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A B S T R A C T   

Automated behavior analysis (ABA) strategies are being researched at a rapid rate to detect an array of behaviors 
across a range of species. There is growing optimism that soon ethologists will not have to manually decode 
hours (and hours) of animal behavior videos, but that instead computers will process them for us. However, 
before we assume ABA is ready for practical use, it is important to take a realistic look at exactly what ABA is 
being developed, the expertise being used to develop it, and the context in which these studies occur. Once we 
understand common pitfalls occurring during ABA development and identify limitations, we can construct robust 
ABA tools to achieve automated (ultimately even continuous and real time) analysis of behavioral data, allowing 
for more detailed or longer-term studies of behavior on larger numbers of animals than ever before. ABA is only 
as good as it is trained to be. A key starting point is having manually annotated data for model training and 
assessment. However, most ABA developers are not trained in ethology. Often no formal ethogram is developed 
and descriptions of target behaviors in ABA publications are limited or inaccurate. In addition, ABA is also 
frequently developed using small datasets, which lack sufficient variability in animal morphometrics, activities, 
camera viewpoints, and environmental features to be generalizable. Thus, ABA often needs to be further vali
dated before being used satisfactorily on different populations or under other conditions, even for research 
purposes. Multidisciplinary teams of researchers including ethologists and ethicists as well as computer scientists, 
data scientists, and engineers are needed to help address problems when applying computer vision ABA to 
measure behavior. Reference datasets that can be used for behavior detection should be generated and shared 
that include image data, annotations, and baseline analyses for benchmarking. Also critical is the development of 
standards for creating such reference datasets and descriptions of best practices for methods for validating results 
from detection tools to ensure they are robust and generalizable. At present, only a handful of publicly available 
datasets exist that can be used for development of ABA tools. As we work to realize the promise of ABA (and 
subsequent precision livestock farming technologies) to detect animal behavior, a clear understanding of best 
practices, access to accurately annotated datasets, and networking among ethologists and ABA developers will 
increase our chances for rapid and robust successes.   
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1. Introduction 

Automated behavior analysis (ABA) strategies are being developed at 
a rapid rate to detect an array of behaviors across a range of species. 
There is growing optimism that soon, ethologists will not have to 
manually decode hours (and hours) of animal behavior videos, but that 
instead a computer can process visual, audiological, and other animal- 
based information for scientists working to gain insight into animal 
lives. However, despite this optimist outlook, it is important to take a 
realistic look at the ABA that is being developed, who is developing it, 
and the context in which these studies occur. 

To set the stage, ABA2 is here defined as use of technology to detect 
and observe the behavior of animals—collecting data, perhaps even 
continuously and in real time and at the level of the individual—in ways 
that require minimal human labor (Zamansky et al., 2021). Also called 
computational ethology (Anderson and Perona, 2014) or computational 
analysis of behavior (Egnor and Branson, 2016), ABA has potential to 
reduce both the human labor and subjectivity that currently impede 
scientific analysis of animal behavior. A recent search for peer-reviewed 
articles on ABA of animals revealed nearly 25,000 publications on the 
topic. The diversity of contexts and species in which work is underway to 
automate the observation of behavior is impressive, ranging from 
studies of mussels responding to environmental contaminants (Shen and 
Nugegoda, 2022) to social interactions of fruit flies (Dankert et al., 
2009) to grazing of dairy cattle on pasture (Deniz et al., 2017) to fish 
caught in hook-and-line fisheries (Knotek et al., 2022). 

Clearly, there is interest in and enthusiasm for solving the problems 
posed by detecting animals and the array of behaviors they can perform. 
The motivations of researchers driving their work in this area are nearly 
as diverse as the species being examined or the purposes for which these 
tools can be used. For example, some researchers wish to use technology 
as a tool to scientifically understand animals more deeply (Anderson and 
Perona, 2014), including their ecology (Dell et al., 2014; Weinstein, 
2018) in ways that could inform conservation efforts (Bain et al., 2021; 
Tuia et al., 2022). Others may be using ABA to search for insights into 
human psychology or health through studies of animals (Voikar and 
Gaburro, 2020). ABA could also be used to recognize pain and emotion 
(Jourdan et al., 2001; Broome et al., 2023) and to understand the 
workings of the brain (Mathis and Mathis, 2021; Tecott and Nestler, 
2004). 

Of particular importance to applied ethologists, data from ABA could 
be used for behavioral research (Noldus et al., 2001; Valletta et al., 
2017), to inform animal management practices (i.e., husbandry (Buller 
et al., 2020) or veterinary treatment (Kaplun et al., 2019)), or to assess 
and improve animal welfare (Broome et al., 2023; Dawkins et al., 2009; 
Matthews et al., 2016; McLoughlin et al., 2019; Rushen et al., 2012). As 
technology becomes a lynchpin in managing food and fiber animals 
more efficiently and precisely, there is a need to develop ABA that can 
closely monitor large numbers of animals on farms and detect changes in 
their behavior (Norton et al., 2019). Similarly, ABA tools can enhance 
transparency about farm animal welfare (Buller et al., 2020; Larsen 
et al., 2021) or create connections between zoo animals and the public 

(Clay et al., 2011)—playing a role in our social license to keep animals 
for human purposes. 

Our objectives with this review are to help applied ethologists 
develop a critical approach to evaluating ABA tools for their own use 
and to facilitate ethologists’ engagement as experts to help develop high 
quality ABA. Many of the specific examples presented and literature 
cited focus on livestock (pigs in particular) and poultry. ABA used by 
applied ethologists in the context of animal agriculture must be robust as 
livestock and poultry species are often housed in large numbers (hun
dreds to thousands), at high densities, and groups are typically 
comprised of animals of the same breed, sex, and life stages—rendering 
them very homogeneous in appearance (Nasirahmadi et al., 2017). The 
difficulty in distinguishing between nearly identical animals coupled 
with frequent occlusion and overlap makes using ABA in these condi
tions particularly challenging (Chen et al., 2021). This is not to say that 
these conditions never arise in other populations, including wild ones (i. 
e., large herds of ungulates or seabirds for example), however, these 
conditions are almost universal in animal agriculture. 

2. Methods 

As the body of literature surrounding ABA is extensive and growing 
rapidly and the intent of this paper was not to provide an exhaustive 
systematic review of any one type or use of ABA, a targeted search of the 
peer-reviewed literature was conducted. Initially, the authors drew 
upon their experience conducting research and previous literature re
views on ABA to provide examples illustrating particular situations. To 
objectively broaden the scope of the review, a search of the scientific 
literature was conducted. The first search focused on detecting review 
articles published within the last 10 years using ‘automated’ AND 
‘behavior-’ AND ‘analysis’ alone and coupled with ‘animal’ and ‘review’. 
Similar searches were conducted using synonyms of ABA such as 
‘computational’ AND ‘analysis’ AND ‘behavior’ as well as ‘computa
tional’ AND ‘etholog-’ alone and in combination with ‘animal’ and ‘re
view’. Next, these searches were repeated by combining ABA and its 
synonyms with ‘livestock’, ‘poultry’, ‘cattle’, ‘pig’. Articles were first 
reviewed to ensure they were 1) published peer-reviewed articles and 2) 
written in English, and then were selected for inclusion based on their 
relevance to the topic of ABA in general and applied ethology more 
particularly. Finally, a snowballing strategy was used whereby addi
tional peer-reviewed articles were discovered through examination of 
the references cited in the articles discovered by the initial searches. In 
this way, several early articles that discussed the potential to use ABA in 
applied ethology were discovered (e.g., Jourdan et al., 2001; Dawkins 
et al., 2009; Leroy et al., 2006; Noldus and Jansen, 2004; Rushen et al., 
2012). 

Table 1 presents reviews of ABA from the peer-reviewed scientific 
literature that describe potential applications for ABA, evaluate perfor
mance of programs and approaches, and summarize the research con
ducted to date. These reviews present thoughtful perspectives on 
opportunities and constraints to using ABA that complement the points 
raised throughout this article. The reviews compiling and comparing 
specific ABA approaches provide a useful index of the literature 
describing technological developments. 

3. ABA is only as good as it is trained to be 

For the purposes of this paper, the focus will be less on why moni
toring tools are developed or specific uses to which they can be put but 
rather on some elements that are critical to consider when evaluating or 
helping create tools to automatically monitoring behavior. For a tech
nological ABA solution to be accurate, robust, and usable in the real 
world, it must be developed with consideration from the formation of 
the development team through final testing of the product (Fig. 1). As 
described below, failure at any of these stages is likely to result in ABA 
that is less than fully automated or that does not deliver useful outputs. 

2 The ABA discussed in this paper is not synonymous with Precision Livestock 
Farming (PLF). ABA data is not necessarily converted into actionable infor
mation for use either by a human caretaker or to cause an automated change in 
management. When ABA is integrated into a commercialized technology aimed 
at assisting a farmer working in a production setting, then it becomes part of a 
precision livestock farming (PLF) approach. PLF detects animals and monitors 
their responses—ideally continuously and in real time—as well as provides 
actionable information to the farmer that can be used to make management 
decisions (Berckmans, 2017). At PLF’s core is likely technology that does 
ABA—though in other cases, it could be physical characteristics of animals that 
are being monitored such as weight, body condition, temperature, injury, or 
even measurements taken beyond the level of the animal (Banhazi et al., 2012) 
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Table 1 
Peer-reviewed literature describing and evaluating automated behavioral anal
ysis (ABA) methods and technologies and potential uses for these tools.  

Citation Focus Reasons to Read 

Anderson and 
Perona (2014) 

ABA overview Exploration of how ABA could allow 
better collection of behavioral data 
needed to understand how the brain 
works. Reviews importance and 
history of ethology and necessity of 
understanding behavior and its value 
as an animal-based indicator 

Broome et al. 
(2023) 

ABA for emotion, 
pain 

Review of automated behavior 
analysis approaches to study animal 
emotions and pain. Discusses practical 
aspects such as data collection, 
annotation, recording equipment, 
evaluation of ABA performance, and 
provides best practice 
recommendations 

Egnor and 
Branson (2016) 

ABA overview Review of how computational 
approaches (i.e., machine learning) 
can be used to quantitatively analyze 
behavior. Discusses key considerations 
of experimental design to achieve 
biologically relevant data while 
facilitating use of technology. 
Overview of types of machine vision 
and learning mistakes and their 
strengths and limitations 

Mathis and 
Mathis (2020) 

Deep learning, pose 
estimation 

Review of how deep learning methods 
have potential to improve ABA, with a 
focus on pose estimation (which can be 
transformed into actions or kinematic 
information) using an open source 
program 

McVey et al. 
(2023) 

Unsupervised 
learning, case 
studies 

Examination of potential for 
unsupervised learning to improve ABA 
in precision livestock applications. 
Discusses difference between data and 
information, data compression and 
information loss, model-dependent 
and model-free approaches and 
potential to discover complex and 
unexpected behavior signals from a 
range of data streams 

Rushen et al. 
(2012) 

ABA for welfare Exploration of using automated on 
farm technology to provide behavior 
data as an aspect of assessing welfare. 
Explanation of basic terms and 
rationale for using automation as well 
as drawbacks to consider 

Valletta et al. 
(2017) 

Machine learning 
for analysis 

Examination of using machine 
learning rather than traditional 
statistics to turn automatically 
collected data into information with 
applications ranging from behavioral 
pattern detection to detecting 
emotional state to understanding 
social network structure to welfare 
assessment 

Wurtz et al. 
(2019) 

Machine vision for 
ABA 

Systematic review assessing 108 ABA 
studies conducted on livestock and 
poultry housed on farm using machine 
vision approaches. Provides 
information about equipment used, 
species studied, and types of behaviors 
analyzed. Emphasizes need for 
detailed metadata to allow for 
evaluation of ABA outcomes and its 
potential to be used under other 
conditions 

Zamansky et al. 
(2021) 

ABA overview Succinct discussion of use of ABA to 
remove error and human subjectivity 
from behavioral studies as well as to 
increase volume of data that can be 
analyzed, which increases potential for 
discovering knowledge, including  

Table 1 (continued ) 

Citation Focus Reasons to Read 

complex patterns as well as behavioral 
features humans are not able to 
perceive. Covers importance of how 
we use language or symbols to describe 
behavior to improving ABA 

Dell et al. (2014) Program evaluation Discuss potential uses of programs 
developed to track animal movement 
beyond the laboratory. Reviewed 16 
open-source programs and noted their 
pros and cons (but seePanadeiro et al., 
2021 for more recent evaluation) 

Panadeiro et al. 
(2021) 

Program evaluation Reviewed 28 free animal tracking 
software programs and characterized 
their abilities and limitations, 
including user-friendliness, whether 
the programs have been updated, 
group size, length of tracking and how 
well they preserve animal 
identification. Discussion of 
importance of reliable tracking of 
individuals as a precursor to more 
complex ABA 

Wurtz et al. 
(2022) 

Program evaluation Assessed performance of 4 open source 
animal tracking programs on pigs 
housed on farm. Describes strengths 
and weaknesses and constraints to 
consider 

Arulmozhi et al. 
(2021) 

Pigs Summary of studies using 2D, 3D, and 
infrared cameras to acquire 
information, including behavior from 
pigs. Includes section on ABA. Includes 
section on limitations of cameras with 
images illustrating problems 

Chen et al. (2021) Pigs, Cattle Technical discussion of how deep 
learning methods can improve ABA 
compared to traditional computer 
vision approaches. Focuses on 
behaviors of importance to health and 
welfare such as aggression, drinking, 
feeding, etc 

Gómez et al. 
(2021) 

Pigs Systematic review of 111 validated 
sensor technologies used to detect 
animal welfare (many of which do 
ABA). Description of different types of 
internal and external validation. 
Description of number of animals used 
in each study (most studies use < 50 
animals to develop technologies) 

Jourdan et al. 
(2001) 

Pain Describes how automation of behavior 
analysis could bring objectivity and 
depth to studies of animal pain and 
reduce time and labor 

Larsen et al. 
(2021) 

Pigs Systematic review of 101 publications 
(1989–2020) relating to information 
technologies developed to detect 
welfare, including ABAs. 
Tables present technologies grouped 
by welfare quality parameters, many of 
which rely on behavior for assessment. 
Descriptions of type of technology and 
stage of technology development and 
what stage of pig production was 
studied 

Li et al. (2022) Pigs Examination of barriers related to 
using computer vision on pig farms, 
including summary of challenges 
related to ABA of pig behavior using 
vision. Discusses problems related to 
moving from human to machine 
recognition of animal behavior related 
to describing, defining, and labeling. 
Emphasizes importance of dataset 
construction and need for 
benchmarking datasets and methods to 
speed construction of ABAs 

(continued on next page) 
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3.1. Developers with the right expertise and standards 

A key point to start with when evaluating how good an ABA tech
nology is likely to be is who helped develop it (Li et al., 2022). Most ABA 
systems are developed by a team, at the center of which are the com
puter or data scientists who create algorithms capable of detecting the 
behavior from the data that is collected by the technology. Engineers are 
also involved, particularly when sensors used to capture data are spe
cifically developed for the ABA instead of using off the shelf cameras or 
accelerometers or in deploying the technology in the real world. While 
many teams may include an agricultural engineer, not all teams include 
animal scientists or biologists. Therefore, domain experts in ethology 
might be missing from development teams. Thus, when evaluating 
whether the ABA is capable of recognizing behaviors of interest, it is 
necessary to read the paper the work was published in or documentation 
accompanying the technology to learn about the expertise underlying its 
development. 

Critical questions to ask when evaluating the expertise behind ABA 
development include:  

• How well do the humans training the ABA understand the behavior 
they are attempting to monitor? Was the ABA produced by a team 
that included domain experts (i.e., ethologists with species-specific 
expertise)?  

• Do they understand the specific postures or actions that make up the 
functional behavior? Or what the full expression of the functional 

Table 1 (continued ) 

Citation Focus Reasons to Read 

Matthews et al. 
(2016) 

Pigs Evaluation of technologies aimed at 
automatically detecting changes in pig 
behavior, with an emphasis on those 
that facilitate detection of health and 
welfare outcomes. Tables depicting 
useful behavior targets as well as state 
of ABA technologies. Covers 
publications from 1993 to 2016. 
Explanation of importance of using 
behavior measures validated as health 
and welfare indicators 

Nasirahmadi 
et al. (2017) 

Pigs, Cattle Review of use of 2D and 3D cameras 
for ABA of cattle and pigs. Describes 
criteria used to evaluate ABA system 
performance (e.g., sensitivity, 
specificity). Describes features of state 
of the art imaging technology and 
processing techniques. Specific 
sections on feeding and drinking, 
lying, locomotion and lameness, 
aggression, and mounting 

Yang and Xiao 
(2020) 

Pigs Review of approaches to video based 
ABA of pig behavior that breaks down 
various aspects necessary to the 
process with accompanying review of 
the literature 

Zhang et al. 
(2022) 

Pigs Summary of studies using sensors to 
detect pig behaviors. Includes 
simplified description of types of 
processing and analysis. Presents some 
performance metrics from various 
studies. Covers behaviors ranging from 
feeding, drinking, locomotion and 
aggression an other social behavior 
through estrus detection, lactation, 
and parturition as well as tail biting 

Abd Aziz et al. 
(2020) 

Poultry Review of open access literature 
published from 2010 to 2020 on 
computer vision in poultry (chicken/ 
broilers). Includes detailed 
descriptions of types of hardware, 
software, and data processing and 
analysis methods 

Li et al. (2020) Poultry Review of publications from 2015 to 
2020 describing technologies 
(including body worn and remote) 
used to detect behavior of chickens 
(broilers and layers) with potential for 
on farm use. Image processing section 
heading includes a useful table and 
description of recent studies focused 
on detecting individual bird behavior 

Ojo et al. (2022) Poultry Systematic literature review of studies 
published between 2010 and 2022 
presenting information technologies 
developed for use with poultry. 
Includes a table with a comprehensive 
list of studies on monitoring poultry 
welfare using a range of device types 

Okinda et al. 
(2020) 

Poultry Technical review of computer vision 
approaches used in processing images, 
segmenting, feature extraction, shape 
analysis, kinematics, optical flow, and 
statistical approaches. Includes a table 
of computer vision monitoring systems 
used for behavior and welfare 
applications 

Olejnik et al. 
(2022) 

Poultry Examination of technologies used to 
improve broiler management; includes 
sections on sound analysis and 
locomotion and activity tracking 

Rowe et al. 
(2019) 

Poultry Review of automated measures that 
could be used in precision livestock 
farming of poultry to provide welfare 
information. Includes an overview of 
technologies that monitor behavior  

Table 1 (continued ) 

Citation Focus Reasons to Read 

Vieira Rios et al. 
(2020) 

Poultry Systematic review of 57 papers 
describing technologies used to detect 
broiler welfare (many of which rely on 
ABA). Describes which phase of life or 
type of production system the 
technology could be used in and 
whether studies were experimental or 
had practical application 

Wu et al. (2022) Poultry Review of importance of information 
technologies in modern poultry 
farming. Includes a specific section on 
behavior recognition describing 
various studies done toward 
recognizing behaviors such as feeding 
and drinking, movement, and egg 
laying using a variety of types of 
sensors and ABA approaches.  

Developers with the right exper�se

Good data to train, test, and validate

Rigorous manual decoding

Thoroughly documented datasets

ABM is only as good as it is trained to be

Fig. 1. Creating useful ABA requires several important inputs. The develop
ment team conceiving ABA must have domain expertise (e.g., ethologists) as 
well as necessary technical skills (e.g., computer science). Sufficient high- 
quality data are needed for training and testing ABA, and independent data 
are needed for validation. If supervised learning is used, manual decoding must 
be done by an expert following consistent high standards that connect to pre
vious research on the behavior. Resulting datasets also need to include meta
data that describes features of data collection, animal details, and 
environmental context. 
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behavior looks like? For example, dust bathing is composed of many 
small elements (e.g., movemes such as side lying) and actions (e.g., 
head rubbing or wing shaking) that come together in a particular 
way into a functional dust bathing activity that results in cleaner 
feathers (see Olsson and Keeling, 2005 for a review).  

• Do they give behaviors the same names to postures or activities that 
have been commonly used in ethology or animal science literature? 
(See Zamansky et al., 2021 for a discussion on the importance of how 
behavioral phenomena are represented in language or symbols when 
doing ABA.) Is a detailed description of the behavior provided (or an 
image or video) to allow for verification that the behavior they 
detected is what a reader assumes it to be (Li et al., 2022). For 
example, when developing ABA to recognize ‘aggression’ in pigs (e. 
g., Chen et al., 2019), there are many forms of aggressive behavior 
that must be identified such as head to head knocking, head to body 
knocking, parallel pressing, inverse parallel pressing, and biting of 
the head, neck, or body which must be defined and identified in ways 
consistent with previous important work (e.g., Desire et al., 2015, 
O’Connell et al., 2005; O’Malley et al., 2022).  

• If they try to interpret motivations or meanings underlying the 
behavior, are these in line with the scientific research on these be
haviors? For example, tail biting in pigs is not motivated by 
aggression but is caused by a variety of housing and management 
factors (Prunier et al., 2020; Sonoda et al., 2013; Taylor et al., 2010). 
Thus, AMB systems that are designed to predict tail biting outbreaks 
(e.g., D’Eath et al., 2018) cannot also be used to predict aggression 
nor can presence of tail injuries be used as a proxy for aggressive 
behavior the way wounds to other areas of the body might be (Turner 
et al., 2006).  

• Do they assume that proximity to a resource (such as a feeder) means 
that the animal is engaging in a particular behavior (eating)? Or if 
one animal is near another that it is socially interacting? It is 
important to consider accompanying motions and orientations as 
well to determine if the functional behavior of interest is occurring 
(Yang and Xiao, 2020). Particularly in situations where animals are 
housed at high densities, they may not have the opportunity to avoid 
being near resources or other animals, even if they are not per
forming behaviors often associated with such proximity (Alameer 
et al., 2020). 

3.2. Good data are essential for training and validating ABA 

As important as considering the expertise and engagement of the 

team developing the ABA are the data that are used to train and test the 
approach to detecting behavior. 

Most published research relating to use of ABA with livestock and 
poultry was conducted using small datasets and/or small numbers of 
animals (e.g., as reviewed by Gómez et al. (2021), Li et al. (2020), Li 
et al. (2022), Wurtz et al. (2019). While this means the developers can 
quickly generate a solution that works for that particular data set, this 
also means that it is unlikely the solution will be useful in other contexts 
or on different animals without additional training and testing (Fig. 2, 
Gómez et a., 2021). This is true even if we are thinking about using the 
technology in a similar small scale research study—let alone scaling up 
to a commercial facility where both animal number and density in
crease. Why? Small datasets do not capture the variability needed to 
enable ABA to adapt to variations in individual animals (appearance and 
behavior), environments, or data capture devices (Arulmozhi et al., 
2021; Wurtz et al., 2019). 

Key factors to evaluate with respect to datasets used for ABA 
development include:  

• Over what length of time data were collected, the times of day or 
season; ages, breeds, and sexes of animals and details about group 
sizes (and how long groups were together)  

• Did the developers describe the number of images or length of video 
clips used? Were enough independent videos/images used? It is 
important to note, that there can be many aspects that need to be 
considered in terms of independence including temporally, spatially, 
genetically, etc.  

• Was the number of replicates (animals and pens and farms) sufficient 
to capture a wide range of individual variation in behavior?  

• What was the context? Is it a very specific type of pen or arena? Or 
did they include a large number of physical environments suggesting 
the technology will generalize well to other situations? 

3.3. Manual decoding needs to be rigorous 

Of course, the best sensor data in the world can still lead to devel
opment of a poor tool if the initial decoding of the data that were used to 
train the model was done poorly (Li et al., 2022). Here, decoding refers 
to accurately labeling sensor data, whether it be images, videos, audio 
recordings, or accelerometer data, etc., with respect to behaviors of in
terest. When such decoding is done using human observers, it is often 
described as the ‘gold standard’, which implies that this manual 
decoding is the accurate standard against which we will measure other 

Data Used to Develop ABM Must Capture Variability

Open Images

Fig. 2. Data used to develop ABA must include enough variability to be robust enough to be used in other situations. The top panel illustrates variability in ages and 
genders of domestic chickens (Gallus gallus domesticus) with images (from left to right) of a chick, pullets, a hen, and a rooster. The lower panel illustrates only some of 
the variability that can be present in ages, breeds, group sizes, and housing conditions of Bos taurus and Bos indicus cattle. 
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ways of capturing the data, such as using ABA tools. Unfortunately, 
manual decoding by a human is not always as good as gold. We need to 
critically evaluate the individual that manually decoded the data and the 
process they used to train the ABA to detect the behaviors of interest. 
Ethologists can play a critical role on development teams in constructing 
ethograms and manual decoding approaches and assisting computer 
science and engineering colleagues in better understanding behavior. 

Key aspects to evaluate when examining the standard that was used 
to train the algorithm are:  

• How much data was decoded? 
• Who did the decoding? Were decoders trained? Against what stan

dard? What was the inter- or intra-observer reliability? 
• Was the decoding protocol built using an ethogram or detailed de

scriptions or images/videos of the behavior? Often no formal etho
gram is developed and descriptions of target behaviors in ABA 
publications are limited or inaccurate.  

• Was there a decoding protocol that was followed that guided the 
observer in how to record the data? How did the observer know 
when to consider that a behavior had stopped or started or if a pause 
constituted a stop in the behavior?  

• At what time scale? Is it the right time scale for the approach you are 
using for automation? 

3.4. Datasets must be well documented 

Datasets underlying ABA development that are published must be 
accompanied by the right type of contextual information for others to be 
able to understand how the data were used previously and to enable 
reuse of the dataset (Heil et al., 2021). For example, there need to be 
clear explanations of what the labels mean, including spelling out all 
acronyms. All behaviors should be clearly described using an ethogram 
or pictorial examples so that everyone knows exactly what is meant by 
each behavior. If data are labeled following a systematic, phenomeno
logical approach that takes into account the spatial and temporal scales 
over which behavior occurs, this would facilitate integration of this in
formation into ABA approaches (Zamensky et al., 2021). 

Beyond carefully describing the type of data collected, additional 
information (metadata) describing the context in which the data were 
collected must also be provided (Li et al., 2022). Unfortunately, such 
information is often missing from published studies (as described in 
Wurtz et al., 2019). At a minimum, metadata should include the total 
number of animals observed along with their age, sex, and breed. Many 
other meta-variables can also be useful such as coat color patterns, body 
condition score, weight, parity number, lactation status, and so on 
depending on the species or life stage under observation. Although some 
of these may be hard to record, when available, they should be captured 
when possible and considered when training and/or evaluating models 
for ABA. Additional useful data (as per Wurtz et al., 2019) include the 
objective of the study, a detailed description of housing conditions (e.g., 
lighting type, light-dark schedule, flooring type, pen size, and number of 
animals per pen), type of recording equipment used (e.g., camera, lens, 
and recording device specifications), management and production in
terventions (e.g., medical treatments or mixing animals into new social 
groups), problems or unusual conditions that arose during the experi
ment (e.g., feed or water line failures or fluctuations in temperature), 
recording settings used during data capture (e.g., resolution, frame rate, 
lens type, field of view, and shutter speed), and whether individual 
animals were marked (e.g., ear tags, hair dye, and back marks). Addi
tional information that should accompany datasets previously used for 
developing are the data processing method, the method used to validate 
automatic detection, and performance evaluation results such as accu
racy and precision (Broome et al., 2023; Gómez et al., 2021). 

3.5. ABA performance must be appropriately validated 

In ABA model development, a training-validating-testing data split is 
a common strategy used to divide available data into subsets for model 
training and testing purposes (May et al., 2010; Reitermanova, 2010). A 
training set is typically employed for model development and initial 
fitting, while a validation set is reserved for periodically testing the 
model performance during training and/or for fine tuning the model 
(May et al., 2010). A testing set is often a second hold-out dataset for 
validating the optimal model, which should be independent of the initial 
training-validation dataset. We acknowledge that the 
training-validating-testing split is widely accepted in the computer 
vision domain. However, we need to point out that, in this review, the 
validation strategy focuses on the training-validation split instead, 
where the validation strategy refers to the way to split the available data 
into a training set for the model development purpose and a validation 
set for the model evaluation purpose. 

To demonstrate that ABA does detect behaviors of interest accurately 
and reliably, its performance must be evaluated (Broome et al., 2023). 
This is commonly referred to as ‘validation’. A range of validation 
strategies exist (Gómez et al., 2021; Han et al., 2023b), and, importantly, 
depending on the validation strategy employed, even the best results 
may not mean the ABA will work under different conditions. A typical 
practice in applications using computer vision to detect animal behavior 
(Li et al., 2019; Nasirahmadi et al., 2019; Chen et al., 2020; Liu et al., 
2020; Zhang et al., 2020) is to use a random validation approach to 
evaluate model performance, where the training sets and their corre
sponding validation sets are split at random. 

However, in practical animal farming, there are unavoidable un
derlying structures present in the data that make a random validation 
strategy problematic. For example, temporal (e.g., animals growing over 
time) or spatial (e.g., differences between pens or rooms) dependence 
structures typically exist in data collected from animals. A random data 
split may ignore these dependence structures, leading to biased results 
(Han et al., 2023b; Roberts et al., 2017; Ferreira et al., 2022). Further
more, if the data subsets are split inappropriately, the training and 
validation sets may not be representative of the problem domain (May 
et al., 2010). 

For instance, Han et al. (2023) developed a computer vision-based 
pig agonistic behavior classifier and validated the model using three 
different validation strategies including random validation, block-by- 
time validation (training and validation sets were independent in 
terms of time), and block-by-social-group validation (training and 
validation sets contained different social groups of pigs). They reported 
that compared to random validation, evaluation metrics were substan
tially worse in block-by-time and block-by-social-group validations. In 
another application of machine learning-based cattle grazing activity 
prediction, Coelho Ribeiro et al. (2021) employed leave-one-animal-out 
(LOAO; all data points of given individuals were reserved for validation 
while the remaining data were used for training), leave-one-day-out 
(LODO; all data points of given days were reserved for validation), 
and random validation. The authors reported that LOAO and LODO 
validations yielded lower accuracy compared to random validation, 
implying the overfitting effect holdout. Therefore, the appropriate 
validation strategy needs to be considered given the research question 
and future use of the ABA algorithm rather than just defaulting to the 
typical, but often inappropriate, random validation strategy. The use of 
this strategy is one of the main explanations for why even under seem
ingly similar conditions or with similar species, ABA may perform more 
poorly than expected. 

4. Current ABA solutions have limited utility 

While there seems to be an endless array of exciting ABA being 
developed, much of it is not yet ready for mainstream use by ethologists 
to answer research questions for several reasons. Some of these reasons 
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are related to the technological abilities of the ABA while others are 
related to commercial availability of products that can be used off the 
shelf. However, some reasons have to do with the skill sets of the 
ethologists, who may not be trained to fine tune software, adjust device 
settings, or manipulate the resulting data. 

4.1. ABA solutions are very focused 

Most ABA focuses on one problem or type of behavior at a time, such 
as detecting feeding (Fig. 3; Arulmozhi et al., 2021). This is an excellent 
strategy for developing tools that can be used in research aimed at un
derstanding a specific behavior or when the purpose is to detect one key 
problem. However, it is not good for research or applications where a 
more holistic view is necessary, such as when looking at changes in 
behavioral profiles or time budgets or when trying to evaluate a social 
network that includes both proximity and what the animals are doing 
when they are close to each other. As ethologists, what we usually need 
is ABA with the ability to detect the performance of several (or even 
many) different types of behavioral activities (e.g., Leonard et al., 2019; 
Schmidt et al., 2022) and transitions between behaviors. Further, if we 
want to link behavior to health or welfare outcomes, we also need finer 
resolution. For example, not just recognition that a reduction in activity 
or feeding that indicates illness has occurred, but also the detection of 
other indicators that allow for the diagnosis of a specific problem. 

4.2. Limited ready to use ABA available 

Current ABA solutions have limited capacity to be used without 
modification by your average ethologist who does not possess the ability 
to code. Many ABA programs have been developed for use under labo
ratory conditions (i.e., good lighting, high contrast backgrounds, and 
one or few animals being detected at a time). Even under these condi
tions, these programs still have limitations in their abilities or are not 
intuitive for use without computer science expertise (as described in 
Panadeiro et al. (2021) and Dell et al. (2014) who both reviewed pro
grams with respect to ease of use and robustness). When Wurtz et al. 
(2022) tested four open source laboratory animal tracking programs 
with pairs or small groups of pigs under commercial conditions, they 
encountered difficulties in maintain pig identities related to occlusion of 
the target pig(s) by other pigs or pen features, subtracting the back
ground from the pig(s) of interest, lighting, and field of view. 

As mentioned above, most ABA, including that intended specifically 

for use with livestock and poultry, has been developed with very little 
biological replication (i.e., small numbers of animals, all within the same 
set of pens) and cannot be generalized to other contexts (i.e., different 
breeds/ages animals or other environmental configurations and situa
tions such as light levels (e.g., Sa et al., 2019) and weather conditions). 
This means that even if the source code for an ABA approach is freely 
available, it would require revision of the code to adapt it to a purpose or 
context beyond the one it was created in. 

Finally, as this is a relatively young field, many ABA approaches are 
not at that stage of technological readiness that would allow them to be 
turned into commercial products. Unfortunately, due to the relatively 
small market for commercial ABA, it will not be economically feasible to 
create commercial products for sale or complete with technical support, 
at least not in the near future. 

4.3. ABA has not yet reached its full potential 

Most ABA is not yet as good as humans at adapting to the variability 
of animals they are detecting and observing. Moving from a human 
expert’s qualitative recognition of a behavior into a quantitative 
description used by a machine (distance, angle, speed, pixels) is time- 
consuming and labor intensive (Norton et al., 2019). Behavioral detec
tion is complicated by differences between how the data are collected, 
how ethologists record behavior, and the information machines need for 
training algorithms (Li et al., 2022).  

• Animals, as living beings, have more complexity than is often 
acknowledged or that is present in data sets used to develop ABA (e. 
g., they are complex, individually different, time-varying and dy
namic as described in Berckmans, 2017). In animal experiments data 
collection is constrained by the budget and time available to carry 
out a study. This limits the opportunity to capture the level of vari
ability in animal behavior needed to train accurate and precise ABA 
technology (Gomez et al., 2021; Wurtz et al., 2019).  

• Artificial Intelligence (AI) is not yet as good as humans at adapting to 
the variability of animals they are detecting and observing (e.g., wide 
range of size, shape, color, and coat phenotypes associated with 
different species, life stages or sexes of animals). This may be due in 
part to limitations in supervised learning approaches that require use 
of previous knowledge to train AI. However, unsupervised methods 
(Yang and Xiao, 2020) are likely to speed the process, provided they 
perform well. Unsupervised methods may also be useful in revealing 

Aggression vs. Not Feeding vs. Not Drinking vs. Not

Aggression
Feeding
Drinking

Drinker play
Others…

ABM solu�ons are o�en very (too) focused

Most not yet 
able to detect 
range of 
behaviors

Typically developed to detect one type of behavior or problem

Fig. 3. ABA is often initially developed to detect one or few specific behaviors. This is a useful starting point but to be useful for ethological research or later 
commercial applications, ABA will need to detect and monitor multiple behaviors in a single, combined solution. 
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behavior patterns hidden in messy, complicated real-world data
—either allowing for creation of better models or enabling visuali
zation of systematic features of data sets that were not anticipated 
(McVey et al., 2023).  

• Coding (data annotation) procedures for ABA development and 
ethological studies do not always correspond (e.g., different times 
scales or features used by humans versus machines to detect 
behavior; Leoni et al., 2020). As Zamansky et al. (2021) point out, 
“human understanding and interpretation of behavior is in itself 
subjective and sometimes inconsistent. In fact, there is still no 
agreement among biologists on the definition of ‘behavior’.” To 
better integrate our knowledge into ABA tools, we should to begin by 
using a systematic approach to representing behavioral phenomena 
using language or symbols that allow for multiple scales of resolution 
in time and space (Anderson and Perona, 2014). This approach needs 
to encompass the hierarchy of behavioral elements that builds from a 
moveme (a basic unit of behavior that cannot be further broken 
down, such as step) to an action (which is composed of movemes 
occurring in the same sequence, such as walk (step + step + step)) to 
an activity (a more complex and variable sequence of movemes and 
actions, such as foraging).  

• Processes often used when training AI to detect, identify, and track 
static objects (e.g., car or soda can) do not always translate well 
when applied to living beings, which are much more variable in 
shape, orientation, or capacity for deformation (Egnor and Branson, 
2016; Grondin et al., 2022; Marks et al., 2022). Deep learning stra
tegies such as self-attenuation mechanisms or adaptive spatial 
feature fusion may help overcome issues related to animal bodies 
changing shape as they move or occlusions when they interact with 
each other (Chen et al., 2021). However, a consequence of using 
deep learning is that it is harder to interpret why classifications are 
made because the underlying computations become increasingly 
complex (Broome et al., 2023).  

• All or part of animals’ bodies may be blocked from a sensor (i.e., 
occluded) by parts of housing or other animals, and the animal may 
leave and re-enter the sensor’s field of detection (e.g., outside the 
field-of-view of a camera or range of a tag reader) (Egnor and 
Branson, 2016).  

• Humans can quickly put together information from various senses to 
recognize behaviors and the individuals doing it (e.g., observers can 
listen to and observe pigs simultaneously to detect a coughing pig. 
ABA would require a pen level cough monitor combined with com
puter vision that recognizes a specific pig showing movements 
associated with coughing). Humans combine several types of 
comprehension and memory to recognize behavior (most animal 
behaviors cannot be distinguished from a single image but require 
video (Liu et al., 2020; Yang et al., 2021). In other words, the visual 
recognition of behaviors requires a human’s comprehensive abilities. 
The complex judgments require long-term memory, several reviews, 
and more than one type of human intelligence (induction, deduction, 
and prediction). 

5. Moving forward to achieve useful ABA 

As described above, the options are currently limited for using 
technology to automatically detect animal behaviors—particularly if we 
are looking to use a single solution to detect multiple behaviors across a 
range of environmental context and breeds (or even species). How do we 
get to ready to use ABA that can do what we need it to do, whether for 
purposes of understanding animals better or for creating management 
tools that monitor animals usefully? Can we have ABA that accurately 
identifies and tracks unmarked individual animals—even when housed 
in large, dense groups? Will it be possible to use ABA that identifies and 
records frequencies, durations, intensities, patterns, and variations in all 
the behaviors the animals do across the day? Can ABA be developed that 
localizes where the animal was doing the behavior or who it was 

interacting with? 

5.1. Ethologists need the ability to use ABA 

One approach to getting closer to ABA that is easier for ethologists to 
use is for us to expand our skill sets (Fig. 4). We have long appreciated 
the value of being cross trained in subjects like statistics, genetics, or 
ecology in order to answer more complex research questions. Now we 
need to consider developing strategies to gain proficiency in practical 
computer and data science skills to enhance our ability to work with 
technology and the large, complex data that are generated. 

For example, if we (or our students) had better computer science 
training, we could do some rudimentary coding to adapt ABA for our 
purposes or to trouble shoot when something does not work. If we were 
trained in data science, we could develop some of the modeling, data 
processing approaches, or machine learning algorithms to better capture 
the complexities of behavior that are present the data but often obscured 
by the volume of data we collect from ABA. We would also be more 
comfortable interpreting how well the ABA performed (e.g., sensitivity, 
specificity, and confusion matrices, see Fig. 5) to understand the quality 
of information produced by the ABA. 

Additionally, ABA can also be developed in ways that make it easier 
to use (Fig. 4). In some cases, apps have been, or can be, developed for 
ABA with user-friendly interfaces that can make interaction with the 
technology intuitive. In other cases, it may be possible to develop ABA 
that can simply do what we ask of it without the need for coding skills or 
knowledge of specific jargon. Developments in natural language could 
help here—making it easier for novices to tell the detection software 
what to do using simple verbal directions (Chang et al., 2020; Mishra 
and Kumar, 2020). For example, if a user can simply tell the ABA to 
“detect tail biting and record which pigs are tail biting,” more etholo
gists may be comfortable incorporating ABA into their research. 

Beyond just using AI to create ABA that makes the task of collecting 
behavioral data easier, we should also consider how we might be able to 
use AI to us ask better questions of animal behavior. Questions that are 
not biased by our anthropomorphic perspective or the cultural legacy we 
carry with us from our scientific training and the scientific paradigms we 
have been trained to operate within (Packard et al., 1990). Using 
computational animal behavior analysis approaches that apply AI 
techniques to analysis of ethological data can help us more objectively 
characterize what is occurring (Zamansky et al., 2021) or reveal subtle, 
complex, or longer-term patterns in the data that allow us to better 
understand phenomena such as welfare (Rufener et al., 2018; Gómez 
et al., 2022). 

Train ethologists 
Computer 

science

Coding

Data science

Machine 
learning

Create intui�ve ABM 

User 
interfaces

Apps

Natural 
language

Just ask!

Ethologists need ability to use ABM

Fig. 4. Ethologists need ABA solutions they can use out of the box for their own 
purposes. At present many ABA approaches require continued work with the 
technical developer team to be adapted for new projects or contexts. One so
lution to this (shown on the left) would be for ethologists to be trained in 
computer and data science to enable them to perform their own programming 
to adjust ABA to suit their needs. ABA could also be created in ways that are 
more intuitive for end users to manipulate (shown on the right) through 
graphical user interfaces or the ability to give natural language commands. 
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5.2. Make more datasets available to train ABA 

To achieve robust and generalizable ready to use ABA tools, more 
and bigger datasets of animals of all types are needed, including of 
livestock and poultry, so that we have enough variation in training 
datasets to drive certainty for modeling (Fig. 6; Abd Aziz et al., 2020; 
Broome et al., 2023; Egnor and Branson, 2016; Han et al., 2023a; Li 
et al., 2022). 

Video, images, sound, etc. from many species of livestock, poultry, 
fish, companion animals, etc.  

• Various ages (stages of growth), sexes, groups sizes, breeds, colors  
• Various types of environmental conditions to capture variation in 

dust, occlusion, flooring, lighting, etc. 

Ethologists regularly collect such data as part of experimental studies 
and could contribute these valuable resources toward furthering ABM 
development, and funding agencies and scientific journals increasingly 
require providing others with access to this data (i.e., open data). While 
the size of video data sets in particular has made it prohibitive to directly 

Evalua�ng ABA Performance
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Metrics

True Posi�ve (TP) correct predic�on, behavior of interest detected

True Nega�ve (TN) correct predic�on, behavior of interest not detected

False Posi�ve (FP) incorrect predic�on, behavior of interest was detected (when it truly was not 
present)

False Nega�ve (FN) incorrect predic�on, behavior of interest was not detected (when it truly was 
present)

Performance Measures

Sensi�vity (Recall) The frac�on of all actual occurrences of the behavior 
correctly predicted as posi�ve

TP/(TP+FN)

Specificity The frac�on of actual absences of the behavior 
correctly predicted as nega�ve

TN/(TN+FP)

Precision The frac�on of posi�ve predic�ons that were 
actually true posi�ves 

TP/(TP+FP)

Error rate The frac�on of posi�ve predic�ons that were 
incorrect 

FP/(TP+FP)

Accuracy The frac�on of total observa�ons that were correctly 
predicted (detected)

(TP+TN)/(TP+TN+FP+FN)

Misclassifica�on rate The frac�on total observa�ons that were incorrectly 
predicted (detected)

(FP+FN)/(TP+TN+FP+FN)

‘Stand’ Metrics & Performance Measures

TP = 25
TN = (17+8+6+15) = 46
FP = (4+2) = 6
FN = (3+1) = 4

Sensi�vity = 25/(25+4) = 0.86 
Specificity = 46/(46+6) = 0.88
Precision = 25/(25+6) = 0.81
Accuracy = 0.88
Misclassifica�on rate = 0.12

Example
Confusion Matrix

Fig. 5. Basic metrics and performance measures can be used to evaluate the performance of ABA. Confusion matrixes can be used to visualize the number of times 
behaviors are correctly detected (predicted) by the ABA compared to the actual number of times the behaviors occurred. 

More 
animal data

More 
varia�on

Well 
Annotated

Made 
Public

Need be�er datasets to train ABM

Fig. 6. More and better publicly available animal-based datasets are needed for 
ABA creation. Access to more animal data (images, sounds, etc.) will allow 
developers to train and test ABA to handle more variability, making end 
products more robust across different scientific studies or real-world contexts. 
Datasets that are rigorously decoded and contain sufficient metadata to explain 
how and where data were collected, annotated, and processed will also allow 
others to build new ABA without starting all over. 
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share video files, better compression and increasingly large and inex
pensive online storage options may help overcome this problem. Any 
shared datasets should be annotated and labeled with metadata in ways 
that makes them usable by others beyond their creators (as described 
above). They also need to be shared and managed using rigorous stan
dards so that they are accessible and usable by all. Publicly available 
image datasets, for example, exist for other AI applications and have 
been very useful for things such as facial recognition or autonomous 
driving (Cordts et al., 2016). Unfortunately, most of these datasets have 
relatively few animal images and those that are present are from 
non-livestock species or animals in non-agricultural types of settings. 

In a recent search of the literature, we identified datasets with images 
of animals in agriculture that were publicly available and had been used 
for a computer vision (CV) application (Han et al., 2023b). What we 
found illustrates the limitations of the data that are available to help 
others develop and test ABA.  

1. Most publicly available datasets for livestock concentrated on pig (9) 
and cattle (11), while there was only one publicly available dataset 
each for poultry, horses, sheep, and goats  

2. It is challenging to remain up-to-date on new CV algorithms given 
how rapidly they are being developed and could become the state-of- 
the-art. However, in the ABA domain, it is even more challenging to 
adapt novel algorithms to animal specific application because of the 
lack of publicly available datasets (Han et al., 2023a; Li et al., 2022). 
We found few datasets available for specific CV tasks including 
open-set animal identification, interactive behavior recognition, and 
(object) segmentation—making it hard to quickly test or adapt new 
algorithms for other uses. 

3. Animal-specific parameters are as important as image-specific pa
rameters for ABA datasets. A big dataset must not only contain many 
images, but also be a variable dataset with a large number of animals 
across multiple environmental setups and/or across several produc
tion phases (Yang and Xiao, 2020).  

4. Providing animal-specific metadata along with the images elevates 
the value/re-usability of the dataset. This allows other users to 
quickly understand the detailed conditions under which the data 
were collected so they can evaluate whether it will be appropriate for 
their intended use.  

5. Most reviewed public image datasets have utilized top-down or 
angled-down camera views, and there is a lack of side-view and 
front-view datasets. Further, region of interest (ROI) is an important 
attribute for CV datasets and providing the ROI annotation along 
with the raw image is encouraged, rather than providing only the 
cropped ROI region.  

6. There is a lack of standards/guidelines/protocols specifically 
designed for sharing data for use in CV applications for use with 
animals. FAIR principles (Go Fair, 2023) provide good general 
guidelines for data sharing. However, we need explicit guidance 
related to inclusion of more granular items/details that could be 
useful for ABA or precision livestock farming applications (Yang and 
Xiao, 2020). 

5.3. Make collaboration a goal 

One way we can speed the development of ABA that works for 
monitoring behavior of animals of various species, across a range of real- 
world contexts, and for purposes ranging from basic research to auto
mated application is to work collaboratively. As noted above, develop
ment teams should include experts from a range of backgrounds (Li 
et al., 2022), which may not be present within a single institution. 
Collaborative projects and platforms that allow others to meet and 
interact, learn new techniques from each other, and open doors for 
deeper, longer-term work on funded research or commercial projects 
will be beneficial to ABA development. In addition to growing numbers 
of conferences that focus on automated monitoring of behavior, 

collaborative projects are underway around the globe that engage peo
ple from multiple institutions, host symposia, train personnel, offer 
courses, and sponsor webinars, discussion forums or problem-solving 
challenges. The use of real-world challenges posed by animal scien
tists, veterinarians, and farmers will provide computer scientists and 
engineers the opportunity to develop solutions to user-defined prob
lems. ABA that is grounded in useful outcomes has potential to be used 
for more than detecting behavior and monitoring changes over time, and 
can move to management and intervention including tasks such as 
diagnosis and treatment of disease (Buller et al., 2020; Norton et al., 
2019). As ABA moves from being used in research to animal manage
ment, it is imperative that ethicists, industry stakeholders, government 
representatives, certification organization, consumers, and members of 
the public are also engaged in the development conversation to consider 
the social, economic and environmental context in which such tech
nology will operate (Akinyemi et al., 2023; Dawkins, 2021; Guzhva 
et al., 2021). 

Another element helpful in facilitating development of ABA is the 
generation and sharing of reference datasets for behavior detection, 
including image data, annotations, metadata, and baseline analyses for 
benchmarking. Standards are necessary for the development and sharing 
of such datasets that stipulate inclusion of key pieces of information 
describing the context of the data, such as the technology used to collect 
it, parameters related to the data itself, and details of the animals and 
environment (Li et al., 2022). Once such datasets are available, analyt
ical challenges built around the shared data can also spur discovery of 
solutions. Finally, standards for evaluating ABA results are needed to 
ensure high quality end products—as typical validation and assessment 
approaches are currently over-optimistic when it comes to how robust or 
generalizable an ABA solution will be. 

6. Conclusion 

As we work to realize the promise of ABA (and subsequent precision 
livestock farming technologies) to detect animal behavior, a clear un
derstanding of best practices, access to accurately annotated datasets, 
and networking among ethologists and ABA developers will increase our 
chances for rapid and robust successes. Once we understand common 
pitfalls occurring during ABA development and identify limitations, we 
can construct robust ABA to achieve automated (ultimately even 
continuous and real time) analysis of behavioral data, allowing for more 
detailed or longer-term studies of behaviour on larger numbers of ani
mals than ever before. 
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