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Languages like Coq and Agda forbid users to define non-strictly-positive data types [AAG05].
Indeed, one could otherwise very easily define non-terminating programs. However, this strict-
positivity criterion is nothing more than a syntactic restriction, which prevents sometimes
perfectly reasonable and innocuous data types to be defined. We present ongoing work on
making positivity checking more modular in Agda, by allowing polarity annotations in function
types and making it possible to enforce the variance of functions simply by type checking.
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The polarity modal system. We introduce a new modal system
[GKNB21] aptly called the polarity [AM04, Abe06] modal system. It con-
sists of a partially-ordered set made out of five polarities: unused, -, +,
++ and mixed. These elements correspond to the permitted uses of bound
variables. The polarities are given the partial order shown on the right,
to be read from bottom to top (e.g. + ≤ ++) as going from less restrictive
to more restrictive: a variable bound with the mixed polarity is allowed
to appear anywhere; a variable bound with polarity ++ can only appear to
the right of arrows; variables bound with polarity - (resp. +) can appear
to the left of an odd (resp. even) number of arrows; and a variable bound
with the unused polarity can only be used to define constant functions
(much like irrelevance). This modal system is given a composition operation ◦ whose table we
write below: ◦ mixed + ++ - unused

mixed mixed mixed mixed mixed unused

+ mixed + + - unused

++ mixed + ++ - unused

- mixed - - + unused

unused unused unused unused unused unused

a ◦ b is to be understood as the most restrictive polarity a variable can be bound with, such
that it can be used with polarity a in a term that is itself used with polarity b. unused is
the absorbing element and ++ is the neutral element of this operation. It gives rise to a (left)
division operation \, defined such that µ ≤ δ ◦ ν ⇐⇒ δ \µ ≤ ν for any δ, µ, ν. The operations
◦ and \ form a Galois connection.

Typing rules. After attributing a polarity to every variable in context and function domains
(@r x : A), and extending the left-division operation to contexts (r\Γ) variablewise, we introduce
the typing rules of the polarity modal system. We implicitly use Russel-style universes. Note
that the context of the premise of t-El is left divided by unused, which is equivalent to changing
all the annotations in the context to mixed: informally, variable use in type judgements does
not matter.

unused\Γ ` A : Set
t-El

Γ ` A type

Γ ctx Γ ` A type
ctx-Ext

Γ, @r x : A ctx

@r x : A ∈ Γ r ≤ ++
t-Var

Γ ` x : A



Modal function types (t-Pi) use their domain negatively1. Note that left-dividing by - corre-
sponds to inverting the annotation’s polarity, except for ++ which becomes unused. Regardless
of the annotation @r on the variable x, x is bound in the codomain as mixed (the weakest
modality). This is in line with t-El: since usage at the type level does not count, we do not
constrain it.

-\Γ ` A : Set Γ, @mixed x : A ` B : Set
t-Pi

Γ ` (@r x : A)→ B : Set

Γ, @r x : A ` t : B
t-Lam

Γ ` λx.t : (@r x : A)→ B

Γ ` u : (@r x : A)→ B r\Γ ` v : A
t-App

Γ ` u v : B[v/x]

And the monad was free, the (fix)point taken. We implemented the new modal system
and the typing rules presented above in Agda2. Since other modal systems were readily available
— erasure [Dan19, ADV21], irrelevance3, cohesion [LOPS18] — a lot of the infrastructure was in
place. Still, our work highlighted some deficiencies in the current implementation of modalities
[NPE+23]. Using our modified version of Agda, the following annotations are valid and taken
into account by the type checker.

F : @++ Set → Set

F X = Nat → X

G : @- Set → Set

G X = X → Nat

H : @+ Set → Set

H X = (X → Nat) → Nat

Above, only F is strictly positive and can be annotated as such without the type checker
getting in the way. We extended Agda’s positivity checker so that it also uses the polarity
of functions during the analysis, allowing the definitions of both the well-known free monad
construction Free and the least fixed point Mu of any strictly positive functor. Note that F and
A could themselves be annotated ++, we refer to the pull request for more elaborate examples.

data Free (F : @++ Set → Set)

(A : Set) : Set where

Pure : A → Free F A

Free : F (Free F A) → Free F A

data Mu (F : @++ Set → Set) : Set where

In : F (Mu F) → Mu F

Next steps. This work is ongoing and much is left to be done. On the semantics side of
things, a model for the polarity modalities is still eluding us, especially for the ++ polarity,
and it will most likely require looking deeper at directed type theory. The usefulness of our
annotations is hindered by the lack of subtyping in Agda, preventing one to use functions of
type @++ Set → Set wherever Set → Set is expected. Even if manual eta-expansion appeases
the type checker, a user of our annotation system has to redefine all the usual constructions
from scratch. A further complication is the fact that polarity and subtyping can interact in
a non-trivial way [Abe06]. Another question left to be answered is whether it is safe to add
the primitive fmap : (F : @+ Set → Set) (f : A → B) → F A → F B to Agda such that it
knows fmap is terminating and always reduces as expected. While relaxing the strict-positivity
criterion to simply positive data types has been shown to be inconsistent in presence of an
impredicative sort [CP88], one can wonder whether it would be safe in Agda [BMS18]. We also
want to investigate whether our polarity system could replace Agda’s positivity checker entirely,
greatly simplifying the implementation and perhaps even improving type checking performance.

1As remarked by Nuyts [Nuy15, eqs. (2.43, 2.58 modulo typo)], more care is needed if one wants to take
higher categorical structure into account.

2https://github.com/agda/agda/pull/6385
3The Agda implementation does not seem to follow any specific literature for irrelevance.

https://github.com/agda/agda/pull/6385
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