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There is a broad consensus that both learning and reasoning are essential to achieve
true (artificial) intelligence [[L]. This explains why the quest for neuro-symbolic artificial
intelligence (NeSy) [2} 3, 4} [S]], which combines high-level reasoning with low-level
perception, is high on the research agenda.

The two most prominent frameworks for reasoning are logic and probability. While
in the past, they were studied by separate communities in artificial intelligence, a signif-
icant number of researchers has been working towards their integration, and aiming at
combining probability with logic and statistical learning; cf. the areas of statistical rela-
tional artificial intelligence (StarAl) [6, [7] and probabilistic logic programming [8]. The
reasoning abilities of statistical relational artificial intelligence approaches are comple-
mentary to the strong pattern-recognition abilities of deep learning.

Generally, neuro-symbolic systems integrate logic with neural networks. Probabil-
ity theory has already been integrated with logic (cf. statistical relational AI) and neural
networks. It therefore makes sense to consider the integration of logic, neural networks
and probabilities. This effectively leads to an integration of probabilistic logics with neu-
ral networks and opens up new abilities. Furthermore, although at first sight, including
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probability may appear as a complication, it actually greatly simplifies the integration of
neural networks with logic. The reason for this is that probabilistic frameworks provide
clear optimisation criteria, such as the likelihood of the training examples. Real-valued
probabilistic quantities are also well-suited for gradient-based training procedures, as
opposed to their discrete logic counterparts.

In this chapter, we first look at the three base paradigms (i.e. neural, logical and
probabilistic methods) separately. Then, we look at the well established integrations,
NeSy and StarAl. Next, we consider the integration of all three paradigms as Neural
Probabilistic Logic Programming, and exemplify it with the DeepProbLog framework.
Finally, we discuss the limitations of the state of the art, and consider future directions
based on the parallels between StarAl and NeSy.

7.1. Base paradigms

We first consider the base elements of the integrations: neural, logical and probabilistic
methods.

7.1.1. Logical methods

We now introduce the necessary background on the logical methods for this chapter. For
more details, we refer to [9]]. In this chapter, we focus on the subset of logic based on
definite clauses. More formally, a definite clause is an expression of the form s < b; A
... Ab, where h and the b; are logical atoms of the form p(t,...,1,), with p a predicate of
arity m and the #; terms. Terms then are either constants, logical variables or structured
terms of the form f(t1,...,5;) with f a functor and the #; terms. Definite clauses for
which n = 0 are called facts. By using the standard Prolog notation (i.e. commas for
conjunctions and : — for the implication), the following definite clause states that the
alarm goes off if there is an earthquake:

alarm :- earthquake.

A logic program consists of a set of definite clauses. We show an encoding of the
alarm example from [10] in Figure [T} In this example, your alarm can be triggered by
either a burglar or an earthquake. If either of your neighbours, John and Mary, are home,
the will call you if they hear the alarm. This program is propositional since every atom
in the head or the body of the clauses has arity zero.

By introducing relations, we move from a propositional logic program to a first-order
logic program. First-order programs are much more compact since definite clauses with
variables behave as templates for many instantiations of the same clause. In Figure
we show a first order variant of the alarm program from Figure [I| where we compactly
describe the behavior of multiple individuals (i.e. mary or john) using relations (i.e.
at_home) and variables.

A substitution 6 is an expression of the form {V; =1,,...,V,, =1, } where the V; are
different variables and the #; terms. Applying a substitution 8 to an expression e (term
or clause) yields the instantiated expression ¢ where all variables V; in e have been



# Facts
burglary.
earthquake.
at_home_mary.
at_home_john.

# Clauses

alarm :- earthquake.

alarm :- burglary.

calls_mary :- alarm,at_home_mary.
calls_john :- alarm,at_home_john.

Figure 1. A propositional logic program for the alarm example.

burglary.
earthquake.
at_home (mary) .
at_home (john) .

alarm :- earthquake.
alarm :- burglary.
calls(X) :- alarm,at_home(X).

Figure 2. A first-order program for the alarm example.

replaced by their corresponding terms #; in e. For example, applying the substitution
0 = {X =mary} to the term g = calls(X) result in the substitution g6 = calls(mary).

The Herbrand base of a set of clauses is the set of all ground atoms that can be
constructed using the predicates, functors and constants occurring in the clauses. Subsets
of the Herbrand base are called Herbrand interpretations. A Herbrand interpretation is a
model of a definite clause & <— b A ... A b, if for every substitution 6 such that ;0 A
...Ab,0 is in the interpretation, /0 is in the interpretation as well. An interpretation is a
model of a definite clause program if it is a model of all its definite clauses. Finally, the
semantics of a definite clause program is given by its unique Least Herbrand Model, i.e.
the smallest model with respect to the set inclusion. This means that the Least Herbrand
Model contains only the set of all ground facts that are logically entailed by the program.

Example 7.1.1 (Least Herbrand Model). The Least Herbrand Model of the program in
Figure 2]is:

{burglary,earthquake,at_home(mary),at_home(john),

alarm,calls(mary),calls(john)}

This definition of the semantics only holds for programs without negation. The nega-
tion of an atom in logic programming (denoted as \+ p(f1, ..., %)) is defined as negation



as failure, meaning that the negation of an atom is true if the atom cannot be derived
from the program. Programs with negation are not guaranteed to have a unique minimal
Herbrand model. Several ways to define a canonical model have been studied (e.g. the
well-founded semantics [[11]).

7.1.2. Probabilistic methods

Probabilistic graphical models [12] are graphical models that compactly represent a
(joint) probability distribution P(Xj,...,X,) over n discrete or continuous random vari-
ables X, ..., X,. The key idea is that the joint probability distribution factorizes over some
factors f' specified over subsets X' of the variables {X,...,X,}.

P(X,... )—*fl( D) % fi(X) 0

where Z is a normalization constant for P to represent a probability distribution.

The random variables correspond to the nodes in the graphical structure, and the
factorization is determined by the edges in the graph. There are two main classes of
probabilistic graphical models: Bayesian networks, where the underlying graph structure
is a directed acyclic graph, and Markov random fields, where the graph is undirected. In
this chapter, we will focus on Bayesian networks as we will establish several parallels
with definite clause logic programs.

In a Bayesian network, we define a factor fi(X;|parents(X;)) for each of the
nodes X;, where parents(X;) denotes the set of random variables that are a parent
of X; in the graph. The factors correspond to the conditional probability distribu-
tions P(X;|parents(X;)). In Figure [3| the burglary alarm Bayesian network [10] is
shown. Here, for example, the random variable alarm is associated to the factor
P(alarm|burglary,earthquake). All the random variables are Boolean, i.e. they can
take one of the values {true, false} or {1,0}. For Bayesian networks, because one works
with conditional probability distributions as factors, the joint distribution in Equation|[T]is
normalized and Z = 1. A Bayesian network represents a set of conditional independence
assumptions: a variable is independent of the other variables that are not its descendants
in the graph given its parents.

uake

Figure 3. The alarm Bayesian network.



Table 1. Conditional probability distribution P(alarm|/burglary, earthquake) as a Conditional Probability
Table, cf. Figure

burglary earthquake ‘ P(alarm|burglary,earthquake)

true true (0.95,0.05)
true false (0.95,0.05)
false true (0.29,0.71)
false false (0.001,0.999)

Probabilistic graphical models are an expressive formalism for learning and rea-
soning under uncertainty. However, inference in such models (e.g. computing specific
marginal probabilities), is in general intractable as it is #P-complete. Nevertheless, there
has been a lot of progress in devising various types of approximate and exact inference
algorithms [[13}[14}[15].

7.1.3. Neural methods

Neural networks [L16] excel in machine learning tasks where the input data is high-
dimensional and feature engineering is hard, for instance for analysing images, video or
audio, or natural language. The key to their success lies in the combination of two prin-
ciples. First, they are exceptionally good in automatically extracting features from raw
inputs (e.g., pixel images, or textual data). To this end, neural networks learn multiple
layers of nonlinear functions that project the input data onto relatively low-dimensional
latent spaces. The latent representation of an input pattern is usually called an embed-
ding. Second, the use of advanced gradient based optimization techniques [17] allows
these nonlinear models to be efficiently trained.

In classification tasks, neural networks typically learn a conditional probability dis-
tribution P(Y|X), where Y is a random variable representing the class and X is the input
pattern. As an example, a neural network can model the probability P(Y = 1|X =) that
the MNIST image represents the digit 1. It is worth observing that such neural network
models are quite similar to a conditional probability table, such as the one in Table[T] as
they both represent conditional probability distributions over a set of random variables.
However, it would be impractical to represent conditional distributions over complex in-
puts (e.g. images) using a table, as there would be a different row for any possible raw
input, e.g., for every possible 28 x 28 gray scale image. Neural networks can thus be seen
as compact approximations of such tables. The approximation is possible since it is as-
sumed that, in high dimensional spaces, similar inputs have similar output distributions.
This analogy allows for an intuitive understanding of the integration of neural networks
with probabilistic reasoning models by replacing conditional probability tables by neural
network building blocks (cf. Section[7.3.7).

Although deep learning has been successfully applied to a wide variety of domains,
there is a growing awareness of the limitations of deep learning [18]. Deep learning re-
quires large amounts of (the right kind of) data to train the network, it provides neither
justifications nor explanations, and the models are black-boxes that can neither be under-
stood nor modified by domain experts. Although there have been attempts to demonstrate
reasoning-like behaviour with deep learning [19} 20} 21], their current reasoning abili-
ties are nowhere close to what is possible with typical high-level reasoning approaches.
Even when neural networks are used to perform reasoning, they can fail badly when they
have to generalize to unseen reasoning patterns [22]]. This failure is for example observed



when more reasoning steps are necessary during testing than during training. These types
of generalizations are evaluated in datasets such as the CLUTRR dataset [23]].

7.2. Integration

Let us now address the question as to how these different paradigms can be integrated in
order to support both high-level reasoning and low-level perception.

We start by discussing how the field of Statistical Relational Artificial Intelligence
(StarAl) [6] integrates the logic and probabilistic paradigms. This is then exemplified
using the ProbLog [24] framework. Next, we will introduce how neuro-symbolic Al
integrates sub-symbolic and symbolic systems.

7.2.1. Statistical Relational AI

First-order logic (programming), cf. Section extends propositional logic by intro-
ducing relations. Bayesian networks and probability theory, cf. Section[7.1.2]can be seen
as extending propositional logic with uncertainty. In fact, one can reason on the proba-
bility of a certain proposition given another one. Statistical Relational Artificial Intelli-
gence (StarAl) brings the best of both worlds by extending first-order logic (program-
ming) with uncertainty, or, equivalently, by extending probability theory with relations.
One key idea, due to Poole [25]] and Sato [26] is to unify the notion of a logical atom and
a random variable.

StarAl models allow defining templated probabilistic models thanks to the use of
first order clauses with variables. The parameters of these models can be trained on a spe-
cific set of individuals (e.g. mary and john)) and then they can be used to make predic-
tions on new individuals (e.g. bob) . Indeed, one of the main properties of StarAl mod-
els is that they can be defined before knowing which individuals exist, by only reason-
ing about their potential relationships. Thus the same model can be applied to different
populations and the learned regularities about the individuals in the training set can be
transferred to new individuals. We will exemplify the domain of StarAl with ProbLog, a
probabilistic extension of Prolog.

ProbLog ProbLog [24] lifts Prolog to a probabilistic model through the introduction of
one concept: the probabilistic fact. Whereas a fact in Prolog is deterministically true, a
probabilistic fact is of the form

pf

where f is a logical atom and p a probability. This allows us to encode the burglary alarm
Bayesian network as a ProbLog program:

0.1::burglary. alarm:—earthquake.
0.5::at_home(mary). alarm:-burglary.
0.2::earthquake. calls(X):—alarm,at_home(X).

0.4::at_home(john).



A ProbLog program consists of a set of probabilistic facts .%# and a set of definite
clauses Z. Each ground instance f0 of a probabilistic fact f corresponds to an indepen-
dent Boolean random variable that is true with probability p and false with probability
1 — p. Let us denote the set of all ground instances of probabilistic facts in .% as .7 @.
Every subset F C .7 @ defines a possible world wp = F U{hB|Z UF = h0 and h6 is
ground}, that is, the world wg is the least Herbrand model of the logic program obtained
by adding F to the set of clauses %, i.e., the set of definite clauses. For instance

W{burglary,at_home(mary)} = {burglary,at_home(mary)}U{alarm,calls(mary)}

To keep the presentation simple, we focus on the case of finitely many ground proba-

bilistic facts, but note that the semantics is also well-defined for the countably infinite
case. The probability P(wp) of such a possible world wg is given by the product of the
probabilities of the truth values of the probabilistic facts:

Pwr)=[1p [I (1-p) 2

fi€F  ficeFO\F
For instance,
P(W{burglary,at_home(mary)}) =0.1x0.5x(1-0.2) x(1-0.4) =0.024

The probability of a ground atom g, also called success probability of g, is then defined
as the sum of the probabilities of all worlds containing ¢, i.e.,

Plq)= Y  P(wr) 3)

FC.ZO:qewp

For ease of modeling, ProbLog supports non-ground probabilistic facts as a short-
cut for introducing a set of ground probabilistic facts, as well as annotated disjunctions
(ADs), which are expressions of the form

prihyy s ppiihy = by, by,
where the p; are probabilities that sum to at most one, the 4; are atoms, and the b; are
literals. The meaning of an AD is that whenever all b; hold, the AD causes one of the
heads £; to be true, or none of them with probability 1 —}_ p;. Note that several of the
h; may be true at the same time if they also appear as heads of other definite clauses or
ADs. This is convenient to model choices between different categorical variables, e.g.
different severities of the earthquake:

0.4::no_earthquake ; 0.4::mild_earthquake ; 0.2::severe_earthquake.

or without explicitly representing the event of no earthquake:

0.4::mild_earthquake ; 0.2::severe_earthquake.

in which neither mild_earthquake nor severe_earthquake will be true with prob-
ability 0.4. Annotated disjunctions do not change the expressivity of ProbLog, as they



can alternatively be modeled through independent facts and definite clauses; cf. [8] for
technical details.

To obtain some intuitions about the probabilistic logic program representation, it
is instructive to see how they can represent Bayesian networks. Consider Bayesian net-
works involving only Boolean random variables. Each node without a parent then corre-
sponds to a probabilistic fact. Observe that both nodes without any parents in a Bayesian
network and probabilistic facts in ProbLog are marginally independent. Furthermore,
each entry in a conditional probability table can be mapped onto an annotated disjunc-
tion. Assume the parents of the node n are x and y. Then there would be four annotated
disjunctions of the form p;::n:—x,,y,, where x, and y, are the positive or negative lit-
erals corresponding to x, resp. y. This shows that annotated disjunctions can be used to
specify conditional probability tables. For example, consider the node alarm in Figure
and its parents burglary and earthquake. The CPT in Table[I]can be encoded with
the following ProbLog program:

0.95 :: alarm :- burglary, earthquake.

0.95 :: alarm :- burglary, \+ earthquake.
0.29 :: alarm :- \+ burglary, earthquake.
0.001 :: alarm :- \+ burglary, \+ earthquake.

7.2.2. Neuro-symbolic Al

We now discuss how neuro-symbolic Al (NeSy) systems differ from each other along
two important aspects.

7.2.2.1. Two types of neuro-symbolic Al

Neuro-symbolic Al integrates neural networks with symbolic representations, often us-
ing symbolic logic. There are at least two ways of approaching such an integration. First,
there are the neural networks approaches that use logic as a regularizer. Second, there are
the logical approaches that are extended with neural constructs.

Neural networks with logical aspects. These methods extend neural network models
with logical aspects. One way to do this is to define logical constraints on their output.
These constraints are not hard constraints (i.e. they are not guaranteed to hold). Rather,
they are only used during the training, where the degree in which these constraints are
not satisfied serves as an additional loss term. Thus the logic acts as a kind of regular-
ization function during the optimization. The effect is that the logic behaves as a kind
of soft constraint on the outputs, which enforces the neural methods to make predictions
that adhere better to the logic. This formalism effectively encodes the logic into the pa-
rameters of the network, so that even when the logic is not explicitly present, the model
should still satisfy the logical constraints more than models that were trained without
these constraints. Examples of such systems include Semantic Based Regularization [27]]
and the Semantic Loss function [28]].

Another way to extend neural networks with logical aspects is to encode the logic
into the structure. This can be done through a carefully designed architecture that can
perform reasoning using common differentiable operations [20, 21} 22]]. One can also
use the logic to define the neural network structure in a templating approach [29|30} [31].



Logical methods with neural constructs. Whereas the other line of work extends neural
network with logic, this line of work tackles the integration from the other side. These
methods extend logic-based frameworks with neural constructs. The neural constructs
create an interface between the logic-based framework and the neural network. These
constructs generally allow the logic to evaluate neural networks in a differentiable man-
ner such that their parameters can be optimized together with any possible parameters
in the logic. This type of extension similar to how Prolog was extended into the StarAl
system ProbLog through the introduction of probabilistic facts. Example of systems in
this line of work include DeepProbLog [32] and NeurASP [33].

7.2.2.2. Numbers vs Booleans

Neuro-symbolic Al systems need to connect the output of the neural networks to the
Boolean truth values in logic. When we consider neural networks as classifiers, they
output a confidence score for each class. If the neural network are sufficiently confident,
it might suffice to only select the top prediction. However, in general, and especially
when the neural network still needs to be trained, this is not feasible. There are several
strategies for dealing with this.

One strategy is to choose one of the outputs of the neural network, based on the
confidence score. When the choices turn out to be logically inconsistent, different outputs
are chosen until they are consistent. These choices can then be used as pseudo-labels to
train the neural network to make this output more likely. Systems that use this approach
include ABL [34] and NGS [35]).

Another strategy is to use the confidence scores directly in the logic. To do this, the
logical operators are turned into real-valued functions, and hence, relax the Boolean truth
values to the continuous [0, 1] interval. This introduces the semantics of fuzzy logic (or
soft logic), which is mathematically grounded in the t-norm theory. For example, in the
product t-norm, the truth degree of the conjunction, i.e. #(a A b), is equal to the product
of the truth degrees of its arguments, i.e. t(a A b) = t(a)t(b). This approach is used in
systems such as LRNN [30] and DiffLog [36].

Finally, it is also possible to interpret the confidence scores as a probability distribu-
tion, and to use a probabilistic logic to deal with the uncertainty. We will argue in the next
section that this integration is very natural and has benefits over the use of a fuzzy logic.
A probabilistic approach is used in systems such as DeepProbLog [32], NeurASP [33]
and Semantic Loss [28]].

The difference in how the probabilistic and the fuzzy methods relax the discrete
logical semantics allows, in general, a computationally cheaper inference for the fuzzy
approaches. However, this comes at the cost of a misalignment with the original Boolean
theory, whose semantics is instead preserved by probabilistic approaches. In particular,
in probabilistic methods, one defines a probability distribution over possible worlds or
models. The probability of an atom or formula is computed as a sum over the proba-
bilities of the worlds in which they are true. Their probability is as such defined only
semantically and independent of the syntax. On the contrary, by relaxing the operators to
continuous functions, fuzzy logics represent an alternative semantics and the truth degree
of atoms and formulas may become a function of the syntax.

Example 7.2.1. Consider for example the following annotated program.



0.3::Db.
al :- b.
a2 :- b,b.

Here, 0.3 is the label of b without any particular semantics yet. Given the idempotency
of the Boolean conjunction, we would expect that the scores of both al and a2 to be
identical since both b and b A b are true when b is true. In a probabilistic approach, the
score is interpreted as a probability, i.e. p(b) = 0.3. The probability of any atom is the
sum of the probabilities of all the worlds where that atom is true. It is straightforward to
see that, for both a1 and a2, they are the worlds where b is true, thus p(al) = p(a2) =
p(b) = 0.3. On the other side, in the fuzzy settings, the score of b is interpreted as its
truth degree, i.e. #(b) = 0.3. Let us consider the product t-norm, where #(x Ay) =1(x)#(y),
then #(a1) =¢(b) = 0.3 while 7(a2) = 7(b)7(b) = 0.09. While this issue could be solved
by choosing a different t-norm (e.g. the minimum t-norm), similar issues arise due to the
relaxed logical semantics.

7.3. Neural Probabilistic Logic Programming

Based on our experience in upgrading machine learning systems towards the use of
(probabilistic) logical and relational representations [37,138]], we argue that a first desir-
able property of frameworks that integrate two other frameworks A and B, is to have the
original frameworks A and B as a special case of the integrated one. If A or B cannot
be fully reconstructed, one clearly loses certain abilities, which is not only undesirable
but which also implies that there is no true unification. Applying this property to neuro-
symbolic computation implies that the existing frameworks should have both the neural
and the symbolic representations as special case. When this is the case, one retains both
the learning abilities of the neural component as well as the reasoning and learning abil-
ities and the semantics of the symbolic representations. Unfortunately, this property is
not satisfied by the vast majority of neuro-symbolic approaches in that they either push
the symbolic representation inside the neural network (from which the logic cannot be
recovered), or vice versa, apply neural learning principles to symbolic representations
(and risk loosing both the pure neural component and the logical semantics), as we shall
show in the next section.

We also advocate a second desirable property for neuro-symbolic computation:
models that learn from observed samples should be able to deal with uncertainty. There-
fore, one should not only integrate logic with neural networks in neuro-symbolic com-
putation, but also probability.

Although at first sight this may appear as a complication, it actually can greatly
simplify the integration of neural networks with logic. The reason for this is that the
probabilistic framework provides a clear optimisation criterion, namely the probability
of the training examples. Real-valued probabilistic quantities are also well-suited for
gradient-based training procedures, as opposed to discrete logic quantities.

We will now show how DeepProbLog achieves both of the desired properties by
introducing the neural predicate as the interface between neural networks. Although the
examples below are focused on reasoning with image classification, neural probabilistic



logic programming can be applied to a wide variety of domains, ranging from nature
language reasoning to robotics.

7.3.1. DeepProbLog

DeepProbLog [32,139] is a neuro-symbolic extension of ProbLog. In ProbLog, the prob-
abilities of all random choices are explicitly specified as part of probabilistic facts or
annotated disjunctions. DeepProbLog extends ProbLog to basic random choices whose
probabilities are parameterized by neural networks. This is realized through the neural
predicate, the interface between the probabilistic logic and the neural networks.

In [39], two types of neural predicates are introduced. We will only introduce the
most general definition here, namely the neural annotated disjunction.

Definition 1 (Neural annotated disjunction). A neural annotated disjunction (nAD) is an
expression of the form

nn(mr, [X[,...,X[J,O, [y],...,yn]) ::r(Xl,...,Xk,O)

where nn is a reserved functor, m, uniquely identifies a neural network model (i.e.,
its architecture as well as its trainable parameters) that defines a probability distribu-
tion py, (O|X = x) over the domain O € {y,...,yn} given the input x = [x1,..,x;]. The
Xi,...,Xy are variables representing the inputs to the neural network, O is the output
variable, the ground terms y1, ..., y, define the domain of the output distribution, and r is
a predicate symbol. Note that the arguments of predicate r can be in an arbitrary order.

Formally, such a neural AD represents a set of ground neural ADs of the following
form, one for every sequence of ground terms Xy, ..., Xy representing inputs to the neural
network:

P, (O=y11X1 =x1,.... Xk = x) 7 (X1, oo, X, V1) 5
pmr(O = yn|Xl =X1y.-- an = Xk) - r(xl 5 -"axkayn)
The neural network thus represents a discriminative classifier, which naturally maps

onto an annotated disjunction for each input. For instance, in the MNIST addition exam-
ple, we would specify the nAD

nn(m_digit,[X],Y,[0,...,9])::digit(X,Y).

wherem_digit is a network that classifies MNIST digits. For input image [E], the ground
nAD is

pmﬁdigit (Y = O‘X = ) dlglt(70) S ey medigit (Y = 9\X = ) o dlglt (7 9)

The neural network could take any shape, e.g., a convolutional network for image
encoding, a recurrent network for sequence encoding, etc. However, its output layer,
which feeds the corresponding neural predicate, needs to be normalized.



In Section[/.1.3] we discussed how neural network classifiers naturally encode con-
ditional probability distributions and that these could represent efficient approximations
of conditional probability tables over high-dimensional inputs (like images). Moreover,
in Section we described a one-to-one mapping between ProbLog annotated dis-
junctions and entries of conditional probability tables in Bayesian networks. Neural an-
notated disjunctions in DeepProbLog exploit these two analogies to introduce neural net-
work capabilities (i.e. image recognition, natural language processing) into (probabilis-
tic) logic programming.

The semantics of a DeepProbLog program with respect to a fixed set of possible
inputs to every neural network used in the neural facts and neural ADs is the semantics of
the ProbLog program that replaces each neural fact and neural AD by the corresponding
sets of ground neural facts and ground neural ADs for these inputs.

Inference in DeepProbLog We now briefly describe how inference happens in Deep-
ProbLog. It is largely identical to inference in ProbLog and only needs to be extended
with the evaluation of neural networks. ProbLog inference proceeds in four steps. The
first step is the grounding step, in which the logic program is grounded with respect to the
query. This step uses backward reasoning to determine which ground clauses are relevant
to derive the truth value of the query, and may perform additional logical simplifications
that do not affect the query’s probability.

The second step rewrites the ground logic program into a formula in propositional
logic that defines the truth value of the query in terms of the truth values of probabilistic
facts. We can calculate the query success probability by performing weighted model
counting (WMC) on this logic formula (cf. [40]). However, performing WMC on this
logical formula directly is not efficient.

The third step is knowledge compilation [41]. During this step, the logic formula is
transformed into a compiled structure that allows for efficient weighted model counting.

The fourth and final step transforms this compiled structure into an arithmetic circuit
(AC). This is done by putting the probabilities of the probabilistic facts or their negations
on the leaves, replacing the OR nodes with addition and the AND nodes by multiplica-
tion. The WMC is then calculated with an evaluation of the AC.

The only change required for DeepProbLog inference is that we need to instantiate
nADs and neural facts to regular ADs and probabilistic facts. This is done in two steps.
During grounding, we obtain ground nADs and ground neural facts with a symbolic rep-
resentation of the probabilities. In a separate step after grounding, the concrete param-
eters are determined by making a forward pass on the relevant neural network with the
ground input.

We exemplify inference with the following program that defines the addition of two
MNIST digits.

nn(m_digit, [X], Y, [0...9]) :: digit(X,Y).
addition(X,Y,Z) :- digit(X,N1), digit(Y,N2), Z is N1+N2.

We now pose DeepProbLog the following query: addition(fd,|l, 1). First, the pro-
gram is grounded on this query, which results in the following relevant ground program.

nn(m_digit, (J&],0)::digit (Jg,0) ;nn(m_digit, [Jg], 1)::digit (g, 1).



nn(m_digit, [Jf1,0)::digit (J§,0) ;nn(m_digit, (g1, 1)::digit(J],1).
addition(f&],Jl.1) :- digit(fg,0), digit(Jg.1).
addition(J&g],Jl.1) :- digit(fg,1), digit(Jg.0).

This ground program gets rewritten to the following formula : (digit(J&],0) A
digit(d,1)) v (digit(f&,1) A digit(Jf@,0)). This formally is then compiled and
transformed into an arithmetic circuit, shown in Figure @ The bottom of the diagram
shows the neural network evaluation on the two images 8] and Jf§. The output of these
probabilities are then combined through a bottom-up evaluation of the AC to derive the
probability of the query.

* *
O] K

Figure 4. The arithmetic circuit for the MNIST addition example on the query addition(m,, 1). Figure
adapted from [39].

Learning in DeepProbLog In contrast to the earlier approach for ProbLog parameter
learning in this setting by [42]], DeepProbLog uses gradient based learning instead of ex-
pectation maximization. This allows for seamless integration with the training of neural
network parameters. The key insight here is that the arithmetic circuit used for inference
can be used for gradient computations as well. This AC is a differentiable structure, as it
is composed of addition and multiplication operations.

DeepProbLog relies on the automatic differentiation capabilities of ProbLog to de-
rive these gradients. More specifically, to compute the gradient with respect to the prob-
abilistic logic program part, DeepProbLog uses aProbLog [43], a generalization of the
ProbLog language and inference to arbitrary commutative semirings, including the gra-
dient semiring [44]]. Whereas ProbLog is confined to only calculating probabilities, the
use of this gradient semiring in aProbLog allows the system to calculate the gradient



alongside the probabilities. This done by replacing the normal operations on probabilities
in the arithmetic circuit:

pP1Op2=p1+p2
P1®p2=p1p2

by simultaneous operations on probabilities and gradients, effectively calculating the
gradients alongside the query probability.

(p1,Vp1) ® (p2,Vp2) = (p1 +p2,Vp1+Vp2)
(P1,VP1) ®(p2,Vp2) = (P1p2,p2VP1 +P1VDp2)

Preserving the base paradigms. We now show how the different base paradigms are
preserved. ProbLog itself retains its base paradigms (probabilistic graphical models and
logic). If no probabilistic facts are included in ProbLog, it essentially becomes Prolog
and supports purely logical reasoning. As discussed in Section[7.2.1] probabilistic graph-
ical models such as Bayesian networks can easily be represented in ProbLog. As Deep-
ProbLog is an extension of ProbLog that adds the neural predicate, yet doesn’t remove
anything from this base framework, it becomes plain ProbLog when no neural predicates
are present in the program. As such, it retains the same base paradigms as ProbLog.

The neural base paradigm is also preserved in DeepProbLog. For example, a classi-
fier can be represented in DeepProbLog as a program with only a single neural predicate.
Other neural methods such as embedding based methods (e.g. TransE, DistMult, ...) can
also be represented as shown below in Example 3.

7.3.2. DeepProbLog examples

We will now use the DeepProbLog framework to showcase several desirable properties
of neuro-symbolic integrations.

Example 1: Logical reasoning with DeepProbLog 'To show that DeepProbLog supports
both logical reasoning and deep learning, we extend the classic learning task on the
MNIST dataset [45] to a more complex problem that requires reasoning. Instead of using
labeled single digits, we train on pairs of images, labeled with the sum of the individual
labels. The DeepProbLog program consists of the clause

addition(X,Y,Z):—digit(X,X2),digit(Y,Y2),Z is X2+ Y2

and a neural AD for the digit/2 predicate, which classifies an MNIST image. We com-
pare to a CNN baseline classifying the two images into the 19 possible sums. Results
shown in Table 2] indicate that performing reasoning and learning at the same time out-
performs methods that can only learn, namely a neural baseline.

Example 2: Probabilistic reasoning with DeepProbLog To show the benefit of integrat-
ing the probabilistic paradigm, we consider an extension to the previous experiment. The
extension is that a fraction of the labels is replaced by a number uniformly selected be-
tween 0 and 18. If we model this label noise, DeepProbLog can reason probabilistically
about each experiment whether its label is correct or not, and train the neural network



Table 2. The accuracy of a neural baseline and DeepProbLog on the addition task for different number of
training examples.

Number of training examples

Model 30 000 3000 300

Neural Baseline  93.46+£0.49  78.32+2.14 23.64+1.75
DeepProbLog 97.20+£0.45 92.18+£1.57 67.194+25.05

Table 3. The accuracy on the noiseless test set for MNIST addition experiment trained with label noise.

Fraction of noisy labels
0.0 0.2 0.4 0.6 0.8 1.0

Baseline 93.46 87.85 8249 52.67 8.79 5.87
DeepProbLog 97.20 9578 9450 9290 46.42 0.88

DeepProbLog w/ explicit noise ~ 96.64 9596  95.58 94.12 73.22 2.92
p(noisy) 0.000 0.212 0415 0.618 0.803 0.985

accordingly. In the code below, we have a probabilistic fact noisy. This fact is used to
split the addition/3 predicate into two cases. If noisy is false, then the addition hap-
pens as in Example 1. If it’s true, then we assume that Z is uniformly sampled between
0 and 19. The probability of the noisy fact is a learnable parameter, which allows the
model to estimate the fraction of label noise in the training data.

nn(classifier, [X], Y, [0 ..9]) :: digit(X,Y).
t(0.2) :: noisy.

1/19 :: uniform(X,Y,0) ; ...; 1/19 :: uniform(X,Y,18).

addition(X,Y,Z) :- noisy, uniform(X,Y,Z).
addition(X,Y,Z) :- \+noisy, digit(X,N1), digit(Y,N2), Z is N1+N2.

We compare three models: a CNN baseline, the DeepProbLog model from Exam-
ple 1, and the DeepProbLog model shown above. Table [3|shows the final accuracy on the
noiseless test set. For the DeepProbLog model that explicitly models the noise, we also
report the value of this parameter, which indicates how much noise the DeepProbLog
model believes there is. As we can see, probabilistic reasoning makes DeepProbLog ro-
bust and also gives it the ability to detect the amount of label noise in the dataset.

Example 3: DeepProbLog as a neuro-symbolic programming language In this exper-
iment, we showcase that DeepProbLog is a neuro-symbolic programming language by
manipulating embeddings in a declarative, yet differentiable way. A straightforward way
to obtain image embeddings, is by optimizing a clustering objective. That is, we mini-
mize the distance between the embeddings of images of the same number, while maxi-
mizing the distance between the embedding of images of different numbers. As a simi-
larity metric, the radial basis function @(x,y) (RBF) can be used (cf. the neural theorem
prover [31]]). This can be included in DeepProbLog as a predicate rbf/2 that succeeds
with probability p = ¢(x,y) = e I Il2 where x and y are embeddings that are the ar-



guments of the predicate. This can be used to implement a predicate that determines the
similarity between two images:

similar(I1,I2) :-
/#Encode images I1 and I2 into E1 and E2
cnn_encode(I1,E1), cnn_encode(I2,E2),
rbf (E1,E2).

Here, cun_encode/2 unifies the second argument with an embedding of the first argu-
ment calculated by a convolutional neural network. The rbf/2 acts as a constraint that
leads to clustering in embedding space.

As a proof of concept of the wider possibilities of implicitly training embeddings
through DeepProbLog, we extend the clustering objective towards inducing an order re-
lation in embedding space. The successor relationship between two MNIST images is
defined as successor(I1,I2,R) where I1 and I2 are MNIST images, and R is the
difference of the digits represented by the two images (e.g. successor(lg.El, —2)). We
model the successor relationship as a translation (cf. TransE [46]). We learn an embed-
ding r; of the successor relationship in this embedding space such that we minimize the
distance between e, + nry and e,, where e, and e, are the embeddings of the two images
and n is the difference of the image labels.

successor(I1,I2,N) :-
JEncode images I1 and I2 into EI1 and E2
cnn_encode(I1,E1), cnn_encode(I2,E2),
#Embed the successor relation into embedding S
embed (successor, S),
/The relation should mot be trivial (i.e. 0)
\+rbf (S,0).
JNE = E1 + N*S should be similar to E2
mul (S,N,S2), add(E1,S2,E),
rbf (E,E2) .

If n = 0, then the successor/3 relationship becomes identical to the similarity/2
relationship. We also specify that r; should not be zero to avoid collapsing on a trivial
solution. Note that this constraint on the size of the embedding can be seen as a form
of regularization defined in the logic. We define a predicate embed/2 that unifies the
second argument with a learnable embedding for the first argument. mul/3 is the product
between a scalar and a vector and add/3 an element-wise addition. These create the
mathematical definition of the successor relationship. The number O is used as a zero
vector of the same dimension as the embeddings.

Figure [5] shows the embeddings of the MNIST test set (crosses) and the mean of
each of these images, grouped by label (solid dots). It shows that the model has learned
to embed images into clusters corresponding to the labels of these images, which are po-
sitioned sequentially along the embedding dimension. As can be seen, the cluster centers
can be (approximately) linearly mapped to the actual image labels.
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Figure 5. A visualization of the embedding space learned in Example 3. Individual MNIST image embedding
are shown in crosses, with the mean for each label as a solid dot. The direction of the successor relation is
marked by the arrow.

7.4. Conclusions and open challenges

In this chapter, we discussed the base paradigms that make up the vast majority of neuro-
symbolic systems. We then discussed the similarities and differences of two paradigms
that integrate reasoning and learning, namely statistical relational Al and neuro-symbolic
Al Next, we discussed the desirable properties of neuro-symbolic systems. Firstly, a
framework that is the integration of two frameworks should retain either framework
as a special case. Otherwise, certain abilities have been lost in the integration. Sec-
ondly, neuro-symbolic systems should integrate a logical, neural and a probabilistic
base paradigm. We have showcased this for the neural probabilistic logic programming
paradigm with the DeepProbLog framework.

However, there are still open challenges that need to be solved by the NeSy commu-
nity. One challenge to overcome is the scalability of neuro-symbolic systems. Especially
the inference of systems that have a separate logical inference step can be prohibitively
expensive. Including probabilistic inference can make this problem even worse. Al-
though some progress has been made in this direction by investigating approximate in-
ference, there is not yet a solution that can be applied to arbitrary settings. Furthermore,
a lot of effort has gone into making the training of (large) neural networks as efficient
as possible, maximally utilizing the parallellization capabilities of hardware. The same
considerations will have to be made for neuro-symbolic systems if they are to be made
universally applicable.

Another open challenge is performing structure learning in neuro-symbolic systems.
Although some progress has been made in this direction, the possibilities of these sys-
tems are still not on the level of structure learning seen in pure logic programming /
StarAl Introducing neural networks into the structure learning problem further compli-
cates this setting as these neural networks might also have to be trained themselves.

A final challenge directly related to the previous challenges is that the field is not yet
mature enough to be applied to a showcase application. This is partly due to the limited
scalability of certain neuro-symbolic methods, but also due to the fact that many systems
assume that the logical structure is given by the user. However, this is not viable for all
areas of application, and a robust system that can discover (part of) the logical structure
would be essential.



References

(1]
(2]

(3]

(4]
[3]

[6]
(71
(8]

[9]
[10]

[11]
[12]
[13]
[14]

[15]
[16]

[17]

[18]
[19]

[20]

[21]

[22]
[23]
[24]
[25]

[26]

[27]

[28]

Kahneman D. Thinking, fast and slow. Farrar, Straus and Giroux New York; 2011.

Garcez ASd, Broda KB, Gabbay DM. Neural-symbolic learning systems: foundations and applications.
Springer Science & Business Media; 2012.

Garcez Ad, Besold TR, De Raedt L, et al. Neural-symbolic learning and reasoning: contributions and
challenges. In: 2015 AAAI Spring Symposium Series; 2015.

Hammer B, Hitzler P. Perspectives of neural-symbolic integration. Vol. 8. Springer Heidelberg:; 2007.
De Raedt L, Dumancic S, Manhaeve R, et al. From statistical relational to neuro-symbolic artificial
intelligence. In: IJCAI; 2020.

De Raedt L, Kersting K, Natarajan S, et al. Statistical relational artificial intelligence: Logic, probability,
and computation. Synthesis Lectures on Artificial Intelligence and Machine Learning. 2016;10(2):1-
189.

Getoor L, Taskar B. Introduction to statistical relational learning. MIT press; 2007.

De Raedt L, Kimmig A. Probabilistic (logic) programming concepts. Machine Learning. 2015;100(1):5—
47.

Flach P. Simply logical: intelligent reasoning by example. John Wiley & Sons, Inc.; 1994.

Pearl J. Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kauf-
mann Publishers Inc.; 1988.

Van Gelder A, Ross KA, Schlipf JS. The well-founded semantics for general logic programs. Journal of
the ACM. 1991;38(3):620-650.

Koller D, Friedman N. Probabilistic graphical models: principles and techniques. MIT press; 2009.
Robert CP, Casella G. Monte carlo statistical methods. Springer; 2004. Springer Texts in Statistics.
Wainwright MJ, Jordan MI. Graphical models, exponential families, and variational inference. Now
Publishers Inc; 2008.

Darwiche A. Modeling and reasoning with bayesian networks. Cambridge university press; 2009.
Goodfellow I, Bengio Y, Courville A. Deep learning. MIT Press; 2016. http://www.
deeplearningbook.org.

Kingma DP, Ba J. Adam: A method for stochastic optimization. In: International Conference on Learn-
ing Representations (ICLR); 2015. p. 1-13.

Marcus G. Deep learning: A critical appraisal. arXiv preprint arXiv:180100631. 2018;.

Santoro A, Raposo D, Barrett DG, et al. A simple neural network module for relational reasoning. In:
NIPS; 2017.

Makni B, Hendler JA. Deep learning for noise-tolerant RDFS reasoning. Semantic Web. 2019;
10(5):823-862.

Ebrahimi M, Sarker MK, Bianchi F, et al. Neuro-symbolic deductive reasoning for cross-knowledge
graph entailment. In: Martin A, Hinkelmann K, Fill H, et al., editors. Proceedings of the AAAI 2021
Spring Symposium on Combining Machine Learning and Knowledge Engineering (AAAI-MAKE
2021), Stanford University, Palo Alto, California, USA, March 22-24, 2021; (CEUR Workshop Proceed-
ings; Vol. 2846). CEUR-WS.org; 2021.

Ebrahimi M, Eberhart A, Hitzler P. On the capabilities of pointer networks for deep deductive reasoning.
CoRR. 2021;abs/2106.09225. Available from: https://arxiv.org/abs/2106.09225,

Sinha K, Sodhani S, Dong J, et al. Clutrr: A diagnostic benchmark for inductive reasoning from text.
Empirical Methods of Natural Language Processing (EMNLP). 2019;.

De Raedt L, Kimmig A, Toivonen H. ProbLog: A probabilistic Prolog and its application in link discov-
ery. In: IJCAIL 2007. p. 2462-2467.

Poole D. Probabilistic horn abduction and bayesian networks. Artif Intell. 1993;64(1):81-129. Available
from: https://doi.org/10.1016/0004-3702(93)90061-F!

Sato T. A statistical learning method for logic programs with distribution semantics. In: Sterling L, ed-
itor. Logic Programming, Proceedings of the Twelfth International Conference on Logic Programming,
Tokyo, Japan, June 13-16, 1995. MIT Press; 1995. p. 715-729.

Diligenti M, Gori M, Sacca C. Semantic-based regularization for learning and inference. Artificial In-
telligence. 2017;244:143-165.

Xu J, Zhang Z, Friedman T, et al. A semantic loss function for deep learning with symbolic knowl-
edge. In: Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stock-
holmsmissan, Stockholm, Sweden, July 10-15, 2018; 2018. p. 5498-5507.


http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/2106.09225
https://doi.org/10.1016/0004-3702(93)90061-F

[29]
[30]
[31]
[32]

[33]

[34]

[35]

[36]
[37]
[38]
[39]
[40]
[41]

[42]

[43]

[44]

[45]

[46]

Andreas J, Rohrbach M, Darrell T, et al. Neural module networks. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition; 2016. p. 39-48.

Sourek G, Aschenbrenner V, Zelezny F, et al. Lifted relational neural networks: Efficient learning of
latent relational structures. Journal of Artificial Intelligence Research. 2018;62:69-100.

Rocktischel T, Riedel S. End-to-end differentiable proving. In: Advances in Neural Information Pro-
cessing Systems; Vol. 30; 2017. p. 3788-3800.

Manhaeve R, Dumancic S, Kimmig A, et al. Deepproblog: Neural probabilistic logic programming. In:
NeurIPS; 2018.

Yang Z, Ishay A, Lee J. Neurasp: Embracing neural networks into answer set programming. In:
Bessiere C, editor. Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intel-
ligence, IJCAI 2020. ijcai.org; 2020. p. 1755-1762. Available from: https://doi.org/10.24963/
ijcai.2020/243|

Dai WZ, Xu Q, Yu Y, et al. Bridging machine learning and logical reasoning by abductive learning. In:
Wallach H, Larochelle H, Beygelzimer A, et al., editors. Advances in Neural Information Processing
Systems; Vol. 32. Curran Associates, Inc.; 2019. Available from: https://proceedings.neurips.
cc/paper/2019/file/9c19a2aal1d84e04b0bd4bc888792bd1e-Paper . pdf,

Li Q, Huang S, Hong Y, et al. Closed loop neural-symbolic learning via integrating neural perception,
grammar parsing, and symbolic reasoning. In: Proceedings of the 37th International Conference on Ma-
chine Learning, ICML 2020, 13-18 July 2020, Virtual Event; (Proceedings of Machine Learning Re-
search; Vol. 119). PMLR; 2020. p. 5884-5894. Available from: http://proceedings.mlr.press/
v119/1i20f.html.

Si X, Raghothaman M, Heo K, et al. Synthesizing datalog programs using numerical relaxation. In:
1ICALI; 2019. Available from: https://doi.org/10.24963/ijcai.2019/847.

De Raedt L. Logical and relational learning. Springer; 2008.

Muggleton S, De Raedt L, Poole D, et al. Ilp turns 20. Machine learning. 2012;86(1):3-23.

Manhaeve R, Dumanc¢i¢ S, Kimmig A, et al. Neural Probabilistic Logic Programming in Deep-
ProbLog. Artificial Intelligence. 2021;298:103504. Available from: https://www.sciencedirect.
com/science/article/pii/S0004370221000552,

Fierens D, Van den Broeck G, Renkens J, et al. Inference and learning in probabilistic logic programs
using weighted Boolean formulas. Theory and Practice of Logic Programming. 2015;15(3):358—401.
Darwiche A, Marquis P. A knowledge compilation map. Journal of Artificial Intelligence Research.
2002;17:229-264.

Gutmann B, Kimmig A, Kersting K, et al. Parameter learning in probabilistic databases: A least squares
approach. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases;
Springer; 2008. p. 473-488.

Kimmig A, Van den Broeck G, De Raedt L. An algebraic Prolog for reasoning about possible worlds.
In: AAAI; 2011.

Eisner J. Parameter estimation for probabilistic finite-state transducers. In: Proceedings of the 40th an-
nual meeting on Association for Computational Linguistics; Association for Computational Linguistics;
2002. p. 1-8.

Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. In: Pro-
ceedings of the IEEE; 1998. p. 2278-2324.

Bordes A, Usunier N, Garcia-Duran A, et al. Translating embeddings for modeling multi-relational data.
In: Advances in neural information processing systems; 2013. p. 2787-2795.


https://doi.org/10.24963/ijcai.2020/243
https://doi.org/10.24963/ijcai.2020/243
https://proceedings.neurips.cc/paper/2019/file/9c19a2aa1d84e04b0bd4bc888792bd1e-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/9c19a2aa1d84e04b0bd4bc888792bd1e-Paper.pdf
http://proceedings.mlr.press/v119/li20f.html
http://proceedings.mlr.press/v119/li20f.html
https://doi.org/10.24963/ijcai.2019/847
https://www.sciencedirect.com/science/article/pii/S0004370221000552
https://www.sciencedirect.com/science/article/pii/S0004370221000552

	Neuro-Symbolic AI = Neural + Logical + Probabilistic AI

