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Abstract 

This paper presents a Multi-Agent System (MAS) for optimizing the scheduling and routing of 

mobile robots and human pickers in a Robotic Mobile Fulfillment System (RMFS). The RMFS 

is a system designed for e-commerce warehousing where autonomous mobile robots are used 

to fetch inventory pods, also referred to as racks, from the storage area and transport them to 

the appropriate picking station where human pickers pick the required number of goods. The 

system requires the solution of several hard decision problems like: the order-to-picking station 

assignment and sequencing, the pod selection, and the multi-robot task allocation. The 

proposed solution approach employs decentralized scheduling mechanisms, i.e. auctions and 

dispatching rules, to communicate and distribute picking and retrieval tasks among the agents. 

Various dispatching rules are identified and analyzed over a wide set of problem instances of 

the RMFS with varying numbers of mobile robots, picking stations, and order sizes. The 

proposed MAS framework shows promising results and requires only a fraction of the 

computation time compared to a centralized scheduling algorithm. The MAS also includes both 

unidirectional and bidirectional lanes. Although additional complexity in collision avoidance 

is introduced when using bidirectional lanes, it allows for better system performance.  

Keywords: multi-agent system, distributed control, robotic mobile fulfillment system, logistics, 

scheduling and routing  

 

1 Introduction 

Like many other sectors, the e-commerce sector has to deal with a growing scarcity of mostly 

blue-collar workers. This trend has put a considerable additional strain on the whole logistics 

sector [1]. Automation can play a key role to alleviate this problem and take over dangerous 

and repetitive jobs of human workers, resulting in a significant cut in operational costs by 

replacing expensive human workers with ever-cheaper machines. Autonomous mobile robots 

(AMRs) are ideally suited to fill this gap in the labor pool as they can be deployed alongside 

human workers in picking processes in warehouse environments [2]. The main scheduling 

activities as defined by Le-Ahn and De Koster [3] are as follows: vehicle dispatching, routing, 

vehicle planning, deadlock resolution, battery management, and positioning of vehicles. It is 

important to note that these control decisions all have interdependencies. 
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A  Robotic Mobile Fulfillment System (RMFS) is the manifestation of such a human-robot 

collaborative system. It is a semi-automated warehouse system that uses mobile robots for 

retrieval tasks in the storage areas and human workers for picking tasks in the picking area. 

Conventional fixed racks are replaced by movable inventory pods which are located in the 

storage area. One specific inventory pod can contain multiple different stock keeping units 

(SKUs) which allows for a reduction in required retrieval tasks if pods are selected smartly. 

This paper treats the assignment and sequencing of the orders to the different picking stations, 

the pod selection, and multi-robot task allocation problems in an automated e-commerce 

warehouse with rack-moving mobile robots (see Figure 1). Thus, we determine which order 

has to be allocated to a certain picking station, supplied with suitable inventory pods, and 

moved by autonomous robots in a conflict-free manner. 

 
Figure 1. Top view of a robotic mobile fulfillment system warehouse layout. 

Luo and Zhao [4] introduce a discrete-event simulation to estimate the performance of a RMFS 

for different layouts. Their findings show that bidirectional lanes allow for significant 

performance increases. However, they do not specify which dispatching/decision rules are 

used, and therefore, we assume that these decision rules are simple (e.g. First In, First Out 

(FIFO), Last In, First Out (LIFO), etc.). Merschformann et al. [5] compare some simple 

decision rules for the robotic mobile fulfillment system to one another. In this paper, we focus 

on developing more advanced dispatching rules to optimize the scheduling of AMRs and 

human pickers in the warehouse. We present a multi-agent-based planning approach for solving 

the RMFS problem. Every agent builds its own task schedule through decentralized negotiation 

or assignment mechanisms like dispatching rules. Multi-agent systems are very popular among 

decentralized systems and in some cases are even able to outperform centralized frameworks 

[6]. The RFMS resembles in many ways the problem considered in Erol et al. [7]. The picking 

stations can be viewed as production machines where the arrival times of the AMRs determine 

the earliest picking times at the picking stations. Vice versa, the picking stations determine the 

availability of an AMR to execute another retrieval task. Erol et al. [7] conclude that good 

synchronization and work balancing between these agents is of the utmost importance to 

minimize the idle time and consequently the overall operational costs. However, in the 



3 
 

literature, the RMFS scheduling problems are either solved with centralized algorithms which 

cannot be applied to very large problem instances, or through simulation frameworks utilizing 

very simple dispatching rules which result in low quality solutions. 

In the following, we outline the main contributions of this work. We identify and validate 

several suitable negotiation and dispatching rules, other than the traditional dispatching rules, 

used by the agents in the system. We present a MAS framework for the RMFS decision 

problems. The framework is able to solve large-scale instances fast, while still maintaining 

good solution quality, whereas a centralized algorithm can take significantly longer to solve 

the problem. This makes the proposed MAS framework more appropriate for real-time 

scheduling. Moreover, we show that the proposed framework, when used in a system with 

bidirectional lanes, outperforms a central algorithm used on a system with unidirectional lanes 

for the same warehouse layout.  

The remainder of this paper is structured as follows: Section 2 reviews the existing relevant 

literature on multi-agent-based systems and RMF systems. After that, the problem description 

is briefly discussed  in Section 3. Next, we elaborate in Section 4 on the design of the agents 

within the multi-agent system and Section 5 provides a discussion of the experimental results 

and findings. Finally in Section 6 conclusions are drawn and future research is formulated. 

2 Literature Review 

The research on multi-agent task allocation is extensive and aims to (near-)optimally allocate 

a set of tasks T = {t1, t2,…, tn} to a set of agents (e.g. mobile robots or picking stations) A = {a1, 

a2,…, am}. Multi-agent systems are in fact decentralized control systems where the autonomous 

agents in the system coordinate and cooperate with each other in order to achieve a global goal. 

Applied to the RMFS, this can be the minimization of the system makespan or total distance 

travelled. The literature review is structured as follows: the first two paragraphs deal with 

relevant literature on multi-agent-based approaches and the next paragraph focuses on the 

literature on the RMFS. In the final two paragraphs, the literature on the multi-robot task 

allocation is discussed.  

Erol et al. [7] developed a multi-agent-based approach to dynamically schedule both automated 

guided vehicles (AGV) and machines in a manufacturing setting. They proposed a system with 

agents using negotiation/bidding mechanisms and tested it on scheduling problems in the 

literature. They found that their approach outperformed the frequently used dispatching rules, 

which are commonly used as an alternative to bidding mechanisms, in literature. Moreover, 

their proposed system is competitive with some centralized optimization algorithms from the 

literature. The traditional decision/dispatching rules used in the literature are: First Come, First 

Served (FCFS), Shortest Travelling Distance (STD), Closest Available (CA), Earliest Due Date 

(EDD), etc. [5, 7-10]. The multi-agent architecture of this paper is based on their proposed 

architecture with a manager agent and an agent type for each physical resource in the system. 

Sahin et al. [11] also focus on the simultaneous scheduling of machines and mobile robots in a 

dynamic manufacturing environment. Their multi-agent-based approach which uses 

negotiation mechanisms, has a similar agent architecture as Erol et al. [7] and is validated with 

test problems from the literature. It is able to find the best known solutions and in many cases 

is able to improve upon them. The two previously described papers use a manager agent to 

initialize and create jobs, however, it can also be used to more centrally control all the agents. 
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In this study, it enables more advanced optimization algorithms as decision rules to perform 

the task allocation. 

Giordani et al. [12] propose a two-level decentralized MAS framework, where at the production 

planning level an iterative auction based negotiation protocol is used. An update is made at 

each iteration for the price of assigning a robot to a task and based on these prices a utility 

function constructs bids, this process continues until a stop criteria is met. At the second level, 

the multi-robot task allocation problem is solved with a distributed version of the Hungarian 

Method. They compared the performance of their proposed solution approach to that of a 

centralized approach and found that both methods had their advantages: the decentralized 

method is more robust and efficient than the centralized architecture. However, the 

decentralized method tends to under-utilize the production resources. Furthermore, they find 

that the centralized policy is more effective since it uses global information resulting in lower 

production costs but it is characterized with a much higher robot displacement distance.  De 

Ryck et al. [13] use a MAS for the decentral task allocation of AGVs. They propose a 

decentralized task allocation algorithm based on sequential single-item auctioning principles 

to efficiently plan the transportation tasks among the available agents. Additionally, the 

algorithm takes resource constraints into account during the allocation process. They compare 

the performance of their proposed approach to a centralized scheduling algorithm and an exact 

method for small scale problems. They conclude that their task allocation approach scales well 

with larger numbers of tasks in the system. It even outperformed the central algorithm in some 

cases and is able to generate competitive allocations compared to an exact approach. In this 

paper, we develop a MAS framework to solve large-scale problem instances for the RMFS and 

compare its performance to a centralized scheduling algorithm. 

In the literature, several research papers focus on the operational problems of the RMFS. 

Boysen et al. [14] concentrate on the batching and sequencing of picking orders already 

assigned to a picking station. They develop an exact method and some heuristic methods to 

solve the problem. The study shows that an optimized pick order processing may cut the 

required number of robots in half to run the efficiently system compared to simple decision 

rules. Li et al. [15] evaluate the performance of a high-density RMFS with a simulation study 

and compare it to a normal RMFS layout. They conclude that a high-density RMFS layout can 

save up to 10% in storage area occupation. Zhuang et al. [16] consider the problem of jointly 

optimizing the order sequencing and the rack scheduling problem. Moreover, workload 

balancing and rack conflicts among multiple picking stations is also included in their 

optimization method. They propose an exact model and an adaptive large neighborhood search 

method. They conclude that up to 62% rack movements can be saved compared to company’s 

current practice. Yang et al. [17] also consider this joint optimization problem and propose 

both a mixed-integer linear programming model and a two-stage solution procedure to solve 

it. They show that the joint optimization can result in up to 59,8% reduction of the robotic tasks 

compared to benchmark solutions. Valle & Beasley [18] consider the problem of allocating 

picking orders to picking stations and the sequencing of racks for presentation at each 

individual picker. They develop  two matheuristics to solve the problem and prove that, under 

certain conditions, a feasible rack sequence can be attained just focusing on a subset of the 

orders to be dealt with by the picker. The paper of Teck and Dewil [19] proposes a bi-level 

memetic optimization algorithm to solve the integrated scheduling problem. The integrated 

problem consists of the order assignment and sequencing on picking stations, the pod selection, 
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and the multi-robot task allocation problem. The experiments show that interdependencies exist 

between the different sub problems which may not be disregarded during optimization. This 

finding is confirmed in Teck and Dewil [20] by exact models, for the sub problems and the 

integrated problem, illustrating the importance of these interdependencies. Furthermore, the 

minimization of the number of pod visits is a common objective in different research papers 

[14, 21]. However, in Teck & Dewil [20], it is shown that including the distance of the pod to 

the station in the optimization objective results in better system performance. Thus, in this 

study we consider the distance of a pod from the picking station when selecting pods for 

transportation.   

In the literature, two main approaches can be distinguished to solve the multi-robot task 

allocation problem: the optimization-based approaches and market-based approaches [22-23]. 

A. Optimization-Based Approaches 

Optimization-based approaches focus on solving problems to optimality using global 

information. Within this branch two main categories can be distinguished: exact approaches 

and heuristic approaches. Exact approaches guarantee optimal solutions. However, their 

usefulness quickly diminishes when the scale becomes larger since they are unable to solve 

them to optimality in reasonable computational time. Therefore, whenever complex 

combinatorial problems are concerned for medium to large-scale problems the heuristic 

approaches become interesting. As the name implies, the (meta)heuristic approximate 

approaches do not guarantee optimality but try to solve the problems to near-optimality in 

reasonable computational time. Zou et al. [24] developed a semi-open queueing network to 

compare different assignment rules, like a rule based on the handling speeds of the picking 

stations and a near optimal assignment rule using a neighborhood search algorithm, for the 

multi-robot task assignment. They demonstrate the effectiveness of their proposed assignment 

rules through simulation. Gharehgozli and Zaerpour [25] focus on the multi-robot task 

assignment problem to fulfill the picking orders at the picking stations in a RMFS. They model 

the problem as an asymmetric traveling salesperson problem and extend it with general 

precedence constraints. Moreover, they propose a heuristic method to solve large size 

instances. However, their work assumes the order-to-picking station assignment as 

predetermined. The suitability of optimization based approaches in multi-robot task allocation 

highly depends on the optimization time that is available to solve the problem since they 

generally take longer than market-based approaches. In this paper, we identify and propose 

some optimization-based dispatching rules to efficiently handle the multi-robot task 

assignment problem.    

B. Market-Based Approaches 

Market-based, commonly referred to as auction-based approaches are, compared to the 

optimization-based approaches, very scalable and flexible. The auctions are a way to perform 

the resource allocation in a multi-agent system. Overall, the auction principles can be divided 

into three different methods: the parallel single-item auctions, the combinatorial auctions [26, 

27], and the sequential single-item auctions [13]. Parallel single-item auctions, in contrast to 

sequential single-item and combinatorial auctions, allocate various different items (e.g. orders 

and tasks) simultaneously. As a result, it disallows the bidders to take interdependencies 

between these items into account. Therefore, the computational complexity of parallel single-
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item auctions (𝑂(𝑛𝑏𝑖𝑑𝑑𝑒𝑟𝑠 ∗ 𝑚𝑖𝑡𝑒𝑚𝑠)) is significantly lower than that of sequential single-item 

auctions (𝑂(𝑛𝑏𝑖𝑑𝑑𝑒𝑟𝑠 ∗ 𝑚2
𝑖𝑡𝑒𝑚𝑠)) and combinatorial auctions (𝑂(𝑛𝑏𝑖𝑑𝑑𝑒𝑟𝑠 ∗ 2𝑚𝑖𝑡𝑒𝑚𝑠)). However, 

the parallel single-item auction does not guarantee good quality, whereas combinatorial 

auctions can reach close to optimal solutions [13]. The advantage of the sequential single-item 

auction mechanism is that it is a compromise with regards to the computational complexity and 

the solution quality between a parallel and a combinatorial auctioning mechanism [13]. The 

solution quality is typically better than the parallel auctioning mechanism because sequentially 

auctioning items allow the bidders to take synergies between the items into account in their bid 

calculation. We develop a parallel single-item auctioning mechanism to distribute the picking 

orders and transportation tasks over the available agents and compare its performance to the 

proposed optimization-based approaches. 

In this study we consider several decision problems of the RMFS: assigning the orders to the 

different stations and sequencing the orders, selecting the pods, and allocating the multi-robot 

tasks. A previous paper on this integrated problem [19] proposes a centralized optimization 

algorithm. Even though it is able to obtain good quality solutions, it requires too much 

computation time to be readily applicable for real-time scheduling purposes. In this work, we 

propose a multi-agent approach that is able to solve this problem in a fraction of the 

computation time that the memetic algorithm requires. Furthermore, it is able to solve larger 

problem instances which we also introduce in this paper.   

3 Problem description 

We consider several sub problems of the RMFS. The order-to-station assignment and 

sequencing problem concerns how to allocate orders from a set of available orders to picking 

stations and when. This in a way that minimizes the makespan of the picking stations and 

maintains a good work balance. Specific to the RMFS, is the capability to simultaneously work 

on multiple orders at the same time on the workbenches of the picking stations. Whenever 

orders have been assigned to picking stations, the picking stations seek to fulfill these orders 

by looking for suitable inventory pods. This is called the pod selection problem. A typical 

inventory pod contains multiple different SKUs. In a RMFS a scattered storage policy is 

typically applied [28], meaning that when an order has to be completed it can potentially be 

completed by various different inventory pods. However, in many cases there is one inventory 

pod that is more suitable than the others. This is mainly dependent on the location of the pod 

to the picking station that can serve the specific order line. Moreover, consolidation 

opportunities in the fulfillment of orders at the picking stations is an important consideration 

during the process of selecting the pods. In a previous paper, we introduced the term of ‘pod 

consolidation’ which refers to the average number of order lines that can be fulfilled by an 

inventory pod when it is presented to a human worker at a picking station [19]. Once suitable 

inventory pods have been selected, pod retrieval tasks can be distributed among the mobile 

robots. The multi-robot task assignment problem deals with the problem how to assign these 

retrieval tasks  the different mobile robots. The assignment of these task have to be in such a 

way that the total distance travelled is minimized. A characteristic unique to this system is that 

an inventory pod can directly be transported from one station to another. Furthermore, in the 

literature, unidirectional lanes are commonly used since these allow for the simplifying 

assumption that robot congestion or deadlocks will not occur during operation. This assumption 

is reasonable and relates closely to the real situation [29]. However, bidirectional lanes may 
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allow for better system performance. In this paper, both unidirectional and bidirectional lanes 

are tested.  

For a more detailed description of the operations in a RMFS we refer to the paper of Enright 

and Wurman [30]. The performance criteria in this study are the time at which the last order at 

a picking station is fulfilled, defined as the makespan and the total distance travelled by all 

robots. These are typical metrics to compare the performance of the RMFS. However, in reality 

these two metrics have different weights. In Teck & Dewil [20] we introduce one cost metric 

where we determine an hourly wage cost (𝑐𝑤𝑎𝑔𝑒) of €18.75/hr for one human worker at a 

picking station (PS) and a cost of operating a robot (𝑐𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) per driven kilometer of 

€1.75/km. The proposed metric includes the makespan in hours (𝑡𝑚) and distance in kilometers 

(𝑑𝑡𝑜𝑡𝑎𝑙), with their respective weights, as a cost. This is the objective that we optimize in this 

study and looks as follows:  

     𝐶𝑜𝑠𝑡 = 𝑃𝑆𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 ∙ 𝑡𝑚 ∙ 𝑐𝑤𝑎𝑔𝑒 + 𝑑𝑡𝑜𝑡𝑎𝑙 ∙ 𝑐𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒                              (1) 

The main assumptions made in this paper are the following: 

I. Pods are fully stocked from the start time of the warehouse operations and the units are 

assumed to be inexhaustible, meaning that the pods always contain sufficient units to 

satisfy the requested order-lines. 

II. The inventory pods have a fixed position in the storage area.  

III. Robot breakdown does not occur and battery management is not included. 

IV. Robots travel at a constant velocity.  

V. A robot will dwell at the location where it completed its latest service if no other task 

is immediately assigned. 

VI. Robots always travel to their destination following the shortest path and unloaded 

robots can travel underneath the inventory pods in the storage area. 

VII. Robots are not dedicated to one specific picking station, but are pooled over all stations.  

VIII. Picking times are deterministic.  

4 The proposed multi-agent-based framework  

In this work, we opted for an event-driven simulation approach since it has several benefits 

over a more traditional time-driven approach. First of all, event-driven simulation is more 

efficient, since it only regards time steps where actual changes (events) occur. This results in 

less computation effort because only the agents that are affected by the specific events have to 

be updated. Secondly, it allows a flexible and varying level of complexity of the model [31]. 

Figure 2 illustrates the high-level control flow chart of the discrete-event simulation (DES) 

environment. After the initialization of the environment and its agents, the status of the 

Pickingstation Agents is checked after picking events occur. If new slots open up on a 

workbench, new order totes can be assigned to the available Pickingstation Agents. Thereafter, 

the assignment processes occur as described in the following sections. In the case of no new 

open slot, the simulation time advances. This process continues until all customer orders have 

been fulfilled.  
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Figure 2. Control flow chart of the DES environment. 

The agents in this framework are structured using object-oriented concepts. In this MAS 

implementation, all resources are modeled as agent types where each agent type has its own 

specific behavior and capabilities. In the remainder of the paper we refer to the agent 

controlling a vehicle as a Vehicle Agent, the agent responsible for a picking station as a 

Pickstation Agent, the agent for an inventory pod as a Pod Agent, and the agent controlling the 

allocation of an order to the picking stations as an Order Agent. In figure 3, the proposed multi-

agent architecture is shown. The architecture consists of one Manager Agent and multiple local 

agents, further described in the next section. All the local agents, which represent physical 

resources, can consult and use the information of the Manager Agent and vice versa. The local 

agents can only interact with specific agents, for instance, an Order Agent can only interact 

with the Pickstation Agents, while Pickstation Agents can also interact with Pod Agents and 

Vehicle Agents. 

Table 1. Nomenclature. 

Symbolic expression Description 

𝑝𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 Orders already assigned to picking stations 

 𝑝𝑎𝑢𝑐𝑡𝑖𝑜𝑛 Orders being auctioned 

𝑝𝑡𝑜𝑡𝑎𝑙 The total amount of orders  

𝑑𝑝𝑜𝑑 Travel distance from current location to pod location 

𝑡𝑑𝑤𝑒𝑙𝑙 Estimated time required to travel from dwell to new pod location 

𝑡𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 Estimated time to complete last retrieval task in the queue 

𝑐𝑡
𝑖 Marginal cost of assigning a retrieval task to a mobile robot where the index i 

refers to the ranking (i.e. i = 1 is the best marginal cost) 

O The set of customer orders 

N The set of all retrieval tasks in the system 

AMR The set of available autonomous mobile robots 

PS The set of available picking stations 

X The dimensions of the look-ahead tree in both width and depth 

𝑇𝐴 The set of retrieval task that have to be assigned at that time to AMRs 
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4.1 Agent definition 

In the proposed multi-agent-based framework the agents are determined based on their 

functions and goals in the system. We are defining the various types of agents operating in the 

warehouse system as follows. 

 

Figure 3. The proposed multi-agent architecture. 

4.1.1 Manager Agent 

In the proposed multi-agent architecture there exist only one Manager Agent and it has a 

supervisory role. It has two main functions in the system: the initiation of the system and the 

creation of all the resource agents and the assistance of these resource agents (e.g. order, 

picking station, vehicles, and inventory pods) during operation. The number of resource agents 

available in the system is determined beforehand by the decision maker. Furthermore, since 

the Manager Agent has access to the information of all available local agents it enables the use 

of more centralized algorithms (see Section 4.2.4) for the decision making process. Therefore, 

the Manager Agent is able to influence the decisions made by the local agents.   

4.1.2 Order Agent 

The Order Agent contains all the details concerning the order (e.g. order lines, stock keeping 

units (SKUs) required, etc.) and its status. Thus, for every order an Order Agent will be created. 

It keeps track whether the picking order is already being processed at a picking station or if it 

is still available for allocation in the backlog. Furthermore, the Pickstation Agents have to 

decide which new order can become active at their workbench. They can check the 

consolidation opportunities of a given order through its Order Agent.  

4.1.3 Pickstation Agent 

During the operation of the system, the picking stations are responsible for handling the 

incoming orders. Each picking station has an order capacity, basically limiting the number of 

orders that can be actively worked on at a certain time at the workbench. Therefore, it is highly 

important for the picking stations to determine which orders have to be fulfilled first and in 

which sequence. Whenever an order has been completed, it is removed from the list of active 

orders and the Order Agent will change its status to ‘Completed’. Thereafter, another order can 

become active, in this case the picking station will check the list of unallocated orders that still 

have to be completed. It will look for an order that complements its current list of active orders 

best, based on consolidation opportunities. Next, it requests from the respective Order Agent 
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to initiate an auction for it. An auction is initiated because other picking stations may also be 

suited for that specific picking order. Therefore, the competing picking stations compute a bid 

value to participate in the auction. A Pickstation Agent not only has the role of a bidder, but 

can also take the role of auctioneer. For instance, when it makes requests for inventory pods to 

fulfill the newly arrived order lines and also in the situation where it assigns transportation 

tasks to the available mobile robots. Thus, when it takes the role of auctioneer it is responsible 

for both the announcement of the auction, the winner determination problem, and the winner 

announcement to all the participants of the auction (see Figure 4). The overall objective of the 

Pickstation Agents is to complete all the arriving orders in the shortest makespan possible. This 

assumes that all human workers remain in the warehouse until the last picking task is 

completed.  

4.1.4 Pod Agent 

The role of an inventory pod is to supply the picking stations with SKUs in order to fulfill 

customer orders. The distance between an inventory pod and a picking station has a significant 

impact on the overall travelled distance, therefore, one of the objectives is to minimize this 

distance. In Section 4.2.1, the allocation process for order lines-to-inventory pods is shown.  

4.1.5  Vehicle Agent 

In the RMFS, mobile robots have to transport inventory pods from the storage area to the 

picking stations that require them and back. They have the capability to request tasks from the 

Pickstation Agents in case their current task queue is empty, this to maximize their uptime. 

Whenever a Pickstation Agent announces an auction for a transportation task, the Vehicle 

Agent has to compute a bid value proportional to its eagerness to execute the retrieval task. 

The Vehicle Agent computes its bid taking into account the vehicle’s estimated time when it is 

available for a new task and the travel time from its planned dwell location to the newly 

requested pod location. In Section 4.2, several different decision rules are proposed to allocate 

the transportation tasks to the AMRs. The objective of the Vehicle Agents is to perform all the 

transportation tasks travelling the shortest distances possible in a collision and deadlock free 

manner. 

4.2 Decision rules and negotiation mechanisms 

In this study several negotiation mechanisms and decision rules were developed to distribute 

the orders to the picking stations and retrieval tasks to the mobile robots. These mechanisms 

or rules can be completely decentralized or entirely centralized through the use of the Manager 

Agent to coordinate the other involved agents. A commonly used simple dispatching rule 

(FIFO), is also used in the experimental section to compare the proposed mechanisms to.  

4.2.1 Sequential single-item auction mechanism 

In the decentral sequential single-item auction (SSIA) mechanism, an unallocated order/task is 

presented to the interested bidders simultaneously. Every bidder has the opportunity to propose 

a bid based on their intentions for the specific order/task. The auction process typically goes as 

follows: an auctioneer initiates an auction for a single order/task and announces the start of the 

auction to all the potential bidders. Next, it awaits for the bidders to compute and propose their 

bids. Thereafter, the auctioneer has to decide which bid is the best. The winning bidder receives 

the order/task and all the other bidders are also informed of the results of the auction. Both the 

picking stations, the mobile robots, and the inventory pods use this mechanism to allocate either 

picking orders or retrieval tasks respectively. Consider the first case where an Order Agent 
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initiates an auction to allocate a picking order to a picking station. The Pickstation Agents with 

the highest bids wins. They calculate their bid (2) based on the consolidation gain, expressed 

as the number of pod visits saved. For instance, if the order has three order lines where two of 

the three order lines can be fulfilled by the inventory pods requested for the other current active 

orders on the workbench, then potentially two pod visits have been saved. The work balance is 

also factored in the bid calculation. This work balance is expressed as the number of picks that 

have to be performed to fulfill all assigned orders (𝑝𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑) and the order that is being 

auctioned (𝑝𝑎𝑢𝑐𝑡𝑖𝑜𝑛) divided by the total number of picks (𝑝𝑡𝑜𝑡𝑎𝑙) that have to be performed 

over all stations. The workload has a negative impact on the bid value in order to maintain the 

work balance over all stations. 

 𝐵𝑖𝑑 = 𝑐𝑜𝑛𝑠𝑜𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 ∙ (1 − (𝑝𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 + 𝑝𝑎𝑢𝑐𝑡𝑖𝑜𝑛) 𝑝𝑡𝑜𝑡𝑎𝑙⁄ )                         (2) 

Consider the second case, the auctioning process for the pod selection problem. A Pickstation 

Agent requests an inventory pod for the fulfillment of a line of one of its orders and initiates 

an auction. Only the Pod Agents that represent an inventory pod that contain the required SKUs 

can participate in the auction. As mentioned before, the main consideration in the bid 

calculation is the travel distance (𝑑𝑝𝑜𝑑). However, since one inventory pod contains multiple 

SKUs there is a possibility that multiple of those SKUs are required by either one or multiple 

picking stations. In this case it might be more desirable to have an inventory pod that is located 

further away but can fulfill multiple order lines in one visit since the average distance per order 

line can be shorter [20]. Thus, this consolidation is included by dividing the distance over the 

number of order lines that can be consolidated, the lowest bid wins (3). 

                                        𝐵𝑖𝑑 = 𝑑𝑝𝑜𝑑  / 𝑐𝑜𝑛𝑠𝑜𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛                 (3) 

There are situations where picking orders become active that require SKUs that are stored on 

inventory pods which are already assigned or even being transported to the picking stations. In 

such a case those SKUs are not taken into account in the auctioning process. As illustrated in 

Figure 4, a Pickstation Agent initiates an auction to assign a new retrieval task to a mobile 

robot. The involved Vehicle Agents make their bid calculations (4) based on the expected time 

of arrival, the lowest bid wins. Thus, they include the time at which they expect to complete 

their last retrieval task in the queue (𝑡𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛) and the time required to travel from the dwell 

position to the new inventory pod location (𝑡𝑑𝑤𝑒𝑙𝑙).   

                                                     𝐵𝑖𝑑 = 𝑡𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 + 𝑡𝑑𝑤𝑒𝑙𝑙                              (4) 
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Figure 4. UML interaction diagram of an auction procedure with one picking station and two vehicles. 

4.2.2 Greedy look-ahead heuristic 

The main downside of the simple sequential single-item auction mechanism is that it does not 

account for the impact of assigning a certain pod retrieval task to a mobile robot can have on 

other mobile robots. Allocating a retrieval task to a less suitable mobile robot can result in an 

overall longer distance travelled by all the mobile robots and a longer system makespan. 

Therefore, we propose a look-ahead heuristic (see Algorithm 1) where a decision tree is 

constructed for the multi-robot task assignment. The tree attempts to foresee the described 

impact of selecting a certain retrieval task for assignment on the overall distance travelled and 

the system makespan. This heuristic is executed by the Manager Agent who communicates 

with the Vehicle Agents to determine the bidding values. The look-ahead and evaluation 

procedure, used to find the most promising tree nodes, is inspired by the heuristic proposed in 

Jin et al. [32]. Our heuristic differentiates itself by partially looking ahead and evaluating these 

options, from these options initiate another look-ahead step and so on. More specifically, the 

procedure initially allocates a retrieval task to an available vehicle following the same 

principles as the sequential single-item auction and evaluates the impact on the makespan of 

all the available vehicles. The procedure does this for every single task in the set of unallocated 

tasks. Once every retrieval task, in the set of unallocated tasks, has been evaluated, the heuristic 

continues only with the X best scoring options.   
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In Figure 5, an example is given of the construction of the tree, where X determines both the 

tree depth and width. In this case, the X is three. Thus, the tree search is limited in both search 

depth and width and expands the tree only with the three most promising nodes. If one would 

consider all branches instead of just X branches, an exhaustive search is performed and as the 

number of tree nodes increases exponentially as the tree depth increases,  it becomes too time 

consuming. Starting from the root node, according to the depth and width limitations a limited 

look-ahead tree is constructed. Finally, when the limited look-ahead tree is constructed, the leaf 

node with the best makespan over all vehicles is selected as the best branch. The initial task 

from this branch has been chosen as the most suitable task to be allocated to a vehicle. Thus, 

each time the greedy look-ahead heuristic is called, a single task is allocated. 

 

Figure 5. Greedy look-ahead heuristic. 
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4.2.3 Regret-based task selection 

This regret-based approach for the task selection also provides a form of look-ahead 

information in order to iteratively assign a retrieval task to a mobile robot. The regret heuristic 

is also a more centralized algorithm available through the Manager Agent. This procedure 

selects tasks that will result in the least regret later on compared to the situation where you 

would not select this task now. The task with the highest regret value is selected to achieve this 

result. The regret value is based on the difference of assigning the task to the mobile robot with 

the lowest marginal cost 𝑐𝑡
1 and the mobile robot with the second-best marginal cost 𝑐𝑡

2 [33-34] 

(Potvin & Rousseau, 1993; Chen et al., 2021). However, the look-ahead information can be 

extended by taking more alternatives into account and not only the marginal cost of the best 

and second-best option. Hence, it can also include the difference between the best and third-

best alternative and so on. Here, the k in the regret-k heuristic determines the number of 

alternatives that are included in the regret calculation. For each task t in a set 𝑇𝐴 of tasks that 

are to be allocated to picking stations the selection of a task t happens as follows [35]: 

𝑡 = 𝑚𝑎𝑥𝑡∈𝑇𝐴(∑ 𝑐𝑡
ℎ − 𝑐𝑡

1𝑘
ℎ=2 )                   (5) 

4.2.4 Lin-Kernighan-Helsgaun 

The main drawback of the previous allocation mechanisms is that they mainly work on local 

information. In contrast, centralized heuristics, like the Lin-Kernighan-Helsgaun heuristic, can 

use global information. This method simultaneously assigns multiple tasks to the mobile 

robots. This has as a main benefit that the routes of the mobile robots will be of very good 

quality. However, this comes at the cost of more computational effort to generate routes. It is 

important to note that when the routes are being optimized the pod selection for the current 

active orders has already been determined. 

The state-of-the-art LKH-3 algorithm is implemented as a task allocation method for solving 

vehicle routing problems [36]. This algorithm is an extension of the classical Lin-Kernighan 

heuristic for solving the well-known travelling salesperson problem [37] adapted to be 

applicable to the vehicle routing problem. The LKH-3 heuristic uses penalty functions for 

handling constraints. It can be called by any Vehicle Agent through the Manager Agent, since 

it requires a more global view of the system to provide the required input data to run the solver. 

For this specific use case, it was chosen to solve the problem as an open vehicle routing problem 

(OVRP). The LKH-3 models the pod retrievals from the pod locations to the picking stations 

and back performed  as well as the movement of the mobile robots from their dwell location to 

the next pod retrieval location. The objective is to minimize the overall distance travelled. As 

the sub problem being solved only deals with a limited number of retrieval tasks after which 

additional jobs still need to be executed, there is no requirement for the mobile robots to return 

to their origin locations and, therefore, an OVRP as a model is justified. Each time the situation 

in the system changes, we re-optimize the task retrieval sequences of the mobile vehicles.  
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Figure 6. LKH-3 re-optimization after new order arrival. The routes in the figure do not illustrate the actual 

paths followed by the AMRs but show in which sequence the AMRs will retrieve the pod requests. 

In Figure 6, the vehicle following the orange sequence finished its first retrieval task, in time 

step 1, in the sequence resulting in an order completion and a new order arrival in 2. Thereafter, 

the LKH-3 heuristic re-optimizes the task retrieval sequences given the initial sequence and the 

newly arrived retrieval request(s). The starting locations correspond to the planned dwell 

locations of the mobile robots after they have finished the retrieval task that they are executing 

when the solver has started optimizing. After re-optimization, the vehicle following the green 

sequence is assigned a new retrieval task in its sequence. The multi-agent system continues 

until all pick orders have been fulfilled    

4.3 Conflict-free routing considerations 

In most cases, the dispatching, routing, and scheduling are not as straightforward as just finding 

the shortest paths between origin and destination. In theory, all operations can be completed 

just as planned with no conflicts. In the literature, the assumption of unidirectional lanes is 

commonly made [29]. However, when bidirectional lanes are concerned it is important to note 

that in such a case conflicts may arise during operation and these cannot be disregarded during 

the scheduling. Some common conflicts are: vehicle collisions, congestion, livelocks, and 

deadlocks. Livelocks and deadlocks occur in situations where vehicles cannot move anymore 

due to mutual blocking. Therefore, collision avoidance and deadlock resolution are important 

considerations during modelling [38-39]. In the developed multi-agent system a conflict-free 

routing mechanism is implemented for the Vehicle Agents. This mechanism consists of three 

phases (see Algorithm 2): the individual path planning (Phase 1), collision detection (Phase 2), 

and conflict resolution (Phase 3). 
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In Phase 1 a Vehicle Agent constructs a path from its current position to the destination (rule 

5) with a pre-generated shortest path matrix (rule 1). This allows to quickly generate the 

shortest path. Next, in Phase 2, the Vehicle Agent employs the collision detection algorithm to 

find potential conflicts in its current planned route with the routes of the other Vehicle Agents 

in the system (rule 6). Since a route consists of a list of nodes that will be visited, the detection 

algorithm can calculate the position and time of each vehicle in the system throughout the 

routes. Hence, the algorithm checks for each time step in the new proposed route whether the 

vehicle would occupy the same node with another vehicle that might already be executing its 

route. Therefore, if two or more vehicles occupy the same node at the same time step, this 

results in a conflict and the conflict type can be determined (rule 7). If no conflict occurs, the 

originally planned routes can be followed. Otherwise, the conflict has to be resolved in Phase 

3 (rule 9 and 11). The conflict resolution algorithm, based on the conflict type that occurred, 

either applies a waiting strategy or a rerouting strategy. In Figure 7, the most common conflicts 

are shown. Both 7a, 7b, and 7c represent a cross collision, 7a and 7b denote that the mobile 

robots will travel along different routes as they pass the intersection and in 7c the mobile robots 

will travel on the same route after passing the intersection. In 7d the mobile robots want to pass 

through the same aisle. Conflicts 7a, 7b, and 7c can be resolved using a waiting strategy where 

one of the mobile robots in conflict can be instructed to wait for a certain period until there is 

no conflict anymore. Conflict 7d has to be resolved with the rerouting strategy. If rerouting is 

required, a modified A* algorithm partially reconstructs a new route avoiding the conflict area. 

Incorporating conflict-free routing mechanisms is also necessary if bidirectional lanes are used. 
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Figure 7. Common routing conflicts: (a), (b) and (c) denote cross collisions and (d) illustrates the robots 

wanting to use the same aisle. 

5 Computational experiments 

In this section, we validate the MAS approach and compare its performance to the 

optimization-based solution. We generated several instances over a range of problem types as 

follows: instances1 range in size from 50 to 1000 orders (N), the available number of 

autonomous mobile robots ranging from 3 to 48 (AMR), and 3 to 12 picking stations (PS). The 

orders used in the problem instances contain an average of two order-lines. The majority of the 

orders only have 1 or 2 order-lines. A truncated exponential distribution is used to generate the 

number of lines per order. The general warehouse layout of all instances used in this paper are 

presented in Table 2 and are based on the configurations used in the tactical decision making 

study of Lamballais et al. [29] focusing on the impact of the warehouse layout on the system 

performance. 

Table 2. Characteristics used to generate the warehouse layout. 

Characteristic Value 

Number of vertical shelves in a block  2 

Number of horizontal shelves in a block 5 

Number of aisles 17 

Number of cross-aisles 9 

Number of shelves  1800 

Length of side aisle 5m 

Unit length 1m 

Number of robots 3, 6, 12, 24, 48 

Robot velocity 1.3 m/s 

Time for pod lifting and storing 1s 

Number of picking stations 3, 6, 12  

Buffer of picking stations  5 

Station order capacity 5 

Picking time 10s  

 

1 https://www.mech.kuleuven.be/en/cib/rmfs    

https://www.mech.kuleuven.be/en/cib/rmfs
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In all experiments performed, the optimization metrics are the makespan of the overall system 

and the total distance travelled by the mobile robots. The proposed multi-agent framework is 

programmed in Python 3.8 and the instances were run on a device with the following 

specifications: Intel Core i7-9850H CPU @2.60GHz, installed 32GB RAM, and 6 cores (12 

logical processors).   

5.1 Problem instances with unidirectional lanes 

For this experiment, we consider unidirectional lanes which allows us to not have to consider 

congestion and deadlock avoidance [4, 18, 19, 24, 25, 29]. This assumption relates closely to 

reality since single directional lanes and the fact that unloaded robots can travel underneath the 

pods in the storage area strongly decreases the occurrences of congestion and deadlocks. We 

validate and compare the approaches proposed in Section 3 and compare their performances to 

a centralized bi-level memetic (MA) optimization approach [19] and a dispatching algorithm 

proposed by Qin et al. [40]. For the MA approach we use a population size of 34, a mutation 

probability of 0,092, an elite size of 4 individuals, and a stopping criterion that is either based 

on the number of iterations without improvement exceeding 26 iterations or a time limit of 1 

hour. All these setup parameters where chosen after a systematic parameter calibration. A 

fractional factorial design was chosen to restrict the number of required experimental runs but 

still be able to determine possible interaction effects between the parameters. The calibration 

was used on a subset of the problem types in order to get parameter setting that obtain good 

quality solution for the complete range of problem instances. Furthermore, the objective 

function of the MA is the same as the optimization objective discussed in (1). Qin et al. [40] 

developed a dispatching algorithm (integer program model) to make real-time dispatching 

decisions among robots, rack, and picking stations in a RMFS. They implemented their method 

in a real-world e-commerce company and improved its performance significantly. Each 

operating period of three seconds, the matching problem between the AMRs, inventory pods, 

and picking stations has to be solved. However, they consider the order-to-picking station 

allocation as given. We implement their dispatching approach in our simulation model to 

compare it with our proposed approaches. Therefore, to have a fair comparison, the order 

allocation method is the same as for all our proposed dispatching methods (see Section 4.2.1) 

excluding the FIFO rule.     

We simulate 3 to 48 mobile robots in a warehouse layout with 3 to 12 picking stations and 

orders ranging from 50 up to 1000 for each experimental setup, as stated in Section 4. Table 3 

shows the optimization metric, expressed as a cost, for the different developed approaches. 

Remark that we are not able to find optimal solutions for this complex integrated problem [20]. 

This was expected since Boysen et al. [14] were unable to solve instances larger than 10 orders 

to optimality within the time limit of 1 hour for one of the sub problems of the integrated 

problem. Therefore, we opted for a centralized scheduling approach which can obtain good 

quality solutions. From the results it can be seen that the memetic algorithm has the best 

performance in all the experimental setups on both the makespan and total distance travelled 

metrics. These results will be used as a benchmark to compare with the results of the proposed 

MAS framework to determine the performance gap between them.  

First of all, the worst performing task allocation mechanism for the multi-agent system, with 

an average gap of 37,2%, is the MASFIFO decision rule. This was to be expected since the agents 

in the system do not negotiate and coordinate with one another to optimize their operations and 
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just fulfill order retrieval tasks following a simple decision rule. When the agents negotiate 

more with one another, for instance through the sequential single-item auctioning method 

(MASSSIA), the system performance increases. However, this method, with an average gap of 

17,8%, performs worse than the allocation mechanisms that can evaluate the future impact of 

a decision. The look-ahead heuristic (MASLA) with its limited tree search approach keeps the 

computational load manageable. However,  some potential good solutions can be missed during 

the look-ahead search. With an average gap of 16,1% it performs worse than the regret-k 

heuristic (MASregret) with an average gap of 5,2%. The regret-k heuristic can be seen as an 

implicit look-ahead approach and is able to prevent situations where certain tasks have to be 

allocated to ill-suited mobile robots because the better suited mobile robots are no longer 

available. From preliminary experimental results we found that a k-value equal to the number 

of AMRs in the system worked best for the set of instances. Furthermore, with an average gap 

of 14%, the approach of Qin et al. [40] is outperformed by MASregret. We believe this is because 

their integer program, when assigning a transportation task, does not consider the impact on 

the future assignment of transportation tasks. This is what the regret-k and LKH-3 heuristic do 

better. Finally, the task allocation mechanism that achieves the best solution quality is the 

LKH-3 heuristic (MASLKH-3) with an average gap of 2,0%. As expected, whenever more global 

information is included in the task allocation process, the overall performance of the system 

can be more optimized. However, this use of more global information during the optimization 

process results in more computation time. Therefore, the regret-k heuristic might be more 

suitable for application in real-world systems since it has a good balance between solution 

quality and computation time. 

Table 3. Simulation results with unidirectional lanes comparing the proposed mechanisms to the centralized 

algorithm (MA). The costs used for comparison are based on the calculation in (1). 

O/PS/AMR 

MA 

[19] FIFO Gap SSIA Gap 

 Look-

Ahead  Gap  

Qin et 

al. [40] 

Gap Regret-

k Gap LKH Gap  

50/3/3 51.1 69.7 -36% 62.9 -23% 57.6 -13% 57.2 -12% 56.0 -10% 53.7 -5% 

50/3/6 32.1 45.7 -42% 39.3 -22% 37.7 -17% 36.3 -13% 37.6 -17% 34.6 -8% 

50/3/12 24.7 33.9 -37% 30.3 -22% 27.5 -11% 27.3 -11% 28.0 -13% 27.0 -9% 

100/3/3 72.7 105.5 -45% 98.8 -36% 90.9 -25% 85.7 -18% 81.3 -12% 86.4 -19% 

100/3/6 47.4 69.0 -46% 59.6 -26% 56.6 -19% 54.4 -15% 53.8 -14% 52.6 -11% 

100/3/12 33.1 48.1 -45% 41.7 -26% 41.7 -26% 44.0 -33% 40.1 -21% 39.4 -19% 

200/3/3 180.7 249.3 -38% 203.3 -13% 206.3 -14% 200.2 -11% 185.0 -2% 182.4 -1% 

200/3/6 113.4 158.0 -39% 125.1 -10% 130.9 -15% 131.4 -16% 119.6 -6% 118.1 -4% 

200/3/12 80.8 113.9 -41% 107.0 -33% 98.3 -22% 98.4 -22% 87.4 -8% 88.2 -9% 

200/6/6 175.3 251.5 -44% 207.6 -18% 209.6 -20% 193.4 -10% 190.8 -9% 183.8 -5% 

200/6/12 113.8 162.9 -43% 130.3 -15% 135.5 -19% 133.6 -17% 125.0 -10% 117.7 -3% 

200/6/24 80.2 117.5 -46% 96.4 -20% 94.1 -17% 99.1 -24% 88.9 -11% 88.1 -10% 

500/6/6 424.3 576.0 -36% 415.0 2% 469.7 -11% 474.2 -12% 433.2 -2% 416.3 2% 

500/6/12 259.9 350.6 -35% 303.5 -17% 289.6 -11% 299.0 -15% 254.3 2% 260.9 0% 

500/6/24 193.1 259.4 -34% 227.9 -18% 224.8 -16% 226.9 -18% 197.4 -2% 185.5 4% 

500/12/12 399.4 540.9 -35% 474.0 -19% 470.9 -18% 441.1 -10% 413.0 -3% 397.3 1% 

500/12/24 269.4 348.1 -29% 300.8 -12% 312.4 -16% 292.7 -9% 268.2 0% 261.9 3% 

500/12/48 202.7 258.4 -28% 223.8 -10% 223.6 -10% 222.0 -10% 198.2 2% 196.7 3% 

1000/6/6 873.6 1147.6 -31% 785.0 10% 983.0 -13% 915.9 -5% 860.1 2% 812.5 7% 

1000/6/12 533.2 729.1 -37% 738.9 -39% 614.0 -15% 596.9 -12% 526.2 1% 496.3 7% 

1000/6/24 373.4 525.7 -41% 491.8 -32% 478.0 -28% 442.0 -18% 368.9 1% 363.9 3% 

1000/12/12 852.8 1121.6 -32% 935.7 -10% 972.7 -14% 952.6 -12% 860.0 -1% 828.5 3% 

1000/12/24 570.4 711.6 -25% 610.3 -7% 592.3 -4% 604.4 -6% 539.9 5% 496.6 13% 
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Table 3 shows the computational time in function of the number of orders to be fulfilled in a 

RMFS. Note that the computation time of the memetic algorithm for the larger order sizes is 

cut off at 1 hour of runtime. This cut off also explains why the memetic algorithm starts to 

perform poorly for large scale instances since it is unable to find very good solution within this 

time limit. From Table 4, we can see that the look-ahead and LKH-3 heuristics are considerably 

slower than the remaining three approaches. The reason for this is that these two allocation 

methods use more global information to allocate retrieval tasks to mobile robots and require 

multiple iterations to improve the solution quality. The LKH-3 iteratively optimizes its solution 

with r-opt moves, while the look-ahead heuristic estimates the impact of a decision now on the 

situation several iterations in the future. The remaining decision rules and allocation 

mechanisms require just a single constant time complexity calculation to make an assignment, 

hence, making them less computationally expensive. The regret-k heuristic is able to find good 

quality solution in only a fraction of the time required by the best performing allocation 

heuristic and the memetic algorithm. Furthermore, it is interesting to note that scheduling a 

certain amount of orders takes significantly longer when more resources (AMRS and picking 

stations) are involved. The reason for this is that there are more decision options when more 

resources are concerned, hence, it requires more computation time from the heuristics.    

Table 4: Computation time comparison for the different task allocation mechanisms. 

O/PS/AMR 

FIFO   

Time [s] 

SSIA    

Time [s] 

Look-Ahead       

Time [s] 

Regret-k  

Time [s] 

LKH 

Time [s] 

Qin et al. [40]  

Time [s] 

MA [19]    

Time [s] 

50/3/3 0.33 0.32 1.90 0.39 9.79 2.20 56,04 

50/3/6 0.35 0.33 2.72 0.39 14.17 1.91 57,73 

50/3/12 0.34 0.34 3.83 0.48 23.75 1.78 74,26 

100/3/3 0.37 0.39 2.03 0.41 14.95 3.08 146,02 

100/3/6 0.36 0.38 2.83 0.44 20.89 2.65 155,65 

100/3/12 0.37 0.39 3.04 0.52 38.02 2.84 180,85 

200/3/3 0.52 0.59 5.56 0.64 32.39 7.58 397,24 

200/3/6 0.51 0.61 7.50 0.76 49.18 6.98 364,15 

200/3/12 0.52 0.58 8.81 0.86 81.86 6.06 458,97 

200/6/6 0.52 0.63 14.54 0.92 97.66 15.41 645,61 

200/6/12 0.53 0.61 22.19 1.47 120.09 13.10 577,60 

200/6/24 0.53 0.63 27.08 2.42 204.67 9.51 878,94 

500/6/6 0.90 1.36 22.22 1.98 257.31 33.87 1630,22 

500/6/12 0.88 1.32 35.43 2.64 330.59 29.60 1526,54 

500/6/24 0.91 1.35 41.93 3.37 476.70 18.71 1104,32 

500/12/12 0.88 1.41 109.52 4.69 674.44 78.05 1321,52 

500/12/24 0.93 1.43 172.47 11.28 757.72 54.59 1864,04 

500/12/48 0.93 1.57 213.77 18.68 1448.25 38.10 1678,38 

1000/6/6 1.38 3.15 43.24 4.13 500.74 70.37 3600,00 

1000/6/12 1.38 2.91 57.96 6.06 609.56 63.27 3600,00 

1000/6/24 1.40 2.89 72.64 6.69 922.56 54.09 3600,00 

1000/12/12 1.39 3.51 137.97 9.95 1574.51 163.34 2791,80 

1000/12/24 1.38 3.52 219.97 20.08 1740.70 121.71 2882,86 

1000/12/48 1.40 3.38 284.53 28.67 3129.72 88.82 3600,00 

 

 

1000/12/48 403.1 507.7 -26% 456.8 -13% 450.0 -12% 434.9 -8% 395.0 2% 357.0 11% 

Avg. gap  -37.2% -17.8% -16.1%  -14.0% -5.2% -2.0% 
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5.2 Problem instances with bidirectional lanes 

In most of the papers on RMFS [5, 10, 29] the assumption is made that no collisions or 

deadlocks occur because unidirectional lanes are used in the storage area. However, with 

unidirectional lanes, some optimization potential is lost, since by allowing mobile robots to 

travel in the aisles in both directions the distance travelled can be reduced. The downside is 

that collisions and deadlocks will be significantly more likely to occur. Therefore, the collision 

avoidance strategy, explained in Section 4.3, is used to overcome this downside. In Figure 8, 

the simulation results are shown for the subset with three picking stations, six mobile robots 

and varying orders. Moreover, the MASregret is used, because it achieves good results very fast, 

in a warehouse setup with bidirectional lanes. However, the collision avoidance algorithm does 

slightly increase the computational time of the framework in comparison to the unidirectional 

scenario where no collision avoidance is required. This impact on the computational time 

increases with more AMRs in the system since the occurrences of conflicts grows, hence, the 

algorithm has to perform more conflict resolutions. For instance for operations with 3, 6, 12, 

24, and 48 AMRs, on average 3%, 10%, 19%, 35%, and 61% of the routes that were performed 

in an instance had conflicts that had to be resolved. The MASregret with bidirectional lanes even 

performs better than the centralized scheduling algorithm of Teck & Dewil [19] in 

unidirectional lanes. This shows the significance of the optimization potential of bidirectional 

lanes. Important to note here is that the centralized algorithm does not include a collision 

avoidance strategy in its evaluation since this would increase its computational complexity 

even more. To fairly compare the results of the memetic algorithm with the MASregret, the 

generated schedules from the central algorithm in the bidirectional case are simulated in an 

environment with the collision avoidance mechanism.  

 
Figure 8. Simulation results to compare unidirectional lanes scenario to the bidirectional lanes scenario. 

From the experiments in Figure 8, we see that the regret-k heuristic with bidirectional lanes is 

able to get a better performance than the unidirectional case. The performance is often even 

better than the performance of the centralized scheduler in the unidirectional case since the 

gain of the travelling in both directions on a lane allows for more performance gain than the 

gap in performance of the MASregret and the central algorithm. However, the central framework 

with bidirectional lanes does still outperform the MASregret with an average gap of 6,9%. To 

conclude, incorporating bidirectional lanes in the storage area of a RMFS allows for 

considerable optimization opportunities. This is to be expected since the AMRs can use the 

lanes in two directions, resulting in shorter possible routes. For instance, on average the routes 
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that the AMRs take on bidirectional lanes are 8,2 % shorter than those with unidirectional lanes. 

However, this positive impact on the system performance is partially undone by the occurrence 

of conflicts. This is especially the case for larger numbers of AMRs in the system. Still the 

benefit of shorter routes outweighs the additional waiting time of the AMRs and the rerouting 

since overall the MASregret in a bidirectional environments outperforms the MASregret in a 

unidirectional environment with on average 5,8% lower operational costs. Important to note, 

bidirectional lanes are only allowed if an effective collision and deadlock avoidance 

mechanism is in place. 

5.3 Impact of the warehouse layout on system performance 

All of the previous experiments were performed on a warehouse layout with the same number 

of inventory shelves as described in Table 2. To analyze the impact of different warehouse 

layouts on the system performance, both the number of inventory shelves and the layout of the 

shelves are varied to decrease (increase) the number of aisles and increase (decrease) the 

number of cross-aisles. The MASregret is used as the decision rule for the framework on an 

instance with 200 orders, 3 picking stations and 12 AMRs. Table 5 shows that, as expected, the 

warehouse layout has an impact on the system performance and in the strategic and tactical 

decision making this aspect has to be optimized. As for the operational decision making level, 

in a warehouse with more cross-aisles than aisles the AMRs have to travel considerably more 

to retrieve the inventory pods, which results in more costs. Moreover, the traffic density 

through the aisles, to travel to the picking stations, increases considerably since there are fewer 

options. This has a direct result on the number of conflicts that occur on bidirectional lanes, 

which is shown in the percentage of conflicts that occur on the total amount of routes travelled. 

In turn reduces the benefit of these bidirectional lanes since there are more waiting times and 

rerouting actions as shown by the gap between the costs of the unidirectional and bidirectional 

scenarios. 

Table 5. Impact of various warehouse layouts with 200 orders, 3 picking stations, and 12 AMRs. 

Shelves Aisles 

  Unidirectional  Bidirectional 

Cross-

aisles 

 Cost 

[€] 

Computational 

time [s] 

 Cost 

[€] 

Computational 

time [s] 

Conflicts 

[%] 

Gap 

[%] 

1200 23 4  82,1 1,25  74,7 1,63 21,3 9,0 

1200 14 7  84,6 1,11  77,8 1,52 23,2 8,1 

1200 5 19  107,6 1,13  103,3 2,23 40,2 4,0 

1800 35 4  84,2 1,21  76,5 1,84 14,9 9,1 

1800 17 9  87,4 0,86  82,6 1,24 21,2 5,5 

1800 5 29  115,5 1,30  110,4 2,57 37,7 4,4 

6 Conclusion and outlook 

In this paper, we presented a multi-agent system for the simultaneous scheduling of AMRs and 

picking stations in an automated warehouse and we developed several different allocation 

mechanisms. The performance of the proposed system is compared to a centralized scheduling 

algorithm. From the experimental results we conclude that the MASLKH-3 is the best performing 

task allocation mechanism compared to the other developed mechanisms. Moreover, it is able 

to get good quality solutions compared to the solutions from the central algorithm in only of a 

fraction of the computation required by the central algorithm. Simple dispatching rules like the 

FIFO rule performed badly and the other task allocation mechanisms were not as competitive 

performance-wise compared to the MASLKH-3. However, the MASregret also obtains good 

quality solutions with a lot less computational effort than the centralized algorithm and 
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MASLKH-3. Moreover, it outperforms a dispatching method [40] that is used in a real-world 

RMFS application. Therefore, for large-scale instances where decisions have to be made 

quickly the MASregret rule is more favorable since it scales better with increasing retrieval tasks. 

Therefore, it is better suited for use in real-world optimization settings. Alternatively, in a 

situation where some time is available for optimization, the MASLKH-3 is preferred since it 

reaches better quality solutions. For instance, the time between the release of a schedule for 

100 picking orders and the actual execution of these orders, the MASLKH-3 has enough time to 

generate a new schedule. In the special case where there is no time limit the centralized 

algorithm is still preferred. In conclusion, the proposed decentralized scheduling approach 

scales well with the number of picking tasks in the system and generates good quality solutions 

in a fraction of the time required by the centralized scheduling algorithm.     

We also compare the proposed MASregret in a warehouse system with unidirectional lanes to a 

storage area with bidirectional lanes. From these experiments we see that the bidirectional lanes 

allow for a system performance that is better than the performance of the schedules obtained 

from the central algorithm with unidirectional lanes. However, bidirectional lanes can only be 

allowed if a collision avoidance strategy is in place since the assumption that no collisions or 

deadlocks occur is no longer valid.  

To improve the ability of the multi-agent system to generate schedules close to the centrally 

generated schedules, future research can focus on hybridizing the two approaches where one 

can use a centralized scheduler to generate near-optimal schedules that can act as a blueprint 

for the agents in the multi-agent system to improve their decision making. Regarding the 

MASLKH-3, its computational complexity could be improved some more by making the re-

optimization of the routes less nervous to changes in the environment. However, the 

expectation is that it would still be significantly slower than the MASregret. In this paper we 

assumed that picking times are deterministic. However, in reality this picking time is stochastic 

and may cause unforeseen additional waiting times for the AMRs waiting in the picking station 

queue, thus, impacting the complete schedule. The MAS should be able to dynamically adapt 

to these unforeseen delays and act accordingly. In this paper the velocity of the mobile robots 

is assumed to be constant, however, in future research it can be interesting to incorporate 

acceleration and deceleration capabilities for the AMRs. Speed optimization can make the 

avoidance of collisions and deadlocks more efficient since it allows for the mobile robots to 

continuously drive without having to wait. Thus, preserving its momentum. 
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10 Appendices 

Appendix A. Simulation results MAS framework with FIFO dispatching rule. 

O/PS/AMR Time [s] Makespan [s] Total distance [m] Server utilization FIFO [€] 

50/3/3 0.33 3296.9 10416 11.5% 69.7 

50/3/6 0.35 1716.4 10778 22.0% 45.7 

50/3/12 0.34 919.3 11155 40.6% 33.9 

100/3/3 0.37 4983.9 15763 12.1% 105.5 

100/3/6 0.36 2598.4 16206 23.0% 69.0 

100/3/12 0.37 1295.8 15907 46.0% 48.1 

200/3/3 0.52 11785.8 37239 12.0% 249.3 

200/3/6 0.51 5939.47 37274 23.7% 158.0 

200/3/12 0.52 3069.2 37674 44.8% 113.9 

200/6/6 0.52 5940.9 37648 11.8% 251.5 

200/6/12 0.53 3058.1 38446 22.8% 162.9 

200/6/24 0.53 1596.7 38626 42.3% 117.5 

500/6/6 0.90 13612.6 86043 12.1% 576.0 

500/6/12 0.88 6475.6 84705 25.4% 350.6 

500/6/24 0.91 3490.9 85872 46.1% 259.4 

500/12/12 0.88 6328.9 83039 13.0% 540.9 

500/12/24 0.93 3224.4 83736 25.3% 348.1 

500/12/48 0.93 1735.3 85697 46.4% 258.4 

1000/6/6 1.38 27106.5 171711 12.0% 1147.6 

1000/6/12 1.38 13684.7 172275 23.7% 729.1 

1000/6/24 1.40 7091.7 173747 45.9% 525.7 

1000/12/12 1.39 13258.2 167377 12.3% 1121.6 

1000/12/24 1.38 6699.8 167352 24.3% 711.6 

1000/12/48 1.40 3433.6 167485 46.6% 507.7 

Appendix B. Simulation results MAS framework with SSIA mechanism. 

O/PS/AMR Time [s] Makespan [s] Total distance [m] Server utilization SSIA [€] 

50/3/3 0.32 2974.5 9384 12.8% 62.9 

50/3/6 0.33 1487.3 9202 25.0% 39.3 

50/3/12 0.34 862.7 9582 42.0% 30.3 

100/3/3 0.39 4687.6 14622 12.8% 98.8 

100/3/6 0.38 2265.9 13838 26.4% 59.6 

100/3/12 0.39 1195.6 13150 50.5% 41.7 

200/3/3 0.59 9689.5 29650 14.6% 203.3 

200/3/6 0.61 4774.9 28828 29.3% 125.1 

200/3/12 0.58 3631.6 28729 38.0% 107.0 

200/6/6 0.63 4939.0 30419 14.2% 207.6 

200/6/12 0.61 2487.6 30040 27.8% 130.3 

200/6/24 0.63 1497.6 28340 45.6% 96.4 

500/6/6 1.36 9950.7 59436 16.6% 415.0 

500/6/12 1.32 6093.3 64613 26.6% 303.5 

500/6/24 1.35 3813.8 62139 40.3% 227.9 

https://doi.org/10.1016/j.cie.2020.106371
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500/12/12 1.41 5786.2 64177 14.3% 474.0 

500/12/24 1.43 2995.8 64564 27.1% 300.8 

500/12/48 1.57 1806.7 63353 42.3% 223.8 

1000/6/6 3.15 18859.2 111776 17.3% 785.0 

1000/6/12 2.91 16493.3 127693 19.6% 738.9 

1000/6/24 2.89 9067.1 119114 35.6% 491.8 

1000/12/12 3.51 11563.6 121715 14.0% 935.7 

1000/12/24 3.52 6569.1 114132 24.1% 610.3 

1000/12/48 3.38 4072.7 115554 37.7% 456.8 

Appendix C. Simulation results MAS framework with Look-Ahead heuristic. 

O/PS/AMR Time [s] Makespan [s] Total distance [m] Server utilization Look-Ahead [€] 

50/3/3 1.90 2752.9 8356 13.7% 57.6 

50/3/6 2.72 1441.0 8655 25.9% 37.7 

50/3/12 3.83 786.5 8683 45.0% 27.5 

100/3/3 2.03 4352.1 13096 13.8% 90.9 

100/3/6 2.83 2197.5 12713 27.3% 56.6 

100/3/12 3.04 1221.8 12917 48.0% 41.7 

200/3/3 5.56 9868.2 29762 14.2% 206.3 

200/3/6 7.50 5101.9 29236 27.4% 130.9 

200/3/12 8.81 3030.5 29099 46.2% 98.3 

200/6/6 14.54 5111.2 28473 13.9% 209.6 

200/6/12 22.19 2703.9 29141 25.7% 135.5 

200/6/24 27.08 1429.8 28234 46.3% 94.1 

500/6/6 22.22 11401.2 64818 14.6% 469.7 

500/6/12 35.43 5614.1 65239 29.1% 289.6 

500/6/24 41.93 3719.5 62007 44.2% 224.8 

500/12/12 109.52 5659.8 66961 14.6% 470.9 

500/12/24 172.47 3125.2 66924 27.0% 312.4 

500/12/48 213.77 1786.2 64002 45.3% 223.6 

1000/6/6 43.24 24233.7 128957 13.5% 983.0 

1000/6/12 57.96 13026.4 118231 25.0% 614.0 

1000/6/24 72.64 8539.9 120629 36.9% 478.0 

1000/12/12 137.97 11978.4 128001 13.6% 972.7 

1000/12/24 219.97 6064.1 121884 26.5% 592.3 

1000/12/48 284.53 3872.3 118864 40.8% 450.0 

Appendix D. Simulation results MAS framework with the dispatching method of Qin et 

al. (2022). 

O/PS/AMR Time [s] Makespan [s] Total distance [m] Server utilization Qin et al. [€] 

50/3/3 2.20 2749.6 8152 13.9% 57.2 

50/3/6 1.91 1405.6 8210 27.3% 36.3 

50/3/12 1.78 777.2 8674 49.3% 27.3 

100/3/3 3.08 4134.5 12062 14.7% 85.7 

100/3/6 2.65 2115.8 12211 28.7% 54.4 

100/3/12 2.84 1278.5 13753 47.5% 44.0 

200/3/3 7.58 9643.9 28294 14.7% 200.2 

200/3/6 6.98 5086.2 29670 27.8% 131.4 

200/3/12 6.06 2776.1 31416 50.9% 98.4 

200/6/6 15.41 4666.9 27186 15.1% 193.4 

200/6/12 13.10 2621.6 29538 27.0% 133.6 

200/6/24 9.51 1444.7 30831 48.9% 99.1 

500/6/6 33.87 11444.6 66581 14.5% 474.2 
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500/6/12 29.60 5751.9 68147 28.8% 299.0 

500/6/24 18.71 3287.5 70947 50.4% 226.9 

500/12/12 78.05 5274.7 63650 15.7% 441.1 

500/12/24 54.59 2836.4 65968 29.2% 292.7 

500/12/48 38.10 1600.3 69700 51.8% 222.0 

1000/6/6 70.37 22099.5 128736 14.8% 915.9 

1000/6/12 63.27 11753.8 131213 27.8% 596.9 

1000/6/24 54.09 6321.1 139684 51.7% 442.0 

1000/12/12 163.34 11556.9 131600 14.2% 952.6 

1000/12/24 121.71 5961.9 132449 27.4% 604.4 

1000/12/48 88.82 3158.2 135700 51.8% 434.9 

Appendix E. Simulation results MAS framework with regret-k heuristic. 

O/PS/AMR Time [s] Makespan [s] Total distance [m] Server utilization Regret-k [€] 

50/3/3 0.32 2974.5 9384 12.8% 62.9 

50/3/6 0.33 1487.3 9202 25.0% 39.3 

50/3/12 0.34 862.7 9582 42.0% 30.3 

100/3/3 0.39 4687.6 14622 12.8% 98.8 

100/3/6 0.38 2265.9 13838 26.4% 59.6 

100/3/12 0.39 1195.6 13150 50.5% 41.7 

200/3/3 0.59 9689.5 29650 14.6% 203.3 

200/3/6 0.61 4774.9 28828 29.3% 125.1 

200/3/12 0.58 3631.6 28729 38.0% 107.0 

200/6/6 0.63 4939.0 30419 14.2% 207.6 

200/6/12 0.61 2487.6 30040 27.8% 130.3 

200/6/24 0.63 1497.6 28340 45.6% 96.4 

500/6/6 1.36 9950.7 59436 16.6% 415.0 

500/6/12 1.32 6093.3 64613 26.6% 303.5 

500/6/24 1.35 3813.8 62139 40.3% 227.9 

500/12/12 1.41 5786.2 64177 14.3% 474.0 

500/12/24 1.43 2995.8 64564 27.1% 300.8 

500/12/48 1.57 1806.7 63353 42.3% 223.8 

1000/6/6 3.15 18859.2 111776 17.3% 785.0 

1000/6/12 2.91 16493.3 127693 19.6% 738.9 

1000/6/24 2.89 9067.1 119114 35.6% 491.8 

1000/12/12 3.51 11563.6 121715 14.0% 935.7 

1000/12/24 3.52 6569.1 114132 24.1% 610.3 

1000/12/48 3.38 4072.7 115554 37.7% 456.8 

Appendix F. Simulation results MAS framework with LKH-3 heuristic. 

O/PS/AMR Time [s] Makespan [s] Total distance [m] Server utilization LKH [€] 

50/3/3 9.79 2581.2 7633 14.5% 53.7 

50/3/6 14.17 1363.5 7606 27.2% 34.6 

50/3/12 23.75 835.7 7941 42.2% 27.0 

100/3/3 14.95 4160.4 12250 14.6% 86.4 

100/3/6 20.89 2068.3 11588 28.2% 52.6 

100/3/12 38.02 1188.2 11925 50.9% 39.4 

200/3/3 32.39 8797.3 25687 15.9% 182.4 

200/3/6 49.18 4625.2 26210 29.9% 118.1 

200/3/12 81.86 2694.5 26367 52.2% 88.2 

200/6/6 97.66 4444.1 25650 15.8% 183.8 

200/6/12 120.09 2350.8 25288 29.5% 117.7 

200/6/24 204.67 1358.3 26086 50.6% 88.1 



29 
 

500/6/6 257.31 10073.6 57999 16.4% 416.3 

500/6/12 330.59 5066.3 58639 32.3% 260.9 

500/6/24 476.70 2861.4 54885 54.6% 185.5 

500/12/12 674.44 4775.9 56462 17.1% 397.3 

500/12/24 757.72 2585.8 57284 31.1% 261.9 

500/12/48 1448.25 1551.6 56959 52.7% 196.7 

1000/6/6 500.74 19675.2 112923 16.6% 812.5 

1000/6/12 609.56 9840.6 107877 33.1% 496.3 

1000/6/24 922.56 5622.5 107533 57.4% 363.9 

1000/12/12 1574.51 10017.3 115646 16.2% 828.5 

1000/12/24 1740.70 4946.6 107080 32.9% 496.6 

1000/12/48 3129.72 2780.9 104701 56.6% 357.0 

Appendix G. Simulation results memetic algorithm (Teck and Dewil, 2022a). 

O/PS/AMR Time [s] Makespan [s] Total distance [m] Server utilization MA [€] 

50/3/3 56,04 2453.6 7295 15.4% 51.1 

50/3/6 57,73 1237.6 7307 29.5% 32.1 

50/3/12 74,26 750.7 7415 48.9% 24.7 

100/3/3 146,02 3509.2 10222 17.1% 72.7 

100/3/6 155,65 1839.5 10639 19.0% 47.4 

100/3/12 180,85 963.3 10292 61.0% 33.1 

200/3/3 397,24 8686.5 25669 16.2% 180.7 

200/3/6 364,15 4384.2 25624 32.0% 113.4 

200/3/12 458,97 2371.6 24969 59.1% 80.8 

200/6/6 645,61 4218.7 24824 16.6% 175.3 

200/6/12 577,60 2257.3 24696 30.7% 113.8 

200/6/24 878,94 1230.9 24804 57.4% 80.2 

500/6/6 1630,22 10203.6 60267 16.2% 424.3 

500/6/12 1526,54 4985.3 59465 32.9% 259.9 

500/6/24 1104,32 2923.5 58107 55.9% 193.1 

500/12/12 1321,52 4786.2 57305 17.2% 399.4 

500/12/24 1864,04 2779.9 54673 29.5% 269.4 

500/12/48 1678,38 1735.6 53829 47.1% 202.7 

1000/6/6 3600,00 20979.0 124552 15.6% 873.6 

1000/6/12 3600,00 10419.4 118598 31.3% 533.2 

1000/6/24 3600,00 5535.7 114528 58.7% 373.4 

1000/12/12 2791,80 10311.1 119031 15.8% 852.8 

1000/12/24 2882,86 5959.5 113107 27.3% 570.4 

1000/12/48 3600,00 3424.7 108015 47.4% 403.1 

 


