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Abstract

This paper explores the interplay between logic-sensitivity and bitstring se-
mantics in the square of opposition. Bitstring semantics is a combinatorial
technique for representing the formulas that appear in a logical diagram,
while logic-sensitivity entails that such a diagram may depend, not only on
the formulas involved, but also on the logic with respect to which they are in-
terpreted. These two topics have already been studied extensively in logical
geometry, and are thus well-understood by themselves. However, the precise
details of their interplay turn out to be far more complicated. In particular,
the paper describes an elegant and natural interaction between bitstrings and
logic-sensitivity, which makes perfect sense when bitstrings are viewed as
purely combinatorial entities. However, when we view bitstrings as semanti-
cally meaningful entities (which is actually the standard perspective, cf. the
term ‘bitstring semantics’!), this interaction does not seem to have a full and
equally natural counterpart. The paper describes some attempts to address
this situation, but all of them are ultimately found wanting. For now, it thus
remains an open problem to capture this interaction between bitstrings and
logic-sensitivity from a semantic (rather than merely a combinatorial) per-
spective.

Keywords: square of opposition, logical geometry, bitstring semantics, logic-
sensitivity, combinatorial bitstrings, semantic bitstrings.

1 Introduction

The square of opposition has a rich and well-documented history in logic, and
nowadays it is also used in various other disciplines that are concerned with rea-
soning, such as linguistics, psychology and computer science [13, 30, 37]. Among
the oldest and most well-known examples are the squares of opposition for the
categorical statements (from assertoric syllogistics) and for the modal expressions,
which can both be traced back to the logical works of Aristotle.1 Over the past
decade, it has become increasingly clear that squares of opposition (and other,
more complex diagrams) can be fruitfully studied as objects of independent inter-
est. This has given rise to the flourishing research program of logical geometry,

1Charting the earliest roots of the assertoric and the modal squares has turned out to be quite
complicated. See [4, 5, 6, 18, 20, 22, 24, 25, 33, 40] for more historical information.
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which today has its own research topics (e.g., informational optimality [37]), its
own mathematical tools and techniques (e.g., Aristotelian isomorphisms [9, 41]),
and also its own internal dynamics, including — as will become clear in this paper
— some challenging open problems.

In this paper we will investigate the interplay between logic-sensitivity and bit-
string semantics in the square of opposition. On the one hand, logic-sensitivity is
the phenomenon that various features of a given diagram (most importantly, its con-
figuration of logical relations) strongly depend, not only on the concrete formulas
involved, but also on the logic with respect to which these formulas are interpreted.
On the other hand, bitstring semantics is a combinatorial technique that allows us
to systematically compute compact representations of the formulas that appear in
a given diagram, thus providing a concrete grip on its logical behavior. The wide-
ranging significance of the present paper should be clear, since logic-sensitivity
and bitstring semantics are not only among the most important research topics in
logical geometry today [8, 13, 15, 38], but are also regularly discussed across the
broad field of philosophical logic [2, 16, 23, 27, 28, 31, 32]. These two topics are
well-understood by themselves, but the precise details of their interaction turn out
to be far more complicated. In particular, even though bitstrings are purely com-
binatorial entities, they are typically also viewed as semantically meaningful —
hence the term ‘bitstring semantics’! However, when logic-sensitivity is taken into
consideration, this close connection between the combinatorial and the semantic
perspective on bitstrings seems to break down.

The paper will therefore make both a negative and a positive contribution. On
the one hand, we will describe an elegant and natural interaction between bit-
strings and logic-sensitivity: by deleting different bit positions (which corresponds
to shifting between different logical systems), we can directly influence the result-
ing diagrams (e.g., their subalternation relations going in different directions). This
makes perfect sense from the combinatorial perspective, but hitherto does not yet
have an equally natural counterpart from the semantic perspective. On the other
hand, we will present some attempts to come up with precisely such a semantic
counterpart. Unfortunately, none of these attempts is entirely successful: those
that arise quite naturally, do not completely match the combinatorial picture, while
those that do fully match the combinatorial picture, feel rather artificial.2 To sum
up: we will show that the square of opposition exhibits an elegant interaction be-
tween bitstring semantics and logic-sensitivity, which can easily be described from
the purely combinatorial perspective on bitstrings; however, we will also argue
that for now, it remains an open problem in logical geometry to come up with a
complete and equally natural description from the semantic perspective.

The paper is organized as follows. Sections 2 and 3 provide some background
on resp. logic-sensitivity and bitstring semantics, in order to keep the paper rela-

2At the moment, we are deliberately being vague in distinguishing between ‘natural’ and ‘artifi-
cial’ attempts to come up with a semantic counterpart to the combinatorial picture. This distinction
will be explained in more detail later in the paper.
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tively self-contained. Sections 4 and 5 present the paper’s key results. Section 4
adopts a purely combinatorial perspective on bitstrings, and goes on to describe an
elegant interaction between bitstrings and logic-sensitivity in the square of oppo-
sition. Section 5 presents four attempts to describe this same interaction from a
semantic perspective, but ultimately argues that this has to stay an open problem
for now. Finally, Section 6 wraps things up, and discusses the broader significance
of the paper’s positive and negative results.

2 Logic-Sensitivity of Aristotelian Diagrams

Logic-sensitivity is a well-known phenomenon in logical geometry [8, 13] and
beyond [2, 28, 31, 32]. In order to properly describe this phenomenon, we first
need to introduce the notions of Aristotelian relations, diagrams and isomorphisms.
This is done in Definitions 1, 2 and 3.

Definition 1. Let S be a logical system with Boolean connectives and a model-
theoretic semantics |=S. The Aristotelian relations for S are defined as follows:
two formulas ϕ,ψ ∈ LS are said to be

S-contradictory iff |=S ¬(ϕ ∧ ψ) and |=S ϕ ∨ ψ,
S-contrary iff |=S ¬(ϕ ∧ ψ) and 6|=S ϕ ∨ ψ,
S-subcontrary iff 6|=S ¬(ϕ ∧ ψ) and |=S ϕ ∨ ψ,
in S-subalternation iff |=S ϕ→ ψ and 6|=S ψ → ϕ.

Furthermore, ϕ and ψ are said to be

S-unconnected iff 6|=S ¬(ϕ ∧ ψ) and 6|=S ϕ ∨ ψ and
6|=S ϕ→ ψ and 6|=S ψ → ϕ.

Note that unconnectedness can be viewed as the absence of any Aristotelian
relation: two (non-equivalent) formulas ϕ and ψ are unconnected iff they do not
stand in a relation of contradiction, contrariety, subcontrariety or subalternation
to each other. Furthermore, note that Definition 1 corresponds exactly with the
traditional, more informal approach to the Aristotelian relations. For example, the
clause |=S ¬(ϕ ∧ ψ) says that there are no S-models M such that M |= ϕ ∧ ψ,
which corresponds to the idea that ϕ and ψ ‘cannot be true together’. Similarly,
the clause 6|= ϕ ∨ ψ corresponds to the idea that ϕ and ψ ‘can be false together’.

It bears emphasizing that the Aristotelian relations hold up to logical equiva-
lence; for example, if ϕ ≡S ϕ

′ and ψ ≡S ψ
′, then ϕ and ψ are S-contrary iff ϕ′

and ψ′ are S-contrary. Consequently, these relations could also be defined over the
Lindenbaum-Tarski algebra of S, which is in line with the recent idea that logical
geometry can be entirely developed in the context of Boolean algebras, rather than
logical systems [12]. However, since this is not the main focus of this paper, we
will simply work with formulas instead of their equivalence classes, while pointing
out that we are working up to logical equivalence whenever salient.

3



p ∧ q ¬p ∧ ¬q

p ∨ q ¬p ∨ ¬q

(a) Classical square of op-
position in CPL.

∀xPx ∀x¬Px

∃xPx ∃x¬Px
(b) Classical square of op-
position in FOL.

p q

¬q ¬p

(c) Degenerate square of
opposition in CPL.

Figure 1: Three examples of Aristotelian diagrams. Full, dashed and dotted lines
visualize contradiction, contrariety and subcontrariety, respectively; arrows visual-
ize subalternations.

Definition 2. Let S be a logical system as in Definition 1, and letF ⊆ LS be a finite
fragment of formulas. An Aristotelian diagram for (F ,S) is a directed vertex- and
edge-labeled graph: its vertices are labeled by the formulas of F , while its edges
are labeled by the Aristotelian relations holding between those elements (relative
to S). Specifically, if the vertices v, w are labeled by resp. ϕ,ψ ∈ LS, which stand
in the Aristotelian relation R (relative to S), then the edge from v to w is labeled
by R.

The labeling of edges by means of Aristotelian relations is usually in accor-
dance with the convention described in the caption of Figure 1, i.e., contrariety
edges are visualized as dashed lines, etc. This figure shows three examples of
Aristotelian diagrams: classical squares of opposition in classical propositional
logic (CPL) and in first-order logic (FOL), and a so-called degenerate square of
opposition in CPL.3

Definition 3. Consider Aristotelian diagrams for (F1, S1) and (F2,S2). An Aris-
totelian isomorphism f : (F1, S1)→ (F2, S2) is a bijection f : F1 → F2 such that
for all ϕ,ψ ∈ F1 and for all Aristotelian relations R, it holds that RS1(ϕ,ψ) iff
RS2(f(ϕ), f(ψ)).

To illustrate Definition 3, note that the two classical squares of opposition in
Figure 1(a) and (b) are isomorphic to each other; a concrete Aristotelian isomor-
phism f from the former to the latter square is given by f(p ∧ q) := ∀xPx,
f(¬p ∧ ¬q) := ∀x¬Px, f(p ∨ q) := ∃xPx and f(¬p ∨ ¬q) := ∃x¬Px. By
contrast, the degenerate square in Figure 1(c) is not isomorphic to either of the
classical squares in Figure 1(a–b).

With these three notions defined, we are now in a position to describe the phe-
nomenon of logic-sensitivity in Aristotelian diagrams. Given a fragment F of for-
mulas coming from some logical language L, it can happen that the Aristotelian

3The latter square is said to be ‘degenerate’ because in comparison to the classical squares, it
lacks a contrariety, a subcontrariety and two subalternations, and thus largely consists of pairwise
unconnected formulas (except for the contradictory pairs on its diagonals).
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relations holding between those formulas, and thus ultimately the Aristotelian dia-
gram for F , strongly depend on the logic with respect to which these formulas are
interpreted. More precisely, given a fragment F ⊆ L and different logical systems
S1 and S2 (which share the same language L), we have a case of logic-sensitivity
iff the identity function idF is not an Aristotelian isomorphism between (F , S1)
and (F ,S2). We can distinguish between two types of cases of logic-sensitivity
[13]: in the ‘blatant’ cases, there simply does not exist an Aristotelian isomor-
phism between (F ,S1) and (F ,S2) whatsoever, while in the more ‘subtle’ cases,
such an Aristotelian isomorphism does exist, but idF itself is not an Aristotelian
isomorphism between (F , S1) and (F ,S2).

For a concrete example, take the fragment Fm := {�p,�¬p,♦p,♦¬p}, com-
ing from the basic modal language L�, and consider the normal modal logics KD
and K. It is easy to show that �p and �¬p are KD-contrary, but K-unconnected.
In general, we find that the Aristotelian diagram for (Fm,KD) is a classical square
of opposition, as shown in Figure 2(a), while that for for (Fm,K) is a degenerate
square of opposition, as shown in Figure 2(b).4 These two diagrams are not Aris-
totelian isomorphic to each other, thus yielding a blatant case of logic-sensitivity.

However, we can push this even further. Consider the same fragment Fm,
but now relative to the modal logic KF. This logic is obtained by adding the axiom
♦p→ �p to K, and is sound and complete with respect to the class of Kripke mod-
els 〈W,R, V 〉whose accessibility relationR is a partial function, i.e., for all worlds
w, v, u, if wRv and wRu, then v = u.5 It is easy to show that the Aristotelian di-
agram for (Fm,KF) is, once again, a classical square of opposition, as shown in
Figure 2(c). This diagram is not isomorphic to the degenerate square for (Fm,K)
in Figure 2(b), thus yielding another blatant case of logic-sensitivity. However, this
diagram is isomorphic to the classical square for (Fm,KD) in Figure 2(a).6 Nev-
ertheless, the identity function idFm is not an Aristotelian isomorphism between
(Fm,KD) and (Fm,KF),7 thus yielding a more subtle case of logic-sensitivity.

4The well-known problem of existential import in syllogistics can also be formulated in this
way. Consider the fragment Fcat consisting of the four categorical statements ∀x(Sx → Px),
∀x(Sx → ¬Px), ∃x(Sx ∧ Px) and ∃x(Sx ∧ ¬Px), as well as the logics FOL (which lacks
existential import, i.e., it is allowed that I(S) = ∅) and SYL (which has existential import, i.e.,
it is required that I(S) 6= ∅). Then the Aristotelian diagram for (Fcat, SYL) is a classical square,
while the diagram for (Fcat,FOL) is a degenerate square [15]. This way of understanding existential
import is quite common in (the historiography of) logic [1, 21, 29, 35].

5Philosophically speaking, KF is not very useful when the modalities are interpreted statically
(e.g., as alethic, deontic or doxastic operators), but it comes about very naturally when describing the
behavior of dynamic modalities [7, 17].

6A concrete Aristotelian isomorphism f : (Fm,KF) → (Fm,KD) is defined by f(�p) := ♦p,
f(�¬p) := ♦¬p, f(♦p) := �p and f(♦¬p) := �¬p. Note that clearly f 6= idFm .

7For example, upon comparing Figure 2(a) and (c), we observe that �p and �¬p are KD-contrary,
but KF-subcontrary; similarly, there is a KD-subalternation from �p to ♦p, which flips into a KF-
subalternation from ♦p to �p.
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�p �¬p

♦p ♦¬p

(a) Classical square for
(Fm,KD).

�p �¬p

♦p ♦¬p

(b) Degenerate square for
(Fm,K).

�p �¬p

♦p ♦¬p

(c) Classical square for
(Fm,KF).

Figure 2: Aristotelian diagrams for Fm, relative to three modal logics.

3 Bitstring Semantics

The technique of bitstring semantics was initially developed within the specific
context of logical geometry [38], but in recent years it has started to find appli-
cations across the disciplines of logic [9, 15, 16, 27], philosophy [10, 11, 23] and
linguistics [34, 39]. In general, bitstring semantics allows us to systematically
compute combinatorial representations of a given number of propositions, thus
providing a concrete grip on their logical behavior. We will now summarize the
main features of bitstring semantics; more details can be found in [15].

Definition 4. Consider a logical system S and fragment F as in Definition 2.
The partition induced by F in S, denoted ΠS(F), is defined as follows:

ΠS(F) := {
∧
ϕ∈F
±ϕ |

∧
ϕ∈F
±ϕ is S-consistent},

where +ϕ = ϕ and−ϕ = ¬ϕ. The elements of ΠS(F) are called anchor formulas.
The Boolean closure of F in S, denoted BS(F), is defined to be the smallest set
C ⊆ LS such that (i) F ⊆ C and (ii) C is closed under the Boolean operations
(up to logical equivalence), i.e., for all ϕ,ψ ∈ C, there exist α, β ∈ C such that
α ≡S ϕ ∧ ψ and β ≡S ¬ϕ.

The set ΠS(F) is called a ‘partition’, because the anchor formulas are (i) jointly
exhaustive, that is, |=S

∨
ΠS(F), and (ii) mutually exclusive, that is, |=S ¬(α∧β)

for distinct α, β ∈ ΠS(F). The number of anchor formulas, |ΠS(F)|, is called the
‘Boolean complexity’ of F (relative to S). Although anchor formulas are defined
to be conjunctions of (negated) formulas from F , in concrete applications they can
often be simplified to much shorter, S-equivalent formulas. For a simple example,
note that if we start from the fragment F∗ := {p ∧ q, p}, we can compute that
ΠCPL(F∗) = {α1 := p ∧ q, α2 := p ∧ ¬q, α3 := ¬p}.8

8The full calculation looks as follows: α1 := (p ∧ q) ∧ p ≡CPL p ∧ q, α2 := ¬(p ∧ q) ∧ p ≡CPL

p ∧ ¬q and α3 := ¬(p ∧ q) ∧ ¬p ≡CPL ¬p. The fourth conjunction that we should consider, i.e.,
(p ∧ q) ∧ ¬p, is CPL-inconsistent, and thus does not get included in ΠCPL(F∗).
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It can be shown that every formula in BS(F) is logically equivalent to a dis-
junction of anchor formulas: for every ϕ ∈ BS(F) we have

ϕ ≡S

∨
{α ∈ ΠS(F) | |=S α→ ϕ}.

The bitstring semantics βFS : BS(F) → {0, 1}|ΠS(F)| maps every formula ϕ ∈
BS(F) onto its bitstring representation βFS (ϕ), which is a sequence of |ΠS(F)| bits
that keeps track of which anchor formulas enter into this disjunction. In particular,
the bitstring βFS (ϕ) will have the value 1 in its ith bit position iff |=S αi → ϕ.
Continuing our example aboutF∗ from above, note that p ≡CPL (p∧q)∨(p∧¬q) =
α1 ∨ α2, and thus we represent p by the bitstring 110; formally: βF

∗
CPL(p) = 110.

The Aristotelian relations and unconnectedness can straightforwardly be gen-
eralized to bitstrings. In particular, meets and joins of bitstrings are calculated in a
bitwise fashion, and two bitstrings b1, b2 ∈ {0, 1}n are said to be

n-contradictory iff b1 ∧ b2 = 0 · · · 0 and b1 ∨ b2 = 1 · · · 1,
n-contrary iff b1 ∧ b2 = 0 · · · 0 and b1 ∨ b2 6= 1 · · · 1,
n-subcontrary iff b1 ∧ b2 6= 0 · · · 0 and b1 ∨ b2 = 1 · · · 1,
in n-subalternation iff b1 ∧ b2 = b1 and b1 ∧ b2 6= b2.

Furthermore, b1 and b2 are said to be

n-unconnected iff b1 ∧ b2 6= 0 · · · 0 and b1 ∨ b2 6= 1 · · · 1 and
b1 ∧ b2 6= b1 and b1 ∧ b2 6= b2.

It can be shown that βFS is a Boolean isomorphism between the Boolean al-
gebras BS(F) and {0, 1}|ΠS(F)|, and therefore also preserves all the Aristotelian
relations [19]. Returning one more time to our example about F∗, we observe that
the formulas p ∧ q and ¬p are CPL-contrary, while their bitstring representations
βF
∗

CPL(p ∧ q) = 100 and βF
∗

CPL(¬p) = 001 are 3-contrary.
For a more substantial example, we again turn to the modal fragment Fm =

{�p,�¬p,♦p,♦¬p} that was introduced in Section 2. One can compute that

• ΠK(Fm) = {�p ∧ ♦p, ♦p ∧ ♦¬p, �¬p ∧ ♦¬p, �p ∧�¬p},

• ΠKD(Fm) = {�p, ♦p ∧ ♦¬p, �¬p},

• ΠKF(Fm) = {♦p, ♦¬p, �p ∧�¬p}.

If we compare ΠK(Fm) with ΠKD(Fm), we notice that the first and third an-
chor formulas of ΠK(Fm) have been simplified (viz., from �p∧♦p to �p and from
�¬p∧♦¬p to �¬p, respectively), while its fourth anchor formula (viz., �p∧�¬p)
is KD-inconsistent, and is thus absent from ΠKD(Fm) altogether.9 In terms of bit-
string representations, this means that the KD-bitstrings can be viewed as the result

9Partitions are unordered sets, so strictly speaking, it does not make sense to talk about the ‘first’,
‘second’, etc. anchor formulas of a partition. This can easily be solved by turning the unordered set
into an ordered tuple. However, for ease of formulation, we will simply refer to the anchor formulas
in the order in which they are listed when we write down the partition. For example, in light of how
ΠK(Fm) was written down in the main text, we will unequivocally call �p ∧ ♦p the first anchor
formula of this partition, ♦p ∧ ♦¬p its second anchor formula, and so on.
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100
�p

001
�¬p

♦p
110

♦¬p
011

(a) Classical square for
(Fm,KD).

1001
�p

0011
�¬p

♦p
1100

♦¬p
0110

(b) Degenerate square for
(Fm,K).

101
�p

011
�¬p

♦p
100

♦¬p
010

(c) Classical square for
(Fm,KF).

Figure 3: Aristotelian diagrams for Fm, relative to three modal logics, including
bitstring representations.

of systematically deleting the fourth bit from the K-bitstrings. For example, since
�p ≡K (�p ∧ ♦p) ∨ (�p ∧ �¬p) and �p ≡KD �p, we have βFm

K (�p) = 1001

and βFm
KD (�p) = 100; in general, compare the bitstring representations of Fm rel-

ative to K and KD in Figure 3(a–b). In a completely analogous fashion, the second
anchor formula of ΠK(Fm) (viz., ♦p∧♦¬p) is KF-inconsistent, and hence the KF-
bitstrings can be viewed as the result of systematically deleting the second bit from
the K-bitstrings; for example, we have βFm

K (�p) = 1001 and βFm
KF (�p) = 101.

Again, in general, compare the bitstring representations of Fm relative to K and
KF in Figure 3(b–c).

These observations match with some well-known results from logical geome-
try [9, 15], viz., that degenerate and classical squares of opposition have Boolean
complexities 4 and 3, respectively (i.e., representing them requires bitstrings of
length at least 4 and at least 3, respectively). Recalling the topic of logic-sensitivity
from Section 2, we thus observe that the underlying logical system not only has an
impact on the type of Aristotelian diagram (viz., degenerate square vs. classical
square), but also on Boolean complexity (viz., 4 vs. 3).

4 Purely Combinatorial Bitstrings

Until now (both in this paper and, more generally, in the entire research program
of logical geometry), bitstrings have been treated as thoroughly semantic entities.
Each bitstring is seen as the representation of some formula from some fragment
relative to some logical system; for example, 100 = βF

∗
CPL(p ∧ q) and 001 =

βF
∗

CPL(¬p). Bitstrings capture key semantic properties of the formulas that they rep-
resent, such as their Aristotelian relations; for example, the 3-contrariety between
100 and 001 corresponds to the CPL-contrariety between p ∧ q and ¬p. Finally,
even bitstring operations like deleting the fourth bit position are semantically mo-
tivated; for example, in terms of the fourth anchor formula �p ∧�¬p ∈ ΠK(Fm)
being K-consistent but KD-inconsistent — formally: βFm

K (�p∧�¬p) = 0001 but
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βFm
KD (�p ∧�¬p) = 000.

In this section, we will temporarily take a step back, and treat bitstrings as
purely combinatorial entities. We will thus no longer view them as representing
some formula from some logical fragment relative to some logical system. From
this purely combinatorial perspective, we can still study Aristotelian relations be-
tween bitstrings; for example, it still holds that 100 and 001 are 3-contrary to each
other; the only difference is that this 3-contrariety is no longer viewed as cor-
responding to some contrariety between formulas that are represented by these
bitstrings. Similarly, we can still study bitstring operations like d4 : {0, 1}4 →
{0, 1}3, i.e., deleting the fourth bit position, although this is no longer viewed as
corresponding to an anchor formula being consistent in one logic but inconsistent
in another one.

Let us now have another look at some of our earlier observations, from this
purely combinatorial perspective. Consider the three Aristotelian diagrams in Fig-
ure 3, but focus exclusively on the bitstrings, while ignoring the formulas that
they (used to) represent. We observe that the classical squares in Figure 3(a) and
(c) have bitstrings of length 3, which are obtained by systematically deleting the
fourth, resp. the second bit position from the bitstrings of length 4 in the degen-
erate square in Figure 3(b). From our current, purely combinatorial perspective
on bitstrings, however, all bit positions are equally important, since we are only
interested in bitstrings up to a permutation of their bit positions. Since there is
nothing special about the second or the fourth bit position, the following question
thus naturally arises: what happens if we delete the first or third bit position from
the length-4 bitstrings in the degenerate square in Figure 3(b)?

The situation is completely described in Figure 4. Part (a) of this figure shows
the same degenerate square with bitstrings of length 4 as in Figure 3(b). Each dele-
tion of a bit position yields bitstrings of length 3, which make up a classical square,
cf. Figure 4(b–e). In particular, every (deletion of a) bit position corresponds to a
different direction of the subalternation arrows in the resulting classical square:

• Deleting the first bit position yields a classical square with the subalterna-
tions going from left to right; cf. Figure 4(b).

• Deleting the second bit position yields a classical square with the subalter-
nations going upwards; cf. Figure 4(c). — Also recall Figure 3(c).

• Deleting the third bit position yields a classical square with the subalterna-
tions going from right to left; cf. Figure 4(d).

• Deleting the fourth bit position yields a classical square with the subalterna-
tions going downwards; cf. Figure 4(e). — Also recall Figure 3(a).

We thus observe a systematic correspondence between some logical/algebraic
features of Aristotelian diagrams (viz., the bit position that gets deleted) and some

9



1001 0011

1100 0110

(a) Degenerate square.

001 011

100 110

(b) Class. square
after deleting bit
position 1.

101 011

100 010

(c) Class. square
after deleting bit
position 2.

101 001

110 010

(d) Class. square
after deleting bit
position 3.

100 001

110 011

(e) Class. square
after deleting bit
position 4.

Figure 4: Five Aristotelian diagrams with purely combinatorial bitstrings.

of their visual/geometric properties (viz., the direction of the subalternation ar-
rows). This observation fits nicely in a broader pattern of logical-geometrical cor-
respondences in Aristotelian diagrams, which are studied extensively in logical ge-
ometry [14, 36], and which ultimately even explain the very name of this research
program. Another point of interest concerns the link with the informativity of log-
ical relations [37]. For example, consider the pair of 4-unconnected bitstrings
(1001, 0011) at the upper edge of the degenerate square in Figure 4(a). Delet-
ing the first, second, third or fourth bit position yields resp. the 3-left-implication
(001, 011),10 the 3-subcontrariety (101, 011), the 3-right-implication (101, 001)
and the 3-contrariety (100, 001) at the upper edges of the four classical squares in
Figure 4(b–e). This corresponds with the facts that (i) left-implication, subcontra-
riety, right-implication and contrariety are precisely the four relations that are one
level above unconnectedness in the informativity ordering of logical relations [37,
Figure 7], and that (ii) deleting one bit position can trigger an increase of at most
one level in the informativity of the resulting relations.11

The way we have described the correspondence between deleting bit positions
and the direction of the resulting subalternations is, in a sense, conventional. After
all, if we permute the four bit positions in the bitstrings that appear in the degener-

10‘Left-implication’ [37] corresponds to the relation that is called ‘subalternation’ in this paper,
while ‘right-implication’ corresponds to the converse of this relation. Furthermore, our relation of
unconnectedness corresponds to the intersection of what are called ‘non-contradiction’ and ‘non-
implication’ in [37]; also cf. [38, Figure 2].

11While bitstring semantics and the informativity ordering of logical relations are both well-
studied in logical geometry [15, 37], their interplay has hitherto not yet been systematically explored.
The observations made here, regarding bit deletions and increasing informativity, constitute a modest
first step in that direction.
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ate square in Figure 4(a), then deleting, say, the first bit position might no longer
correspond to the subalternations going from left to right, as in Figure 4(b), but
rather to them going upwards, downwards or from right to left. Nevertheless, as
soon as a specific ordering on the bit positions is fixed, it is always the case that we
find a one-to-one correspondence between deleting the four bit positions and the
four directions of the resulting subalternations. There is another, equally harmless,
element of conventionality in the way we have described the correspondence thus
far, viz., in terms of the direction of the resulting subalternations. We could equally
well have told this story in terms of the other resulting Aristotelian relations. For
example, we could also say that deleting the first, second, third or fourth bit po-
sition yields a classical square with a contrariety at resp. its left, lower, right and
upper edge, as can be seen in Figure 4(b–e).

5 An Open Problem and Some Attempted Solutions

In the previous section we described a natural correspondence between deleting bit
positions and the direction of the resulting subalternations, but we did so from a
purely combinatorial perspective on bitstrings. However, as we have emphasized
throughout this paper, bitstrings are standardly viewed as thoroughly semantic en-
tities, which immediately suggests the question: to what extent can this combina-
torial story be re-told from the semantic perspective on bitstrings? We formulate
this as the following open problem:

Open Problem 1. Find a language L, a fragment F = {ϕ,ψ,¬ϕ,¬ψ} ⊆ L, and
five logical systems S0, S1, S2, S3, S4 for that same language L, such that:

• The Aristotelian diagram for (F , S0) is a degenerate square; cf. Figure 5(a).

• The Aristotelian diagram for (F , S1) is a classical square, with a subalterna-
tion arrow from ϕ to ψ, i.e., going from left to right; cf. Figure 5(b).

• The Aristotelian diagram for (F , S2) is a classical square, with a subalterna-
tion arrow from ¬ϕ to ψ, i.e., going upwards; cf. Figure 5(c).

• The Aristotelian diagram for (F , S3) is a classical square, with a subalterna-
tion arrow from ¬ϕ to ¬ψ, i.e., going from right to left; cf. Figure 5(d).

• The Aristotelian diagram for (F , S4) is a classical square, with a subalterna-
tion arrow from ϕ to ¬ψ, i.e., going downwards; cf. Figure 5(e).

Ideally, we would also like the logical systems S0, S1, S2, S3 and S4 to be
independently motivated, i.e., they should already have been studied because of
their mathematical interest (e.g., K as the minimal normal modal logic) and/or
philosophical applications (e.g., KD as a system of deontic or doxastic logic). We
are thus less interested in ad hoc, artificially constructed logical systems, whose
sole purpose would be to provide a solution to Open Problem 1.
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ϕ ψ

¬ψ ¬ϕ

(a) Degenerate square for
(F ,S0).

ϕ ψ

¬ψ ¬ϕ

(b) Class. square
for (F ,S1).

ϕ ψ

¬ψ ¬ϕ

(c) Class. square
for (F ,S2).

ϕ ψ

¬ψ ¬ϕ

(d) Class. square
for (F ,S3).

ϕ ψ

¬ψ ¬ϕ

(e) Class. square
for (F ,S4).

Figure 5: Five Aristotelian diagrams for our open problem.

Note that the degenerate square for (F ,S0) is not Aristotelian isomorphic to
any of the classical squares for (F , Sn), for 1 ≤ n ≤ 4. These constitute four
blatant cases of logic-sensitivity. Furthermore, note that for any 1 ≤ m < n ≤ 4,
the diagrams for (F ,Sm) and (F ,Sn) are both classical squares of opposition (and
are thus Aristotelian isomorphic to each other), but the identity function idF is
not an Aristotelian isomorphism between (F , Sm) and (F ,Sn). This yields six
additional, more subtle cases of logic-sensitivity.

Furthermore, note that if we manage to solve Open Problem 1, we will indeed
have succeeded in ‘re-telling the story’ from the previous section, but now in terms
of formulas and logical systems (i.e., in terms of semantic bitstrings), rather than
in terms of purely combinatorial bitstrings. After all, for such a fragment F ⊆ L
and logical systems S0, S1, S2, S3, S4, we have:

• ΠS0(F) = {ϕ ∧ ¬ψ, ¬ϕ ∧ ¬ψ, ¬ϕ ∧ ψ, ϕ ∧ ψ}
Since ϕ ≡S0 (ϕ ∧ ¬ψ) ∨ (ϕ ∧ ψ), we have βFS0(ϕ) = 1001. Similarly, we
find that βFS0(ψ) = 0011, βFS0(¬ψ) = 1100 and βFS0(¬ϕ) = 0110. Compare
the formulas in Figure 5(a) with the bitstrings in Figure 4(a).

• ΠS1(F) = {¬ψ, ¬ϕ ∧ ψ, ϕ}
If we compare ΠS1(F) with ΠS0(F), we find that the second and fourth
anchor formulas have been simplified (viz., from ¬ϕ ∧ ¬ψ to ¬ψ and from
ϕ ∧ ψ to ϕ, respectively), while its first anchor formula (viz., ϕ ∧ ¬ψ) is
S1-inconsistent, and is thus absent from ΠS1(F) altogether.
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An easy computation yields βFS1(ϕ) = 001, βFS1(ψ) = 011, βFS1(¬ψ) = 100

and βFS1(¬ϕ) = 110. Compare Figure 5(b) with Figure 4(b).

• ΠS2(F) = {¬ψ, ¬ϕ, ϕ ∧ ψ}
If we compare ΠS2(F) with ΠS0(F), we find that the first and third anchor
formulas have been simplified (viz., from ϕ ∧ ¬ψ to ¬ψ and from ¬ϕ ∧ ψ
to ¬ϕ, respectively), while its second anchor formula (viz., ¬ϕ ∧ ¬ψ) is
S2-inconsistent, and is thus absent from ΠS2(F) altogether.

An easy computation yields βFS2(ϕ) = 101, βFS2(ψ) = 011, βFS2(¬ψ) = 100

and βFS2(¬ϕ) = 010. Compare Figure 5(c) with Figure 4(c).

• ΠS3(F) = {ϕ ∧ ¬ψ, ¬ϕ, ψ}
If we compare ΠS3(F) with ΠS0(F), we find that the second and fourth
anchor formulas have been simplified (viz., from ¬ϕ ∧ ¬ψ to ¬ϕ and from
ϕ ∧ ψ to ψ, respectively), while its third anchor formula (viz., ¬ϕ ∧ ψ) is
S3-inconsistent, and is thus absent from ΠS3(F) altogether.

An easy computation yields βFS3(ϕ) = 101, βFS3(ψ) = 001, βFS3(¬ψ) = 110

and βFS3(¬ϕ) = 010. Compare Figure 5(d) with Figure 4(d).

• ΠS4(F) = {ϕ, ¬ϕ ∧ ¬ψ, ψ}
If we compare ΠS4(F) with ΠS0(F), we find that the first and third anchor
formulas have been simplified (viz., from ϕ∧¬ψ to ϕ and from ¬ϕ∧ψ to ψ,
respectively), while its fourth anchor formula (viz., ϕ∧ψ) is S4-inconsistent,
and is thus absent from ΠS4(F) altogether.

An easy computation yields βFS4(ϕ) = 100, βFS4(ψ) = 001, βFS4(¬ψ) = 110

and βFS4(¬ϕ) = 011. Compare Figure 5(e) with Figure 4(e).

We now turn to the fundamental question: can Open Problem 1 be solved?
The initial prospects look quite good. As a first attempt, note that the concrete
example that we discussed in Sections 2 and 3 constitutes a very natural, albeit
partial solution of Open Problem 1: we can take L to be the basic modal language
L�, F to be the fragment Fm = {�p,�¬p,♦p,♦¬p} and S0, S2 and S4 to be
the normal modal logics K, KF and KD, respectively. The observations made in
Sections 2 and 3 (as summarized in Figure 3) show that this language, fragment and
logical systems indeed have the properties that they are required to have. However,
this only constitutes a partial solution to Open Problem 1, because we did not
specify concrete logical systems for S1 and S3.

We can somewhat improve on this situation. For our second attempt to solve
Open Problem 1, we continue to work in the basic modal language L�, but now
we take F to be the fragment F∗m := {λ, µ,¬µ,¬λ}, where λ := (�p→ ��p)∧
(¬�p → �¬�p) and µ := ♦> ∧ (�p → ��p), and we take S0, S1, S2 and S3

to be the normal modal logics K, KD, K4 and K5, respectively. We can now prove
the following:
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• The Aristotelian diagram for (F , S0) = (F∗m,K) is a degenerate square, and

ΠK(F∗m) = {λ ∧ ¬µ, ¬λ ∧ ¬µ, ¬λ ∧ µ, λ ∧ µ}, where

λ ∧ ¬µ ≡K �⊥,

¬λ ∧ ¬µ ≡K �p ∧ ¬��p,

¬λ ∧ µ ≡K (�p→ ��p) ∧ ¬�p ∧ ¬�¬�p and

λ ∧ µ ≡K ♦> ∧ (�p→ ��p) ∧ (¬�p→ �¬�p).

• The Aristotelian diagram for (F ,S1) = (F∗m,KD) is a classical square, with
a subalternation from λ to µ, and ΠKD(F∗m) = {¬λ∧¬µ, ¬λ∧µ, λ∧µ}.
In comparison with ΠK(F∗m), note that the first anchor formula (viz., λ ∧
¬µ ≡K �⊥) is KD-inconsistent, and is thus absent from ΠKD(F∗m).

• The Aristotelian diagram for (F , S2) = (F∗m,K4) is a classical square, with
a subalternation from ¬λ to µ and ΠK4(F∗m) = {λ∧¬µ, ¬λ∧µ, λ∧µ}.
In comparison with ΠK(F∗m), note that the second anchor formula (viz., ¬λ∧
¬µ ≡K �p ∧ ¬��p) is K4-inconsistent, and is thus absent from ΠK4(F∗m).

• The Aristotelian diagram for (F ,S3) = (F∗m,K5) is a classical square, with
a subalternation from¬λ to¬µ, and ΠK5(F∗m) = {λ∧¬µ, ¬λ∧¬µ, λ∧µ}.
In comparison with ΠK(F∗m), note that the third anchor formula (viz., ¬λ ∧
µ ≡K (�p→ ��p)∧¬�p∧¬�¬�p) is K5-inconsistent, and is thus absent
from ΠK5(F∗m).

The logics K, KD, K4 and K5 are well-motivated systems of normal modal
logic. However, the fragmentF∗m looks a bit messy, especially in comparison to the
elegant fragment Fm that we dealt with in the first attempted solution. Finally, and
most importantly, this second attempt still does not constitute a complete solution
to Open Problem 1, since we have not specified a concrete logical system for S4.

We now describe a third attempt to solve Open Problem 1, which will be a bit
more involved. First of all, we introduce the language L◦•��, which has, next to the
usual Boolean connectives, four unary connectives ◦, •, � and �. It is thus defined
by the following BNF:

ϕ ::= p | ϕ ∧ ϕ | ¬ϕ | ◦ ϕ | • ϕ | �ϕ | �ϕ

The other Boolean connectives and the duals of � and � are defined as usual; in
particular, we have ♦ϕ := ¬�¬ϕ and �ϕ := ¬�¬ϕ. We will work with the
fragment F◦•��, which is defined as follows:

F◦•�� := {��p,� ◦ �p,♦� • p,♦ ◦ � • p}

Finally, S∗0, S∗1, S∗2, S∗3 and S∗4 are systems of bimodal logic, which are interpreted
on Kripke models 〈W,R�, R�, V 〉. The modal operators � and � are interpreted
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as usual, in terms of the relations R� and R�, respectively. The full semantics of
these logics is summarized by the following table (for now, ignore the row for S∗5
at the bottom of the table):

◦ � • �
S∗0 ¬ K id id
S∗1 id id ¬ KD
S∗2 ¬ KF id id
S∗3 id id ¬ KF
S∗4 ¬ KD id id
S∗5 id id ¬ K

For all ? ∈ {◦,�, •,�} and all S ∈ {S∗0,S∗1, S∗2, S∗3,S∗4, S∗5}, the cell
?

S id
in the table means that ? is the identity connective in S, i.e., ?ϕ ≡S ϕ. In case ? is
a modal operator, � or �, such an id-cell moreover entails that �ϕ ≡S ϕ ≡S ♦ϕ

or �ϕ ≡S ϕ ≡S �ϕ, respectively. Furthermore, for ? ∈ {◦, •}, the cell
?

S ¬
means that ? is a classical negation in S, i.e., ?ϕ ≡S ¬ϕ. Finally, for ? ∈ {�,�},

the cell
?

S K
means that ? is a K-type modal operator in S (and similarly for

KD and KF).
For example, the first row of this table states that S∗0 is interpreted on Kripke

models M = 〈W,R�, R�, V 〉 such that R� is a binary relation on W , R� is the
identity relation on W (i.e., wR�v iff w = v, for all w, v ∈W ), and the semantics
for ◦ and • is: M, w |= ◦ϕ iff M, w 6|= ϕ, while M, w |= •ϕ iff M, w |= ϕ.
Similarly, the second row of the table states that S∗1 is interpreted on Kripke models
M = 〈W,R�, R�, V 〉 such that R� is the identity relation on W , R� is a serial
relation on W , and the semantics for ◦ and • is: M, w |= ◦ϕ iff M, w |= ϕ, while
M, w |= •ϕ iff M, w 6|= ϕ. The semantics of the remaining logical systems is
completely analogous.

Note that in none of the logics considered here, ◦ and • are really necessary,
in the sense that every formula containing ◦ or • can be rewritten as an equivalent
formula that does not contain ◦ or •. However, this equivalent formula will look
different in the different logical systems. For example, ◦p ≡S ¬p and •p ≡S p for
S ∈ {S∗0,S∗2,S∗4}, while ◦p ≡S p and •p ≡S ¬p for S ∈ {S∗1, S∗3, S∗5}.

We can now prove the following:

• In S∗0, the fragment F◦•�� simplifies to {�p,�¬p,♦p,♦¬p}, and since � is
a K-modality in S∗0, the Aristotelian diagram for (F◦•��, S

∗
0) is a degenerate

square. The partition ΠS0
∗(F◦•��) contains the following anchor formulas:

– ��p ∧ ♦� • p ≡S∗0
�p ∧ ♦p

– ♦� • p ∧ ♦ ◦ � • p ≡S∗0
♦p ∧ ♦¬p
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– � ◦ �p ∧ ♦ ◦ � • p ≡S∗0
�¬p ∧ ♦¬p

– ��p ∧� ◦ �p ≡S∗0
�p ∧�¬p

• In S∗1, the fragment F◦•�� simplifies to {�p,�p,�¬p,�¬p}, and since � is
a KD-modality in S∗1, the Aristotelian diagram for (F◦•��, S

∗
1) is a classical

square, with a subalternation from �p to �p, i.e., (before simplification)
from ��p to �◦�p. The partition ΠS∗1

(F◦•��) contains the following anchor
formulas:

– ♦� • p ∧ ♦ ◦ � • p ≡S∗1
�¬p ∧ �¬p ≡S∗1

�¬p
– � ◦ �p ∧ ♦ ◦ � • p ≡S∗1

�p ∧ �¬p
– ��p ∧� ◦ �p ≡S∗1

�p ∧ �p ≡S∗1
�p

In comparison with ΠS∗0
(F◦•��), note that the first anchor formula (viz., ��p∧

♦�•p ≡S∗1
�p∧�¬p) is S∗1-inconsistent, and is thus absent from ΠS∗1

(F◦•��).

• In S∗2, the fragment F◦•�� simplifies to {�p,�¬p,♦p,♦¬p}, and since � is
a KF-modality in S∗2, the Aristotelian diagram for (F◦•��,S

∗
2) is a classical

square, with a subalternation from ♦p to �p, i.e., (before simplification)
from ♦�•p to ��p. The partition ΠS∗2

(F◦•��) contains the following anchor
formulas:

– ��p ∧ ♦� • p ≡S∗2
�p ∧ ♦p ≡S∗2

♦p

– � ◦ �p ∧ ♦ ◦ � • p ≡S∗2
�¬p ∧ ♦¬p ≡S∗2

♦¬p
– ��p ∧� ◦ �p ≡S∗2

�p ∧�¬p

In comparison with ΠS∗0
(F◦•��), note that the second anchor formula (viz.,

♦�•p∧♦◦�•p ≡S∗2
♦p∧♦¬p) is S∗2-inconsistent, and is thus absent from

ΠS∗2
(F◦•��).

• In S∗3, the fragment F◦•�� simplifies to {�p,�p,�¬p,�¬p}, and since � is
a KF-modality in S∗3, the Aristotelian diagram for (F◦•��,S

∗
3) is a classical

square, with a subalternation from �p to �p, i.e., (before simplification)
from �◦�p to ��p. The partition ΠS∗3

(F◦•��) contains the following anchor
formulas:

– ��p ∧ ♦� • p ≡S∗3
�p ∧�¬p

– ♦� • p ∧ ♦ ◦ � • p ≡S∗3
�¬p ∧ �¬p ≡S∗3

�¬p
– ��p ∧� ◦ �p ≡S∗3

�p ∧ �p ≡S∗3
�p

In comparison with ΠS∗0
(F◦•��), note that the third anchor formula (viz., � ◦

�p ∧ ♦ ◦ � • p ≡S∗3
�p ∧ �¬p) is S∗3-inconsistent, and is thus absent from

ΠS∗3
(F◦•��).
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• In S∗4, the fragment F◦•�� simplifies to {�p,�¬p,♦p,♦¬p}, and since � is
a KD-modality in S∗4, the Aristotelian diagram for (F◦•��, S

∗
4) is a classical

square, with a subalternation from �p to ♦p, i.e., (before simplification)
from ��p to ♦�•p. The partition ΠS∗4

(F◦•��) contains the following anchor
formulas:

– ��p ∧ ♦� • p ≡S∗4
�p ∧ ♦p ≡S∗4

�p

– ♦� • p ∧ ♦ ◦ � • p ≡S∗4
♦p ∧ ♦¬p

– � ◦ �p ∧ ♦ ◦ � • p ≡S∗4
�¬p ∧ ♦¬p ≡S∗4

�¬p

In comparison with ΠS∗0
(F◦•��), note that the fourth anchor formula (viz.,

��p ∧ � ◦ �p ≡S∗4
�p ∧ �¬p) is S∗4-inconsistent, and is thus absent from

ΠS∗4
(F◦•��).

Taken together, these considerations show that 〈L◦•��,F◦•��,S
∗
0, S
∗
1,S
∗
2,S
∗
3, S
∗
4〉

constitutes a complete solution to Open Problem 1. Furthermore, continuing along
these lines, we easily obtain another solution. In particular, consider one final
system, S∗5, which was already included in the overview table before. As one can
see in that table, S∗5 is the exact ‘mirror image’ of S∗0. In this new logic S∗5, the
fragment F◦•�� simplifies to {�p,�¬p,�p,�¬p}, and since � is a K-modality in
S∗5, the Aristotelian diagram for (F◦•��,S

∗
5) is a degenerate square. Replacing S∗0

with S∗5, it is easy to check that 〈L◦•��,F◦•��,S
∗
5, S
∗
1,S
∗
2, S
∗
3, S
∗
4〉 constitutes another

complete solution to Open Problem 1.
These two solutions are said to be complete, because they specify a concrete

logical system for every ‘variable’ S0, S1, S2 S3 and S4 that occurs in the statement
of Open Problem 1. However, neither of these solutions is fully satisfactory, be-
cause the concrete logics that they are based on, i.e., S∗0 to S∗5, are strongly ad hoc.
These logics have been specifically constructed to provide a complete solution to
Open Problem 1, but seem to lack any independent philosophical or mathematical
motivation. To appreciate the highly artificial nature of these logics, note how the
connectives ◦ and • switch back and forth between behaving like classical negation
in some of the logics involved, and behaving like the identity connective in others.

We conclude our discussion by emphasizing that the introduction of S∗5 is also
motivated by considerations regarding deductive strength. Consider the standard
way of comparing logics’ deductive strength: given two logics S, S′ over the same
language L, we say that S′ is at least as strong as S (notation: S ≤ S′) iff for all
ϕ ∈ L: if |=S ϕ then |=S′ ϕ. This also yields notions of ‘strictly stronger than’
and ‘incomparability’: S < S′ iff S ≤ S′ but not S′ ≤ S, while S || S′ iff neither
S ≤ S′ nor S′ ≤ S. In the first two (partial) solutions to Open Problem 1, S0 is
strictly weaker than all other logics, which are themselves mutually incomparable.
For example, in the first partial solution, we have K < KF, K < KD and KF || KD,
as is visualized Figure 6.12 In the third (complete) solution, this is no longer the

12Similarly, in the second partial solution, we have K < KD, K < K4, K < K5 and
KD || K4 || K5 || KD.
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KF KD

K

Figure 6: Ordering of K, KF and KD, according to their deductive strength.

S∗2 S∗4

S∗0

S∗1 S∗3

S∗5

Figure 7: Ordering of the logics S∗0 to S∗5, according to their deductive strength.

case. In particular, although S∗2 and S∗4 are strictly stronger than S∗0 and S∗m || S∗n for
all distinct m,n ∈ {1, 2, 3, 4}, the logics S∗1 and S∗3 are not strictly stronger than
S∗0, but rather incomparable with it. By introducing the logic S∗5, we can restore
this to a more symmetric situation, as is visualized in Figure 7. In particular, we
now have S∗i < S∗j , S∗i < S∗k and S∗j || S∗k for (i, j, k) ∈ {(0, 2, 4), (5, 1, 3)}, and
furthermore S∗m || S∗n for all m ∈ {0, 2, 4} and n ∈ {1, 3, 5}. In this sense, the
third and fourth solution together can be seen as the result of ‘reduplicating’ the
highly natural (but partial) first solution (based on K, KF and KD), namely once
for the �-modality and once for the �-modality.

6 Conclusion

In this paper we have explored the interface between logic-sensitivity and bitstring
semantics in the square of opposition. Although these two topics have already
been studied extensively in logical geometry, their interaction continues to present
us with challenging problems. In particular, a story that was very easy to tell in
terms of ‘purely combinatorial bitstrings’, turns out to be much harder to tell in
terms of formulas and logical systems, i.e., in terms of ‘semantic bitstrings’. We
have therefore presented this as an open problem, and discussed four attempted
solutions 〈L,F ,S0, S1,S2,S3, S4〉, which are summarized here:

L F S0 S1 S2 S3 S4

attempt 1 L� Fm K — KF — KD
attempt 2 L� F∗m K KD K4 K5 —
attempt 3 L◦•�� F◦•�� S∗0 S∗1 S∗2 S∗3 S∗4
attempt 4 L◦•�� F◦•�� S∗5 S∗1 S∗2 S∗3 S∗4
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Unfortunately, none of these attempts is entirely successful: the first two are
based on well-motivated logics such as K, KD and K4, but they are incomplete;
by contrast, the last two are complete, but they are based on the logics S∗0 to S∗5,
which are ad hoc and feel rather artificial. A fully satisfactory solution, which is
both complete and natural, has not been found until now, and thus has to be left for
future research. In ongoing work, we are also studying similar interactions between
logic-sensitivity and bitstring semantics in other Aristotelian diagrams beyond the
square, e.g., in various hexagons of opposition.

These results will steadily gain a broader relevance, as the literature on logic-
sensitivity and bitstring semantics continues to grow larger and more diverse. For
example, there is some preliminary work that applies bitstring semantics to various
topological interpretations of the Region Connection Calculus (RCC) [3, 26, 42].
Here, too, it will be crucial to investigate how the resulting bitstrings depend on the
precise axioms of the underlying topological interpretation. This investigation is
still in its infancy, but since it concerns the interaction between bitstring semantics
and logic-sensitivity, it will clearly have to take into account the insights presented
in this paper.
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