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Abstract. Additive manufacturing is making it possible to increase the

complexity of designed mechanical structures. However, the variability

inherent to this manufacturing process can influence significantly the

performance of structural elements, specially in phononic crystals and

metamaterials since their working principles relies on the repetition of

identical cells with a dedicated designed geometry. In this work, first,

a design of experiments approach is applied to a determine a sampling

strategy in order to characterize an additive manufacturing machine.

Then, mechanical properties of the samples are inferred using material

properties measured with an ultrasound transducer. The material den-

sity was measured using the weight of the samples, both dry and im-

mersed in water, using the buoyancy force expression. It is known that
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the elastic modulus measured via ultrasound is biased. Therefore, the

distributions inferred using ultrasound measurements were updated us-

ing experimental forced responses of sample rods and dynamic models

via the Spectral Element Model. Updated values are used in statistical

regression modeling to infer the stochastic field over print are of the 3D

printer. The presented work is a first step in the longer term research

goal: to show how to model the overall variability of a given additive

manufacturing process, which is usually obtained in the statistical pro-

cess control, and explain how to use it in the design of robust phononic

crystal and metamaterial designs. The printing direction presented a sta-

tistically significant relationship with the elastic modulus and with the

mass density, while only the printing direction presented a statistically

significant relationship for the shear modulus.

Keywords: uncertainty quantification, statistical regression, statistical

inference, Kernel smoother

1 Introduction

Geometrically complex designs, which includes metamaterials and phononic

crystals, can be printed using additive manufacturing [14]. However, the variabil-

ity of such manufacturing process can influence substantively the printed struc-

tures, specially the mechanical properties [16] are more impacted than what

occurs typically in other manufacturing processes [15,?] and, thus, statistical

process control can be a tool to assure that the manufacturing process will co-
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incide with the design [18]. The inferred variability can be propagated through

a deterministic model to obtain the stochastic result, and it can be used in a

robust optimization approach as showed in [2].

The objective of this research is to show how statistical modeling can be ap-

plied to the data obtained from statistical process control to estimate stochastic

fields that represents the variability of the mechanical properties of 3D printed

parts. This estimation can be, for instance, combined with a robust optimization

for designing phononic crystals and metamaterials that are robust against these

types of variability.

2 Design of experiments

In the current research, we assumed variability in the mass density (ρ),

Young’s modulus (E), and shear modulus (G). The samples were defined as rect-

angles, and these variables were assumed as dependent variables, which could

be tested if they are statistically related to the independent variables: thickness

(T ), printing position (P = {Px, Py, Pz}), which is the position the parts are

printed inside the 3D printer, printing direction (D = {Dx, Dy, Dz}). In addi-

tion, samples were taking over the weeks to see if the machine settings would

influence the mechanical properties. For this paper a 3D Printer of the type

”Prusa MK3S” with a print volume of approximately 11 dm3 and making use

of the fused deposition modeling technique, is studied. In addition, by taking

samples over the time, the assumption of the variability being the same over
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the time due to substantive changes in the used material and the setting were

checked through statistical test.

Before the measurements, we assumed each observation for E follows a nor-

mal distribution with mean 2.1 and standard deviation 0.5, as found by [3]

in a similar manufacturing process, and consequently, the mean follows a t-

distribution. Assuming the α value was defined as 5%, and the type II error for

11 statistical degrees-of-freedom for a distribution XA with mean X̄A 1.5 distant

from X̄ is lower than 0.001%, and assuming that no more than 4 variables are

going to be tested at the same time, the sample size of 15 is defined.

Each week, for 3 weeks, 15 samples were printed in one print, whose position

were defined via dividing the batch into 216 (6 on x direction, 6 on y direc-

tion, and 6 on z direction) smaller boxes of 30x30x30 mm. Then, the printing

position of each sample were defined via taking samples without replacement

from a discrete uniform distribution U(1, 6) for x, y, and z directions, defin-

ing, thus, the vector P . Hence, rectangular parallelepipeds with dimensions of

1.5d1x1.5xd1xd1 mm, were defined, where the term 1.5d1 was sampled from the

continuous uniform distribution U(5, 25). Thus, the thickness can be defined as

T = d1. The variable time was also included in the analysis as week number (0,

1, 2).

For each sample, the values of E and G were observed using a Olympus

38DL Plus acquisition system with the M106 and V152 longitudinal shear wave

contact ultrasound transducer of 2.25 MHz. The mass density was estimated

using the highly precise Acculab Atilon scale where the samples weights were
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measured dry and submerged in water. Once the estimations of E, G, and ρ are

done, their statistical relationships with the independent variables can be made

using statistical regression modeling.

3 Statistical regression models

For each dependent random variable, the vector of values y can be defined

and modeled using the matrix of observations of independent variables weighted

by the parameter vector β as presented in Eq. (1) [10].

y = Xβ + ε. (1)

Assuming that each element on vector ε follows a normal distribution with

zero mean and variance σ2, and that all these distributions are independent from

each other, i.e., ε ∼ N(0, σ2INiv ), where INiv is the identity matrix. Then, the

maximum likelihood estimator to estimate β and σ2 are respectively given by

[9]

β̂ = (X ′X)−1X ′y, (2a)

σ̂2 =
(y −Xβ̂)′(y −Xβ̂)

N
. (2b)

After that, statistical test can be applied to test the hypothesis of βj being

statistically significant, i.e., βj ̸= 0 using a significance level of 5% [9].

The relationships between the dependent variables E, G, and ρ, with the

independent variables T , P , and D were also verified. Variables P and D were

included as random variables (δ(Pc) and δ(Dc) with c = {x, y, z}) [11], where 0
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indicates absence and 1 presence of these variables. All the combinations of the

independent variables at the power of one, two and three were used in the analy-

ses. The Akaike information criterion [7,8] was in the selection of the models that

presented statistically significant parameters and presented valid assumptions.

The Breusch–Pagan test [4] was used to check if the variance is the same for

all the terms in the vector ε, the Shapiro–Wilk test [5] was used to verify the

normality, and the Durbin–Watson [6] test was used to verify the assumption of

independency on the residuals.

Using the proposed methodology, the stochastic regression models in Eq. (3)

were obtained.

Em ∼ N(2.9740 + 0.34445× (δ(Px) + δ(Py)), 0.4035), (3a)

Gm ∼ N(1.1247 + 0.1200× (δ(Px) + δ(Py)), 0.2718), (3b)

ρm ∼ N(1.1956 + 0.0036× (δ(Px) + δ(Py)), 0.0974). (3c)

As is can be observed by the estimated equations, the parts printed in the

z direction have significantly lower Young’s modulus, shear modulus, and mass

density than the parts printed in x and y directions.

3.1 Kernel smoother

Using the models in Eq. (3), discrete samples of E, G, and ρ in the three-

dimensional space can be defined as the vectors of length n E3d, G3d, and ρ3d.

When premultiplying one of those vectors by the Kernel matrix K. The sampled
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vector can be made smoother, whose r-th row and s-th column element is given

by

Krs =
fK
Ä
d3d,r−d3d,s

zeta

ä
∑n

s=1 fK
Ä
d3d,r−d3d,s

ζ

ä (4)

where the function fK(d) can be an exponential function of the spatial distance

(d) between d3d,r and d3d,s with correlation length ζ [12,13].

The 1,000 samples of the spatial E, G, and ρ sampled from Eq. (3) and

smoothed using the Kernel smoother, whose elements are given by Eq. (4), are

illustrated in Fig. 1.

Two samples of the smoothed E3d, G3d, and ρ3d are illustrated in Fig. 2. For

a large enough samples, after convergence of the Monte Carlo method, the three-

dimensional spatial field of E, G, and ρ can be simulated. Figure 3 illustrates two

samples of the smoothed field of the mechanical properties on a specific frame

structure.

4 Final remarks

In the current research, we have used some data, simulating the data from a

statistical process control from a manufacturing process and we have showed how

to infer and estimate the variability via stochastic field. The estimated stochastic

field can be used to check is the manufacturing process is under control and ir

can be used in a robust optimization, via combining engineering design and

statistical process control. In the current research, we found a significant lower

Young’s modulus, shear modulus, and mass density for the parts printed in z

direction than the ones printed in x and y directions.
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(a)

(b)

(c)

Fig. 1: Illustration of two simulated field of E3d (a), G3d (b), and ρ3d (c) with

1,000 samples each. The straight line is the field mean, the dashed lines are the

intervals that contains one, two, and three standard deviations.
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Fig. 2: Two raw (red dots) then smoothed (blue lines) samples of the stochastic

fields of Young’s modulus (a), shear modulus (b), and mass density (c).
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(a)

(b)

(c)

Fig. 3: Illustration of two smoothed samples of E3d (a), G3d (b), and ρ3d (c)

with n = 100.
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