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ABSTRACT
Room acoustic simulation using physically motivated
sound propagation models are typically separated into
wave-based methods and geometric methods. While each
of these methods has been extensively studied, the ques-
tion on when to transition from a wave-based to a geo-
metric method still remains somewhat unclear. Towards
building greater understanding of the links between wave-
based and geometric methods, this paper investigates the
transition question by using the method of stationary
phase. As a starting point, we consider an elementary
scenario with a geometrically interpretable analytic solu-
tion, namely that of an infinite rigid boundary mirroring
a single monopole sound source, and apply the station-
ary phase approximation (SPA) to the wave-based bound-
ary integral equation (BIE). The results of the analysis
demonstrate how net boundary contributions give rise to
the geometric interpretation offered by the SPA and pro-
vide the conditions when the SPA is asymptotically equal
to the analytical solution in this elementary scenario. Al-
though the results are unsurprising and intuitive, the in-
sights gained from this analysis pave the way for investi-
gating relations between wave-based and geometric meth-
ods in more complicated room acoustics scenarios.

1. INTRODUCTION

Room acoustic simulation using physically moti-
vated sound propagation models is typically sepa-
rated into two approaches: (i) wave-based methods
and (ii) geometric methods, along with hybrids be-
tween the two [1–6]. In wave-based methods, the
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intention is to solve the wave equation with bound-
ary conditions, which has resulted in several numeri-
cal algorithms such as the boundary element method
(BEM) [7], finite element method FEM [8], and
the finite difference time-domain method (FDTD)
[9]. The advantage is that wave-like effects such as
diffraction and interference can be accurately mod-
elled, however the computational cost rapidly in-
creases with frequency. Consequently, geometric
methods such as ray-tracing [10] and the image
method [11] (for non-rigid boundaries) have been
proposed where sound propagation is modelled by
rays at higher frequencies, easing the computational
load, but at the expense of not being able to model
wave-like effects.

In this paper, we are interested in gaining a better
understanding of the conditions under which wave-
based methods cross over into geometric methods.
There are several conditions that can already be used
to make this distinction such as (a) the Schroeder fre-
quency [12], (b) the frequency beyond which spatial
aliasing occurs in wave-based element methods [7],
or (c) when the wavelength of sound is much smaller
than the dimensions of a room [13]. However, such
conditions may not always be sufficient to specify the
transition, particularly the Schroeder frequency [2].

In search of additional conditions that can bet-
ter help us to specify the crossover, we turn to the
method of stationary phase [14, 15] to approximate
the Kirchoff-Helmholtz integral equation or bound-
ary integral equation (BIE), which is a reformulation
of the wave equation with specified boundary con-
ditions. The stationary phase approximation (SPA)
is by definition, a high-frequency approximation and
hence in using it to approximate the solution to the
BIE, we can gain some insight into the transition
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from a wave-based to a geometric method. The SPA
has in fact been applied to the Rayleigh integral, a
particular form of the BIE, but in the context of wave
field synthesis [16]. It has also been used to develop
BEM algorithms [17] and it is known that the point
of stationary phase on a boundary corresponds to the
specular reflection point [18, 19], further justifying
its usefulness to bridge the gap between wave-based
and geometric methods in room acoustic simulation.

In this work, we consider the elementary sce-
nario of an infinite rigid boundary mirroring a sin-
gle monopole sound source. While such a scenario is
not immediately generalizable to more complicated
room acoustics scenarios, we nevertheless proceed to
use it because of its geometrically-interpretable ana-
lytical solution for which we can compare against.
The results that follow demonstrate that the SPA is
asymptotically equal to the analytical solution when
the distance from the stationary phase point on the
boundary to the receiver is much greater than the
wavelength. As the SPA is in principle applicable re-
gardless of whether an analytical solution to the BIE
exists, the geometric interpretation of the SPA can
potentially be an additional tool to address the tran-
sition question between wave-based and geometric
methods in other room acoustic scenarios.

This paper is organized as follows. In section
2, we review the BIE and the SPA. In section 3, the
SPA is applied to the BIE for the infinite rigid bound-
ary scenario. In section 4, we observe how the net
boundary contributions are related to the stationary
phase point and the impact of the SPA on multiple
receivers in space. Section 5 concludes the paper.

2. BACKGROUND

We consider the scenario of Fig. 1 with a point
source located at ro = [xo, yo, zo] and a receiver at
rr = [xr, yr, zr] above an infinite rigid boundary at
z = 0. In the frequency domain, the analytical solu-
tion for the complex acoustic pressure at the receiver,
pan(rr), is the sum of the acoustic pressure incident
from the source and from an equivalent source mir-
rored on the other side of the boundary [11]:

pan(rr) = a(ro)G(rr|ro) + a(ro)G(rr|ri) (1)

x

z
y

infinite rigid plane

source
a(ro)

receiver
p(rr)

Figure 1. Source and receiver above an infinite rigid
boundary.

where a(ro) is the complex pressure amplitude of the
source (Pa.m) and G(v|u) is the free-field Green’s
function for a monopole source in u, observed in v:

G(v|u) = e−jk‖v−u‖

‖v− u‖ (2)

where ‖v − u‖ is the Euclidean distance between
positions u and v, k = ω/c is the wavenumber
(m−1), ω is the angular frequency (rad s−1), and c
is the speed of sound (ms−1). Hence G(rr|ro) is the
free-field Green’s function from the source to the re-
ceiver with distance ‖rr − ro‖, and G(rr|ri) is the
free-field Green’s function from the mirrored (image)
source to the receiver with distance ‖rr − ri‖, where
ri = [xo, yo, −zo].

2.1 Boundary Integral Equation

The BIE is a reformulation of the inhomogeneous
wave equation in terms of an integral of acous-
tic pressure dipoles and velocity monopoles on the
boundaries or surfaces enclosing some domain. The
acoustic pressure p(rr) at a receiver position rr in the
domain can be expressed as [7]

f(rr)p(rr) = 4π a(ro)G(rr|ro)

+

∫
S

[
p(rs)

∂G(rr|rs)
∂n

+ jωρvn(rs)G(rr|rs)
]
dS

(3)
where the first term on the right-hand-side is the
acoustic pressure contribution from the source to the
receiver (incident pressure). The second term is an
integral over the surface, S, representing the scat-
tered acoustic pressure, where rs represents the co-
ordinate vector of an arbitrary point on the surface,
p(rs) is the acoustic pressure on rs, ∂G(rr|rs)

∂n is the
normal derivative of the free-field Green’s function
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where n is the normal vector on the surface pointing
into the domain, vn(rs) is the normal velocity on the
surface, and ρ is the density of the fluid (kgm−3).
As (3) is also valid for any receiver position, rr, the
scaling f(rr) is either 4π if rr is within the domain,
2π if rr is on the surface, or zero otherwise.

For the case of the infinite rigid boundary,
vn(rs) = 0, hence for a receiver position within the
domain, (3) reduces to

p(rr) = a(ro)G(rr|ro) +
1

4π

∫
S
p(rs)

∂G(rr|rs)
∂n

dS.

(4)

Furthermore, we can express the surface pressure
as the sum of the pressure contributions from the
source and its mirror image, so that p(rs) =

a(ro)G(rs|ro) + a(ro)G(rs|ri) = 2a(ro) e
−jkRos

Ros
,

where Ros = ||rs − ro|| is the distance between the
source and the surface point. Substitution of this ex-
pression and the normal derivative 1 of (2) into (4)
then results in

p(r) = a(ro)G(rr|ro)

+
a(ro)
2π

∫
S

e−jk(Ros+Rsr)

RosRsr

(
1

Rsr
+ jk

)
cos θsr dS

(5)
where Rsr = ||rr − rs|| is the distance between the
surface point and receiver, and cos θsr =

(rr−rs)Tn
Rsr

is
the directional derivative in the direction of the nor-
mal vector, hence θsr is the angle between the normal
and the vector from the surface to the receiver point.
Upon comparison to (1), it is evident that the scat-
tered pressure (integral term) should be equivalent to
the contribution from the mirrored source.

2.2 Stationary Phase Approximation

The method of stationary phase [14, 15] is a tech-
nique for asymptotic evaluation of integrals having
the form

∫
g(p)ejkφ(p) dp for k → ∞, to which (5)

conforms. For large values of k and when ∇φ(p) 6=
0 there will be rapid oscillations of the real and imag-
inary parts of ejkφ(p) about zero, which consequently
result in cancellations and hence decrease the value
of the integral [15]. However, if ∇φ(p) = 0, then

1 We have constrained ∂G(rr|rs)/∂n to be positive to ensure
a unique solution in the upper half (z > 0) of the plane.

there will be some neighbourhood of points, i.e. the
stationary phase points, over which ejkφ(p) does not
vary as rapidly, regardless of the value of k, and
hence do not result in cancellation. In other words,
the main contribution to the integral as k → ∞ will
depend on g(p) and φ(p) within the region of station-
ary phase points where∇φ(p) = 0.

With the assumption that φ(p) has a finite num-
ber of stationary phase points in the support of g(p),
the stationary phase approximation (SPA) can be
computed as follows [14, 15]:∫

Rn
g(p)ejkφ(p) dp ≈(

2π

k

)n/2 ∑
p0∈P

e
jπ
4
sgn(H(p0)) g(p0)e

jkφ(p0)√
|det(H(p0))|

(6)

where P is the set of stationary phase points of φ(p)
for which ∇φ(p) = 0, H(p0) is the Hessian of φ(p)
at p0, det(H(p0)) is the determinant of H(p0), and
sgn(H(p0)) is the metric signature of the Hessian,
i.e. the number of positive eigenvalues minus the
number of negative eigenvalues of the matrix. In the
following section we apply the SPA to the BIE of (5).

3. STATIONARY PHASE APPROXIMATION
FOR AN INFINITE RIGID BOUNDARY

3.1 Stationary Phase Point

We will firstly compute the stationary phase point on
the infinite rigid boundary. Upon comparison of (5)
to (6), we can observe that

φ(p) = −(Ros +Rsr) (7)

g(p) =
1

RosRsr

(
1

Rsr
+ jk

)
cos θsr (8)

where

Ros = Ros(xs, ys) =
(
(xs − xo)2 + (ys − yo)2 + z2o

) 1
2

Rsr = Rsr(xs, ys) =
(
(xs − xr)2 + (ys − yr)2 + z2r

) 1
2

(9)
with xs and ys the x-y coordinates on the boundary
(recall z = 0 on the boundary). The stationary phase
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xo xf
xr

R frR
of

R of

zrzo
θfrθof

θof
θfr

receiver
source

image
source

n

Figure 2. Geometric interpretation of the stationary
phase point (red star) for an infinite rigid boundary
depicted in the x-z plane.

point is then found by setting∇φ(p) = 0:

−∂φ(p)
∂xs

=
xs − xo
Ros

+
xs − xr
Rsr

= 0 (10)

−∂φ(p)
∂ys

=
ys − yo
Ros

+
ys − yr
Rsr

= 0 (11)

which gives the unique solution

xs = xo
Rsr

Ros +Rsr
+ xr

Ros

Ros +Rsr
, xf

ys = yo
Rsr

Ros +Rsr
+ yr

Ros

Ros +Rsr
, yf

(12)

and hence the x-y coordinates (xf , yf) on the bound-
ary defines the stationary phase point.

As a result of setting ∇φ(p) = 0, the stationary
phase point, (xf , yf) found in (12) corresponds to the
point for which the distance Ros +Rsr is minimized,
which implies that the plane defined by the source,
the receiver, and the stationary phase point is orthog-
onal to the boundary. This brings us to the follow-
ing geometric interpretation of the stationary phase
point as illustrated in Fig. 2, where for ease of depic-
tion and without loss of generality, we assume that
the source and receiver lie in the x-z plane (y = 0).
Defining Rof , Ros(xf , yf), Rfr , Rsr(xf , yf) and
θof , θfr as shown in Fig. 2, we can deduce from (10)
with xs = xf that sin θof = sin θfr, i.e., the angle of
incidence is equal to the angle of reflection and hence
the stationary phase point coincides with the point of

specular reflection, which is also the point of inter-
section between a line from an image source to the
receiver and the boundary.

3.2 Analysis of the SPA

Continuing with the SPA, we need to compute the
determinant of the Hessian of φ(xf , yf), i.e., for φ
evaluated at the stationary phase point. Firstly, the
Hessian of φ(xf , yf) is defined as

H(xf , yf) =

∂2φ(xf ,yf)∂x2f

∂2φ(xf ,yf)
∂xf∂yf

∂2φ(xf ,yf)
∂xf∂yf

∂2φ(xf ,yf)
∂y2f

 (13)

where

∂2φ(xf , yf)

∂x2f
= − 1

Rof
+

(xf − xo)2
R3

of

− 1

Rfr
+

(xf − xr)2
R3

fr

,

∂2φ(xf , yf)

∂y2f
= − 1

Rof
+

(yf − yo)2
R3

of

− 1

Rfr
+

(yf − yr)2
R3

fr

,

∂2φ(xf , yf)

∂xf∂yf
=

(xf − xo)(yf − yo)
R3

of

+
(xf − xr)(yf − yr)

R3
fr

.

(14)
By substituting (9) (for (xs, ys) = (xf , yf)), we

can then obtain the following expression for the de-
terminant of H(xf , yf):

det(H(xf , yf)) =

(((xf − xo)(yf − yr))− ((xf − xr)(yf − yo)))2 Rfr
Rof

R2
ofR

4
fr

+
z2o

R4
fr

R2
of
+ z2o

R3
fr

Rof
+ z2rRofRfr + z2rR

2
of

R2
ofR

4
fr

(15)
where using (9) again, it can be shown that

z2o
R4

fr

R2
of

= z2rR
2
fr + (R2

fr − z2r )R2
fr +

(
z2o −R2

of

)
R4

fr

R2
of

z2o
R3

fr

Rof
= z2rRofRfr + (R2

fr − z2r )RofRfr +

(
z2o −R2

of

)
R3

fr

Rof

and hence (15) becomes

det(H(xf , yf)) =
z2r (Rof +Rfr)

2

R2
ofR

4
fr

+
(((xf − xo)(yf − yr))− ((xf − xr)(yf − yo)))2 Rfr

Rof

R2
ofR

4
fr

+
(Rfr +Rof)Rfr

(
(R2

fr − z2r )− (R2
fr −

z2oR
2
fr

R2
of

)
)

R2
ofR

4
fr

.

(16)
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From (12) we can obtain expressions for (xf − xo)
and (yf−yo) , which upon substituting into (16) then
results in the second term of (16) being equal to zero.
Furthermore, referring to Fig. 2, we know that zr =
Rfr cos θfr, zo = Rof cos θof , and θof = θfr. Hence,
z2oR

2
fr

R2
of

= z2r , and consequently the third term of (16)

is also zero, so that det (H(xf , yf)) reduces to

det (H(xf , yf)) =
cos2 θfr(Rof +Rfr)

2

R2
ofR

2
fr

(17)

which is a remarkably simple expression that also de-
scribes the Gaussian curvature around the stationary
phase point.

In (6), we still need to find sgn(H(xf , yf)),
which can be deduced by observing the quadratic
function wTH(xf , yf)w for any real non-zero vec-
tor, w. Since ∂2φ(xf ,yf)

∂x2f
from (14) is negative 2

and det (H(xf , yf)) from (16) is positive, then
wTH(xf , yf)w < 0, so that H(xf , yf) is negative
definite and hence sgn(H(xf , yf)) = −2. As we are
also integrating over a surface in the BIE, the real
coordinate space dimension is n = 2 in (6). Finally,
substitution of these deductions, along with (7), (8),
(17) into (6), and subsequently into (5) results in:

p(rr) ≈ a(ro)G(rr|ro) + a(ro)
e−jk(Rof+Rfr)

Rof +Rfr

(
1− j

kRfr

)
≈ a(ro)G(rr|ro) + a(ro)G(rr|ri)

(
1− j

kRfr

)
(18)

where ‖rr−ri‖ = Rof+Rfr inG(rr|ri) from (1). We
can observe that for kRfr � 1, the SPA is asymptot-
ically equal to the analytical solution for the infinite
rigid boundary scenario. Recalling thatRfr is the dis-
tance from the stationary phase point to the receiver
point and k = 2π/λ, where λ is the wavelength, we
can interpret kRfr � 1 as a type of far-field con-
dition from the boundary, where Rfr must be much
greater than λ. Due the geometric interpretation of
the stationary phase point as illustrated in Fig. 2 and
the derived asymptotically geometric behavior of the
SPA in this scenario, the SPA offers a strong geomet-
ric interpretation. As the SPA is in principle appli-
cable regardless of whether an analytical solution to

2 This can be simply shown by making the substitution
sin θof =

(xf−xo)
Rof

and sin θfr =
(xf−xr)
Rfr

in (14).

the BIE exists, 3 it suggests that the geometric inter-
pretation of the SPA can be a useful tool to derive
additional conditions for transitioning from a wave-
based method to a geometric one.

4. SIMULATIONS

In order to gain some more intuition about how the
net boundary contributions are related to the station-
ary phase point and the subsequent usefulness of the
SPA, we simulate some simple scenarios involving a
section of the infinite rigid boundary.

4.1 Boundary contributions and the stationary
phase point

A scenario as depicted in Fig. 1 is considered with
a source of complex pressure amplitude a(ro) = 1j
Pa.m located at ro = [−2,−2, 2] m and a receiver
at rr = [2, 2, 2] m above a 20 m × 20 m section
of the infinite rigid boundary located at z = 0. For
this scenario, the stationary phase point is (xf , yf) =
(0, 0) m (at the centre of the plane). To understand
how the integral from (5) gives rise to the scattered
pressure at the receiver, we discretize the boundary,
using a spacing of h = 0.01 m for the x and y direc-
tions, and compute the magnitude and phase of the
integrand in the second term from (5).

The top two rows of Fig. 3 show the magni-
tude (dB re: 20 µPa) and phase respectively for
kRfr = {1, 5, 20} over the rigid boundary. The sta-
tionary phase point (red star), along with the (x, y)
coordinates of the source (white circle) and receiver
(orange circle) are also plotted on the boundary.

For all values of kRfr, the magnitude has a fairly
slow and similar variation across the boundary. The
maximum magnitude occurs just beneath the source
(since this would be the point on the boundary with
the shortest distance from the source), which in-
creases for larger values of kRfr. In the second row
of plots, the phase exhibits oscillations which be-
come more rapid with respect to its magnitude as
kRfr increases. However, there is always an area for
which the phase appears relatively constant and this
in fact is the region around the stationary phase point.

3 If no analytical solution exists, the SPA must however be
evaluated numerically.



10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

-10 -5 0 5 10
-10

-5

0

5

10

X (m)

Y
(m

)

kRfr = 1

-10 -5 0 5 10
-10

-5

0

5

10

X (m)

kRfr = 5

-10 -5 0 5 10
-10

-5

0

5

10

X (m)

kRfr = 20

30

40

50

60

70

M
a
g
n
it
u
d
e
(d
B
)

-10 -5 0 5 10
-10

-5

0

5

10

X (m)

Y
(m

)

-10 -5 0 5 10
-10

-5

0

5

10

X (m)

-10 -5 0 5 10
-10

-5

0

5

10

X (m)

−π

−π/2

0

π/2

π

P
h
a
se

(r
a
d
)

0 10 20

0

0.1

0.2

Length of integral square
from centre of plane (m)

M
ag
n
it
u
d
e
(P

a)

0 10 20

0

0.1

0.2

Length of integral square
from centre of plane (m)

0 10 20

0

0.1

0.2

Length of integral square
from centre of plane (m)

Integral
Analytical

Figure 3. (Top row) Magnitude (dB re: 20 µPa) and (Middle row) Phase contributions of the integrand from
(5) over a section of the infinite rigid boundary for kRfr = {1, 5, 20}. (Bottom row) Comparing magnitudes
from the integral over increasingly large areas with the analytical solution (see text for details).

The effect of increasingly rapid oscillations for
larger kRfr is shown in the plots of the final row of
Fig. 1. The blue solid line is the magnitude 4 (Pa)
obtained by summing contributions to the integrand
in (5) from increasingly larger areas on the boundary
starting from the centre of plane (stationary phase
point (0, 0)) m, and is plotted as a function of the
side length of the squares defining these areas. The
red dotted line shows the magnitude (Pa) of the sec-
ond term of the analytical solution from (4).

For kRfr = 1, if we were to extend the 20 m ×
20 m boundary to infinity, then summing the contri-
butions over an increasingly large area would show
that the magnitude will oscillate around the analyti-
cal solution as it does for kRfr = 5 and kRfr = 20.

4 The phase plots show the same behaviour and are not plotted
to be succinct.

This demonstrates that the rapid phase variation re-
sults in cancellation of the real and imaginary com-
ponents from the integral of (5), and hence it is only
the region around the stationary phase point which
is the main contributor to the integral. What is of
particular interest though is how large this stationary
phase region is with respect to the dimensions of the
boundary being considered. In all cases of kRfr, this
region is in fact small compared to an infinite bound-
ary. However, if we just observe the 20 m × 20 m
boundary, we can see that for an increasing kRfr, the
stationary phase region shrinks, so that the main con-
tribution of the integral comes from an increasingly
small area on the boundary; an occurrence which was
used to develop the scattering algorithm in [17]. It
should also be noted that in the limit, this increas-
ingly small area would tend to a sampling of the BIE
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Figure 4. Comparison of the analytical magnitude
and phase with the SPA for several receiver locations
at k = 2 m−1 (frequency ≈ 109 Hz).

at a single point that is the specular reflection point,
which is the basis of geometric methods such as the
scattering delay network (SDN) [20].

4.2 SPA at multiple receiver locations

A scenario as depicted in Fig. 1 is once again con-
sidered with a source of complex pressure amplitude
a(ro) = 1j (Pa.m) located at ro = [2, 3, 1] m above
an infinite rigid boundary located at z = 0. For a
range of receiver locations, spaced by 0.01 m, in
the x-z plane, with yr = 4 m, the scattered pressure
component using the SPA in (18) as well as that from
the analytical solution were computed. The resulting
magnitudes are compared in terms of a normalized
error, i.e. the absolute value of the difference be-
tween the magnitude from the analytical solution and
the SPA normalized by the magnitude from the ana-
lytical solution (all in Pa). The phases are compared
using the absolute value of their difference.

Fig. 4 shows the resulting magnitude and phase
from the analytical solution and the SPA, as well as
the relative errors between each of these quantities
in the x-z plane for k = 2 m−1, a speed of sound,
c = 343 m s−1, and hence for a frequency of approx-
imately 109 Hz. In the first column, the magnitude
from the analytical solution and the SPA are plotted
in dB re: 20 µPa, whereas the relative error is plot-
ted in dB with respect to the magnitude from the an-
alytical solution. In the second column of Fig. 4, the
phase from the analytical solution and the SPA are
plotted within the range {−π, π}, whereas the error
is plotted within the range {0, π/2}.

At each receiver location, a different stationary
phase point on the boundary had to firstly be com-
puted before the SPA, thus making the value of kRfr

a function of the receiver location in the x-z plane. In
Fig. 4 contours (white dotted lines) corresponding to
kRfr = {1, 10, 20} are also plotted on the SPA plots
and the error plots, which demonstrate that indeed
as kRfr � 1, the SPA converges to the analytical
result. We can also expect that as the frequency in-
creases, the SPA will be a good approximation for an
increasing larger area in the x-z plane with the errors
being concentrated near to the boundary. Apart from
demonstrating the accuracy of the SPA in this ele-
mentary scenario, these results also show the poten-
tial of the SPA to obtain additional conditions, such
as kRfr � 1, for transitioning from a wave-based to
a geometric method.

5. CONCLUSION

A stationary phase approximation (SPA) has been ap-
plied to the boundary integral equation (BIE) for the
scenario of an infinite rigid boundary mirroring a sin-
gle monopole sound source, as a means to initially
investigate the question of when to transition from
a wave-based to a geometric method for simulating
room acoustics. Relationships between the station-
ary phase point and the specular reflection point have
demonstrated why the SPA can be interpreted as a
geometric approximation of solving the wave-based
BIE, which is valid when the distance from the sta-
tionary phase point to a receiver point is much greater
than the wavelength. The results provide some ini-
tial insight into the transition question and suggest
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that the SPA can be a useful technique for investi-
gating relations between wave-based and geometric
methods for simulations in more complicated room
acoustics scenarios.
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