
Read the moodmode and stay positive

Lucas Escot1, Josselin Poiret2, Joris Ceulemans3, Andreas Nuyts3 and Malin Altenmüller4

1 TU Delft, Netherlands
2 ENS de Lyon, France

3 imec-DistriNet, KU Leuven, Belgium
4 University of Strathclyde, Scotland

Languages like Coq and Agda forbid users to define non-strictly-positive data types [AAG05].
Indeed, one could otherwise very easily define non-terminating programs. However, this strict-
positivity criterion is nothing more than a syntactic restriction, which prevents sometimes
perfectly reasonable and innocuous data types to be defined. We present ongoing work on
making positivity checking more modular in Agda, by allowing polarity annotations in function
types and making it possible to enforce the variance of functions simply by type checking.

mixed

- +

++

unused

The polarity modal system. We introduce a new modal system
[GKNB21] aptly called the polarity [AM04, Abe06] modal system. It con-
sists of a partially-ordered set made out of five polarities: unused, -, +,
++ and mixed. These elements correspond to the permitted uses of bound
variables. The polarities are given the partial order shown on the right,
to be read from bottom to top (e.g. + ≤ ++) as going from less restrictive
to more restrictive: a variable bound with the mixed polarity is allowed
to appear anywhere; a variable bound with polarity ++ can only appear to
the right of arrows; variables bound with polarity - (resp. +) can appear
to the left of an odd (resp. even) number of arrows; and a variable bound
with the unused polarity can only be used to define constant functions
(much like irrelevance). This modal system is given a composition operation ◦ whose table we
write below: ◦ mixed + ++ - unused

mixed mixed mixed mixed mixed unused

+ mixed + + - unused

++ mixed + ++ - unused

- mixed - - + unused

unused unused unused unused unused unused

a ◦ b is to be understood as the most restrictive polarity a variable can be bound with, such
that it can be used with polarity a in a term that is itself used with polarity b. unused is
the absorbing element and ++ is the neutral element of this operation. It gives rise to a (left)
division operation \, defined such that µ ≤ δ ◦ ν ⇐⇒ δ \µ ≤ ν for any δ, µ, ν. The operations
◦ and \ form a Galois connection.

Typing rules. After attributing a polarity to every variable in context and function domains
(@r x : A), and extending the left-division operation to contexts (r\Γ) variablewise, we introduce
the typing rules of the polarity modal system. We implicitly use Russel-style universes. Note
that the context of the premise of t-El is left divided by unused, which is equivalent to changing
all the annotations in the context to mixed: informally, variable use in type judgements does
not matter.

unused\Γ ` A : Set
t-El

Γ ` A type

Γ ctx Γ ` A type
ctx-Ext

Γ, @r x : A ctx

@r x : A ∈ Γ r ≤ ++
t-Var

Γ ` x : A

Modal function types (t-Pi) use their domain negatively1. Note that left-dividing by - corre-
sponds to inverting the annotation’s polarity, except for ++ which becomes unused. Regardless
of the annotation @r on the variable x, x is bound in the codomain as mixed (the weakest
modality). This is in line with t-El: since usage at the type level does not count, we do not
constrain it.

-\Γ ` A : Set Γ, @mixed x : A ` B : Set
t-Pi

Γ ` (@r x : A)→ B : Set

Γ, @r x : A ` t : B
t-Lam

Γ ` λx.t : (@r x : A)→ B

Γ ` u : (@r x : A)→ B r\Γ ` v : A
t-App

Γ ` u v : B[v/x]

And the monad was free, the (fix)point taken. We implemented the new modal system
and the typing rules presented above in Agda2. Since other modal systems were readily available
— erasure [Dan19, ADV21], irrelevance3, cohesion [LOPS18] — a lot of the infrastructure was in
place. Still, our work highlighted some deficiencies in the current implementation of modalities
[NPE+23]. Using our modified version of Agda, the following annotations are valid and taken
into account by the type checker.

F : @++ Set → Set

F X = Nat → X

G : @- Set → Set

G X = X → Nat

H : @+ Set → Set

H X = (X → Nat) → Nat

Above, only F is strictly positive and can be annotated as such without the type checker
getting in the way. We extended Agda’s positivity checker so that it also uses the polarity
of functions during the analysis, allowing the definitions of both the well-known free monad
construction Free and the least fixed point Mu of any strictly positive functor. Note that F and
A could themselves be annotated ++, we refer to the pull request for more elaborate examples.

data Free (F : @++ Set → Set)

(A : Set) : Set where

Pure : A → Free F A

Free : F (Free F A) → Free F A

data Mu (F : @++ Set → Set) : Set where

In : F (Mu F) → Mu F

Next steps. This work is ongoing and much is left to be done. On the semantics side of
things, a model for the polarity modalities is still eluding us, especially for the ++ polarity,
and it will most likely require looking deeper at directed type theory. The usefulness of our
annotations is hindered by the lack of subtyping in Agda, preventing one to use functions of
type @++ Set → Set wherever Set → Set is expected. Even if manual eta-expansion appeases
the type checker, a user of our annotation system has to redefine all the usual constructions
from scratch. A further complication is the fact that polarity and subtyping can interact in
a non-trivial way [Abe06]. Another question left to be answered is whether it is safe to add
the primitive fmap : (F : @+ Set → Set) (f : A → B) → F A → F B to Agda such that it
knows fmap is terminating and always reduces as expected. While relaxing the strict-positivity
criterion to simply positive data types has been shown to be inconsistent in presence of an
impredicative sort [CP88], one can wonder whether it would be safe in Agda [BMS18]. We also
want to investigate whether our polarity system could replace Agda’s positivity checker entirely,
greatly simplifying the implementation and perhaps even improving type checking performance.

1As remarked by Nuyts [Nuy15, eqs. (2.43, 2.58 modulo typo)], more care is needed if one wants to take
higher categorical structure into account.

2https://github.com/agda/agda/pull/6385
3The Agda implementation does not seem to follow any specific literature for irrelevance.

https://github.com/agda/agda/pull/6385

Acknowledgements Joris Ceulemans and Andreas Nuyts hold a Phd Fellowship and a Post-
doctoral Fellowship (resp.) from the Research Foundation - Flanders (FWO). This research is
partially funded by the Research Fund KU Leuven.

We would like to thank the TYPES 2023 reviewers for their comments and suggestions.

References

[AAG05] Michael Gordon Abbott, Thorsten Altenkirch, and Neil Ghani. Containers: Constructing
strictly positive types. Theor. Comput. Sci., 342(1):3–27, 2005. doi:10.1016/j.tcs.2005.
06.002.

[Abe06] Andreas Abel. Polarized subtyping for sized types. In Dima Grigoriev, John Harrison, and
Edward A. Hirsch, editors, Computer Science – Theory and Applications, Lecture Notes in
Computer Science, pages 381–392. Springer, 2006. doi:10.1007/11753728_39.

[ADV21] Andreas Abel, Nils Anders Danielsson, and Andrea Vezzosi. Compiling programs
with erased univalence. 2021. Draft. URL: https://www.cse.chalmers.se/~nad/

publications/abel-danielsson-vezzosi-erased-univalence.pdf.

[AM04] Andreas Abel and Ralph Matthes. Fixed points of type constructors and primitive re-
cursion. In Jerzy Marcinkowski and Andrzej Tarlecki, editors, Computer Science Logic,
18th International Workshop, CSL 2004, 13th Annual Conference of the EACSL, Karpacz,
Poland, September 20-24, 2004, Proceedings, volume 3210 of Lecture Notes in Computer
Science, pages 190–204. Springer, 2004. doi:10.1007/978-3-540-30124-0_17.

[BMS18] Ulrich Berger, Ralph Matthes, and Anton Setzer. Martin Hofmann’s case for non-strictly
positive data types. In Peter Dybjer, José Esṕırito Santo, and Lúıs Pinto, editors, 24th
International Conference on Types for Proofs and Programs, TYPES 2018, June 18-21,
2018, Braga, Portugal, volume 130 of LIPIcs, pages 1:1–1:22. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.TYPES.2018.1.

[CP88] Thierry Coquand and Christine Paulin. Inductively defined types. In Per Martin-Löf and
Grigori Mints, editors, COLOG-88, International Conference on Computer Logic, Tallinn,
USSR, December 1988, Proceedings, volume 417 of Lecture Notes in Computer Science,
pages 50–66. Springer, 1988. doi:10.1007/3-540-52335-9_47.

[Dan19] Nils Anders Danielsson. Logical properties of a modality for erasure. 2019. Draft. URL:
https://www.cse.chalmers.se/~nad/publications/danielsson-erased.pdf.

[GKNB21] Daniel Gratzer, G. A. Kavvos, Andreas Nuyts, and Lars Birkedal. Multimodal dependent
type theory. Log. Methods Comput. Sci., 17(3), 2021. doi:10.46298/lmcs-17(3:11)2021.

[LOPS18] Daniel R. Licata, Ian Orton, Andrew M. Pitts, and Bas Spitters. Internal universes in
models of homotopy type theory. In Hélène Kirchner, editor, 3rd International Conference
on Formal Structures for Computation and Deduction, FSCD 2018, July 9-12, 2018, Ox-
ford, UK, volume 108 of LIPIcs, pages 22:1–22:17. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2018. doi:10.4230/LIPIcs.FSCD.2018.22.

[NPE+23] Andreas Nuyts, Josselin Poiret, Lucas Escot, Joris Ceulemans, and Malin Altenmüller.
Proposal: Multimode Agda, 2023. URL: https://github.com/anuyts/public/blob/

1edae3589f9db6f0757699b33f960b1db061e7a4/agda/modal.md.

[Nuy15] Andreas Nuyts. Towards a directed homotopy type theory based on 4 kinds of variance.
Master’s thesis, KU Leuven, Belgium, 2015.

https://doi.org/10.1016/j.tcs.2005.06.002
https://doi.org/10.1016/j.tcs.2005.06.002
https://doi.org/10.1007/11753728_39
https://www.cse.chalmers.se/~nad/publications/abel-danielsson-vezzosi-erased-univalence.pdf
https://www.cse.chalmers.se/~nad/publications/abel-danielsson-vezzosi-erased-univalence.pdf
https://doi.org/10.1007/978-3-540-30124-0_17
https://doi.org/10.4230/LIPIcs.TYPES.2018.1
https://doi.org/10.1007/3-540-52335-9_47
https://www.cse.chalmers.se/~nad/publications/danielsson-erased.pdf
https://doi.org/10.46298/lmcs-17(3:11)2021
https://doi.org/10.4230/LIPIcs.FSCD.2018.22
https://github.com/anuyts/public/blob/1edae3589f9db6f0757699b33f960b1db061e7a4/agda/modal.md
https://github.com/anuyts/public/blob/1edae3589f9db6f0757699b33f960b1db061e7a4/agda/modal.md

