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Abstract 

Objectives  

As more has become known of the pathophysiology of osteoarthritis (OA), evidence that 

inflammation plays a critical role in its development and progression has accumulated. Here, 

we aim to review current knowledge of the complex inflammatory network in the OA joint. 

 

Design  

This narrative review is presented in three main sections: local inflammation, systemic 

inflammation, and therapeutic implications. We focused on inflammatory mediators and their 

link to OA structural changes in the joint.  

 

Results  

OA is characterized by chronic and low-grade inflammation mediated mostly by the innate 

immune system, which results in cartilage degradation, bone remodeling and synovial changes. 
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Synovitis is regarded as an OA characteristic and associated with increased severity of 

symptoms and joint dysfunction. However, the articular cartilage and the subchondral bone also 

produce several pro-inflammatory mediators thus establishing a complex interplay between the 

different tissues of the joint. In addition, systemic low-grade inflammation induced by aging, 

obesity and metabolic syndrome can contribute to OA development and progression. The main 

inflammatory mediators associated with OA include cytokines, chemokines, growth factors, 

adipokines, and neuropeptides.  

 

Conclusions  

Future research is needed to deeper understand the molecular pathways mediating the inflam-

mation in OA to provide new therapeutics that target these pathways, or to repurpose existing 

drugs. 
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Introduction 

Osteoarthritis (OA) is no longer viewed as a prototypical degenerative disease resulting from 

wear and tear, but rather as a complex multifactorial disorder of the whole joint. The 

pathophysiology and underlying mechanisms of OA are becoming better known and increasing 

evidence supports the concept that low-grade, chronic inflammation has an important role in 

OA. This multifactorial and complex inflammatory process arises early during OA and can 

affect the entire joint contributing to joint pain and damage. Further unravelling the 

inflammatory pathophysiology of OA is important to provide new therapeutic approaches that 

can potentially modify the progression of OA.  

This review aims to provide an overview of effector molecules, cells, and cytokines in both 

local and systemic OA-associated inflammation, and their association to structural changes in 

the joint that develop in the disease course. In addition, we explore potential therapeutic 

strategies that target this low-grade inflammation in the treatment of OA. Due to the broad 

scope of this review, we do not intend to give detailed insights into the underlying pathways of 

the mentioned players or to more deeply address other features of disease to which 

inflammation can strongly contribute, such as pain, which was extensively reviewed by 

Conaghan, et al1. 

 

Local inflammation 

Chronic synovial hypertrophy and low-grade inflammation of the synovium are  well-

established hallmarks of OA. In addition, chondrocytes and osteoblasts in the cartilage and 

subchondral bone can express a multitude of inflammatory mediators and receptors. The local 

inflammation that may be present in all tissues of the joint results in a complex pathology 

process causing more pain and tissue damage.  
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Synovium 

The synovium is a thin loose connective tissue that lines the joint cavity in synovial joints. It 

consists of two layers: the outer sub-lining layer or subintima, composed of loose connective 

tissue, and the inner lining layer that mainly contains tissue resident macrophages and synovial 

fibroblasts. These cells produce synovial fluid that delivers nutrients and oxygen to the joint 

and removes metabolites and products of matrix degradation2, 3. In OA patients, the synovium 

can display signs of hypertrophy, hyperplasia, inflammatory cell infiltration, increased 

thickness, fibrosis and neoangiogenesis2-4. In several studies, an association between synovitis 

and increased severity of OA symptoms and progression was observed although causality 

cannot be inferred 5-8. C-reactive protein (CRP) could be a potential biological marker of OA 

synovitis, as CRP level positively correlates with joint inflammation, clinical severity, pain, and 

number of affected joints9-11. Synovial inflammation is often apparent in the onset and 

progression of OA12. However, the onset of synovial inflammation and precise triggers in OA 

remain unknown. A more extensive discussion on the role of synovial inflammation in OA 

progression can be found in a recent review by Sanchez-Lopez et al.13  

 

Cells in the inflamed synovium 

Even though T cells (mainly of the CD4+ helper type) are found in the OA synovium, the 

involvement of the adaptive immune system is still uncertain and mainly cells from the innate 

immune system, also known as non-specific immune system, are thought to be involved in the 

pathogenesis of the disease14. The most frequently found immune cells in the inflamed 

synovium are macrophages and T cells, followed by mast cells, B cells and plasma cells, 

although the latter two in lower amounts. Neutrophils are seldom found 15. Macrophages, 

located in the lining layer of the synovium, play a critical role in the maintenance of tissue 

homeostasis and, consequently, are involved in the pathogenesis of OA once dysregulated.  
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Synovial macrophages are an important source of pro-inflammatory molecules, including 

matrix-degrading enzymes, alarmins and cytokines such as interleukin-1 (IL-1) and tumor 

necrosis factor (TNF)16. In agreement, depletion of macrophages from OA synovial cells in-

vitro resulted in a strong reduction of cytokines such as IL-1β, TNF, IL-8 and IL-6, and of 

tissue-destructive enzymes matrix metalloproteinases (MMP)-1 and 317. Synovial macrophages 

have also been associated with osteophyte formation in OA. Of note, depletion of synovial 

macrophages using clodronate liposomes in a collagenase-induced OA mice model and in mice 

intra-articularly injected with transforming growth factor-β (TGF-β) resulted in reduced 

osteophyte formation, fibrosis and synovial activation18, 19. Macrophages have also been found 

in the synovial fluid of OA joints and their presence positively correlates with pain and joint 

stiffness20, 21. 

A detailed study revealed the composition, origin and differentiation of subsets of macrophages 

within healthy and inflamed joints22. Pro-inflammatory macrophages are derived from blood 

monocytes but certain subsets of macrophages populate organs during early development and 

subsequently self-sustain their numbers in a monocyte-independent manner. Culemann et al. 

showed that joint resident synovial macrophages can be subdivided into CX3C motif chemokine 

receptor 1 (CX3CR1)+ cells and CX3CR1- interstitial macrophages. CX3CR1+ macrophages 

display features typical of epithelial cells, forming a compact immunological barrier that 

isolates the joint from the surrounding synovium and controls the onset of inflammation thereby 

protecting intra-articular structures. The authors further demonstrated that CX3CR1+ cells 

express immunomodulatory markers characteristic of an anti-inflammatory M2-like phenotype, 

like Trem2 and Axl. Interestingly, locally proliferating CX3CR1- macrophages repopulate and 

maintain the numbers of the CX3CR1+ cells22.  

Thus, macrophages are important mediators of OA-associated inflammation and modulating 

these cells could potentially be  a promising strategy against OA development. 



 6 

 

Molecules in the inflamed synovium 

Cytokines are involved in the pathogenesis of OA23, 24. IL-1β and TNF can induce their own 

production in an autocrine manner25, 26 as well as stimulate the expression of other pro-

inflammatory cytokines (IL-6 and IL-8)27, 28, reactive oxygen species (ROS)29, nitric oxide and 

prostaglandin E230. In addition, these catabolic molecules can increase the expression and 

activity of matrix-degrading enzymes and inhibit the production of collagen 2 and aggrecan, 

both essential components of the cartilage extracellular matrix (ECM)31-34. Moreover, nerve 

growth factor (NGF), an important regulator of OA pain, can be induced by IL-1β and TNF 

among other factors35. However, despite the detrimental effects of IL-1β and TNF, approaches 

targeting these pro-inflammatory cytokines have not been successful1. 

The circulating levels of IL-17 are significantly higher in OA patients compared to non-OA 

patients and two IL-17 polymorphisms are associated with OA susceptibility36. IL-17 can 

stimulate OA synovial fibroblasts to produce proangiogenic factors37. In a recent study, Faust 

et al. demonstrated that intra-articular injection of an IL-17-neutralizing antibody in mice 

reduced joint degeneration and decreased expression of the senescence marker Cdkn1a, putting 

forward that IL-17 could be a specific therapeutic target38. 

High levels of IL-6, IL-8, IL-15 and IL-18 are also found in plasma or synovial fluid from OA 

patients compared to non-OA patients, and positively correlate with cartilage damage39-42. The 

elevated levels of IL-8 and IL-18 might be associated with the pathogenesis of OA via the 

activation of MMP-341. Other cytokines and chemokines involved in OA pathogenesis were 

reviewed by Molnar et al.43 and Jrad et al.44 

Adipokines can also be found in the OA synovium and are classically released by adipose tissue, 

like the infrapatellar fat pad. However, adipokines can also be synthesized by other joint cells 
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such as synoviocytes. These molecules might also be key players in the pathophysiology of 

OA-associated inflammation, senescence and cartilage degradation45-47. 

Bradykinin, NGF and neuropeptides like  Substance P  are also present in the OA synovium, 

which contains nociceptive fibers, as opposed to articular cartilage35, 48. Bradykinin is involved 

in OA inflammation and in the excitation and sensitization of sensory nerve fibers, thus 

producing pain. Bradykinin B2 receptor antagonists (Icatibant and Fasitibant) present analgesic 

effects and reduce the release of pro-inflammatory cytokines, representing a potential approach 

to slow down OA development49. 

Together, these molecules create a complex functional network of inflammatory factors in the 

synovium, and apart from the individual functions described here, it is becoming increasingly 

evident that there is significant crosstalk among the pathways and that the overall effect depends 

on the balance of multiple molecules. Elucidation of the exact connections between these 

pathways will lead to a better understanding of the pathogenesis of OA inflammation. 

 

Cartilage 

Articular cartilage is a highly specialized structure that covers the bone ends within the joint to 

allow low-friction movement. The articular cartilage is composed of an ECM and contains a 

unique cell-type called the articular chondrocytes. These specialized chondrocytes play a 

crucial role in the development, maintenance, and repair of the ECM that mainly consists of 

type 2 collagen fibers and proteoglycan aggrecan. Progressive damage to the articular cartilage 

is a major event in the pathogenesis of OA. Articular cartilage appears to have a specific type 

of inflammatory response upon damage despite its avascular structure and absence of a resident 

macrophage population.  

Articular chondrocytes are normally quiescent cells. However, during OA, the cells are driven 

into a pro-inflammatory state that contributes to joint inflammation. Articular chondrocytes can 
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respond directly to mechanical injury in a number of ways, including by release of matrix-

sequestered growth factors such as FGF2, TGFβ50  and activation of cell surface ion channels 

like PIEZO1 and TRPV451.  Mechanical injury or abnormal loading, can also activate a cascade 

of molecular events by a process named “mechanoflammation”.  

Mechanoflammation involves the activation of the TGFβ-activated kinase 1 (TAK1), which 

can stimulate mitogen-activated protein kinases (MAPK) and, nuclear factor kappa B (NF-κB), 

resulting in regulation of ECM degrading enzymes and molecules important in pain such as 

NGF 52. Following degradation, cartilage damage may also lead to the release of intracellular 

alarmins such as S100A8/9, HMGB1 or matrix fragments that have inflammatory actions 

within the cartilage and elsewhere in the joint14, 53. These so-called damage associated 

molecular patterns (DAMPs), can trigger the innate immune response via pattern-recognition 

receptors (PRRs), such as toll-like receptors (TLRs)54.  Examples of specific DAMPs include 

fibronectin54, 55, tenascin C56, biglycan57 and hyaluronic acid58. Strong in vivo support, in non-

inflammatory models of OA, for this hypothesis has not been demonstrated. Finally, 

chondrocytes can produce and respond to several pro-inflammatory cytokines and chemokines 

leading to ECM degradation59. As stated above, TNF, IL-1β and IL-6 are the main inflammatory 

mediators in OA cartilage and can also be actively produced by OA chondrocytes43. TNF and 

IL-1β are synergistic pro-inflammatory cytokines that both exert their effects primarily through 

MAPK, NF-κB and activator protein 1 (AP-1) pathways60-62. In chondrocytes, TNF-α and IL-

1β block the synthesis of ECM components such as type 2 collagen and proteoglycans63, 64. 

They also induce matrix degrading enzymes including MMP-1, MMP-3, MMP-13, ADAMTS-

4 and ADAMTS-534, 62, 64. Furthermore, they promote the synthesis of each other and other pro-

inflammatory cytokines and chemokines such as IL-6 and IL-865. In addition, TNF can promote 

apoptosis and cell death66. Of note, these concepts are largely built on in vitro and in vivo model 
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data while it has been challenging to find corroborating evidence in clinical trials or specific 

cohort studies.  

In contrast, IL-6’s exact role in OA remains difficult to define, as it has both beneficial and 

detrimental effects67, 68. On the one hand, numerous studies have shown that higher blood levels 

of IL-6 are associated with mobility impairment and disability in older adults69 as well as with 

an increased risk of knee OA progression70. However, knockout of IL-6 in male mice resulted 

in more severe OA upon aging71.  This controversy may be explained by IL-6’s complex 

signaling pathway. IL-6 binds to either membrane-bound (mbIL-6R) or soluble (sIL-6R) 

specific IL-6 receptors. Binding of IL-6 to mbIL-6R forms a complex that activates the “classic” 

signaling pathway which results in an anti-inflammatory response72. On the other hand, binding 

of IL-6 to sIL-6R forms a complex that associates with gp130 protein and activates “trans” 

signaling responsible for the pro-inflammatory properties of IL-672. Thus, both signaling 

pathways require further study to elucidate the exact role of IL-6 in OA.  

 

Subchondral bone 

The subchondral bone is the zone of epiphyseal bone underneath the articular cartilage. It can 

be divided into two different regions, the subchondral bone plate and the underlying trabecular 

bone. The presence of channels and pores allow cross talk between the subchondral bone and 

cartilage. The subchondral bone is a very dynamic structure that adapts to mechanical forces to 

provide support and shock-absorbance in the joint. This dynamic remodeling involves 

osteoblasts and osteoclasts. Osteoclasts are responsible for bone resorption while osteoblasts 

produce new bone. During OA, there is a dysregulation of subchondral bone remodeling. 

Osteoblasts isolated from OA subchondral bone demonstrate an altered phenotype. They 

secrete TGF-β and IL-6, molecules involved in the structural changes of OA synovium and 

cartilage73. IL-1β and IL-6 are suggested to be responsible for this altered phenotype in OA 
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osteoblast73. In addition, synovitis is positively associated with osteophyte formation especially 

since new bone formation is stimulated by TGF-β secreted from macrophages during synovial 

inflammation13.  

 

Systemic inflammation 

Apart from local inflammation, OA has also been associated with low-grade systemic 

inflammatory states.  

 

Aging  

Aging is one of the most important risk factors contributing to the development of OA. The 

responsible mechanisms appear to be multifactorial and may include an age-related pro-

inflammatory state, often referred to as “inflammaging”, which can be both systemic and local70.  

The efficiency of the innate immune system decreases with aging and becomes chronically 

activated to a low-grade extent, contributing to the development and progression of age-related 

diseases such as OA14. 

Systemic inflammation can be in part promoted by aging-associated changes in tissues that 

result in increased and sustained production of the pro-inflammatory cytokines IL-6, TNF and 

CRP11, 74, 75. Interestingly, another study reported a robust increase in the expression of the 

alarmins S100A9 and S100A8 with aging which can also contribute to the development of 

chronic inflammation76 and joint destruction77, 78. The role of the “geriatric” cytokine IL-6 in 

OA is not well understood as described above in this review.  

The inflammasome is a key driver of the innate immune response seen in aging, therefore 

contributing to the process of “inflammaging”. The best characterized member is NLRP3, 

which is highly expressed in chondrocytes, macrophages, synoviocytes, and osteoblasts. 

NLRP3 has been implicated in the pathogenesis of several arthritic disorders, participating in 
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the processing and maturation of IL-1β and IL-1879. Clavijo et al. showed that NLRP3 protein 

expression is 5.4-fold increased in the synovium of patients with knee OA and that it correlated 

with expression of xanthine oxidase, an enzyme responsible for the generation of ROS80.  There 

is accumulating evidence for the participation of the NLRP3 inflammasome in OA onset and 

progression, therefore it is proposed as a potential biomarker for OA diagnosis and patient 

classification81.  

Another mechanism by which aging promotes chronic inflammation that could be important in 

OA is through cell senescence and in particular chondrocyte senescence. Cell senescence is 

characterized by growth arrest (replicative senescence) and the induction of a distinctive 

secretory phenotype called senescence-associated secretory phenotype (SASP). Senescence 

also has physiological functions. For instance, it contributes to tissue development during 

embryogenesis and suppresses tumor formation by preventing the propagation of damaged cells. 

However, accumulation of excessive senescent cells are implicated in the pathophysiology of 

many diseases associated with aging like OA, where senescent cells accumulate in cartilage and 

synovium thereby increasing the secretion of pro-inflammatory mediators and matrix-

degrading enzymes70. Interestingly, local clearance of senescent chondrocytes attenuated the 

development of joint destruction during experimental post-traumatic OA and created a pro-

regenerative environment82. Age-related changes of joint tissues are critical in the development 

of OA and strategies targeting the underlying mechanisms are promising approaches to OA 

therapy. 

 

Obesity  

Obesity is a well-recognized risk factor for OA incidence and progression. It affects both 

weight-bearing and non-weight-bearing joints because of excessive joint loading and systemic 

low-grade inflammation83. This systemic inflammation is induced by pro-inflammatory 
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adipokines secreted by the adipose tissues, such as the infrapatellar fat pads and other joint 

cells47, 84. The main adipokines that have been studied in association with OA are leptin, 

adiponectin, visfatin, and resistin. Obese individuals have higher levels of leptin, adiponectin 

and resistin in their synovial fluid, which are positively correlated with OA pain and 

progression47, 84-87. Visfatin is especially present inside OA osteophytes and is mainly secreted 

by the OA chondrocytes within the joint86. Mechanistically, these adipokines have been shown 

to support cartilage damage via increasing the expression of several cytokines such as IL-1β 

and IL-6, and MMPs in articular chondrocytes88-92. Furthermore, patients with obesity have a 

higher prevalence and severity of synovial inflammation93. They present with synovial fibrosis, 

increased macrophage infiltration and elevated TLR4 expression94. Although obesity evidently 

facilitates synovitis, there appears to be no improvement of synovial inflammation after weight 

loss95, 96. Indeed, improved knee pain in obese OA patients after weight loss was not mediated 

by a decrease in synovitis but rather by improvement in pressure pain threshold and mental 

health97. The reason why obesity, but not weight loss, has an effect on synovitis still remains 

unclear. Obesity could potentially cause long-lasting epigenetic or structural changes, which 

contribute to OA even after weight loss. Obesity-associated diet might also play a role in OA. 

Indeed, a higher diet inflammatory index score is associated with a higher prevalence of 

radiographic and symptomatic knee OA, independent of patient weight98. In addition, a western 

diet was associated with progression of OA99. Therefore, diet and gut microbiome involvement 

are gaining interest in OA research.  

 

Type 2 diabetes 

Studies demonstrate that patients with type 2 diabetes mellitus (T2DM) have a higher 

prevalence of OA100, 101. In contrast, other reports show no correlation between T2DM and OA 

prevalence102, 103. Yet, high glucose levels have been shown to induce vascular endothelial 
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growth factor (VEGF) secretion and ROS in OA synovial fibroblasts thereby inducing 

angiogenesis, tissue damage and inflammation104. Hyperglycemia is also directly associated 

with the accumulation of advanced glycation end-products (AGEs), which result from a 

reaction between α-ketoaldehydes and proteins105. AGEs are able to bind receptors of AGEs 

(RAGE) and TLRs on the chondrocyte cell surface thereby inducing a pro-inflammatory 

response106. Glyoxalase-1, the main enzyme responsible for the removal of AGE precursors, is 

downregulated by IL-1β in OA chondrocytes, which further contributes to AGE 

accumulation107. In addition, the onset of insulin resistance within the joint undermines the anti-

inflammatory and chondroprotective effects of insulin108-110. The exact role of T2DM on OA 

independent of aging and obesity requires further study.  

 

Metabolic syndrome 

Metabolic syndrome (MetS) is characterized by a combination of hyperglycemia, abdominal 

obesity, hyperlipidemia, hypertension, and low serum high-density lipoprotein (HDL). It 

significantly increases the risk for a number of chronic disorders such as stroke, coronary heart 

disease, T2DM and also OA111, 112. The occurrence and progression of OA were strongly 

correlated with the number of components of MetS present in OA patients113. Mechanistically, 

MetS may increase the risk of OA by impairing the regulation of metabolic and inflammatory 

pathways114. Obesity- and T2DM-associated inflammation were previously discussed in this 

review. In addition, hypertension and other vascular components may lead to subchondral 

ischemia, which could compromise the nutrient supply to the articular cartilage and trigger 

subchondral bone remodeling115, 116. Indeed, in a recent meta-analysis patients with 

hypertension had a 2-fold and 1.5-fold increase in the risk for radiographic and symptomatic 

knee osteoarthritis, respectively117. Similarly, hypertensive rats spontaneously developed more 

subchondral bone damage compared to normotensive rats118. Dyslipidemia has also been 
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associated with osteoarthritis119, 120. Ectopic lipid deposition in chondrocytes induced by 

dyslipidemia may contribute to OA development, which is aggravated by deregulated cellular 

lipid metabolism in OA joint tissues121. Elevated levels of free fatty acids (FFAs) due to 

hyperlipidemia can also increase the expression of cytokines IL-6 and IL-8 in chondrocytes122. 

Furthermore, MetS is associated with a sedentary lifestyle and with limited physical exercise, 

which can increase the incidence of OA112, 123. Taken together, the potential underlying 

mechanisms are complex and involve a combination of different MetS components and 

pathways.  

 

Therapeutic implications 

There are currently no effective drugs to stop or reverse OA, although many advances have 

been made in understanding the pathophysiological processes of the disease, including 

inflammation.  Classical non-targeted strategies for OA therapy, such as the use of non-

steroideal-anti-inflammatory (NSAIDs) drugs and intra-articular injections of steroids, can 

reduce synovial inflammation and pain in OA. Chondroitin sulfate also modulates the 

inflammatory activity of synovitis by reducing the nuclear translocation of the transcription 

factor NF-κB in synoviocytes and macrophages124. However, NSAIDs can lead to a number of 

adverse effects and its use is contraindicated in some cases. In addition, intra-articular injections 

of steroids have only a short-term effect on knee pain and function, and treatments with more 

sustained efficacy are needed125. Also, a number of biological agents, mainly targeting TNF 

and IL-1β showed promising results in pilot studies but did not deliver successful  results in 

clinical trials126, 127. However, post hoc analyses from the CANTOS trial showed that 

canakinumab treatment over 3 years led to a reduction in the rate of total knee or hip 

replacement compared with placebo, which suggests that long-term IL-1β inhibition could be 
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protective for the joints128. Therefore, this exploratory analysis supports further investigation 

of IL-1β for treatment of OA. 

Beyond IL-1β and TNF, other cytokines are being investigated as potential treatment targets in 

OA, including IL-6 and IL-17. While studies investigating the role of IL-6 in OA are 

controversial42, 71, targeting IL-17 seems promising38. The NLRP3 inflammasome is also an 

attractive target due to its involvement in the pathogenesis of OA. However, it is necessary to 

further elucidate the mechanisms behind NLRP3 activation and regulation81. 

Another emerging approach is to specifically remove senescent cells to avoid detrimental 

secretion of SASP-related factors. Selective deletion of senescent chondrocytes from OA 

patients shows promise129. In addition, several senolytics have been identified. For instance, the 

senolytic molecule ABT-263, a specific inhibitor of the anti-apoptotic proteins BCL-2 and 

BCL-xL, counteracts the anti-apoptotic functions of senescent cells, allowing them to initiate 

apoptosis thereby ameliorating OA in a rat model130, 131. Currently, senolytic drug Fisetin is in 

Phase I/II clinical trail for knee OA132. However, a previous Phase II study failed to demonstrate 

efficacy of senolytic molecule UBX0101 in knee OA133. SIRT6 depletion can induce 

chondrocyte senescence134, while overexpression of this histone deacetylase could alleviate OA 

and inhibit synovial inflammation135 putting forward that SIRT6 could be a novel therapeutic 

target in OA. 

Of central importance for the initiation of innate immune responses is TLR signaling, which 

lead to cell stress and tissue damage. Therefore, inhibiting TLRs or their ligands might be 

promising options for OA therapy. Indeed, inhibiting TLR4 signaling by linarin, a natural 

flavonoid glycoside, appears to prevent the inflammatory response in OA136. 

 

Conclusions 
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Inflammation is an important part of the complex pathophysiology of OA and is characterized 

by a complex interplay between different tissues and between molecular pathways. All tissues 

of the joint can produce pro-inflammatory mediators thereby contributing to OA-associated 

low-grade inflammation. In addition, systemic inflammatory mediators due to aging, obesity, 

T2DM and MetS can also contribute to inflammation in the joint. The main inflammatory 

mediators associated with OA include cytokines, chemokines, growth factors, adipokines, and 

neuropeptides. OA-associated inflammation has a deleterious effect on cartilage, bone and 

synovium, leading to more pro-inflammatory mediators and resulting in a vicious cycle. 

Deciphering the complex interplay and the inflammatory pathways involved in OA is critical 

for the discovery of new therapies or to repurpose existing drugs.  
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Figures 

 

Figure 1 

 

 

Figure 1 Overview of the inflammatory mediators in OA. The interplay between the 

different pro-inflammatory mediators and mechanisms in the different tissues of the OA joint. 

DAMPs: disease-associated molecular patterns. 
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