
[WORKING PAPER] A prosopographical software package

Tom Bellens1,⋆

1KU Leuven Public Governance Institute

Abstract. In this working paper, we present an automated software package. This means that two pieces of
software are presented: on the one hand, a software package for prosopographic projects and, on the other
hand, the software that generates these packages. The software package will consist of a PostgreSQL database,
a Spring Boot back-end and an Angular front-end and aims to simplify data collection within research teams
and make it more precise. To make as few assumptions as possible about the shape of the data, each software
package is generated based on a JSON in which the target data is modelled. This working paper presented at
Politicologenetmaal 2023 in Leuven is a first attempt and serves mainly to gather feedback on the idea.

DISCLAIMER

This is a working paper. Please do not cite.

1 Introduction

In this paper, we present a semi-automated software tool
for prosopographical research. The tool is semi-automated
in the sense that the underlying source code is re-generated
for each prosopographial project based on the user’s needs.
Before discussing how the generation of the source code
works, we will very briefly go over what exactly proso-
pography is and why we think a software tool could be
useful in the first place.

2 Prosopography and earlier software
packages

Prosopography is an archaic-sounding term for a very sim-
ple idea: it is the study of the biographical backgrounds
of a well-defined group, usually an elite. The method
has its origins in 19th-century German historiography
and focused on the political elites of different historical
periods. Theodor Mommsen’s prosopography is typically
considered the first prosopography and listed all position
holders of the Roman Empire. The first prosopographies
were little more than a list of names and associated
background information such as year and place of birth,
relatives and important positions. It was not until the sec-
ond half of the 20th century that prosopography was lifted
from its purely descriptive role into a more explanatory
task. Lawrence Stone envisaged a prosopography that
would serve to explain political action, to capture ideo-
logical and cultural change, and to describe and analyse
the structure of society [1]. In the years that followed,

⋆e-mail: tom.bellens@kuleuven.be

prosopography regained ground not only in historiography
but also in sociology and political science. Especially in
French-language literature, prosopography is still used to
-through the study of elite trajectories- reveal something
about society [2]. In the English-language literature,
career trajectories are often studied for similar reasons al-
beit not necessarily under the heading of "prosopography".

Despite the various purposes for which prosopogra-
phy or the study of career trajectories is employed, the
method, or at least its first step, remains essentially just
the same as Theodor Mommsen’s first prosopography: :
compiling a list of individuals belonging to a well-defined
political elite and collecting as much biographical data
on them as possible. Unfortunately, we noticed in many
cases that the means of collecting these data is not very
different from 19th century practices either. We find that
data collection on elites often faces the same problems.
First, there are problems with the sources themselves.
In many cases, governments or companies are not too
eager to share data on their elites or manage their data
in a poor way. Thus, data on political elites is a scarce
resource. Unfortunately, in the cases where academia
does manage to get its hands on data, we find that here
too, the management of this data often leaves much to be
desired. Data management often consists of preparing an
excel file in which one or more researchers work together
that is stored on a local machine. When the researcher
finishes the study and leaves the institution, the data
often disappears along with it. At best, when the data
does survive, it must be discoverable by other researchers
and the coding of the variables must be sufficiently
documented to be useful. Attempts have been made in the
past to counter these problems with software solutions.
[3] name some attempts to encompass prosopography
with software packages but conclude that most of these
solutions make too many assumptions about the shape of



the data and are therefore not widely used.

The software package we will put together attempts
to solve the problems mentioned above but will try to
do so in a way that makes no assumptions about the
shape of the data. Specifically, the source code of the
software package is generated each time using a JSON
file that defines the shape of the data. The generated soft-
ware package then will always consist of a PostgreSQL
database, a Java Spring Boot back-end / REST service and
an Angular front-end in which data points can be created,
accessed, updated and deleted. First, we will delve a little
deeper into what the standard software package would
look like. Then we will discuss how JSON files can be
used to form the source code of the software package.
Finally, we briefly discuss how these JSON files can be
used to arrive at a prosopographical repository.

3 The default software package

The final prosopographic software package should a) save
time and precision b) promote collaboration between staff
on the same prosopographical project and c) be flexible to
the needs of the specific project. As just mentioned, three
components will be generated for each software package.
A PostgreSQL database, a back-end in Spring Boot and
a front-end in Angular. This architecture was chosen
because it allows end-users without any knowledge of
Java, Javascript or SQL to have a fully finished and usable
software package, but at the same time allows end-users
who do have some knowledge on one of these frameworks
to easily adapt the source code to their own needs. That
would be possible in several ways. An end-user could
use the generated PostgreSQL and Spring Boot code and
then use it as a REST-service from their own application
/ front-end. Another end-user could use the generated
back-end as a starting point and implement their own
functionalities to transform the data or connect to one of
their own REST-services.

However, a user who does not modify anything in
the source code and deploys it as is will already find a
useful data processing package. The basic functionality
on the Angular front-end consists of the data input forms,
the overview of the data and the edit tab, whose fields
are each generated from the initial JSON file (see next
section). It also offers functionality to map and export
existing .csv files to the software package and function-
ality that automatically scrapes Linkedin CVs and adds
them to the data. Both manual data entry and input via
Excel or Linkedin take into account pre-existing data.
If a particular Linkedin CV contains data on a person
who may have been added previously, it is automatically
suggested to check the old entry and merge it if desired.
Finally, the Spring-Boot / Angular architecture also offers
the advantage that there are already very many boiler-plate
libraries that make collaboration between different users
easy. There will always be an "administrator" who can
create and add new users and determine which operations
these users can or cannot perform. A log will also be kept

Figure 1. An example JSON file

of the actions so that it will always be clear who added,
edited or deleted which data points at what time. Any
action in this log can be reversed at any time.

4 JSON-based source code generation

As mentioned earlier, flexibility was a feature central to
the design of this software package. Recognising that
prosopographical data can take many different forms,
software packages are always generated based on the data
envisioned by the end user. Specifically, this means that
the end user sets up one (imaginary) prosopographical
individual in a JSON file, passes this JSON file to our
compiler 1 and it generates the PostgreSQL, Spring Boot
and Angular source code which can then be deployed. We
briefly discuss each step below.

First of all, a JSON file needs to be created that
models one individual that will serve as a template for all
individuals that will be collected in the prosopography.
This means that all the variables the researcher wants
to collect must be present in this file. For instance,
if the end-user wants to do a prosopographical study
on ministers, they may be interested in the following
variables: name, first name, date of birth, party, and their
ministerial record. Figure 1 is an example on what such
a JSON file might look like. Please note that the variable
names (in camelCase) are important for generating the
source code but the contents of the fields are less so. In
this example, we entered Belgian minister Petra De Sutter
but we could just as easily have entered another minister
or a completely fictitious one. Giving the fields a content
is only important for the compiler to know which kind
of variable needs to be added (String, Integer, List,...).
Secondly, the variable "ministerialRecord" should be
referenced. It contains another nested JSON object. This
is one of the reasons why we chose to have the data design

1for lack of a better name we called it ProsopoComp for now



done in JSON. It is an accessible format that can also be
used by non-technical users that at the same time allows
for hierarchical data shaping (as prosopographical data
often is).

The compiler then, is a relatively simple Python script
that converts the JSON file to the required source code via
a few intermediate steps. The first task of the compiler is
linearisation of the hierarchical data. This means mapping
the data to a sequence of instructions that respects the
shape of the data. Specifically, depending on how many
nested JSON objects there are, one or more .pit files are
created. These .pit files contain information about the
variables in the JSON objects and can be read by both the
script and humans as a sequential representation of the
data. Such a sequence could look like this:

"CREATE minister;ADD str name;ADD str
firstName;ADD* ministerialRecord ministe-
rialRecord;TERMINATE".

Once the data is linearised with the .pit files as a result, the
compiler enters the second phase: the generation of the
PostgreSQL, Spring Boot and Angular code. This second
phase varies depending on the framework for which the
code is to be generated but is always a mapping from a .pit
file to the target language. Broadly speaking, it could be
said that the above example could be mapped from .pit to
Java Spring Boot by first creating a Java class "Minister",
and creating the fields "String name", "String firstName",
etc... in it. Then the constructors and getters and setters
can be created for these variables. This class would then
be stored in a file Minister.java. For a Spring Boot REST
service, a data-transfer object (DTO) must then of course
also be created for this minister class and functions must
be provided in the Controller that can receive and emit
such a DTO but again, automation based on the .pit file
is not an overly complex task. Similar examples could be
given for the generation of PostgreSQL and Angular code.

Figure 2. JSON-based source code generation

5 A repository for all prosopographical
projects?

This brief summary of the software we are trying to create
is not yet complete and possibly even unclear. So we wel-
come any feedback, both technical and in terms of func-
tionality. Despite the title, this paper is in reality about two
pieces of software. On the one hand, the "default" software
package that will eventually be used by the researcher(s)
and, on the other hand, the compiler that generates these
software packages. The aim is to make prosopographical
data collection more efficient, sustainable and to simplify
collaboration. This way of working is only one of many
ways to achieve this but we think that our architecture,
both that of the compiler based on JSON files and that of
the default software package, meets as many of the pre-
defined requirements as possible. Finally, in our wildest
dreams, there is an additional feature that emerges from
this way of working. In case several researchers carry out
their prosopographic research with one of our generated
software packages, all the JSON files used for generation
can be kept in a central repository. These files can then
additionally be used as meta-documentation by users on
other prosopographical projects. In this way, our software
package would promote collaboration not only within re-
search teams but also between different teams working on
a prosopographical project.

Acknowledgements

Supported by FWO (grant number G054121N).

References

[1] L. Stone, Daedalus 100, 46 (1971)
[2] P.M. Delpu, Hypothèses 18, 263 (2015)
[3] K. Keats-Rohan, Prosopography (SAGE Publications

Ltd, London, 2019), ISBN 978-1473965003


