
A Bug’s Life:
Analyzing the Lifecycle and Mitigation Process

of Content Security Policy Bugs

Gertjan Franken
imec-DistriNet, KU Leuven

Tom Van Goethem
imec-DistriNet, KU Leuven

Lieven Desmet
imec-DistriNet, KU Leuven

Wouter Joosen
imec-DistriNet, KU Leuven

Abstract
The constantly evolving Web exerts a chronic pressure on the
development and maintenance of the Content Security Policy
(CSP), which stands as one of the primary security policies
to mitigate attacks such as cross-site scripting. Indeed, to at-
tain comprehensiveness, the policy must account for virtually
every newly introduced browser feature, and every existing
browser feature must be scrutinized upon extension of CSP
functionality. Unfortunately, this undertaking’s complexity
has already led to critical implementational shortcomings,
resulting in the security subversion of all CSP-employing
websites.

In this paper, we present the first systematic analysis of CSP
bug lifecycles, shedding new light on bug root causes. As such,
we leverage our automated framework, BUGHOG, to evaluate
the reproducibility of publicly disclosed bug proofs of concept
in over 100,000 browser revisions. By considering the entire
source code revision history since the introduction of CSP for
Chromium and Firefox, we identified 123 unique introducing
and fixing revisions for 75 CSP bugs. Our analysis shows that
inconsistent handling of bugs led to the early public disclosure
of three, and that the lifetime of several others could have
been considerably decreased through adequate bug sharing
between vendors. Finally, we propose solutions to improve
current bug handling and response practices.

1 Introduction

Since their inception, web browsers have grown to become
immense applications comprising tens of millions of code
lines, introducing new features with virtually every major
release. To keep up this pace, over 100 code revisions are
applied to their code base every single day [55], ranging from
bug fixes to new feature introductions. Although this pushes
the Web forward in many great ways, meanwhile, browser
vendors need to make a continuous effort to guard against
newly discovered attacks and bypasses for both established
and new security policies.

Unfortunately, numerous CVE reports and an extensive
body of research have previously exposed countless vulner-
abilities facilitated by flawed browser security policy imple-
mentations. More specifically, various shortcomings of es-
sential security policies such as the Content Security Policy
(CSP) [35], Same-Origin Policy [56], SameSite cookie pol-
icy [32] and access control policies [58] have been discovered
and exhibited. In several cases this makes the security pol-
icy, which websites often rely on to safeguard their users,
obsolete until a mitigation is in place. Furthermore, vulner-
abilities are often caused by inconsistent implementations
among browsers as well [14, 39, 57, 69]. However, the gran-
ularity of these studies halts at the level of browser release
versions, disregarding information related to the individual
revisions that cause or fix a bug.

To close this research gap, we performed a longitudinal
study on the introducing and fixing source code revisions
of bug lifecycles for CSP, one of the most longstanding and
important security policies of the Web. Given both the impor-
tance of CSP and its extensive implementational lifetime of
close to a decade, we take advantage of both the large number
of reported bugs and the many code changes that have af-
fected it. By collecting 86 publicly disclosed bug reports that
entail the subversion of correct CSP enforcement, we identi-
fied 75 unique bugs for which we replicated a proof of concept
(PoC), that was then used to construct a dynamic evaluation
on reproducibility. Subsequently, leveraging our automated
framework, BUGHOG, we identified the complete bug life-
cycles in the open-source Chromium and Firefox browsers.
As such, having evaluated over 100,000 revision binaries, we
were able to pinpoint 46 unique revisions that introduce a
bug, 71 that fix a bug and six that do both. To the best of our
knowledge, this is the first comprehensive bug lifecycle anal-
ysis considering individual revisions, based on the dynamic
analysis of a browser policy implementation.

Our analysis shows that half of the CSP bugs were already
present at the time of the policy’s introduction, among which
a severe Chromium vulnerability with subsequent bug bounty
of $5000 (CVE-2021-30531) [18]. After undermining the

commit severe patch
trunk

uplift to release

Figure 1: Chromium’s development practice where all applied
revisions are periodically forked into a release branch.

effectiveness of CSP for a period of more than eight years,
the issue was ultimately fixed in 2021, highlighting how even
severe bugs can stay under the radar for extensive periods of
time. Besides these so-called foundational bugs, a large part
was introduced by revisions intended to fix other CSP bugs
or redesigns of the underlying code structures, demonstrating
the fragile nature of CSP related source code.

In our analysis we employed a dynamic evaluation, in con-
trast to static evaluation based on bug reporting information
in prior work [4, 9, 15, 22, 30]. This allowed us to perform
a cross-browser evaluation of all reported bugs, reproducing
bugs reported for one browser throughout the revision his-
tory of the other. This way we found 14 shared bugs, among
which seven could be completely avoided or reduced in life-
time if bugs were more effectively shared between vendors.
Furthermore, we could reproduce four of the collected bugs in
Safari’s most recent version. Additionally, we identify several
other bug handling flaws such as inconsistent revision linking
and report labeling. More severely, our evaluation detected
three bugs that were labeled as fixed and eventually publicly
disclosed while the fixing revision was not effective, leaving
the browser vulnerable unbeknownst to the developers. Two
of these bugs remained public and unfixed for at least a year,
and one was only fixed after we reported the issue.

We make the following contributions:

• We developed BUGHOG, a framework for pinpointing
introductions and fixes of browser security policy bugs
at the level of individual code revisions. This framework
is released as open-source upon publication of this work,
and can be extended to facilitate the evaluation of other
security policy implementations as well.

• To the best of our knowledge, we performed the first sys-
tematic lifecycle analysis based on dynamic evaluations
over the full history of a browser security policy. As such,
we analyzed 75 reported CSP bugs for Chromium and
Firefox, covering 123 unique code revisions that caused
an introduction or fix.

• Based on our thorough analysis, we diagnosed several
flaws regarding security policy implementations and bug
handling practices, causing a needless escalation of se-
curity implications.

• Finally, we propose several remedies to these issues,
such as more rigorous bug sharing between vendors and
more stringent bug handling practices.

mozilla-central

mozilla-aurora

mozilla-beta

mozilla-release

uplift to mozilla-beta

commit severe patch

Figure 2: Firefox’s development practice where all applied
revisions are periodically imported to a more stable repository.

2 Background

In this section, we explain the foundational concepts of current
browser development practices and CSP.

2.1 Web Browser Development
Web browser vendors utilize various development practices,
among which version control and regression testing.

2.1.1 Version Control

Web browsers, being code development projects consisting
of tens of millions of code lines, are developed, managed and
maintained by leveraging a version control system (VCS).
Although Chromium and Firefox employ different VCSs (i.e.
Git1 and Mercurial2, respectively), their underlying function-
ality is very similar. However, the employed version control
strategies of the two projects slightly differ.

Chromium developers apply a trunk-based development
pattern to a single repository (Figure 1), where each developer
directly commits to a so-called trunk branch (e.g. instead of
using feature branches) [20, 21]. Source code is prepared for
building the release binary (e.g. disabling experimental fea-
tures) on a so-called release branch forked at regular intervals
from the trunk. Only in special cases, like urgent security
fixes, a revision on the trunk is cherry-picked and merged
onto such a release branch [1].

Firefox manages four separate repositories, each associ-
ated with a different release channel (Figure 2). All code
revisions are by default applied to the mozilla-central
repository (i.e. nightly), where all revisions are periodi-
cally imported into mozilla-aurora. This process is re-
peated for each repository, such that all revisions will be
consecutively imported to the mozilla-beta and eventually
mozilla-release repositories. In particular cases, develop-
ers might decide to uplift a feature or a patch to mitigate a
severe vulnerability on a more stable channel [41, 42].

In conclusion, all revisions are eventually landed on a single
branch or repository, being Chromium’s trunk or Firefox’s
mozilla-release repository.

1https://git-scm.com
2https://www.mercurial-scm.org/

https://git-scm.com
https://www.mercurial-scm.org/

2.1.2 Regression Testing

In addition to their own specific test suites, Chromium [24]
and Firefox [26] share a common cross-browser test suite
called Web Platform Tests (WPT) since September 2014 for
identifying potential regressions (i.e. previously fixed issues
that have been inadvertently reintroduced) [11, 17, 64]. Both
browser vendors depend on and contribute to the project,
which serves as a comprehensive set of checks to confirm
compliance to established web standards, including security
prerequisites. According to both vendors’ contribution poli-
cies, each revision or patch should successfully complete all
regression tests before it can be landed [25, 51].

Contributors to the Chromium project are advised to use
one of two procedures to track down the introduction or fix of
a regression. One option is utilizing their bisect-builds.py
script which automates a binary search over a bounded revi-
sion range of publicly hosted revision binaries, though the
user is required to manually check for each binary whether the
bug is reproduced [49]. The other recommended practice uti-
lizes git bisect, which is able to discern whether a revision
reproduces the targeted issue in an automated manner if pro-
vided with the appropriate script and test files [36]. Nonethe-
less, this evaluation requires checking out and building each
revision that is to be evaluated, making it resource-intensive.

Firefox provides a tool for bisecting regressions as well;
similar to Chromium’s script, their so-called autobisect tool
relies on publicly available revision binaries [44]. However,
this bisection tool is fully automated since the script can
autonomously distinguish between test case results.

In Section 3.2.5, we discuss the advantages and limitations
of each approach, compared to BUGHOG.

2.2 Content Security Policy
CSP version 1 was originally proposed as an in-depth de-
fense mechanism against content injection attacks such as
cross-site scripting (XSS) [46, 60, 61]. Websites can deploy a
policy by providing the Content-Security-Policy header
or <meta> tag in their response, and consequently the browser
will enforce the defined policy client-side.3

CSP provides developers with several directives for en-
abling different blocking rules over different resource types.
For instance, the policy defined below demonstrates this con-
tent blocking use case, and will only permit the browser
to load scripts from third-party.com, while all other re-
sources must originate from the current website (indicated by
self). In this study, we distinguish between two subclasses
of the content control use case: active content control (i.e.
script blocking) and non-active content control (i.e. frames).

default -src 'self'; script -src third -party.com

3Note that before the actual introduction of CSP, several
browsers already employed an experimental implementation under
the X-Content-Security-Policy and X-WebKit-CSP headers.

Subsequent versions of CSP, specifically CSP 2 and CSP 3,
introduced additional functionality to the policy specifica-
tion, among which new directives and keywords [67, 68]. For
instance, the nonce keyword provides developers with the
ability to allow inline script inclusion while simultaneously
safeguarding against script injections through the use of a
secret nonce.

Moreover, new use cases have been introduced, such as
the upgrade-insecure-requests directive, which facili-
tates the automatic upgrading of all requests made over
unencrypted channels (e.g. HTTP) to secure channels (e.g.
HTTPS), thereby enforcing TLS encryption. Another impor-
tant use case is framing control, which is facilitated by the
frame-ancestors directive. This directive allows develop-
ers to specify which origins are permitted to embed the web-
site within an iframe to prevent clickjacking attacks. Lastly,
the referrer directive grants developers control over the
Referer request header when users navigate from the current
website. Previous studies have already highlighted a similar
differentiation between CSP use cases [54, 65].

The inheritance of a policy between browsing contexts
presents significant challenges for CSP designers and im-
plementers. When creating a new browsing context, such
as embedding an iframe or opening a new window, the en-
forced policy is inherited from the opener browsing context
in specific situations. For example, new browsing contexts
with a blob: or data: URL should inherit the employed pol-
icy from the opener context. However, exercising excessively
lax policy inheritance can create opportunities for CSP sub-
version, whereas overly stringent inheritance may result in
cross-site leaks (XS-Leaks) [38]. XS-Leaks allow malicious
actors to exploit CSP to extract user state information from
cross-site services, leading to potential privacy breaches. For
instance, a malicious website could employ a CSP policy that
permits navigation to a benign website, but restricts access to
the landing page to which logged-in users are redirected. This
way, the adversary can infer the presence of an active session
on the benign site through CSP’s violation report, obtained
through the report-to CSP directive.

Figure 3 depicts an overview of all CSP use cases and bug
classes. We refer to Mozilla Developer Network for a com-
prehensive overview of all CSP directives and keywords [46].

3 Methodology

In this section, we cover all stages of our research, including
the design of BUGHOG, utilized to identify bug lifecycles.

3.1 Bug Collection and Reproduction
All bugs were collected from Chromium’s4 and Firefox’s5

public bug tracking platforms. For both platforms, bug re-
4https://bugs.chromium.org/
5https://bugzilla.mozilla.org/

https://bugs.chromium.org/
https://bugzilla.mozilla.org/

Content control (61)

CSP-enabled XS-Leak (10)

Active content
 control (47)

Non-active
 content control (14)

TLS enforcement (1) Framing control (2) Referrer header
 control (1)

CSP bypass (65)

Figure 3: Overview of all CSP use cases and bug classes with
the respective bug frequency in our dataset.

ports are by default confidential until a fix has been widely
deployed [10, 50]. Unfortunately, we did not receive a re-
sponse from the WebKit Security team regarding our inquiry
for access to fixed WebKit bugs.

To ensure comprehensiveness and enable an evaluation of
applied bug report labels, we adopted broad search criteria.
For instance, we did not rely on any specific CSP labels, but
instead used keywords that are matched against the content
of bug reports. This approach ensures that any potential over-
sights in developer labeling do not impact the integrity of our
dataset. Subsequently, we filtered out all bugs that were not re-
lated to CSP, by manually inspecting the included bug descrip-
tion. In total, we collected 86 bug reports; 58 for Chromium
and 28 for Firefox, a ratio which is similar to that of prior
studies [30]. In case two or more bug reports described the
same bug, we considered it as one bug. As such, we collected
75 unique bugs in total. We refer to Appendices A and B for
more details about the collection and filtering process. Fig-
ure 3 shows all CSP bug classes that were identified in our
dataset, along with the number of associated bugs.

Unfortunately, there is currently no standardized format
for documenting bugs or vulnerabilities, and not all reports
include practical tests that demonstrate the issue effectively.
Consequently, we were required to manually develop and
incorporate bug PoCs into BUGHOG. In the best case, the
report included the necessary HTML, CSS, and JavaScript
code, resulting in a minimal effort to recreate the PoC. In the
worst case, we had to rely on the textual description provided
by the reporter and manually construct the PoC ourselves.

To avoid discrepancies, PoCs were integrated into
BUGHOG with minimal modifications. However, the orig-
inal PoC might employ a more recent web mechanism that is
not supported in older revisions. In such cases, we emulated
the desired web mechanism using its predecessor(s), such
as converting JavaScript to ECMAScript 5, whenever feasi-
ble. The validity of each recreated PoC was verified through
manual testing, which involved running the PoC for a binary
affected by the bug and another that was not affected.

3.2 Automated Lifecycle Identification
BUGHOG is designed to evaluate an extensive range of indi-
vidual revisions of the Chromium and Firefox browsers, in
order to identify a bug’s complete lifecycle, from bug intro-

Manager

Evaluation

instance 1

Evaluation

instance N

spawns

spawns

spawns

PoC websitevisits

visits

BinariesOnline repo

information

Evaluation

instance 2

visits

Database

consults and stores

downloads
consults

Figure 4: High-level overview of BUGHOG. The Docker logo
indicates that a component is run inside its own Docker con-
tainer.

duction to mitigation. In the following sections, we discuss
the three main tasks of BUGHOG: selecting the appropriate
revisions to evaluate, collecting the selected revision bina-
ries and performing a dynamic evaluation on the collected
binaries. We have made the source code of our framework
publicly available.6

3.2.1 Overview

Figure 4 shows a high-level overview of BUGHOG covering
three main components (indicated in bold), each of which
runs inside its own Docker container. All Docker images are
built on top of the Debian GNU/Linux 10 (buster) base image.

Manager. This component is responsible for managing the
evaluation instance containers used for dynamic binary evalua-
tion. Its core tasks consist of selecting the appropriate revision
binary to evaluate next, to download this selected binary and
to spawn a helper container to perform the actual evaluation.

Evaluation instance. This component performs the actual
dynamic evaluation by instructing the browser binary to visit
one or more PoC web pages. Since this Docker image needs to
support a very wide range of browser versions (Chromium v25
- v109, Firefox v23 - v109), a large number of dependencies
has to be fulfilled in order to execute all required binaries.
Even though several older (deprecated) dependencies were
not available through a package manager, we still managed to
fulfill this requirement through manual installation.

PoC website. This component hosts an Nginx and Flask web
server incorporating all bug PoCs. Each PoC is integrated by
providing web page source code and the order in which these
web pages are to be visited to reproduce the exploit. Various
configuration options are supported, such as defining values
of the response status and headers. During the evaluation,
all communication between the browser binary and the local
web server is recorded through a proxy such that the outcome
of the evaluation can be discerned; whether the bug can be
reproduced or not.

6https://github.com/DistriNet/BugHog

https://github.com/DistriNet/BugHog

Apart from the three main components, BUGHOG utilizes
MongoDB for storing the results of each revision evaluation,
enabling subsequent querying of the data. Finally, we use
publicly available revision binaries hosted by each vendor for
our dynamic evaluation and scrape online repository infor-
mation to traverse over revisions.78 We only require access
to browser source code for building binaries if the available
online binaries are insufficient to pinpoint an exact revision.

3.2.2 Collecting Revision Binaries

Revision binaries are obtained by either downloading them
or building them from source.

Downloading. Besides hosting binaries of release versions,
both Chromium9 and Firefox10 host additional binaries based
on certain source code revisions as well. From these collec-
tions, it appears that Chromium builds a binary multiple times
per hour, while Firefox seems to build a binary every 12 hours.
If a to-be-evaluated revision binary is not available, BUGHOG
will download the one closest available.

Building. If vendor-hosted revision binaries are not sufficient
to infer the introducing or fixing revision, we build binaries
from source. This way, we were able to obtain all binaries
necessary for the evaluation of all collected bugs.

3.2.3 Revision Evaluation Selection and Order

The scope of this work covers CSP in the form
of the currently employed Content-Security-Policy
header or <meta> tag. We did not extend our analysis
to experimental precursors such as X-WebKit-CSP and
X-Content-Security-Policy [46], since these were not
shipped as finished policy implementations, and as such, are
not assumed to be bugless.

CSP 1.0 was introduced by revision 165317 [16] and revi-
sion 144546 [31] for Chromium and Firefox respectively. As
such, to identify all plausible bug lifecycles we are required
to evaluate the revision range between these revisions and the
most recent browser version (version 109 for both Chromium
and Firefox).

Our search strategy is composed of two phases:

General sweep. First, we conduct a broad survey over the
entire range, and to be comprehensive, this phase covers at
least multiple revisions per release version. This way, we can
already identify confined ranges in which a bug was intro-
duced or fixed. Furthermore, in contrast to the other bisection
tools, this allows us to possibly find additional introducing
and fixing revision couples, required for a complete lifecycle
analysis.

7https://chromium.googlesource.com/
8https://hg.mozilla.org/
9https://commondatastorage.googleapis.com/chromium-bro

wser-snapshots/index.html
10https://ftp.mozilla.org/pub/firefox/

Revision number

Reproduced

Not
reproduced

General sweep

Precise pinpointing

Figure 5: Example of the revision evaluation process.

Precise pinpointing. In the second phase, we use binary
search to determine the exact revision that introduced or fixed
a bug. In several cases, the publicly provided revision bina-
ries are not sufficient to pinpoint this revision. However, if
the revision range has been sufficiently narrowed down, it’s
straightforward to manually identify this revision. In the other
case, we build new revision binaries and repeat the evaluation
within the refined range. While starting the build script and
restarting the evaluation are manual tasks, this could be auto-
mated in the future. For every pinpointed revision, we ensured
its validity by verifying logical constraints (e.g. introducing
revisions are strictly older than their associated bug report).

Figure 5 depicts an example of evaluation output over a
predefined range. Here, the general sweep (blue dots) reveals
that the bug is reproducible in the first subrange of revisions,
and that although eventually fixed, the bug is reintroduced at
a later point. In the second phase, precise pinpointing (green
rods) reveals more accurately where the introductions and
fixes occurred.

Unfortunately, the Chromium repository does not include
JavaScript engine source code, nor web engine source code
in earlier repository versions. Because these are hosted in
separate repositories, our framework would merely pinpoint
affected revisions as rollouts (i.e. a set of engine revisions). In
order to identify individual engine revisions, we would have
to build a single browser binary multiple times, sequentially
changing the embedded engine revision. This was not deemed
feasible, and as such, pinpointing within engine rollouts is
covered manually.

3.2.4 Dynamic Evaluation

Although browser automation libraries like Selenium are
prevalent, they often do not provide support for outdated,
older browser versions. Fortunately, our use of the command
line interface (CLI) for instructing browsers gives us the ad-
vantage of evaluating any browser binary.

To ensure a clean and consistent environment for each ex-
periment, we create and select a fresh browser profile using the
appropriate CLI flags. The selected profile is maintained dur-
ing the experiment to simulate visits using the same browser
instance. This approach also enables us to propagate desired
settings, such as setting a proxy, or to disable interfering fea-
tures, such as Firefox’s built-in tracking protection.

https://chromium.googlesource.com/
https://hg.mozilla.org/
https://commondatastorage.googleapis.com/chromium-browser-snapshots/index.html
https://commondatastorage.googleapis.com/chromium-browser-snapshots/index.html
https://ftp.mozilla.org/pub/firefox/

Functionality git bisect C:bisect-builds.py F:autobisect BugHog

Automated #
No checkout building #
Concurrency # # #
Dependency handling # # #
PoC user interaction # # #

Table 1: Overview of bisection frameworks in terms of sup-
ported functionality.

3.2.5 Advantages and Limitations

In Section 2.1.2, we discussed various tools available for
bisecting bugs through dynamic evaluation. An overview of
the supported functionality for each existing bisection tool,
including BUGHOG, is presented in Table 1.

Among the tools mentioned, only Chromium’s
bisect-builds.py script requires manual input from
the developer to determine if a bug is reproduced. While this
allows for the evaluation of bugs that involve user interaction,
it also significantly increases the evaluation time. In contrast,
the other tools automate the process entirely.

However, BUGHOG offers several advantages compared
to the other tools. One notable feature is the ability to run
evaluations concurrently, which accelerates the revision pin-
pointing process. This feature proves particularly valuable
when conducting a comprehensive historical analysis of bug
reproducibility or evaluating a large number of bugs, as was
necessary for our study.

Additionally, BUGHOG leverages containers to manage ex-
ternal dependencies, enabling the execution of even older
browser versions. As such, it supports the evaluation of
Chromium and Firefox dating back to 2012, while the other
tools can only handle binaries up until 2019 before running
into dependency issues (with the exception of Firefox binaries
for Windows, which have fewer external dependencies).

Finally, BUGHOG is developed within Linux containers,
making it compatible with any operating system that supports
Docker. This cross-platform capability further enhances the
accessibility and usability of BUGHOG.

3.3 Analysis

To conduct our analysis, we used an automated scraper to col-
lect information from bug reports and code revisions obtained
from the aforementioned public bug tracking platforms. Ad-
ditionally, to enhance the depth of our analysis, we conducted
manual inspections of relevant sections of the source code.
The visualizations and statistics used in Section 4 were gener-
ated by automated scripts, which can be re-used for other bug
studies.

To better understand the purpose of code changes, each
revision was manually annotated with a label indicating its in-
tended purpose. All labels are listed in Table 2, where the last
column indicates whether a label is considered a regression if

Group Label Regression

Policy introduction Introduce CSP #

Fix

Fix affected CSP bug
Fix other CSP bug
Fix unrelated security bug
Fix non-security bug

Enable feature

Enable affected CSP feature #
Enable CSP feature #
Enable security feature #
Enable non-security feature #

Update feature
Update CSP feature
Update security feature
Update non-security feature

Design choice
Design revision of CSP
Design revision of other security policy
Non-security design revision

Table 2: Overview of all revision intentions, where the Regres-
sion column indicates whether the associated bug introducing
revision would be considered a regression.

its intent is linked to a bug introducing revision. The labeling
was done by two experts and evaluated with a Cohen’s Kappa
agreement score of 0.81, with any remaining disagreements
resolved through discussion. We refer to Appendix C for a
detailed description of each label, and further details on the
labeling methodology.

4 Results

In this section, we provide a detailed analysis that relies on the
diverse metadata linked to introducing and fixing revisions,
as well as bug reports.

4.1 Bug Lifecycle
To shed light on the duration that CSP bugs stay undiscovered,
we calculated the cumulative distribution function (CDF) of
the duration between the introduction and reporting of the
collected CSP bugs for each browser (Figure 6a). Interestingly,
Chromium bugs seem to live longer before they are reported,
compared to Firefox. For Chromium the median duration
between the introduction and report is 2.9 years, whereas this
is 1.2 years for Firefox. Note that Chromium has enabled CSP
support since November 2012, whereas Firefox only enabled
it since May 2013.

Figure 6b shows the CDF of the duration between the first
report and its subsequent effective fix.11 For Chromium the
median duration is 44 days, which is slightly lower than the
52 days it takes Firefox to land a fix.

When we look at the number of bug reports and fixing
revisions for foundational bugs, i.e. bugs that were present
since the introduction of CSP, over the ten years since CSP

11Two bugs have been excluded because they were not fixed at the time
of writing.

(a) Duration between bug introduction and report.

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

Chromium
Firefox

Time between introduction and report (days)

Fr
ac

tio
n

of
 b

ug
s

(b) Duration between bug report and fix.

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

Chromium
Firefox

Time between report and fix (days)

Fr
ac

tio
n

of
 b

ug
s

Figure 6: CDFs of the duration between bug introduction and report, and report and fix.

(a) Foundational bugs.

0 1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9

Reported bugs
Fixing revisions

C
ou
nt

Year since CSP introduction

(b) Non-foundational bugs.

0 1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9

Reported bugs
Fixing revisions

C
ou
nt

Year since CSP introduction

Figure 7: Number of bugs and associated fixing revisions for each year since the introduction of CSP.

was introduced, we observe a downward trend (Figure 7a).
Still, it should be noted that part of this downward trend in
the last three years can be attributed to the fact that not all
discovered bugs are publicly disclosed yet.

However, inspecting the same bar chart for non-
foundational bugs, i.e. bugs introduced after the introduction
of CSP, a far less apparent downward trend can be found (Fig-
ure 7b). Moreover, the last three years show a consistently
higher number of both reports and fixing revisions in compari-
son to our dataset of foundational bugs. Indeed, when inspect-
ing the number of introducing revisions for non-foundational
bugs (Figure 8), it strengthens the conclusion that the number
of non-foundational bugs does not necessarily decrease. Note
that we did not find any introducing revisions for year eight
and nine, since these reports are most likely not public yet.

These findings suggest that CSP as a policy has not yet
reached maturity; there is no indication of a decrease in the
amount of new bug introductions. Upon closer examination,
the most prevalent root causes of non-foundational bug intro-
ductions appear to be the fixing of (security) bugs (27.2%)
and adding new (security) functionality (48%). Interestingly,
the fixing of CSP security bugs in particular caused 21% of
the non-foundational bugs.

Presumably this conveys that web browser development
follows trends similar to those of more general software de-
velopment. As suggested by previous work, software matures
regarding foundational bugs over time [47], while this is not
necessarily the case regarding non-foundational bugs [5, 53].

0 1 2 3 4 5 6 7
0

2

4

6

8

10

Years since CSP introduction

C
ou

nt

Figure 8: Number of non-foundational bug introductions for
each year since the introduction of CSP.

Finding 1. Following the trend of general software
development, foundational bugs affecting CSP are
most likely to diminish over time. In contrast, non-
foundational bugs, which typically originate with the
introduction of new functionality or as a byproduct of
mitigating other bugs, are likely to remain occurring.

Our cross-browser evaluation demonstrates that of all 75
unique bugs, 14 (19%) are reproducible in both Chromium
and Firefox at some point in their development history. While
in general both browsers provide very similar functionality,
they mainly face unique bugs throughout their history, which
could be attributed to the difference in architecture and imple-
mentational flaws.

The lifecycles of shared bugs are shown in the Gantt chart
of Figure 9, where the presence of a bug identifier on the
y-axis indicates whether a bug report was found for the asso-
ciated browser. The vertical lines indicate at what time the
associated bug report was filed, if present. In eight cases, a
specific bug could be reproduced in both browsers whereas
there was only a report made to a single browser vendor. In
these cases, even the revision in which the bug was fixed did
not refer to a report describing the bug, so presumably no
issue was ever filed and the bug was introduced and fixed
unbeknownst to the developers. We also find that in seven
cases the bug was reported for one browser during or before
the vulnerable period of the other browser. Although both
browsers share the WPT as a common test suite, this result
demonstrates a remaining lack of effective threat vector shar-
ing between the two vendors.

To further explore the prevalence of cross-browser bugs,
we examined whether any of these bugs were reproducible in
WebKit by evaluating the most recent Safari release (16.2).
Here, four Chromium bugs could be reproduced, all of which
had been publicly disclosed for over a year at the time of
writing, with the oldest disclosure dating from May 2017.
Only two of these bug reports linked to a revision in which
regression tests were added to WPT, and one other bug was
not fixed yet at the time of writing. This further supports our
finding that the current level of threat vector sharing between
browser vendors is unsatisfactory. All bugs have been respon-
sibly disclosed, of which three have been fixed and one is not
considered a bug by Safari developers. Although Chromium
developers consider the latter issue to be of medium severity,
it remains unresolved in their codebase as well.

Finding 2. While browsers have distinct architectures,
and thus face unique bugs, a considerable number of
CSP bugs occurs in multiple browsers. We argue that
a more effective threat vector sharing strategy can
reduce bug lifetimes or even completely avert them.

We observe that of all shared bugs depicted in Figure 9,
eight are foundational in Chromium, in contrast to only four in
Firefox. This indicates that Firefox’s introduction of CSP was
more comprehensive and sound. However, five of Chromium’s
foundational bugs eventually appeared as regressions in Fire-
fox. This highlights that even if foundational bugs are avoided
through a comprehensive policy introduction, these particular
bugs are still prone to being introduced as a future regression.
Moreover, this underscores the importance of including all
shared security tests from all other browser vendors, even if
initially not affected by a bug.

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Chromium
Firefox

Time

1441468

1416045

1248289

1180759

990581

971231

932892

740615

696806

682673

579801

534570

482558

358471

|
|

|
|

|
|

|
|1397308 |

|
|

|1208559 |
|1086999 |

|
|1322111 |

Figure 9: Gantt chart of cross-browser bug lifecycles that
affected both Chromium and Firefox.

0 10 20 30

Update related CSP feature

Fix unrelated security bug

Design revision of other security policy

Non-security design revision

Enable affected CSP feature

Fix non-security bug

Update affected CSP feature

Design revision of CSP

Enable non-security feature

Fix other CSP bug

Enable CSP feature

Introduce CSP

Chromium
Firefox

Number of introduced bugs

R
ev

is
io

n
in

te
nt

io
n

Figure 10: Intentions of revisions that introduced a CSP bug.

4.2 Bug Introduction

In this section, we study the root causes of bugs by analyzing
the introducing revisions. We examine the revisions from
three angles: their intent, their context (i.e., which aspect of
CSP is impacted and how it is bypassed) and their associated
source code sections.

Figure 10 shows the intention prevalence for revisions that
introduced a CSP bug. All revisions introduced a bug a total of
97 times, as some revisions introduced multiple bugs and sev-
eral bugs regressed after a fix. For both Chromium and Firefox
most bugs (23 and 13 respectively) were introduced with the
shipping of CSP, indicating that the implementation of CSP
at the time was not sufficiently comprehensive. Similarly,
enabling a new CSP feature (e.g. shipping a new directive)
allowed for various bypasses as well (eight for Chromium,
five for Firefox), reinforcing the idea that the introduction or
extension of the policy is prone to lack of comprehensiveness.

(a) Affected CSP directives.

sc
rip

t-s
rc

m
ul
tip

le

re
po

rt-
ur

i

sa
nd

bo
x

fo
rm

-a
ct
io
n

st
yl
e-

sr
c

co
nn

ec
t-s

rc

fra
m

e-
an

ce
st
or

s

im
g-

sr
c

ob
je
ct
-s

rc

re
fe

rre
r

se
cu

rit
yp

ol
ic
yv

io
la
tio

n

up
gr

ad
e-

in
se

cu
re

-r.

Directives

0

5

10

15

20

25

C
o
un

t

(b) Bypassing web mechanisms.

C
SP lo

gi
c
is
su

e

ifr
am

e

w
in
do

w.o
pe

n
bl
ob

ob
je
ct

re
po

rt-
ur

i a

se
rv

ic
e-

w
or

ke
r

ba
se

fo
rm

lin
k-

pr
el
oa

d

m
ul
tip

ar
t-h

ttp
-h

ea
de

r

se
cu

rit
yp

ol
ic
yv

io
la
tio

n

Bypassing features

0

2

4

6

8

10

C
o
un

t

Figure 11: Distribution of affected CSP directives and most prevalent bypassing web mechanisms.

Finding 3. Approximately half of the bugs affect-
ing CSP reported in the ten years following its intro-
duction were present since the initial shipping of the
security feature.

4.2.1 Revision Intent

Of all non-foundational revisions, seven revisions introduced
multiple bugs; six revisions introduced two bugs and one
even introduced six. For all but one, modifications to CSP
configuration logic (i.e. policy parsing, feature or directive
introduction) were identified as the bug root cause, indicat-
ing that updating CSP configuration logic bears more risk
to introducing multiple bugs in comparison to modifying en-
forcement logic. The revision causing six bugs was applied in
an attempt to mitigate several bugs through a design revision
of CSP. Here, an inadequate CSP inheritance upon navigating
to a new context was reported, which could be abused by an
attacker to inject a script.12 Although the revision effectively
mitigated the reported bugs, it introduced new bugs where an
inadequate inheritance of CSP was again the root cause.

Similarly, we find that twelve bugs, five for Chromium
and seven for Firefox, were introduced as a result of fixing a
CSP-related bug. This clearly indicates that even the smallest
changes that are made to the enforcement of CSP may cause
other, independent issues to arise.

Finding 4. The implementation of CSP is very brittle.
Especially changes to the core functionality and con-
figuration logic are likely to cause new bugs. Hence,
fixes for existing policy bugs are also likely to intro-
duce new issues.

12The PoCs all leveraged navigation to an attacker-constructed
blob URI and navigation to a new window where afterwards
window.document.write() was used to inject a script.

4.2.2 Revision Context

For every bug, we analyzed which CSP functionality was af-
fected by the bug (Figure 11a) and what web mechanism or
feature facilitated the bypass (Figure 11b). Since we cannot
assume that PoCs list all bypassed directives, we reproduced
multiple versions of each unique bug to find out whether
a single specific src directive or multiple src directives
were affected. Interestingly, 24 bugs (32%) bypass only the
script-src directive, and 23 (31%) bypass more than one
src directive. Here, CSP’s essential and critical responsibility
of blocking inline scripts and eval were bypassed in five
and four instances respectively. We argue that script-src’s
complexity, given the various keywords that it supports (e.g.
nonce, strict-dynamic, sandbox), contributes to its error-
prone implementation.

Most bypasses are caused by CSP logic issues that are
not directly related to a specific web mechanism (e.g. incor-
rect policy parsing, logic errors). Interestingly, the iframe,
window.open, blob and object mechanisms are most preva-
lent and account for 9 (12%), 7 (9%), 6 (8%) and 4 (5%)
bypasses respectively. These mechanisms are all related to
creating and navigating to new browsing contexts. Deeper
analysis shows that 14 of 23 bugs affecting multiple CSP
directives were caused due to a bypass related to navigation.
This shows that the complexity of handling policy inheritance
between multiple browsing contexts not only induces error-
prone code, but its issues affect a larger surface area of the
policy language as well.

Finding 5. The complex implementation of policy in-
heritance between browsing contexts is not only prone
to various bugs, but also increases the likelihood of
errors serving as bypasses for multiple directives.

4.2.3 Source Code

By examining the source code in more detail, we notice that
the enforcement of CSP for content control (Figure 3) is less
centralized compared to other use cases. In this case, specific
sections of code dedicated to different mechanisms are respon-
sible for performing CSP checks. For example, mechanisms
such as <base>, <a>’s ping attribute, favicon fetching, form
submission, and Workers require conditional CSP checks in
addition to the general resource fetching check. Conversely,
the functionality scope for TLS enforcement, framing control,
and referrer handling is much narrower, resulting in fewer
detached CSP checks. For instance, we only found separate
checks for form submission and WebSockets to ensure CSP
compliance in both browsers regarding TLS enforcement.

The bugs resulting from missing enforcement in CSP tend
to have relatively simple PoCs, wherein a single bypassing
web mechanism is sufficient for the exploit. This trend is par-
ticularly notable in cases involving non-active content control,
where nearly half of the bugs are attributed to missing en-
forcement and are generally classified as low severity. Within
the active content control mitigations, nonce, sandbox, and
inline scripts are most affected, where severity is typically
somewhat higher.

Finding 6. The fragmented enforcement logic of CSP
increases the likelihood of oversights, which could
even lead to straightforward policy bypasses.

As depicted in Figure 11a, the majority of CSP bugs circum-
vent the script-src directive, which is a crucial component
of active content control. Here, 12 out of 23 bugs related to
script-src origin enforcement are caused by inheritance
issues. Keywords of script-src such as strict-dynamic,
nonce, and sandbox are less affected. Bypass techniques
often exploit multiple browsing contexts, resulting in more
intricate exploits with more impact compared to those arising
from enforcement oversights.

Remarkably, nearly all inheritance-related issues affected
Chromium (20 out of 22), while only four affected Firefox.13

This disparity implies that Firefox’s inheritance logic has been
considerably more robust compared to that of Chromium.
However, Chromium developers undertook a considerable
effort centralizing inheritance logic by incorporating CSP
in the Policy Container [19], resolving seven inheritance-
related issues simultaneously. As far as we can tell from our
dataset, no new inheritance issues have been introduced since.
Presumably, Firefox’s inheritance logic was already more
centralized at an earlier stage [43].

13Two issues affected both browsers.

Finding 7. Centralizing inheritance logic is an ef-
fective approach to mitigate inheritance-related bugs.
Additionally, the observed disparity between browsers
underscores the correlation between bugs and the un-
derlying architecture.

In our analysis, we encountered three bugs in Firefox,
where the introduction of new CSP functionality inadver-
tently weakened the security of existing features, while no
such bugs were found in Chromium. For instance, use of
the strict-dynamic keyword would allow the execution of
event listeners, even when inline scripts should have been
blocked.

Moreover, a total of five bugs for Firefox and Chromium
were attributed to factors that fall beyond the scope of CSP
functionality. In Firefox, an accessible browser resource that
was intentionally exempt from CSP could be abused to exe-
cute an injected script when strict-dynamic is included in
the employed policy. In Chromium, an HTML parsing issue
allowed the theft of a nonce from a benign script, allowing
the execution of injected code. In general, these bugs were
caused by external browser functionality – unrelated to CSP
functionality – that either act as a bypass or undermine correct
policy delivery.

4.3 Bug Reporting

In an effort to allow bug reports to be more easily queried,
additional information is attached in the form of labels.
While the Chromium platform utilizes the highly specific la-
bel Blink>SecurityFeatures>ContentSecurityPolicy
label, the Firefox platform does not dedicate a label specif-
ically to CSP-related issues. Among the Chromium bug re-
ports, 33 out of 58 are not annotated with the aforementioned
label. Of those, three do not contain any variation of the “CSP”
or “Content Security Policy” strings in their title. Similarly,
one of the 24 Firefox report titles does not contain a vari-
ation of these strings. This absence or inconsistent use of
CSP-specific labels makes it more difficult for developers to
identify similar or related issues.

Bug tracking platforms are often integrated with their re-
spective source code repositories; for instance, when a bug ID
is mentioned in a revision message, this revision will be auto-
matically linked within the bug report as well. Correspond-
ingly, this aids developers in keeping track of all revisions
relevant to a certain report. To this end, we investigated how
thoroughly associated revisions are linked to a bug report,
regarding introducing and fixing revisions. If more than one
bug report is associated with a particular bug (e.g. duplicate
reports), we consider a revision linked if it is mentioned by at
least one report. We found very similar results for Chromium
and Firefox; bug introductions were mentioned for only 4%

0 20 40 60

Non-security design revision

Enable CSP feature

Disable non-security feature

Fix non-security bug

Fix other CSP bug

Design revision of CSP

Fix affected CSP bug

Chromium
Firefox

Number of fixed bugs

R
ev

is
io

n
in

te
nt

io
n

Figure 12: Intentions of revisions that fixed a CSP bug.

and 7% of bugs, while fixing revisions were mentioned in
87% and 86% of the cases, respectively.

Since metadata provided in reports lies at the base of un-
derstanding the described bug for both developers and re-
searchers, we argue that more effort should be directed at
providing consistent and comprehensive information. Fur-
thermore, prior work is known to rely on similar meta-
data, and as such, this could provide for more accurate evi-
dence [6, 9, 70, 71, 73]. We believe that our framework could
be a first step in this process to automatically identify the
bug-introducing revision.

Finding 8. CSP bug reports are often incomplete or
labeled inconsistently, which complicates effective
querying by both developers and researchers.

4.4 Bug Fixing
The prevalence of intention labels for all fixing revisions is
depicted in Figure 12. In total, all fixing revisions resolved
a bug 95 times; this is less than the amount of introducing
revisions because two bugs are not fixed at the time of writing.
Clearly, with 58 revisions (61%), most bug fixes are inten-
tional, whereas 12 (13%) are intended as a fix for another
bug.

Of course, in the latter case developers could still be aware
that a particular revision – intended for another bug – fixes a
second one as a byproduct. As such, it is considered best prac-
tice to link the fixing revision to the bug report of the second
bug as well, for transparency purposes. For all reported bugs
resolved through the fixing revision of another bug, develop-
ers had only correctly linked the fixing revision for a single
bug, while in five other cases any link to the fixing revision
was missing.

Additionally, we identified two Chromium bugs and one
Firefox bug that were made public before an effective fix
was landed. Notably, the Firefox bug persisted in Firefox’s
most recent release version, prompting us to report the is-
sue, after which it was ultimately fixed. All three issues left
their respective browser exposed for at least one year after

public disclosure. The reasons behind these premature public
disclosures are very divergent:

Chromium bug 610441. The employed regression test lever-
aged only the <meta> tag to enforce CSP, while the bug could
still bypass CSP enforcement through the response header.

Chromium bug 740615. An effective fix was reverted 26
hours later due to causing issues with the Google Docs service.
This was not reflected in the bug report, and consequently, the
report remained labeled as fixed.

Firefox bug 1460538. The regression tests were run on non-
packaged builds, on which the applied fix was successful.
However, the issue still persisted in packaged builds, unbe-
knownst to the developers.

Finding 9. Due to a variety of reasons (e.g. incorrect
test cases, unadvertised rollbacks, or misrepresenting
test builds), bugs may be incorrectly marked as fixed,
leading to their premature public disclosure.

5 Discussion

Backed by our findings, we argue that CSP implementation
flaws increase the risk of bug introductions, whilst bug han-
dling flaws increase the time frame of insecurity. In this sec-
tion, we elaborate on the underlying issues, propose potential
remedies and explore avenues for future research.

5.1 CSP Implementation Flaws
Our data suggests that non-foundational CSP bugs, caused
by CSP-related and unrelated revisions, are not decreasing
with time. Due to the dynamic nature of the Web, continuous
occurrence of such revisions is inevitable.

In parallel, the evolution of CSP from a simple allowlist
to a complex policy language capable of enforcing a wide
range of security policies has introduced numerous new func-
tionalities, including additional directives and keywords. Our
analysis indicates that these extensions seldom compromise
the security of existing CSP directives. However, it is worth
mentioning that all three instances could have been mitigated
through a more comprehensive testing strategy, duplicating
existing regression tests to incorporate the new CSP function-
ality. Conversely, the most prevalent cause of bugs stems from
new browser features and CSP functionalities that lack robust-
ness upon their initial implementation, as well as unintended
side effects resulting from CSP bug fixes.

Among the issues related to CSP’s complexity, those
concerning inheritance are most prominent in our dataset.

Moreover, inheritance-related bugs often lead to more se-
vere security risks, particularly in terms of active content
control, affecting a larger area of the policy language as
well. Here, Chromium was affected most with 20 inheritance-
related bugs, compared to only four in Firefox. However, once
Chromium centralized its inheritance logic, the overall robust-
ness significantly improved, This highlights the substantial
benefits of centralization, warranting the same for enforce-
ment logic, and by extension demonstrates the importance of
the browser architecture on the handling of security policies.

Furthermore, the frequency of bugs appears to be directly
associated with the responsibility surface and capabilities
of bypassed CSP directives. Consequently, the majority of
bugs are linked to the script-src directive, used for active
content control, whereas other use cases, which are compar-
atively simpler, exhibit minimal bugs. However, this pattern
does not hold true for most script-src keywords. The num-
ber of bugs associated with specific keywords (i.e. nonce,
strict-dynamic and sandbox) appears to be correlated with
how long that keyword has been supported, with the exception
of hashes which has a significantly lower number of bugs.

5.2 Improving Bug Handling

Our analysis identifies several shortcomings in the bug han-
dling procedures of browser vendors, as several could have
been avoided with minimal effort.

Foremost, we show that despite significant efforts such as
WPT, bugs are not shared effectively among browser vendors.
At closer inspection, we identify several reasons for this short-
coming; in some instances, no WPT tests are created as part
of the bug fixing process. Our analysis also demonstrates that
even when foundational bugs are initially avoided, they can
reappear as regressions later, emphasizing the need for more
comprehensive threat vector sharing, even when a browser is
initially considered secure.

However, WPT seems to be the only means for browser
vendors to share undisclosed bugs, but as WPT’s test suite
is public, added tests become visible to potential adversaries
before the bug is fixed in other browsers. To address this
concern, we recommend exploring alternative methods for
sharing sensitive bugs among vendors. A low-effort solution
would be to allow developers access to certain parts of the
bug tracking platform of other browsers. This would make
bug sharing independent of test creation and reduce the time
it takes for bug knowledge to reach other vendors.

The fact that three bug reports were disclosed publicly
before a fixing revision was implemented is particularly con-
cerning, as it exposes end-users to potential attack vectors
for an extended time period. A more stringent bug handling
procedure would have helped prevent these incidents, espe-
cially considering that these bugs were incorrectly marked as
resolved. Additionally, our analysis has uncovered instances
where reports lack a link to the fixing revision, emphasizing

the importance of enforcing this as a mandatory step for trans-
parency and verification purposes. Furthermore, improving
the accuracy of bug labels can facilitate the identification of
similar bugs and support the implementation of stricter pro-
cedures, such as requiring a minimum of two reviewers for
revisions aiming to address a bug labeled as a security issue.

5.3 Future Work
For future research in this area (e.g. longitudinal evaluation of
other policies), it is crucial to have complete and accurate bug
reports. This would further enhance the quality and conve-
nience of bug report and revision scraping, on which various
related work relies. Moreover, the use of a standardized lan-
guage to describe bugs in different contexts would greatly
assist the integration of automated PoCs into various dynamic
evaluation tools.

Solutions for CSP soundness specifically could lie in the
field of formalization, where CSP would be consolidated
as a formal definition. Several aspects of the Web have al-
ready been explored in a formalized context, demonstrat-
ing its effectiveness by discovery of previously unknown
bugs [3, 7, 28, 29, 37]. While this research direction would
facilitate the sound introduction of new CSP functionality,
formalizing the Web as a whole poses numerous significant
challenges due to its dynamic nature and the complex inter-
play of its mechanisms and policies.

Another approach could leverage dynamic evaluation, sim-
ilar to our methodology. However, the difficulty here lies in
achieving true exhaustiveness, considering all combinations
between supported mechanisms, policies and nested browsing
contexts. While valuable efforts have been made to explore
this approach [32, 35, 69], only limited comprehensiveness
has been demonstrated.

6 Related Work

6.1 Dynamic Browser Policy Evaluation
As one of the first, Aggarwal et al. employ fuzzing to de-
tect inconsistencies and flaws in private browsing mode, also
demonstrating the potential negative impact of extensions and
plugins [2]. Research by Schwenk et al. found inconsistencies
among browsers for the Same-Origin Policy, which could lead
to vulnerabilities [56]. In that same light, browser access con-
trol incoherencies were exposed by Singh et al., leveraging
their automated evaluation framework WebAnalyzer [58].

Hothersall-Thomas et al. introduced BrowserAudit, a web
application to validate multiple browser security policies [35].
Third-party cookie policies, SameSite cookie policies and
various anti-tracking measurements implemented by both
browsers and browser extensions were deemed inadequate
by Franken et al., employing their framework for dynamic
evaluation through browser automation [32]. Luo et al. found

that mobile browsers are susceptible to UI attacks due to in-
sufficient protection and even demonstrate a declining trend
in security over time [40]. Luo et al. employed dynamic test-
ing to construct a longitudinal overview of supported browser
security policies in mobile browsers, uncovering that several
widely-used browsers lack support for crucial policies, even
several years after their introduction [39]. In recent work,
Rautenstrauch et al. uncovered several new vulnerabilities
through the first systematic analysis of XS-Leaks [52].

Finally, various frameworks have been developed to dy-
namically evaluate the security of JavaScript engines and web
engines in different contexts as well [23, 33, 48].

6.2 Vulnerability Studies
By examining the rate at which vulnerabilities are reported,
Rescorla was the first investigating whether software ma-
tures in terms of security [53]. Unfortunately, no conclusive
evidence was found for this hypothesis, confirmed by later
studies as well [4, 5, 47]. However, Ozment et al. presented
statistically significant evidence that the rate of foundational
vulnerability reports does decrease over time [47]. Indeed,
complementing this research, Edwards et al. demonstrated
that the adding of large amounts of new code can decrease
software quality and Alexopoulos et al. highlight the need for
maintaining stable branches longer in order to detect maturing
behavior [5, 27]. Furthermore, Alexopoulos et al. suggest that
more expressive security metrics can greatly help us under-
stand the vulnerability lifecycles.

Regarding browser development, Braz et al. uncover sev-
eral root causes of regression vulnerabilities such as the com-
plexity of browser interactions required for certain regression
tests [9]. Zaman et al. and Munauah et al. underline the con-
siderable differences between non-security and security bugs,
and consequently motivate the need for this distinction in
research [45, 72]. Research of di Biase et al. demonstrated
the importance of code review and argues that more security
issues are found in case more than two reviewers are involved,
as opposed to the two-reviewer policy of Chromium at the
time [22]. In addition, further research indicates that security
checklists do not significantly improve vulnerability detection
and the relative order in which files are reviewed affects the
probability for finding security issues [8, 34].

6.3 Content Security Policy
CSP has been the subject of various research projects, both
with the focus on validating CSP implementations and on mea-
suring CSP employment in the wild. To begin with, the afore-
mentioned studies of Hothersall-Thomas et al. and Luo et
al. investigated the CSP implementations of desktop and mo-
bile browsers, respectively leveraging their automated frame-
works [35, 39]. Van Acker et al. demonstrated how attackers
could bypass strict CSP enforcement by abusing DNS and

resource prefetching in major browsers [63]. Other bypasses
were pointed out by Somè et al., where incompatibility is-
sues between the Same-Origin Policy and CSP would allow
attackers to execute otherwise blocked scripts [59].

The first study to identify and set out the challenges of CSP
adoption was conducted by Weissbacher et al. [66]. Based
on their longitudinal study, they uncover various reasons be-
hind the slow adoption rate and ineffective deployments of
CSP, proposing potential remedies as well [65]. Calzavara
et al. identified various issues with CSP deployment in the
wild, such as liberal src expressions, use of inline scripts and
underutilization of CSP’s monitoring facilities [12, 13]. Roth
et al. brought to light the hurdles developers are facing when
implementing a comprehensive policy [54]. Calzavara et al.
exposed how inconsistencies among the enforced CSP poli-
cies in browsers can lead to various gaps in clickjacking
defenses of websites [14]. More recently, Stolz et al. showed
that the use of the unsafe-hashes directive does not nec-
essarily lead to more secure event handles, and argue that
although the introduction of the directive is a step in the right
direction, web developers should be advised to avoid inline
scripts [62]. Finally, Wi et al. uncovered 29 new CSP bypasses
that lead to unauthorized script execution, by leveraging the
first differential testing framework based on inconsistencies
between browser implementations.

7 Conclusion

In this work, we presented BUGHOG, an automated frame-
work to accurately identify introducing and fixing code revi-
sions of browser security policy bugs. Leveraging this frame-
work, we conducted a longitudinal analysis on CSP, one of the
most extensive and important browser policies on the Web,
mapping the complete lifecycle of 75 bugs.

Our results highlight multiple flaws in current bug pre-
vention and handling practices, which lead to the premature
public disclosure of unfixed vulnerabilities, and an avoidable
lifetime of vulnerabilities due to inadequate threat vector shar-
ing between vendors. We recommend that vendors explore
alternative channels for sharing sensitive bug information and
adopt more rigorous bug handling procedures. Our frame-
work can aid in the effort to improve the compilation of more
consistent and complete bug information, essential for a bet-
ter understanding of their root causes. As such, we intend to
open-source BUGHOG, which we plan to extend to evaluate
other policies as well in future work.

Acknowledgements

We express our gratitude to the anonymous shepherd and
reviewers for their insightful comments. This research is par-
tially funded by the Research Fund KU Leuven, and by the
Flemish Research Programme Cybersecurity.

References

[1] Aaron Boodman. How Chromium Works. https:
//aboodman.medium.com/in-march-2011-i-dra
fted-an-article-explaining-how-the-team-r
esponsible-for-google-chrome-ships-c479ba6
23a1b.

[2] Gaurav Aggarwal, Elie Bursztein, Collin Jackson, and
Dan Boneh. An Analysis of Private Browsing Modes in
Modern Browsers. In Proceedings of the 19th USENIX
Conference on Security, USENIX Security’10, page 6,
USA, 2010. USENIX Association.

[3] Devdatta Akhawe, Adam Barth, Peifung E. Lam, John
Mitchell, and Dawn Song. Towards a Formal Foundation
of Web Security. In 2010 23rd IEEE Computer Security
Foundations Symposium, pages 290–304, 2010.

[4] Nikolaos Alexopoulos, Manuel Brack, Jan Philipp Wag-
ner, Tim Grube, and Max Mühlhäuser. How Long Do
Vulnerabilities Live in the Code? A Large-Scale Empir-
ical Measurement Study on FOSS Vulnerability Life-
times. In 31st USENIX Security Symposium (USENIX
Security 22), pages 359–376, Boston, MA, August 2022.
USENIX Association.

[5] Nikolaos Alexopoulos, Sheikh Mahbub Habib, Steffen
Schulz, and Max Mühlhäuser. The Tip of the Iceberg:
On the Merits of Finding Security Bugs. ACM Trans.
Priv. Secur., 24(1), sep 2020.

[6] Muhammad Asaduzzaman, Michael C. Bullock, Chan-
chal K. Roy, and Kevin A. Schneider. Bug introducing
changes: A case study with Android. In 2012 9th IEEE
Working Conference on Mining Software Repositories
(MSR), pages 116–119, 2012.

[7] Chetan Bansal, Karthikeyan Bhargavan, Antoine
Delignat-Lavaud, and Sergio Maffeis. Discovering
concrete attacks on website authorization by formal
analysis. Journal of Computer Security, 22(4):601–657,
2014.

[8] L. Braz, C. Aeberhard, G. Calikli, and A. Bacchelli. Less
is More: Supporting Developers in Vulnerability Detec-
tion during Code Review. In 2022 IEEE/ACM 44th Inter-
national Conference on Software Engineering (ICSE),
pages 1317–1329, Los Alamitos, CA, USA, may 2022.
IEEE Computer Society.

[9] Larissa Braz, Enrico Fregnan, Vivek Arora, and Alberto
Bacchelli. An Exploratory Study on Regression Vul-
nerabilities. https://arxiv.org/abs/2207.01942,
2022.

[10] Handling Mozilla Security Bugs. Mozilla. https:
//www.mozilla.org/en-US/about/governance/p
olicies/security-group/bugs/.

[11] Bugzilla. 945222 - web-platform-tests: Create a test
runner for web-platform-tests suite. https://bugzil
la.mozilla.org/show_bug.cgi?id=945222, dec
2013.

[12] Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi.
Content Security Problems? Evaluating the Effective-
ness of Content Security Policy in the Wild. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’16, page
1365–1375, New York, NY, USA, 2016. Association
for Computing Machinery.

[13] Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi.
Semantics-Based Analysis of Content Security Policy
Deployment. ACM Trans. Web, 12(2), jan 2018.

[14] Stefano Calzavara, Sebastian Roth, Alvise Rabitti,
Michael Backes, and Ben Stock. A Tale of Two Head-
ers: A Formal Analysis of Inconsistent Click-Jacking
Protection on the Web. In 29th USENIX Security Sympo-
sium (USENIX Security 20), pages 683–697. USENIX
Association, August 2020.

[15] Felivel Camilo, Andrew Meneely, and Meiyappan Na-
gappan. Do Bugs Foreshadow Vulnerabilities? A Study
of the Chromium Project. In Proceedings of the 12th
Working Conference on Mining Software Repositories,
MSR ’15, page 269–279. IEEE Press, 2015.

[16] Chromium. Revision 165317: introduction of CSP 1.0.
https://chromium.googlesource.com/chromium
/src/+/46dd3610caa75097ba521f7f74e5f5c0d7c
23b79, nov 2012.

[17] Chromium. Issue 413454: We should be able to import
the w3c test suites directly into blink (checking them
in). https://bugs.chromium.org/p/chromium/i
ssues/detail?id=413454, sep 2014.

[18] Chromium. Issue 1115628: Security: Full CSP bypass
through blob: URIs. https://bugs.chromium.or
g/p/chromium/issues/detail?id=1115628, aug
2020.

[19] Chromium. Issue 1149272: Add Content Security Poli-
cies to the Policy Container. https://bugs.chromiu
m.org/p/chromium/issues/detail?id=1149272,
nov 2020.

[20] Google Cloud. DevOps tech: Trunk-based development
. https://cloud.google.com/architecture/de
vops/devops-tech-trunk-based-development,
2022.

https://aboodman.medium.com/in-march-2011-i-drafted-an-article-explaining-how-the-team-responsible-for-google-chrome-ships-c479ba623a1b
https://aboodman.medium.com/in-march-2011-i-drafted-an-article-explaining-how-the-team-responsible-for-google-chrome-ships-c479ba623a1b
https://aboodman.medium.com/in-march-2011-i-drafted-an-article-explaining-how-the-team-responsible-for-google-chrome-ships-c479ba623a1b
https://aboodman.medium.com/in-march-2011-i-drafted-an-article-explaining-how-the-team-responsible-for-google-chrome-ships-c479ba623a1b
https://aboodman.medium.com/in-march-2011-i-drafted-an-article-explaining-how-the-team-responsible-for-google-chrome-ships-c479ba623a1b
https://arxiv.org/abs/2207.01942
https://www.mozilla.org/en-US/about/governance/policies/security-group/bugs/
https://www.mozilla.org/en-US/about/governance/policies/security-group/bugs/
https://www.mozilla.org/en-US/about/governance/policies/security-group/bugs/
https://bugzilla.mozilla.org/show_bug.cgi?id=945222
https://bugzilla.mozilla.org/show_bug.cgi?id=945222
https://chromium.googlesource.com/chromium/src/+/46dd3610caa75097ba521f7f74e5f5c0d7c23b79
https://chromium.googlesource.com/chromium/src/+/46dd3610caa75097ba521f7f74e5f5c0d7c23b79
https://chromium.googlesource.com/chromium/src/+/46dd3610caa75097ba521f7f74e5f5c0d7c23b79
https://bugs.chromium.org/p/chromium/issues/detail?id=413454
https://bugs.chromium.org/p/chromium/issues/detail?id=413454
https://bugs.chromium.org/p/chromium/issues/detail?id=1115628
https://bugs.chromium.org/p/chromium/issues/detail?id=1115628
https://bugs.chromium.org/p/chromium/issues/detail?id=1149272
https://bugs.chromium.org/p/chromium/issues/detail?id=1149272
https://cloud.google.com/architecture/devops/devops-tech-trunk-based-development
https://cloud.google.com/architecture/devops/devops-tech-trunk-based-development

[21] Trunk Based Development. Introducion. https://tr
unkbaseddevelopment.com/.

[22] Marco di Biase, Magiel Bruntink, and Alberto Bacchelli.
A Security Perspective on Code Review: The Case of
Chromium. In 2016 IEEE 16th International Working
Conference on Source Code Analysis and Manipulation
(SCAM), pages 21–30, 2016.

[23] Sung Ta Dinh, Haehyun Cho, Kyle Martin, Adam Oest,
Kyle Zeng, Alexandros Kapravelos, Gail-Joon Ahn,
Tiffany Bao, Ruoyu Wang, Adam Doupé, et al. Fav-
ocado: Fuzzing the Binding Code of JavaScript Engines
Using Semantically Correct Test Cases. In NDSS, 2021.

[24] Chromium Docs. Web Tests (formerly known as “Lay-
out Tests” or “LayoutTests”). https://chromium.g
ooglesource.com/chromium/src/+/HEAD/docs/t
esting/web_tests.md.

[25] Firefox Source Docs. How To Contribute Code To
Firefox. https://firefox-source-docs.mozilla.
org/setup/contributing_code.html.

[26] Firefox Source Docs. Mochitest. https://firefox-s
ource-docs.mozilla.org/testing/mochitest-p
lain/index.html.

[27] Nigel Edwards and Liqun Chen. An Historical Exami-
nation of Open Source Releases and Their Vulnerabil-
ities. In Proceedings of the 2012 ACM Conference on
Computer and Communications Security, CCS ’12, page
183–194, New York, NY, USA, 2012. Association for
Computing Machinery.

[28] Daniel Fett, Ralf Küsters, and Guido Schmitz. A Com-
prehensive Formal Security Analysis of OAuth 2.0. In
Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’16, page
1204–1215, New York, NY, USA, 2016. Association for
Computing Machinery.

[29] Daniel Fett, Ralf Küsters, and Guido Schmitz. The
Web SSO Standard OpenID Connect: In-depth Formal
Security Analysis and Security Guidelines. In 2017
IEEE 30th Computer Security Foundations Symposium
(CSF), pages 189–202, 2017.

[30] Matthew Finifter, Devdatta Akhawe, and David Wagner.
An Empirical Study of Vulnerability Rewards Programs.
In 22nd USENIX Security Symposium (USENIX Security
13), pages 273–288, Washington, D.C., August 2013.
USENIX Association.

[31] Firefox. Revision 144546: introduction of CSP 1.0.
https://hg.mozilla.org/releases/mozilla-r
elease/rev/6b181afc9fadbd4bb9d04648aa24a34
bd9731e82, sep 2013.

[32] Gertjan Franken, Tom Van Goethem, and Wouter Joosen.
Who Left Open the Cookie Jar? A Comprehensive Eval-
uation of Third-Party Cookie Policies. In 27th USENIX
Security Symposium (USENIX Security 18), pages 151–
168, Baltimore, MD, August 2018. USENIX Associa-
tion.

[33] Gertjan Franken, Tom Van Goethem, and Wouter Joosen.
Reading Between the Lines: An Extensive Evaluation of
the Security and Privacy Implications of EPUB Reading
Systems. In 2021 IEEE Symposium on Security and
Privacy (SP), pages 1730–1747, 2021.

[34] Enrico Fregnan, Larissa Braz, Marco D’Ambros, Gül
Çalikli, and Alberto Bacchelli. First Come First Served:
The Impact of File Position on Code Review. arXiv
preprint arXiv:2208.04259, 2022.

[35] Charlie Hothersall-Thomas, Sergio Maffeis, and Chris
Novakovic. BrowserAudit: Automated Testing of
Browser Security Features. In Proceedings of the 2015
International Symposium on Software Testing and Anal-
ysis, ISSTA 2015, page 37–47, New York, NY, USA,
2015. Association for Computing Machinery.

[36] Testing in Chromium. Web Tests (formerly known as
“Layout Tests” or “LayoutTests”). https://chromium
.googlesource.com/chromium/src/+/refs/head
s/main/docs/testing/web_tests.md#bisecting
-regressions.

[37] Dongseok Jang, Zachary Tatlock, and Sorin Lerner. Es-
tablishing Browser Security Guarantees through Formal
Shim Verification. In 21st USENIX Security Symposium
(USENIX Security 12), pages 113–128, Bellevue, WA,
August 2012. USENIX Association.

[38] Lukas Knittel, Christian Mainka, Marcus Niemietz, Do-
minik Trevor Noß, and Jörg Schwenk. XSinator.Com:
From a Formal Model to the Automatic Evaluation of
Cross-Site Leaks in Web Browsers. In Proceedings of
the 2021 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’21, page 1771–1788,
New York, NY, USA, 2021. Association for Computing
Machinery.

[39] Meng Luo, Pierre Laperdrix, Nima Honarmand, and
Nick Nikiforakis. Time does not heal all wounds: A
longitudinal analysis of security-mechanism support in
mobile browsers. In Proceedings of the 26th Network
and Distributed System Security Symposium (NDSS),
2019.

[40] Meng Luo, Oleksii Starov, Nima Honarmand, and Nick
Nikiforakis. Hindsight: Understanding the Evolution of
UI Vulnerabilities in Mobile Browsers. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer

https://trunkbaseddevelopment.com/
https://trunkbaseddevelopment.com/
https://chromium.googlesource.com/chromium/src/+/HEAD/docs/testing/web_tests.md
https://chromium.googlesource.com/chromium/src/+/HEAD/docs/testing/web_tests.md
https://chromium.googlesource.com/chromium/src/+/HEAD/docs/testing/web_tests.md
https://firefox-source-docs.mozilla.org/setup/contributing_code.html
https://firefox-source-docs.mozilla.org/setup/contributing_code.html
https://firefox-source-docs.mozilla.org/testing/mochitest-plain/index.html
https://firefox-source-docs.mozilla.org/testing/mochitest-plain/index.html
https://firefox-source-docs.mozilla.org/testing/mochitest-plain/index.html
https://hg.mozilla.org/releases/mozilla-release/rev/6b181afc9fadbd4bb9d04648aa24a34bd9731e82
https://hg.mozilla.org/releases/mozilla-release/rev/6b181afc9fadbd4bb9d04648aa24a34bd9731e82
https://hg.mozilla.org/releases/mozilla-release/rev/6b181afc9fadbd4bb9d04648aa24a34bd9731e82
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/testing/web_tests.md#bisecting-regressions
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/testing/web_tests.md#bisecting-regressions
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/testing/web_tests.md#bisecting-regressions
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/testing/web_tests.md#bisecting-regressions

and Communications Security, CCS ’17, page 149–162,
New York, NY, USA, 2017. Association for Computing
Machinery.

[41] Mozilla. Patch uplifting rules. https://wiki.mozil
la.org/Release_Management/Uplift_rules.

[42] Mozilla. Release Management/Feature Uplift. https:
//wiki.mozilla.org/Release_Management/Feat
ure_Uplift.

[43] Mozilla. Understanding Web Security Checks in Firefox
(Part 1). https://blog.mozilla.org/attack-and
-defense/2020/06/10/understanding-web-secur
ity-checks-in-firefox-part-1/.

[44] MozillaSecurity. autobisect. https://github.com/M
ozillaSecurity/autobisect.

[45] Nuthan Munaiah, Felivel Camilo, Wesley Wigham,
Andrew Meneely, and Meiyappan Nagappan. Do
Bugs Foreshadow Vulnerabilities? An in-Depth Study
of the Chromium Project. Empirical Softw. Engg.,
22(3):1305–1347, jun 2017.

[46] Mozilla Developer Network. Content Security Policy
(CSP). https://developer.mozilla.org/en-US/
docs/Web/HTTP/CSP.

[47] Andy Ozment and Stuart E. Schechter. Milk or Wine:
Does Software Security Improve with Age? In 15th
USENIX Security Symposium (USENIX Security 06),
Vancouver, B.C. Canada, July 2006. USENIX Associa-
tion.

[48] Soyeon Park, Wen Xu, Insu Yun, Daehee Jang, and Tae-
soo Kim. Fuzzing JavaScript Engines with Aspect-
preserving Mutation. In 2020 IEEE Symposium on
Security and Privacy (SP), pages 1629–1642, 2020.

[49] The Chromium Projects. bisect-builds.py. https://ww
w.chromium.org/developers/bisect-builds-p
y/.

[50] The Chromium Projects. Reporting Security Bugs. ht
tps://www.chromium.org/Home/chromium-secur
ity/reporting-security-bugs/.

[51] The Chromium Projects. Testing and infrastructure. ht
tps://www.chromium.org/developers/testing/.

[52] Jannis Rautenstrauch, Giancarlo Pellegrino, and Ben
Stock. The Leaky Web: Automated Discovery of Cross-
Site Information Leaks in Browsers and the Web. In
44th IEEE Symposium on Security and Privacy, May
2023.

[53] Eric Rescorla. Is Finding Security Holes a Good Idea?
IEEE Security and Privacy, 3(1):14–19, jan 2005.

[54] Sebastian Roth, Timothy Barron, Stefano Calzavara,
Nick Nikiforakis, and Ben Stock. Complex Security
Policy? A Longitudinal Analysis of Deployed Content
Security Policies. Proceedings of the 27th Network and
Distributed System Security Symposium (NDSS).

[55] Kenneth Russell, Zhenyao Mo, and Brandon Jones. Con-
tinuous Testing of Chrome’s WebGL Implementation.
In Patrick Cozzi, editor, WebGL Insights, pages 31–46.
CRC Press, July 2015. http://www.webglinsights.
com/.

[56] Jörg Schwenk, Marcus Niemietz, and Christian Mainka.
Same-Origin Policy: Evaluation in Modern Browsers.
In 26th USENIX Security Symposium (USENIX Security
17), pages 713–727, Vancouver, BC, 2017. USENIX
Association.

[57] Hendrik Siewert, Martin Kretschmer, Marcus Niemietz,
and Juraj Somorovsky. On the Security of Parsing
Security-Relevant HTTP Headers in Modern Browsers.
In 2022 IEEE Security and Privacy Workshops (SPW),
pages 342–352, 2022.

[58] Kapil Singh, Alexander Moshchuk, Helen J. Wang, and
Wenke Lee. On the Incoherencies in Web Browser
Access Control Policies. In Proceedings of the 2010
IEEE Symposium on Security and Privacy, SP ’10, pages
463–478, Washington, DC, USA, 2010. IEEE Computer
Society.

[59] Dolière Francis Somè, Nataliia Bielova, and Tamara
Rezk. On the Content Security Policy Violations Due
to the Same-Origin Policy. In Proceedings of the 26th
International Conference on World Wide Web, WWW
’17, page 877–886, Republic and Canton of Geneva,
CHE, 2017. International World Wide Web Conferences
Steering Committee.

[60] Sid Stamm, Brandon Sterne, and Gervase Markham.
Reining in the Web with Content Security Policy. In
Proceedings of the 19th International Conference on
World Wide Web, WWW ’10, page 921–930, New York,
NY, USA, 2010. Association for Computing Machinery.

[61] Brandon Sterne and Adam Barth. Content Security Pol-
icy 1.0. W3c candidate recommendation, W3C, Novem-
ber 2012. https://www.w3.org/TR/2012/CR-CSP
-20121115/.

[62] Peter Stolz, Sebastian Roth, and Ben Stock. To hash
or not to hash: A security assessment of CSP’s unsafe-
hashes expression. In 2022 IEEE Security and Privacy
Workshops (SPW), pages 1–12, 2022.

[63] Steven Van Acker, Daniel Hausknecht, and Andrei
Sabelfeld. Data Exfiltration in the Face of CSP. In

https://wiki.mozilla.org/Release_Management/Uplift_rules
https://wiki.mozilla.org/Release_Management/Uplift_rules
https://wiki.mozilla.org/Release_Management/Feature_Uplift
https://wiki.mozilla.org/Release_Management/Feature_Uplift
https://wiki.mozilla.org/Release_Management/Feature_Uplift
https://blog.mozilla.org/attack-and-defense/2020/06/10/understanding-web-security-checks-in-firefox-part-1/
https://blog.mozilla.org/attack-and-defense/2020/06/10/understanding-web-security-checks-in-firefox-part-1/
https://blog.mozilla.org/attack-and-defense/2020/06/10/understanding-web-security-checks-in-firefox-part-1/
https://github.com/MozillaSecurity/autobisect
https://github.com/MozillaSecurity/autobisect
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://www.chromium.org/developers/bisect-builds-py/
https://www.chromium.org/developers/bisect-builds-py/
https://www.chromium.org/developers/bisect-builds-py/
https://www.chromium.org/Home/chromium-security/reporting-security-bugs/
https://www.chromium.org/Home/chromium-security/reporting-security-bugs/
https://www.chromium.org/Home/chromium-security/reporting-security-bugs/
https://www.chromium.org/developers/testing/
https://www.chromium.org/developers/testing/
http://www.webglinsights.com/
http://www.webglinsights.com/
https://www.w3.org/TR/2012/CR-CSP-20121115/
https://www.w3.org/TR/2012/CR-CSP-20121115/

Proceedings of the 11th ACM on Asia Conference on
Computer and Communications Security, ASIA CCS
’16, page 853–864, New York, NY, USA, 2016. Associ-
ation for Computing Machinery.

[64] web-platform-tests. web-platform-tests documentation.
https://web-platform-tests.org.

[65] Lukas Weichselbaum, Michele Spagnuolo, Sebastian
Lekies, and Artur Janc. CSP Is Dead, Long Live CSP!
On the Insecurity of Whitelists and the Future of Con-
tent Security Policy. In Proceedings of the 23rd ACM
Conference on Computer and Communications Security,
Vienna, Austria, 2016.

[66] Michael Weissbacher, Tobias Lauinger, and William
Robertson. Why Is CSP Failing? Trends and Challenges
in CSP Adoption. In Angelos Stavrou, Herbert Bos,
and Georgios Portokalidis, editors, Research in Attacks,
Intrusions and Defenses, pages 212–233, Cham, 2014.
Springer International Publishing.

[67] Mike West, Adam Barth, and Dan Veditz. Content Se-
curity Policy Level 2. W3c recommendation, W3C,
December 2016. https://www.w3.org/TR/CSP2/.

[68] Mike West and Antonio Sartori. Content Security Policy
Level 3. W3c working draft, W3C, May 2023. https:
//www.w3.org/TR/CSP3/.

[69] Seongil Wi, Trung Tin Nguyen, Jiwhan Kim, Ben Stock,
and Sooel Son. DiffCSP: Finding Browser Bugs in Con-
tent Security Policy Enforcement through Differential
Testing. In NDSS, February 2023.

[70] Guanping Xiao, Zheng Zheng, Bo Jiang, and Yulei Sui.
An Empirical Study of Regression Bug Chains in Linux.
IEEE Transactions on Reliability, 69(2):558–570, 2020.

[71] Zuoning Yin, Ding Yuan, Yuanyuan Zhou, Shankar Pa-
supathy, and Lakshmi Bairavasundaram. How Do Fixes
Become Bugs? In Proceedings of the 19th ACM SIG-
SOFT Symposium and the 13th European Conference on
Foundations of Software Engineering, ESEC/FSE ’11,
page 26–36, New York, NY, USA, 2011. Association
for Computing Machinery.

[72] Shahed Zaman, Bram Adams, and Ahmed E. Hassan.
Security versus Performance Bugs: A Case Study on
Firefox. In Proceedings of the 8th Working Confer-
ence on Mining Software Repositories, MSR ’11, page
93–102, New York, NY, USA, 2011. Association for
Computing Machinery.

[73] Jacek Śliwerski, Thomas Zimmermann, and Andreas
Zeller. When Do Changes Induce Fixes? In Proceedings
of the 2005 International Workshop on Mining Software
Repositories, MSR ’05, page 1–5, New York, NY, USA,
2005. Association for Computing Machinery.

Appendices

A Bug Report Search Criteria

The search criteria described in the following sections were
utilized to collect reports of bugs related to CSP or caused by
CSP. These search criteria are intentionally overly broad as
not to miss potentially relevant bug reports. False positives
were removed manually. Additionally, whenever a discovered
report was linked to another relevant report that was not origi-
nally part of our search results, it was included in our dataset
as well. Note that all keywords used in the search criteria will
be checked against the whole bug report, including the title,
description, and comments.

A.1 Chromium
• label:
Security_Severity-Low OR
Security_Severity-Medium OR
Security_Severity-High OR
Security_Severity-Critical

• status: NOT WontFix

• (CSP OR Content-Security-Policy)

URL: https://bugs.chromium.org/p/chromium/iss
ues/list?q=%28label%3ASecurity_Severity-Low%20O
R%20label%3ASecurity_Severity-Medium%20OR%20lab
el%3ASecurity_Severity-High%20OR%20label%3ASec
urity_Severity-Critical%29%20-status%3AWontFix%
20%28CSP%20OR%20Content-Security-Policy%29&can
=1

A.2 Firefox
• Component: DOM: Security

• Resolution: FIXED

• Classification: Client Software, Developer
Infrastructure, Components, Server
Software, Other

• Type: defect

• Summary: CSP

URL: https://bugzilla.mozilla.org/buglist.cgi
?bug_type=defect&short_desc=CSP&classification
=Client%20Software&classification=Developer%20
Infrastructure&classification=Components&class
ification=Server%20Software&classification=Oth
er&short_desc_type=allwordssubstr&query_format
=advanced&component=DOM%3A%20Security&resoluti
on=FIXED&list_id=16012294

https://web-platform-tests.org
https://www.w3.org/TR/CSP2/
https://www.w3.org/TR/CSP3/
https://www.w3.org/TR/CSP3/
https://bugs.chromium.org/p/chromium/issues/list?q=%28label%3ASecurity_Severity-Low%20OR%20label%3ASecurity_Severity-Medium%20OR%20label%3ASecurity_Severity-High%20OR%20label%3ASecurity_Severity-Critical%29%20-status%3AWontFix%20%28CSP%20OR%20Content-Security-Policy%29&can=1
https://bugs.chromium.org/p/chromium/issues/list?q=%28label%3ASecurity_Severity-Low%20OR%20label%3ASecurity_Severity-Medium%20OR%20label%3ASecurity_Severity-High%20OR%20label%3ASecurity_Severity-Critical%29%20-status%3AWontFix%20%28CSP%20OR%20Content-Security-Policy%29&can=1
https://bugs.chromium.org/p/chromium/issues/list?q=%28label%3ASecurity_Severity-Low%20OR%20label%3ASecurity_Severity-Medium%20OR%20label%3ASecurity_Severity-High%20OR%20label%3ASecurity_Severity-Critical%29%20-status%3AWontFix%20%28CSP%20OR%20Content-Security-Policy%29&can=1
https://bugs.chromium.org/p/chromium/issues/list?q=%28label%3ASecurity_Severity-Low%20OR%20label%3ASecurity_Severity-Medium%20OR%20label%3ASecurity_Severity-High%20OR%20label%3ASecurity_Severity-Critical%29%20-status%3AWontFix%20%28CSP%20OR%20Content-Security-Policy%29&can=1
https://bugs.chromium.org/p/chromium/issues/list?q=%28label%3ASecurity_Severity-Low%20OR%20label%3ASecurity_Severity-Medium%20OR%20label%3ASecurity_Severity-High%20OR%20label%3ASecurity_Severity-Critical%29%20-status%3AWontFix%20%28CSP%20OR%20Content-Security-Policy%29&can=1
https://bugs.chromium.org/p/chromium/issues/list?q=%28label%3ASecurity_Severity-Low%20OR%20label%3ASecurity_Severity-Medium%20OR%20label%3ASecurity_Severity-High%20OR%20label%3ASecurity_Severity-Critical%29%20-status%3AWontFix%20%28CSP%20OR%20Content-Security-Policy%29&can=1
https://bugs.chromium.org/p/chromium/issues/list?q=%28label%3ASecurity_Severity-Low%20OR%20label%3ASecurity_Severity-Medium%20OR%20label%3ASecurity_Severity-High%20OR%20label%3ASecurity_Severity-Critical%29%20-status%3AWontFix%20%28CSP%20OR%20Content-Security-Policy%29&can=1
https://bugzilla.mozilla.org/buglist.cgi?bug_type=defect&short_desc=CSP&classification=Client%20Software&classification=Developer%20Infrastructure&classification=Components&classification=Server%20Software&classification=Other&short_desc_type=allwordssubstr&query_format=advanced&component=DOM%3A%20Security&resolution=FIXED&list_id=16012294
https://bugzilla.mozilla.org/buglist.cgi?bug_type=defect&short_desc=CSP&classification=Client%20Software&classification=Developer%20Infrastructure&classification=Components&classification=Server%20Software&classification=Other&short_desc_type=allwordssubstr&query_format=advanced&component=DOM%3A%20Security&resolution=FIXED&list_id=16012294
https://bugzilla.mozilla.org/buglist.cgi?bug_type=defect&short_desc=CSP&classification=Client%20Software&classification=Developer%20Infrastructure&classification=Components&classification=Server%20Software&classification=Other&short_desc_type=allwordssubstr&query_format=advanced&component=DOM%3A%20Security&resolution=FIXED&list_id=16012294
https://bugzilla.mozilla.org/buglist.cgi?bug_type=defect&short_desc=CSP&classification=Client%20Software&classification=Developer%20Infrastructure&classification=Components&classification=Server%20Software&classification=Other&short_desc_type=allwordssubstr&query_format=advanced&component=DOM%3A%20Security&resolution=FIXED&list_id=16012294
https://bugzilla.mozilla.org/buglist.cgi?bug_type=defect&short_desc=CSP&classification=Client%20Software&classification=Developer%20Infrastructure&classification=Components&classification=Server%20Software&classification=Other&short_desc_type=allwordssubstr&query_format=advanced&component=DOM%3A%20Security&resolution=FIXED&list_id=16012294
https://bugzilla.mozilla.org/buglist.cgi?bug_type=defect&short_desc=CSP&classification=Client%20Software&classification=Developer%20Infrastructure&classification=Components&classification=Server%20Software&classification=Other&short_desc_type=allwordssubstr&query_format=advanced&component=DOM%3A%20Security&resolution=FIXED&list_id=16012294
https://bugzilla.mozilla.org/buglist.cgi?bug_type=defect&short_desc=CSP&classification=Client%20Software&classification=Developer%20Infrastructure&classification=Components&classification=Server%20Software&classification=Other&short_desc_type=allwordssubstr&query_format=advanced&component=DOM%3A%20Security&resolution=FIXED&list_id=16012294
https://bugzilla.mozilla.org/buglist.cgi?bug_type=defect&short_desc=CSP&classification=Client%20Software&classification=Developer%20Infrastructure&classification=Components&classification=Server%20Software&classification=Other&short_desc_type=allwordssubstr&query_format=advanced&component=DOM%3A%20Security&resolution=FIXED&list_id=16012294

Chromium Firefox
Valid CSP bugs 74 29
In-scope reports 61 25
Reproduced bugs 58 23

82%
95%

86%
92%

Table 3: Number of bug reports.

B Bug Report Distribution

Table 3 shows the exact number of valid or available CSP
bug reports, how many of those were reproducible by our
framework (with regard to its technical limitations), and fi-
nally how many we were able to effectively reproduce. Note
that this table only elaborates on the number of bug reports
found exclusively through our used search criteria. The total
number of reproduced bug reports amounts to 86 when also
taking into account reports found through cross-report links.

Valid CSP bugs In addition to false positives (e.g. reports
that do not describe a CSP bug, or a bug caused by CSP),
several reports missed a PoC due to an expired external link.
These occurrences were regarded as unavailable if we could
not construct a working PoC based on the available descrip-
tion and comments.

In-scope reports Not all relevant bugs were reproducible by
our framework, due to technical limitations:

• The bug is reported for another OS-specific.14

• User interaction is essential for reproducing the bug.

• Console access is required to check exploit success.

• The bug is facilitated by an installed extension.

Reproduced bugs Finally, while all technical requirements
were fulfilled, we were not able to effectively reproduce five
in-scope bugs. We believe that this may be due to an inad-
equate PoC, an unclear bug description or a limited under-
standing of the bug.

C Revision Intention Labels

In this section, we describe the labeling process and the inter-
pretation of each revision intention label.

14We found several Chromium bugs reported for iOS. However, since
Chromium’s iOS version is based on the WebKit engine, we did not consider
those as valid.

C.1 Labeling Process
The labeling process followed an iterative approach where a
researcher built the label list by reviewing all revision meta-
data and assigning the appropriate label to each revision. A
second researcher then independently annotated the same re-
visions using the pre-constructed label list. The agreement
between the two researchers was measured using the Cohen’s
Kappa coefficient and was found to be 0.81, indicating a good
level of agreement. Any disagreements were resolved through
discussion until all were resolved.

C.2 Label Interpretation
Introduce CSP CSP is supported starting from this revision.

Fix affected CSP bug Intentionally fixes the reported bug.

Fix other CSP bug Fixes the reported CSP bug as an un-
intentional side effect of an intentional fix for another CSP
bug.

Fix unrelated security bug Fixes the reported CSP bug as
an unintentional side effect of an intentional fix for another
non-CSP security bug.

Fix non-security bug Fixes the reported CSP bug as an un-
intentional side effect of an intentional fix for a non-security
bug.

Enable affected CSP feature Enables the CSP feature that
is affected by the reported CSP bug.

Enable CSP feature Enables a CSP feature that is not af-
fected by the reported CSP bug.

Enable security feature Enables a non-CSP security fea-
ture.

Enable non-security feature Enables a non-security fea-
ture.

Update CSP feature Updates a CSP feature that is not af-
fected by the reported CSP bug.

Update security feature Updates a non-CSP security fea-
ture.

Update non-security feature Updates a non-security fea-
ture.

Design revision of CSP Modifies the high-level design of
the CSP implementation.

Design revision of other security policy Modifies the high-
level design of another security policy implementation.

Non-security design revision Modifies the high-level de-
sign of any other feature implementation.

	Introduction
	Background
	Web Browser Development
	Version Control
	Regression Testing

	Content Security Policy

	Methodology
	Bug Collection and Reproduction
	Automated Lifecycle Identification
	Overview
	Collecting Revision Binaries
	Revision Evaluation Selection and Order
	Dynamic Evaluation
	Advantages and Limitations

	Analysis

	Results
	Bug Lifecycle
	Bug Introduction
	Revision Intent
	Revision Context
	Source Code

	Bug Reporting
	Bug Fixing

	Discussion
	CSP Implementation Flaws
	Improving Bug Handling
	Future Work

	Related Work
	Dynamic Browser Policy Evaluation
	Vulnerability Studies
	Content Security Policy

	Conclusion
	Bug Report Search Criteria
	Chromium
	Firefox

	Bug Report Distribution
	Revision Intention Labels
	Labeling Process
	Label Interpretation

