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Abstract 

When a fiber break occurs in longitudinal tension of a unidirectional composite, dynamic stress 

concentrations arise, which can be different from the ones found considering only static loading. The 

current paper analyses the dynamic stress concentration factors (SCF) around a fiber break in 

unidirectional carbon fiber/epoxy composites. 3D finite element models with random and hexagonal 

fiber distributions were analyzed to investigate the evolution of stress concentrations as a function of 

time and position. The results indicate that dynamic effects result in much higher SCFs with a larger 

effective area around the broken fiber. The increase of SCFs in the closest fibers was determined to be 

larger for lower fiber volume fractions due to the presence of dynamic effects. Similar to the static case, 

a lower volume fraction causes higher maximum dynamic SCF in random packings. Results also 

support the high prevalence of coplanar cluster breaks observed in the experiments. 

Keywords: Carbon fiber; Polymer-matrix composites (PMCs); Finite element analysis (FEA); 

Dynamic stress concentrations; Fiber distribution 

1. Introduction  

Multidirectional fiber-reinforced composites often fail when the 0° plies fail. Studying and thoroughly 

understanding longitudinal tensile failure is, therefore, crucial in advancing our overall understanding 

and predictive abilities for many composite applications. Longitudinal tensile failure has received 

extensive attention in the past, and two benchmarking exercises have been organized in recent years1, 2. 

Even though some models were successful in predicting the longitudinal tensile strength in some cases, 

this was likely more a coincidence than a sign of true predictive abilities. When the experimental 

validation is performed based on actual micromechanisms, meaning fiber break and cluster 

development, then all models show strong discrepancies with experiments1, 3, 4. These discrepancies 

have been attributed mainly to the local stress concentrations5, 6, dynamic stress concentrations6-8 and 

issues with the Weibull distribution for fiber strength2, 9, 10. A particularly important discrepancy is the 

higher prevalence of coplanar clusters of fiber breaks in the experiments than in model predictions3, 11, 

12. This discrepancy should be largely independent of the Weibull distribution for fiber strength and is, 

therefore, likely attributed to local or dynamic stress concentrations.  

The effect of local stress concentrations was recently investigated for the first time by Yamamoto et 

al.5, 13. In the present study, we focus on the effect of dynamic stress concentrations, which arise 

immediately after a fiber fractures and releases its stored elastic energy. The conversion from elastic to 

kinetic energy causes a stress wave to propagate through the broken fiber as well as the nearby intact 

fibers. When these stress waves dissipate, the system returns to its steady state where the static stress 

concentrations due to the break exist. 
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The dynamic effect was already included in the very first shear lag model for stress redistribution around 

fiber breaks by Hedgepeth14. Hedgepeth reported a static and dynamic SCF of 33% and 53%, 

respectively, for a 1D packing of fibers. This was reported as a dynamic response factor of 1.53/1.33 =
1.15, making it seem like a modest increase. However, a dynamic SCF of 53% is 60% higher than the 

static SCF in relative terms. Hedgepeth and Van Dyke15 later expanded the analysis from 1D packings 

to 2D packings. Both studies, however, only analyzed the stress concentrations in the fiber break plane. 

Later, more authors studied dynamic stress concentrations. Sakharova and Ovchinskii16-18 studied a 

hexagonal 2D packing and included non-linear matrix behavior. They predicted dynamic SCF values 

that were about twice as high as the static SCFs, which is significantly higher than the 60% predicted 

by Hedgepeth. They also showed that the dynamic SCFs are largest when the fiber volume fraction is 

high16, 17. Ji et al.19 used a similar approach to analyze how the dynamic stress concentrations evolved 

along the fiber. They found that the dynamic response factor reduced from 1.15 to 1.10 along the fiber. 

Such a decrease would contribute to explaining the higher prevalence of coplanar fiber break clusters. 

Accorsi et al.20 developed the first finite element model for dynamic stress concentration in a 1D 

packing. They found dynamic response factors ranging from 1.02 to 1.15. They went a step further than 

previous analyses by also studying the increase in failure probability. This revealed an increase in failure 

probability ranging from 17% to 40% in the fiber break plane. This could help to explain the discrepancy 

related to the coplanarity of clusters. Ganesh et al.21, 22 recently developed a similar approach that used 

a plane-strain finite element model with a 1D packing. They also included interfacial debonding, 

showing that more interface debonding led to lower dynamic SCFs. They used a linear elastic-perfectly 

plastic matrix behavior with varying tensile yield stress values. For the higher yield stress values (200-

270 MPa), the dynamic SCF profiles seemed to reach an equilibrium, but this was primarily attributed 

to the fact that debonding occurred. In any case, the relevance of including matrix plasticity is 

questionable, as the very high strain rates are likely to prevent significant yielding23, 24. 

More recent developments enabled predicting the effect of dynamic stress concentrations on 

longitudinal tensile strength7, 8, 25. Bullegas et al.25 temporarily doubled the static SCF values to represent 

the dynamic effects. Guerrero et al.8 studied the effect of the ratio of dynamic over static SCF on strength 

predictions. Both studies, however, applied the same ratio over the entire stress recovery length. This 

contradicts the predictions of Ji et al.19 and Accorsi et al.20, who observed a significant evolution of this 

factor along the fiber length. Despite the inconsistency, both Bullegas et al. and Guerrero et al. predicted 

only minor strength reductions even for the highest possible dynamic response factor. This may be 

attributed to the perfectly plastic behavior used for the matrix in both studies. 

Tavares et al.7 extended the spring element model of Okabe et al.26 to capture dynamic stress 

concentrations. They were able to capture the evolution of dynamic stress concentrations along the fiber 

length. This is, therefore, a powerful approach to capture the dynamic effects in a strength model in a 

2D packing, as this model predicts fiber break and cluster development as well. However, it remains 

questionable how suitable this approach is for dynamic simulations, as (1) the fiber springs are 1D 

elements and (2) the shear spring stiffness was tuned to capture static stress recovery rather than 

dynamic stress waves. Thus, they might not correctly capture the stress wave propagation. Nevertheless, 

the effects that Tavares et al.7 reported were in line with data reported in the literature, both in terms of 

strength and dynamic stress concentrations. In another study, Tavares et al.27 also developed a full finite 

element model to simulate longitudinal tensile failure, including dynamic effects. However, their model 

was not used to investigate dynamic stress concentrations. In addition, its current implementation likely 

had both a too rough mesh and insufficient time resolution to investigate stress concentrations 

accurately. In a recent study, Barzegar et al.28 modeled the progressive failure and recoil of a fiber using 

the finite element method. The SCFs were analyzed in the break plane during the fiber failure process. 

Although they used a powerful approach and investigated the effects of some microstructural 

parameters in detail, the time resolution was too coarse to capture the dynamic effects after fiber break, 

which resulted in an underestimation of maximum dynamic SCFs. 

Dynamic stress concentrations are observed at timescales of 50 nanoseconds or less, which is out of 

reach for current experimental characterization techniques21. Therefore, this effect should be 

investigated via analytical or computational models. In the present study, we investigate the stress 
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concentrations around a fiber break in unidirectional carbon fiber-reinforced composites considering 

the dynamic effects via a finite element model. This is the first time a 3D finite element model with 2D 

random fiber packing was used to analyze the dynamic stress concentrations in the entire UD composite 

considering their evolution over time with sufficient time resolution. To aid the interpretation, the 

results are always compared to the SCFs obtained for static loading. 

2. Model development and analysis procedure 

3D unidirectional composite models were generated by following the same procedure in29, 30 using the 

finite element analysis software Abaqus 2020. However, to observe the effect of regular fiber packings 

and eliminate the complexities introduced by random fiber packings, models with hexagonal fiber 

packing were also generated and analyzed. Embedded in an epoxy matrix, unidirectional carbon fibers 

with a 3.5 μm fiber radius (𝑅) were randomly positioned. The center coordinates of the fibers were 

generated by the algorithm of Melro et al.31. The fibers were distributed in a cylindrical representative 

volume element (RVE) with 36𝑅 diameter and 120𝑅 length. Hexagonally distributed fibers were 

generated with the code used in Sabuncuoglu32 according to the desired fiber volume fraction (𝑉𝑓). 

Figure 1a and b present the geometry of the RVE with 50% 𝑉𝑓 for randomly and hexagonally distributed 

intact fibers, respectively. One of the fibers is intentionally positioned at the center of the RVE. This 

fiber represents the broken fiber in the RVE. 

 
 

Figure 1. RVE for: (a) random, and (b) hexagonal fiber distribution. 

Transversely isotropic elastic material behavior was assigned to the carbon fibers29. In contrast with 

some of the literature7, 22, 27, we defined the matrix behavior as elastic29. This is more realistic, as the 

polymer matrix will have insufficient time to yield at the high stress wave speeds occurring after a fiber 

break23, 24. Table 1 summarizes the properties of both materials. The models do not include fiber-matrix 

debonding. 

Table 1. Material properties of carbon fiber and epoxy29. 

Material Properties 

Carbon fiber 
𝐸11 𝐸22 𝐸33 𝐺12 𝐺13 𝐺23 𝜈12 𝜈13 𝜈23 𝜌 

230 15 15 13.7 13.7 6 0.25 0.25 0.25 1800 

Epoxy 
𝐸 𝜈 𝜌        

3 0.4 1250        
* Modulus and density (ρ) units are 𝐺𝑃𝑎 and 𝑘𝑔/𝑚3, respectively. 

The analyses were split into two parts for computational efficiency: static and dynamic. In the static 

step, the material was loaded up to the desired strain without any broken fiber. Considering the length 

of the model (𝐿 = 120𝑅), the entire top plane (the farthest plane from the break plane) was displaced 

by a value corresponding to 0.1% applied strain. For larger strain values, the matrix elements just near 
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the broken fiber were distorted excessively in the dynamic step, leading to huge errors in the results. 

Trial analyses with applied strain smaller than 0.1% did not reveal a difference; thus, this strain value 

was considered appropriate for the analysis. At this step, the lateral boundaries were traction free. 

Symmetric boundary conditions were applied to the entire bottom plane, which is the break plane. Thus, 

displacement in the fiber direction (z-axis) and rotations with respect to radial axes (x- and y-axes) were 

prevented for the nodes at bottom surface. After completing the static step in Abaqus/Standard, the 

deformed configuration and related material state of the model were transferred to the beginning of the 

dynamic step (𝑡 = 0) in Abaqus/Explicit. Initial displacements were automatically specified as being 

equal to those at the end of static step. In the dynamic step, the top plane displacement in fiber direction 

was kept fixed while applying symmetric boundary conditions to bottom plane except the middle fiber 

and maintaining lateral boundaries traction free. At this point, the displacement constraint on the bottom 

plane of the central fiber was released and the central fiber became traction free on bottom plane in 

accordance with the improved strategy described in Swolfs et al.33. This action simulated a fiber break, 

and the stress state on the whole material changed over time due to stress waves spreading through the 

material. It should be noted that symmetric boundary conditions were applied to matrix element nodes 

adjacent to the perimeter of the middle fiber, which was suggested to represent a fiber break more 

realistically33. The loading and boundary conditions of static and dynamic steps are shown in Figure 2 

and  

 

Figure 3, respectively. Mass scaling technique was not used in the dynamic step due to the reasonable 

computational times, which were around 2 hours for a computer with 16 GB RAM and 8 processors 

having a clock frequency of 4.5 GHz and 4 cores. 
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Figure 2. Loading and boundary conditions of the static step on: (a) top plane, and (b) bottom plane. 

 

Figure 3. Loading and boundary conditions of the dynamic step: (a) top plane, (b) bottom plane, (c) close-up of the broken 

fiber on bottom plane, and (d) close-up of the interface region of the broken fiber. 

Considering the dynamic SCF results of five fibers closest to the broken fiber, a mesh optimization 

study was performed both in the longitudinal and the radial direction as in30. For the optimized element 

sizes, models are divided into 112 planes in the longitudinal direction with smaller element lengths near 

the break plane (bottom plane), and each model contains over 1 million elements with 75-85% and 15-

25% linear brick and wedge elements, respectively. Figure 2 and  

(a) (b) 
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Figure 3 show the radial mesh structure. 

Models were generated with 70%, 50% and 30% 𝑉𝑓 to investigate its influence on the results. Models 

consist of 249, 166 and 107 fibers, respectively, including the partial fibers at the boundaries. Although 

stresses are larger on elements closer to the broken fiber, stresses on each plane of each fiber were 

calculated by averaging the element stresses on corresponding cross-sections for the same reasons 

explained in29, 34. Firstly, the failure probability of small volumes would be lower due to the higher 

Weibull strength. Also, the possibility of using stress concentration results in a strength model in the 

future makes the average stresses more relevant. By using this average stress concept, the stress 

concentration factor at a particular plane, 𝑧∗, of an individual fiber is calculated by the following 

equation given in29: 

 
𝑆𝐶𝐹𝑎𝑣𝑔(𝑧 = 𝑧 ∗) =

𝜎𝑧,𝑎𝑣𝑔(𝑧 = 𝑧 ∗) − 𝜎𝑧,𝑎𝑣𝑔(𝑧 = 𝐿)

𝜎𝑧,𝑎𝑣𝑔(𝑧 = 𝐿)
∗ 100% (1) 

where 𝜎𝑧,𝑎𝑣𝑔(𝑧 = 𝐿) is the cross-sectional average stress of that fiber on the plane farthest from the 

break plane. As the stress state in the material changes over time, SCFs in the dynamic step were 

calculated for each increment using 𝜎𝑧,𝑎𝑣𝑔(𝑧 = 𝑧 ∗) and 𝜎𝑧,𝑎𝑣𝑔(𝑧 = 𝐿) values at the corresponding 

increment. 

Six different models were prepared to examine the effect of parameters on the dynamic behavior (see 

Table 2). Names of the models were defined according to the packing types and 𝑉𝑓. For example, 

“Rand50” represents a random fiber distribution with 50% 𝑉𝑓, whereas “Hex70” represents hexagonally 

distributed fibers with 70% 𝑉𝑓. The model “Rand50” was used as the benchmark model to examine the 

dynamic SCF and its effects on the composite compared to the static model. The remaining models 

were used to investigate the effect of 𝑉𝑓 and the distribution type on dynamic SCF. In addition, static 

analyses with a broken fiber were performed to obtain static SCF results of these models to observe the 

difference. 
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Table 2. Properties of finite element models. 

Model name Rand30 Rand50 Rand70 Hex30 Hex50 Hex70 

Packing type Random Random Random Hexagonal Hexagonal Hexagonal 

𝑉𝑓 [%] 30 50 70 30 50 70 

 

3. Results and discussions 

3.1. Dynamic response analysis 

Initially, the stresses due to fiber fracture were analyzed for the fibers closest to the broken fiber. Fibers 

were numbered according to their distance from the broken fiber (Figure 4). 

 
 

Figure 4. Positions of the broken fiber and the five fibers closest to the broken fiber in Rand50. 

Figure 5a presents the stress variation on the broken fiber’s top plane (the opposite side of the break 

plane) with 2 ns time increments for model “Rand50”. Approximately at 40 ns, stresses start to deviate 

remarkably, meaning that the stress wave generated on the bottom plane reaches the top plane. This 

duration for the stress wave to reach the top plane can also be estimated by the following calculations: 

Longitudinal wave speed in carbon fiber (𝐶): 

 

𝐶 =  √
𝐸

𝜌
= √

230 ∗ 109 𝑃𝑎

1800 
𝑘𝑔
𝑚3

= 11304 
𝑚

𝑠
= 11304 ⋅ 106  

µ𝑚

𝑠
 (2) 

Distance between bottom and top planes (𝑧): 

 𝑧 = 120 ⋅ 𝑅 = 120 ⋅ 3.5 µ𝑚 = 420 µ𝑚 (3) 

Duration for stress wave to reach the top plane (𝑡): 

 
𝑡 =

𝑧

𝐶
=

420 µ𝑚

11304 ⋅ 106  
µ𝑚

𝑠

= 3.72 ⋅ 10−8 𝑠 = 37.2 𝑛𝑠 (4) 

This calculated value of 𝑡 is close to the 40 ns determined from the analysis, confirming the accuracy 

of the analysis. In Figure 5b, the stress variation in the break plane is presented for a fiber near the 



Journal of Reinforced Plastics and Composites (2023) 

DOI: doi.org/10.1177/07316844221145 

 

8 

 

lateral boundary of the model with 0.5 ns increments. The magnitude of the stress starts to deviate 

remarkably around 30 ns, which means that the stress wave reaches the lateral boundary around this 

time. Therefore, all remaining dynamic SCF results are presented up to 30 ns with 0.5 ns time 

increments for more accurate results. Thus, the RVE dimensions (36R diameter, 120R length) are large 

enough for the results to be unaffected by the model size. 

Figure 6 reveals the variations of maximum dynamic SCFs of the five closest fibers in model “Rand50” 

(see Figure 4 for the packing). Each indicator represents the maximum value along the corresponding 

fiber at the specified time. Note that these maximum values were extracted from either the break plane 

or near the break plane (𝑧/𝐿 < 2%). Moreover, the maximum dynamic SCFs of these fibers obtained 

in the entire time interval are presented in Table 3, together with the ratio of the radial distance of the 

corresponding fiber over the fiber radius (𝑑/𝑅), maximum static SCF and ratio of dynamic to static 

SCF (defined as max SCF ratio). Note that 𝑑 is the radial distance between the surfaces of the broken 

fiber and the fiber that was analyzed. Results show that the dynamic case creates much larger SCFs than 

the static case. This results in a much higher failure probability of the intact fibers and, accordingly, 

would reduce the predicted strength properties for a unidirectional composite. 

 

 
 

Figure 5. Stress variations in the “Rand50” model: (a) on the top plane (opposite side of the break plane) for the fiber 

closest to the broken fiber, and (b) on the break plane for a fiber near the lateral boundary of the model 

(a) 

(b) 
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Figure 6. Variation of maximum dynamic SCFs obtained along the closest 5 fibers. The static SCF values are included as 

straight, dashed lines to facilitate the comparison. 

Figure 6 reveals that the dynamic SCFs start to increase earlier for closer fibers as their radial distance 

to the broken fiber is smaller. For each fiber, the dynamic SCF reaches a maximum value and then 

fluctuates around the corresponding static one. As the closest two fibers are much closer than the 3rd, 

4th, and 5th ones, SCFs are concentrated on these two fibers for both static and dynamic cases. However, 

the 3rd, 4th, and 5th closest fibers have a higher maximum SCF ratio than the two closest fibers (see Table 

3). This indicates that the importance of the dynamic effects is more significant for the 3rd, 4th, and 5th 

closest fibers, at least in relative terms to the static case. The dynamic SCFs on these fibers are so high 

(13.3%, 8.4% and 7.7%, respectively) that they are close to the static SCFs of the two closest fibers. 

Table 3. Maximum SCF results of the closest five fibers 

Fiber 1st 2nd 3rd 4th 5th 

𝑑/𝑅 0.18 0.48 0.93 1.10 1.50 

Max. dynamic SCF [%] 27.4 16.9 13.3 8.4 7.7 

Max. static SCF [%] 16.6 9.7 5.6 4.1 2.8 

Max SCF ratio 1.66 1.74 2.39 2.05 2.76 

 

The early works on dynamic SCF14, 15 also used the max. SCF ratio, albeit using (1+SCF) in calculating 

the ratio. This ratio may give the impression that the dynamic stress concentrations are more severe on 

fibers farther away from the broken fiber. However, both the dynamic and static SCFs on those fibers 

are significantly smaller and hence less relevant for the composite strength. It is therefore also useful to 

compare how the maximum SCF ratio and the maximum SCF difference depend on 𝑑/𝑅, as presented 

in Figure 7a and Figure 7b, respectively. The maximum SCF difference is the difference between the 

maximum dynamic and static SCFs. For the closest two fibers, the dynamic to static SCF ratios are 

close to 2 (see Table 3), and the differences between them are relatively high (see Figure 7b). Even the 

3rd closest fiber has both a high SCF ratio and a high SCF difference. Therefore, the presence of dynamic 

effects puts these fibers in a more critical condition. 

Figure 7b reveals that the maximum SCF difference has a decreasing trend with radial distance, as both 

dynamic and static SCF results are smaller for fibers farther from the broken fiber. Despite the 

decreasing trend in maximum SCF difference, the maximum SCF ratio is higher for fibers farther away 

from the broken fiber. This shows that such fibers are affected more by the dynamic effects in relative 

terms (see Figure 7a) but not in absolute terms (see Figure 7b). Therefore, the maximum SCF ratio 
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values previously reported in the literature should be interpreted with care. Because the dynamic effects 

increase the SCF values more on nearby fibers than fibers farther away (see Figure 7b), the presence of 

the dynamic effects should increase the localization of clusters rather than delocalizing them. Including 

dynamic effects in strength models should therefore create more coplanar clusters, bringing them more 

in line with experimental observations3, 35. 

  

Figure 7. Variation of maximum (a) SCF ratio, and (b) SCF difference with respect to d/R. 

Figure 8a presents the variation in maximum SCF ratios along the fiber direction for the closest two 

fibers. In addition, Figure 8b presents the maximum SCF difference along the closest two fibers. These 

curves are plotted for the moments the maximum dynamic SCFs are obtained (t = 9 ns and t = 10 ns for 

the 1st and 2nd closest fibers, respectively, see Figure 6). Thus, the most critical fibers in the whole 

material are examined in these figures at their most critical time increments. The maximum SCF ratio 

reaches its local maxima approximately at 𝑧/𝑅 = 9 and 𝑧/𝑅 = 10 for the 1st and 2nd closest fibers, 

respectively. This ratio is close to “2” at the break plane. The regions at 𝑧/𝑅 = 9 and 𝑧/𝑅 = 10 seem 

to be more critical at first sight. However, the SCF difference and dynamic SCF are much larger on 

break plane and in its neighborhood, which results in a higher probability of a break taking place in the 

vicinity of these regions. This does not mean the regions around 𝑧/𝑅 = 9 and 𝑧/𝑅 = 10 are not critical, 

as the dynamic SCF is 10 times higher than the static one for at least two fibers at those axial distances. 

(a) (b) 
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Figure 8. Variation in maximum: (a) SCF ratio, and (b) SCF difference along the fiber axis at t=9 ns and t=10 ns for the 1st 

and 2nd closest fibers, respectively. 

Two more local maximum values far from the break plane can be seen in Figure 8a (at 𝑧/𝑅 = 23 and 

𝑧/𝑅 = 22). The SCF difference is negative in those regions, which means that both dynamic and static 

SCFs are negative. Therefore, results for these regions can be disregarded and considered not critical at 

those corresponding times. Note that negative SCF means that the fiber is under tension with a stress 

level smaller than the nominal level. Such negative SCFs were also reported in the literature29, 36. The 

rapid decrease in maximum SCF difference in Figure 8b implies that dynamic effects make the 

development of coplanar clusters more likely. Although not presented, fibers farther away from the 

broken fiber were also examined, and this rapid decrease in maximum SCF difference was not observed 

on those fibers. Thus, this effect is localized to the closest fibers only. In addition, the maximum SCF 

ratio and difference for the closest fiber were examined for other time increments, and the decrease was 

less sharp than the ones in Figure 8b on the farther planes where dynamic SCFs are significant. Dynamic 

effects, therefore, make it more likely that the next fiber break will appear near the break plane rather 

than further away from it. This finding contributes to the experimental observation that coplanar clusters 

are more common than predicted by state-of-the-art strength models for longitudinal tensile failure that 

consider only static stress concentrations3, 35. 

3.2. Effect of fiber volume fraction 

Figure 9 presents the maximum dynamic SCF change in the closest fiber for 30%, 50% and 70% 𝑉𝑓 in 

a random fiber packing. Again, these maximum values were found on the break plane or just near the 

break plane (𝑧/𝐿 < 0.5%). As the radial distance of the closest fiber is smaller for higher 𝑉𝑓, the SCF 

in the “Rand70” model reaches its peak value sooner than the others. One may expect to find the largest 

(a) 

(b) 
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peak value in the “Rand30” model due to the lack of shielding effect explained in Swolfs et al.29. 

Packings with a large 𝑉𝑓 will tend to have more nearby fibers, which contribute to carrying the SCFs. 

The 𝑑/𝑅 values of the closest three fibers in “Rand70” are 0.04, 0.19 and 0.19, which are smaller than 

the 𝑑/𝑅 value of the closest fiber in “Rand30” (0.37) (see Figure 10). Therefore, the stress from the 

broken fiber is shed to more neighboring fibers in “Rand70”, which should result in smaller SCF on the 

closest fiber in “Rand70” compared to “Rand30”. However, this is not the case in Figure 9. The largest 

peak value was found in the “Rand70” model. This may be caused by the SCF being inversely 

proportional to the radial distance of a fiber to the broken fiber because fibers in the “Rand70” model 

were located closer to the broken fiber than those in the “Rand 30” model. This proximity effect and 

the shielding effect counteract each other. To further illustrate this, two new models with 30% and 50% 

𝑉𝑓 were created to remove the effect of the radial distance of the closest fiber. The closest fiber in these 

new models was repositioned to have the same radial distance to the broken fiber as in “Rand70”. The 

positions of the rest of the fibers were left unchanged. 

 

Figure 9. Variation in maximum dynamic SCF of the closest fiber for different fiber volume fractions with random packing. 

 

Figure 10. Positions of the fibers closest to the broken fiber: (a) three closest fibers in “Rand30”, and (b) four closest fibers 

in “Rand70”. 

Figure 11 reveals the variation in dynamic SCF of the closest fibers for their new positions. The results 

were found either on the break plane or just near the break plane (𝑧/𝐿 < 0.1%), as those in Figure 9. 

As the radial distance of the closest fiber to the broken fiber is the same for all models, the dynamic 

SCFs initially increase similarly in all models. Different from the results in Figure 9, the highest and 

the lowest peaks were found in “Rand30” and “Rand70”, respectively. This validates the existence of 

1 

2 

3 

1 

2 

3 
4 

Broken 
Broken 

(a) (b) 
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shielding effect mentioned above: more neighboring fibers share the excess load in higher 𝑉𝑓 resulting 

in lower dynamic and static SCFs. The closest fibers were intentionally placed at the same radial 

distance in these particular models. Due to the randomness of fiber positions in a real composite, a 

definite conclusion regarding the effect of 𝑉𝑓 on the SCF of the closest fiber cannot be deduced due to 

the mentioned counteracting effects that take place when 𝑉𝑓 changes. 

 

Figure 11. Variation in maximum dynamic SCF of the closest fiber for different fiber volume fractions with modified radial 

distance in random packing.  

In addition to the closest fiber, both dynamic and static SCFs are examined for farther fibers in the 

original models with 30%, 50% and 70% 𝑉𝑓 (Figure 12). Each indicator represents the maximum 

dynamic and static SCFs found along each fiber during the entire time interval. For both dynamic and 

static cases, the trend lines are higher for lower 𝑉𝑓. This means that SCFs at the same distances are 

higher for lower 𝑉𝑓, which is caused by the shielding effect mentioned above. Also, all the results 

presented up to 𝑑/𝑅 = 3 were found on the break plane or just near the break plane (𝑧/𝐿 < 3%), while 

some of them were found on farther planes for 𝑑/𝑅 > 3. This also justifies the possibility of higher 

prevalence of coplanar breaks in case of a fiber break. 

Maximum dynamic to maximum static SCF ratios and maximum SCF differences of “Rand30”, 

“Rand50” and “Rand70” are investigated in Figure 13. SCF ratios of the few closest fibers in all three 

models are close to each other. However, higher 𝑉𝑓 results in higher ratios for farther fibers. “Rand50” 

and “Rand70” models result in larger maximum SCF differences for the closest fibers. However, 

considering the whole graph, a lower 𝑉𝑓 results in higher maximum SCF differences. 
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Figure 12: Change in maximum dynamic and static SCFs with 𝑑/𝑅 for different 𝑉𝑓 with randomly distributed fibers. 

  
Figure 13: Change in maximum SCF ratios and SCF differences with 𝑑/𝑅 for different 𝑉𝑓 with randomly distributed fibers: 

(a) maximum SCF ratios, and (b) maximum SCF differences. 

Given the inherent variation in random fiber packings, it is not easy to derive strong conclusions from 

such packings on the effect of 𝑉𝑓. To avoid this random fiber distribution effect, the maximum dynamic 

SCF results of the closest fiber are analyzed for the models in which the fibers are distributed in a 

regular hexagonal packing (“Hex30”, “Hex50” and “Hex70”) (Figure 14). In the hexagonal packing, 

radial distances of the closest six fibers and, therefore, the maximum dynamic SCFs on those fibers are 

equal in a single RVE. The radial distances of the fibers are coupled with 𝑉𝑓. As there are more fibers 

in a model with higher 𝑉𝑓, radial distances get smaller with increasing 𝑉𝑓. 

(a) (b) 
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Figure 14: Hexagonal packings with: (a) 70%, and (b) 30% 𝑉𝑓 

Figure 15 reveals that the closest fiber in “Hex70” has the largest maximum dynamic SCF, followed by 

those in “Hex50” and “Hex30”. In this regular distribution of fibers, all the 6 intact nearest fibers are 

equidistant to broken fiber, regardless of 𝑉𝑓. Therefore, intact fibers are positioned closer to the broken 

fiber when 𝑉𝑓 increases, and the proximity effect is observed. However, the shielding effect cannot be 

observed since the additional load is always shared by the same number (6) of intact fibers. 

 

Figure 15. Variation in maximum dynamic SCF of the closest fiber for different fiber volume fractions with hexagonal 

packing. 

As seen in Figure 15, hexagonal fiber distribution resulted in higher peak SCF results for higher 𝑉𝑓 as 

radial distances of the intact fibers are coupled with 𝑉𝑓. However, it is the opposite for random fiber 

distribution, where counteracting shielding effect becomes dominant (Figure 11). Thus, these results 

show the importance of using random fiber distribution in computational methods for more accurate 

SCF results due to the random nature of fiber positions in real microstructures. 

4. Conclusion 

Stress concentrations in unidirectional carbon-epoxy composites were investigated for the case of a 

single fiber break, including dynamic effects. These were analyzed for different distributions and fiber 

volume fractions. The results show that the dynamic effects cause significantly larger SCFs than in 

static loading. The relative SCF increase in farther fibers is higher, and a larger area around the broken 

fiber is affected by the fiber break when dynamic effects are included. Considering the SCFs on the 
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closest fiber at the most critical time increment, the increase in SCF due to dynamic effects was highest 

near the break plane. This can therefore contribute to explaining the higher prevalence of coplanar 

clusters observed in experiments versus in models3. Therefore, we suggest that dynamic effects should 

be considered in longitudinal tensile strength models. 

For random fiber distribution, higher 𝑉𝑓 resulted in lower maximum SCF, which was shown to be due 

to the shielding effect caused by the existence of more close fibers contributing to carrying the SCFs in 

composites with higher 𝑉𝑓. For hexagonal packing, the opposite was obtained due to the smaller radial 

distance of the closest fiber. Therefore, this study showed that not only the 𝑉𝑓 but also the locations of 

the fibers play a key role in the SCFs on the fibers. 

Future work will implement these dynamic stress concentrations in a fiber break model to assess their 

effect on the strength, cluster development and coplanarity of the clusters. 

Data Availability  

The raw/processed data required to reproduce these findings can be obtained from the corresponding 

author upon request. 
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