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/488b084119a1c7a4950f00706ec7ea16-Paper.pdf
https://doi.org/10.1145/3269206.3271747
https://doi.org/10.1145/3331651.3331655

258 BIBLIOGRAPHY

(ICSA). 2018, pp. 1–109. DOI: 10.1109/ICSA.2018.00009 (pp. 153, 161, 163,
234).

[166] MyungJoo Ham, Sangjung Woo, Jaeyun Jung, Wook Song, Gichan Jang,
Yongjoo Ahn, and Hyoungjoo Ahn. “Toward Among-Device AI from on-
Device AI with Stream Pipelines”. In: Proceedings of the 44th International
Conference on Software Engineering: Software Engineering in Practice. ICSE-
SEIP ’22. Pittsburgh, Pennsylvania: Association for Computing Machinery,
2022, pp. 285–294. ISBN: 9781450392266. DOI: 10.1145/3510457.3513026
(p. 1).

[167] Yan He and Miao Chen. “A Probabilistic, Mechanism-Indepedent Outlier
Detection Method for Online Experimentation”. In: 2017 IEEE International
Conference on Data Science and Advanced Analytics (DSAA). 2017, pp. 640–
647. DOI: 10.1109/DSAA.2017.64 (pp. 155, 161, 235).

[168] Yan He, Lin Yu, Miao Chen, William Choi, and Don Matheson. “A Cluster-
Based Nearest Neighbor Matching Algorithm for Enhanced A/A Validation in
Online Experimentation”. In: Companion Proceedings of the Web Conference
2022. WWW ’22. Virtual Event, Lyon, France: Association for Computing
Machinery, 2022, pp. 136–140. ISBN: 9781450391306. DOI: 10.1145/3487553.
3524220 (pp. 161, 162, 219, 232).

[169] Francis Heylighen. “The Science of Self-organization and Adaptivity”. In:
Knowledge Management, Organizational Intelligence and Learning, and
Complexity: v. 3. Ed. by L. D. Kiel. EOLSS Publishers Co Ltd, 2002. ISBN:
978-1-84826-913-2 (p. 22).

[170] Sara M. Hezavehi, Danny Weyns, Paris Avgeriou, Radu Calinescu, Raffaela
Mirandola, and Diego Perez-Palacin. “Uncertainty in Self-Adaptive Systems:
A Research Community Perspective”. In: ACM Trans. Auton. Adapt. Syst. 15.4
(Dec. 2021). ISSN: 1556-4665. DOI: 10.1145/3487921 (pp. 6, 14).

[171] Han Nguyen Ho and Eunseok Lee. “Model-Based Reinforcement Learning
Approach for Planning in Self-Adaptive Software System”. In: Proceedings
of the 9th International Conference on Ubiquitous Information Management
and Communication. IMCOM ’15. Bali, Indonesia: Association for Computing
Machinery, 2015. ISBN: 9781450333771. DOI: 10.1145/2701126.2701191
(pp. 44, 45).

[172] Jez Humble and David Farley. Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation. 1st. Illinois, IL, USA:
Addison-Wesley Professional, 2010. ISBN: 0321601912 (pp. 9, 127).

[173] Pawel Idziak and Siobhán Clarke. “An Analysis of Decision-Making
Techniques in Dynamic, Self-Adaptive Systems”. In: 2014 IEEE Eighth
International Conference on Self-Adaptive and Self-Organizing Systems
Workshops. Sept. 2014, pp. 137–143. DOI: 10.1109/SASOW.2014.23 (p. 55).

https://doi.org/10.1109/ICSA.2018.00009
https://doi.org/10.1145/3510457.3513026
https://doi.org/10.1109/DSAA.2017.64
https://doi.org/10.1145/3487553.3524220
https://doi.org/10.1145/3487553.3524220
https://doi.org/10.1145/3487921
https://doi.org/10.1145/2701126.2701191
https://doi.org/10.1109/SASOW.2014.23

BIBLIOGRAPHY 259

[174] M. Usman Iftikhar, Jonas Lundberg, and Danny Weyns. “A Model Interpreter
for Timed Automata”. In: Leveraging Applications of Formal Methods,
Verification and Validation: Foundational Techniques. Ed. by Tiziana Margaria
and Bernhard Steffen. Cham: Springer International Publishing, 2016,
pp. 243–258. ISBN: 978-3-319-47166-2. DOI: 10.1007/978-3-319-47166-
2_17 (pp. 91, 106).

[175] M. Usman Iftikhar, Gowri Sankar Ramachandran, Pablo Bollansée, Danny
Weyns, and Danny Hughes. “DeltaIoT: A Self-Adaptive Internet of Things
Exemplar”. In: IEEE/ACM 12th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems. 2017, pp. 76–82. DOI:
10.1109/SEAMS.2017.21 (pp. 16, 86).

[176] M. Usman Iftikhar and Danny Weyns. “ActivFORMS: Active Formal Models
for Self-Adaptation”. In: Proceedings of the 9th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems. SEAMS 2014.
Hyderabad, India: ACM, 2014, pp. 125–134. ISBN: 9781450328647. DOI:
10.1145/2593929.2593944 (pp. 4, 24, 53, 218).

[177] Azlan Ismail and Valeria Cardellini. “Decentralized Planning for Self-
Adaptation in Multi-cloud Environment”. In: Advances in Service-Oriented and
Cloud Computing. Ed. by Guadalupe Ortiz and Cuong Tran. Cham: Springer
International Publishing, 2015, pp. 76–90. ISBN: 978-3-319-14886-1. DOI:
10.1007/978-3-319-14886-1_9 (p. 44).

[178] David Issa Mattos, Pavel Dmitriev, Aleksander Fabijan, Jan Bosch, and Helena
Holmström Olsson. “An Activity and Metric Model for Online Controlled
Experiments”. In: Product-Focused Software Process Improvement. Ed. by
Marco Kuhrmann, Kurt Schneider, Dietmar Pfahl, Sousuke Amasaki, Marcus
Ciolkowski, Regina Hebig, Paolo Tell, Jil Klünder, and Steffen Küpper. Cham:
Springer International Publishing, 2018, pp. 182–198. ISBN: 978-3-030-03673-
7 (p. 170).

[179] Pooyan Jamshidi, Javier Cámara, Bradley Schmerl, Christian Kästner, and
David Garlan. “Machine Learning Meets Quantitative Planning: Enabling Self-
Adaptation in Autonomous Robots”. In: Proceedings of the 14th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems.
SEAMS ’19. Montreal, Quebec, Canada: IEEE Press, May 2019, pp. 39–50.
DOI: 10.1109/SEAMS.2019.00015 (pp. 6, 8, 54).

[180] Pooyan Jamshidi, Claus Pahl, and Nabor C. Mendonça. “Managing Uncertainty
in Autonomic Cloud Elasticity Controllers”. In: IEEE Cloud Computing 3.3
(2016), pp. 50–60. DOI: 10.1109/MCC.2016.66 (p. 30).

[181] Pooyan Jamshidi, Claus Pahl, Nabor C. Mendonça, James Lewis, and Stefan
Tilkov. “Microservices: The Journey So Far and Challenges Ahead”. In: IEEE
Software 35.3 (2018). DOI: 10.1109/MS.2018.2141039 (p. 198).

https://doi.org/10.1007/978-3-319-47166-2_17
https://doi.org/10.1007/978-3-319-47166-2_17
https://doi.org/10.1109/SEAMS.2017.21
https://doi.org/10.1145/2593929.2593944
https://doi.org/10.1007/978-3-319-14886-1_9
https://doi.org/10.1109/SEAMS.2019.00015
https://doi.org/10.1109/MCC.2016.66
https://doi.org/10.1109/MS.2018.2141039

260 BIBLIOGRAPHY

[182] Pooyan Jamshidi, Amir Sharifloo, Claus Pahl, Hamid Arabnejad, Andreas
Metzger, and Giovani Estrada. “Fuzzy Self-Learning Controllers for Elasticity
Management in Dynamic Cloud Architectures”. In: 2016 12th International
ACM SIGSOFT Conference on Quality of Software Architectures (QoSA). Apr.
2016, pp. 70–79. DOI: 10.1109/QoSA.2016.13 (pp. 4, 5, 27, 43, 44).

[183] Pooyan Jamshidi, Miguel Velez, Christian Kästner, and Norbert Siegmund.
“Learning to Sample: Exploiting Similarities across Environments to Learn
Performance Models for Configurable Systems”. In: Proceedings of the 2018
26th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. ESEC/FSE 2018.
Lake Buena Vista, FL, USA: Association for Computing Machinery, 2018,
pp. 71–82. ISBN: 9781450355735. DOI: 10.1145/3236024.3236074 (pp. 31,
83).

[184] Pooyan Jamshidi, Miguel Velez, Christian Kästner, Norbert Siegmund, and
Prasad Kawthekar. “Transfer Learning for Improving Model Predictions in
Highly Configurable Software”. In: Proceedings of the 12th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems.
SEAMS ’17. Buenos Aires, Argentina: IEEE Press, 2017, pp. 31–41. ISBN:
9781538615508. DOI: 10.1109/SEAMS.2017.11 (pp. 44, 45).

[185] Janne Järvinen, Tua Huomo, Tommi Mikkonen, and Pasi Tyrväinen. “From
Agile Software Development to Mercury Business”. In: Software Business.
Towards Continuous Value Delivery. Ed. by Casper Lassenius and Kari
Smolander. Cham: Springer International Publishing, 2014, pp. 58–71. ISBN:
978-3-319-08738-2 (p. 197).

[186] Hao Jiang, Fan Yang, and Wutao Wei. “Statistical Reasoning of Zero-
Inflated Right-Skewed User-Generated Big Data A/B Testing”. In: 2020 IEEE
International Conference on Big Data (Big Data). 2020, pp. 1533–1544. DOI:
10.1109/BigData50022.2020.9377996 (pp. 144, 161, 163, 165, 234).

[187] Ramesh Johari, Pete Koomen, Leonid Pekelis, and David Walsh. “Peeking
at A/B Tests: Why It Matters, and What to Do about It”. In: Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. KDD ’17. Halifax, NS, Canada: Association for Computing
Machinery, Aug. 2017, pp. 1517–1525. ISBN: 9781450348874. DOI: 10.1145/
3097983.3097992 (pp. 124, 152, 161, 232).

[188] Nianqiao Ju, Diane Hu, Adam Henderson, and Liangjie Hong. “A Sequential
Test for Selecting the Better Variant: Online A/B Testing, Adaptive Allocation,
and Continuous Monitoring”. In: Proceedings of the Twelfth ACM International
Conference on Web Search and Data Mining. WSDM ’19. Melbourne VIC,
Australia: Association for Computing Machinery, 2019, pp. 492–500. ISBN:
9781450359405. DOI: 10.1145/3289600.3291025 (pp. 137, 144, 158, 161–
163, 232).

https://doi.org/10.1109/QoSA.2016.13
https://doi.org/10.1145/3236024.3236074
https://doi.org/10.1109/SEAMS.2017.11
https://doi.org/10.1109/BigData50022.2020.9377996
https://doi.org/10.1145/3097983.3097992
https://doi.org/10.1145/3097983.3097992
https://doi.org/10.1145/3289600.3291025

BIBLIOGRAPHY 261

[189] Dhrgam AL-Kafaf, Dae-Kyoo Kim, and Lunjin Lu. “A three-phase decision
making approach for self-adaptive systems using web services”. In: Complex
Adaptive Systems Modeling 6.1 (Oct. 2018). ISSN: 2194-3206. DOI: 10.1186/
s40294-018-0059-1 (p. 43).

[190] Andrew Karpan. The Internet of Things. Current Controversies. MIT Press,
2021. ISBN: 9781534507746. URL: https://books.google.be/books?id=
joReEAAAQBAJ (p. 1).

[191] Hadeel El-Kassabi, Mohamed Adel Serhani, Salah Bouktif, and Abdelghani
Benharref. “Multi-Model Deep Learning for Cloud Resources Prediction to
Support Proactive Workflow Adaptation”. In: 2019 IEEE Cloud Summit. 2019,
pp. 78–85. DOI: 10.1109/CloudSummit47114.2019.00019 (pp. 31, 56).

[192] Staffs Keele et al. Guidelines for performing systematic literature reviews in
software engineering. Tech. rep. Technical report, Ver. 2.3 EBSE Technical
Report. EBSE, 2007 (pp. 14, 23, 124, 130).

[193] Jeffrey O. Kephart and David M. Chess. “The Vision of Autonomic
Computing”. In: Computer 36.1 (2003), pp. 41–50. DOI: 10.1109/MC.2003.
1160055 (pp. 1, 2, 4, 5, 22, 24, 52, 60, 174, 204).

[194] Manzoor Ahmed Khan and Hamidou Tembine. “Meta-Learning for Realizing
Self-x Management of Future Networks”. In: IEEE Access 5 (2017), pp. 19072–
19083. ISSN: 2169-3536. DOI: 10.1109/ACCESS.2017.2745999 (p. 37).

[195] Eugene Kharitonov, Alexey Drutsa, and Pavel Serdyukov. “Learning Sensitive
Combinations of A/B Test Metrics”. In: Proceedings of the Tenth ACM
International Conference on Web Search and Data Mining. WSDM ’17.
Cambridge, United Kingdom: Association for Computing Machinery, 2017,
pp. 651–659. ISBN: 9781450346757. DOI: 10 . 1145 / 3018661 . 3018708
(pp. 131, 161, 162, 164, 173, 232).

[196] Eugene Kharitonov, Aleksandr Vorobev, Craig Macdonald, Pavel Serdyukov,
and Iadh Ounis. “Sequential Testing for Early Stopping of Online Experiments”.
In: Proceedings of the 38th International ACM SIGIR Conference on
Research and Development in Information Retrieval. SIGIR ’15. Santiago,
Chile: Association for Computing Machinery, 2015, pp. 473–482. ISBN:
9781450336215. DOI: 10.1145/2766462.2767729 (pp. 139, 161, 162, 165,
232).

[197] Rochelle King, Elizabeth F. Churchill, and Caitlin Tan. Designing with Data:
Improving the User Experience with A/B Testing. Sebastopol, CA, USA:
O’Reilly Media, Inc., 2017. ISBN: 9781449334833 (pp. 131, 170).

[198] Barbara Kitchenham. “Procedures for Performing Systematic Reviews”. In:
Keele, UK, Keele Univ. 33 (Aug. 2004) (p. 14).

https://doi.org/10.1186/s40294-018-0059-1
https://doi.org/10.1186/s40294-018-0059-1
https://books.google.be/books?id=joReEAAAQBAJ
https://books.google.be/books?id=joReEAAAQBAJ
https://doi.org/10.1109/CloudSummit47114.2019.00019
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/ACCESS.2017.2745999
https://doi.org/10.1145/3018661.3018708
https://doi.org/10.1145/2766462.2767729

262 BIBLIOGRAPHY

[199] Ron Kohavi, Alex Deng, Brian Frasca, Roger Longbotham, Toby Walker,
and Ya Xu. “Trustworthy Online Controlled Experiments: Five Puzzling
Outcomes Explained”. In: Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. KDD ’12. Beijing,
China: Association for Computing Machinery, 2012, pp. 786–794. ISBN:
9781450314626. DOI: 10.1145/2339530.2339653 (pp. 161, 162, 231).

[200] Ron Kohavi, Alex Deng, Brian Frasca, Toby Walker, Ya Xu, and Nils Pohlmann.
“Online Controlled Experiments at Large Scale”. In: Proceedings of the
19th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. KDD ’13. Chicago, Illinois, USA: Association for Computing
Machinery, 2013, pp. 1168–1176. ISBN: 9781450321747. DOI: 10 . 1145 /
2487575.2488217 (pp. 144, 154, 161, 170, 209, 231).

[201] Ron Kohavi, Alex Deng, Roger Longbotham, and Ya Xu. “Seven Rules of
Thumb for Web Site Experimenters”. In: Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. KDD
’14. New York, New York, USA: Association for Computing Machinery, 2014,
pp. 1857–1866. ISBN: 9781450329569. DOI: 10 . 1145/2623330 . 2623341
(pp. 140, 161, 235).

[202] Ron Kohavi, Randal M. Henne, and Dan Sommerfield. “Practical Guide to
Controlled Experiments on the Web: Listen to Your Customers Not to the
Hippo”. In: 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. San Jose, California, USA, 2007, pp. 959–967.
ISBN: 9781595936097. DOI: 10.1145/1281192.1281295 (pp. 5, 9, 11, 170,
197).

[203] Ron Kohavi and Roger Longbotham. “Online Controlled Experiments and
A/B Testing”. In: Encyclopedia of Machine Learning and Data Mining. Ed. by
Claude Sammut and Geoffrey I. Webb. Boston, MA: Springer, 2017, pp. 922–
929. ISBN: 978-1-4899-7687-1. DOI: 10.1007/978- 1- 4899- 7687- 1_891
(pp. 9, 124, 131, 197).

[204] Ron Kohavi and Roger Longbotham. “Unexpected Results in Online Controlled
Experiments”. In: SIGKDD Explor. Newsl. 12.2 (Mar. 2011), pp. 31–35. ISSN:
1931-0145. DOI: 10.1145/1964897.1964905 (pp. 161, 231).

[205] Ron Kohavi, Roger Longbotham, Dan Sommerfield, and Randal Henne.
“Controlled experiments on the web: Survey and practical guide”. In: Data
Mining and Knowledge Discovery 18 (Feb. 2009), pp. 140–181. DOI: 10.1007/
s10618-008-0114-1 (p. 131).

[206] Ron Kohavi, Diane Tang, and Ya Xu. Trustworthy Online Controlled
Experiments: A Practical Guide to A/B Testing. Cambridge, United Kingdom:
Cambridge University Press, Mar. 2020. ISBN: 9781108724265. DOI: 10.1017/
9781108653985 (p. 127).

https://doi.org/10.1145/2339530.2339653
https://doi.org/10.1145/2487575.2488217
https://doi.org/10.1145/2487575.2488217
https://doi.org/10.1145/2623330.2623341
https://doi.org/10.1145/1281192.1281295
https://doi.org/10.1007/978-1-4899-7687-1_891
https://doi.org/10.1145/1964897.1964905
https://doi.org/10.1007/s10618-008-0114-1
https://doi.org/10.1007/s10618-008-0114-1
https://doi.org/10.1017/9781108653985
https://doi.org/10.1017/9781108653985

BIBLIOGRAPHY 263

[207] Anastasiia Kornilova and Lucas Bernardi. “Mining the Stars: Learning Quality
Ratings with User-Facing Explanations for Vacation Rentals”. In: Proceedings
of the 14th ACM International Conference on Web Search and Data Mining.
WSDM ’21. Virtual Event, Israel: Association for Computing Machinery,
2021, pp. 976–983. ISBN: 9781450382977. DOI: 10.1145/3437963.3441812
(pp. 161, 233).

[208] Kostantinos Koukouvis, Roberto Alcañiz Cubero, and Patrizio Pelliccione.
“A/B Testing in E-commerce Sales Processes”. In: Software Engineering
for Resilient Systems. Ed. by Ivica Crnkovic and Elena Troubitsyna. Cham:
Springer International Publishing, 2016, pp. 133–148. ISBN: 978-3-319-45892-
2 (pp. 139, 152, 154, 161–163, 235).

[209] David Kramer and Wolfgang Karl. “Realizing a Proactive, Self-Optimizing
System Behavior within Adaptive, Heterogeneous Many-Core Architectures”.
In: 2012 IEEE Sixth International Conference on Self-Adaptive and Self-
Organizing Systems. Sept. 2012, pp. 39–48. DOI: 10.1109/SASO.2012.26
(pp. 8, 35).

[210] Jeff Kramer and Jeff Magee. “Self-Managed Systems: an Architectural
Challenge”. In: June 2007, pp. 259–268. ISBN: 0-7695-2829-5. DOI: 10.1109/
FOSE.2007.19 (pp. 2, 24, 52).

[211] Christian Krupitzer, Julian Otto, Felix Maximilian Roth, Alexander Frömmgen,
and Christian Becker. “Adding Self-Improvement to an Autonomic Traffic
Management System”. In: 2017 IEEE International Conference on Autonomic
Computing (ICAC). July 2017, pp. 209–214. DOI: 10.1109/ICAC.2017.16
(p. 31).

[212] Christian Krupitzer, Martin Pfannemüller, Jean Kaddour, and Christian Becker.
“SATISFy: Towards a Self-Learning Analyzer for Time Series Forecasting
in Self-Improving Systems”. In: 2018 IEEE 3rd International Workshops on
Foundations and Applications of Self* Systems (FAS*W). Sept. 2018, pp. 182–
189. DOI: 10.1109/FAS-W.2018.00045 (p. 43).

[213] Anuj Kumar and Kartik Hosanagar. “Measuring the Value of Recommendation
Links on Product Demand”. In: SSRN Electronic Journal (Jan. 2017). DOI:
10.2139/ssrn.2909971 (pp. 161, 235).

[214] Ranjitha Kumar. “Data-Driven Design: Beyond A/B Testing”. In: Proceedings
of the 2019 Conference on Human Information Interaction and Retrieval.
CHIIR ’19. Glasgow, Scotland UK: Association for Computing Machinery,
2019, pp. 1–2. ISBN: 9781450360258. DOI: 10 . 1145 / 3295750 . 3300046
(p. 171).

https://doi.org/10.1145/3437963.3441812
https://doi.org/10.1109/SASO.2012.26
https://doi.org/10.1109/FOSE.2007.19
https://doi.org/10.1109/FOSE.2007.19
https://doi.org/10.1109/ICAC.2017.16
https://doi.org/10.1109/FAS-W.2018.00045
https://doi.org/10.2139/ssrn.2909971
https://doi.org/10.1145/3295750.3300046

264 BIBLIOGRAPHY

[215] Ratnakar Kumar and Nitasha Hasteer. “Evaluating usability of a web
application: A comparative analysis of open-source tools”. In: 2017 2nd
International Conference on Communication and Electronics Systems (ICCES).
2017, pp. 350–354. DOI: 10.1109/CESYS.2017.8321296 (pp. 161, 234).

[216] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. “Adversarial Machine
Learning at Scale”. In: 2017. URL: https://arxiv.org/abs/1611.01236 (p. 47).

[217] Ilja Kuzborskij, Francesco Orabona, and Barbara Caputo. “From N to N+1:
Multiclass Transfer Incremental Learning”. In: June 2013, pp. 3358–3365. DOI:
10.1109/CVPR.2013.431 (p. 80).

[218] Mounia Lalmas, Janette Lehmann, Guy Shaked, Fabrizio Silvestri, and Gabriele
Tolomei. “Promoting Positive Post-Click Experience for In-Stream Yahoo
Gemini Users”. In: Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. KDD ’15. Sydney,
NSW, Australia: Association for Computing Machinery, 2015, pp. 1929–1938.
ISBN: 9781450336642. DOI: 10.1145/2783258.2788581 (pp. 5, 161, 233).

[219] Nicholas Larsen, Jonathan Stallrich, Srijan Sengupta, Alex Deng, Ron
Kohavi, and Nathaniel Stevens. “Statistical Challenges in Online Controlled
Experiments: A Review of A/B Testing Methodology”. In: arXiv preprint
arXiv:2212.11366 (2023). DOI: 10.48550/arXiv.2212.11366 (p. 170).

[220] Euijong Lee, Young-Duk Seo, and Young-Gab Kim. “A Nash equilibrium
based decision-making method for internet of things”. In: Journal of Ambient
Intelligence and Humanized Computing (June 2019), pp. 1–9. ISSN: 1868-5145.
DOI: 10.1007/s12652-019-01367-2 (p. 37).

[221] Minyong R. Lee and Milan Shen. “Winner’s Curse: Bias Estimation for Total
Effects of Features in Online Controlled Experiments”. In: Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining. KDD ’18. London, United Kingdom: Association for Computing
Machinery, 2018, pp. 491–499. ISBN: 9781450355520. DOI: 10.1145/3219819.
3219905 (pp. 161, 163, 232).

[222] Rogério de Lemos, David Garlan, Carlo Ghezzi, Holger Giese, Jesper
Andersson, Marin Litoiu, Bradley Schmerl, Danny Weyns, Luciano Baresi,
Nelly Bencomo, Yuriy Brun, Javier Camara, Radu Calinescu, Myra B. Cohen,
Alessandra Gorla, Vincenzo Grassi, Lars Grunske, Paola Inverardi, Jean-
Marc Jezequel, Sam Malek, Raffaela Mirandola, Marco Mori, Hausi A.
Müller, Romain Rouvoy, Cecília M. F. Rubira, Eric Rutten, Mary Shaw,
Giordano Tamburrelli, Gabriel Tamura, Norha M. Villegas, Thomas Vogel,
and Franco Zambonelli. “Software Engineering for Self-Adaptive Systems:
Research Challenges in the Provision of Assurances”. In: Software Engineering
for Self-Adaptive Systems III. Assurances. Ed. by Rogério de Lemos,
David Garlan, Carlo Ghezzi, and Holger Giese. Cham: Springer International
Publishing, 2017, pp. 3–30. ISBN: 978-3-319-74183-3 (p. 174).

https://doi.org/10.1109/CESYS.2017.8321296
https://arxiv.org/abs/1611.01236
https://doi.org/10.1109/CVPR.2013.431
https://doi.org/10.1145/2783258.2788581
https://doi.org/10.48550/arXiv.2212.11366
https://doi.org/10.1007/s12652-019-01367-2
https://doi.org/10.1145/3219819.3219905
https://doi.org/10.1145/3219819.3219905

BIBLIOGRAPHY 265

[223] Rogério de Lemos, Holger Giese, Hausi A. Müller, Mary Shaw, Jesper
Andersson, Marin Litoiu, Bradley Schmerl, Gabriel Tamura, Norha M. Villegas,
Thomas Vogel, Danny Weyns, Luciano Baresi, Basil Becker, Nelly Bencomo,
Yuriy Brun, Bojan Cukic, Ron Desmarais, Schahram Dustdar, Gregor
Engels, Kurt Geihs, Karl M. Göschka, Alessandra Gorla, Vincenzo Grassi,
Paola Inverardi, Gabor Karsai, Jeff Kramer, Antónia Lopes, Jeff Magee,
Sam Malek, Serge Mankovskii, Raffaela Mirandola, John Mylopoulos,
Oscar Nierstrasz, Mauro Pezzè, Christian Prehofer, Wilhelm Schäfer, Rick
Schlichting, Dennis B. Smith, João Pedro Sousa, Ladan Tahvildari, Kenny
Wong, and Jochen Wuttke. “Software Engineering for Self-Adaptive Systems:
A Second Research Roadmap”. In: Software Engineering for Self-Adaptive
Systems II: International Seminar, Dagstuhl Castle, Germany, October 24-
29, 2010 Revised Selected and Invited Papers. Ed. by Rogério de Lemos,
Holger Giese, Hausi A. Müller, and Mary Shaw. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 1–32. ISBN: 978-3-642-35813-5. DOI: 10.1007/
978-3-642-35813-5_1 (pp. 2, 174, 217).

[224] Florian Lettner, Clemens Holzmann, and Patrick Hutflesz. “Enabling A/B
Testing of Native Mobile Applications by Remote User Interface Exchange”. In:
Computer Aided Systems Theory - EUROCAST 2013. Ed. by Roberto Moreno-
Díaz, Franz Pichler, and Alexis Quesada-Arencibia. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 458–466. ISBN: 978-3-642-53862-9
(pp. 161, 162, 236).

[225] Chengbo Li, Lin Zhu, Guangyuan Fu, Longzhi Du, Canhua Zhao, Tianlun Ma,
Chang Ye, and Pei Lee. “Learning to Bundle Proactively for On-Demand
Meal Delivery”. In: Proceedings of the 30th ACM International Conference on
Information & Knowledge Management. CIKM ’21. Virtual Event, Queensland,
Australia: Association for Computing Machinery, 2021, pp. 3898–3905. ISBN:
9781450384469. DOI: 10.1145/3459637.3481931 (pp. 140, 146, 161, 233).

[226] Hannah Li, Geng Zhao, Ramesh Johari, and Gabriel Y. Weintraub. “Interference,
Bias, and Variance in Two-Sided Marketplace Experimentation: Guidance
for Platforms”. In: Proceedings of the ACM Web Conference 2022. WWW
’22. Virtual Event, Lyon, France: Association for Computing Machinery,
2022, pp. 182–192. ISBN: 9781450390965. DOI: 10.1145/3485447.3512063
(pp. 140, 161, 162, 234).

[227] Lihong Li, Jin Young Kim, and Imed Zitouni. “Toward Predicting the Outcome
of an A/B Experiment for Search Relevance”. In: Proceedings of the Eighth
ACM International Conference on Web Search and Data Mining. WSDM
’15. New York, NY, USA: Association for Computing Machinery, Feb. 2015,
pp. 37–46. ISBN: 978-1-4503-3317-7. DOI: 10.1145/2684822.2685311 (pp. 12,
124, 170, 173).

https://doi.org/10.1007/978-3-642-35813-5_1
https://doi.org/10.1007/978-3-642-35813-5_1
https://doi.org/10.1145/3459637.3481931
https://doi.org/10.1145/3485447.3512063
https://doi.org/10.1145/2684822.2685311

266 BIBLIOGRAPHY

[228] Paul Luo Li, Xiaoyu Chai, Frederick Campbell, Jilong Liao, Neeraja Abburu,
Minsuk Kang, Irina Niculescu, Greg Brake, Siddharth Patil, James Dooley, and
Brandon Paddock. “Evolving Software to be ML-Driven Utilizing Real-World
A/B Testing: Experiences, Insights, Challenges”. In: 2021 IEEE/ACM 43rd
International Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP). 2021, pp. 170–179. DOI: 10.1109/ICSE-SEIP52600.
2021.00026 (pp. 142, 152, 155, 161, 163, 232).

[229] Paul Luo Li, Pavel Dmitriev, Huibin Mary Hu, Xiaoyu Chai, Zoran
Dimov, Brandon Paddock, Ying Li, Alex Kirshenbaum, Irina Niculescu, and
Taj Thoresen. “Experimentation in the Operating System: The Windows
Experimentation Platform”. In: 2019 IEEE/ACM 41st International Conference
on Software Engineering: Software Engineering in Practice (ICSE-SEIP). Los
Alamitos, CA, USA: IEEE Press, 2019, pp. 21–30. DOI: 10 . 1109/ ICSE -
SEIP.2019.00011 (pp. 124, 146, 154, 161, 162, 170, 232).

[230] Ye Li, Hong Xie, Yishi Lin, and John C.S. Lui. “Unifying Offline Causal Infer-
ence and Online Bandit Learning for Data Driven Decision”. In: Proceedings
of the Web Conference 2021. WWW ’21. Ljubljana, Slovenia: Association
for Computing Machinery, 2021, pp. 2291–2303. ISBN: 9781450383127. DOI:
10.1145/3442381.3449982 (pp. 161, 172, 233).

[231] Yiyang Li, Guanyu Tao, Weinan Zhang, Yong Yu, and Jun Wang. “Content
Recommendation by Noise Contrastive Transfer Learning of Feature Repre-
sentation”. In: Proceedings of the 2017 ACM on Conference on Information
and Knowledge Management. CIKM ’17. Singapore, Singapore: Association
for Computing Machinery, 2017, pp. 1657–1665. ISBN: 9781450349185. DOI:
10.1145/3132847.3132855 (pp. 161, 233).

[232] Kevin Liou and Sean J. Taylor. “Variance-Weighted Estimators to Improve Sen-
sitivity in Online Experiments”. In: Proceedings of the 21st ACM Conference
on Economics and Computation. EC ’20. Virtual Event, Hungary: Association
for Computing Machinery, 2020, pp. 837–850. ISBN: 9781450379755. DOI:
10.1145/3391403.3399542 (pp. 137, 144, 160, 161, 232).

[233] Sophia Liu, Aleksander Fabijan, Michael Furchtgott, Somit Gupta, Pawel
Janowski, Wen Qin, and Pavel Dmitriev. “Enterprise-Level Controlled
Experiments at Scale: Challenges and Solutions”. In: 2019 45th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA). 2019,
pp. 29–37. DOI: 10.1109/SEAA.2019.00013 (pp. 139, 144, 146, 154, 161,
162, 165, 234).

[234] Teng Liu, Chao Yang, Chuanzheng Hu, Hong Wang, Li Li, Dongpu Cao,
and Fei-Yue Wang. “Reinforcement Learning-Based Predictive Control
for Autonomous Electrified Vehicles”. In: 2018 IEEE Intelligent Vehicles
Symposium (IV). June 2018, pp. 185–190. DOI: 10.1109/IVS.2018.8500719
(pp. 11, 31, 55).

https://doi.org/10.1109/ICSE-SEIP52600.2021.00026
https://doi.org/10.1109/ICSE-SEIP52600.2021.00026
https://doi.org/10.1109/ICSE-SEIP.2019.00011
https://doi.org/10.1109/ICSE-SEIP.2019.00011
https://doi.org/10.1145/3442381.3449982
https://doi.org/10.1145/3132847.3132855
https://doi.org/10.1145/3391403.3399542
https://doi.org/10.1109/SEAA.2019.00013
https://doi.org/10.1109/IVS.2018.8500719

BIBLIOGRAPHY 267

[235] Yang Liu, Di Bai, and Wenpin Jiao. “Generating Adaptation Rules of Software
Systems: A Method Based on Genetic Algorithm”. In: Proceedings of the
2018 10th International Conference on Machine Learning and Computing.
ICMLC 2018. Macau, China: Association for Computing Machinery, 2018,
pp. 347–356. ISBN: 9781450363532. DOI: 10.1145/3195106.3195137 (p. 43).

[236] Yuchu Liu, David Issa Mattos, Jan Bosch, Helena Holmström Olsson, and
Jonn Lantz. “Size matters? Or not: A/B testing with limited sample in
automotive embedded software”. In: 2021 47th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA). 2021, pp. 300–307.
DOI: 10.1109/SEAA53835.2021.00046 (pp. 160, 161, 234).

[237] Tania Lorido-Botran, Jose Miguel-Alonso, and Jose A. Lozano. “A Review of
Auto-scaling Techniques for Elastic Applications in Cloud Environments”. In:
Journal of Grid Computing 12.4 (Dec. 2014), pp. 559–592. ISSN: 1572-9184.
DOI: 10.1007/s10723-014-9314-7 (p. 28).

[238] Widad Machmouchi, Ahmed Hassan Awadallah, Imed Zitouni, and Georg
Buscher. “Beyond Success Rate: Utility as a Search Quality Metric for Online
Experiments”. In: Proceedings of the 2017 ACM on Conference on Information
and Knowledge Management. CIKM ’17. Singapore, Singapore: Association
for Computing Machinery, 2017, pp. 757–765. ISBN: 9781450349185. DOI:
10.1145/3132847.3132850 (pp. 137, 139, 146, 154, 161, 162, 170, 232).

[239] Lech Madeyski, Wojciech Orzeszyna, Richard Torkar, and Mariusz Józala.
“Overcoming the Equivalent Mutant Problem: A Systematic Literature Review
and a Comparative Experiment of Second Order Mutation”. In: IEEE
Transactions on Software Engineering 40.1 (2014), pp. 23–42. DOI: 10.1109/
TSE.2013.44 (p. 134).

[240] Maria Madlberger and Jiri Jizdny. “Impact of promotional social media
content on click-through rate - Evidence from a FMCG company”. In:
2021, pp. 3–10. URL: https : / / www . scopus . com / inward / record .
uri ? eid = 2 - s2 . 0 - 85124068035 % 5C & partnerID = 40 % 5C & md5 =
c0b8f49a3b48b3d561fd0ed305eb1895 (pp. 158, 161, 163, 235).

[241] Martina Maggio, Henry Hoffmann, Alessandro V. Papadopoulos, Jacopo
Panerati, Marco D. Santambrogio, Anant Agarwal, and Alberto Leva. “Com-
parison of Decision-Making Strategies for Self-Optimization in Autonomic
Computing Systems”. In: ACM Trans. Auton. Adapt. Syst. 7.4 (Dec. 2012).
ISSN: 1556-4665. DOI: 10.1145/2382570.2382572 (pp. 30, 43).

[242] Sara Mahdavi-Hezavehi, Vinicius H.S. Durelli, Danny Weyns, and Paris
Avgeriou. “A systematic literature review on methods that handle multiple
quality attributes in architecture-based self-adaptive systems”. In: Information
and Software Technology 90 (2017), pp. 1–26. ISSN: 0950-5849. DOI: 10.1016/
j.infsof.2017.03.013 (pp. 52, 134).

https://doi.org/10.1145/3195106.3195137
https://doi.org/10.1109/SEAA53835.2021.00046
https://doi.org/10.1007/s10723-014-9314-7
https://doi.org/10.1145/3132847.3132850
https://doi.org/10.1109/TSE.2013.44
https://doi.org/10.1109/TSE.2013.44
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85124068035%5C&partnerID=40%5C&md5=c0b8f49a3b48b3d561fd0ed305eb1895
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85124068035%5C&partnerID=40%5C&md5=c0b8f49a3b48b3d561fd0ed305eb1895
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85124068035%5C&partnerID=40%5C&md5=c0b8f49a3b48b3d561fd0ed305eb1895
https://doi.org/10.1145/2382570.2382572
https://doi.org/10.1016/j.infsof.2017.03.013
https://doi.org/10.1016/j.infsof.2017.03.013

268 BIBLIOGRAPHY

[243] Mohammad Masdari and Afsane Khoshnevis. “A survey and classification of
the workload forecasting methods in cloud computing”. In: Cluster Computing
23.4 (Dec. 2020), pp. 2399–2424. ISSN: 1573-7543. DOI: 10.1007/s10586-
019-03010-3 (p. 28).

[244] Taisei Masuda, Kyoko Murakami, Kenkichi Sugiura, Sho Sakui, Ron Philip
Schuring, and Mitsuhiro Mori. “A phase 1/2 randomised placebo-controlled
study of the COVID-19 vaccine mRNA-1273 in healthy Japanese adults: An
interim report”. In: Vaccine 40.13 (2022), pp. 2044–2052. ISSN: 0264-410X.
DOI: 10.1016/j.vaccine.2022.02.030 (p. 127).

[245] David Issa Mattos, Jan Bosch, and Helena Holmström Olsson. “More for
Less: Automated Experimentation in Software-Intensive Systems”. In: Product-
Focused Software Process Improvement. Ed. by Michael Felderer, Daniel
Méndez Fernández, Burak Turhan, Marcos Kalinowski, Federica Sarro, and
Dietmar Winkler. Cham: Springer International Publishing, 2017, pp. 146–161.
ISBN: 978-3-319-69926-4 (pp. 11, 161, 162, 172, 235).

[246] David Issa Mattos, Jan Bosch, and Helena Holmström Olsson. “Challenges
and Strategies for Undertaking Continuous Experimentation to Embedded
Systems: Industry and Research Perspectives”. In: Agile Processes in Software
Engineering and Extreme Programming. Ed. by Juan Garbajosa, Xiaofeng
Wang, and Ademar Aguiar. Cham: Springer International Publishing, 2018,
pp. 277–292. ISBN: 978-3-319-91602-6. DOI: 10.1007/978-3-319-91602-
6_20 (pp. 129, 218).

[247] David Issa Mattos, Jan Bosch, and Helena Holmström Olsson. “Your System
Gets Better Every Day You Use It: Towards Automated Continuous Exper-
imentation”. In: 2017 43rd Euromicro Conference on Software Engineering
and Advanced Applications (SEAA). 2017, pp. 256–265. DOI: 10.1109/SEAA.
2017.15 (pp. 11, 138, 159, 161, 162, 164, 171, 235).

[248] David Issa Mattos, Jan Bosch, Helena Holmstrom Olsson, Aita Maryam Ko-
rshani, and Jonn Lantz. “Automotive A/B testing: Challenges and Lessons
Learned from Practice”. In: 2020 46th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA). 2020, pp. 101–109. DOI:
10.1109/SEAA51224.2020.00026 (pp. 161, 162, 234).

[249] Pavel Metrikov, Fernando Diaz, Sebastien Lahaie, and Justin Rao. “Whole
Page Optimization: How Page Elements Interact with the Position Auction”. In:
Proceedings of the Fifteenth ACM Conference on Economics and Computation.
EC ’14. Palo Alto, California, USA: Association for Computing Machinery,
2014, pp. 583–600. ISBN: 9781450325653. DOI: 10.1145/2600057.2602871
(pp. 140, 151, 155, 161, 233).

[250] Andreas Metzger, Clément Quinton, Zoltan Mann, Luciano Baresi, and Klaus
Pohl. “Feature-Model-Guided Online Learning for Self-Adaptive Systems”. In:
ArXiv abs/1907.09158 (2019) (p. 54).

https://doi.org/10.1007/s10586-019-03010-3
https://doi.org/10.1007/s10586-019-03010-3
https://doi.org/10.1016/j.vaccine.2022.02.030
https://doi.org/10.1007/978-3-319-91602-6_20
https://doi.org/10.1007/978-3-319-91602-6_20
https://doi.org/10.1109/SEAA.2017.15
https://doi.org/10.1109/SEAA.2017.15
https://doi.org/10.1109/SEAA51224.2020.00026
https://doi.org/10.1145/2600057.2602871

BIBLIOGRAPHY 269

[251] Andreas Metzger, Clément Quinton, Zoltán ádám Mann, Luciano Baresi,
and Klaus Pohl. “Feature Model-Guided Online Reinforcement Learning for
Self-Adaptive Services”. In: Service-Oriented Computing: 18th International
Conference, ICSOC 2020, Dubai, United Arab Emirates, December 14–17,
2020, Proceedings. Dubai, United Arab Emirates: Springer-Verlag, 2020,
pp. 269–286. ISBN: 978-3-030-65309-5. DOI: 10.1007/978-3-030-65310-
1_20 (pp. 5, 8, 55).

[252] Mathias Meyer. “Continuous Integration and Its Tools”. In: IEEE Software
31.03 (May 2014), pp. 14–16. ISSN: 1937-4194. DOI: 10.1109/MS.2014.58
(pp. 9, 197).

[253] Risto Miikulainen, Myles Brundage, Jonathan Epstein, Tyler Foster, Babak
Hodjat, Neil Iscoe, Jingbo Jiang, Diego Legrand, Sam Nazari, Xin Qiu, Michael
Scharff, Cory Schoolland, Robert Severn, and Aaron Shagrin. “Ascend by
Evolv: AI-Based Massively Multivariate Conversion Rate Optimization”. In:
AI Magazine 41.1 (Apr. 2020), pp. 44–60. DOI: 10.1609/aimag.v41i1.5256
(pp. 161, 163, 235).

[254] Alok Mishra and Ziadoon Otaiwi. “DevOps and software quality: A systematic
mapping”. In: Computer Science Review 38 (2020), p. 100308. ISSN: 1574-
0137. DOI: 10.1016/j.cosrev.2020.100308 (p. 197).

[255] Tom M. Mitchell. Machine Learning. McGraw-Hill International Editions.
McGraw-Hill, 1997. ISBN: 9780071154673. URL: https://books.google.be/
books?id=EoYBngEACAAJ (p. 24).

[256] Mahshid Helali Moghadam, Mehrdad Saadatmand, Markus Borg, Markus
Bohlin, and Björn Lisper. “Adaptive Runtime Response Time Control in PLC-
Based Real-Time Systems Using Reinforcement Learning”. In: Proceedings
of the 13th International Conference on Software Engineering for Adaptive
and Self-Managing Systems. SEAMS ’18. Gothenburg, Sweden: Association
for Computing Machinery, 2018, pp. 217–223. ISBN: 9781450357159. DOI:
10.1145/3194133.3194153 (p. 44).

[257] Gabriel A Moreno, Javier Cámara, David Garlan, and Bradley Schmerl.
“Flexible and efficient decision-making for proactive latency-aware self-
adaptation”. In: ACM Transactions on Autonomous and Adaptive Systems
(TAAS) 13.1 (2018), pp. 1–36. DOI: 10.1145/3149180 (p. 56).

[258] Gabriel A. Moreno, Javier Cámara, David Garlan, and Bradley Schmerl.
“Proactive Self-Adaptation under Uncertainty: A Probabilistic Model Checking
Approach”. In: Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering. ESEC/FSE 2015. Bergamo, Italy: Association for
Computing Machinery, 2015, pp. 1–12. ISBN: 9781450336758. DOI: 10.1145/
2786805.2786853 (pp. 4, 6).

https://doi.org/10.1007/978-3-030-65310-1_20
https://doi.org/10.1007/978-3-030-65310-1_20
https://doi.org/10.1109/MS.2014.58
https://doi.org/10.1609/aimag.v41i1.5256
https://doi.org/10.1016/j.cosrev.2020.100308
https://books.google.be/books?id=EoYBngEACAAJ
https://books.google.be/books?id=EoYBngEACAAJ
https://doi.org/10.1145/3194133.3194153
https://doi.org/10.1145/3149180
https://doi.org/10.1145/2786805.2786853
https://doi.org/10.1145/2786805.2786853

270 BIBLIOGRAPHY

[259] Gabriel A. Moreno, Bradley Schmerl, and David Garlan. “SWIM: An Exemplar
for Evaluation and Comparison of Self-Adaptation Approaches for Web
Applications”. In: 13th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems. 2018 (p. 199).

[260] Kenji Mori, Naoko Okubo, Yasushi Ueda, Masafumi Katahira, and Toshiyuki
Amagasa. “Supporting Viewpoints to Review the Lack of Requirements in
Space Systems with Machine Learning”. In: Proceedings of the IEEE/ACM
15th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems. SEAMS ’20. Seoul, Republic of Korea: Association for
Computing Machinery, 2020, pp. 38–44. ISBN: 9781450379625. DOI: 10 .
1145/3387939.3391610 (p. 95).

[261] Andrés Muñoz Medina, Sergei Vassilvitskii, and Dong Yin. “Online Learning
for Non-Stationary A/B Tests”. In: ACM International Conference on
Information and Knowledge Management. 2018. ISBN: 9781450360142. DOI:
10.1145/3269206.3271718 (p. 172).

[262] Tadashi Okoshi, Kota Tsubouchi, and Hideyuki Tokuda. “Real-World Product
Deployment of Adaptive Push Notification Scheduling on Smartphones”. In:
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. KDD ’19. Anchorage, AK, USA: Association for
Computing Machinery, 2019, pp. 2792–2800. ISBN: 9781450362016. DOI:
10.1145/3292500.3330732 (pp. 161, 233).

[263] Peyman Oreizy, Michael M. Gorlick, Richard N. Taylor, D. Heimhigner, G.
Johnson, Nenad Medvidovic, Alex Quilici, David S. Rosenblum, and Alexander
L. Wolf. “An architecture-based approach to self-adaptive software”. In: IEEE
Intelligent Systems and their Applications 14.3 (1999), pp. 54–62. DOI: 10.
1109/5254.769885 (pp. 2, 4, 5, 52).

[264] Takumi Ozawa, Akiyuki Sekiguchi, and Kazuhiko Tsuda. “A Method for
the Construction of User Targeting Knowledge for B2B Industry Website”.
In: Procedia Computer Science 96 (2016). Knowledge-Based and Intelligent
Information & Engineering Systems: Proceedings of the 20th International
Conference KES-2016, pp. 1147–1155. ISSN: 1877-0509. DOI: 10.1016/j.
procs.2016.08.157 (pp. 161, 235).

[265] Alexander Palm, Andreas Metzger, and Klaus Pohl. “Online Reinforcement
Learning for Self-adaptive Information Systems”. In: Advanced Information
Systems Engineering. Ed. by Schahram Dustdar, Eric Yu, Camille Salinesi,
Dominique Rieu, and Vik Pant. Cham: Springer International Publishing, 2020,
pp. 169–184. ISBN: 978-3-030-49435-3. DOI: 10.1007/978-3-030-49435-
3_11 (p. 8).

https://doi.org/10.1145/3387939.3391610
https://doi.org/10.1145/3387939.3391610
https://doi.org/10.1145/3269206.3271718
https://doi.org/10.1145/3292500.3330732
https://doi.org/10.1109/5254.769885
https://doi.org/10.1109/5254.769885
https://doi.org/10.1016/j.procs.2016.08.157
https://doi.org/10.1016/j.procs.2016.08.157
https://doi.org/10.1007/978-3-030-49435-3_11
https://doi.org/10.1007/978-3-030-49435-3_11

BIBLIOGRAPHY 271

[266] Ashutosh Pandey, Bradley Schmerl, and David Garlan. “Instance-Based
Learning for Hybrid Planning”. In: 2017 IEEE 2nd International Workshops on
Foundations and Applications of Self* Systems (FAS*W). Sept. 2017, pp. 64–69.
DOI: 10.1109/FAS-W.2017.122 (pp. 35, 44).

[267] Dimitrios Papamartzivanos, Félix Gómez Mármol, and Georgios Kambourakis.
“Introducing Deep Learning Self-Adaptive Misuse Network Intrusion Detection
Systems”. In: IEEE Access 7 (2019), pp. 13546–13560. ISSN: 2169-3536. DOI:
10.1109/ACCESS.2019.2893871 (pp. 31, 35, 43, 47).

[268] H. Van Dyke Parunak and Sven A. Brueckner. “Software engineering for self-
organizing systems”. In: The Knowledge Engineering Review 30.4 (2015),
pp. 419–434. DOI: 10.1017/S0269888915000089 (p. 22).

[269] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Courna-
peau, Matthieu Brucher, M. Perrot, and Edouard Duchesnay. “Scikit-learn:
Machine Learning in Python”. In: Journal of Machine Learning Research 12
(2011), pp. 2825–2830 (pp. 83, 88, 188).

[270] Alejandro Pelaez, Andres Quiroz, and Manish Parashar. “Dynamic adaptation
of policies using machine learning”. In: International Symposium on Cluster,
Cloud and Grid Computing (CCGrid). IEEE. 2016, pp. 501–510. DOI: 10.
1109/CCGrid.2016.64 (p. 44).

[271] Dan Pelleg, Oleg Rokhlenko, Idan Szpektor, Eugene Agichtein, and Ido Guy.
“When the Crowd is Not Enough: Improving User Experience with Social
Media through Automatic Quality Analysis”. In: Proceedings of the 19th ACM
Conference on Computer-Supported Cooperative Work & Social Computing.
CSCW ’16. San Francisco, California, USA: Association for Computing
Machinery, 2016, pp. 1080–1090. ISBN: 9781450335928. DOI: 10 . 1145 /
2818048.2820022 (pp. 152, 161, 235).

[272] Ladislav Peska and Peter Vojtas. “Off-Line vs. On-Line Evaluation of
Recommender Systems in Small E-Commerce”. In: Proceedings of the 31st
ACM Conference on Hypertext and Social Media. HT ’20. Virtual Event,
USA: Association for Computing Machinery, 2020, pp. 291–300. ISBN:
9781450370981. DOI: 10.1145/3372923.3404781 (pp. 152, 157, 161, 162,
234).

[273] Barry Porter and Roberto Rodrigues Filho. “Losing Control: The Case for
Emergent Software Systems Using Autonomous Assembly, Perception, and
Learning”. In: 2016 IEEE 10th International Conference on Self-Adaptive and
Self-Organizing Systems (SASO). Sept. 2016, pp. 40–49. DOI: 10.1109/SASO.
2016.10 (pp. 11, 55).

https://doi.org/10.1109/FAS-W.2017.122
https://doi.org/10.1109/ACCESS.2019.2893871
https://doi.org/10.1017/S0269888915000089
https://doi.org/10.1109/CCGrid.2016.64
https://doi.org/10.1109/CCGrid.2016.64
https://doi.org/10.1145/2818048.2820022
https://doi.org/10.1145/2818048.2820022
https://doi.org/10.1145/3372923.3404781
https://doi.org/10.1109/SASO.2016.10
https://doi.org/10.1109/SASO.2016.10

272 BIBLIOGRAPHY

[274] Alexey Poyarkov, Alexey Drutsa, Andrey Khalyavin, Gleb Gusev, and
Pavel Serdyukov. “Boosted Decision Tree Regression Adjustment for Variance
Reduction in Online Controlled Experiments”. In: Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. KDD ’16. San Francisco, California, USA: Association for Computing
Machinery, 2016, pp. 235–244. ISBN: 9781450342322. DOI: 10.1145/2939672.
2939688 (pp. 12, 139, 161, 162, 164, 170, 173, 231).

[275] Lara Qasim, Marija Jankovic, Sorin Olaru, and Jean-Luc Garnier. “Model-
Based System Reconfiguration: A Descriptive Study of Current Industrial
Challenges”. In: Complex Systems Design & Management. Ed. by Eric
Bonjour, Daniel Krob, Luca Palladino, and François Stephan. Cham: Springer
International Publishing, 2019, pp. 97–108. ISBN: 978-3-030-04209-7 (p. 6).

[276] Wenyi Qian, Xin Peng, Bihuan Chen, John Mylopoulos, Huanhuan Wang,
and Wenyun Zhao. “Rationalism with a dose of empiricism: combining goal
reasoning and case-based reasoning for self-adaptive software systems”. In:
Requirements Engineering 20.3 (Sept. 2015), pp. 233–252. ISSN: 1432-010X.
DOI: 10.1007/s00766-015-0227-1 (pp. 43, 44).

[277] Xiulei Qin, Wei Wang, Wenbo Zhang, Jun Wei, Xin Zhao, and Tao Huang.
“Elasticat: A load rebalancing framework for cloud-based key-value stores”. In:
2012 19th International Conference on High Performance Computing. 2012,
pp. 1–10. DOI: 10.1109/HiPC.2012.6507481 (p. 43).

[278] Xiulei Qin, Wei Wang, Wenbo Zhang, Jun Wei, Xin Zhao, Hua Zhong, and
Tao Huang. “PRESC2: efficient self-reconfiguration of cache strategies for
elastic caching platforms”. In: Computing 96.5 (May 2014), pp. 415–451. ISSN:
1436-5057. DOI: 10.1007/s00607-013-0365-6 (p. 44).

[279] Jia Qu and Jing Zhang. “Validating Mobile Designs with Agile Testing
in China: Based on Baidu Map for Mobile”. In: Design, User Experience,
and Usability: Design Thinking and Methods. Ed. by Aaron Marcus. Cham:
Springer International Publishing, 2016, pp. 491–498. ISBN: 978-3-319-40409-
7 (pp. 161, 235).

[280] Federico Quin. “Systematic Approach to Engineer Decentralized Self-adaptive
Systems”. In: Software Architecture. Ed. by Henry Muccini, Paris Avgeriou,
Barbora Buhnova, Javier Camara, Mauro Caporuscio, Mirco Franzago, Anne
Koziolek, Patrizia Scandurra, Catia Trubiani, Danny Weyns, and Uwe Zdun.
Cham: Springer International Publishing, 2020, pp. 38–50. ISBN: 978-3-030-
59155-7 (p. 290).

[281] Federico Quin and Danny Weyns. “Automating Pipelines of A/B Tests with
Population Split Using Self-Adaptation and Machine Learning”. In: arXiv
preprint arXiv:2306.01407. 2023. DOI: 10.48550/arXiv.2306.01407 (pp. 17,
18, 169, 290).

https://doi.org/10.1145/2939672.2939688
https://doi.org/10.1145/2939672.2939688
https://doi.org/10.1007/s00766-015-0227-1
https://doi.org/10.1109/HiPC.2012.6507481
https://doi.org/10.1007/s00607-013-0365-6
https://doi.org/10.48550/arXiv.2306.01407

BIBLIOGRAPHY 273

[282] Federico Quin and Danny Weyns. SEAByTE Website. https : //people . cs .
kuleuven.be/danny.weyns/software/SEAByTE/ (pp. 194, 200, 209, 210).

[283] Federico Quin and Danny Weyns. “SEAByTE: A Self-Adaptive Micro-Service
System Artifact for Automating A/B Testing”. In: Proceedings of the 17th
Symposium on Software Engineering for Adaptive and Self-Managing Systems.
SEAMS ’22. Pittsburgh, Pennsylvania: Association for Computing Machinery,
2022, pp. 77–83. ISBN: 9781450393058. DOI: 10.1145/3524844.3528081
(pp. 17, 19, 182, 196, 290).

[284] Federico Quin, Danny Weyns, Thomas Bamelis, Sarpreet Singh Buttar, and
Sam Michiels. “Efficient Analysis of Large Adaptation Spaces in Self-Adaptive
Systems Using Machine Learning”. In: Proceedings of the 14th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems.
SEAMS ’19. Montreal, Quebec, Canada: IEEE Press, 2019, pp. 1–12. DOI:
10.1109/SEAMS.2019.00011 (pp. 27, 31, 34, 44, 45, 53, 55, 93, 210, 289).

[285] Federico Quin, Danny Weyns, and Matthias Galster. Study Systematic Literature
Review on A/B Testing. 2023. URL: https://people.cs.kuleuven.be/danny.
weyns/material/SLR_AB/ (pp. 130, 131).

[286] Federico Quin, Danny Weyns, Matthias Galster, and Camila Costa Silva. “A/B
Testing: A Systematic Literature Review”. In: arXiv preprint arXiv:2308.04929
(2023). DOI: 10.48550/arXiv.2308.04929 (pp. 18, 123, 171, 290).

[287] Federico Quin, Danny Weyns, and Omid Gheibi. “Decentralized Self-Adaptive
Systems: A Mapping Study”. In: 2021 International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS). 2021, pp. 18–
29. DOI: 10.1109/SEAMS51251.2021.00014 (p. 290).

[288] Federico Quin, Danny Weyns, and Omid Gheibi. Full reproduction package
Reducing Large Adaptation Spaces in Self-Adaptive Systems Using Machine
Learning. https://people.cs.kuleuven.be/danny.weyns/material/ML4SAS/
ML2ASR/ (p. 120).

[289] Federico Quin, Danny Weyns, and Omid Gheibi. “Reducing large adaptation
spaces in self-adaptive systems using classical machine learning”. In: Journal
of Systems and Software 190 (2022), p. 111341. ISSN: 0164-1212. DOI: 10.
1016/j.jss.2022.111341 (pp. 16, 18, 51, 289).

[290] Jan Renz, Daniel Hoffmann, Thomas Staubitz, and Christoph Meinel. “Using
A/B testing in MOOC environments”. In: Proceedings of the Sixth International
Conference on Learning Analytics & Knowledge. LAK ’16. New York, NY,
USA: Association for Computing Machinery, Apr. 2016, pp. 304–313. ISBN:
978-1-4503-4190-5. DOI: 10.1145/2883851.2883876 (p. 127).

https://people.cs.kuleuven.be/danny.weyns/software/SEAByTE/
https://people.cs.kuleuven.be/danny.weyns/software/SEAByTE/
https://doi.org/10.1145/3524844.3528081
https://doi.org/10.1109/SEAMS.2019.00011
https://people.cs.kuleuven.be/danny.weyns/material/SLR_AB/
https://people.cs.kuleuven.be/danny.weyns/material/SLR_AB/
https://doi.org/10.48550/arXiv.2308.04929
https://doi.org/10.1109/SEAMS51251.2021.00014
https://people.cs.kuleuven.be/danny.weyns/material/ML4SAS/ML2ASR/
https://people.cs.kuleuven.be/danny.weyns/material/ML4SAS/ML2ASR/
https://doi.org/10.1016/j.jss.2022.111341
https://doi.org/10.1016/j.jss.2022.111341
https://doi.org/10.1145/2883851.2883876

274 BIBLIOGRAPHY

[291] Ádám Révész and Norbert Pataki. “A/B Testing via Continuous Integration
and Continuous Delivery”. In: Geoinformatics and Data Analysis. Ed. by
Salah Bourennane and Petr Kubicek. Cham: Springer International Publishing,
2022, pp. 165–174. ISBN: 978-3-031-08017-3 (pp. 11, 172).

[292] Maxim Reynvoet, Omid Gheibi, Federico Quin, and Danny Weyns. “Detecting
and Mitigating Jamming Attacks in IoT Networks Using Self-Adaptation”.
In: 2022 IEEE International Conference on Autonomic Computing and Self-
Organizing Systems Companion (ACSOS-C). 2022, pp. 7–12. DOI: 10.1109/
ACSOSC56246.2022.00019 (p. 290).

[293] Mohi Reza, Juho Kim, Ananya Bhattacharjee, Anna N. Rafferty, and Joseph Jay
Williams. “The MOOClet Framework: Unifying Experimentation, Dynamic
Improvement, and Personalization in Online Courses”. In: Proceedings of the
Eighth ACM Conference on Learning Scale. LS ’21. Virtual Event, Germany:
Association for Computing Machinery, 2021, pp. 15–26. ISBN: 9781450382151.
DOI: 10.1145/3430895.3460128 (pp. 138, 139, 161, 233).

[294] Barbara Riegel, Tiny Jaarsma, and Anna Strömberg. “A Middle-Range Theory
of Self-Care of Chronic Illness”. In: ANS. Advances in nursing science 35 (June
2012), pp. 194–204. DOI: 10.1097/ANS.0b013e318261b1ba (p. 101).

[295] Herbert Robbins and Sutton Monro. “A Stochastic Approximation Method”.
In: The Annals of Mathematical Statistics 22.3 (1951), pp. 400–407. DOI:
10.1214/aoms/1177729586 (p. 83).

[296] Pilar Rodríguez, Alireza Haghighatkhah, Lucy Ellen Lwakatare, Susanna
Teppola, Tanja Suomalainen, Juho Eskeli, Teemu Karvonen, Pasi Kuvaja,
June M. Verner, and Markku Oivo. “Continuous deployment of software
intensive products and services: A systematic mapping study”. In: Journal
of Systems and Software 123 (2017), pp. 263–291. ISSN: 0164-1212. DOI:
10.1016/j.jss.2015.12.015 (pp. 9, 128, 197).

[297] Rasmus Ros and Per Runeson. “Continuous Experimentation and A/B Testing:
A Mapping Study”. In: Proceedings of the 4th International Workshop on
Rapid Continuous Software Engineering. RCoSE ’18. Gothenburg, Sweden:
Association for Computing Machinery, 2018, pp. 35–41. ISBN: 9781450357456.
DOI: 10.1145/3194760.3194766 (pp. 5, 124, 128, 171, 197).

[298] Frank Rosenblatt. “The perceptron: a probabilistic model for information
storage and organization in the brain.” In: Psychological review 65 6 (1958),
pp. 386–408 (p. 83).

[299] Nir Rosenfeld, Yishay Mansour, and Elad Yom-Tov. “Predicting Counterfactu-
als from Large Historical Data and Small Randomized Trials”. In: Proceedings
of the 26th International Conference on World Wide Web Companion. WWW
’17 Companion. Perth, Australia: International World Wide Web Conferences

https://doi.org/10.1109/ACSOSC56246.2022.00019
https://doi.org/10.1109/ACSOSC56246.2022.00019
https://doi.org/10.1145/3430895.3460128
https://doi.org/10.1097/ANS.0b013e318261b1ba
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1016/j.jss.2015.12.015
https://doi.org/10.1145/3194760.3194766

BIBLIOGRAPHY 275

Steering Committee, 2017, pp. 602–609. ISBN: 9781450349147. DOI: 10.1145/
3041021.3054190 (pp. 161, 162, 233).

[300] Sandra Sajeev, Jade Huang, Nikos Karampatziakis, Matthew Hall, Se-
bastian Kochman, and Weizhu Chen. “Contextual Bandit Applications in
a Customer Support Bot”. In: Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining. KDD ’21. Virtual Event,
Singapore: Association for Computing Machinery, 2021, pp. 3522–3530. ISBN:
9781450383325. DOI: 10.1145/3447548.3467165 (pp. 11, 161, 170, 234).

[301] Mazeiar Salehie and Ladan Tahvildari. “Self-Adaptive Software: Landscape
and Research Challenges”. In: ACM Trans. Auton. Adapt. Syst. 4.2 (May 2009).
DOI: 10.1145/1516533.1516538 (pp. 1, 4, 52).

[302] Felix Salfner and Miroslaw Malek. “Architecting Dependable Systems with
Proactive Fault Management”. In: Architecting Dependable Systems VII. Ed. by
Antonio Casimiro, Rogério de Lemos, and Cristina Gacek. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 171–200. ISBN: 978-3-642-17245-8.
DOI: 10.1007/978-3-642-17245-8_8 (p. 43).

[303] Areeg Samir and Claus Pahl. “Self-Adaptive Healing for Containerized Cluster
Architectures with Hidden Markov Models”. In: 2019 Fourth International
Conference on Fog and Mobile Edge Computing (FMEC). 2019, pp. 68–73.
DOI: 10.1109/FMEC.2019.8795322 (p. 85).

[304] Theresia Ratih Dewi Saputri and Seok-Won Lee. “The Application of Machine
Learning in Self-Adaptive Systems: A Systematic Literature Review”. In: IEEE
Access 8 (2020), pp. 205948–205967. DOI: 10.1109/ACCESS.2020.3036037
(p. 28).

[305] Suhrid Satyal, Ingo Weber, Hye-young Paik, Claudio Di Ciccio, and
Jan Mendling. “AB-BPM: Performance-Driven Instance Routing for Business
Process Improvement”. In: Business Process Management. Ed. by Josep
Carmona, Gregor Engels, and Akhil Kumar. Cham: Springer International
Publishing, 2017, pp. 113–129. ISBN: 978-3-319-65000-5 (pp. 161, 235).

[306] Suhrid Satyal, Ingo Weber, Hye-young Paik, Claudio Di Ciccio, and Jan
Mendling. “Business process improvement with the AB-BPM methodology”.
In: Information Systems 84 (2019), pp. 283–298. ISSN: 0306-4379. DOI: 10.
1016/j.is.2018.06.007 (pp. 143, 161, 235).

[307] Martin Saveski, Jean Pouget-Abadie, Guillaume Saint-Jacques, Weitao Duan,
Souvik Ghosh, Ya Xu, and Edoardo M. Airoldi. “Detecting Network Effects:
Randomizing Over Randomized Experiments”. In: Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. KDD ’17. Halifax, NS, Canada: Association for Computing Machinery,
2017, pp. 1027–1035. ISBN: 9781450348874. DOI: 10.1145/3097983.3098192
(pp. 161, 231).

https://doi.org/10.1145/3041021.3054190
https://doi.org/10.1145/3041021.3054190
https://doi.org/10.1145/3447548.3467165
https://doi.org/10.1145/1516533.1516538
https://doi.org/10.1007/978-3-642-17245-8_8
https://doi.org/10.1109/FMEC.2019.8795322
https://doi.org/10.1109/ACCESS.2020.3036037
https://doi.org/10.1016/j.is.2018.06.007
https://doi.org/10.1016/j.is.2018.06.007
https://doi.org/10.1145/3097983.3098192

276 BIBLIOGRAPHY

[308] Gerald Schermann, Dominik Schöni, Philipp Leitner, and Harald C. Gall.
“Bifrost: Supporting Continuous Deployment with Automated Enactment of
Multi-Phase Live Testing Strategies”. In: Proceedings of the 17th International
Middleware Conference. Middleware ’16. Trento, Italy: Association for
Computing Machinery, 2016. ISBN: 9781450343008. DOI: 10.1145/2988336.
2988348 (pp. 142, 148, 161–163, 172, 233).

[309] Burr Settles. Active learning literature survey. Tech. rep. University of
Wisconsin-Madison Department of Computer Sciences, 2009 (pp. 47, 78).

[310] S. Shalev-Shwartz and S. Ben-David. Understanding machine learning: From
theory to algorithms. Cambridge University Press, 2014 (pp. 25, 38).

[311] Shahriar Shariat, Burkay Orten, and Ali Dasdan. “Online Evaluation of Bid
Prediction Models in a Large-Scale Computational Advertising Platform:
Decision Making and Insights”. In: Knowl. Inf. Syst. 51.1 (Apr. 2017),
pp. 37–60. ISSN: 0219-1377. DOI: 10.1007/s10115-016-0972-6 (pp. 143, 161,
235).

[312] Amir Molzam Sharifloo, Andreas Metzger, Clément Quinton, Luciano Baresi,
and Klaus Pohl. “Learning and Evolution in Dynamic Software Product
Lines”. In: Proceedings of the 11th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems. SEAMS ’16. Austin,
Texas: Association for Computing Machinery, 2016, pp. 158–164. ISBN:
9781450341875. DOI: 10.1145/2897053.2897058 (p. 49).

[313] Sanaz Sheikhi and Seyed Morteza Babamir. “Using a Recurrent Artificial
Neural Network for Dynamic Self-Adaptation of Cluster-Based Web-Server
Systems”. In: Applied Intelligence 48.8 (Aug. 2018), pp. 2097–2111. ISSN:
0924-669X. DOI: 10.1007/s10489-017-1059-0 (pp. 44, 45).

[314] Stepan Shevtsov, Mihaly Berekmeri, Danny Weyns, and Martina Maggio.
“Control-Theoretical Software Adaptation: A Systematic Literature Review”.
In: IEEE Transactions on Software Engineering 44.8 (Aug. 2018), pp. 784–810.
ISSN: 2326-3881. DOI: 10.1109/TSE.2017.2704579 (pp. 22, 119).

[315] Stepan Shevtsov and Danny Weyns. “Keep It SIMPLEX: Satisfying Multiple
Goals with Guarantees in Control-Based Self-Adaptive Systems”. In: Proceed-
ings of the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering. FSE 2016. Seattle, WA, USA: Association for
Computing Machinery, 2016, pp. 229–241. ISBN: 9781450342186. DOI: 10.
1145/2950290.2950301 (p. 4).

[316] Stepan Shevtsov, Danny Weyns, and Martina Maggio. “SimCA*: A Control-
Theoretic Approach to Handle Uncertainty in Self-Adaptive Systems with
Guarantees”. In: ACM Trans. Auton. Adapt. Syst. 13.4 (July 2019). ISSN: 1556-
4665. DOI: 10.1145/3328730 (p. 217).

https://doi.org/10.1145/2988336.2988348
https://doi.org/10.1145/2988336.2988348
https://doi.org/10.1007/s10115-016-0972-6
https://doi.org/10.1145/2897053.2897058
https://doi.org/10.1007/s10489-017-1059-0
https://doi.org/10.1109/TSE.2017.2704579
https://doi.org/10.1145/2950290.2950301
https://doi.org/10.1145/2950290.2950301
https://doi.org/10.1145/3328730

BIBLIOGRAPHY 277

[317] Fanjuan Shi, Chirine Ghedira, and Jean-Luc Marini. “Context Adaptation for
Smart Recommender Systems”. In: IT Professional 17.6 (2015), pp. 18–26.
DOI: 10.1109/MITP.2015.96 (pp. 142, 146, 161, 234).

[318] Janet Siegmund, Norbert Siegmund, and Sven Apel. “Views on Internal and
External Validity in Empirical Software Engineering”. In: 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering. Vol. 1. Los
Alamitos, CA, USA: IEEE Press, 2015, pp. 9–19. DOI: 10.1109/ICSE.2015.24
(p. 127).

[319] Natalia Silberstein, Oren Somekh, Yair Koren, Michal Aharon, Dror Porat, Avi
Shahar, and Tingyi Wu. “Ad Close Mitigation for Improved User Experience in
Native Advertisements”. In: Proceedings of the 13th International Conference
on Web Search and Data Mining. WSDM ’20. Houston, TX, USA: Association
for Computing Machinery, 2020, pp. 546–554. ISBN: 9781450368223. DOI:
10.1145/3336191.3371798 (pp. 161, 234).

[320] Carlos Eduardo da Silva, José Diego Saraiva da Silva, Colin Paterson, and Radu
Calinescu. “Self-Adaptive Role-Based Access Control for Business Processes”.
In: 12th IEEE/ACM International Symposium on Software Engineering for
Adaptive and Self-Managing Systems. 2017. DOI: 10.1109/SEAMS.2017.13
(p. 22).

[321] Jorge Gabriel Siqueira and Melise M. V. de Paula. “IPEAD A/B Test
Execution Framework”. In: Proceedings of the XIV Brazilian Symposium
on Information Systems. SBSI’18. Caxias do Sul, Brazil: Association for
Computing Machinery, 2018. ISBN: 9781450365598. DOI: 10.1145/3229345.
3229360 (pp. 154, 161, 162, 232).

[322] Dan Siroker and Pete Koomen. A/B Testing: The Most Powerful Way to Turn
Clicks Into Customers. 1st. Hoboken, NJ, USA: Wiley Publishing, 2013. ISBN:
1118536096 (pp. 125, 170).

[323] Kornel Skałkowski and Krzysztof Zieliński. “Automatic Adaptation of SOA
Systems Supported by Machine Learning”. In: Technological Innovation for
the Internet of Things. Ed. by Luis M. Camarinha-Matos, Slavisa Tomic, and
Paula Graça. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 61–68.
ISBN: 978-3-642-37291-9. DOI: 10.1007/978-3-642-37291-9_7 (p. 44).

[324] Matthias Sommer, Sven Tomforde, Jorg Hahner, and Dominik Auer. “Learning
a Dynamic Re-combination Strategy of Forecast Techniques at Runtime”. In:
2015 IEEE International Conference on Autonomic Computing. July 2015,
pp. 261–266. DOI: 10.1109/ICAC.2015.70 (pp. 5, 31).

[325] Vítor E. Silva Souza, Alexei Lapouchnian, Konstantinos Angelopoulos, and
John Mylopoulos. “Requirements-driven software evolution”. In: Computer
Science - Research and Development 28.4 (Nov. 2013), pp. 311–329. ISSN:
1865-2042. DOI: 10.1007/s00450-012-0232-2 (p. 4).

https://doi.org/10.1109/MITP.2015.96
https://doi.org/10.1109/ICSE.2015.24
https://doi.org/10.1145/3336191.3371798
https://doi.org/10.1109/SEAMS.2017.13
https://doi.org/10.1145/3229345.3229360
https://doi.org/10.1145/3229345.3229360
https://doi.org/10.1007/978-3-642-37291-9_7
https://doi.org/10.1109/ICAC.2015.70
https://doi.org/10.1007/s00450-012-0232-2

278 BIBLIOGRAPHY

[326] Bruce Spang, Veronica Hannan, Shravya Kunamalla, Te-Yuan Huang, Nick
McKeown, and Ramesh Johari. “Unbiased Experiments in Congested Net-
works”. In: Proceedings of the 21st ACM Internet Measurement Conference.
IMC ’21. Virtual Event: Association for Computing Machinery, 2021,
pp. 80–95. ISBN: 9781450391290. DOI: 10.1145/3487552.3487851 (pp. 161,
232).

[327] Akshitha Sriraman, Abhishek Dhanotia, and Thomas F. Wenisch. “SoftSKU:
Optimizing Server Architectures for Microservice Diversity Scale”. In: 2019
ACM/IEEE 46th Annual International Symposium on Computer Architecture
(ISCA). 2019, pp. 513–526 (pp. 140, 161, 234).

[328] Anthony Stein, Sven Tomforde, Ada Diaconescu, Jörg Hähner, and Christian
Müller-Schloer. “A Concept for Proactive Knowledge Construction in Self-
Learning Autonomous Systems”. In: 2018 IEEE 3rd International Workshops
on Foundations and Applications of Self* Systems (FAS*W). Sept. 2018,
pp. 204–213. DOI: 10.1109/FAS-W.2018.00048 (p. 44).

[329] Clay Stevens and Hamid Bagheri. “Reducing Run-Time Adaptation Space via
Analysis of Possible Utility Bounds”. In: Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering. ICSE ’20. Seoul, South
Korea: Association for Computing Machinery, 2020, pp. 1522–1534. ISBN:
9781450371216. DOI: 10.1145/3377811.3380365 (p. 55).

[330] Fei Sun, Peng Jiang, Hanxiao Sun, Changhua Pei, Wenwu Ou, and Xiaobo
Wang. “Multi-Source Pointer Network for Product Title Summarization”. In:
Proceedings of the 27th ACM International Conference on Information and
Knowledge Management. CIKM ’18. Torino, Italy: Association for Computing
Machinery, 2018, pp. 7–16. ISBN: 9781450360142. DOI: 10.1145/3269206.
3271722 (pp. 161, 233).

[331] Daniel Sykes, Domenico Corapi, Jeff Magee, Jeff Kramer, Alessandra Russo,
and Katsumi Inoue. “Learning Revised Models for Planning in Adaptive
Systems”. In: International Conference on Software Engineering. IEEE Press,
2013. ISBN: 9781467330763. DOI: 10.1109/ICSE.2013.6606552 (pp. 31, 43).

[332] Vasilis Syrgkanis, Victor Lei, Miruna Oprescu, Maggie Hei, Keith Battocchi,
and Greg Lewis. “Machine Learning Estimation of Heterogeneous Treatment
Effects with Instruments”. In: Advances in Neural Information Processing
Systems. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc,
E. Fox, and R. Garnett. Vol. 32. Red Hook, NY, USA: Curran Associates Inc.,
2019, pp. 15193–15202. URL: https://proceedings.neurips.cc/paper_files/
paper/2019/file/3b2acfe2e38102074656ed938abf4ac3-Paper.pdf (pp. 12,
173).

https://doi.org/10.1145/3487552.3487851
https://doi.org/10.1109/FAS-W.2018.00048
https://doi.org/10.1145/3377811.3380365
https://doi.org/10.1145/3269206.3271722
https://doi.org/10.1145/3269206.3271722
https://doi.org/10.1109/ICSE.2013.6606552
https://proceedings.neurips.cc/paper_files/paper/2019/file/3b2acfe2e38102074656ed938abf4ac3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/3b2acfe2e38102074656ed938abf4ac3-Paper.pdf

BIBLIOGRAPHY 279

[333] Idan Szpektor, Yoelle Maarek, and Dan Pelleg. “When Relevance is Not
Enough: Promoting Diversity and Freshness in Personalized Question
Recommendation”. In: Proceedings of the 22nd International Conference
on World Wide Web. WWW ’13. Rio de Janeiro, Brazil: Association for
Computing Machinery, 2013, pp. 1249–1260. ISBN: 9781450320351. DOI:
10.1145/2488388.2488497 (pp. 142, 161, 234).

[334] Yukihiro Tagami, Toru Hotta, Yusuke Tanaka, Shingo Ono, Koji Tsukamoto,
and Akira Tajima. “Filling Context-Ad Vocabulary Gaps with Click Logs”.
In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. KDD ’14. New York, New York,
USA: Association for Computing Machinery, 2014, pp. 1955–1964. ISBN:
9781450329569. DOI: 10.1145/2623330.2623334 (pp. 137, 144, 161, 170,
234).

[335] Giordano Tamburrelli and Alessandro Margara. “Towards Automated A/B
Testing”. In: Search-Based Software Engineering. Ed. by Claire Le Goues and
Shin Yoo. Cham: Springer International Publishing, 2014, pp. 184–198. ISBN:
978-3-319-09940-8 (pp. 11, 148, 152, 154, 161–164, 172, 235).

[336] Gabriel Tamura, Norha M. Villegas, Hausi A. Müller, João Pedro Sousa, Basil
Becker, Gabor Karsai, Serge Mankovskii, Mauro Pezzè, Wilhelm Schäfer,
Ladan Tahvildari, and Kenny Wong. “Towards Practical Runtime Verification
and Validation of Self-Adaptive Software Systems”. In: Software Engineering
for Self-Adaptive Systems II: International Seminar, Dagstuhl Castle, Germany,
October 24-29, 2010 Revised Selected and Invited Papers. Ed. by Rogério de
Lemos, Holger Giese, Hausi A. Müller, and Mary Shaw. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 108–132. ISBN: 978-3-642-35813-5.
DOI: 10.1007/978-3-642-35813-5_5 (p. 5).

[337] Jimin Tan, Jianan Yang, Sai Wu, Gang Chen, and Jake Zhao. “A critical look
at the current train/test split in machine learning”. In: CoRR abs/2106.04525
(2021). arXiv: 2106.04525. URL: https://arxiv.org/abs/2106.04525 (p. 121).

[338] Diane Tang, Ashish Agarwal, Deirdre O’Brien, and Mike Meyer. “Overlapping
Experiment Infrastructure: More, Better, Faster Experimentation”. In: Pro-
ceedings of the 16th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. KDD ’10. Washington, DC, USA: Association
for Computing Machinery, 2010, pp. 17–26. ISBN: 9781450300551. DOI:
10.1145/1835804.1835810 (pp. 9, 148, 154, 161–164, 170, 236).

[339] Zhen Tang, Wei Wang, Lei Sun, Yu Huang, Heng Wu, Jun Wei, and Tao Huang.
“IO dependent SSD cache allocation for elastic Hadoop applications”. In:
Science China Information Sciences 61.5 (Apr. 2018), p. 050104. ISSN: 1869-
1919. DOI: 10.1007/s11432-017-9401-y (p. 43).

https://doi.org/10.1145/2488388.2488497
https://doi.org/10.1145/2623330.2623334
https://doi.org/10.1007/978-3-642-35813-5_5
https://arxiv.org/abs/2106.04525
https://arxiv.org/abs/2106.04525
https://doi.org/10.1145/1835804.1835810
https://doi.org/10.1007/s11432-017-9401-y

280 BIBLIOGRAPHY

[340] Gerald Tesauro, Nicholas K. Jong, Rajarshi Das, and Mohamed N. Bennani.
“On the use of hybrid reinforcement learning for autonomic resource allocation”.
In: Cluster Computing 10.3 (2007), pp. 287–299. DOI: 10.1007/s10586-007-
0035-6 (pp. 31, 39, 43).

[341] Sebastian Thrun and Tom M. Mitchell. “Lifelong robot learning”. In: Robotics
and Autonomous Systems 15.1 (July 1995), pp. 25–46. ISSN: 0921-8890. DOI:
10.1016/0921-8890(95)00004-Y (p. 44).

[342] Viet Ha-Thuc, Avishek Dutta, Ren Mao, Matthew Wood, and Yunli Liu. “A
Counterfactual Framework for Seller-Side A/B Testing on Marketplaces”.
In: Proceedings of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval. SIGIR ’20. Virtual Event,
China: Association for Computing Machinery, 2020, pp. 2288–2296. ISBN:
9781450380164. DOI: 10.1145/3397271.3401434 (pp. 124, 137, 152, 161,
162, 170, 232).

[343] Mert Toslali, Srinivasan Parthasarathy, Fabio Oliveira, and Ayse K. Coskun.
“JACKPOT: Online experimentation of cloud microservices”. In: Proceedings
of the 12th USENIX Conference on Hot Topics in Cloud Computing.
HotCloud’20. USA: USENIX Association, 2020. URL: https://www.usenix.
org/system/files/hotcloud20_paper_toslali .pdf (pp. 159, 161, 163, 194,
235).

[344] Mark Treveil, Nicolas Omont, Clément Stenac, Kenji Lefevre, Du Phan,
Joachim Zentici, Adrien Lavoillotte, Makoto Miyazaki, and Lynn Heidmann.
Introducing MLOps: How to Scale Machine Learning in the Enterprise.
O’Reilly Media, Incorporated, 2020. ISBN: 9781492083290. URL: https://
books.google.be/books?id=fR64zQEACAAJ (p. 172).

[345] Ye Tu, Kinjal Basu, Cyrus DiCiccio, Romil Bansal, Preetam Nandy,
Padmini Jaikumar, and Shaunak Chatterjee. “Personalized Treatment Selection
Using Causal Heterogeneity”. In: Proceedings of the Web Conference 2021.
WWW ’21. Ljubljana, Slovenia: Association for Computing Machinery, 2021,
pp. 1574–1585. ISBN: 9781450383127. DOI: 10 . 1145/3442381 . 3450075
(pp. 161, 162, 165, 232).

[346] Yutaro Ueoka, Kota Tsubouchi, and Nobuyuki Shimizu. “Tackling Cannibal-
ization Problems for Online Advertisement”. In: Proceedings of the 28th ACM
Conference on User Modeling, Adaptation and Personalization. UMAP ’20.
Genoa, Italy: Association for Computing Machinery, 2020, pp. 358–362. ISBN:
9781450368612. DOI: 10.1145/3340631.3394875 (pp. 142, 161, 233).

[347] Paulo Valente Klaine, Muhammad Imran, Oluwakayode Onireti, and Richard
Souza. “A Survey of Machine Learning Techniques Applied to Self Organizing
Cellular Networks”. In: IEEE Communications Surveys & Tutorials 19.4 (July
2017), pp. 2392–2431. ISSN: 1553-877X. DOI: 10 . 1109 / COMST . 2017 .
2727878 (p. 28).

https://doi.org/10.1007/s10586-007-0035-6
https://doi.org/10.1007/s10586-007-0035-6
https://doi.org/10.1016/0921-8890(95)00004-Y
https://doi.org/10.1145/3397271.3401434
https://www.usenix.org/system/files/hotcloud20_paper_toslali.pdf
https://www.usenix.org/system/files/hotcloud20_paper_toslali.pdf
https://books.google.be/books?id=fR64zQEACAAJ
https://books.google.be/books?id=fR64zQEACAAJ
https://doi.org/10.1145/3442381.3450075
https://doi.org/10.1145/3340631.3394875
https://doi.org/10.1109/COMST.2017.2727878
https://doi.org/10.1109/COMST.2017.2727878

BIBLIOGRAPHY 281

[348] Jeroen Van Der Donckt, Danny Weyns, M. Usman Iftikhar, and Sarpreet Singh
Buttar. “Effective Decision Making in Self-adaptive Systems Using Cost-
Benefit Analysis at Runtime and Online Learning of Adaptation Spaces”. In:
Evaluation of Novel Approaches to Software Engineering. Ed. by Ernesto
Damiani, George Spanoudakis, and Leszek A. Maciaszek. Cham: Springer
International Publishing, 2019, pp. 373–403. ISBN: 978-3-030-22559-9. DOI:
10.1007/978-3-030-22559-9_17 (p. 83).

[349] Jeroen Van Der Donckt, Danny Weyns, Federico Quin, Jonas Van Der Donckt,
and Sam Michiels. “Applying Deep Learning to Reduce Large Adaptation
Spaces of Self-Adaptive Systems with Multiple Types of Goals”. In: IEEE/ACM
15th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems. SEAMS ’20. Seoul, Republic of Korea, 2020, pp. 20–30.
ISBN: 9781450379625. DOI: 10.1145/3387939.3391605 (pp. 53, 55, 91, 106,
289).

[350] Jean Vanderdonckt, Mathieu Zen, and Radu-Daniel Vatavu. “AB4Web: An On-
Line A/B Tester for Comparing User Interface Design Alternatives”. In: Proc.
ACM Hum.-Comput. Interact. 3.EICS (June 2019). DOI: 10.1145/3331160
(pp. 125, 143, 161, 233).

[351] Deepak Kumar Vasthimal, Pavan Kumar Srirama, and Arun Kumar Akkinapalli.
“Scalable Data Reporting Platform for A/B Tests”. In: 2019 IEEE 5th Intl
Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl
Conference on High Performance and Smart Computing, (HPSC) and IEEE
Intl Conference on Intelligent Data and Security (IDS). 2019, pp. 230–238.
DOI: 10.1109/BigDataSecurity-HPSC-IDS.2019.00052 (pp. 139, 146, 161,
163, 164, 234).

[352] Norha M. Villegas, Hausi A. Müller, Gabriel Tamura, Laurence Duchien, and
Rubby Casallas. “A Framework for Evaluating Quality-Driven Self-Adaptive
Software Systems”. In: Proceedings of the 6th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems. SEAMS ’11.
Waikiki, Honolulu, HI, USA: Association for Computing Machinery, 2011,
pp. 80–89. ISBN: 9781450305754. DOI: 10.1145/1988008.1988020 (p. 29).

[353] Thomas Vogel and Holger Giese. “Model-Driven Engineering of Self-Adaptive
Software with EUREMA”. In: ACM Trans. Auton. Adapt. Syst. 8.4 (Jan. 2014).
ISSN: 1556-4665. DOI: 10.1145/2555612 (p. 2).

[354] Daniel Walper, Julia Kassau, Philipp Methfessel, Timo Pronold, and Wolfgang
Einhauser. “Optimizing user interfaces in food production: gaze tracking is
more sensitive for A-B-testing than behavioral data alone”. In: ACM Symposium
on Eye Tracking Research and Applications. ETRA ’20 Short Papers. New
York, NY, USA: Association for Computing Machinery, June 2020, pp. 1–4.
ISBN: 978-1-4503-7134-6. DOI: 10.1145/3379156.3391351 (p. 127).

https://doi.org/10.1007/978-3-030-22559-9_17
https://doi.org/10.1145/3387939.3391605
https://doi.org/10.1145/3331160
https://doi.org/10.1109/BigDataSecurity-HPSC-IDS.2019.00052
https://doi.org/10.1145/1988008.1988020
https://doi.org/10.1145/2555612
https://doi.org/10.1145/3379156.3391351

282 BIBLIOGRAPHY

[355] Jiewen Wan, Qingshan Li, Lu Wang, Liu He, and Yvjie Li. “A self-adaptation
framework for dealing with the complexities of software changes”. In: 2017 8th
IEEE International Conference on Software Engineering and Service Science
(ICSESS). Nov. 2017, pp. 521–524. DOI: 10.1109/ICSESS.2017.8342969
(p. 44).

[356] Jian Wang and David Hardtke. “User Latent Preference Model for Better
Downside Management in Recommender Systems”. In: Proceedings of the
24th International Conference on World Wide Web. WWW ’15. Florence,
Italy: International World Wide Web Conferences Steering Committee, 2015,
pp. 1209–1219. ISBN: 9781450334693. DOI: 10 . 1145/2736277 . 2741126
(pp. 161, 235).

[357] Weinan Wang and Xi Zhang. “CONQ: CONtinuous Quantile Treatment Effects
for Large-Scale Online Controlled Experiments”. In: Proceedings of the 14th
ACM International Conference on Web Search and Data Mining. WSDM ’21.
Virtual Event, Israel: Association for Computing Machinery, 2021, pp. 202–210.
ISBN: 9781450382977. DOI: 10.1145/3437963.3441779 (pp. 161, 163, 232).

[358] Yu Wang, Somit Gupta, Jiannan Lu, Ali Mahmoudzadeh, and Sophia Liu.
“On Heavy-user Bias in A/B Testing”. In: Proceedings of the 28th ACM
International Conference on Information and Knowledge Management. CIKM
’19. New York, NY, USA: Association for Computing Machinery, Nov. 2019,
pp. 2425–2428. ISBN: 978-1-4503-6976-3. DOI: 10.1145/3357384.3358143
(pp. 124, 170).

[359] Zenan Wang, Carlos Carrion, Xiliang Lin, Fuhua Ji, Yongjun Bao, and
Weipeng Yan. “Adaptive Experimentation with Delayed Binary Feedback”.
In: Proceedings of the ACM Web Conference 2022. WWW ’22. Virtual Event,
Lyon, France: Association for Computing Machinery, 2022, pp. 2247–2255.
ISBN: 9781450390965. DOI: 10.1145/3485447.3512097 (pp. 140, 161, 233).

[360] B. L. Welch. “The Generalisation OF ‘Student’s’ Problem when Several
Different Population. Varlances are Involved”. In: Biometrika 34.1-2 (1947),
pp. 28–35. ISSN: 0006-3444. DOI: 10 . 1093 / biomet / 34 . 1 - 2 . 28. eprint:
https://academic.oup.com/biomet/article-pdf/34/1-2/28/553093/34-1-
2-28.pdf (p. 202).

[361] Danny Weyns. Introduction to Self-Adaptive Systems: A Contemporary
Software Engineering Perspective. Wiley, 2020. ISBN: 9781119574941
(pp. 1–3, 27, 52, 59, 174, 210).

[362] Danny Weyns. “Software Engineering of Self-adaptive Systems”. In: Handbook
of Software Engineering. Cham: Springer International Publishing, 2019,
pp. 399–443. ISBN: 978-3-030-00262-6. DOI: 10.1007/978-3-030-00262-
6_11 (pp. 22, 47).

https://doi.org/10.1109/ICSESS.2017.8342969
https://doi.org/10.1145/2736277.2741126
https://doi.org/10.1145/3437963.3441779
https://doi.org/10.1145/3357384.3358143
https://doi.org/10.1145/3485447.3512097
https://doi.org/10.1093/biomet/34.1-2.28
https://academic.oup.com/biomet/article-pdf/34/1-2/28/553093/34-1-2-28.pdf
https://academic.oup.com/biomet/article-pdf/34/1-2/28/553093/34-1-2-28.pdf
https://doi.org/10.1007/978-3-030-00262-6_11
https://doi.org/10.1007/978-3-030-00262-6_11

BIBLIOGRAPHY 283

[363] Danny Weyns and Tanvir Ahmad. “Claims and Evidence for Architecture-
Based Self-adaptation: A Systematic Literature Review”. In: Software
Architecture. Ed. by Khalil Drira. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 249–265. ISBN: 978-3-642-39031-9. DOI: 10.1007/978-
3-642-39031-9_22 (p. 29).

[364] Danny Weyns and Jesper Andersson. “From Self-Adaptation to Self-Evolution
Leveraging the Operational Design Domain”. In: 2023 IEEE/ACM 18th
Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS). Los Alamitos, CA, USA: IEEE Computer Society, May 2023,
pp. 90–96. DOI: 10.1109/SEAMS59076.2023.00022 (p. 6).

[365] Danny Weyns, Nelly Bencomo, Radu Calinescu, Javier Camara, Carlo Ghezzi,
Vincenzo Grassi, Lars Grunske, Paola Inverardi, Jean-Marc Jezequel, Sam
Malek, Raffaela Mirandola, Marco Mori, and Giordano Tamburrelli. “Perpetual
Assurances for Self-Adaptive Systems”. In: Software Engineering for Self-
Adaptive Systems III. Assurances. Ed. by Rogério de Lemos, David Garlan,
Carlo Ghezzi, and Holger Giese. Cham: Springer International Publishing,
2017, pp. 31–63. ISBN: 978-3-319-74183-3 (p. 5).

[366] Danny Weyns, Nelly Bencomo, Radu Calinescu, Javier Cámara, Carlo Ghezzi,
Vincenzo Grassi, Lars Grunske, Paola Inverardi, Jean-Marc Jézéquel, Sam
Malek, Raffaela Mirandola, Marco Mori, and Giordano Tamburrelli. “Perpetual
Assurances for Self-Adaptive Systems”. In: Software Engineering for Self-
Adaptive Systems III. Assurances - International Seminar, Dagstuhl Castle,
Germany, December 15-19, 2013, Revised Selected and Invited Papers. Ed. by
Rogério de Lemos, David Garlan, Carlo Ghezzi, and Holger Giese. Vol. 9640.
Lecture Notes in Computer Science. Springer, 2013, pp. 31–63. DOI: 10.1007/
978-3-319-74183-3_2 (p. 11).

[367] Danny Weyns and Radu Calinescu. “Tele Assistance: A Self-Adaptive Service-
Based System Exemplar”. In: 10th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems. 2015. DOI: 10.1109/
SEAMS.2015.27 (pp. 16, 86, 101, 199).

[368] Danny Weyns, Omid Gheibi, Federico Quin, and Jeroen Van Der Donckt.
“Deep Learning for Effective and Efficient Reduction of Large Adaptation
Spaces in Self-Adaptive Systems”. In: ACM Trans. Auton. Adapt. Syst. 17.1–2
(July 2022). ISSN: 1556-4665. DOI: 10.1145/3530192 (p. 289).

[369] Danny Weyns and M. Usman Iftikhar. “Model-Based Simulation at Runtime
for Self-Adaptive Systems”. In: IEEE International Conference on Autonomic
Computing (ICAC). 2016, pp. 364–373. DOI: 10.1109/ICAC.2016.67 (pp. 24,
53).

https://doi.org/10.1007/978-3-642-39031-9_22
https://doi.org/10.1007/978-3-642-39031-9_22
https://doi.org/10.1109/SEAMS59076.2023.00022
https://doi.org/10.1007/978-3-319-74183-3_2
https://doi.org/10.1007/978-3-319-74183-3_2
https://doi.org/10.1109/SEAMS.2015.27
https://doi.org/10.1109/SEAMS.2015.27
https://doi.org/10.1145/3530192
https://doi.org/10.1109/ICAC.2016.67

284 BIBLIOGRAPHY

[370] Danny Weyns, M. Usman Iftikhar, Sam Malek, and Jesper Andersson. “Claims
and supporting evidence for self-adaptive systems: A literature study”. In:
7th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems. IEEE Press, 2012, pp. 89–98. DOI: 10.1109/SEAMS.2012.
6224395 (p. 52).

[371] Danny Weyns and Usman Iftikhar. “ActivFORMS: A Formally Founded Model-
Based Approach to Engineer Self-Adaptive Systems”. In: ACM Transactions
on Software Engineering and Methodology (2022). (in print) (p. 53).

[372] Danny Weyns, Usman Iftikhar, Danny Hughes, and Nelson Matthys. “Applying
Architecture-Based Adaptation to Automate the Management of Internet-of-
Things”. In: Software Architecture. Ed. by C. Cuesta, D. Garlan, and J. Pérez.
Springer, 2018, pp. 49–67. ISBN: 978-3-030-00761-4. DOI: 10.1007/978-3-
030-00761-4_4 (pp. 22, 47).

[373] Danny Weyns and Usman M. Iftikhar. “ActivFORMS: A Formally Founded
Model-Based Approach to Engineer Self-Adaptive Systems”. In: ACM Trans.
Softw. Eng. Methodol. 32.1 (Feb. 2023). ISSN: 1049-331X. DOI: 10.1145/
3522585 (p. 217).

[374] Danny Weyns, Sam Malek, and Jesper Andersson. “FORMS: A Formal
Reference Model for Self-Adaptation”. In: Proceedings of the 7th International
Conference on Autonomic Computing. ICAC ’10. Washington, DC, USA: Asso-
ciation for Computing Machinery, 2010, pp. 205–214. ISBN: 9781450300742.
DOI: 10.1145/1809049.1809078 (pp. 4, 52).

[375] Danny Weyns, Sam Malek, and Jesper Andersson. “FORMS: Unifying
Reference Model for Formal Specification of Distributed Self-Adaptive
Systems”. In: ACM Trans. Auton. Adapt. Syst. 7.1 (May 2012). ISSN: 1556-
4665. DOI: 10.1145/2168260.2168268 (pp. 3, 22, 24).

[376] Danny Weyns, M. Usman Iftikhar, and Joakim Söderlund. “Do External
Feedback Loops Improve the Design of Self-adaptive Systems? A Controlled
Experiment”. In: 2013 8th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems. SEAMS ’13. San Francisco, CA,
USA: IEEE Press, 2013, pp. 3–12. ISBN: 978-1-4673-4401-2. DOI: 10.1109/
SEAMS.2013.6595487 (pp. 2, 174, 204).

[377] Jon Whittle, Pete Sawyer, Nelly Bencomo, Betty H.C. Cheng, and Jean-
Michel Bruel. “RELAX: Incorporating Uncertainty into the Specification
of Self-Adaptive Systems”. In: 2009 17th IEEE International Requirements
Engineering Conference. 2009, pp. 79–88. DOI: 10.1109/RE.2009.36 (p. 4).

[378] Roel Wieringa. Design Science Methodology for Information Systems and
Software Engineering. Jan. 2014, pp. 1–332. ISBN: 978-3-662-43838-1. DOI:
10.1007/978-3-662-43839-8 (p. 14).

https://doi.org/10.1109/SEAMS.2012.6224395
https://doi.org/10.1109/SEAMS.2012.6224395
https://doi.org/10.1007/978-3-030-00761-4_4
https://doi.org/10.1007/978-3-030-00761-4_4
https://doi.org/10.1145/3522585
https://doi.org/10.1145/3522585
https://doi.org/10.1145/1809049.1809078
https://doi.org/10.1145/2168260.2168268
https://doi.org/10.1109/SEAMS.2013.6595487
https://doi.org/10.1109/SEAMS.2013.6595487
https://doi.org/10.1109/RE.2009.36
https://doi.org/10.1007/978-3-662-43839-8

BIBLIOGRAPHY 285

[379] Roel Wieringa. “Design Science Methodology: Principles and Practice”. In:
Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering - Volume 2. ICSE ’10. Cape Town, South Africa: Association
for Computing Machinery, 2010, pp. 493–494. ISBN: 9781605587196. DOI:
10.1145/1810295.1810446 (p. 14).

[380] Claes Wohlin, Per Runeson, Martin Hst, Magnus C. Ohlsson, Bjrn Regnell, and
Anders Wessln. Experimentation in Software Engineering. Springer Publishing
Company, Incorporated, 2012 (pp. 16, 98).

[381] Liang Wu and Mihajlo Grbovic. “How Airbnb Tells You Will Enjoy Sunset
Sailing in Barcelona? Recommendation in a Two-Sided Travel Marketplace”.
In: Proceedings of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval. SIGIR ’20. Virtual Event,
China: Association for Computing Machinery, 2020, pp. 2387–2396. ISBN:
9781450380164. DOI: 10.1145/3397271.3401444 (pp. 5, 146, 161, 234).

[382] Yuhang Wu, Zeyu Zheng, Guangyu Zhang, Zuohua Zhang, and Chu Wang.
“Non-Stationary A/B Tests”. In: Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining. KDD ’22. Washington
DC, USA: Association for Computing Machinery, 2022, pp. 2079–2089. ISBN:
9781450393850. DOI: 10.1145/3534678.3539325 (pp. 161, 162, 231).

[383] Tong Xia, Sumit Bhardwaj, Pavel Dmitriev, and Aleksander Fabijan. “Safe
Velocity: A Practical Guide to Software Deployment at Scale using Controlled
Rollout”. In: 2019 IEEE/ACM 41st International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP). 2019, pp. 11–20.
DOI: 10.1109/ICSE-SEIP.2019.00010 (pp. 152–154, 161, 163, 234).

[384] Bin Xiao. “Self-Evolvable Knowledge-Enhanced IoT Data Mobility for Smart
Environment”. In: Proceedings of the 1st International Conference on Internet
of Things and Machine Learning. IML ’17. Liverpool, United Kingdom:
Association for Computing Machinery, 2017. ISBN: 9781450352437. DOI:
10.1145/3109761.3109789 (p. 47).

[385] Yuxiang Xie, Nanyu Chen, and Xiaolin Shi. “False Discovery Rate Controlled
Heterogeneous Treatment Effect Detection for Online Controlled Experiments”.
In: Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. KDD ’18. London, United Kingdom: As-
sociation for Computing Machinery, 2018, pp. 876–885. ISBN: 9781450355520.
DOI: 10.1145/3219819.3219860 (pp. 138, 161, 162, 231).

[386] Yuxiang Xie, Meng Xu, Evan Chow, and Xiaolin Shi. “How to Measure Your
App: A Couple of Pitfalls and Remedies in Measuring App Performance
in Online Controlled Experiments”. In: Proceedings of the 14th ACM
International Conference on Web Search and Data Mining. WSDM ’21. Virtual
Event, Israel: Association for Computing Machinery, 2021, pp. 949–957. ISBN:
9781450382977. DOI: 10.1145/3437963.3441742 (pp. 137, 161, 232).

https://doi.org/10.1145/1810295.1810446
https://doi.org/10.1145/3397271.3401444
https://doi.org/10.1145/3534678.3539325
https://doi.org/10.1109/ICSE-SEIP.2019.00010
https://doi.org/10.1145/3109761.3109789
https://doi.org/10.1145/3219819.3219860
https://doi.org/10.1145/3437963.3441742

286 BIBLIOGRAPHY

[387] Ya Xu and Nanyu Chen. “Evaluating Mobile Apps with A/B and Quasi A/B
Tests”. In: Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. KDD ’16. San Francisco, California,
USA: Association for Computing Machinery, 2016, pp. 313–322. ISBN:
9781450342322. DOI: 10.1145/2939672.2939703 (pp. 124, 161, 162, 170,
232).

[388] Ya Xu, Nanyu Chen, Addrian Fernandez, Omar Sinno, and Anmol Bhasin.
“From Infrastructure to Culture: A/B Testing Challenges in Large Scale
Social Networks”. In: Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. KDD ’15. Sydney,
NSW, Australia: Association for Computing Machinery, 2015, pp. 2227–2236.
ISBN: 9781450336642. DOI: 10.1145/2783258.2788602 (pp. 161, 162, 164,
165, 171, 180, 232).

[389] Yanbo Xu, Divyat Mahajan, Liz Manrao, Amit Sharma, and Emre Kıcıman.
“Split-Treatment Analysis to Rank Heterogeneous Causal Effects for Prospec-
tive Interventions”. In: Proceedings of the 14th ACM International Conference
on Web Search and Data Mining. WSDM ’21. Virtual Event, Israel: Association
for Computing Machinery, 2021, pp. 409–417. ISBN: 9781450382977. DOI:
10.1145/3437963.3441821 (pp. 161, 233).

[390] Ye Xu, Zang Li, Abhishek Gupta, Ahmet Bugdayci, and Anmol Bhasin.
“Modeling Professional Similarity by Mining Professional Career Trajectories”.
In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. KDD ’14. New York, New York,
USA: Association for Computing Machinery, 2014, pp. 1945–1954. ISBN:
9781450329569. DOI: 10.1145/2623330.2623368 (pp. 137, 161, 234).

[391] Satoru Yamagata, Hiroyuki Nakagawa, Yuichi Sei, Yasuyuki Tahara, and
Akihiko Ohsuga. “Self-Adaptation for Heterogeneous Client-Server Online
Games”. In: International Conference on Intelligence Science. Springer. 2019,
pp. 65–79 (p. 44).

[392] Sezin Gizem Yaman, Myriam Munezero, Jürgen Münch, Fabian Fagerholm,
Ossi Syd, Mika Aaltola, Christina Palmu, and Tomi Männistö. “Introducing
continuous experimentation in large software-intensive product and service
organisations”. In: Journal of Systems and Software 133 (2017), pp. 195–211.
ISSN: 0164-1212. DOI: 10.1016/j.jss.2017.07.009 (p. 127).

[393] Wanshan Yang, Gemeng Yang, Ting Huang, Lijun Chen, and Youjian Eugene
Liu. “Whales, Dolphins, or Minnows? Towards the Player Clustering in Free
Online Games Based on Purchasing Behavior via Data Mining Technique”. In:
2018 IEEE International Conference on Big Data (Big Data). 2018, pp. 4101–
4108. DOI: 10.1109/BigData.2018.8622067 (pp. 137, 146, 161, 234).

https://doi.org/10.1145/2939672.2939703
https://doi.org/10.1145/2783258.2788602
https://doi.org/10.1145/3437963.3441821
https://doi.org/10.1145/2623330.2623368
https://doi.org/10.1016/j.jss.2017.07.009
https://doi.org/10.1109/BigData.2018.8622067

BIBLIOGRAPHY 287

[394] Runlong Ye, Pan Chen, Yini Mao, Angela Wang-Lin, Hammad Shaikh,
Angela Zavaleta Bernuy, and Joseph Jay Williams. “Behavioral Consequences
of Reminder Emails on Students’ Academic Performance: A Real-World
Deployment”. In: Proceedings of the 23rd Annual Conference on Information
Technology Education. SIGITE ’22. Chicago, IL, USA: Association for
Computing Machinery, 2022, pp. 16–22. ISBN: 9781450393911. DOI: 10 .
1145/3537674.3554740 (pp. 139, 161, 233).

[395] Joseph L. Hellerstein an Yixin Diao, Sujay Parekh, and Dawn M. Tilbury.
Feedback Control of Computing Systems. John Wiley and Sons, Inc., 2004.
ISBN: 9780471668800. DOI: 10.1002/047166880X (p. 22).

[396] Takeshi Yoneda, Shunsuke Kozawa, Keisuke Osone, Yukinori Koide, Yosuke
Abe, and Yoshifumi Seki. “Algorithms and System Architecture for Immediate
Personalized News Recommendations”. In: IEEE/WIC/ACM International
Conference on Web Intelligence. WI ’19. Thessaloniki, Greece: Association
for Computing Machinery, 2019, pp. 124–131. ISBN: 9781450369343. DOI:
10.1145/3350546.3352509 (pp. 137, 139, 161, 232).

[397] Scott W. H. Young. “Improving Library User Experience with A/B Testing:
Principles and Process”. In: Weave: Journal of Library User Experience 1 (Aug.
2014). DOI: 10.3998/weave.12535642.0001.101 (pp. 161, 236).

[398] Miao Yu, Wenbin Lu, and Rui Song. “A new framework for online testing
of heterogeneous treatment effect”. In: 2020, pp. 10310–10317. URL: https:
//www.scopus.com/inward/record.uri?eid=2-s2.0-85106588123%5C&
partnerID=40%5C&md5=53544f162212be7cd129e1f196debcd8 (pp. 144,
161, 235).

[399] Seid Žapčević and Peter Butala. “Adaptive process control based on a
self-learning mechanism in autonomous manufacturing systems”. In: The
International Journal of Advanced Manufacturing Technology 66.9 (June 2013),
pp. 1725–1743. ISSN: 1433-3015. DOI: 10.1007/s00170-012-4453-0 (p. 37).

[400] He Zhang and Muhammad Ali Babar. “On Searching Relevant Studies in
Software Engineering”. In: Proceedings of the 14th International Conference
on Evaluation and Assessment in Software Engineering. EASE’10. UK: BCS
Learning & Development Ltd., 2010, pp. 111–120 (p. 131).

[401] Tianqi Zhao, Wei Zhang, Haiyan Zhao, and Zhi Jin. “A Reinforcement
Learning-Based Framework for the Generation and Evolution of Adaptation
Rules”. In: 2017 IEEE International Conference on Autonomic Computing
(ICAC). July 2017, pp. 103–112. DOI: 10.1109/ICAC.2017.47 (pp. 44, 173).

[402] Zhenyu Zhao and Totte Harinen. “Uplift Modeling for Multiple Treatments
with Cost Optimization”. In: 2019 IEEE International Conference on Data
Science and Advanced Analytics (DSAA). 2019, pp. 422–431. DOI: 10.1109/
DSAA.2019.00057 (p. 171).

https://doi.org/10.1145/3537674.3554740
https://doi.org/10.1145/3537674.3554740
https://doi.org/10.1002/047166880X
https://doi.org/10.1145/3350546.3352509
https://doi.org/10.3998/weave.12535642.0001.101
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106588123%5C&partnerID=40%5C&md5=53544f162212be7cd129e1f196debcd8
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106588123%5C&partnerID=40%5C&md5=53544f162212be7cd129e1f196debcd8
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106588123%5C&partnerID=40%5C&md5=53544f162212be7cd129e1f196debcd8
https://doi.org/10.1007/s00170-012-4453-0
https://doi.org/10.1109/ICAC.2017.47
https://doi.org/10.1109/DSAA.2019.00057
https://doi.org/10.1109/DSAA.2019.00057

288 BIBLIOGRAPHY

[403] Zhenyu Zhao, Yan He, and Miao Chen. “Inform Product Change through
Experimentation with Data-Driven Behavioral Segmentation”. In: 2017 IEEE
International Conference on Data Science and Advanced Analytics (DSAA).
2017, pp. 69–78. DOI: 10.1109/DSAA.2017.65 (pp. 137, 146, 159, 161, 171,
235).

[404] Xingquan Zuo, Guoxiang Zhang, and Wei Tan. “Self-Adaptive Learning PSO-
Based Deadline Constrained Task Scheduling for Hybrid IaaS Cloud”. In: IEEE
Transactions on Automation Science and Engineering 11.2 (2014), pp. 564–573.
DOI: 10.1109/TASE.2013.2272758 (p. 39).

https://doi.org/10.1109/DSAA.2017.65
https://doi.org/10.1109/TASE.2013.2272758

List of publications

Journal publications

• Omid Gheibi, Danny Weyns, and Federico Quin. “Applying Machine Learning
in Self-Adaptive Systems: A Systematic Literature Review”. In: ACM Trans.
Auton. Adapt. Syst. 15.3 (Aug. 2021). ISSN: 1556-4665. DOI: 10.1145/3469440

• Federico Quin, Danny Weyns, and Omid Gheibi. “Reducing large adaptation
spaces in self-adaptive systems using classical machine learning”. In: Journal of
Systems and Software 190 (2022), p. 111341. ISSN: 0164-1212. DOI: 10.1016/j.
jss.2022.111341

• Danny Weyns, Omid Gheibi, Federico Quin, and Jeroen Van Der Donckt. “Deep
Learning for Effective and Efficient Reduction of Large Adaptation Spaces in
Self-Adaptive Systems”. In: ACM Trans. Auton. Adapt. Syst. 17.1–2 (July 2022).
ISSN: 1556-4665. DOI: 10.1145/3530192

Conference publications

• Federico Quin, Danny Weyns, Thomas Bamelis, Sarpreet Singh Buttar, and
Sam Michiels. “Efficient Analysis of Large Adaptation Spaces in Self-Adaptive
Systems Using Machine Learning”. In: Proceedings of the 14th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems.
SEAMS ’19. Montreal, Quebec, Canada: IEEE Press, 2019, pp. 1–12. DOI:
10.1109/SEAMS.2019.00011

• Jeroen Van Der Donckt, Danny Weyns, Federico Quin, Jonas Van Der Donckt,
and Sam Michiels. “Applying Deep Learning to Reduce Large Adaptation
Spaces of Self-Adaptive Systems with Multiple Types of Goals”. In: IEEE/ACM
15th International Symposium on Software Engineering for Adaptive and Self-

289

https://doi.org/10.1145/3469440
https://doi.org/10.1016/j.jss.2022.111341
https://doi.org/10.1016/j.jss.2022.111341
https://doi.org/10.1145/3530192
https://doi.org/10.1109/SEAMS.2019.00011

290 LIST OF PUBLICATIONS

Managing Systems. SEAMS ’20. Seoul, Republic of Korea, 2020, pp. 20–30.
ISBN: 9781450379625. DOI: 10.1145/3387939.3391605

• Federico Quin. “Systematic Approach to Engineer Decentralized Self-adaptive
Systems”. In: Software Architecture. Ed. by Henry Muccini et al. Cham:
Springer International Publishing, 2020, pp. 38–50. ISBN: 978-3-030-59155-7

• Federico Quin, Danny Weyns, and Omid Gheibi. “Decentralized Self-Adaptive
Systems: A Mapping Study”. In: 2021 International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS). 2021, pp. 18–29.
DOI: 10.1109/SEAMS51251.2021.00014

• Omid Gheibi, Danny Weyns, and Federico Quin. “On the Impact of Applying
Machine Learning in the Decision-Making of Self-Adaptive Systems”. In:
2021 International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS). 2021, pp. 104–110. DOI: 10.1109/SEAMS51251.
2021.00023

• Federico Quin and Danny Weyns. “SEAByTE: A Self-Adaptive Micro-Service
System Artifact for Automating A/B Testing”. In: Proceedings of the 17th
Symposium on Software Engineering for Adaptive and Self-Managing Systems.
SEAMS ’22. Pittsburgh, Pennsylvania: Association for Computing Machinery,
2022, pp. 77–83. ISBN: 9781450393058. DOI: 10.1145/3524844.3528081

• Maxim Reynvoet, Omid Gheibi, Federico Quin, and Danny Weyns. “Detecting
and Mitigating Jamming Attacks in IoT Networks Using Self-Adaptation”.
In: 2022 IEEE International Conference on Autonomic Computing and Self-
Organizing Systems Companion (ACSOS-C). 2022, pp. 7–12. DOI: 10.1109/
ACSOSC56246.2022.00019

Under review (submitted)

• Federico Quin and Danny Weyns. “Automating Pipelines of A/B Tests with
Population Split Using Self-Adaptation and Machine Learning”. In: arXiv
preprint arXiv:2306.01407. 2023. DOI: 10.48550/arXiv.2306.01407

• Federico Quin, Danny Weyns, Matthias Galster, and Camila Costa Silva. “A/B
Testing: A Systematic Literature Review”. In: arXiv preprint arXiv:2308.04929
(2023). DOI: 10.48550/arXiv.2308.04929

https://doi.org/10.1145/3387939.3391605
https://doi.org/10.1109/SEAMS51251.2021.00014
https://doi.org/10.1109/SEAMS51251.2021.00023
https://doi.org/10.1109/SEAMS51251.2021.00023
https://doi.org/10.1145/3524844.3528081
https://doi.org/10.1109/ACSOSC56246.2022.00019
https://doi.org/10.1109/ACSOSC56246.2022.00019
https://doi.org/10.48550/arXiv.2306.01407
https://doi.org/10.48550/arXiv.2308.04929

FACULTY OF ENGINEERING SCIENCE
DEPARTMENT OF COMPUTER SCIENCE

IMEC-DISTRINET
Celestijnenlaan 200A box 2402

B-3001 Leuven
federico.quin@kuleuven.be

https://distrinet.cs.kuleuven.be/

	Abstract
	Beknopte samenvatting
	Contents
	Introduction
	Research Background
	Self-Adaptation
	Machine Learning for Self-Adaptation
	A/B testing

	Research Challenges
	Machine Learning for Self-Adaptation
	A/B Testing

	Research Focus
	Research Questions
	Research Context

	Research Methodology
	Machine learning to reduce large adaptation spaces
	Automatic and efficient execution A/B testing pipelines
	Contributions
	Positioning contributions

	Thesis outline

	Applying Machine Learning in Self-Adaptive Systems
	Introduction
	Background and Review Focus
	MAPE-based Self-adaptation
	Machine Learning
	Adaptation Problem versus Learning Problem
	Importance of Machine Learning in Self-Adaptive Systems

	Related Reviews
	Summary Protocol
	Results
	Demographics
	RQ1: What problems have been tackled by machine learning in self-adaptive systems?
	RQ2: What are the key engineering aspects considered when applying learning in self-adaptation?
	RQ3: What are open challenges for using machine learning in self-adaptive systems?

	Insights Derived from the Study and Threats to Validity
	Towards a Design Process for Using Machine Learning in Self-Adaptive Systems
	Opportunities for Future Research
	Threats to Validity

	Conclusion

	Reducing Large Adaptation Spaces Using Machine Learning
	Introduction
	State of the Art and Problem Description
	Machine Learning to Support the Analysis of Large Adaptation Spaces
	Reinforcement Learning to Support Decision-making in Self-Adaptation
	Efficient Analysis in Self-Adaptive Systems
	Research Problem

	Model of Self-Adaptive System with Adaptation Goals and Running Example
	Model of Self-Adaptive System
	Running Example
	Adaptation Goals

	Machine Learning To Adaptation Space Reduction
	Runtime Architecture of ML2ASR+
	High-level Overview of the ML2ASR+ Workflow
	Design Stage of the ML2ASR+ Workflow in Detail
	Runtime Stage of the ML2ASR+ Workflow in Detail: Training
	Runtime Stage of the ML2ASR+ Workflow in Detail: Testing

	Algorithms, Models, and Metrics for Evaluating ML2ASR+
	Algorithms and Models for the Design of the Machine Learning Modules
	Metrics for Evaluating Learning Models of ML2ASR+
	Metrics for Evaluating Utility Penalty and Efficiency at Runtime

	Evaluation ML2ASR+
	Evaluation with DeltaIoT
	Evaluation with the Service-Based System

	Discussion
	Qualitative Requirements
	Insights
	Threats to Validity

	Conclusion

	A/B Testing: A Systematic Literature Review
	Introduction
	Background and related work
	Background
	Related secondary studies

	Methodology
	Research questions
	Search query
	Search strategy
	Search process
	Data items

	Results
	Demographic information
	RQ1: What is the subject of A/B testing?
	RQ2: How are A/B tests designed? What is the role of stakeholders in this process?
	RQ3: How are A/B tests executed? What is the role of stakeholders in this process?
	RQ4: What are the reported open research problems in the field of A/B testing?

	Discussion
	Research topics
	Environments and tools used for A/B testing
	Research opportunities and future research directions
	Threats to validity

	Conclusion

	Automating A/B testing pipelines using SA and ML
	Introduction
	Related Work
	Approach
	Requirements
	Self-adaptation to Automate A/B Testing Pipelines
	Self-adaptation and Machine Learning to Split Populations
	Concrete Realization of the Conceptual Architecture

	Evaluation
	Evaluation questions
	Evaluation metrics
	Evaluation Instruments and Settings
	Evaluation Results
	Discussion and Threats to Validity

	Conclusion and Future Work

	SEAByTE: a self-adaptive artifact to automate A/B testing
	Introduction
	Background and Positioning of the Artifact
	Micro-services
	A/B Testing
	Positioning of the Artifact

	SEAByTE
	Experimental Pipeline
	Architecture SEAByTE
	Test Scenarios

	Experimentation with the Artifact
	Workflow to use the artifact
	Results

	On the Applicability of SEAByTE
	Future research directions
	Conclusions

	Conclusion
	Summary of contributions
	Threats to validity
	Future work
	Goal evolution in self-adaptive systems supported by machine learning
	Role of A/B testing in self-adaptive systems
	Holistic approach to automating A/B testing pipelines

	Concluding reflections

	Appendix
	Applying Machine Learning in Self-Adaptive Systems: A SLR
	List of Primary Studies

	Reducing Large Adaptation Spaces
	Auxiliary Formal Definitions
	Additional Machine Learning Material

	A/B Testing: A Systematic Literature Review
	List of Primary Studies

	Bibliography
	List of publications

