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Abstract. Tree ensembles are powerful models that are widely used.
However, they are susceptible to evasion attacks where an adversary
purposely constructs an adversarial example in order to elicit a mispre-
diction from the model. This can degrade performance and erode a user’s
trust in the model. Typically, approaches try to alleviate this problem by
verifying how robust a learned ensemble is or robustifying the learning
process. We take an alternative approach and attempt to detect adver-
sarial examples in a post-deployment setting. We present a novel method
for this task that works by analyzing an unseen example’s output con-
figuration, which is the set of leaves activated by the example in the
ensemble’s constituent trees. Our approach works with any additive tree
ensemble and does not require training a separate model. We evaluate
our approach on three different tree ensemble learners. We empirically
show that our method is currently the best adversarial detection method
for tree ensembles.
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1 Introduction

Tree ensembles such as (gradient) boosted trees and random forests are a popular
class of models. However, like many other model families, such as neural net-
works [2,18,40], they are susceptible to evasion attacks [9,12,14,23,47,50]. In
this attack setting, a previously trained model is deployed and, while operating
in the wild, is exposed to adversarial examples that an adversary purposely
constructed to elicit a misprediction from the model. Such examples are undesir-
able because they degrade a model’s performance and erode a user’s trust in the
model. For tree ensembles, the literature attempts to deal with evasion attacks in
one of two ways. First, verification techniques attempt to ascertain how robust a
learned ensemble is to adversarial examples [9,12,34] by empirically determining
how much an example would have to be perturbed (according to some norm) for
its predicted label to change. Second, the problem can be addressed at training
time by trying to learn a more robust model by adding adversarial examples
to the training set [23], pruning the training data [49], changing aspects of the
learner such as the splitting criteria [1, 7, 8, 44] or the objective [21], relabeling
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the values in the leaves [45], using constraint solvers to learn optimal trees [46],
or interleaving learning and verification [35].

This paper explores an alternative approach to mitigating the effect of an
evasion attack. Given a current example for which a prediction is required, we
attempt to ascertain if this current example is adversarial or not. If the example
is identified as being adversarial, then the deployed model could refrain from
making a prediction similar to a learning with rejection setting [11]. While this
question has been extensively explored for neural networks, this is not the case
for tree ensembles. Unfortunately, most existing methods for neural networks are
not applicable to tree ensembles because they use properties unique to neural
networks [51]. For example, some modify the model [17,19,30], learn other models
(e.g., nearest neighbors) on top of the network’s intermediate representations
[16,24,27,39], or learn other models on top of the gradients [37]. Moreover, nearly
all methods focus only on detecting evasion attacks for image classification.

Tree ensembles are powerful because they combine the predictions made by
many trees. Hence, the prediction procedure involves sorting the given example
to a leaf node in each tree. The ordered set of the reached leaf nodes is an output
configuration of the ensemble and fully determines the ensemble’s resulting pre-
diction. However, there are many more possible output configurations than there
are examples in the data used to train the model. For example, the California
housing dataset [31] only has eight attributes, but training an XGBoost ensem-
ble containing 6, 7, or 8 trees each of at most depth 5 yields 62 248, 173 826,
and 385 214 output configurations respectively.1 These numbers (far) exceed the
20,600 examples in the dataset. The situation will be worse for the larger en-
sembles sizes that are used in practice. Our hypothesis is that in an evasion
attack

adversarial examples exploit unusual output configurations, that is,
ones that are very different to those observed in the data used to train
the model.

That is, small, but carefully selected perturbations can yield an example that is
quite similar to another example observed during training, but yields an output
configuration that is far away from those covered by the training data.

Based on this intuition, we present a novel method to detect an evasion attack
based on assessing whether an example encountered post deployment has an
unusual output configuration. When a new example is encountered, our approach
encodes it by its output configuration and then measures the distance between
the encoded example and its nearest (encoded) neighbor in a reference set. If
this distance is sufficiently high, the example is flagged as being an adversarial
one and the model can abstain from making a prediction. Our approach has
several benefits. First, it is general: it works with any additive tree ensemble.
Second, it is integrated: it does not require training a separate model to identify
adversarial examples, one simply has to set a threshold on the distance. Finally, it

1 Computed using Veritas [12].
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is surprisingly fast as the considered distance metric can be efficiently computed
by exploiting instruction level parallelism (SIMD).

Empirically, we evaluate and compare our approach on three ensemble meth-
ods: gradient boosted trees (XGBoost [10]), random forests [4], and GROOT [44],
which is an approach for training robust tree ensembles. We empirically show
that our method outperforms multiple competing approaches for detecting ad-
versarial examples post deployment for all three considered tree ensembles. More-
over, it can detect adversarial examples with a comparable computational effort.

2 Preliminaries

We assume a d-dimensional input space X = Rd and a target space Y = {0, 1}.
Though we evaluate our algorithm on binary classification problems, the method
generalizes to multi-classification and regression. The random variable X with
distribution p(X) represents a d dimensional feature vector, and the random
variable Y with distribution p(Y ) represents the target variable. The instances
(x, y) ∈ D are sampled from the joint distribution p(X,Y ), written (x, y) ∼
p(X,Y ). We use Ak to denote the kth attribute in the data, k = 1, . . . , d.

Additive Tree Ensembles. This paper proposes a method that works with additive
tree ensembles of decision trees. These are a frequently used family of machine
learning models encompassing both random forests and (gradient) boosted trees.
Excellent open-source packages are available such as XGBoost [10], LightGBM
[25], Scikit-learn [32] and many others. The models are learned from a dataset
D ⊆ X × Y and define a mapping from X to Y.

A binary decision tree T is a recursive data structure consisting of nodes. It
starts at a root node that is not a descendant of any other node. Every node
is either a leaf node storing an output value, or an internal node storing a test
(e.g., is attribute Ak less than 5? ) and two child nodes. A tree is evaluated for
an example x ∈ X starting at the root node. If the node is an internal node, the
test is executed for the node and, if successful, x moves down to the left child
node, or if unsuccessful, moves down to the right child node, and the procedure
recurs. If the node is a leaf, the output value of the leaf is the prediction for x.

An additive ensemble of trees T is a sum ofM trees. The prediction is the sum
of the predictions of the trees: T (x) = σ(

∑M
m=1 Tm(x)). The transformation σ

depends on the ensemble type and the learning task. Figure 1 shows an example
of a tree ensemble.

Output Configuration (OC). The output configuration of an example x in an
ensemble T is the ordered set of leaves (l(1), . . . , l(M)) visited by x in each tree
of the ensemble. Each leaf is reached by exactly one root-to-leaf path. The split
conditions in the internal nodes along the root-to-leaf paths of all leaves in an
OC define the box in the input space of the OC. That is, for an OC o ∈ O,
box(o) =

∏
k≤d[uk, vk), where each [uk, vk) is an interval constraining the kth

attribute. Note that a valid OC has a non-empty box. This also means that
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Fig. 1. A simple tree ensemble. Each leaf has an identifier in black, and leaf class
predictions.

the OC-space is not just the Cartesian product of all leaves because some leaf
combinations are impossible. For example, in Figure 1, (1, 2) and (1, 3) are invalid
OCs because Ak cannot be both less than 3 and greater than 4 at the same time.

We define an operator OC : x 7→ (l(1), . . . , l(M)) mapping an example x to
its output configuration, where l(m) are leaf identifiers. This naturally defines
the OC-space O = {OC(x) | x ∈ X} as the discrete space of all OCs. There is
a one-to-one map between the boxes and the OC-space and the set of all boxes
is a partition of the input space. Moreover, if two examples have the same OC,
they belong to the same box and the ensemble T produces the same output for
both examples.

Evasion Attacks and Adversarial Examples Adversaries can attack machine
learning models at training time (poisoning), or at deployment time (evasion) [3].
We focus on detecting evasion attacks. An evasion attack consists of constructing
an example x̃ close to a real correctly labeled example x such that x̃ elicits a
misprediction, i.e., T (x) ̸= T (x̃) and ∥x̃− x∥ < ε for some norm ∥ · ∥ and some
ε > 0. We call such an x̃ an adversarial example. The same definition of an
adversarial example is also used in previous work on tree ensembles [9, 12, 23],
and corresponds to the prediction-change setting of [13].

Evasion attacks can vary on two important dimensions: (1) black-box vs.
white-box, and (2) low-confidence vs. high-confidence. A white-box method has
full access to the structure of the model, while a black-box method only uses the
model’s predictions. Low- and high-confidence refers to how the attacker tries to
manipulate the confidence that the ensemble assigns to the incorrect label. For
example, a low-confidence adversarial example in binary classification problem
has a predicted probability close to 0.5.

3 Detecting Evasion Attacks with OC-score

We assume a post-deployment setting where a tree ensemble T is operating in
the wild. The OC-score method then solves the following task:

Given: a deployed tree ensemble T and an unseen example x ∈ X for which a
prediction is required,

Do: assign a score OC-score(x) to x indicating whether x is an adversarial
example generated by an evasion attack.
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Our algorithm is based on the fact that for sufficiently large models, the vast
majority of the model’s possible OCs will not be observed in the data
used to train the model.

Decision tree learners employ heuristics to select splitting criteria in internal
nodes with the goal of separating examples from different classes. Consequently,
most leaf nodes tend to be (strongly) predictive of one class. Correctly classified
examples will tend to have OCs consisting largely of leaves that are predictive
of the correct class. An evasion attack constructs an adversarial example using
carefully selected perturbations to a small number of attribute values so that
enough leaves in the original example’s OC are replaced by leaves that are pre-
dictive of the opposing class, yielding unusual OCs with an incorrect output
label. This suggests that measuring how unusual an OC is, i.e., measuring how
similar a newly encountered example’s OC is to those that appear in the training
set, is an effective strategy to detect adversarial examples.

3.1 The OC-score Metric

Our approach requires a learned ensemble T and a reference set DR ⊆ D of
correctly classified examples. It constructs two reference sets Rŷ = {OC(x) |
(x, y) ∈ DR, y = ŷ}, one for each class, by encoding the examples in DR into the
OC-space by finding each one’s output configuration.

Given a newly encountered example x ∈ X , the ensemble is used to obtain its
predicted label ŷ = T (x) and output configuration o = OC(x). Then it receives
an OC-score by computing the Hamming distance to the closest OC in Rŷ:

OC-score(x) = min
o′∈Rŷ

h(o, o′), (1)

with h(o, o′) =
∑M

m=1 1[l
(m) ̸= l′(m)] the number of leaves that differ between the

OCs and l(m) and l′(m) the mth leaf in o and o′ respectively. Higher OC-scores
correspond to a higher chance of being an adversarial example. Operationally,
a threshold can be set on the OC-scores to flag potential adversarial examples:
when the threshold is exceeded, the model abstains from making a prediction.

The OC-score algorithm can be implemented very efficiently by exploiting
instruction-level parallelism using SIMD. The reference set’s OCs can be com-
pactly represented as a matrix of small integers (e.g., 8-bit integers), with in
the ith row the identifiers of the leaves in the OC of the ith example in R. To
compute OC-score(x), we slide the vector OC(x) over the rows of this matrix
and compute the Hamming distance. This can be done on x86 using the 256-bit
AVX* SIMD extensions. The full details are in the supplement and the source
code is available at https://github.com/laudv/ocscore.

3.2 Theoretical Analysis

Our approach flags adversarial examples generated as part of an evasion attack
by setting a threshold on the OC-score. It will only be accurate if, on average,

https://github.com/laudv/ocscore
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the expected OC-score of an adversarial example is larger than the expected
OC-score of a normal example. We prove that with two reasonable assumptions
that this is indeed the case.

The first is the split-uniqueness assumption, which requires that no two splits
in the ensemble are identical. The second assumption requires that adversarial
examples produce OCs that are unlikely to be observed in the data used to train
the model. Therefore, we first need to formally define how likely an OC is and
what constitutes an unlikely OC.

Definition 1 (Probability of an OC). Let X be a random variable denoting
the feature vector, the probability PX(o) of an OC o ∈ O is the probability of
finding a normal example x ∼ p(X) in the box of o:

PX(o) = PX(box(o)) = P(X ∈ box(o)). (2)

We can then restrict ourselves to low probability OCs:

Definition 2 (Unlikely OC). Given an ε > 0, an OC o ∈ O is unlikely if
PX(o) < ε.

The supplement shows that there always exists an ε such that unlikely OCs exist.
We want theOC-score to be high for adversarial examples, and low for normal

ones. This leads to the definition of an unusual OC. The OC-score measures the
distance to the closest reference set example in OC-space. For the OC-score to
be large with high probability, the likelihood of finding a reference set example
in the OC-space neighborhood must be low. Specifically, given an unlikely OC
oε and its OC-space neighbors o′, h(oε, o

′) ≤ w for some distance w ≤ M , the
likelihood of finding a reference set example x ∼ p(X) in the a box of any
neighbor must be low.

Definition 3 (Unusual OCs ). Choose ε such that unlikely OCs exist. Then,
for any distance w ≤ M , an unlikely OC oε is unusual if its OC-space neighbor-
hood is less likely to contain a reference set example than the neighborhood of a
non-unlikely OC o:

PX

(⋃
{box(o′) |h(o′, oε)≤w, o′∈O}

)
≤PX

(⋃
{box(o′) |h(o′, o)≤w, o′∈O}

)
(3)

If we assume that adversarial examples use unusual OCs, then we prove
that adversarial examples must have larger expected OC-scores on average than
normal examples:

Theorem 1. Let ε > 0. Let O<ϵ = {o ∈ O | PX(o) < ϵ} the set of unlikely
OCs and O≥ϵ = O \ O<ϵ. Let xε ∼ p(X|O<ϵ), with p(X|O<ϵ) the distribution
of instances with unlikely OCs, i.e., xε ∼ p(X) such that xε ∈ box(oε) and
oε ∈ O<ϵ. Similarly, let x ∼ p(X|O≥ϵ), where p(X|O≥ϵ) is the distribution of
instances with non-unlikely OCs. Then,

Ex∼p(X|O≥ϵ) [ER[OC-score(x)]] < Exε∼p(X|O<ϵ) [ER[OC-score(xε)]] (4)

The proof is in the supplement.
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4 Related Work

Beyond the approaches mentioned in the introduction for detecting adversar-
ial examples in neural networks, there are methods that look at the behavior
of the decision boundary in an example’s neighborhood [15, 36, 42]. Unfortu-
nately, these methods do not work well with tree ensembles because the use of
binary axis-parallel splits make them step functions, which makes exploring the
neighborhood difficult. Also, the work investigating the relation between model
uncertainty and adversarial examples [20,29] is relevant to this paper.

Certification methods [26, 33] try to guarantee that, given an example, no
adversarial examples exist within an l∞ ball. In practice, this is achieved by
(1) certifying the training data where labels are known, or (2) sampling in the
neighborhood around an unseen instance and certifying that the unseen example
and the sampled instances have the same predicted label. These methods achieve
tractability by relaxing and approximating the (neural) model (e.g., bounding
the activation function).

Each example’s OC-score can be viewed as a model’s secondary output with
the predicted class being its primary output. This fits into the larger task of
machine learning with a reject option [11]. Rejection aims to identify test ex-
amples for which the model was not properly trained. For such examples, the
model’s predictions have an elevated risk of being incorrect, and hence may not
be trustworthy. An example can be rejected due to ambiguity (i.e., how well the
decision boundary is defined in a region) or novelty (i.e., how anomalous an ex-
ample is with respect to the observed training data) [22]. The OC-score metric
goes beyond measuring ambiguity in an ensemble (i.e., the model’s confidence
in a prediction). Therefore, it can detect adversarial examples even if they fall
in a region of the input space where the model’s decision boundary appears to
be well defined given the training data.

The random forest manual [5] discusses defining distances between training
examples in an analogous manner to OC-score. Typically, (variations on) this
distance has been used for tasks such as clustering [38], feature transforma-
tions [43], or making tree ensembles more interpretable [41]. To our knowledge,
it has not been used for detecting adversarial examples.

5 Experimental Evaluation

Our experimental evaluation addresses three questions:

Q1. Can OC-score more accurately detect adversarial examples than its com-
petitors?

Q2. What is each approach’s prediction time cost associated with detecting ad-
versarial examples?

Q3. How does the size of the reference set affect the performance of our OC-score
metric?
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We compare our OC-score to four approaches:

Ambiguity (ambig) This approach uses the intuition that because adver-
sarial examples are somehow different than the training ones, the model will
be uncertain about an adversarial example’s predicted label [20]. This entails
deciding whether an example lies near a model’s decision boundary. This can
be done by ranking examples according to the uncertainty of the classifier:
ambig(x) = 1− |2 pT (x)− 1|, where pT is the probability of the positive class as
predicted by the ensemble T for an example x.

Local outlier factor (lof ) [6] Another intuition to detect adversarial ex-
amples is to employ an anomaly detector under the assumption that adversarial
examples are drawn from a different distribution than non-adversarial ones. lof
is a state-of-the-art unsupervised anomaly detection method that assigns a score
to each example denoting how anomalous it is. This approach entails learning a
lof model which is applied to each example.

Isolation forests (iforest) An isolation forest [28] is a state-of-the-art
anomaly detector. It learns a tree ensemble that separates anomalous from nor-
mal data points by splitting on a randomly selected attribute using a randomly
chosen split value between the minimum and maximum value of the attribute.
Outliers tend to be split off earlier in the trees, so the depth of an example in
the tree is indicative of how normal an example is. Again, this requires learning
a separate model at training time.

ML-LOO (mlloo) This is an approach for detecting adversarial examples
from the neural network literature [48]. Unlike most other approaches, it is model
agnostic as it looks at statistics of the features. It uses the accumulated feature
attributions to rank examples: stdk

{
pT (x)− pT (x(k))

}
, where pT is the prob-

ability prediction of ensemble T , and x(k) is x with the kth attribute set to 0.
The observation in [48] is that variation in the feature attributions is larger for
adversarial examples.

Table 1. Datasets’ characteristics and learners’ hyperparameter settings. #F and n
are the number of features resp. examples. M is the number of trees. The learning rate
and tree depth for XGBoost are η and dT . calhouse is a regression dataset converted
to binary classification by predicting when the target is greater than the median value.

#F n η M dT class balance

calhouse 8 20.6k 0.5 100 5 50%
electricity 8 45.3k 0.4 80 8 58%
covtype 54 581.0k 0.5 80 6 51%
higgs 33 250.0k 0.1 100 8 66%
ijcnn1 22 141.7k 0.9 50 5 90%
mnist2v4 784 13.8k 0.7 50 5 51%
fmnist2v4 784 14.0k 0.1 100 4 50%
webspam 254 350.0k 0.9 50 5 39%
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5.1 Experimental Methodology

We mimic the post-deployment evasion attack setting using 5-fold cross valida-
tion. In each fold, an ensemble is trained on four folds of clean training data.
Then, using random subsets (with replacement) of the remaining fold, we gen-
erate 4×500 adversarial examples using four different methods. The adversarial
examples are then supplemented by 2000 randomly selected normal (i.e., un-
modified) examples. The resulting test set has an equal number of adversarial
examples (4× 500) as normal examples (2000). The different detection methods
are then evaluated on the test set by comparing their performance on the task
of distinguishing the adversarial examples from the normal examples.

We test our approach on the eight benchmark datasets listed in Table 1.
All datasets are min-max normalized to make perturbations of the same size
to different attributes comparable. To demonstrate our approach’s generality,
we consider three types of additive tree ensembles: (1) XGBoost boosted trees
[10], (2) Scikit-learn random forests [32], and (3) GROOT robustified random
forests [44], which modifies the criteria for selecting the split condition when
learning a tree to make them more robust against adversarial examples. Due to
space constraints, we only show plots for some of the datasets. The results for the
remaining datasets are along the same lines and are provided in the supplement.

Experimental settings. For a given dataset, each learner has the same
number of trees in the ensemble. The XGBoost trees are depth-limited to the
values in Table 1. The random forests are not depth limited, but are limited
to have at most 255 leaves. GROOT ensembles are limited to depth 8. Table 1
reports other characteristics for the datasets. Except for Q3, the reference set
contains all correctly classified training examples. We use the scikit-learn [32]
implementation for lof and iforest and use the default hyper-parameters. The
supplement reports the average accuracies of the learned models on each dataset
and the attack model ε of the GROOT ensembles. All experiments ran on an Intel
E3-1225 with 32GB of memory. Multi-threading was enabled for all methods.

Simulating the Evasion Attacks We use four different evasion attack
methods. Each of these generates a different set of 500 adversarial examples. All
the methods use the l∞-norm to measure the perturbation size. They are:

– LT-attack (abbreviated ‘lt ’, [50]) iteratively moves a random initial example
x̃ with T (x̃) ̸= T (x) towards the attacked example x in steps within a
neighborhood such that ∥x− x̃∥∞ is minimized.

– Kantchelian attack (abbr. ‘kan’, [23]) is an exact approach2 that directly
minimizes ∥x− x̃∥∞.

– Veritas attack (abbr. ‘ver ’, [12]) is an approximate search-based approach
that optimizes the ensemble’s output in an l∞ box of size δ centered around
an original example x: maxx̃ T (x̃) subject to ∥x̃− x∥∞ < δ.

2 We use Veritas’s binary-search approach to find the closest adversarial example be-
cause it is an order of magnitude faster than their mixed-integer linear programming
solution.
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– Cube attack (abbr. ‘cub’, [1]) is a model agnostic approach. Given an
example x, it iteratively makes a random perturbation. If the perturbation
moves the prediction towards the desired label it is accepted and otherwise
it is rejected. The procedure is successful if the desired label is reached after
a fixed number of iterations.

The Cube attack is the only black box approach. It does not use the ensemble’s
inner structure and uses only the ensemble’s predictions.
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Fig. 2. The distribution of the confidence values 0.5 + |0.5 − pT (x)| of the XGBoost
ensembles for the test examples and the adversarial examples of all generation methods.
The results are aggregated over all datasets and all folds.

5.2 Results Q1: Detecting Evasion Attacks

The task is to distinguish the adversarial from the normal examples. Each
method generates a score, ranking the examples ideally from least adversarial
(low score) to most adversarial (high score).

First, we evaluate the ranking performance using the area under the ROC
(ROC AUC). This measures the quality of a ranking with respect to the classi-
fication task of separating adversarial and normal examples. Table 2 shows the
mean AUC values for each method and the standard deviations over the five folds
for XGBoost, random forests, and GROOT. Averaged over all adversarial sets,
OC-score outperforms all other methods. An interesting observation is that XG-
Boost is less robust than random forests, and random forests are less robust than
GROOT ensembles. The perturbations required to flip the label become larger
as the models become more robust, and thus some adversarial examples become
outliers in the traditional sense. Nonetheless, the results show that even robust
GROOT ensembles benefit from detecting evasion attacks during deployment.

Second, we evaluate the performance of each detection method on one impor-
tant characteristic of the evasion attack: model confidence. The confidence with
which the ensemble predicts the incorrect class is computed as 0.5+|0.5−pT (x)|.
The attack can simply try to elicit a misprediction or it can try to construct an
adversarial example such that the model is highly confident in its misprediction.
The LT- and Kantchelian attacks optimize the distance ∥x− x̃∥∞ between the
original example x and the adversarial example x̃. Hence, the methods find the
smallest perturbation such that x̃ just crosses the decision boundary, which often
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Table 2. Average ROC AUC for each detection method on all four sets of adversarial
examples on each dataset. Best results are in bold.

XGBoost

calhouse electricity covtype higgs ijcnn1 mnist2v4 fmnist2v4 webspam

ocscore .92±.00 .94±.01 1.0±.00 .90±.01 .98±.00 .99±.00 .94±.01 .99±.00

ambig .76±.01 .78±.01 .76±.01 .82±.01 .75±.02 .88±.02 .74±.04 .96±.01

iforest .61±.02 .59±.02 .56±.01 .60±.02 .62±.01 .50±.00 .55±.01 .51±.02

lof .67±.00 .53±.01 .65±.01 .54±.02 .73±.01 .61±.01 .60±.01 .53±.01

mlloo .55±.01 .61±.02 .49±.01 .72±.01 .62±.02 .89±.02 .73±.03 .93±.01

Random forests

calhouse electricity covtype higgs ijcnn1 mnist2v4 fmnist2v4 webspam

ocscore .92±.01 .97±.00 1.0±.00 .91±.00 .99±.00 1.0±.00 .98±.00 .99±.00

ambig .87±.01 .82±.01 .88±.01 .82±.01 .97±.00 .95±.01 .77±.02 .96±.01

iforest .61±.02 .63±.02 .60±.01 .61±.01 .56±.01 .46±.01 .61±.01 .51±.01

lof .77±.00 .63±.01 .81±.00 .60±.01 .76±.00 .61±.00 .65±.01 .59±.01

mlloo .37±.02 .48±.02 .39±.02 .58±.01 .37±.03 .93±.01 .51±.02 .36±.01

GROOT

calhouse electricity covtype higgs ijcnn1 mnist2v4 fmnist2v4 webspam

ocscore .87±.02 .96±.00 .85±.01 .96±.01 .99±.00 .94±.01 .94±.00 .99±.00

ambig .85±.01 .80±.01 .72±.04 .82±.02 .99±.00 .92±.02 .77±.03 .86±.01

iforest .67±.01 .78±.02 .70±.03 .84±.01 .77±.03 .55±.01 .65±.01 .72±.01

lof .83±.01 .73±.01 .84±.00 .81±.01 .89±.01 .69±.01 .71±.01 .90±.01

mlloo .37±.01 .55±.01 .34±.02 .52±.02 .04±.01 .86±.01 .66±.03 .46±.04

Table 3. The average ROC AUC values for each detection method on low-confidence (lt
and kan) and high-confidence (ver and cub) adversarial examples for XGBoost (XGB),
random forests (RF), and GROOT (GRT). The best results are in bold.

low confidence high confidence
XGB RF GRT XGB RF GRT

ocscore .94±.05 .98±.02 .93±.10 .97±.03 .95±.05 .93±.07

ambig .98±.02 .99±.01 .98±.03 .63±.21 .76±.15 .70±.16

iforest .53±.02 .52±.05 .64±.10 .60±.11 .63±.15 .77±.13

lof .52±.04 .57±.08 .70±.12 .69±.18 .78±.18 .90±.10

mlloo .80±.19 .54±.18 .52±.26 .58±.21 .45±.25 .43±.26
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results in the misprediction having a low confidence. Veritas directly optimizes
the model’s output, so it specifically looks for the example with the maximally
incorrect output within the l∞-box. Cube uses a fixed number of iterations and
attempts to improve the confidence at each step. Because of the random model-
agnostic approach, many iterations are required, resulting in high-confidence
adversarial examples.

Figure 2 shows the distribution of ensemble’s confidences for each set of adver-
sarial examples and the normal test set examples, averaged over all datasets for
XGBoost. As expected, the LT- and Kantchelian attacks produce low-confidence
adversarial examples, and the Veritas and Cube attacks produce high-confidence
ones. Additionally, the figure shows that XGBoost has very confident predictions
for normal examples. This has the immediate effect that low-confidence attacks
are weaker attack vectors that are easily detectable by ambiguity. OC-score also
performs extremely well on these (see Table 3). However, ambiguity performs
poorly on the more challenging high-confidence adversarial examples. Only OC-
score consistently works well for high-confidence adversarial examples.

Next, we further investigate the effect of model confidence on detection per-
formance for XGBoost. We order the examples by the ensemble’s confidence and
compute each method’s detection accuracy within a window. Regardless of the
window, a method’s global median score over all examples is used to make a
hard prediction. This is a sensible choice because the test set contains 50% nor-
mal and 50% adversarial examples. The top plots in Figure 3 show the accuracy
and the bottom plots show the model’s average confidence for the examples in
the considered window. The x-axis shows the fraction of examples processed as
the window slides from left (low confidence) to right (high confidence). OC-score
offers consistently strong performance across the full range of confidences and
outperforms the other methods apart from ambiguity on the windows with the
lowest average confidence. ambiguity offers good performance for low confidence
examples. However, its detection performances declines dramatically when the
x-axis approaches 0.5 because these windows start to contain roughly equal num-
bers of adversarial and normal examples. Its performance only rebounds slightly
thereafter because it is incapable of detecting high-confidence adversarial exam-
ples. lof performs poorly on low confidence windows but can perform better in
the highest confidence because a (small) fraction of these adversarial examples
are outliers wrt the training data. ML-LOO (apart from mnist2v4 ) and iforest
perform poorly regardless of the window.

The anomaly detectors (iforest and lof ) tend to perform poorly in most
settings. lof performs reasonably well for the Cube-attack examples on calhouse,
covtype, ijcnn1 and mnist2v4. This might be because this is the crudest black-
box generation method whose examples might be closer to out of distribution
than actually being truly deceitful adversarial examples (see per-dataset results
in the supplement). ML-LOO has highly variable performance and is consistently
worse than OC-score. It tends to work best on image data. However, it frequently
performs worse than random on several other datasets (e.g., calhouse, covtype).
For the XGBoost ensembles, ML-LOO is reasonably effective at detecting the
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Fig. 3. Relation between detection performance and prediction confidence for XGBoost
by sliding fixed-sized window over the full set of test examples (normal and the four sets
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method in the window. Bottom: Average confidence in the window. The x-axis is the
fraction of examples already considered by a window.

.1 .25 .5 .75 1
subset size

0.6

0.8

1.0

R
O
C

A
U
C

.1 .25 .5 .75 1
subset size

0.0

0.5

1.0

ti
m
e
fr
a
ct
io
n

covtype
mnist2v4
ijcnn1

Fig. 4. Left: OC-score’s ROC AUC values for detecting adversarial vs. non-adversarial
test examples as a function of the reference set size. Right: fraction of time used to
compute the OC-score relative to the case the full training set is used. Using a small
reference set has a minimal impact on OC-score’s performance.

low-confidence adversarial examples, but its performance is poor in general for
high-confidence ones.

5.3 Results Q2: Prediction Time Cost

Regardless of the detection method, whether an example is adversarial can usu-
ally be computed in well under 1 millisecond (see timing results in the sup-
plement).ambiguity consistently takes less than 0.01ms because it is a simple
mathematical computation. iforest is also fast (< 0.15ms) because it only re-
quires executing a tree ensemble. OC-score takes less than 0.2ms for 6 out of
8 datasets. Its prediction time scales with the number of trees and the refer-
ence set size, so higher prediction times are measure for the larger datasets.
However, the results in Subsection 5.4 indicate that it is possible to decrease
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the size of the reference set without degrading performance. ML-LOO’s costs
comes from computing an importance for each feature. Hence, it yields longer
times for datasets with many features (1.4ms for mnist2v4, 2.6ms for fmnist2v4,
< 0.5ms otherwise). The evaluation time of lof is similar for all larger datasets
(< 0.14ms) because we limit the training set size to a random subset of at most
20 000 examples (affects covtype, higgs, ijcnn1, and webspam) because using the
full training set takes hours.

5.4 Results Q3: Size of the Reference Set

Finally, we explore the effect of the reference set size on the detection perfor-
mance. Reference set examples are randomly sampled from the set of correctly
classified training examples (see model accuracies in supplement). Figure 4 shows
the results for this experiment on three datasets using XGBoost. The plot on
the left shows ROC AUC values for detecting adversarial vs. non-adversarial
examples. These values are stable for all datasets. There is a small decline in
performance for the smallest reference set proportion, where the number of ex-
amples in the reference set ranges from 1050 for fmnist2v4 to 41 700 for covtype.

The plot on the right shows the time to compute the OC-scores as the refer-
ence set size is varied relative to using the full reference set. For ijcnn1, the rel-
ative time reduction follows the relative subset sizes almost exactly. The results
for covtype are even better. With barely any effect on the detection performance
using only 10% of the full reference set, the evaluation time drops by 97%. We
expect that this is due to CPU cache performance (e.g. fewer cache misses).
mnist2v4 also sees a considerable reduction in time, but not as impressive as
the previous two datasets. We suspect this is due to the smaller reference set,
and the relatively higher constant overhead. OC-score already is really fast on
mnist2v4, however, taking only 0.03ms per example using the full reference set.

These experiments suggest that using a small reference set drastically im-
proves the evaluation time without degrading performance. Note that changing
the reference set does not require relearning the underlying ensemble used to
make predictions, which is still learned using the full training set.

6 Conclusions and Discussion

This paper explored how to detect evasion attacks for tree ensembles. Our ap-
proach works with any additive tree ensemble and does not require training a
separate model. If a newly encountered example’s output configuration differs
substantial from those in the reference set, then it is more likely to be adversarial.
Empirically, our OC-score metric resulted in superior detection performance.
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wide adoption, machine learned models, including tree ensembles, increasingly
become high-stake targets for attackers who might employ evasion attacks to
achieve their goal. This work proposes a defense method against evasion attacks
for tree ensembles. Together with other approaches like robust tree ensembles,
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