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Abstract
Cardiac surgery on cardiopulmonary bypass (CPB) is associated with postoperative renal dysfunction, one of the
most common complications of this surgical cohort. Acute kidney injury (AKI) is associated with increased short-
term morbidity and mortality and has been the focus of much research. There is increasing recognition of the role
of AKI as the key pathophysiological state leading to the disease entities acute and chronic kidney disease (AKD
and CKD). In this narrative review, we will consider the epidemiology of renal dysfunction after cardiac surgery
on CPB and the clinical manifestations across the spectrum of disease. We will discuss the transition between
different states of injury and dysfunction, and, importantly, the relevance to clinicians. The specific facets of
kidney injury on extracorporeal circulation will be described and the current evidence evaluated for the use of
perfusion-based techniques to reduce the incidence and mitigate the complications of renal dysfunction after
cardiac surgery.
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Introduction

Cardiac surgery is associated with a spectrum of ad-
verse renal events, including acute kidney injury (AKI),
acute kidney disease (AKD) and chronic kidney disease
(CKD). The AKI state is associated with increased
short-term morbidity and mortality, before potentially
transitioning into AKD and CKD, with their attendant
effect on longer-term outcomes.1,2 As the key to both
early and late disease burden, there has been much
interest in the study of cardiac surgery-associated AKI
(CSA-AKI).

CSA-AKI is best defined by Kidney Disease Im-
proving Global Outcomes (KDIGO) criteria as an
AKI within one-week of cardiac surgery.3,4 It is the
outcome of numerous pathophysiological insults,
one of which is the use of extracorporeal oxygenation
and perfusion using cardiopulmonary bypass (CPB).
Despite this major role in the pathogenesis of CSA-
AKI, the avoidance of CPB has not reliably reduced
the incidence of CSA-AKI or longer-term renal
outcomes.5–8 This evidence does not diminish the
importance of CPB in causing renal dysfunction, but
rather reflects the importance of the multifactorial

aetiology of the disease, and in particular the im-
portance of the haemodynamic changes during off-
pump surgery.9

This narrative review will describe the specific
pathophysiology of CPB use with respect to renal
dysfunction, and the impact it has upon the three
domains of renal dysfunction (i.e. AKI, AKD and
CKD) will be discussed. Finally, an updated state of
the literature with relation to perfusion-based strat-
egies will be considered.
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Definitions and epidemiology

Acute kidney injury

CSA-AKI is a state of potentially reversible acute organ
damage or dysfunction defined by deranged functional
markers (serum creatinine (sCr) or urine output (UO),
most appropriately using the thresholds sets out in the
KDIGO criteria) within one week of cardiac surgery.3,10

This term incorporates the entity of AKI-CPB (AKI
occurring after CPB), a major contributor to CSA-AKI,
however it is a more specific term with overlapping
pathophysiology.

The incidence of CSA-AKI is in the range of 5–
40%.3,11 The incidence of lower severity injury is greater
than for more severe injury, although the idiosyncrasies
of cardiac surgery often render the staging criteria less
accurate than in other contexts.12,13 A more specific
incidence of AKI-CPB is 20–30%, with up to 5% re-
quiring renal replacement therapy (RRT).14,15 AKI-CPB
is associated with a two-fold increase in early mortality
regardless of the AKI definition employed.16

The incidence of AKI varies by classification system
used, with varying sensitivity and specificity amongst
the different definitions. One meta-analysis demon-
strated a CSA-AKI incidence of 24.2% by KDIGO
criteria, compared with 18.9% by RIFLE (Risk Injury
Failure Loss End-Stage) and 28.0% by AKIN (Acute

Kidney Injury Network) classifications.12 The AKIN
classification has increased sensitivity for AKI compared
to the RIFLE classification, reflecting that small incre-
ments in sCr (0.3–0.5 mg/dL) are independently asso-
ciated with increased 30 days mortality. However, the
AKIN classification may miss AKI occurring after
48 hours.12,17–20 The KDIGO Criteria combines these
two classifications and has further improved sensitivity
and predicts in-hospital mortality, although mortality is
similar across all three systems.12,17,21,22 This classifi-
cation schema has reached consensus recommendation
for use in cardiac surgery (Figure 1).23

The KDIGO classification is particularly suited for
AKI-CPB as the incorporation of both sCr and UO
criteria reflects the unique physiological challenges
posed by CPB. Haemodilution from the circuit priming
volume results in a postoperative sCr that may be below
preoperative baseline and fails to reflect reduced renal
function, particularly in the early postoperative period.23

Alternatively, in this volume-loaded state UO may be
falsely reassuring, however a reduction in this value,
irrespective of sCr concentration, is strongly indicative
of dysfunction.

Importantly, this classification system is not designed
specifically for use in the cardiac surgical population. As
such, sCr and UO must be interpreted in the context of
current fluid balance (FB) to avoid underdiagnosing

Figure 1. Diagnosing renal dysfunction following cardiac surgery. AKI: Acute kidney injury; CKD: Chronic kidney disease; GFR:
Glomerular filtration rate; IGFBP7: Insulin growth factor binding protein 7; KDIGO: Kidney disease improving glocal outcomes; RRT:
Renal replacement therapy; sCr: Serum creatinine; TIMP-2: Tissue inhibitor of metalloproteinase-2; UO: Urine output.
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AKI after CPB, although the practicalities of this limit
clinical applicability.24 In a single-centre study (n =
1016) early relative changes in sCr adjusted for cumu-
lative FB, were predictive for subsequent AKI after valve
surgery.25 Furthermore, in another large retrospective
single-centre study, adjusted sCr for FB did not reassign
any patient from AKI status to non-AKI, but did increase
the incidence of AKI (25.3% vs 37.2%, p < 0.001). FB-
adjusted sCr-diagnosed AKI increased incidence of poor
outcomes (including intensive care unit (ICU) mortality
and RRT requirement) compared with non-AKI patients.
Outcomes were worse in patients with an AKI diagnosis
by unadjusted criteria, reflecting that adjustment may
increase sensitivity, but the original criteria-based diag-
nosis is more specific for a more injured state.26

Classification using these functional markers (sCr
and UO) is further limited by sCr being affected by
factors not related to glomerular filtration rate (GFR),
including reduced creatinine production in the physi-
ologically deconditioned cardiac surgery patient. Fur-
thermore, these markers do not localise the injury.21

Novel biomarkers are of increasing interest and are
discussed below.

Subclinical cardiac surgery-associated-acute
kidney injury

Subclinical AKI is a state of renal cellular stress or
damage, defined by the presence of raised appropriate

biomarkers, in the absence of deranged functional
markers such as creatinine.27 This entity is of increasing
clinical importance as recognition enables earlier in-
tervention, which has heralded improved outcomes in
several studies.28–32

Novel biomarkers of renal stress or damage have been
incorporated into a schema for the identification of a
subclinical injury state, which avoids a number of the
aforementioned shortcomings of solely using functional
markers.27 Alternatively, these biomarkers can be used
for the prediction of subsequent KDIGO-defined AKI.
Examples of biomarkers and their uses during and after
CPB are shown in Table 1.10,27–29,33–41

Acute kidney disease

AKD has been defined as a condition of KDIGO-defined
AKI persisting for ≥ 7 days after the inciting AKI event,
in this specific case, cardiac surgery on CPB.42 However,
this limited definition fails to capture with sufficient
sensitivity the spectrum of deterioration in renal
function which may occur. As this state represents a key
transition phase for permanent impairment, a wider
definition with both functional and structural/damage
criteria has been proposed (Figure 1). This includes the
KDIGO AKI criteria, as well as defined reductions in
GFR (GFR <60 mL/min/1.73 m2 or decrease in GFR by
≥ 35% from baseline), increased sCr >50%, or devel-
opment of a significant albuminuria.43 Persistence of

Table 1. Novel renal cellular stress/damage biomarkers and their potential use in cardiac surgery on CPB.

Novel biomarker Biomarker origin and function

[TIMP-2]x[IGFBP7] Cell cycle arrest proteins released after ischaemia-reperfusion injury
May predict AKI as early as 1 h after commencement of CPB
Peak intraoperatively and at 6 h postoperatively
Measurement at 4 h post-CPB has been used to guide a care bundle intervention to reduce
incidence of severe CSA-AKI

Neutrophil gelatinase-associated
lipocalin (NGAL)

Released by proximal tubular epithelia after injury
Urinary and serum levels have diagnostic and prognostic functions
Urinary levels can guide diagnosis from 2 h after CPB and on ICU admission

Cystatin C Protease inhibitor which is freely filtered by glomerulus
Crucially, not a stress/damage marker, but a functional marker
Diagnostic for AKI (serum or urinary)

Kidney injury molecule-1 (KIM-1) Released into urine after tubular damage
Prediction of AKI 2 h after CPB

Interleukins (IL) – 6 and 18 Proinflammatory cytokines found in serum after tubular damage
Prediction of AKI within 6 h after CPB

Free haemoglobin A trigger of oxidative stress involved in AKI
Of particular relevance to AKI-CPB, given the risk of haemolysis in the extracorporeal
circulation

An elevated level (compared to baseline) at the end of CPB may predict AKI development

AKI: Acute kidney injury; AKI-CPB: Acute kidney injury after cardiopulmonary bypass; CPB: Cardiopulmonary bypass; CSA-AKI: Cardiac surgery-
associated acute kidney injury; ICU: Intensive care unit; IGFBP7: Insulin growth factor binding protein 7; TIMP-2: Tissue inhibitor of metalloproteinase-2.
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this state beyond 90 days should be reclassified as
CKD.42

Cardiac surgery patients are vulnerable to pre-, intra-
and postoperative physiological insults, and whilst use of
CPB intraoperatively may be the major inciting event,
ongoing pathological insults postoperatively can con-
tribute to ongoing dysfunction, which may be different
to AKI in other contexts. However, AKD remains a
useful concept, marking an ongoing period of potential
intervention to improve renal, and other, outcomes. In
other settings patients may present with AKD, but
within the context of cardiac surgery, with close renal
monitoring and often lengthier postoperative inpatient
admissions than for major non-cardiac surgeries, the
transition is more likely to be clinically observed.
However, with increasing uptake of enhanced recovery
after cardiac surgery (ERACS) patients may be dis-
charged prior to derangement of functional markers
(and an identifiable AKI state), and are later instead
recognised as AKD/CKD.44

Few studies have specifically investigated AKD after
cardiac surgery. In one study, AKD was defined as an
increased sCr at least 1.5x baseline >7 days after cardiac
surgery, which is crucially different to the recently
harmonised definition given above, instead using the
previous Acute Disease Quality Initiative (ADQI) 16
workgroup definition.42 In this study, 11.2% of all pa-
tients developed AKD, and there was a 90 days mortality
of 19.9% associated with AKD (adjusted OR for mor-
tality of 63.0 [27.9–190.6]). The adjusted OR for 90 days
mortality with AKI alone versus AKD was 8.43 [2.87–
27.74] and 63.0 [27.9–180.6] respectively.45

Chronic kidney disease

CKD is a condition of deranged kidney function
(GFR <60 mL/min/1.73 m2) or evidence of kidney
damage (e.g. albuminuria), persisting for >3 months43

Few studies have examined the incidence of CKD after
cardiac surgery on CPB, but one multi-centre study has
suggested an incidence of 5.7%, whilst another study has
suggested that incidence at 3 years is 26.1%.46,47 CKD is
subsequently associated with increased mortality and
morbidity, particularly cardiovascular disease.21 Fur-
thermore, outcomes of subsequent cardiac surgery,
should it be required, are worse with preoperative CKD.2

Figure 1 delineates a schema for diagnosis of renal
dysfunction after cardiac surgery.4,42,43

Transitions between disease states

Much of the research literature has focused upon
stratifying, modifying and mitigating risk for CSA-

AKI.9 This has been driven by the associated short-
term morbidity and mortality of AKI, as well as the
related transition to CKD, and a post-CPB AKI inci-
dence of 20–30% translates to a CKD incidence of 6–
26%, although this latter phenomenon has been less
studied and has a much more complex relationship in
this comorbid population.14,46,47 However, description
of the AKD state allows for the recognition of an
ongoing degree of dysfunction and potentially a patient
requiring intervention to positively impact their
longer-term outcomes.

In one multi-centre retrospective study of patients
undergoing surgery on CPB, 42.6% of patients achieved
the UO definition of CSA-AKI alone, with most sus-
taining a Stage 2 injury, whilst 6.1% of patients met the
sCr criteria alone, with most having a Stage 1 injury.
Furthermore, 32.5% of patients met CSA-AKI defini-
tion by both UO and sCr criteria. Moving from no AKI,
to isolated oliguria, to isolated azotaemia and to de-
ranged sCr/UO there was increasing incidence of major
adverse kidney events (MAKE) at 180 days (a com-
posite of death, dialysis and persistent renal dysfunc-
tion) (4.5%, 7.6%, 13.5% and 21.8%, respectively).
Importantly in this context, the restrictive AKI defi-
nition used (only 72 h postoperative) may increase the
relevance of CPB to the observed injury state. Fur-
thermore, it confirms that whilst an oliguria post-CPB
is indicative of poor outcomes, an elevated sCr con-
centration, and both derangements, indicate worsening
long-term renal outcomes. However, these findings
may be limited in generalisability by the very high
incidence of CSA-AKI (81.2%) and the restrictive
definition in this study.48

In one prospective single-centre study, CSA-AKI was
associated with a significantly higher rate of CKD at
2 years follow-up (6.8% vs 0.2%, p < 0.001).49 In a
retrospective study, the hazard ratio (HR) for devel-
opment of CKD increased with increasing stage of CSA-
AKI (Stage 1: HR 3.11 [2.62–4.91], Stage 2/3: HR 13.36
[9.22–18.72]), suggesting that more severe injury state
results in impaired long-term recovery. Furthermore, at
each AKI stage there was an increased risk of CKD
development with persistent (>48 h) compared with
transient (≤48 h) AKI, with only transient Stage 1 injury
not significantly increasing incidence of CKD.47 Simi-
larly in a single-centre observational study CSA-AKI
was associated with a greater incidence of subsequent
CKD at 12 months (25% vs 9%, p < 0.001), with AKI
duration >3 days an independent risk factor for CKD.50

This finding has been further supported by a retro-
spective study.51

A similar transition has been shown for AKD in an
observational study, where 38.6% of patients with
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transient (<72 h) AKI developed AKD, compared with
74.1% of patients with persistent (≥ 72 h, but
crucially <7 days) AKI. Therefore, of the overall 47.1% of
AKI patients developing AKD, the persistent injury state
was more likely to result in AKD.45 Further retrospective
evidence has been found for this finding.51

Taken together, these findings suggest that pro-
gression towards more long-term renal dysfunction
relates to both severity of injury and duration. However,
what is unclear is whether the persistent injury state is
the marker of a more severe initial injury, an ongoing or
secondary insult, or inadequate cellular resuscitation,
which would be modifiable. Further investigation is
required and this will have a significant impact upon the
recognition of the importance of CPB in this process.
Furthermore, in the post-CPB patient, for reasons
previously described, the ability of functional markers to
accurately stage AKI is less reliable, and this will impact
upon the use of standard AKI definitions alone to
identify risk of poor outcomes.

Overall, factors associated with transition from AKI
to AKD require further assessment. AKI severity is likely
to be important, but the nature of this has not been as
clearly delineated as for CKD.52 Baseline estimated GFR
has been demonstrated in an observational study to be
associated with development of AKD amongst AKI
patients, but was poorly predictive of AKD itself.45 In a
multivariate analysis in the same study, only non-
elective surgery significantly increased the odds for
AKD (odds ratio (OR): 2.15 [1.61–2.87]). Attempts to
mitigate or reduce transition to AKD by clinical in-
terventions should follow the evidence-based practices
reviewed elsewhere.9 The list of prognostic disease
modifiers includes severity of AKI, the stage of pre-
existing CKD, the number of injury episodes, alongside
the duration, and the development of proteinuria.42

AKD represents a longer period where intervention
may bemore practical to improve outcomes. In one of the
few studies examining outcomes after CPB, renal re-
covery occurred in only 54.8% of patients developing
AKD. AKDwas independently associated with increasing
estimated GFR decline in the subsequent two years (30%
decline OR 1.79 [1.30–2.40], 40% decline OR 2.62 [1.81–
3.75], and 50% decline OR 3.56 [2.24–5.57]).45 AKD
superimposed on CKD likely represents a particularly
high-risk state for progression of kidney disease.42 Var-
ious AKD trajectories have been described, where the
degree of renal dysfunction measured by functional
markers may be better, worse, or equal to the dysfunction
in the preceding AKI state, although there may not have
been an initial AKI by standard criteria.42

Further research is required to understand the tra-
jectory of AKD post-CPB. Expert consensus has

suggested that not all the issues which are relevant to
AKI are likely to be so important for AKD, with the most
important factor being appropriate changes to drug
dosing. Of intermediate importance is the discontinu-
ation of nephrotoxins, optimisation of volume status
and perfusion pressure, monitoring of sCr, avoiding use
of radiocontrast and consideration of invasive diag-
nostic investigation. In contrast to AKI, functional
haemodynamic monitoring, UO monitoring, use of
RRT and ICU support are of low importance in
preventing progression of AKD.43 One of the crucial
elements to enable more appropriate treatment in the
post-CPB patient is to identify AKD without preceding
AKI, which may be more reflective of an injury state in
this context, and should be treated as such.

Figure 2 shows an evidence-based description of the
epidemiology of renal dysfunction after cardiac surgery,
illustrating a population approach to disease
trajectory.12,28,29,45–47,50,53

Pathophysiology

The pathophysiology of CSA-AKI is multifactorial and
the result of numerous synergistic factors across the
perioperative period. The spectrum of insults includes
microembolisation, neurohormonal activation, neph-
rotoxins (both endogenous and exogenous), metabolic
and haemodynamic factors, inflammation, ischaemia-
reperfusion injury, and oxidative stress.

Recent meta-analyses have not unanimously dem-
onstrated a significant difference in CSA-AKI or longer-
term renal outcomes between CPB and off-pump
procedures, reflecting the impact of the potential hae-
modynamic insult which still occurs during off-pump
surgery.8,12 Beyond mere use of CPB, is the consider-
ation of a ‘dose-dependent’ response, with increasing
duration of time on CPB and cross-clamp time both
reproducibly associated with increased incidence of
AKI.49,54,55

Alongside perfusion and cross-clamp time, other
specific perfusion-related factors in development of
AKI-CPB include use of non-pulsatile CPB, haemodi-
lution and hypothermia.23 The result of these patho-
physiological processes is a kidney with impaired
function, persistent renal vasoconstriction, increased
sensitivity to exogenous vasoconstrictors, and both
vascular endothelial and tubular epithelial cell death.21

The multi-factorial aetiology defies simple
classification. An intraoperative (on- or off-pump) or
postoperative acute low cardiac output state may cause
CSA-AKI (a type 1 cardiorenal syndrome (CRS)).
However, description of a type 1 CRS does not account
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for the multitude of other physiological insults, in-
cluding the inflammatory effects of surgery and CPB,
and the use of potent nephrotoxic and vasoactive
medications. Furthermore, the unidirectional relation-
ship this description implies neglects the dynamism of
the cardiovascular and renal systems and the contri-
bution of CSA-AKI to postoperative myocardial dys-
function (type 3 CRS) through impaired intravascular
fluid handling, metabolic acidaemia, uraemia and hy-
perkalaemia.56 The relevant pathophysiological mech-
anisms are discussed below, by domain (Figure 3).

Haemodynamic involvement

The intraoperative haemodynamic changes are super-
imposed upon the preoperative physiological state,
where the patient may have a degree of intravascular
volume depletion (secondary to fasting or diuretic use),
a high degree of cardiovascular disease, and potential
renal or renovascular disease.15 At an organism level
there may already be a precariously balanced, or failing,
systemic circulation, translating to abnormal perfusion
at organ level.

Institution of CPB can reduce renal perfusion
pressure by 30%, causing regional blood flow and va-
somotor tone abnormalities in the kidney.14 The organ
level autoregulatory response will assist in maintenance

of renal blood flow but will occur at a much lower
threshold value. A physiological study has clearly de-
lineated the response of regional blood flow on hypo-
thermic CPB, with the kidney particularly affected, with
flow reduced by approximately 50% compared with pre-
CPB level.57 Renal blood flow is also dependent upon the
CPB flow rate, but further physiological studies have
demonstrated that this is not linear, with maximal organ
flow (50 mL/min/100 g tissue) at a CPB flow rate of
2.0 L/min/m2, but no increase above this with aug-
mented extracorporeal perfusion.58 Renal autor-
egulatory values have been demonstrated to show good
correlation with those for cerebral autoregulation, which
may permit near-infrared spectroscopy to demonstrate
relevant thresholds.59

Abnormal perfusion results in reduced oxygen de-
livery at a cellular level, exacerbated by extracorporeal
haemolysis, which further reduces oxygen carriage
causing ischaemia to the renal parenchyma and pre-
disposing to later reperfusion injury.14 Oxygen carriage
per unit volume of blood will be further reduced by
haemodilution within the extracorporeal circuit, al-
though the altered rheology may improve microcircu-
latory flow should perfusion be adequate.60 A nadir
oxygen delivery on CPB of <262 mL/min/m2 has been
associated with development of Stage 2 AKI. As dis-
cussed above, increasing pump output may increase
end-organ oxygen delivery, but excessive flow may

Figure 2. Incidence of renal dysfunction states following the cardiac surgery. AKD: Acute kidney disease; AKI: Acute kidney injury; CSA-
AKI: Cardiac surgery-associated acute kidney injury; CKD: Chronic kidney disease. Incidence of subclinical CSA-AKI: Meersch 2017,28

Zarbock 2021.29 Transition to CSA-AKI: Meersch 2014.53 Incidence of AKI: Hu 2016.12 Transition to and incidence of AKD: Matsuura
2020.45 Transition to CKD: Legouis 2017,46 Choe 2021,47 Palomba 2017.50
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unfavourably increase regional energy consumption
resulting in hypoxic stress.60 Furthermore, whilst
CPB maintains cardiac output, the tissue perfusion
pressure is less certain under non-pulsatile
conditions.23

The autoregulatory response will be impaired by pre-
or intraoperative ischaemic injury, and experimental
models have demonstrated that there will be a rela-
tively fixed degree of renal vascular resistance, with
some remaining vasodilatory ability. The impaired
autoregulatory response is a particular concern for
further injury during the haemodynamic lability on
weaning from CPB.60 The likely outcome is a state of
relative vasoplegia, and a proinflammatory milieu,
with downregulated vasodilators (nitric oxide) and
upregulated vasoconstrictors (endothelin,
angiotensin-2 and catecholamines), further exacer-
bating renal injury.60–62

Physiological adaptive mechanisms will maintain
the electrolyte and water concentration gradients in the
renal medulla, which are crucial for homeostatic
processes, by shunting the blood filtered in the cortical
glomeruli away from the vasa recta. However, this will
render the renal medulla and corticomedullary junc-
tion relatively hypoxic, protecting against oxidative

injury, but increasing the risk of ischaemic injury.63,64

The finely balanced cortical and medullary perfusion
may also be disturbed by non-pulsatile CPB perfusion,
with increased flow to the cortex paradoxically in-
creasing medullary oxygen demand due to the in-
creased solute load, causing corticomedullary
ischaemia.64,65

Finally, rewarming, including clinically not indi-
cated hyperthermic perfusion, and raised early post-
operative temperature, has been associated with an
increased risk of AKI, related to the concomitant states
of reduced oxygen supply with increasing oxygen
demand.23,66

Neurohormonal activation

The neurohormonal response occurs to support the
autoregulatory response. A state of sympathetic acti-
vation may occur due to preoperative cardiac insult,
perioperative cardiac dysfunction and in response to
surgical stimulation. The sympathetic hyperactivity, and
concomitant activation of the renin-angiotensin-
aldosterone system, causes renal vasoconstriction and
reduced renal perfusion.67

Figure 3. Pathophysiology of renal dysfunction after cardiac surgery on cardiopulmonary bypass. AR: Autoregulation; DO2: Oxygen
delivery; RBF: Renal blood flow; RPP: Renal perfusion pressure.
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Inflammatory response

CPB triggers a systemic inflammatory response due
to activation of proinflammatory mediators by
contact with the extracorporeal membrane of the cir-
cuit.14 The inflammatory response is further activated by
ischaemic-reperfusion injury and oxidative stressors,
and these processes lead to immunological and vascular
endothelial activation, and the production of further
proinflammatory mediators.60,68,69 This response in-
volves TNF-alpha, IL-6 and IL-8, the complement
system, and reactive oxygen species (ROS) will upre-
gulate proinflammatory transcription factors, such as
nuclear factor Kappa B.14,60,70–72

The vascular sequelae of the inflammatory response
further impairs renal autoregulation. Proinflammatory
chemokines and cytokines drive immune cell migration
into the renal parenchyma, causing direct cellular injury,
manifesting as AKI, and possible longer-term damage,
such as fibrosis.60,71–74

Direct nephrotoxicity

Numerous endogenous and exogenous perioperative
nephrotoxins have been identified. Of relevance to CPB-
AKI is the release of free haemoglobin and its con-
stituents, including iron, due to extracorporeal hae-
molysis. The release of these nephrotoxins, combined
with the depletion or saturation of their endogenous
scavengers (transferrin or lactoferrin), can cause altered
vascular tone and platelet function, as well as directly
injuring the renal tubule.14,60,75,76 Free iron catalyses the
production of free radicals causing end cellular damage,
particularly in the renal epithelium, and worsens oxi-
dative stress upon reperfusion.60,77 Free haemoglobin
depletes circulating haptoglobin, catalysing free radical
production, and forming protein precipitates in the
renal collecting system and causing renal arteriole va-
soconstriction by reducing nitric oxide concentration.
ROS particularly injure the kidney, which normally
sequesters free haemoglobin and iron.64 Heme-
oxygenase-1 is a potential biomarker of interest, being
produced by free haemoglobin, and found to be in-
creased in patients with AKI, and associated with in-
creasing CPB duration, haemolysis and inflammation.78

Embolic phenomena

Platelet aggregates, cellular debris, fibrin, fat and air may
all embolise during cardiac surgery, and some emboli
will be sufficiently small to evade filtration within the
extracorporeal circuit.14 Fat emboli pose a particular
challenge, being readily deformable and thus escape, to a
degree, in-line filtration.79 This prolonged circulating

time can render the endothelial glycocalyx vulnerable to
a greater degree of harm.80 Atheroembolism can occur
during surgical manipulation of the ascending aorta,
particularly during cannulation and release of the cross
clamp, and likely contribute to CPB-AKI.60 Detection of
emboli on Doppler studies have been associated with
increased risk of postoperative renal dysfunction.81

Proposed perfusion-based approaches to
reduce acute kidney injury

Avoidance of cardiopulmonary bypass

Given the above-described harms of CPB, a potential
protective approach would be avoidance of extracor-
poreal circulation. However, this is clearly not feasible
for the performance of anything other than amenable
bypass grafts, in the hands of capable surgeons. Fur-
thermore, conflicting evidence has emerged from sec-
ondary analyses of two large RCTs for a reduction in
CSA-AKI incidence with off-pump versus on-pump
surgery, and no clear improvement in longer-term
outcomes.5,7,8

These findings do not negate the importance of the
renal harms of CPB, but instead confirm the presence of
other significant perioperative insults and the deleteri-
ous effects of the haemodynamic changes of cardiac and
major vessel manipulation in off-pump surgery.9 Fur-
thermore, whilst duration of CPB has been demon-
strated to be associated with incidence of AKI, this is a
largely non-modifiable factor.82 Therefore, there is a
clear requirement for interventions to improve the
burden of pathology associated with CPB.

‘Miniature’ cardiopulmonary bypass circuits

Miniature (or minimally invasive) extracorporeal cir-
cuits (MiECC) enable the use of reduced prime volumes,
for example 600 mL compared with 1200 mL.83 These
have haemocompatible tubing and oxygenator mem-
brane, employ a centrifugal pump and avoid cardiotomy
suction and venous reservoir. The theoretical benefits of
these circuits are numerous and include a reduction in
haemodilution, maintaining a greater haematocrit and
reducing blood product transfusion, both of which are
reproducibly associated with better renal outcomes after
cardiac surgery.23,84,85 Furthermore, these alterations
allow for the preservation of a greater intravascular
volume, and potentially reduce the mechanical hae-
molysis caused by cardiotomy suction.

A retrospective propensity score matched analysis
was performed for patients at a single-centre undergoing
CPB on a mini-CPB system (n = 104) compared with a
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conventional circuit (n = 601). In this study, there was a
representative incidence of AKI (38.8%; using AKIN
classification) and RRT requirement (3.8%). The inci-
dence of CSA-AKI for mini-CPB patients was reduced
compared with conventional CPB (28.8% vs 40.5%, p =
0.03), and in the matched-pair analysis the miniaturised
circuit was independently associated with reduced in-
cidence of AKI-CPB (adjusted OR 0.61 [0.38–0.97]).
The decision to employ mini-CPB was at the discretion
of the surgeon, and although the propensity score
matching removed significant differences between the
two groups for the final analysis, the small number (n =
104 in each group) and single-centre nature limit the
wider applicability of these findings.83

A subsequent small (n = 60) randomised controlled
trial (RCT) failed to detect a difference in incidence of
AKI (by AKIN classification; both groups 20%) and
changes in plasma NGAL and estimated GFR (p = 0.31
and p = 0.82, respectively). These findings are limited by
the small sample size and use of the AKIN classification,
but assume greater importance given the lack of
randomised trial data for patients concerning renal
outcomes.86 Similar findings have been reported in
other small RCTs.87 However, potential findings of
reduced inflammatory and procoagulant mediators is
likely to further fuel investigation of MiECC.88

Further studies should assess renal outcomes, both
immediate and delayed, using modern definitions, and
comparing across varying techniques for CPB and with
off-pump procedures. Considering the current litera-
ture, it should be noted that there is no standardised
conventional system, which has implications for the
interpretation of the above findings. There is increasing
convergence of MiECC and more conventional systems
with use of ‘optimised’CPB systems, with reduced prime
volumes, haemocompatible tubing and incorporated
reservoirs. These changes can result in comparisons
between systems, which appear to be artificially different
and not reflective of systems in current use, and are
therefore less applicable to contemporary clinical
practice. Outcomes can be improved by clinicians in-
corporating the best practice elements which accom-
pany much of the literature around MiECCs, with the
aim of developing ‘optimised’ circuits. Similarly, recent
European guidance has advocated consideration of el-
ements of MiECC systems, including their incorpora-
tion into conventional systems.89

Circuit priming

Retrograde autologous priming. RAP reduces haemodilu-
tion by priming the circuit with autologous blood,
drained from the cannulation sites.90 A before-and-after

study demonstrated no difference in AKI incidence
(4.9% vs 4.8%, p = 0.95) (using the RIFLE classification),
although UO on CPB was lower in the RAP group
(510 mL vs 760 mL, p < 0.001).90 There were similar
findings in a retrospective cohort study.91

One small RCT (n = 118) found no difference in AKI
(a secondary endpoint) between RAP and non-RAP, but
did reduce red blood cell transfusion, which is itself
associated with CSA-AKI.92 A systematic review and
meta-analysis identified six studies looking at AKI and
found a similar incidence in RAP versus non-RAP (0.9%
vs 0.4%; RR 1.63 [0.20–13.05]), although concluding this
was of low certainty.93 A further meta-analysis has
found similar results with regards to AKI, although once
again red blood cell transfusion was reduced.94 Euro-
pean guidance recommends RAP (Class 1, Level A
Evidence) on the basis of reduction in transfusion load,
rather than a direct impact upon AKI.89

Priming fluid. The process of RAP will have an impact on
priming fluid, by increasing the volume that is autol-
ogous blood and reducing the crystalloid/exogenous
colloid volume. Other fluids have been investigated,
and the use of mannitol has failed to reduce incidence of
AKI in two RCTs.95,96 One small RCT found a non-
significant reduction in a non-standardised definition of
AKI using a circuit primed with 5% human albumin
(and 0.9% saline) compared with 6% hydroxyethyl
starch (HES) 130/0.4 (and 0.9% saline).97 In contrast, a
retrospective study has reported an increase in AKI with
HES prime.98 Another small (n = 84) RCT has examined
a dextran-based priming fluid, in comparison with a
crystalloid and mannitol solution, finding a reduction in
a marker of renal tubular injury (N-acetyl-b-D-
glucosaminidase (NAG)), but not in the incidence of
AKI (18% vs 22%, p = 0.66).99

European guidance acknowledges the lack of con-
sensus in optimal priming solution, although recom-
mends against the use of starch solutions.89 In the
absence of conclusive evidence, the use of balanced
crystalloids with supplemental exogenous colloid, and
RAP appears appropriate for renal outcomes.

Pulsatile perfusion

Pulsatile flow has been described to increase mechanical
energy transmission to the vessel wall, which induces
vasodilator production, maintaining capillary patency
and cellular perfusion.100 In contrast, non-physiological
linear perfusion has been demonstrated to exacerbate
organ injury, elevate peripheral vascular
resistance, cause poor microcirculation, and increase
tissue oedema.101 Emerging data from patients with
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continuous-flow ventricular assist devices may influence
consideration of the importance of pulsatile
perfusion.9,100

Two observational studies, both originating from the
same single-centre, have provided evidence with regards
to the impact of pulsatile perfusion. An initial, smaller
study (n = 132) of matched patients undergoing pulsatile
or non-pulsatile CPB demonstrated a non-significantly
reduced requirement for RRT in the pulsatile group
(4.5% vs 15%, p = 0.076). However, this was a small,
non-randomised study, which excluded emergency
operations.102 A subsequent larger (n = 2489), before-
and-after study examined the difference following the
introduction of pulsatile CPB at this centre. The authors
found no difference in overall AKI incidence, or in the
incidence of individual stages. Whilst this study was
non-randomised and single-centre, it includes a good
sample size, and used the KDIGO criteria for AKI (sCr
alone).103 Therefore, the importance of pulsatile per-
fusion, and the way in which this is achieved, is ripe for
future study.

Current European guidance advocates the consid-
eration of pulsatile perfusion for the reduction of
postoperative renal (and pulmonary) complications
(Class IIa, Level B evidence), based on evidence from
two meta-analyses.89,104,105 The first of these reported
significantly greater creatinine clearance in the pulsatile
perfusion patients compared with non-pulsatile perfu-
sion, however postoperative creatinine was not signif-
icantly different between the two arms, and the studies
included in the meta-analysis did not assign patients to
each strategy based upon preoperative risk of renal
dysfunction.104 The latter meta-analysis did report re-
duced incidence of acute renal insufficiency (corre-
sponding to KDIGO Stage 1 AKI), but not acute renal
failure (KDIGO Stage 3 – RRT requirement) with
pulsatile perfusion.105 These findings support the call for
further evidence.

Perfusion targets

Common haemodynamic targets will include CPB flow
rates equivalent to a cardiac index of 2.2–2.5 L/min/m2

with a mean arterial pressure (MAP) of 50–70 mmHg,
aiming for maintenance within the range of organ
autoregulation.14 Renal, and crucially medullary, oxy-
genation is important for avoidance of CSA-AKI, and
oxygen delivery to the medulla is dependent upon
several factors, including the CPB flow rates and MAP.
Evidence from an animal model in sheep have suggested
that oxygen delivery can be maintained by both strat-
egies (i.e. increasing pump flow or increasing target
MAP) in isolation. Alongside increasing medullary

oxygenation, both strategies can increase creatinine
clearance, albeit at supranormal values.106

Flow rates. As described in the preceding section, in-
creasing flow rate may not increase organ blood flow,
and maximal renal blood flow is markedly reduced. An
influential RCT demonstrated increased CSA-AKI with
renal oxygen delivery <272 mL/min/m2 (at temperature
32–34°C).107 More recent, but smaller, RCTs have
demonstrated a favourable risk ratio (RR) for AKI-CPB
with oxygen delivery >280 mL/min/m2 and >300 mL/
min/m2, with RR 0.45 [0.25–0.83] for Stage 1 AKI and
RR 0.49 [0.30–0.77] for all stage AKI.108,109 Further-
more, a goal-directed perfusion initiative which in-
cluded targeted oxygen delivery >300 mL/min/m2

reduced incidence of AKI (23.9% vs 9.1%, p = 0.008),
although this included several other interventions
(MAP >70 mmHg and zero-balanced ultrafiltration).110

A large study of 19 410 patients used multivariate
logistic regression modelling to identify and then vali-
date the optimal DO2 for avoidance of AKI. Minimum
DO2 was associated with any AKI (RIFLE classification)
with an optimal threshold of 270 mL/min/m2. Fur-
thermore, every 10 mL/min/m2 decrease in DO2 in-
creased the likelihood by 7% for AKI, and there was an
odds ratio (OR) 1.52 for AKI for those below the
threshold.111

However, the use of higher flow rates needs to be
considered in the context of the surgical requirements,
often requiring low flow, for example during manipu-
lation of the aorta, therefore surgical techniques are
likely to supervene in this relationship. Again, further
RCT evidence is required, although goal-directed
therapy, to reduce postoperative complications, is rec-
ommended in the European guidance (Class I, Level A
evidence).89

Mean arterial pressure targets. Maintenance of an elevated
MAP does not have robust evidence supporting its
adoption. Two moderately-sized RCTs (n = 300 and n =
197) with incidence of AKI as a primary and secondary
outcome respectively, did not demonstrate an improved
outcome with raised MAP (75–85 mmHg and 70–
80 mmHg) compared with a lower MAP and unchanged
flow rates (50–60 mmHg and 40–50 mmHg).112,113

Notably, in the latter study, the lower MAP target
was markedly low, which may reduce wider applica-
bility. Furthermore, whilst there was no difference in
peak sCr (118.0 micromol/L (low MAP) vs 121.9
micromol/L (high MAP), p = 0.57), there was a greater
incidence of a doubled sCr value (2.0% vs 9.4%, p = 0.03)
in the higher MAP group.113 Whilst, this is a non-
standardised AKI definition, it may underlie the fact
that the attainment of a higher MAP will certainly
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involve the use of vasoactive agents, which will have
their own deleterious effects on renal perfusion.114 A
meta-analysis has supported the lack of impact upon
incidence of AKI.32 Furthermore, this is in accordance
with consensus European guidance, which advises
against the use of vasopressors to maintain an artificially
elevated (>80 mmHg) MAP (Class III, Level B
evidence).89

There is no evidence to support maintenance of a
higher MAPs, however, there is somewhat more robust
evidence for the avoidance of a markedly low MAP
taken from a large (n = 6523) single-centre retrospective
study, where time-weighted MAP 55–64 mmHg
and <55 mmHg was associated with increased odds for
Stage 2/3 AKI and for RRT requirement.115 As such,
whilst no upper limit of MAP should be targeted based
upon current evidence, avoidingMAP <60–65mmHg as
much as surgery allows, and <50–55 mmHg as far as
possible is appropriate. The finding that excursions of
MAP below the lower limit of the cerebral autor-
egulation threshold are associated with AKI after cardiac
surgery on CPB suggests that more bespokeMAP targets
for the prevention of renal injury may be possible with
adoption of cerebral oximetry index monitoring.116

Further evidence for bespoke MAP targets may be
found from an observational study of 157 patients
undergoing surgery on CPB in a single-centre. A change
in MAP intraoperatively from preoperative baseline ≥
26mmHg was independently associated with CSA-
AKI.117 Similar findings were reported in a larger (n =
7247) retrospective study, where percentage change in
systolic arterial pressure on CPB, compared with pre-
operative, was associated with CSA-AKI.118 Further-
more, an observational single-centre study reported that
a cumulative duration of mean perfusion pressure
(MAP – Central Venous Pressure) ≥ 20% below baseline
was an independent predictor of CSA-AKI.119 Addi-
tional prospective data should be sought to further
validate these findings.

Other perfusion management

Numerous aspects of perfusion management have been
indirectly linked to poorer renal outcomes via processes
such as haemolysis, and have been reviewed elsewhere.120

Temperature management. One RCT and one multi-
centre observational study have demonstrated an in-
creased incidence of CSA-AKI with rewarming to, or
above, 37°C.121,122 Based upon this, rewarming (and
hyperthermic perfusion) may be more deleterious than
cooling, as was previously thought.67 Whilst further
RCT evidence for mild versus moderate hypothermia,

and normothermia is required, there is also a need for
further investigation on rewarming trajectories.

Biocompatible circuits. More physiologically compatible
circuit coatings have been employed, including heparin-
coating. These have reduced the incidence of a number of
outcomes associated with renal dysfunction, but there has
been little assessment of their direct impact on renal
outcomes.114,123 They nonetheless should be considered
to reduce general postoperative complications according
to European guidance (Class IIa, Level B evidence).89

Conventional ultrafiltration. Conventional ultrafiltration
(CUF) is theorised to reduce haemodilution and optimise
fluid status by reduction of intravascular plasma water
and removal of pro-inflammatory mediators.124–126

These potential beneficial effects need to be balanced
against the necessity to ensure adequate intravascular
volume and therefore renal perfusion.127

A meta-analysis of 12 studies (n = 8005) found no
significant difference in the incidence of AKI between
patients undergoing ultrafiltration and those that did not.
A subgroup analysis compared different ultrafiltration
strategies (CUF, modified ultrafiltration (MUF), zero-
balanced ultrafiltration (ZBUF), or combination MUF/
CUF) and showed no difference in AKI incidence.128

Furthermore, there was no difference in AKI incidence
with removal of UF volume greater or less than 2900 mL
(roughly equating to 40 mL/kg for a 70 kg adult). This
contrasts with a single-centre retrospective study that
found that weight-indexed CUF volume >32 mL/kg
during CPB for elective cardiac surgery was associated
with an increased incidence and severity of AKI.124 Other
studies have failed to demonstrate a benefit for ultrafil-
tration in renal outcomes.129 These results indicate that
conventional ultrafiltration during CPB may not be as-
sociated with improved renal outcomes.

Conclusion

Renal dysfunction is one of the major complications of
cardiac surgery and cardiac bypass. AKI has been the
focus of much research, however, there are longer-term
states of dysfunction, AKD and CKD, both of which are
also associated with poorer outcomes in patients un-
dergoing cardiac surgery. Whilst AKI remains the key to
the dysfunction spectrum, AKD represents a longer
period in which to intervene to improve outcomes.

CPB presents numerous physiological insults to the
cardiac surgery patient, many of which act in a syner-
gistic fashion, and are superimposed upon the other pre-
existing and concurrent perioperative insults this unique
patient group faces. The insults include haemodynamic
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instability, inflammation, neurohormonal activation,
ischaemia-reperfusion injury, oxidative stress, and
embolic phenomena.

Research to improve outcomes has involved tackling
many of these pathophysiological features as avoidance
of CPB is neither always possible nor desirable. Use of
miniature extracorporeal circuits may be of continued
future interest, and some elements of these circuits have
made their way into standard practice. Retrograde au-
tologous priming and the choice of priming fluid will
also continue to generate further research interest.

The conduct of CPB is also important to improve
outcomes. Whilst pulsatile perfusion may not be as
important as previously thought, the available evidence
suggests avoiding periods of lower MAP (<50–
55 mmHg) and to consider higher flow rates when
appropriate. Active rewarming is also associated with
poorer outcomes, and a more passive approach is
preferable.

Following these evidence-based points may serve to
improve both short and long-term renal outcomes.
However, further research is required into many facets
of peri-bypass care, which should occur alongside in-
vestigation into the deleterious effects of CPB.
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