
Extending Feature Models with Types

Benjamin Callewaert
KU Leuven, De Nayer Campus

Dept. of Computer Science
Leuven.AI, Belgium

Flanders Make@KU Leuven
benjamin.callewaert@kuleuven.be

Bart Coppens
Intelli-Select

bart.jan.coppens@intelli-select.com

Simon Vandevelde
KU Leuven, De Nayer Campus

Dept. of Computer Science
Leuven.AI, Belgium

Flanders Make@KU Leuven
s.vandevelde@kuleuven.be

Nicholas Decleyre
Intelli-Select

nicholas.decleyre@intelli-select.com

Nuno Comenda
Intelli-Select

nuno.comenda@intelli-select.com

Joost Vennekens
KU Leuven, De Nayer Campus

Dept. of Computer Science
Leuven.AI, Belgium

Flanders Make@KU Leuven
joost.vennekens@kuleuven.be

Abstract

Feature models are diagrams representing the
variability of a product. While they are beneficial
in reducing time, costs, and risks, their application
in several problem areas remains unexplored. For
example, in the financial domain, feature models
could be leveraged to represent the variability of
complex financial products and aid users in managing
them. However, existing feature modeling approaches
have limitations w.r.t. representing large products with
complex features. To address some of these limitations,
this work proposes a new approach called typed
feature modeling, which extends the expressiveness of
feature modeling by associating features with types that
cover specified or infinite domains. We demonstrate
the effectiveness of this approach by applying it to
represent complex financial products that follow a
commonly used industry standard. Additionally, we
present an interactive tool for typed feature modeling
containing an implementation of the financial use case
and demonstrate how it can assist users in managing
their financial products.

Feature modeling, Domain modeling, Knowledge
Representation and Reasoning

1. Introduction

Feature modeling (Kang et al., 1990a) has
established itself as the widely accepted standard
for variability modeling. Introduced nearly three
decades ago, the original feature modeling notation has
since seen numerous variations and extensions. The
goal of feature modeling is to create a diagram (feature
model) that represents all the features and components
of a product, and how they relate to each other. In this

way, this diagram provides a comprehensive view of
all possible configurations of the product. The use of
feature modeling brings several advantages, including
reducing the time it takes to deliver a product, lowering
costs, minimizing product risks, and streamlining labor
efforts (Northrop, 2008).

Although feature models are commonly employed in
the context of software product development, they also
hold significant potential for many other domains (Hein
et al., 2000). For example, they could be used in
the development of design tools that assist engineers
in creating accurate designs (Vandevelde, Callewaert,
et al., 2022). In the world of finance, the potential of
feature models is still untapped. Yet, feature models
lend themselves well to representing the variability
of complex financial products. This, in turn, could
be leveraged to develop tooling to assist users in
managing such products. However, in practical
scenarios, feature modeling and related tools are too
limited for these purposes. Financial products often
involve numerous complex features, each with a large
number of variations. On top of that, several of these
complex features might take on the value from the same
domain. Representing these complex features using
basic feature modeling can lead to a rapid explosion of
the size of the feature diagram, making it very hard to
maintain and interpret. In addition, they lack the ability
to represent knowledge from “outside” the product,
such as background or contextual knowledge Hence,
basic feature modeling alone may not be sufficient for
complex use cases in diverse domains.

In this work, we propose an extension to feature
modeling, called typed feature modeling, which aims
to enhance the expressiveness of feature modeling
while maintaining its intuitive nature. To do this, we
allow features to be associated with types that can



cover enumerated or infinite domains. We demonstrate
the effectiveness of this extension by using it to
represent complex financial products, showcasing the
benefits it brings and its potential for application in
various, complex domains. Furthermore, we present an
interactive tool for typed feature modeling and illustrate
how it, together with a model for the financial use case,
can assist users in efficiently managing their financial
products.

The paper is structured as followed: we begin
by providing background information in Section 2.
Afterwards, in Section 3, we present our extension of
feature modeling, typed feature modeling, and define its
semantics. Next, we illustrate typed feature modeling
with a use case in the financial domain, in Section 4. We
present our interactive typed feature modeling tool in
Section 5 and show how it can leverage the typed feature
model diagram from the previous chapter to help users
manage financial products. In Section 6 we compare
our extension to other feature modeling extensions and
finally, we conclude in Section 7.

2. Preliminaries

2.1. Feature Modeling

The goal of feature modeling is to provide
an overview of a product and its variability. It
was introduced in 1990 for software product
development (Kang et al., 1990a), and has since
gained wide adoption within the industry. We will
briefly go over the concepts and components of a
feature model diagram, using Fig. 1 as an example.
In this example, we have modeled the variability of a
simple financial security, which consists of multiple
features as denoted by its child nodes. There are four
types of relationships possible between parents and
their children:

• A mandatory feature is present in every
configuration in which its parent feature is
present. This is denoted by an edge ending in a
filled-in circle, such as for Issuer.

• An optional feature may or may not be present if
its parent is present. This is denoted by an edge
ending in an empty circle, such as for Rating.

• Children can be alternative features to one
another, meaning that only one of the child
features can be present if the parent feature is
present. This is denoted by a curve between the
edges of the child nodes, as shown for Equity,
Bond, and Fund.

Figure 1. Example of a feature model

• Children can be in an (inclusive) or relationship,
meaning that at least one child is present if the
parent feature is present. This relationship is not
shown in the example but is denoted by a filled-in
curve between the edges.

In addition to the parent-child relationships, there
are also two types of cross-tree constraints. The
first type is known as a require constraint, where
one feature requires the inclusion of another feature.
The second type is an exclude constraint, which
specifies that certain features cannot coexist in the same
configuration. These cross-tree constraints are usually
visualized within the feature model by drawing an
arrow between the respective nodes or providing textual
explanations separately. In the visual representation, a
single arrow denotes a required constraint between the
nodes, whereas a double arrow indicates an excluded
constraint.

2.1.1. Feature modeling extensions Since its
introduction, several extensions for feature modeling
have been proposed to make feature models more
suitable for practical applications and to provide better
“conceptual completeness”. The two most prominent
ones are cardinality-based feature modeling (Czarnecki
et al., 2004) and extended feature modeling (Benavides
et al., 2005).

Cardinality-based feature modeling Some authors
propose extending feature models with UML-like
multiplicities (so-called cardinalities) (Czarnecki et al.,
2004; Riebisch et al., 2002). The new relationships
introduced in this notation are defined as follows:

• A feature cardinality is an interval denoted
[n . . .m] with n as the lower bound and m as
the upper bound. These intervals determine the
number of instances of the feature that can be part
of a product. This relationship may be used as
a generalization of the mandatory ([1 . . . 1]) and
optional ([0 . . . 1]) relationships.

• A group cardinality is an interval denoted



⟨n . . .m⟩, with n as the lower bound and m as the
upper bound limiting the number of child features
that can be part of a product when its parent
feature is selected. This relationship generalizes
the ”alternative” relationship (⟨1 . . . 1⟩) and the
”or”-relationship (⟨1 . . . n⟩, with n the number of
features in the relationship).

Extended Feature Modeling Sometimes, it becomes
necessary to enhance feature models by incorporating
additional information about a feature. This additional
information is referred to as feature attributes. When a
feature model includes these attributes, it is known as
an extended, advanced, or attributed feature model. A
feature attribute represents a measurable characteristic
of a feature, and each attribute is associated with a
specific domain, which defines its range of possible
values. Such a domain can be both finite (e.g., an
interval) or infinite (e.g., all real numbers). Attributes
can represent various characteristics of a feature, such
as the cost associated with a feature. Extended feature
models also enable the involvement of attributes in
cross-tree relations to express complex constraints.
Several groups of authors (Benavides et al., 2005;
Czarnecki et al., 2005; Kang et al., 1990b) have
suggested the inclusion of attributes or “non-functional”
features in feature models, but there seems to be
no unanimous agreement on the specific notation for
defining attributes.

2.2. FO(·), the IDP system and the Interactive
Consultant

Chapter 5 presents a tool for our feature modeling
extension, based on a state-of-the-art reasoning engine.
To give sufficient background, we now will briefly
discuss this reasoning engine and related concepts.

The IDP system (De Cat et al., 2018) is a reasoning
engine for FO(·), a rich extension of First-Order
Logic (FOL). It implements the philosophy of the
Knowledge Base Paradigm (Denecker & Vennekens,
2008): knowledge is represented in a purely declarative
manner, independent from how it is used. This is
done by storing the knowledge in a Knowledge Base
(KB), to which then various inference tasks can be
applied to put it to practical use. This approach has two
main advantages. Firstly, declaratively representing the
knowledge is often easier than developing algorithmic
solutions to specific tasks. Secondly, the split between
knowledge and its application facilitates the re-use of the
knowledge for multiple purposes. In this way, different
problems in the same domain can typically be solved
using the same KB with different inference tasks.

FO(·) extends FOL with types, aggregates, inductive
definitions, arithmetic, partial functions, and intensional
objects. In this way, FO(·) is an expressive and versatile
representation language, well-suited for modeling
problems from many domains.

FO(·) also allows for partial functions. Normally,
functions are total: they assign an output value to each
of the input values. On the other hand, partial functions
do not necessarily have this property. A partial function
f with domain D and range R is defined as followed:
for every d ∈ D there exists at most one element y ∈ R
such that (x, y) ∈ f . In this case, f(x) may not exist.

The KB itself consists of three types of blocks:
vocabularies, structures and theories, each representing
the corresponding concept from classical logic.

A vocabulary specifies a set of type, predicate, or
function symbols. A type is a domain of values, such
as a list of strings or the domain of real numbers R. A
predicate symbol expresses a relation on zero or more
types. A proposition is a 0-ary predicate. Lastly, a
function symbol expresses a function from the Cartesian
product of a number of types T1 × · · · × Tn to a type
Tn+1. A function is also called a constant if it is 0-ary,
i.e., has no input arguments.

A structure provides an interpretation for the
symbols in its vocabulary. If it provides an interpretation
for each symbol in the vocabulary, it is called a
full interpretation. Otherwise, it is called a partial
interpretation.

A theory contains a set of logical formulas, written
in FO(·).

By itself, the KB is not executable: it merely
represents the knowledge of a domain. To put this
knowledge to use, the IDP system offers multiple
inference tasks, like propagation and model expansion.

In the past, the IDP system has already proven itself
as a suitable tool for configuration problems (Aerts et al.,
2022; Carbonnelle et al., 2022; Van Hertum et al.,
2017; Vlaeminck et al., 2009). Its approach works
well to tackle complex configuration problems in an
interactive way. Such applications can be found in many
domains, such as manufacturing, finance, and logistics.
The IDP system typically performs best if there are
many constraints over relatively small domains, and if
the numerical calculations that are involved are not too
complex. The latest version of the IDP system, and the
one used in this work, is IDP-Z3 (Carbonnelle et al.,
2023).

The Interactive Consultant is a user-friendly,
interactive interface for the IDP-Z3 system. It is fully
generic, in the sense that it can generate an interface
for any syntactically correct FO(·) KB. The interface
displays a tile for each symbol in the KB, which



Figure 2. Example of a typed feature model

allows users to assign values to these symbols. In the
background, IDP-Z3 then derives the consequences of
that value assignment and updates the other symbol tiles
accordingly. This process continues until all symbols
have been assigned a value (either by the user or by
the system), ensuring compliance with the formulas in
the KB. Moreover, users can request explanations for
derived consequences by clicking on values. This makes
the tool explainable: in such a case, it will return a list
of relevant value assignments and formulas.

One of the design goals of the Interactive Consultant
is to empower users to interactively explore a problem
space. Indeed, due to its intuitive interface and powerful
solver, users can easily interact with the knowledge
in the KB. This has already proven useful in several
successful past use cases, such as for component
design (Aerts et al., 2022), to support notaries with
legislation (Deryck et al., 2019), and to select suitable
adhesives in a manufacturing context (Jordens et al.,
2022; Vandevelde, Jordens, et al., 2022).

3. Typed Feature Modeling

Typed feature modeling is an extension of feature
modeling that aims to represent complex products in
a compact manner while maintaining intuitiveness. It
allows a feature to be associated with a type that defines
its domain – i.e., the typed feature is limited to a value
from that domain. In this way, the variability of complex
features can be represented in a compact way. Without
this extension, such features could only be represented
by adding each element from the domain as a distinct
subfeature. This leads to a massive increase in the size
of the overall feature diagram, resulting in a cluttered
and unclear representation. Moreover, this approach is
not possible for features that have a type with an infinite
domain.

Fig. 2 shows an example of a typed feature model
(TFM) that captures the variability of a simple financial
security. In the TFM, two types are defined: rating,

which contains different ratings that can be assigned
to a security (ranging from AAA to D), and country,
which contains a list of countries. The defined types are
listed in a compact legend, shown under the feature tree.
Next to the defined types, a TFM also supports built-in
types covering infinite domains, namely integers, real
numbers and dates.

The example in Fig. 2 contains four typed features.
Both Rating and Issuer Rating have the type rating;
they both take on one value from the domain if they
are present. The feature Issuer Country represents the
country of origin of the security’s issuer and is therefore
associated with the country type. Finally, the feature
Outstanding Amount denotes the number of available
securities and is associated with the (infinite) integer
domain.

3.1. Formal semantics

We define the semantics of typed feature models by
means of a translation to FO(·).

Types First, we define the user-defined types in our
vocabulary. The domain of a type can either be finite or
infinite. For each type ti, with domain di, declared in
the typed feature model, we define a type in the FO(·)
vocabulary:

type ti := {vj : vj ∈ di}

Features For the translation of untyped features we
use the semantics defined by Batory (Batory, 2005), in
which each feature is represented by a proposition. For
each typed feature, we introduce a partial 0-ary function
on its type. In FO(·), we can represent these features as:

• fi : () → Bool if fi is an untyped feature

• partial fi : () → ti if fi is a feature that is
associated with type ti

Next, we also introduce a type Feature, consisting of
all features F1 . . . Fn in the TFM, which we define as:

type Feature := {F1 . . . Fn}

In other words, we introduce for each feature fi a
constant, and a value in the domain of the type Feature.

Relations The predicate present : Feature → Bool
indicates which features are present in the configuration.
We define the function present for every typed feature



Relation Translation to FO(·)
f2 is mandatory for f1 present(F1) ⇔ present(F2)
f2 is optional for f1 present(F1) ⇐ present(F2)
f1 has alternative f0 . . . fm present(F1) ⇔∨m

i=0 present(Fi) ∧
∧

0≤j≤k≤m ¬(present(Fj) ∧ present(Fk))

f1 has OR f0 . . . fm present(F1) ⇔ (present(Fo) ∨ . . . ∨ present(Fm))
f1 requires f2 present(F1) ⇒ present(F2)
f1 excludes f2 present(F1) ⇒ ¬present(F2)

Table 1. Translation between feature relations and FO(·)

f1 . . . fn, associated with their respective type t1 . . . tn:

present(F1) ⇔ ∃x ∈ t1 : f1() = x.

· · ·
present(Fn) ⇔ ∃x ∈ tn : fn() = x.

(1)

For each untyped feature fi we define the function
present as:

present(Fi) ⇔ fi() = true (2)

We then define the semantics of the relationships
between features as in Table 1.

4. Financial use case

ISDA CDM The financial world relies on computing
standards to meet the very high demands of today’s
global, always-on financial environment. Without
standards, the lifecycle processing of trades would be
a manual, error-prone, and time-consuming process.
However, the trading and management of securities so
far have not used this standardization to its fullest extent
yet. To address this issue, the International Swaps and
Derivatives Association (ISDA) developed the Common
Domain Model (CDM) (2020) as the industry’s first
solution to establish standard conventions for securities.
The CDM is a standardised, machine-readable and
machine-executable blueprint for how securities are
traded and managed across the transaction lifecycle. It
encompasses all dimensions of the security lifecycle,
ranging from product description to defining the
potential events that may occur while trading securities.
The CDM also introduces data rules and calculation
artefacts to ensure compliance and reduce ambiguities
in implementing the standard. This approach is a
significant step towards realizing the intended benefits,
promoting consistency, and enabling greater automation
and efficiency at scale.

CDM as TFM To enhance the understanding of the
ISDA CDM and management of securities following the

standard, we propose to partially represent it as a typed
feature model. While the ISDA CDM encompasses
the entire transactional lifecycle of financial securities,
our focus is on representing the variability of a security
according to the standard. By using the intuitiveness of
typed feature modeling, this approach has the potential
to greatly benefit financial experts by providing a
clear representation of the complex model and assisting
them in effectively managing their CDM-compliant
securities. Fig. 3 shows a typed feature model that
models the variability of these securities following the
CDM standard. In the model, 14 types are defined. For
instance, the exchange type encompasses all the stock
exchanges on which a security may be listed. Although
the model remains relatively large, it effectively captures
a significant amount of information. By allowing
features to be associated with types, we can represent
the entire variability of CDM-compliant securities in a
concise and intuitive manner. This approach is essential
as complex features such as sector and rating have
numerous possible values, and representing them as
individual sub-features would overcrowd the feature
model and hinder a clear understanding of the overall
variability.

5. TFM-IDP tool

The TFM-IDP tool combines the simplicity and
intuitiveness of typed feature modeling with the
interactivity of the Interactive Consultant. It aims
to support interactive exploration of the variability of
a product complemented with background knowledge,
which is useful both for an expert to validate typed
feature models and for making concrete, error-free
configurations. The tool’s interface is split into two
tabs: a typed feature model editor, where diagrams can
be created and background knowledge can be added,
and a user interface to interact with the feature model.
The tool is an extension of the FM-IDP tool developed
by Vandevelde, Callewaert, et al. (2022) and can be



Figure 3. Typed feature model of ISDA CDM security

accessed online1.

5.1. Typed Feature Model editor

The primary component of the tool is a visual
editor for creating typed feature models. This editor is
displayed on the left side of the screenshot in Fig. 4.
To create a feature diagram, users simply click on the
canvas to create a new node, assign a name to it,
establish a connection by clicking on its parent node,
and specify the connection type. Types can be defined in
the legend located at the bottom left corner of the editor.
In this legend, types are declared by giving them a name
and specifying their domain of values. Once a type is
defined, features can be associated with it.

Once all features have been added and the types
have been declared, the model is converted into an
FO(·) vocabulary and theory. These are visible to the
user through a read-only text editor, present in the
bottom-right of the screen. Since IDP-Z3 does not
support partial functions, in contrast to the previous
version of the IDP system (IDP3 (De Cat et al.,
2018)), we slightly deviate from the semantics defined
in Section 2. Instead of introducing a partial function,
we define a total function for each typed feature. To
overcome this difference, we dismiss the definition of
the present function for typed features (Eq. 1). This
means that every typed feature fi will always have a
value, but this value should be ignored if present(Fi)
is false.

Typed feature models represent the variability of a
product in an intuitive way but they lack the ability

1https://fm-idp.onrender.com/

to represent knowledge from “outside” the product,
limiting their use in real-life applications. Therefore, we
also allow for background knowledge to be specified in
our tool. This background knowledge can be written in
an FO(·) editor, present on the top-right of the screen.
The editor allows declaring additional concepts outside
the product. We could, for example, introduce the
concept fed rate, representing the Federal funds rate, as
this is not a feature of a security but could influence its
behaviour. The editor also allows expressing additional
FO(·) formulae in the theory. In this case, we could
specify that the maturity date should always be a date
that comes after the current day using the built-in literal
#TODAY.

Maturity date() > #TODAY.

Behind the scenes, the vocabulary and theory blocks
are merged with their counterparts generated from the
feature model. In this way, they form one complete KB
containing both the knowledge of the feature model and
its required background knowledge.

5.2. Knowledge interaction

Interaction with the knowledge is facilitated through
the Interactive Consultant (Carbonnelle et al., 2019), as
shown in the screenshot in Fig. 5. Every time a feature
is selected or is given a value, IDP-Z3 automatically
derives the consequences of this assignment. This
process of selecting features in the interface and
immediately viewing the consequences results in a tight
feedback loop between the user and the knowledge.
Furthermore, users can request explanations for derived

https://fm-idp.onrender.com/


Figure 4. Screenshot of the CDM security use case in the typed feature model editor

Figure 5. Screenshot of the CDM security use case in the configurator



consequences by clicking on values.
Representing the CDM standard as a typed feature

model and implementing it in the TFM-IDP tool can
help financial experts in several ways.

• The tool allows interactive exploration of the
different variants of securities that comply with
the CDM standard. This enables users to enhance
their understanding of the standard itself and the
associated constraints.

• Financial companies often have diverse ways of
modeling financial securities within their own
specific service environment. With the TFM tool,
users can construct securities that were modeled
differently by dynamically selecting features and
assigning values to typed features. In this way,
users are guided to model securities that follow
the constraints of the CDM standard.

• Users can employ the tool to check whether their
securities conform to the CDM standard. If not,
the provided explanations can help them alter
their security specification to conform to the CDM
standard. The tool therefore also serves as a
verification mechanism.

6. Related Work

Several extensions of feature modeling have been
proposed throughout the years to allow the notation to
be applied in different application domains. Although
original feature models are expressively complete, as
Schobbens et al. (2007) point out, extending them can
greatly improve their ability to model more complex
products in a concise and intuitive way. This principle
applies equally to typed feature modelling: in standard
FM, we could represent the values of a domain as a set of
subfeatures that have an alternative relationship with the
parent feature. However, this approach is not practical
in reality, as it would quickly lead to a cluttered feature
diagram. Moreover, it is not possible for features that
are associated with infinite domains.

Various groups of authors proposed the inclusion
of attributes in feature models to capture further
information about the characteristics of features.
Benavides et al. (2005) were the first to propose
a full notation for extended feature models. In
this notation, attributes can take on the value of a
domain. These domains can encompass (ranges of)
infinite domains, but the notation lacks an intuitive way
to represent user-defined types composed of a large
number of enumerated values. Therefore, it would not
be possible to represent complex concepts, like Country
or CreditNotation of the CDM standard, as attributes.

Without our proposed extension, the only option would
be to represent each potential value as a subfeature in
an alternative relationship, as discussed in the previous
paragraph. The ability to define complex types and
depict them in a comprehensible legend ensures the
possibility of representing complex products compactly
and intuitively. Attributes are thus a great way to
represent measurable characteristics of features, but are
not suitable to represent complex features in a concise
way.

The idea of representing each attribute as a
subfeature and associating it to the desired type (such as
integer) was previously introduced by Bednasch (2002).
A collection of attributes can then be modeled as a
number of subfeatures. While this proposal comes
close to our proposed extension, it does not encompass
the possibility to define new types. By contrast,
our proposed extension allows us to associate several
features with the same defined type. This can greatly
increase the compactness of the diagram and is essential
to represent products consisting of complex features that
take on the same values in a concise way. To the best
of our knowledge, our extension is the first to allow
features to be associated with types in an intuitive way.

Next to associating features with types, Hein et al.
(2000) introduced the idea of relationship types. They
defined several different typed relationships, such as the
consists of relationship, to increase the expressivity of
feature modeling and make them more applicable for
industrial applications.

7. Conclusion & Future Work

While feature models have proven to be very
useful in software product development, they have
limitations to represent complex products in diverse
domains like finance. To address this, we proposed an
extension called typed feature modeling. This extension
enhances the expressiveness of feature modeling by
allowing features to be associated with types that cover
specified or infinite domains. We have demonstrated the
effectiveness of our extension by representing complex
financial products that conform to the industry standard
as a typed feature model. While several extensions of
feature modeling exist, our proposed approach stands
out due to the possibility to define complex types
for complex features that can take on a large number
of possible values. By presenting these types in a
comprehensible legend, we make sure that the intuitive
nature of feature modeling remains. In this way, our
approach is crucial to represent the financial use case in
a concise way.

Furthermore, we presented an interactive tool



for typed feature modeling and implemented the
financial use case within it. We have illustrated how
implementing the CDM standard in our TFM-IDP tool
can assist users in efficiently managing their financial
products and increasing their understanding of the
standard itself.

In the future, we aim to enhance our feature
modeling tool by incorporating additional extensions,
such as cardinality-based feature modeling and extended
feature modeling. Moreover, we intend to integrate
various analysis operations into the tool for typed feature
modeling. These operations will help users to effectively
verify and validate the correctness of their typed feature
diagrams.

In summary, this work contributes to the
advancement of feature modeling by introducing
typed feature modeling and demonstrating its potential
for diverse domains. The presented tool and financial
use case serve as practical demonstrations of the
benefits and effectiveness of the proposed extension.

Acknowledgments

This research received funding from the Flemish
Government, through Flanders Innovation &
Entrepreneurship (VLAIO, project HBC.2022.0477)
and under the “Onderzoeksprogramma Artificiële
Intelligentie (AI) Vlaanderen” programme.

References

Aerts, B., Deryck, M., & Vennekens, J. (2022).
Knowledge-based decision support for
machine component design: A case study.
Expert Systems with Applications, 187,
115869. https://doi.org/10.1016/j.eswa.2021.
115869

Batory, D. (2005). Feature models, grammars, and
propositional formulas. In H. Obbink & K.
Pohl (Eds.), Software product lines (pp. 7–20).
Springer Berlin Heidelberg.

Bednasch, T. (2002). Konzept und implementierung
eines konfigurierbaren metamodells für die
merkmalmodellierung (Master’s thesis).
Fachhochschule Kaiserslautern, Standort
Zweibrücken, Germany.

Benavides, D., Trinidad, P., & Ruiz-Cortés, A. (2005).
Automated reasoning on feature models. In
O. Pastor & J. Falcão e Cunha (Eds.),
Advanced information systems engineering
(pp. 491–503). Springer Berlin Heidelberg.

Carbonnelle, P., Bogaerts, B., Vennekens, J., &
Denecker, M. (2022). Interactive Configuration
Problems in Observable Environments, 8.

Carbonnelle, P., Deryck, M., Vennekens, J., et al. (2019).
An interactive consultant. BNAIC, Date:
2019/11/06-2019/11/08, Location: Bruxelles.

Carbonnelle, P., Vandevelde, S., Vennekens, J., &
Denecker, M. (2023). Interactive configurator
with fo(.) and idp-z3.

Common domain model (cdm) (tech. rep.). (2020).
International Swaps and Derivatives
Association (ISDA). https://www.icmagroup.
org/Regulatory-Policy-and-Market-Practice/
repo- andcollateral- markets/fintech/common-
domain-model-cdm/

Czarnecki, K., Helsen, S., & Eisenecker, U. (2004).
Staged Configuration Using Feature Models.
In R. L. Nord (Ed.), Software Product Lines
(pp. 266–283). Springer Berlin Heidelberg.

Czarnecki, K., Helsen, S., & Eisenecker, U. (2005).
Formalizing cardinality-based feature
models and their specialization [Publisher:
Wiley Online Library]. Software process:
Improvement and practice, 10(1), 7–29.

De Cat, B., Bogaerts, B., Bruynooghe, M., Janssens, G.,
& Denecker, M. (2018). Predicate logic as
a modeling language: The IDP system. In
M. Kifer & Y. A. Liu (Eds.), Declarative
Logic Programming: Theory, Systems, and
Applications (pp. 279–323). ACM. https://doi.
org/10.1145/3191315.3191321

Denecker, M., & Vennekens, J. (2008). Building a
Knowledge Base System for an Integration
of Logic Programming and Classical Logic
[Series Title: Lecture Notes in Computer
Science]. In M. Garcia de la Banda &
E. Pontelli (Eds.), Logic Programming
(pp. 71–76). Springer Berlin Heidelberg. https:
//doi.org/10.1007/978-3-540-89982-2 12

Deryck, M., Devriendt, J., Marynissen, S., &
Vennekens, J. (2019). Legislation in the
knowledge base paradigm: Interactive decision
enactment for registration duties. Proceedings
of the 13th IEEE Conference on Semantic
Computing, 174–177.

Hein, A., Schlick, M., & Vinga-Martins, R. (2000).
Applying feature models in industrial settings.
Software Product Lines: Experience and
Research Directions, 47–70.

Jordens, J., Vandevelde, S., Van Doninck, B.,
Witters, M., & Vennekens, J. (2022). Adhesive
selection via an interactive, user-friendly

https://doi.org/10.1016/j.eswa.2021.115869
https://doi.org/10.1016/j.eswa.2021.115869
https://www.icmagroup.org/Regulatory-Policy-and-Market-Practice/repo-andcollateral-markets/fintech/common-domain-model-cdm/
https://www.icmagroup.org/Regulatory-Policy-and-Market-Practice/repo-andcollateral-markets/fintech/common-domain-model-cdm/
https://www.icmagroup.org/Regulatory-Policy-and-Market-Practice/repo-andcollateral-markets/fintech/common-domain-model-cdm/
https://www.icmagroup.org/Regulatory-Policy-and-Market-Practice/repo-andcollateral-markets/fintech/common-domain-model-cdm/
https://doi.org/10.1145/3191315.3191321
https://doi.org/10.1145/3191315.3191321
https://doi.org/10.1007/978-3-540-89982-2_12
https://doi.org/10.1007/978-3-540-89982-2_12


system based on symbolic AI. Proceedings of
CIRP DESIGN 2022.

Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E.,
& Peterson, A. S. (1990a). Feature-oriented
domain analysis (FODA) feasibility study
(tech. rep.). Carnegie-Mellon Univ Pittsburgh
Pa Software Engineering Inst.

Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E.,
& Peterson, A. S. (1990b). Feature-oriented
domain analysis (foda) feasibility study
(tech. rep.). Carnegie-Mellon Univ Pittsburgh
Pa Software Engineering Inst.

Northrop, L. (2008). Software product lines essentials
(tech. rep.). Software Engineering Institute,
Carnegie Mellon University, Pittsburgh.

Riebisch, M., Böllert, K., Streitferdt, D., & Philippow,
I. (2002). Extending feature diagrams with
uml multiplicities. 6th World Conference on
Integrated Design & Process Technology
(IDPT2002), 23, 1–7.

Schobbens, P.-Y., Heymans, P., Trigaux, J.-C., &
Bontemps, Y. (2007). Generic semantics of
feature diagrams. Computer Networks, 51(2),
456–479. https: / /doi .org/https: / /doi .org/10.
1016/j.comnet.2006.08.008

Van Hertum, P., Dasseville, I., Janssens, G., &
Denecker, M. (2017). The KB paradigm and its
application to interactive configuration. Theory
and Practice of Logic Programming, 17(1),
91–117.

Vandevelde, S., Callewaert, B., & Vennekens, J.
(2022). Interactive feature modeling with
background knowledge for validation and
configuration. Proceedings of the 26th ACM
International Systems and Software Product
Line Conference-Volume B, 209–216.

Vandevelde, S., Jordens, J., Van Doninck, B.,
Witters, M., & Vennekens, J. (2022).
Knowledge-based support for adhesive
selection. In G. Gottlob, D. Inclezan, &
M. Maratea (Eds.), Logic programming and
nonmonotonic reasoning (pp. 445–455).
Springer International Publishing.

Vlaeminck, H., Vennekens, J., & Denecker, M.
(2009). A logical framework for configuration
software. Proceedings of the 11th ACM
SIGPLAN Conference on Principles and
Practice of Declarative Programming,
141–148. https : / /doi .org /10 .1145/1599410.
1599428

https://doi.org/https://doi.org/10.1016/j.comnet.2006.08.008
https://doi.org/https://doi.org/10.1016/j.comnet.2006.08.008
https://doi.org/10.1145/1599410.1599428
https://doi.org/10.1145/1599410.1599428

	Introduction
	Preliminaries
	Feature Modeling
	Feature modeling extensions

	FO(), the IDP system and the Interactive Consultant

	Typed Feature Modeling
	Formal semantics

	Financial use case
	TFM-IDP tool
	Typed Feature Model editor
	Knowledge interaction

	Related Work
	Conclusion & Future Work

