

O Effect, Effect! Wherefore art thou Effect?

Patrick Onghena

Faculty of Psychology and Educational Sciences

KU Leuven, Belgium

Problem

There is an ongoing discussion about the position of statistics in the analysis of single-case data, going back to the foundational work of Skinner and Sidman.

Proposal

Meta-statistical considerations in the discussion of single-case data analysis are needed more than the development and statistical evaluation of new statistical techniques.

Points for Discussion

- Statement 1: There is a fundamental distinction between descriptive and inferential statistics.
- Statement 2: This distinction is important for all applied data-analysis, and therefore also for the analysis of single-case data.
- Statement 3: Visual analysis and quantitative summary measures (e.g., "effect" size indicators) are part of the field of descriptive statistics.

Points for Discussion (cont.)

- Statement 4: Descriptive statistics are not meant for going beyond the observed data.
- Statement 5: You cannot *see* the effect; you can only *infer* the effect. You can see a *difference* or a *relation* (not the effect itself) and you can infer the effect from what you see, what you know, and what you assume.
- Statement 6: Inferential statistics can assist in inferring the effect (e.g., causal inference based on a randomization argument) but are not always needed or appropriate.
- Statement 7: A three-step procedure for the analysis of single-case data is recommended with (1) visual analysis, (2) quantification of the differences and relations, and (3) using these quantifications as estimators or test statistics in a well-defined random sampling or random assignment model. Not all three steps are needed for all single-case data analysis problems, but no step should be skipped. This implies three scenarios: scenario 1, scenario 1+2, and scenario 1+2+3.