

Corresponding author *

Email address: sander.teck@kuleuven.be (S. Teck)

Postal address: Celestijnenlaan 300, 3001 Leuven, Belgium

An Efficient Multi-Agent Approach to Order Picking and Robot Scheduling

in a Robotic Mobile Fulfillment System

Sander Tecka,*, Pieter Vansteenwegenb, Reginald Dewila

aDepartment of Mechanical Engineering, Centre for Industrial Management, KU Leuven,

Celestijnenlaan 300, 3001 Leuven, Belgium

bKU Leuven Institute for Mobility – CIB, KU Leuven

Abstract

This paper presents a Multi-Agent System (MAS) for optimizing the scheduling and routing of

mobile robots and human pickers in a Robotic Mobile Fulfillment System (RMFS). The RMFS

is a system designed for e-commerce warehousing where autonomous mobile robots are used

to fetch inventory pods, also referred to as racks, from the storage area and transport them to

the appropriate picking station where human pickers pick the required number of goods. The

system requires the solution of several hard decision problems like: the order-to-picking station

assignment and sequencing, the pod selection, and the multi-robot task allocation. The

proposed solution approach employs decentralized scheduling mechanisms, i.e. auctions and

dispatching rules, to communicate and distribute picking and retrieval tasks among the agents.

Various dispatching rules are identified and analyzed over a wide set of problem instances of

the RMFS with varying numbers of mobile robots, picking stations, and order sizes. The

proposed MAS framework shows promising results and requires only a fraction of the

computation time compared to a centralized scheduling algorithm. The MAS also includes both

unidirectional and bidirectional lanes. Although additional complexity in collision avoidance

is introduced when using bidirectional lanes, it allows for better system performance.

Keywords: multi-agent system, distributed control, robotic mobile fulfillment system, logistics,

scheduling and routing

1 Introduction

Like many other sectors, the e-commerce sector has to deal with a growing scarcity of mostly

blue-collar workers. This trend has put a considerable additional strain on the whole logistics

sector [1]. Automation can play a key role to alleviate this problem and take over dangerous

and repetitive jobs of human workers, resulting in a significant cut in operational costs by

replacing expensive human workers with ever-cheaper machines. Autonomous mobile robots

(AMRs) are ideally suited to fill this gap in the labor pool as they can be deployed alongside

human workers in picking processes in warehouse environments [2]. The main scheduling

activities as defined by Le-Ahn and De Koster [3] are as follows: vehicle dispatching, routing,

vehicle planning, deadlock resolution, battery management, and positioning of vehicles. It is

important to note that these control decisions all have interdependencies.

mailto:sander.teck@kuleuven.be

2

A Robotic Mobile Fulfillment System (RMFS) is the manifestation of such a human-robot

collaborative system. It is a semi-automated warehouse system that uses mobile robots for

retrieval tasks in the storage areas and human workers for picking tasks in the picking area.

Conventional fixed racks are replaced by movable inventory pods which are located in the

storage area. One specific inventory pod can contain multiple different stock keeping units

(SKUs) which allows for a reduction in required retrieval tasks if pods are selected smartly.

This paper treats the assignment and sequencing of the orders to the different picking stations,

the pod selection, and multi-robot task allocation problems in an automated e-commerce

warehouse with rack-moving mobile robots (see Figure 1). Thus, we determine which order

has to be allocated to a certain picking station, supplied with suitable inventory pods, and

moved by autonomous robots in a conflict-free manner.

Figure 1. Top view of a robotic mobile fulfillment system warehouse layout.

Luo and Zhao [4] introduce a discrete-event simulation to estimate the performance of a RMFS

for different layouts. Their findings show that bidirectional lanes allow for significant

performance increases. However, they do not specify which dispatching/decision rules are

used, and therefore, we assume that these decision rules are simple (e.g. First In, First Out

(FIFO), Last In, First Out (LIFO), etc.). Merschformann et al. [5] compare some simple

decision rules for the robotic mobile fulfillment system to one another. In this paper, we focus

on developing more advanced dispatching rules to optimize the scheduling of AMRs and

human pickers in the warehouse. We present a multi-agent-based planning approach for solving

the RMFS problem. Every agent builds its own task schedule through decentralized negotiation

or assignment mechanisms like dispatching rules. Multi-agent systems are very popular among

decentralized systems and in some cases are even able to outperform centralized frameworks

[6]. The RFMS resembles in many ways the problem considered in Erol et al. [7]. The picking

stations can be viewed as production machines where the arrival times of the AMRs determine

the earliest picking times at the picking stations. Vice versa, the picking stations determine the

availability of an AMR to execute another retrieval task. Erol et al. [7] conclude that good

synchronization and work balancing between these agents is of the utmost importance to

minimize the idle time and consequently the overall operational costs. However, in the

3

literature, the RMFS scheduling problems are either solved with centralized algorithms which

cannot be applied to very large problem instances, or through simulation frameworks utilizing

very simple dispatching rules which result in low quality solutions.

In the following, we outline the main contributions of this work. We identify and validate

several suitable negotiation and dispatching rules, other than the traditional dispatching rules,

used by the agents in the system. We present a MAS framework for the RMFS decision

problems. The framework is able to solve large-scale instances fast, while still maintaining

good solution quality, whereas a centralized algorithm can take significantly longer to solve

the problem. This makes the proposed MAS framework more appropriate for real-time

scheduling. Moreover, we show that the proposed framework, when used in a system with

bidirectional lanes, outperforms a central algorithm used on a system with unidirectional lanes

for the same warehouse layout.

The remainder of this paper is structured as follows: Section 2 reviews the existing relevant

literature on multi-agent-based systems and RMF systems. After that, the problem description

is briefly discussed in Section 3. Next, we elaborate in Section 4 on the design of the agents

within the multi-agent system and Section 5 provides a discussion of the experimental results

and findings. Finally in Section 6 conclusions are drawn and future research is formulated.

2 Literature Review

The research on multi-agent task allocation is extensive and aims to (near-)optimally allocate

a set of tasks T = {t1, t2,…, tn} to a set of agents (e.g. mobile robots or picking stations) A = {a1,

a2,…, am}. Multi-agent systems are in fact decentralized control systems where the autonomous

agents in the system coordinate and cooperate with each other in order to achieve a global goal.

Applied to the RMFS, this can be the minimization of the system makespan or total distance

travelled. The literature review is structured as follows: the first two paragraphs deal with

relevant literature on multi-agent-based approaches and the next paragraph focuses on the

literature on the RMFS. In the final two paragraphs, the literature on the multi-robot task

allocation is discussed.

Erol et al. [7] developed a multi-agent-based approach to dynamically schedule both automated

guided vehicles (AGV) and machines in a manufacturing setting. They proposed a system with

agents using negotiation/bidding mechanisms and tested it on scheduling problems in the

literature. They found that their approach outperformed the frequently used dispatching rules,

which are commonly used as an alternative to bidding mechanisms, in literature. Moreover,

their proposed system is competitive with some centralized optimization algorithms from the

literature. The traditional decision/dispatching rules used in the literature are: First Come, First

Served (FCFS), Shortest Travelling Distance (STD), Closest Available (CA), Earliest Due Date

(EDD), etc. [5, 7-10]. The multi-agent architecture of this paper is based on their proposed

architecture with a manager agent and an agent type for each physical resource in the system.

Sahin et al. [11] also focus on the simultaneous scheduling of machines and mobile robots in a

dynamic manufacturing environment. Their multi-agent-based approach which uses

negotiation mechanisms, has a similar agent architecture as Erol et al. [7] and is validated with

test problems from the literature. It is able to find the best known solutions and in many cases

is able to improve upon them. The two previously described papers use a manager agent to

initialize and create jobs, however, it can also be used to more centrally control all the agents.

4

In this study, it enables more advanced optimization algorithms as decision rules to perform

the task allocation.

Giordani et al. [12] propose a two-level decentralized MAS framework, where at the production

planning level an iterative auction based negotiation protocol is used. An update is made at

each iteration for the price of assigning a robot to a task and based on these prices a utility

function constructs bids, this process continues until a stop criteria is met. At the second level,

the multi-robot task allocation problem is solved with a distributed version of the Hungarian

Method. They compared the performance of their proposed solution approach to that of a

centralized approach and found that both methods had their advantages: the decentralized

method is more robust and efficient than the centralized architecture. However, the

decentralized method tends to under-utilize the production resources. Furthermore, they find

that the centralized policy is more effective since it uses global information resulting in lower

production costs but it is characterized with a much higher robot displacement distance. De

Ryck et al. [13] use a MAS for the decentral task allocation of AGVs. They propose a

decentralized task allocation algorithm based on sequential single-item auctioning principles

to efficiently plan the transportation tasks among the available agents. Additionally, the

algorithm takes resource constraints into account during the allocation process. They compare

the performance of their proposed approach to a centralized scheduling algorithm and an exact

method for small scale problems. They conclude that their task allocation approach scales well

with larger numbers of tasks in the system. It even outperformed the central algorithm in some

cases and is able to generate competitive allocations compared to an exact approach. In this

paper, we develop a MAS framework to solve large-scale problem instances for the RMFS and

compare its performance to a centralized scheduling algorithm.

In the literature, several research papers focus on the operational problems of the RMFS.

Boysen et al. [14] concentrate on the batching and sequencing of picking orders already

assigned to a picking station. They develop an exact method and some heuristic methods to

solve the problem. The study shows that an optimized pick order processing may cut the

required number of robots in half to run the efficiently system compared to simple decision

rules. Li et al. [15] evaluate the performance of a high-density RMFS with a simulation study

and compare it to a normal RMFS layout. They conclude that a high-density RMFS layout can

save up to 10% in storage area occupation. Zhuang et al. [16] consider the problem of jointly

optimizing the order sequencing and the rack scheduling problem. Moreover, workload

balancing and rack conflicts among multiple picking stations is also included in their

optimization method. They propose an exact model and an adaptive large neighborhood search

method. They conclude that up to 62% rack movements can be saved compared to company’s

current practice. Yang et al. [17] also consider this joint optimization problem and propose

both a mixed-integer linear programming model and a two-stage solution procedure to solve

it. They show that the joint optimization can result in up to 59,8% reduction of the robotic tasks

compared to benchmark solutions. Valle & Beasley [18] consider the problem of allocating

picking orders to picking stations and the sequencing of racks for presentation at each

individual picker. They develop two matheuristics to solve the problem and prove that, under

certain conditions, a feasible rack sequence can be attained just focusing on a subset of the

orders to be dealt with by the picker. The paper of Teck and Dewil [19] proposes a bi-level

memetic optimization algorithm to solve the integrated scheduling problem. The integrated

problem consists of the order assignment and sequencing on picking stations, the pod selection,

5

and the multi-robot task allocation problem. The experiments show that interdependencies exist

between the different sub problems which may not be disregarded during optimization. This

finding is confirmed in Teck and Dewil [20] by exact models, for the sub problems and the

integrated problem, illustrating the importance of these interdependencies. Furthermore, the

minimization of the number of pod visits is a common objective in different research papers

[14, 21]. However, in Teck & Dewil [20], it is shown that including the distance of the pod to

the station in the optimization objective results in better system performance. Thus, in this

study we consider the distance of a pod from the picking station when selecting pods for

transportation.

In the literature, two main approaches can be distinguished to solve the multi-robot task

allocation problem: the optimization-based approaches and market-based approaches [22-23].

A. Optimization-Based Approaches

Optimization-based approaches focus on solving problems to optimality using global

information. Within this branch two main categories can be distinguished: exact approaches

and heuristic approaches. Exact approaches guarantee optimal solutions. However, their

usefulness quickly diminishes when the scale becomes larger since they are unable to solve

them to optimality in reasonable computational time. Therefore, whenever complex

combinatorial problems are concerned for medium to large-scale problems the heuristic

approaches become interesting. As the name implies, the (meta)heuristic approximate

approaches do not guarantee optimality but try to solve the problems to near-optimality in

reasonable computational time. Zou et al. [24] developed a semi-open queueing network to

compare different assignment rules, like a rule based on the handling speeds of the picking

stations and a near optimal assignment rule using a neighborhood search algorithm, for the

multi-robot task assignment. They demonstrate the effectiveness of their proposed assignment

rules through simulation. Gharehgozli and Zaerpour [25] focus on the multi-robot task

assignment problem to fulfill the picking orders at the picking stations in a RMFS. They model

the problem as an asymmetric traveling salesperson problem and extend it with general

precedence constraints. Moreover, they propose a heuristic method to solve large size

instances. However, their work assumes the order-to-picking station assignment as

predetermined. The suitability of optimization based approaches in multi-robot task allocation

highly depends on the optimization time that is available to solve the problem since they

generally take longer than market-based approaches. In this paper, we identify and propose

some optimization-based dispatching rules to efficiently handle the multi-robot task

assignment problem.

B. Market-Based Approaches

Market-based, commonly referred to as auction-based approaches are, compared to the

optimization-based approaches, very scalable and flexible. The auctions are a way to perform

the resource allocation in a multi-agent system. Overall, the auction principles can be divided

into three different methods: the parallel single-item auctions, the combinatorial auctions [26,

27], and the sequential single-item auctions [13]. Parallel single-item auctions, in contrast to

sequential single-item and combinatorial auctions, allocate various different items (e.g. orders

and tasks) simultaneously. As a result, it disallows the bidders to take interdependencies

between these items into account. Therefore, the computational complexity of parallel single-

6

item auctions (𝑂(𝑛𝑏𝑖𝑑𝑑𝑒𝑟𝑠 ∗ 𝑚𝑖𝑡𝑒𝑚𝑠)) is significantly lower than that of sequential single-item

auctions (𝑂(𝑛𝑏𝑖𝑑𝑑𝑒𝑟𝑠 ∗ 𝑚2
𝑖𝑡𝑒𝑚𝑠)) and combinatorial auctions (𝑂(𝑛𝑏𝑖𝑑𝑑𝑒𝑟𝑠 ∗ 2𝑚𝑖𝑡𝑒𝑚𝑠)). However,

the parallel single-item auction does not guarantee good quality, whereas combinatorial

auctions can reach close to optimal solutions [13]. The advantage of the sequential single-item

auction mechanism is that it is a compromise with regards to the computational complexity and

the solution quality between a parallel and a combinatorial auctioning mechanism [13]. The

solution quality is typically better than the parallel auctioning mechanism because sequentially

auctioning items allow the bidders to take synergies between the items into account in their bid

calculation. We develop a parallel single-item auctioning mechanism to distribute the picking

orders and transportation tasks over the available agents and compare its performance to the

proposed optimization-based approaches.

In this study we consider several decision problems of the RMFS: assigning the orders to the

different stations and sequencing the orders, selecting the pods, and allocating the multi-robot

tasks. A previous paper on this integrated problem [19] proposes a centralized optimization

algorithm. Even though it is able to obtain good quality solutions, it requires too much

computation time to be readily applicable for real-time scheduling purposes. In this work, we

propose a multi-agent approach that is able to solve this problem in a fraction of the

computation time that the memetic algorithm requires. Furthermore, it is able to solve larger

problem instances which we also introduce in this paper.

3 Problem description

We consider several sub problems of the RMFS. The order-to-station assignment and

sequencing problem concerns how to allocate orders from a set of available orders to picking

stations and when. This in a way that minimizes the makespan of the picking stations and

maintains a good work balance. Specific to the RMFS, is the capability to simultaneously work

on multiple orders at the same time on the workbenches of the picking stations. Whenever

orders have been assigned to picking stations, the picking stations seek to fulfill these orders

by looking for suitable inventory pods. This is called the pod selection problem. A typical

inventory pod contains multiple different SKUs. In a RMFS a scattered storage policy is

typically applied [28], meaning that when an order has to be completed it can potentially be

completed by various different inventory pods. However, in many cases there is one inventory

pod that is more suitable than the others. This is mainly dependent on the location of the pod

to the picking station that can serve the specific order line. Moreover, consolidation

opportunities in the fulfillment of orders at the picking stations is an important consideration

during the process of selecting the pods. In a previous paper, we introduced the term of ‘pod

consolidation’ which refers to the average number of order lines that can be fulfilled by an

inventory pod when it is presented to a human worker at a picking station [19]. Once suitable

inventory pods have been selected, pod retrieval tasks can be distributed among the mobile

robots. The multi-robot task assignment problem deals with the problem how to assign these

retrieval tasks the different mobile robots. The assignment of these task have to be in such a

way that the total distance travelled is minimized. A characteristic unique to this system is that

an inventory pod can directly be transported from one station to another. Furthermore, in the

literature, unidirectional lanes are commonly used since these allow for the simplifying

assumption that robot congestion or deadlocks will not occur during operation. This assumption

is reasonable and relates closely to the real situation [29]. However, bidirectional lanes may

7

allow for better system performance. In this paper, both unidirectional and bidirectional lanes

are tested.

For a more detailed description of the operations in a RMFS we refer to the paper of Enright

and Wurman [30]. The performance criteria in this study are the time at which the last order at

a picking station is fulfilled, defined as the makespan and the total distance travelled by all

robots. These are typical metrics to compare the performance of the RMFS. However, in reality

these two metrics have different weights. In Teck & Dewil [20] we introduce one cost metric

where we determine an hourly wage cost (𝑐𝑤𝑎𝑔𝑒) of €18.75/hr for one human worker at a

picking station (PS) and a cost of operating a robot (𝑐𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) per driven kilometer of

€1.75/km. The proposed metric includes the makespan in hours (𝑡𝑚) and distance in kilometers

(𝑑𝑡𝑜𝑡𝑎𝑙), with their respective weights, as a cost. This is the objective that we optimize in this

study and looks as follows:

 𝐶𝑜𝑠𝑡 = 𝑃𝑆𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 ∙ 𝑡𝑚 ∙ 𝑐𝑤𝑎𝑔𝑒 + 𝑑𝑡𝑜𝑡𝑎𝑙 ∙ 𝑐𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (1)

The main assumptions made in this paper are the following:

I. Pods are fully stocked from the start time of the warehouse operations and the units are

assumed to be inexhaustible, meaning that the pods always contain sufficient units to

satisfy the requested order-lines.

II. The inventory pods have a fixed position in the storage area.

III. Robot breakdown does not occur and battery management is not included.

IV. Robots travel at a constant velocity.

V. A robot will dwell at the location where it completed its latest service if no other task

is immediately assigned.

VI. Robots always travel to their destination following the shortest path and unloaded

robots can travel underneath the inventory pods in the storage area.

VII. Robots are not dedicated to one specific picking station, but are pooled over all stations.

VIII. Picking times are deterministic.

4 The proposed multi-agent-based framework

In this work, we opted for an event-driven simulation approach since it has several benefits

over a more traditional time-driven approach. First of all, event-driven simulation is more

efficient, since it only regards time steps where actual changes (events) occur. This results in

less computation effort because only the agents that are affected by the specific events have to

be updated. Secondly, it allows a flexible and varying level of complexity of the model [31].

Figure 2 illustrates the high-level control flow chart of the discrete-event simulation (DES)

environment. After the initialization of the environment and its agents, the status of the

Pickingstation Agents is checked after picking events occur. If new slots open up on a

workbench, new order totes can be assigned to the available Pickingstation Agents. Thereafter,

the assignment processes occur as described in the following sections. In the case of no new

open slot, the simulation time advances. This process continues until all customer orders have

been fulfilled.

8

Figure 2. Control flow chart of the DES environment.

The agents in this framework are structured using object-oriented concepts. In this MAS

implementation, all resources are modeled as agent types where each agent type has its own

specific behavior and capabilities. In the remainder of the paper we refer to the agent

controlling a vehicle as a Vehicle Agent, the agent responsible for a picking station as a

Pickstation Agent, the agent for an inventory pod as a Pod Agent, and the agent controlling the

allocation of an order to the picking stations as an Order Agent. In figure 3, the proposed multi-

agent architecture is shown. The architecture consists of one Manager Agent and multiple local

agents, further described in the next section. All the local agents, which represent physical

resources, can consult and use the information of the Manager Agent and vice versa. The local

agents can only interact with specific agents, for instance, an Order Agent can only interact

with the Pickstation Agents, while Pickstation Agents can also interact with Pod Agents and

Vehicle Agents.

Table 1. Nomenclature.

Symbolic expression Description

𝑝𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 Orders already assigned to picking stations

 𝑝𝑎𝑢𝑐𝑡𝑖𝑜𝑛 Orders being auctioned

𝑝𝑡𝑜𝑡𝑎𝑙 The total amount of orders

𝑑𝑝𝑜𝑑 Travel distance from current location to pod location

𝑡𝑑𝑤𝑒𝑙𝑙 Estimated time required to travel from dwell to new pod location

𝑡𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 Estimated time to complete last retrieval task in the queue

𝑐𝑡
𝑖 Marginal cost of assigning a retrieval task to a mobile robot where the index i

refers to the ranking (i.e. i = 1 is the best marginal cost)

O The set of customer orders

N The set of all retrieval tasks in the system

AMR The set of available autonomous mobile robots

PS The set of available picking stations

X The dimensions of the look-ahead tree in both width and depth

𝑇𝐴 The set of retrieval task that have to be assigned at that time to AMRs

9

4.1 Agent definition

In the proposed multi-agent-based framework the agents are determined based on their

functions and goals in the system. We are defining the various types of agents operating in the

warehouse system as follows.

Figure 3. The proposed multi-agent architecture.

4.1.1 Manager Agent

In the proposed multi-agent architecture there exist only one Manager Agent and it has a

supervisory role. It has two main functions in the system: the initiation of the system and the

creation of all the resource agents and the assistance of these resource agents (e.g. order,

picking station, vehicles, and inventory pods) during operation. The number of resource agents

available in the system is determined beforehand by the decision maker. Furthermore, since

the Manager Agent has access to the information of all available local agents it enables the use

of more centralized algorithms (see Section 4.2.4) for the decision making process. Therefore,

the Manager Agent is able to influence the decisions made by the local agents.

4.1.2 Order Agent

The Order Agent contains all the details concerning the order (e.g. order lines, stock keeping

units (SKUs) required, etc.) and its status. Thus, for every order an Order Agent will be created.

It keeps track whether the picking order is already being processed at a picking station or if it

is still available for allocation in the backlog. Furthermore, the Pickstation Agents have to

decide which new order can become active at their workbench. They can check the

consolidation opportunities of a given order through its Order Agent.

4.1.3 Pickstation Agent

During the operation of the system, the picking stations are responsible for handling the

incoming orders. Each picking station has an order capacity, basically limiting the number of

orders that can be actively worked on at a certain time at the workbench. Therefore, it is highly

important for the picking stations to determine which orders have to be fulfilled first and in

which sequence. Whenever an order has been completed, it is removed from the list of active

orders and the Order Agent will change its status to ‘Completed’. Thereafter, another order can

become active, in this case the picking station will check the list of unallocated orders that still

have to be completed. It will look for an order that complements its current list of active orders

best, based on consolidation opportunities. Next, it requests from the respective Order Agent

10

to initiate an auction for it. An auction is initiated because other picking stations may also be

suited for that specific picking order. Therefore, the competing picking stations compute a bid

value to participate in the auction. A Pickstation Agent not only has the role of a bidder, but

can also take the role of auctioneer. For instance, when it makes requests for inventory pods to

fulfill the newly arrived order lines and also in the situation where it assigns transportation

tasks to the available mobile robots. Thus, when it takes the role of auctioneer it is responsible

for both the announcement of the auction, the winner determination problem, and the winner

announcement to all the participants of the auction (see Figure 4). The overall objective of the

Pickstation Agents is to complete all the arriving orders in the shortest makespan possible. This

assumes that all human workers remain in the warehouse until the last picking task is

completed.

4.1.4 Pod Agent

The role of an inventory pod is to supply the picking stations with SKUs in order to fulfill

customer orders. The distance between an inventory pod and a picking station has a significant

impact on the overall travelled distance, therefore, one of the objectives is to minimize this

distance. In Section 4.2.1, the allocation process for order lines-to-inventory pods is shown.

4.1.5 Vehicle Agent

In the RMFS, mobile robots have to transport inventory pods from the storage area to the

picking stations that require them and back. They have the capability to request tasks from the

Pickstation Agents in case their current task queue is empty, this to maximize their uptime.

Whenever a Pickstation Agent announces an auction for a transportation task, the Vehicle

Agent has to compute a bid value proportional to its eagerness to execute the retrieval task.

The Vehicle Agent computes its bid taking into account the vehicle’s estimated time when it is

available for a new task and the travel time from its planned dwell location to the newly

requested pod location. In Section 4.2, several different decision rules are proposed to allocate

the transportation tasks to the AMRs. The objective of the Vehicle Agents is to perform all the

transportation tasks travelling the shortest distances possible in a collision and deadlock free

manner.

4.2 Decision rules and negotiation mechanisms

In this study several negotiation mechanisms and decision rules were developed to distribute

the orders to the picking stations and retrieval tasks to the mobile robots. These mechanisms

or rules can be completely decentralized or entirely centralized through the use of the Manager

Agent to coordinate the other involved agents. A commonly used simple dispatching rule

(FIFO), is also used in the experimental section to compare the proposed mechanisms to.

4.2.1 Sequential single-item auction mechanism

In the decentral sequential single-item auction (SSIA) mechanism, an unallocated order/task is

presented to the interested bidders simultaneously. Every bidder has the opportunity to propose

a bid based on their intentions for the specific order/task. The auction process typically goes as

follows: an auctioneer initiates an auction for a single order/task and announces the start of the

auction to all the potential bidders. Next, it awaits for the bidders to compute and propose their

bids. Thereafter, the auctioneer has to decide which bid is the best. The winning bidder receives

the order/task and all the other bidders are also informed of the results of the auction. Both the

picking stations, the mobile robots, and the inventory pods use this mechanism to allocate either

picking orders or retrieval tasks respectively. Consider the first case where an Order Agent

11

initiates an auction to allocate a picking order to a picking station. The Pickstation Agents with

the highest bids wins. They calculate their bid (2) based on the consolidation gain, expressed

as the number of pod visits saved. For instance, if the order has three order lines where two of

the three order lines can be fulfilled by the inventory pods requested for the other current active

orders on the workbench, then potentially two pod visits have been saved. The work balance is

also factored in the bid calculation. This work balance is expressed as the number of picks that

have to be performed to fulfill all assigned orders (𝑝𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑) and the order that is being

auctioned (𝑝𝑎𝑢𝑐𝑡𝑖𝑜𝑛) divided by the total number of picks (𝑝𝑡𝑜𝑡𝑎𝑙) that have to be performed

over all stations. The workload has a negative impact on the bid value in order to maintain the

work balance over all stations.

 𝐵𝑖𝑑 = 𝑐𝑜𝑛𝑠𝑜𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 ∙ (1 − (𝑝𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 + 𝑝𝑎𝑢𝑐𝑡𝑖𝑜𝑛) 𝑝𝑡𝑜𝑡𝑎𝑙⁄) (2)

Consider the second case, the auctioning process for the pod selection problem. A Pickstation

Agent requests an inventory pod for the fulfillment of a line of one of its orders and initiates

an auction. Only the Pod Agents that represent an inventory pod that contain the required SKUs

can participate in the auction. As mentioned before, the main consideration in the bid

calculation is the travel distance (𝑑𝑝𝑜𝑑). However, since one inventory pod contains multiple

SKUs there is a possibility that multiple of those SKUs are required by either one or multiple

picking stations. In this case it might be more desirable to have an inventory pod that is located

further away but can fulfill multiple order lines in one visit since the average distance per order

line can be shorter [20]. Thus, this consolidation is included by dividing the distance over the

number of order lines that can be consolidated, the lowest bid wins (3).

 𝐵𝑖𝑑 = 𝑑𝑝𝑜𝑑 / 𝑐𝑜𝑛𝑠𝑜𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 (3)

There are situations where picking orders become active that require SKUs that are stored on

inventory pods which are already assigned or even being transported to the picking stations. In

such a case those SKUs are not taken into account in the auctioning process. As illustrated in

Figure 4, a Pickstation Agent initiates an auction to assign a new retrieval task to a mobile

robot. The involved Vehicle Agents make their bid calculations (4) based on the expected time

of arrival, the lowest bid wins. Thus, they include the time at which they expect to complete

their last retrieval task in the queue (𝑡𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛) and the time required to travel from the dwell

position to the new inventory pod location (𝑡𝑑𝑤𝑒𝑙𝑙).

 𝐵𝑖𝑑 = 𝑡𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 + 𝑡𝑑𝑤𝑒𝑙𝑙 (4)

12

Figure 4. UML interaction diagram of an auction procedure with one picking station and two vehicles.

4.2.2 Greedy look-ahead heuristic

The main downside of the simple sequential single-item auction mechanism is that it does not

account for the impact of assigning a certain pod retrieval task to a mobile robot can have on

other mobile robots. Allocating a retrieval task to a less suitable mobile robot can result in an

overall longer distance travelled by all the mobile robots and a longer system makespan.

Therefore, we propose a look-ahead heuristic (see Algorithm 1) where a decision tree is

constructed for the multi-robot task assignment. The tree attempts to foresee the described

impact of selecting a certain retrieval task for assignment on the overall distance travelled and

the system makespan. This heuristic is executed by the Manager Agent who communicates

with the Vehicle Agents to determine the bidding values. The look-ahead and evaluation

procedure, used to find the most promising tree nodes, is inspired by the heuristic proposed in

Jin et al. [32]. Our heuristic differentiates itself by partially looking ahead and evaluating these

options, from these options initiate another look-ahead step and so on. More specifically, the

procedure initially allocates a retrieval task to an available vehicle following the same

principles as the sequential single-item auction and evaluates the impact on the makespan of

all the available vehicles. The procedure does this for every single task in the set of unallocated

tasks. Once every retrieval task, in the set of unallocated tasks, has been evaluated, the heuristic

continues only with the X best scoring options.

13

In Figure 5, an example is given of the construction of the tree, where X determines both the

tree depth and width. In this case, the X is three. Thus, the tree search is limited in both search

depth and width and expands the tree only with the three most promising nodes. If one would

consider all branches instead of just X branches, an exhaustive search is performed and as the

number of tree nodes increases exponentially as the tree depth increases, it becomes too time

consuming. Starting from the root node, according to the depth and width limitations a limited

look-ahead tree is constructed. Finally, when the limited look-ahead tree is constructed, the leaf

node with the best makespan over all vehicles is selected as the best branch. The initial task

from this branch has been chosen as the most suitable task to be allocated to a vehicle. Thus,

each time the greedy look-ahead heuristic is called, a single task is allocated.

Figure 5. Greedy look-ahead heuristic.

14

4.2.3 Regret-based task selection

This regret-based approach for the task selection also provides a form of look-ahead

information in order to iteratively assign a retrieval task to a mobile robot. The regret heuristic

is also a more centralized algorithm available through the Manager Agent. This procedure

selects tasks that will result in the least regret later on compared to the situation where you

would not select this task now. The task with the highest regret value is selected to achieve this

result. The regret value is based on the difference of assigning the task to the mobile robot with

the lowest marginal cost 𝑐𝑡
1 and the mobile robot with the second-best marginal cost 𝑐𝑡

2 [33-34]

(Potvin & Rousseau, 1993; Chen et al., 2021). However, the look-ahead information can be

extended by taking more alternatives into account and not only the marginal cost of the best

and second-best option. Hence, it can also include the difference between the best and third-

best alternative and so on. Here, the k in the regret-k heuristic determines the number of

alternatives that are included in the regret calculation. For each task t in a set 𝑇𝐴 of tasks that

are to be allocated to picking stations the selection of a task t happens as follows [35]:

𝑡 = 𝑚𝑎𝑥𝑡∈𝑇𝐴(∑ 𝑐𝑡
ℎ − 𝑐𝑡

1𝑘
ℎ=2) (5)

4.2.4 Lin-Kernighan-Helsgaun

The main drawback of the previous allocation mechanisms is that they mainly work on local

information. In contrast, centralized heuristics, like the Lin-Kernighan-Helsgaun heuristic, can

use global information. This method simultaneously assigns multiple tasks to the mobile

robots. This has as a main benefit that the routes of the mobile robots will be of very good

quality. However, this comes at the cost of more computational effort to generate routes. It is

important to note that when the routes are being optimized the pod selection for the current

active orders has already been determined.

The state-of-the-art LKH-3 algorithm is implemented as a task allocation method for solving

vehicle routing problems [36]. This algorithm is an extension of the classical Lin-Kernighan

heuristic for solving the well-known travelling salesperson problem [37] adapted to be

applicable to the vehicle routing problem. The LKH-3 heuristic uses penalty functions for

handling constraints. It can be called by any Vehicle Agent through the Manager Agent, since

it requires a more global view of the system to provide the required input data to run the solver.

For this specific use case, it was chosen to solve the problem as an open vehicle routing problem

(OVRP). The LKH-3 models the pod retrievals from the pod locations to the picking stations

and back performed as well as the movement of the mobile robots from their dwell location to

the next pod retrieval location. The objective is to minimize the overall distance travelled. As

the sub problem being solved only deals with a limited number of retrieval tasks after which

additional jobs still need to be executed, there is no requirement for the mobile robots to return

to their origin locations and, therefore, an OVRP as a model is justified. Each time the situation

in the system changes, we re-optimize the task retrieval sequences of the mobile vehicles.

15

Figure 6. LKH-3 re-optimization after new order arrival. The routes in the figure do not illustrate the actual

paths followed by the AMRs but show in which sequence the AMRs will retrieve the pod requests.

In Figure 6, the vehicle following the orange sequence finished its first retrieval task, in time

step 1, in the sequence resulting in an order completion and a new order arrival in 2. Thereafter,

the LKH-3 heuristic re-optimizes the task retrieval sequences given the initial sequence and the

newly arrived retrieval request(s). The starting locations correspond to the planned dwell

locations of the mobile robots after they have finished the retrieval task that they are executing

when the solver has started optimizing. After re-optimization, the vehicle following the green

sequence is assigned a new retrieval task in its sequence. The multi-agent system continues

until all pick orders have been fulfilled

4.3 Conflict-free routing considerations

In most cases, the dispatching, routing, and scheduling are not as straightforward as just finding

the shortest paths between origin and destination. In theory, all operations can be completed

just as planned with no conflicts. In the literature, the assumption of unidirectional lanes is

commonly made [29]. However, when bidirectional lanes are concerned it is important to note

that in such a case conflicts may arise during operation and these cannot be disregarded during

the scheduling. Some common conflicts are: vehicle collisions, congestion, livelocks, and

deadlocks. Livelocks and deadlocks occur in situations where vehicles cannot move anymore

due to mutual blocking. Therefore, collision avoidance and deadlock resolution are important

considerations during modelling [38-39]. In the developed multi-agent system a conflict-free

routing mechanism is implemented for the Vehicle Agents. This mechanism consists of three

phases (see Algorithm 2): the individual path planning (Phase 1), collision detection (Phase 2),

and conflict resolution (Phase 3).

16

In Phase 1 a Vehicle Agent constructs a path from its current position to the destination (rule

5) with a pre-generated shortest path matrix (rule 1). This allows to quickly generate the

shortest path. Next, in Phase 2, the Vehicle Agent employs the collision detection algorithm to

find potential conflicts in its current planned route with the routes of the other Vehicle Agents

in the system (rule 6). Since a route consists of a list of nodes that will be visited, the detection

algorithm can calculate the position and time of each vehicle in the system throughout the

routes. Hence, the algorithm checks for each time step in the new proposed route whether the

vehicle would occupy the same node with another vehicle that might already be executing its

route. Therefore, if two or more vehicles occupy the same node at the same time step, this

results in a conflict and the conflict type can be determined (rule 7). If no conflict occurs, the

originally planned routes can be followed. Otherwise, the conflict has to be resolved in Phase

3 (rule 9 and 11). The conflict resolution algorithm, based on the conflict type that occurred,

either applies a waiting strategy or a rerouting strategy. In Figure 7, the most common conflicts

are shown. Both 7a, 7b, and 7c represent a cross collision, 7a and 7b denote that the mobile

robots will travel along different routes as they pass the intersection and in 7c the mobile robots

will travel on the same route after passing the intersection. In 7d the mobile robots want to pass

through the same aisle. Conflicts 7a, 7b, and 7c can be resolved using a waiting strategy where

one of the mobile robots in conflict can be instructed to wait for a certain period until there is

no conflict anymore. Conflict 7d has to be resolved with the rerouting strategy. If rerouting is

required, a modified A* algorithm partially reconstructs a new route avoiding the conflict area.

Incorporating conflict-free routing mechanisms is also necessary if bidirectional lanes are used.

17

Figure 7. Common routing conflicts: (a), (b) and (c) denote cross collisions and (d) illustrates the robots

wanting to use the same aisle.

5 Computational experiments

In this section, we validate the MAS approach and compare its performance to the

optimization-based solution. We generated several instances over a range of problem types as

follows: instances1 range in size from 50 to 1000 orders (N), the available number of

autonomous mobile robots ranging from 3 to 48 (AMR), and 3 to 12 picking stations (PS). The

orders used in the problem instances contain an average of two order-lines. The majority of the

orders only have 1 or 2 order-lines. A truncated exponential distribution is used to generate the

number of lines per order. The general warehouse layout of all instances used in this paper are

presented in Table 2 and are based on the configurations used in the tactical decision making

study of Lamballais et al. [29] focusing on the impact of the warehouse layout on the system

performance.

Table 2. Characteristics used to generate the warehouse layout.

Characteristic Value

Number of vertical shelves in a block 2

Number of horizontal shelves in a block 5

Number of aisles 17

Number of cross-aisles 9

Number of shelves 1800

Length of side aisle 5m

Unit length 1m

Number of robots 3, 6, 12, 24, 48

Robot velocity 1.3 m/s

Time for pod lifting and storing 1s

Number of picking stations 3, 6, 12

Buffer of picking stations 5

Station order capacity 5

Picking time 10s

1 https://www.mech.kuleuven.be/en/cib/rmfs

https://www.mech.kuleuven.be/en/cib/rmfs

18

In all experiments performed, the optimization metrics are the makespan of the overall system

and the total distance travelled by the mobile robots. The proposed multi-agent framework is

programmed in Python 3.8 and the instances were run on a device with the following

specifications: Intel Core i7-9850H CPU @2.60GHz, installed 32GB RAM, and 6 cores (12

logical processors).

5.1 Problem instances with unidirectional lanes

For this experiment, we consider unidirectional lanes which allows us to not have to consider

congestion and deadlock avoidance [4, 18, 19, 24, 25, 29]. This assumption relates closely to

reality since single directional lanes and the fact that unloaded robots can travel underneath the

pods in the storage area strongly decreases the occurrences of congestion and deadlocks. We

validate and compare the approaches proposed in Section 3 and compare their performances to

a centralized bi-level memetic (MA) optimization approach [19] and a dispatching algorithm

proposed by Qin et al. [40]. For the MA approach we use a population size of 34, a mutation

probability of 0,092, an elite size of 4 individuals, and a stopping criterion that is either based

on the number of iterations without improvement exceeding 26 iterations or a time limit of 1

hour. All these setup parameters where chosen after a systematic parameter calibration. A

fractional factorial design was chosen to restrict the number of required experimental runs but

still be able to determine possible interaction effects between the parameters. The calibration

was used on a subset of the problem types in order to get parameter setting that obtain good

quality solution for the complete range of problem instances. Furthermore, the objective

function of the MA is the same as the optimization objective discussed in (1). Qin et al. [40]

developed a dispatching algorithm (integer program model) to make real-time dispatching

decisions among robots, rack, and picking stations in a RMFS. They implemented their method

in a real-world e-commerce company and improved its performance significantly. Each

operating period of three seconds, the matching problem between the AMRs, inventory pods,

and picking stations has to be solved. However, they consider the order-to-picking station

allocation as given. We implement their dispatching approach in our simulation model to

compare it with our proposed approaches. Therefore, to have a fair comparison, the order

allocation method is the same as for all our proposed dispatching methods (see Section 4.2.1)

excluding the FIFO rule.

We simulate 3 to 48 mobile robots in a warehouse layout with 3 to 12 picking stations and

orders ranging from 50 up to 1000 for each experimental setup, as stated in Section 4. Table 3

shows the optimization metric, expressed as a cost, for the different developed approaches.

Remark that we are not able to find optimal solutions for this complex integrated problem [20].

This was expected since Boysen et al. [14] were unable to solve instances larger than 10 orders

to optimality within the time limit of 1 hour for one of the sub problems of the integrated

problem. Therefore, we opted for a centralized scheduling approach which can obtain good

quality solutions. From the results it can be seen that the memetic algorithm has the best

performance in all the experimental setups on both the makespan and total distance travelled

metrics. These results will be used as a benchmark to compare with the results of the proposed

MAS framework to determine the performance gap between them.

First of all, the worst performing task allocation mechanism for the multi-agent system, with

an average gap of 37,2%, is the MASFIFO decision rule. This was to be expected since the agents

in the system do not negotiate and coordinate with one another to optimize their operations and

19

just fulfill order retrieval tasks following a simple decision rule. When the agents negotiate

more with one another, for instance through the sequential single-item auctioning method

(MASSSIA), the system performance increases. However, this method, with an average gap of

17,8%, performs worse than the allocation mechanisms that can evaluate the future impact of

a decision. The look-ahead heuristic (MASLA) with its limited tree search approach keeps the

computational load manageable. However, some potential good solutions can be missed during

the look-ahead search. With an average gap of 16,1% it performs worse than the regret-k

heuristic (MASregret) with an average gap of 5,2%. The regret-k heuristic can be seen as an

implicit look-ahead approach and is able to prevent situations where certain tasks have to be

allocated to ill-suited mobile robots because the better suited mobile robots are no longer

available. From preliminary experimental results we found that a k-value equal to the number

of AMRs in the system worked best for the set of instances. Furthermore, with an average gap

of 14%, the approach of Qin et al. [40] is outperformed by MASregret. We believe this is because

their integer program, when assigning a transportation task, does not consider the impact on

the future assignment of transportation tasks. This is what the regret-k and LKH-3 heuristic do

better. Finally, the task allocation mechanism that achieves the best solution quality is the

LKH-3 heuristic (MASLKH-3) with an average gap of 2,0%. As expected, whenever more global

information is included in the task allocation process, the overall performance of the system

can be more optimized. However, this use of more global information during the optimization

process results in more computation time. Therefore, the regret-k heuristic might be more

suitable for application in real-world systems since it has a good balance between solution

quality and computation time.

Table 3. Simulation results with unidirectional lanes comparing the proposed mechanisms to the centralized

algorithm (MA). The costs used for comparison are based on the calculation in (1).

O/PS/AMR

MA

[19] FIFO Gap SSIA Gap

 Look-

Ahead Gap

Qin et

al. [40]

Gap Regret-

k Gap LKH Gap

50/3/3 51.1 69.7 -36% 62.9 -23% 57.6 -13% 57.2 -12% 56.0 -10% 53.7 -5%

50/3/6 32.1 45.7 -42% 39.3 -22% 37.7 -17% 36.3 -13% 37.6 -17% 34.6 -8%

50/3/12 24.7 33.9 -37% 30.3 -22% 27.5 -11% 27.3 -11% 28.0 -13% 27.0 -9%

100/3/3 72.7 105.5 -45% 98.8 -36% 90.9 -25% 85.7 -18% 81.3 -12% 86.4 -19%

100/3/6 47.4 69.0 -46% 59.6 -26% 56.6 -19% 54.4 -15% 53.8 -14% 52.6 -11%

100/3/12 33.1 48.1 -45% 41.7 -26% 41.7 -26% 44.0 -33% 40.1 -21% 39.4 -19%

200/3/3 180.7 249.3 -38% 203.3 -13% 206.3 -14% 200.2 -11% 185.0 -2% 182.4 -1%

200/3/6 113.4 158.0 -39% 125.1 -10% 130.9 -15% 131.4 -16% 119.6 -6% 118.1 -4%

200/3/12 80.8 113.9 -41% 107.0 -33% 98.3 -22% 98.4 -22% 87.4 -8% 88.2 -9%

200/6/6 175.3 251.5 -44% 207.6 -18% 209.6 -20% 193.4 -10% 190.8 -9% 183.8 -5%

200/6/12 113.8 162.9 -43% 130.3 -15% 135.5 -19% 133.6 -17% 125.0 -10% 117.7 -3%

200/6/24 80.2 117.5 -46% 96.4 -20% 94.1 -17% 99.1 -24% 88.9 -11% 88.1 -10%

500/6/6 424.3 576.0 -36% 415.0 2% 469.7 -11% 474.2 -12% 433.2 -2% 416.3 2%

500/6/12 259.9 350.6 -35% 303.5 -17% 289.6 -11% 299.0 -15% 254.3 2% 260.9 0%

500/6/24 193.1 259.4 -34% 227.9 -18% 224.8 -16% 226.9 -18% 197.4 -2% 185.5 4%

500/12/12 399.4 540.9 -35% 474.0 -19% 470.9 -18% 441.1 -10% 413.0 -3% 397.3 1%

500/12/24 269.4 348.1 -29% 300.8 -12% 312.4 -16% 292.7 -9% 268.2 0% 261.9 3%

500/12/48 202.7 258.4 -28% 223.8 -10% 223.6 -10% 222.0 -10% 198.2 2% 196.7 3%

1000/6/6 873.6 1147.6 -31% 785.0 10% 983.0 -13% 915.9 -5% 860.1 2% 812.5 7%

1000/6/12 533.2 729.1 -37% 738.9 -39% 614.0 -15% 596.9 -12% 526.2 1% 496.3 7%

1000/6/24 373.4 525.7 -41% 491.8 -32% 478.0 -28% 442.0 -18% 368.9 1% 363.9 3%

1000/12/12 852.8 1121.6 -32% 935.7 -10% 972.7 -14% 952.6 -12% 860.0 -1% 828.5 3%

1000/12/24 570.4 711.6 -25% 610.3 -7% 592.3 -4% 604.4 -6% 539.9 5% 496.6 13%

20

Table 3 shows the computational time in function of the number of orders to be fulfilled in a

RMFS. Note that the computation time of the memetic algorithm for the larger order sizes is

cut off at 1 hour of runtime. This cut off also explains why the memetic algorithm starts to

perform poorly for large scale instances since it is unable to find very good solution within this

time limit. From Table 4, we can see that the look-ahead and LKH-3 heuristics are considerably

slower than the remaining three approaches. The reason for this is that these two allocation

methods use more global information to allocate retrieval tasks to mobile robots and require

multiple iterations to improve the solution quality. The LKH-3 iteratively optimizes its solution

with r-opt moves, while the look-ahead heuristic estimates the impact of a decision now on the

situation several iterations in the future. The remaining decision rules and allocation

mechanisms require just a single constant time complexity calculation to make an assignment,

hence, making them less computationally expensive. The regret-k heuristic is able to find good

quality solution in only a fraction of the time required by the best performing allocation

heuristic and the memetic algorithm. Furthermore, it is interesting to note that scheduling a

certain amount of orders takes significantly longer when more resources (AMRS and picking

stations) are involved. The reason for this is that there are more decision options when more

resources are concerned, hence, it requires more computation time from the heuristics.

Table 4: Computation time comparison for the different task allocation mechanisms.

O/PS/AMR

FIFO

Time [s]

SSIA

Time [s]

Look-Ahead

Time [s]

Regret-k

Time [s]

LKH

Time [s]

Qin et al. [40]

Time [s]

MA [19]

Time [s]

50/3/3 0.33 0.32 1.90 0.39 9.79 2.20 56,04

50/3/6 0.35 0.33 2.72 0.39 14.17 1.91 57,73

50/3/12 0.34 0.34 3.83 0.48 23.75 1.78 74,26

100/3/3 0.37 0.39 2.03 0.41 14.95 3.08 146,02

100/3/6 0.36 0.38 2.83 0.44 20.89 2.65 155,65

100/3/12 0.37 0.39 3.04 0.52 38.02 2.84 180,85

200/3/3 0.52 0.59 5.56 0.64 32.39 7.58 397,24

200/3/6 0.51 0.61 7.50 0.76 49.18 6.98 364,15

200/3/12 0.52 0.58 8.81 0.86 81.86 6.06 458,97

200/6/6 0.52 0.63 14.54 0.92 97.66 15.41 645,61

200/6/12 0.53 0.61 22.19 1.47 120.09 13.10 577,60

200/6/24 0.53 0.63 27.08 2.42 204.67 9.51 878,94

500/6/6 0.90 1.36 22.22 1.98 257.31 33.87 1630,22

500/6/12 0.88 1.32 35.43 2.64 330.59 29.60 1526,54

500/6/24 0.91 1.35 41.93 3.37 476.70 18.71 1104,32

500/12/12 0.88 1.41 109.52 4.69 674.44 78.05 1321,52

500/12/24 0.93 1.43 172.47 11.28 757.72 54.59 1864,04

500/12/48 0.93 1.57 213.77 18.68 1448.25 38.10 1678,38

1000/6/6 1.38 3.15 43.24 4.13 500.74 70.37 3600,00

1000/6/12 1.38 2.91 57.96 6.06 609.56 63.27 3600,00

1000/6/24 1.40 2.89 72.64 6.69 922.56 54.09 3600,00

1000/12/12 1.39 3.51 137.97 9.95 1574.51 163.34 2791,80

1000/12/24 1.38 3.52 219.97 20.08 1740.70 121.71 2882,86

1000/12/48 1.40 3.38 284.53 28.67 3129.72 88.82 3600,00

1000/12/48 403.1 507.7 -26% 456.8 -13% 450.0 -12% 434.9 -8% 395.0 2% 357.0 11%

Avg. gap -37.2% -17.8% -16.1% -14.0% -5.2% -2.0%

21

5.2 Problem instances with bidirectional lanes

In most of the papers on RMFS [5, 10, 29] the assumption is made that no collisions or

deadlocks occur because unidirectional lanes are used in the storage area. However, with

unidirectional lanes, some optimization potential is lost, since by allowing mobile robots to

travel in the aisles in both directions the distance travelled can be reduced. The downside is

that collisions and deadlocks will be significantly more likely to occur. Therefore, the collision

avoidance strategy, explained in Section 4.3, is used to overcome this downside. In Figure 8,

the simulation results are shown for the subset with three picking stations, six mobile robots

and varying orders. Moreover, the MASregret is used, because it achieves good results very fast,

in a warehouse setup with bidirectional lanes. However, the collision avoidance algorithm does

slightly increase the computational time of the framework in comparison to the unidirectional

scenario where no collision avoidance is required. This impact on the computational time

increases with more AMRs in the system since the occurrences of conflicts grows, hence, the

algorithm has to perform more conflict resolutions. For instance for operations with 3, 6, 12,

24, and 48 AMRs, on average 3%, 10%, 19%, 35%, and 61% of the routes that were performed

in an instance had conflicts that had to be resolved. The MASregret with bidirectional lanes even

performs better than the centralized scheduling algorithm of Teck & Dewil [19] in

unidirectional lanes. This shows the significance of the optimization potential of bidirectional

lanes. Important to note here is that the centralized algorithm does not include a collision

avoidance strategy in its evaluation since this would increase its computational complexity

even more. To fairly compare the results of the memetic algorithm with the MASregret, the

generated schedules from the central algorithm in the bidirectional case are simulated in an

environment with the collision avoidance mechanism.

Figure 8. Simulation results to compare unidirectional lanes scenario to the bidirectional lanes scenario.

From the experiments in Figure 8, we see that the regret-k heuristic with bidirectional lanes is

able to get a better performance than the unidirectional case. The performance is often even

better than the performance of the centralized scheduler in the unidirectional case since the

gain of the travelling in both directions on a lane allows for more performance gain than the

gap in performance of the MASregret and the central algorithm. However, the central framework

with bidirectional lanes does still outperform the MASregret with an average gap of 6,9%. To

conclude, incorporating bidirectional lanes in the storage area of a RMFS allows for

considerable optimization opportunities. This is to be expected since the AMRs can use the

lanes in two directions, resulting in shorter possible routes. For instance, on average the routes

22

that the AMRs take on bidirectional lanes are 8,2 % shorter than those with unidirectional lanes.

However, this positive impact on the system performance is partially undone by the occurrence

of conflicts. This is especially the case for larger numbers of AMRs in the system. Still the

benefit of shorter routes outweighs the additional waiting time of the AMRs and the rerouting

since overall the MASregret in a bidirectional environments outperforms the MASregret in a

unidirectional environment with on average 5,8% lower operational costs. Important to note,

bidirectional lanes are only allowed if an effective collision and deadlock avoidance

mechanism is in place.

5.3 Impact of the warehouse layout on system performance

All of the previous experiments were performed on a warehouse layout with the same number

of inventory shelves as described in Table 2. To analyze the impact of different warehouse

layouts on the system performance, both the number of inventory shelves and the layout of the

shelves are varied to decrease (increase) the number of aisles and increase (decrease) the

number of cross-aisles. The MASregret is used as the decision rule for the framework on an

instance with 200 orders, 3 picking stations and 12 AMRs. Table 5 shows that, as expected, the

warehouse layout has an impact on the system performance and in the strategic and tactical

decision making this aspect has to be optimized. As for the operational decision making level,

in a warehouse with more cross-aisles than aisles the AMRs have to travel considerably more

to retrieve the inventory pods, which results in more costs. Moreover, the traffic density

through the aisles, to travel to the picking stations, increases considerably since there are fewer

options. This has a direct result on the number of conflicts that occur on bidirectional lanes,

which is shown in the percentage of conflicts that occur on the total amount of routes travelled.

In turn reduces the benefit of these bidirectional lanes since there are more waiting times and

rerouting actions as shown by the gap between the costs of the unidirectional and bidirectional

scenarios.

Table 5. Impact of various warehouse layouts with 200 orders, 3 picking stations, and 12 AMRs.

Shelves Aisles

 Unidirectional Bidirectional

Cross-

aisles

 Cost

[€]

Computational

time [s]

 Cost

[€]

Computational

time [s]

Conflicts

[%]

Gap

[%]

1200 23 4 82,1 1,25 74,7 1,63 21,3 9,0

1200 14 7 84,6 1,11 77,8 1,52 23,2 8,1

1200 5 19 107,6 1,13 103,3 2,23 40,2 4,0

1800 35 4 84,2 1,21 76,5 1,84 14,9 9,1

1800 17 9 87,4 0,86 82,6 1,24 21,2 5,5

1800 5 29 115,5 1,30 110,4 2,57 37,7 4,4

6 Conclusion and outlook

In this paper, we presented a multi-agent system for the simultaneous scheduling of AMRs and

picking stations in an automated warehouse and we developed several different allocation

mechanisms. The performance of the proposed system is compared to a centralized scheduling

algorithm. From the experimental results we conclude that the MASLKH-3 is the best performing

task allocation mechanism compared to the other developed mechanisms. Moreover, it is able

to get good quality solutions compared to the solutions from the central algorithm in only of a

fraction of the computation required by the central algorithm. Simple dispatching rules like the

FIFO rule performed badly and the other task allocation mechanisms were not as competitive

performance-wise compared to the MASLKH-3. However, the MASregret also obtains good

quality solutions with a lot less computational effort than the centralized algorithm and

23

MASLKH-3. Moreover, it outperforms a dispatching method [40] that is used in a real-world

RMFS application. Therefore, for large-scale instances where decisions have to be made

quickly the MASregret rule is more favorable since it scales better with increasing retrieval tasks.

Therefore, it is better suited for use in real-world optimization settings. Alternatively, in a

situation where some time is available for optimization, the MASLKH-3 is preferred since it

reaches better quality solutions. For instance, the time between the release of a schedule for

100 picking orders and the actual execution of these orders, the MASLKH-3 has enough time to

generate a new schedule. In the special case where there is no time limit the centralized

algorithm is still preferred. In conclusion, the proposed decentralized scheduling approach

scales well with the number of picking tasks in the system and generates good quality solutions

in a fraction of the time required by the centralized scheduling algorithm.

We also compare the proposed MASregret in a warehouse system with unidirectional lanes to a

storage area with bidirectional lanes. From these experiments we see that the bidirectional lanes

allow for a system performance that is better than the performance of the schedules obtained

from the central algorithm with unidirectional lanes. However, bidirectional lanes can only be

allowed if a collision avoidance strategy is in place since the assumption that no collisions or

deadlocks occur is no longer valid.

To improve the ability of the multi-agent system to generate schedules close to the centrally

generated schedules, future research can focus on hybridizing the two approaches where one

can use a centralized scheduler to generate near-optimal schedules that can act as a blueprint

for the agents in the multi-agent system to improve their decision making. Regarding the

MASLKH-3, its computational complexity could be improved some more by making the re-

optimization of the routes less nervous to changes in the environment. However, the

expectation is that it would still be significantly slower than the MASregret. In this paper we

assumed that picking times are deterministic. However, in reality this picking time is stochastic

and may cause unforeseen additional waiting times for the AMRs waiting in the picking station

queue, thus, impacting the complete schedule. The MAS should be able to dynamically adapt

to these unforeseen delays and act accordingly. In this paper the velocity of the mobile robots

is assumed to be constant, however, in future research it can be interesting to incorporate

acceleration and deceleration capabilities for the AMRs. Speed optimization can make the

avoidance of collisions and deadlocks more efficient since it allows for the mobile robots to

continuously drive without having to wait. Thus, preserving its momentum.

7 Disclosure statement

No potential conflict of interest was reported by the authors.

8 Acknowledgments

This work was supported by the Research Foundation – Flanders (FWO) under Grant 1S97322.

9 References

[1] T. Gruchmann, A. Mies, T. Neukirchen, S. Gold, Tensions in Sustainable Warehousing: Including

the Blue-Collar Perspective on Automation and Ergonomic workplace design. J. Bus. Econ. 91(2)

(2020) 151-178. https://doi.org/10.1007/s11573-020-00991-1

[2] D. Truxillo, D. Cadiz, L. Hammer, Supporting the Aging Workforce: A Review and

Recommendations for Workplace Intervention Research. Ann. Rev. Org. Psych. Org. Beh. 2(1)

(2015) 351-381. https://doi.org/10.1146/annurev-orgpsych-032414-111435

https://doi.org/10.1007/s11573-020-00991-1
https://doi.org/10.1146/annurev-orgpsych-032414-111435

24

[3] T. Le-anh, M.B.M. de Koster, A Review of Design and Control of Automated Guided Vehicle

Systems, Eur. J. Oper. Res. 171 (2016) 1-23. https://doi.org/10.1016/j.ejor.2005.01.036

[4] L. Luo, N. Zhao, An Efficient Simulation Model for Layout and Mode Performance Evaluation of

Robotic Mobile Fulfillment Systems. Exp. Sys. Appl. (2022) 117492.

https://doi.org/10.1016/j.eswa.2022.117492

[5] M. Merschformann, T. Lamballais, M.B.M. de Koster, L. Suhl, Decision Rules for Robotic Mobile

Fulfillment Systems. Oper. Res. Persp. 6 (2019) 100128. https://doi.org/10.1016/j.orp.2019.100128

[6] R. Van Lon, T. Holvoet, When Do Agents Outperform Centralized Algorithms?: A Systematic

Empirical Evaluation in Logistics. Aut. Agents Multi-Agent Sys. 31(6) (2017) 1578-1609.

https://doi.org/10.1007/s10458-017-9371-y

[7] R. Erol, C. Sahin, A. Baykasoglu, V. Kaplanoglu, A Multi-Agent Based Approach to Dynamic

Scheduling of Machines and Automated Guided Vehicles in Manufacturing Systems. Appl. S. Comp.

12(6) (2012) 1720-1732. https://doi.org/10.1016/j.asoc.2012.02.001

[8] K. Chen, C. Chen, Applying Multi-agent Technique in Multi-section Flexible Manufacturing

System. Exp. Sys. Appl. 37(11) (2012) 7310-7318. https://doi.org/10.1016/j.eswa.2010.04.024

[9] E. Macron, S. Chaabane, Y. Sallez, T. Bonte, A Multi-Agent System Based on

 Reactive Decision Rules for Solving the Caregiver Routing Problem in Home Health Care.

 Sim. Model. Practice and Theory 74 (2017) 134-151.

 https://doi.org/10.1016/j.simpat.2017.03.006

[10] Y. Bozer, F. Aldarondo, A Simulation-based Comparison of Two Goods-to-Person Order Picking

Systems in an Online Retail Setting. Int. J. Prod. Res. 56(11) (2018) 3838-3858.

https://doi.org/10.1080/00207543.2018.1424364

[11] C. Sahin, M. Demirtas, R. Erol, A. Baykasoglu, V. Kaplanoglu, A Multi-Agent Based Approach

to Dynamic Scheduling with Flexible Processing Capabilities. J. Int. Manuf. 28 (2017) 1827-1845.

https://doi.org/10.1007/s10845-015-1069-x

[12] S. Giordani, M. Lujak, F. Martinelli, A Distributed Multi-Agent Production Planning and

Scheduling Framework for Mobile Robots. Comp. Ind. Eng. 64 (2013) 19-30.

https://doi.org/10.1016/j.cie.2012.09.004

[13] M. De Ryck, D. Pissoort, T. Holvoet, E. Demeester, Decentral Task Allocation for Industrial AGV-

systems with Resource Constraints. J. Manuf. Sys. 59 (2021) 310-319.

https://doi.org/10.1016/j.jmsy.2021.03.008

[14] N. Boysen, D. Briskorn, S. Emde, Parts-to-Picker Based Order Processing in a Rack-moving

Mobile Robots Environment. Eur. J. Oper. Res. 262(2) (2017) 550-562.

https://doi.org/10.1016/j.ejor.2017.03.053

[15] X. Li, X. Yang, C. Zhang, M. Qi, A Simulation Study on the Robotic Mobile Fulfillment System

in High-Density Storage Warehouses. Sim. Model. Practice and Theory, 122 (2021) 102366.

https://doi.org/10.1016/j.simpat.2021.102366

[16] Zhuang, Y., Zhou, Y., Yuan, Y., Hu, X., & Hassini, E., 2022. Order Picking Optimization With

Rack-Moving Mobile Robots and Multiple Workstations. European Journal of Operational

Research 300: 527-544. https://doi.org/10.1016/j.ejor.2021.08.003

[17] X. Yang, G. Hua, L. Hu, T. Cheng, A. Huang, Joint Optimization of Order Sequencing and Rack

Scheduling in the Robotic Mobile Fulfilment System. Comp. Oper. Res. 135 (2021) 105467.

https://doi.org/10.1016/j.cor.2021.105467

[18] A. Valle, J. Beasley, Order Allocation, Rack Allocation and Rack Sequencing for Pickers in a

Mobile Rack Environment. Comp. Oper. Res. 125 (2021) 105090.

https://doi.org/10.1016/j.cor.2020.105090

[19] S. Teck, R. Dewil, A Bi-level Memetic Algorithm for the Integrated Order and Vehicle Scheduling

in a RMFS. Appl. S. Comp. 121 (2022a) 108770. https://doi.org/10.1016/j.asoc.2022.108770

[20] S. Teck, R. Dewil, Optimization Models for Scheduling Operations in Robotic Mobile Fulfillment

Systems. Appl. Math. Model. 111 (2022b) 270-287. https://doi.org/10.1016/j.apm.2022.06.036

https://doi.org/10.1016/j.ejor.2005.01.036
https://doi.org/10.1016/j.eswa.2022.117492
https://doi.org/10.1016/j.orp.2019.100128
https://doi.org/10.1007/s10458-017-9371-y
https://doi.org/10.1016/j.asoc.2012.02.001
https://doi.org/10.1016/j.eswa.2010.04.024
https://doi.org/10.1016/j.simpat.2017.03.006
https://doi.org/10.1080/00207543.2018.1424364
https://doi.org/10.1007/s10845-015-1069-x
https://doi.org/10.1016/j.cie.2012.09.004
https://doi.org/10.1016/j.jmsy.2021.03.008
https://doi.org/10.1016/j.ejor.2017.03.053
https://doi.org/10.1016/j.simpat.2021.102366
https://doi.org/10.1016/j.ejor.2021.08.003
https://doi.org/10.1016/j.cor.2021.105467
https://doi.org/10.1016/j.cor.2020.105090
https://doi.org/10.1016/j.asoc.2022.108770
https://doi.org/10.1016/j.apm.2022.06.036

25

[21] L. Xie, N. Thieme, R. Krenzler, H. Li, Introducing Split Orders and Optimizing Operational

Policies in Robotic Mobile Fulfillment Systems. Eur. J. Oper. Res. 288 (2021) 80-97.

https://doi.org/10.1016/j.ejor.2020.05.032

[22] A. Khamis, A. Hussein, A. Elmogy, A Multi-robot Task Allocation: a Review of the State-of-the-

art. Coop. Rob. Sens. Netw. 8 (2015) 30-51.

[23] M. De Ryck, M. Versteyhe, F. Debrouwere, Automated Guided Vehicle Systems, State-of-the-art

Control Algorithms and Techniques. J. Manuf. Sys. 54 (2020) 152-173.

https://doi.org/10.1016/j.jmsy.2019.12.002

[24] B. Zou, Y. Gong, X. Xu, Z. Yuan, Assignment Rules in Robotic Mobile Fulfilment Systems for

Online Retailers. Int. J. Prod. Res. 55 (2017) 6175-6192.

https://doi.org/10.1080/00207543.2017.1331050

[25] A. Gharehgozli, N. Zaerpour, Robot Scheduling for Pod Retrieval in a Robotic Mobile Fulfillment

System. Trans. Res. Part E (2020)142. https://doi.org/10.1016/j.tre.2020.102087

[26] S. Satunin, E. Babkin, A Multi-Agent Approach to Intelligent Transportation Systems Modelling

with Combinatorial Auctions. Exp. Sys. Appl. 41(15) (2014) 6622-6633.

https://doi.org/10.1016/j.eswa.2014.05.015

[27] Y. Liu, S. Sun, X. Wang, L. Wang, An Iterative Combinatorial Auction Mechanism for Multi-

agent Parallel Machine Scheduling. Int. J. Prod. Res. 60(1) (2021) 361-380.

https://doi.org/10.1080/00207543.2021.1950938

[28] F. Weidinger, N. Boysen, Scattered storage: How to Distribute Stock Keeping Units All Around a

Mixed-Shelves Warehouse. Trans. Sc. 52(6) (2018) 1412-1427.

https://doi.org/10.1287/trsc.2017.0779

[29] T. Lamballais, D. Roy, M. de Koster, Estimating Performance in a Robotic Mobile Fulfillment

Sytem. Eur. J. Oper. Res. 256(3) (2017) 976-990. https://doi.org/10.1016/j.ejor.2016.06.063

[30] J. Enright, P.R. Wurman, Optimization and Coordinated Autonomy in Mobile Fulfillment Systems.

In Proceedings of the AAAI workshop on automated action planning for autonomous mobile robots

(2011) 33-38.

[31] R. Meyer, Event-Driven Multi-Agent Simulation. International Workshop on Multi-Agent Systems

and Agent-Based Simulation Spring, (2014) 3-16.

[32] B. Jin, W. Zhu, A. Lim, Solving The Container Relocation Problem by an Improved Greedy Look-

ahead Heuristic. Eur. J. Oper. Res. 240(3) (2014) 837-847.

https://doi.org/10.1016/j.ejor.2014.07.038

[33] J. Potvin, J. Rousseau, A Parallel Route Building Algorithm for the Vehicle Routing and

Scheduling Problem with Time Windows. Eur. J. Oper. Res. 66(3) (1993) 331-340.

https://doi.org/10.1016/0377-2217(93)90221-8

[34] Z. Chen, J. Alonso-Mora, X. Bai, D. Harabor, P. Stuckey, Integrated Task Assignment and Path

Planning for Capacitated Multi-Agent Pickup and Delivery. IEEE Robotics and Automation Letters

6(3) (2021) 5816-5823. https://doi.org/10.1109/LRA.2021.3074883

[35] V. Hemmelmayr, J. Cordeau, T. Crainic, An Adaptive Large Neighborhood Search Heuristic for

Two-Echelon Vehicle Routing Problems Arising in City Logistics. Comp. Oper. Res. 39(12) (2012)

3215-3228. https://doi.org/10.1016/j.cor.2012.04.007

[36] K. Helsgaun, An Extension of the Lin-Kernighan-Helsgaun TSP Solver for Constrained Traveling

Salesman and Vehicle Routing Problems. Technical Report (2017).

[37] S. Lin, W. Kernighan, An Effective Heuristic Algorithm for the Travelling-Salesman Problem.

Oper. Res. 21 (1973) 498-516. https://doi.org/10.1287/opre.21.2.498

[38] Z. Zhang, Q. Guo, J. Chen, P. Yuan, Collision-Free Route Planning for Multiple AGVs in an

Automated Warehouse Based on Collision Classification. IEEE Access: Special selection on human-

centered smart systems and technologies 6 (2018) 26022-26035.

https://doi.org/10.1109/ACCESS.2018.2819199

https://doi.org/10.1016/j.ejor.2020.05.032
https://doi.org/10.1016/j.jmsy.2019.12.002
https://doi.org/10.1080/00207543.2017.1331050
https://doi.org/10.1016/j.tre.2020.102087
https://doi.org/10.1016/j.eswa.2014.05.015
https://doi.org/10.1080/00207543.2021.1950938
https://doi.org/10.1287/trsc.2017.0779
https://doi.org/10.1016/j.ejor.2016.06.063
https://doi.org/10.1016/j.ejor.2014.07.038
https://doi.org/10.1016/0377-2217(93)90221-8
https://doi.org/10.1109/LRA.2021.3074883
https://doi.org/10.1016/j.cor.2012.04.007
https://doi.org/10.1287/opre.21.2.498
https://doi.org/10.1109/ACCESS.2018.2819199

26

[39] M. Zhong, Y. Yang, Y. Dessouky, O. Postolache, Multi-AGV Scheduling for Conflict-Free Path

Planning in Automated Container Terminals. Comp. Ind. Eng. 142 (2020) 106371.

https://doi.org/10.1016/j.cie.2020.106371

[40] H. Qin, J. Xiao, D. Ge, L. Xin, J. Gao, S. He, H. Hu, JD.com: Operations Research Algorithms

Drive Intelligent Warehouse Robots to Work. INFORMS Journal on Applied Analytics 52(1) (2022)

42-55. https://doi.org/10.1287/inte.2021.1100

10 Appendices

Appendix A. Simulation results MAS framework with FIFO dispatching rule.

O/PS/AMR Time [s] Makespan [s] Total distance [m] Server utilization FIFO [€]

50/3/3 0.33 3296.9 10416 11.5% 69.7

50/3/6 0.35 1716.4 10778 22.0% 45.7

50/3/12 0.34 919.3 11155 40.6% 33.9

100/3/3 0.37 4983.9 15763 12.1% 105.5

100/3/6 0.36 2598.4 16206 23.0% 69.0

100/3/12 0.37 1295.8 15907 46.0% 48.1

200/3/3 0.52 11785.8 37239 12.0% 249.3

200/3/6 0.51 5939.47 37274 23.7% 158.0

200/3/12 0.52 3069.2 37674 44.8% 113.9

200/6/6 0.52 5940.9 37648 11.8% 251.5

200/6/12 0.53 3058.1 38446 22.8% 162.9

200/6/24 0.53 1596.7 38626 42.3% 117.5

500/6/6 0.90 13612.6 86043 12.1% 576.0

500/6/12 0.88 6475.6 84705 25.4% 350.6

500/6/24 0.91 3490.9 85872 46.1% 259.4

500/12/12 0.88 6328.9 83039 13.0% 540.9

500/12/24 0.93 3224.4 83736 25.3% 348.1

500/12/48 0.93 1735.3 85697 46.4% 258.4

1000/6/6 1.38 27106.5 171711 12.0% 1147.6

1000/6/12 1.38 13684.7 172275 23.7% 729.1

1000/6/24 1.40 7091.7 173747 45.9% 525.7

1000/12/12 1.39 13258.2 167377 12.3% 1121.6

1000/12/24 1.38 6699.8 167352 24.3% 711.6

1000/12/48 1.40 3433.6 167485 46.6% 507.7

Appendix B. Simulation results MAS framework with SSIA mechanism.

O/PS/AMR Time [s] Makespan [s] Total distance [m] Server utilization SSIA [€]

50/3/3 0.32 2974.5 9384 12.8% 62.9

50/3/6 0.33 1487.3 9202 25.0% 39.3

50/3/12 0.34 862.7 9582 42.0% 30.3

100/3/3 0.39 4687.6 14622 12.8% 98.8

100/3/6 0.38 2265.9 13838 26.4% 59.6

100/3/12 0.39 1195.6 13150 50.5% 41.7

200/3/3 0.59 9689.5 29650 14.6% 203.3

200/3/6 0.61 4774.9 28828 29.3% 125.1

200/3/12 0.58 3631.6 28729 38.0% 107.0

200/6/6 0.63 4939.0 30419 14.2% 207.6

200/6/12 0.61 2487.6 30040 27.8% 130.3

200/6/24 0.63 1497.6 28340 45.6% 96.4

500/6/6 1.36 9950.7 59436 16.6% 415.0

500/6/12 1.32 6093.3 64613 26.6% 303.5

500/6/24 1.35 3813.8 62139 40.3% 227.9

https://doi.org/10.1016/j.cie.2020.106371
https://doi.org/10.1287/inte.2021.1100

27

500/12/12 1.41 5786.2 64177 14.3% 474.0

500/12/24 1.43 2995.8 64564 27.1% 300.8

500/12/48 1.57 1806.7 63353 42.3% 223.8

1000/6/6 3.15 18859.2 111776 17.3% 785.0

1000/6/12 2.91 16493.3 127693 19.6% 738.9

1000/6/24 2.89 9067.1 119114 35.6% 491.8

1000/12/12 3.51 11563.6 121715 14.0% 935.7

1000/12/24 3.52 6569.1 114132 24.1% 610.3

1000/12/48 3.38 4072.7 115554 37.7% 456.8

Appendix C. Simulation results MAS framework with Look-Ahead heuristic.

O/PS/AMR Time [s] Makespan [s] Total distance [m] Server utilization Look-Ahead [€]

50/3/3 1.90 2752.9 8356 13.7% 57.6

50/3/6 2.72 1441.0 8655 25.9% 37.7

50/3/12 3.83 786.5 8683 45.0% 27.5

100/3/3 2.03 4352.1 13096 13.8% 90.9

100/3/6 2.83 2197.5 12713 27.3% 56.6

100/3/12 3.04 1221.8 12917 48.0% 41.7

200/3/3 5.56 9868.2 29762 14.2% 206.3

200/3/6 7.50 5101.9 29236 27.4% 130.9

200/3/12 8.81 3030.5 29099 46.2% 98.3

200/6/6 14.54 5111.2 28473 13.9% 209.6

200/6/12 22.19 2703.9 29141 25.7% 135.5

200/6/24 27.08 1429.8 28234 46.3% 94.1

500/6/6 22.22 11401.2 64818 14.6% 469.7

500/6/12 35.43 5614.1 65239 29.1% 289.6

500/6/24 41.93 3719.5 62007 44.2% 224.8

500/12/12 109.52 5659.8 66961 14.6% 470.9

500/12/24 172.47 3125.2 66924 27.0% 312.4

500/12/48 213.77 1786.2 64002 45.3% 223.6

1000/6/6 43.24 24233.7 128957 13.5% 983.0

1000/6/12 57.96 13026.4 118231 25.0% 614.0

1000/6/24 72.64 8539.9 120629 36.9% 478.0

1000/12/12 137.97 11978.4 128001 13.6% 972.7

1000/12/24 219.97 6064.1 121884 26.5% 592.3

1000/12/48 284.53 3872.3 118864 40.8% 450.0

Appendix D. Simulation results MAS framework with the dispatching method of Qin et

al. (2022).

O/PS/AMR Time [s] Makespan [s] Total distance [m] Server utilization Qin et al. [€]

50/3/3 2.20 2749.6 8152 13.9% 57.2

50/3/6 1.91 1405.6 8210 27.3% 36.3

50/3/12 1.78 777.2 8674 49.3% 27.3

100/3/3 3.08 4134.5 12062 14.7% 85.7

100/3/6 2.65 2115.8 12211 28.7% 54.4

100/3/12 2.84 1278.5 13753 47.5% 44.0

200/3/3 7.58 9643.9 28294 14.7% 200.2

200/3/6 6.98 5086.2 29670 27.8% 131.4

200/3/12 6.06 2776.1 31416 50.9% 98.4

200/6/6 15.41 4666.9 27186 15.1% 193.4

200/6/12 13.10 2621.6 29538 27.0% 133.6

200/6/24 9.51 1444.7 30831 48.9% 99.1

500/6/6 33.87 11444.6 66581 14.5% 474.2

28

500/6/12 29.60 5751.9 68147 28.8% 299.0

500/6/24 18.71 3287.5 70947 50.4% 226.9

500/12/12 78.05 5274.7 63650 15.7% 441.1

500/12/24 54.59 2836.4 65968 29.2% 292.7

500/12/48 38.10 1600.3 69700 51.8% 222.0

1000/6/6 70.37 22099.5 128736 14.8% 915.9

1000/6/12 63.27 11753.8 131213 27.8% 596.9

1000/6/24 54.09 6321.1 139684 51.7% 442.0

1000/12/12 163.34 11556.9 131600 14.2% 952.6

1000/12/24 121.71 5961.9 132449 27.4% 604.4

1000/12/48 88.82 3158.2 135700 51.8% 434.9

Appendix E. Simulation results MAS framework with regret-k heuristic.

O/PS/AMR Time [s] Makespan [s] Total distance [m] Server utilization Regret-k [€]

50/3/3 0.32 2974.5 9384 12.8% 62.9

50/3/6 0.33 1487.3 9202 25.0% 39.3

50/3/12 0.34 862.7 9582 42.0% 30.3

100/3/3 0.39 4687.6 14622 12.8% 98.8

100/3/6 0.38 2265.9 13838 26.4% 59.6

100/3/12 0.39 1195.6 13150 50.5% 41.7

200/3/3 0.59 9689.5 29650 14.6% 203.3

200/3/6 0.61 4774.9 28828 29.3% 125.1

200/3/12 0.58 3631.6 28729 38.0% 107.0

200/6/6 0.63 4939.0 30419 14.2% 207.6

200/6/12 0.61 2487.6 30040 27.8% 130.3

200/6/24 0.63 1497.6 28340 45.6% 96.4

500/6/6 1.36 9950.7 59436 16.6% 415.0

500/6/12 1.32 6093.3 64613 26.6% 303.5

500/6/24 1.35 3813.8 62139 40.3% 227.9

500/12/12 1.41 5786.2 64177 14.3% 474.0

500/12/24 1.43 2995.8 64564 27.1% 300.8

500/12/48 1.57 1806.7 63353 42.3% 223.8

1000/6/6 3.15 18859.2 111776 17.3% 785.0

1000/6/12 2.91 16493.3 127693 19.6% 738.9

1000/6/24 2.89 9067.1 119114 35.6% 491.8

1000/12/12 3.51 11563.6 121715 14.0% 935.7

1000/12/24 3.52 6569.1 114132 24.1% 610.3

1000/12/48 3.38 4072.7 115554 37.7% 456.8

Appendix F. Simulation results MAS framework with LKH-3 heuristic.

O/PS/AMR Time [s] Makespan [s] Total distance [m] Server utilization LKH [€]

50/3/3 9.79 2581.2 7633 14.5% 53.7

50/3/6 14.17 1363.5 7606 27.2% 34.6

50/3/12 23.75 835.7 7941 42.2% 27.0

100/3/3 14.95 4160.4 12250 14.6% 86.4

100/3/6 20.89 2068.3 11588 28.2% 52.6

100/3/12 38.02 1188.2 11925 50.9% 39.4

200/3/3 32.39 8797.3 25687 15.9% 182.4

200/3/6 49.18 4625.2 26210 29.9% 118.1

200/3/12 81.86 2694.5 26367 52.2% 88.2

200/6/6 97.66 4444.1 25650 15.8% 183.8

200/6/12 120.09 2350.8 25288 29.5% 117.7

200/6/24 204.67 1358.3 26086 50.6% 88.1

29

500/6/6 257.31 10073.6 57999 16.4% 416.3

500/6/12 330.59 5066.3 58639 32.3% 260.9

500/6/24 476.70 2861.4 54885 54.6% 185.5

500/12/12 674.44 4775.9 56462 17.1% 397.3

500/12/24 757.72 2585.8 57284 31.1% 261.9

500/12/48 1448.25 1551.6 56959 52.7% 196.7

1000/6/6 500.74 19675.2 112923 16.6% 812.5

1000/6/12 609.56 9840.6 107877 33.1% 496.3

1000/6/24 922.56 5622.5 107533 57.4% 363.9

1000/12/12 1574.51 10017.3 115646 16.2% 828.5

1000/12/24 1740.70 4946.6 107080 32.9% 496.6

1000/12/48 3129.72 2780.9 104701 56.6% 357.0

Appendix G. Simulation results memetic algorithm (Teck and Dewil, 2022a).

O/PS/AMR Time [s] Makespan [s] Total distance [m] Server utilization MA [€]

50/3/3 56,04 2453.6 7295 15.4% 51.1

50/3/6 57,73 1237.6 7307 29.5% 32.1

50/3/12 74,26 750.7 7415 48.9% 24.7

100/3/3 146,02 3509.2 10222 17.1% 72.7

100/3/6 155,65 1839.5 10639 19.0% 47.4

100/3/12 180,85 963.3 10292 61.0% 33.1

200/3/3 397,24 8686.5 25669 16.2% 180.7

200/3/6 364,15 4384.2 25624 32.0% 113.4

200/3/12 458,97 2371.6 24969 59.1% 80.8

200/6/6 645,61 4218.7 24824 16.6% 175.3

200/6/12 577,60 2257.3 24696 30.7% 113.8

200/6/24 878,94 1230.9 24804 57.4% 80.2

500/6/6 1630,22 10203.6 60267 16.2% 424.3

500/6/12 1526,54 4985.3 59465 32.9% 259.9

500/6/24 1104,32 2923.5 58107 55.9% 193.1

500/12/12 1321,52 4786.2 57305 17.2% 399.4

500/12/24 1864,04 2779.9 54673 29.5% 269.4

500/12/48 1678,38 1735.6 53829 47.1% 202.7

1000/6/6 3600,00 20979.0 124552 15.6% 873.6

1000/6/12 3600,00 10419.4 118598 31.3% 533.2

1000/6/24 3600,00 5535.7 114528 58.7% 373.4

1000/12/12 2791,80 10311.1 119031 15.8% 852.8

1000/12/24 2882,86 5959.5 113107 27.3% 570.4

1000/12/48 3600,00 3424.7 108015 47.4% 403.1

