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ABSTRACT: Over the past two decades, intensive research efforts have been devoted to
suppressions of Auger recombination in metal-chalcogenide and perovskite nanocrystals (PNCs) for
the application of photovoltaics and light emitting devices (LEDs). Here, we have explored
dodecahedron cesium lead bromide perovskite nanocrystals (DNCs), which show slower Auger
recombination time compared to hexahedron nanocrystals (HNCs). We investigate many-body
interactions that are manifested under high excitation flux density in both NCs using ultrafast
spectroscopic pump−probe measurements. We demonstrate that the Auger recombination rate due
to multiexciton recombinations are lower in DNCs than in HNCs. At low and intermediate
excitation density, the majority of carriers recombine through biexcitonic recombination. However,
at high excitation density (>1018 cm−3) a higher number of many-body Auger process dominates
over biexcitonic recombination. Compared to HNCs, high PLQY and slower Auger recombinations
in DNCs are likely to be significant for the fabrication of highly efficient perovskite-based photonics
and LEDs.

Lead halide perovskite nanocrystals (PNCs) have shown
exceptional promises in light emitting devices (LEDs) due

to their high photoluminescence quantum yield (PLQY), wide
tunable emission wavelength range, defect tolerance, and low-
cost solution processability.1−6 In the past few years,
tremendous efforts such as compositional engineering (via
doping and alloying),7,8 surface reconstruction,9,10 shape
tuning,10,11 and interfacial engineering12,13 have been em-
ployed to fabricate efficient PNC based LEDs, which led to the
significant enhancement in the external quantum efficiencies
(EQEs) exceeding 20%.14 Even though the EQEs of PNCs are
significantly enhanced,1,15 still there are numerous complica-
tions associated with the device performances and operational
stability including defects stemming from Br and Pb vacancies,
detachment of ligands from the CsPbBr3 surface, leading to a
decrease in photoluminescence quantum yield (PLQY), and
change of the morphology with time.

Additionally, there are also some limitations in the reported
PNC based LEDs due to the severe Auger recombination
effect. Due to a lower threshold of carrier density, Auger
recombination becomes dominated in PNC.16,17 Rapid Auger
recombinations is associated with enhanced exciton binding
energy (Eb) because of the enhanced Coulomb electron−hole
interactions. In practice, Auger recombination is proportional
to the third power of Eb in strongly confined 1D material.18

Accordingly NCs should exhibit strong Auger recombination
because of their high Eb.

To overcome the above limitations, PNCs with high PLQY
with slow Auger recombination can be a possible solution.
Intensive research efforts have been employed to address this

issue. Hu et al.19 described that Auger recombination slowed
down in nonblinking NCs. Recently, Jiang et al.20 reported that
the Auger recombination can be slowed down by decreasing
the dielectric confinement effect of quasi 2D perovskite. It has
been noticed that a structural engineering approach is a
promising way to suppress the Auger process in NCs and
nanowires area.21−23

Recently, Zhang et al.24 reported a truncated octahedron
shape of CsPbBr3 with high PLQY using the alkylphosphonate
ligand, and they found that new facets are exposed on the
surface. Importantly, Pradhan and co-workers synthesized an
uncommon noncube morphology including rhombic dodeca-
hedrons and rhombicuboctahedrons of CsPbBr3 by changing
the reaction conditions.25,26 Dodecahedron NCs showed near
unity PLQY and retained the high colloidal and phase
stability.27 The in situ-formed tertiary ammonium ions opened
a new facet on the surface, which stabilized the dodecahedron
NCs and concurrently reduced the surface defect states. These
new nanocrystals would certainly open up more windows for
their research in light emitting devices. So far, the explored
photophysical properties remain confined to hexahedron NCs
(nanocubes and nanoplatelets),28−31 while photophysics for
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these new dodecahedron shaped CsPbBr3 NCs are still
unknown. Therefore, understanding fundamental photophys-
ical properties of this new type of dodecahedron shaped NCs
will be a valuable asset to the researcher for the development of
light emitting devices.

In this work, we have studied the transient absorption
spectroscopy and kinetics of dodecahedron nanocrystals
(DNCs) and compared their dynamics with cube shape
hexahedron nanocrystals (HNCs). DNCs showed slower
Auger recombination than HNCs, while differences were
found on the recombination mechanism depending on the
excitation density: at low excitation density, biexciton
recombination dominates in both NCs, while at high excitation
density, higher order Auger recombination dominates the
recombination mechanism.

HNCs and DNCs exhibit a sharp excitonic absorption peak
at 509 and 512 nm, respectively, and a red-shifted photo-
luminescence (PL) maxima at 518 and 522 nm, respectively
(Figure 1a,b). To elucidate the structure and composition of
HNCs and DNCs, we have used annular dark field-scanning

transmission electron microscopy (ADF-STEM) and energy
dispersive X-ray spectroscopy (EDS). Figure 1c shows the
ADF-STEM image of six faceted hexahedron nanocrystals
(HNCs) of CsPbBr3. Figure 1d shows ADF-STEM images of
12-faceted rhombic dodecahedron nanocrystals (DNCs) of
CsPbBr3. The estimated average edge size of both NCs is
approximately 12 ± 2 nm. This agrees well with the previously
reported CsPbBr3 NCs size with this same band gap.32

Bandgaps of HNCs and DNCs are calculated from Tauc plot
(Figure S1). Figures S2 and S3 show the EDS spectra of HNCs
and DNCs. To further confirm the crystal phase, synchrotron
grazing incident wide angle X-ray scattering (GIWAXS)
experiments were carried out. Figure 1e,f shows the 2D
GIWAXS patterns recorded, and Figure S4 shows the
corresponding 1D azimuthal profile integration of HNCs and
DNCs, where the peak positions match with the standard
orthorhombic phase of CsPbBr3 (Pbnm),26 despite the peak
broadening caused by the convolution of the nanocrystalline
size of the materials and the grazing incidence geometry
employed. The DNCs exhibit the most intense (112) and

Figure 1. (a) Absorption (black) and PL (red) spectra of HNCs respectively. (b) Absorption (black) and PL (red) spectra of DNCs, respectively.
ADF-STEM images of (c) HNCs and (d) DNCs. 2D GIWAXS scattering patterns of (e) HNCs and (f) DNCs.
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(020) crystal plane diffraction peaks which retain considerably
less intensity in comparison to (110) and (002) for HNCs.
Twelve faceted DNCs have two (200), two (020), and eight
(112) facets. These 12 facets are completely different from
traditional hexahedron NCs which have four (110) and two
(002) facets. For HNCs, (110) facets are stabilized with
primary ammonium ions (oleylammonium ions), whereas for
DNCs (200) and (112) facets are stabilized by tertiary
ammonium ions retaining different morphology.26 Our
pervious DFT calculations reveal a strong dipole moment
along the <200> direction,33 hence DNCs predominantly
consist of polar facets. We have shown the respective planes of
the orthorhombic CsPbBr3 crystal structure in the Supporting
Information. Moreover, GIWAXS results proved a slight
preferential orientation of the nanostructures over the silicon
wafer support investigated (several mm2), as clearly shown by
the brighter arc-shaped sections on the scattering diffraction
ring, in agreement with the microscopic STEM, which also
showed oriented nanocrystals over the support in real space.
Figure 2 panels a and b show transient absorption spectrum
(TA) of HNCs and DNCs, respectively, excited at 3.10 eV
(400 nm) with an intensity of 2.2 × 1014 photons/cm2/pulse,
corresponding to the initial average generated electron−hole
pairs per NC ⟨N⟩ ≈ 31 and average carrier density n ≈ 3.8 ×
1018 cm−3 (⟨N⟩ = Iσ, evaluated from the excitation intensity I
and absorption cross section σ of the NCs).34 The average
carrier density per NC volume is determined as n = ⟨N⟩/VNC,
where VNC is the NC volume estimated by the average size of
the cubic shape NCs.34 Both spectra show negative ground
state bleach (GSB) signal located around the bandgap, which is
due to the state filling effect, and a positive photoinduced
absorption (PIA) signal below the bandgap is due to excited-
state absorption (ESA) of the photogenerated charges at the
excited states. Both NCs with different light intensities show
analogous GSB and PIA features, while the time-constants of
kinetics vary. If we focus on the key features in the TA spectra
on the short time scale (>1 ps), we observe the appearance of a
derivative peak shape at the band gap (negative signal on the
higher energy side and positive signal at the lower energy side

of the band gap). The short-lived derivative peak shape is more
obvious at higher excitation intensity, and its dynamics is
related to the hot carrier cooling. While HCs relax to the
lowest-energy states, the positive PIA signal disappears and is
replaced by a strong GSB signal. At the same time, the initial
negative GSB increases and reaches the maximum (see Figure
2c and 2d for HNCs and DNCs. respectively).

We have calculated the energy shift of the bleach maximum
as a function of time delay. It is observed that the shift is
maximum at an early time scale, and after 1 ps it is constant
(Figure S5). The shift is higher in HNCs (70 meV) than
DNCs (10 meV). This also correlates with hot carrier cooling
time constants (<1 ps) which is estimated from the
exponential fittings of early time kinetics of HNCs (Figure
S6b) and DNCs (Figure S7b). The observed red shift of the
NCs can be explained by the transient Stark effect.35−37

Previously, Aneesh et al.38 explained this red shift in early time
scale through transient biexcitonic Stark effect in CsPbBr3
NCs. For a dipole allowed transition, the shift of transition
frequency, , due to an electric field, ε, can be given by39,40

= · ·| |1
2

2
(1)

where and are the changes of dipole moment and
polarizability between ground and excited states, respectively.
The first term in eq 1 signifies the broadening of the spectral
shape due to random orientation of Δμ with respect to ε. The
second term in eq 1 signifies the shift in the transition energy,
with the sign of the shift given by the sign of . The shift of
the electronic resonance frequency is correlated with
previously reported literature.41,42 In general many-body
effects lead to time-dependent shifts of the electronic
resonance frequency of the NCs due to the dynamics of
local fields, which are themselves induced by the presence of
excitons.43 The local fields induced by the many-body effects
resulting from pre-existing electron−hole pairs lead to a shift of
the energy of the optical transition.41

To analyze the relaxation process of the photogenerated
carriers, we have measured the excitation intensity dependent

Figure 2. Pseudocolor representation TA spectra of (a) HNCs and (b) DNCs at excitation intensity with ⟨N⟩ ≈ 6.6 (corresponding to I = 2.2 ×
1014 photon/cm2/pulse, n ≈ 3.8 × 1018 cm−3). TA spectra showing red shift of the spectra and hot carrier cooling at an early time scale: (c) TA
spectra of HNCs and (d) TA spectra of DNCs.
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TA decay curves. Figure 3a and 3b display the TA kinetics at
different excitation intensity 4.9 × 1013 (I1), 1.2 × 1014 (I2),
1.6 × 1014 (I3), and 2.2 × 1014 (I4) photons/cm2/pulse for
HNCs and DNCs, respectively. I1, I2, I3, and I4 correspond to
the average number of excitons per NCs (⟨N⟩ ) 1.5, 3.6, 4.8,
and 6.6, respectively. TA dynamics of both NCs are monitored
at the strong GSB peak (509 and 512 nm for HNCs and
DNCs, respectively). Under excitation intensity (I), the TA
signal of HNCs exhibits a multiexponential decay. The slow
component (∼2 ns) indicates the recombination time of a
single electron−hole pair, and fast component (∼200 ps)
indicates the relaxation time of biexcitonic Auger recombina-
tion.44 As the excitation intensity increases, the TA signal
exhibits an extra fast exponential decay at ∼30 ps. At higher
excitation intensity, the TA signal exhibit fast (∼30 ps),
intermediate (∼200 ps), and long (∼2 ns) decay component.
Similarly DNCs also show two components at low excitation
intensity, a slow component appears ∼4 ns and a fast
component appears around 350 ps. However, at high excitation
intensity DNCs also exhibit a very fast component ∼2 ps. The
origin of the intermediate and fast decay is the Auger
recombination due to low and high number of exciton−
exciton interactions, and slow component is due to single
exciton recombinations.44,45 It is important to mention that
photochemical doping caused the ionization of the NCs and
subsequently formed trion in CsPbBr3 perovskite NCs. Trion
recombination is a competitive process with biexciton
recombination.46 In the case of photochemical doping, a
reducing agent is used to extract the photogenerated hole from
the NC, leaving behind an excess electron to the CB of the
NC. However, in our case we exclude that possibility as we did
not use any reducing agent as photochemical doping in our
samples. Nakahara et al.47 reported that trion formation in
CsPbBr3 perovskite is due the presence of surface traps. To
prove the relation between surface traps and trion formation
they treated the sample with surface passivating agents’ sodium
thiocyanates (NaSCN) and found the improved PLQY.

Further, they conducted TA measurements for the surface
treated samples with static and stir conditions and observed
almost similar lifetimes as those of the untreated samples.
Therefore, we consider that carrier recombination is going
through monoexciton, biexciton, and higher number of many-
body recombination process. Trinh et al.42 describe both two-
body and many-body recombination in methylammonium lead
iodide (MAPbI3) perovskites. To elucidate, the recombination
kinetics at the band edge of both NCs over a range of
excitation intensities can be modeled by the simple rate
equations. When the excitation intensity is low, the major
decay routes for band edge excitons are mono- and biexciton
recombinations. If the Auger process occurs due to biexciton
recombinations then the rate equation can be described as42,48

=n
t

k n k n
d
d 1 2

2
(2)

where n is the exciton density per NCs, k1 is the first-order rate
constant corresponding to single exciton recombination, and k2
is the second-order rate constant for biexciton recombination.
Equation 2 can be solved to yield49

=
+ [ ]

n t
n k t

n k t
( )

exp( )

1 1 exp( )k
k

0 1

0 1
2

1 (3)

where n0 is the initial exciton density. The kinetics
corresponding to I1 was fitted with eq 3 assuming k1 = 3.3
× 108 s−1 and 2.8 × 108 s−1 for HNCs and DNCs, respectively,
which was obtained from long component of TA kinetics. The
value of k2 is estimated from the fitting and found to be 2.8 ×
10−11 cm3 s−1 and 1.5 × 10−11 cm3 s−1 for HNCs and DNCs,
respectively. Figure 3 panels c and d show the fitting results of
HNCs and DNCs, respectively, with eq 3. From both panels it
can be observed that at lower intensity, it is fitted well with eq
3, but at higher intensity experimental data are not in good
agreement with the fitted curves.

Figure 3. Transient absorption (TA) kinetics of (a) HNCs and (b) DNCs at different excitation intensities: I1 = 4.9 × 1013, I2 = 1.2 × 1014, I3 =
1.6 × 1014, and I4 = 2.2 × 1014 photon/cm2/pulse. (c) TA kinetics of HNCs and (d) TA kinetics of DNCs at excitation intensities I1 (black) and
I4 (olive); dashed red lines are the fitted curves based on eq 2. Excitation wavelength was 400 nm, and detection wavelength was 509 and 512 nm
for HNCs and DNCs, respectively.
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From the above exciton−excition interaction model, we can
observe that biexcitonic recombination is slower in DNCs than
in HNCs. We also observe from multiexponential fittings
(Figures S6 and S7) that DNCs show an intermediate
component characterized by a time constant on the order of
hundreds of picoseconds after excitation at 400 nm, having
much-reduced amplitude compared to the HNCs (Tables S3
and S4) which leads to a reduction of the Auger induced
nonradiative pathways at high excitation exposition. Figure 4
panels a−d describe the TA kinetics of both HNCs and DNCs
at different excitation intensities I1, I2, I3, and I4. Figure 4,
clearly shows slower Auger recombination kinetics of DNCs
compared to HNCs.

Faster Auger recombination is an important challenge faced
by PNCs, which causes significant efficiency roll-off and
impedes their further commercialization. As the Auger
recombination rate is proportional to the exciton binding
energy (Eb); thereby, the Auger process might be slowed down
by reducing the corresponding Eb. Dielectric constant may
influence the Eb of the DNCs.42 According to a previous
manuscript,50 DNCs contain an extra new polar facet, it affects
the magnitude of polarization achievable, and hence the
dielectric constant. Therefore, DNCs contain a higher polarity
than HNCs which consequently reduces the Eb. In practice, the
Auger recombination rate is proportional to the third power of
the Eb in strongly confined systems.18 Accordingly, DNCs
should exhibit slower Auger recombination than HNCs. In 2D
perovskite based light emitting devices, slower Auger
recombination reduces the Joule heating and enhance the
device stability under high current density.20 Therefore, this
work may open a new opportunity for the further development
of PNC based high efficient photonic devices in the near
future.

In summary, we have studied the many body exciton
recombination dynamics in HNCs and DNCs at different
excitation regimes using femtosecond transient absorption
spectroscopy. We have demonstrated slower Auger recombi-
nation in DNCs than in HNCs. We attribute that the slow
Auger recombination is due to lower exciton binding energy of

DNCs than that of HNCs. Furthermore, our results reveal that
DNCs possess lower transient Stark effect compared to HNCs.
The generation of hot carriers in NCs causes a transient Stark
effect leading to the spectral red-shift at early time scale. In
both perovskites, excitonic and biexcitonic recombinations are
major decay routes. Auger recombination due to higher
number of many body exciton recombination is significant at
very high excitation densities (>1018 cm−3). Our results show
that DNCs can be more suitable for photonics and LEDs
applications.
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