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Abstract 33 

Eastern equine encephalitis virus (EEEV) causes a rare but severe disease in horses and humans, 34 
and is maintained in an enzootic transmission cycle between songbirds and Culiseta melanura 35 
mosquitoes. In 2019, the largest EEEV outbreak in the United States for more than 50 years 36 
occurred, centered in the Northeast. To explore the dynamics of the outbreak, we sequenced 37 
80 isolates of EEEV and combined them with existing genomic data. We found that, like previous 38 
years, cases were driven by frequent short-lived virus introductions into the Northeast from 39 
Florida. Once in the Northeast, we found that Massachusetts was important for regional spread. 40 
We found no evidence of any changes in viral, human, or bird factors which would explain the 41 
increase in cases in 2019. By using detailed mosquito surveillance data collected by 42 
Massachusetts and Connecticut, however, we found that the abundance of Cs. melanura was 43 
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exceptionally high in 2019, as was the EEEV infection rate. We employed these mosquito data 44 
to build a negative binomial regression model and applied it to estimate early season risks of 45 
human or horse cases. We found that the month of first detection of EEEV in mosquito 46 
surveillance data and vector index (abundance multiplied by infection rate) were predictive of 47 
cases later in the season. We therefore highlight the importance of mosquito surveillance 48 
programs as an integral part of public health and disease control. 49 
 50 

Introduction 51 

Eastern equine encephalitis virus (EEEV) is a mosquito-borne virus that causes periodic outbreaks 52 
in humans and horses in the United States (US) since its discovery in 1933 (Giltner & Shahan, 53 
1933; TenBroeck & Merrill, 1933). The virus circulates in a bird-mosquito transmission cycle while 54 
infections of most mammals are considered “dead end hosts”. In humans, EEEV can cause 55 
severe disease, with an apparent case fatality rate of 30% and long-term neurological sequelae 56 
in more than half of those who survive (Lindsey et al., 2018). Still, diagnosed human cases are 57 
rare, with an average of 7 per year in the US. The largest human outbreak in more than 50 years 58 
was the 38 cases reported in 2019, including 12 deaths (Lindsey et al., 2020). The outbreak was 59 
not limited to the East Coast where cases are typically detected, as 10 of the human cases that 60 
year were reported from Michigan. The widespread EEEV cases in 2019 had significant impacts 61 
on the communities: many evening outdoor events were canceled to avoid mosquito exposure 62 
and aerial insecticide applications were the subject of public controversy (Shamus, 2019; 63 
Tunison, 2019). Thus, understanding the drivers of EEEV outbreaks and how to accurately 64 
communicate risk to the public is of high importance (Howard, 2019).  65 

The key unanswered questions are (1) what factors facilitated the unprecedented  EEEV activity 66 
in 2019, and (2) whether we can accurately estimate risk of human and horse infections? These 67 
are challenging questions to answer because the ecology of EEEV is complex, involving multiple 68 
species of bird and mosquito. Culiseta melanura serves as the main mosquito vector of EEEV in 69 
North America, lives in freshwater swamp habitats, and feeds primarily on passerine birds (Morris, 70 
1988). Historically, Coquillettidia perturbans was implicated in the spillover process to humans 71 
as bridge vectors (i.e., vectors which feed on both birds and mammals) (Armstrong & Andreadis, 72 
2022). This strict delineation between obligate avian and permissive feeders, however, is not so 73 
absolute, and Cs. melanura has also been found to occasionally feed on mammals in the 74 
Northeast (Molaei et al., 2006). In terms of viral dynamics, previous work demonstrated that EEEV 75 
circulates year round in Florida and is introduced into the Northeast through seasonal bird 76 
migration (Mundis et al., 2022; Tan et al., 2018), although this process does not happen 77 
predictably every year. Predicting the annual case dynamics is therefore difficult, having to take 78 
into account viral dynamics across multiple species and geographic scales. 79 

In this study, we used a combination of phylodynamics, mosquito surveillance, and mathematical 80 
and statistical modeling to explore the dynamics of EEEV in the Northeast US, and specifically 81 
address factors behind the 2019 outbreak. We sequenced 80 EEEV isolates to add to the 82 
currently available genomic data, including 48 from 2019, and combined them with historical data 83 
to identify patterns influencing national and regional spread. We then explored which human, 84 
viral, mosquito, and ecological factors may contribute to years with many cases in humans and 85 
horses, with the aim of understanding if years like 2019 are predictable, or likely to be repeated. 86 
We confirmed that the 2019 outbreak was primarily driven by EEEV introductions from Florida 87 
rather than extended spread in the region. We also found that when there is regional spread in 88 
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the Northeast it mostly originates from Massachusetts. We found no viral, human, or avian factors 89 
which contributed to the 2019 outbreak, but found that mosquito surveillance data was able to 90 
explain much of the variation in human and horse cases, highlighting the importance of high-91 
quality and routinely collected mosquito data. 92 

 93 

Results 94 

High EEEV mosquito infections rates within known transmission foci 95 

The outbreak of EEEV in humans and horses in 2019 was primarily focused in the Northeast US, 96 
defined as New York, Connecticut, Massachusetts, New Hampshire, Vermont, Rhode Island, 97 
and Maine. Using routine surveillance data from Massachusetts, Connecticut, and New York, we 98 
found that (1) cases occurred within previously known EEEV transmission foci and (2) the high 99 
number of human and horse cases in 2019 corresponded with a high number of trapped Cs. 100 
melanura and a high EEEV mosquito infection rate. 101 
 102 
During 2019 there were 19 human and 26 horse cases reported in the Northeast US, compared 103 
to 11 human and 20 horse cases in 2005, the second largest outbreak since surveillance began 104 
in 2003 (Fig. 1A). The earliest human cases in the region were reported in July in Massachusetts. 105 
This is slightly earlier than the earliest Northeastern horse cases, which were reported in August 106 
across all Northeastern states other than Vermont (Fig. 1B). The last cases were in September 107 
in Connecticut and Massachusetts (human) and October in New York (horse).  108 
 109 
Historically, there have been two foci of transmission in the Northeast: an eastern, coastal focus 110 
which encompasses most of Massachusetts and Connecticut, and a western focus in central 111 
New York towards Lake Ontario. While cases were recorded in both foci in 2019, the vast majority 112 
were in the eastern focus in Massachusetts and Connecticut, with no human cases and only 8 113 
horse cases reported in upstate New York (Fig. 1C). Cases primarily occurred in counties which 114 
had reported EEEV-positive human, horses, or mosquitoes before 2019. Further, the two 115 
counties which had not previously detected EEEV (Cattaraugus county in the southwest and 116 
Ontario county further north, both in central New York) are adjacent to counties which have (Fig. 117 
1C). Therefore, there was not much geographical expansion in 2019, and cases fit into previously 118 
established transmission foci (Fig. 1C). 119 
  120 
Using data from routine mosquito surveillance, we calculated the maximum-likelihood estimates 121 
(MLEs) of mosquito infection rates (see Methods). We found the number of tested Cs. melanura 122 
mosquitoes and EEEV infection rates in Massachusetts (MLE infection rate 2019 = 3.62/1000; 123 
2003-2018 average = 1.21/1000, 95% CI: 0.67-1.75/1000) and Connecticut (MLE infection rate 124 
2019 = 3.67/1000; 2003-2018 average = 0.94/1000, 95% CI: 0.36-1.52/1000), two states that 125 
had a high increase in cases compared to recent years (Fig. 1A), were high in 2019 (Fig. 1D). 126 
New York, which reported human and/or horse cases in 2014 (12 horse and 2 human cases), 127 
2015 (3 human cases), and 2018 (3 horse cases), had more of a normal EEEV year in 2019 (8 128 
horse cases). Subsequently, we did not find a high number of tested Cs. melanura mosquitoes 129 
and EEEV infection rates in New York in 2019 (MLE infection rate 2019 = 3.30/1000; 2003-2018 130 
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average = 2.49/1000, 95% CI: 1.53-3.45/1000). In general, the mosquito infection rate patterns 131 
in Massachusetts and Connecticut are more similar to each other compared to New York, which 132 
is likely indicative of the two distinct geographical foci of transmission described above.  133 
 134 
 135 
 136 
 137 
 138 
 139 
 140 
 141 
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Figure 1 | Temporal and geographical characteristics of previous EEEV outbreaks after 146 
2000 and context of the 2019 outbreak in Massachusetts, Connecticut, and New York. 147 
A) Human and horse cases per year since 2000 in Massachusetts, Connecticut, and New York, 148 
colored by state. B) Human and veterinary cases in 2019 in these three states by sample date. 149 
Note that human cases are only available to the nearest month whereas veterinary cases have 150 
specific dates. C) Map showing geographical distribution of human and horse cases in 2019, 151 
shown as stars, relative to EEEV detections after 2000 in Massachusetts, Connecticut, and New 152 
York. Brown denotes counties where mosquito-positive pools have been sampled, hatched are 153 
non-human cases, and circles are human cases. D) EEEV infection rate of Culiseta melanura 154 
mosquitoes and the number tested in Massachusetts, Connecticut, and New York by year from 155 
2000. 156 

The 2019 outbreak in the Northeast was caused by several recent virus 157 
introductions from Florida 158 

To explore the underlying spatial dynamics of EEEV in the US, in particular to determine the timing 159 
and the source of viruses causing the 2019 outbreak, we sequenced 80 isolates of EEEV from 160 
Massachusetts, Connecticut, and New York. Adding our newly sequenced EEEV genomes to 161 
the existing publicly available whole genome sequences provided a sufficiently detailed dataset 162 
to perform a phylogeographic reconstruction on a state level. We found that EEEV transmission 163 
in Florida routinely seeds other locations across the eastern seaboard and was the source of 164 
multiple lineages causing the 2019 outbreak.  165 
 166 
Phylogeographic analysis to reconstruct virus spread requires sequence data from across spatial 167 
and temporal scales. Prior to the expansion of the nationwide arbovirus reporting system  in 2003 168 
(Lindsey et al., 2012), genomic sequence data for EEEV were relatively sparse. There are, 169 
however, some sequences from across the full range of years, with the earliest sequence from 170 
the first recorded outbreak in 1933 (Fig. 2A). Within the Northeast, EEEV sequencing was most 171 
concentrated on samples from southeastern Massachusetts and upstate New York (Fig. 2B). 172 
Nationally, most sequences were from the Northeast and Florida, although only until 2014 for the 173 
latter. There was sporadic sequencing as far west as Texas, although there are no sequences 174 
from many of the intermediate states along the east coast (Fig. 2C).  175 
 176 
To provide additional geographical resolution within the Northeast and update the dataset to 177 
incorporate the 2019 outbreak, we sequenced an additional 80 isolates from across  178 
Massachusetts (n=17),  Connecticut (n=38), and New York (n=25) (Table S1). They were 179 
primarily from Cs. melanura (n=63), although there were also isolates from other mosquito 180 
species: Coquillettidia perturbans (n=5), Aedes vexans (n=1), Culex salinarius (n=1), Aedes 181 
canadensis (n=1); as well as 9 sequences from horses and 1 from a turkey. These isolates were 182 
sampled from 2015-2019, with 48 from 2019, and were mostly from counties from which there 183 
were previously few or no sequences, particularly in Connecticut (Fig. 2B).  184 
 185 
Combining our new EEEV sequences with publicly available data (531 total sequences), we 186 
performed a joint phylogeographic and phylogenetic reconstruction (Fig. 2D). We estimate the 187 
time of origin of the US phylogeny to be 1923.2 (95% Highest Posterior Density (HPD): 1920.5-188 
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1925.9), ten years before EEEV was first detected when it caused a large outbreak in horses in 189 
Virginia in 1933 (Giltner & Shahan, 1933). Further, we found a strong temporal signal for this 190 
dataset (Fig. S1) with an estimated evolutionary rate of 1.86x10-4 (95% HPD: 1.77x10-4-1.95x10-191 
4) substitutions per site per year, in line with previous estimates (Tan et al., 2018). 192 
 193 
Supporting previous results of phylogeographic analysis (Tan et al., 2018), we found that Florida 194 
forms the backbone of the phylogeny. In other words, EEEV transmission in Florida acts as a 195 
source of virus introductions into other states (Fig. 2D). When investigating the movement 196 
between states across the whole posterior distribution of the phylogeographic reconstruction, 197 
we found that 86.7% of EEEV movements start in Florida and end in every other state in the 198 
dataset (Fig. 2E). It is worth noting that there are not many sequences from states outside of 199 
Florida and the Northeast, and so movements involving states such as Texas, Georgia, and 200 
Virginia should be interpreted with caution, and there are likely more regional dynamics which we 201 
could not uncover with this dataset.  202 
 203 
Using our new EEEV sequences, we found that the 2019 outbreak in the Northeast involved 204 
several independent virus introductions (Fig. 2D). Following the national trends, we infer that 205 
each of these introductions originated in Florida and were not related to other previous EEEV 206 
clusters sequenced from the Northeast. Therefore, the 2019 outbreak in the Northeast consisted 207 
of multiple EEEV lineages most likely introduced from the reservoir population in Florida, as 208 
opposed to long-term regional persistence or a single introduction with explosive growth. 209 
 210 
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 211 
Figure 2 | Phylogeographic reconstruction of EEEV from 2019 and prior outbreaks 212 
A) Number of EEEV sequences in the dataset over time by year of sampling. Note that the 213 
nationwide reporting of surveillance data began in 2003. B) Location of EEEV sequences in the 214 
dataset from Massachusetts, New York, and Connecticut to the county level. Stars indicate the 215 
location of EEEV samples which were newly sequenced for this study. C) Location of all EEEV 216 
sequences in the study to state level. D) Time-resolved phylogeny colored by location of nodes 217 
from the discrete phylogeographic analysis. States in the Northeast are colored separately, but 218 
non-Northeast and non-Florida states are grouped together. Larger tips represent EEEV 219 
sequences from 2019. E) Movement of virus from the full posterior of the discrete 220 
phylogeographic analysis. Direction is anti-clockwise, and width of lines corresponds to 221 
frequency of movement across the posterior. Movements that make up fewer than 1% of the 222 
total posterior have been filtered out. 223 
 224 
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EEEV lineages do not typically persist longer than a few years in the 225 
Northeast 226 

Having found that EEEV circulation in the Northeast, including the 2019 outbreak, is mostly driven 227 
by repeated introductions from Florida, we explored the maintenance of  these lineages once 228 
they become established in the region. We found that viral lineages on average only persist for 229 
less than three years and are generally detected a year after introduction. 230 
 231 
Due to the lack of sequences from Florida in general, but especially after 2014, the clades 232 
estimated by our discrete phylogeographic analysis are likely not precise estimates of the timings 233 
of EEEV introductions into the Northeast (Fig. 2D). In particular, we expect that we have 234 
estimated larger and longer-lived clusters after 2014 than there are in reality, as they have not 235 
been broken up by EEEV sequences from Florida. To account for this, we calculated the average 236 
branch length in the maximum clade credibility (MCC) tree in Northeastern clusters of more than 237 
three sequences with more than half of their sequences from 2014 or earlier, which was 1.28 238 
years (standard deviation = 1.5 years). We then subdivided any clades that contained branches 239 
longer than the mean plus twice the standard deviation (4.3 years). This also included clusters 240 
from before 2014, indicating that sampling bias specifically involving Florida is an issue 241 
throughout the dataset. This procedure resulted in splitting the 61 EEEV introductions inferred 242 
from our discrete trait analysis into 75 separate introductions into the Northeast (Fig. 3A). 243 
 244 
Of these 75 introductions, we found 26 consisting of three or more sequences. On average, 245 
these took 1.17 (95% HPD: 0.46-3.27) years to be first detected in the genomic dataset, and 246 
circulated in the Northeast for an average of 2.8 (95% HPD: 0.65-7.5) years after being 247 
introduced (Fig. 3B). This supports previous analysis of the region showing limited multi-year 248 
maintenance in the region (Oliver et al., 2020; Young et al., 2008). The groups of lineages can be 249 
seen to roughly follow three wave patterns in the 2000s, between 2010 and 2014, and then 2014 250 
to 2019 (Fig. 3C), possibly corresponding to infection and immunity patterns within the bird 251 
population in the region. 252 
 253 
Of the 26 larger Northeastern introductions, 8 included samples from the 2019 outbreak, and 254 
half of these were solely composed of 2019 samples (Fig. 3C). We estimate that the average 255 
introduction time of these 2019 clusters was in mid 2017 (95% HPD: 2015-11-14 to 2019-01-256 
15), and the earliest introduction was late 2015. Therefore, the EEEV lineages sequenced from 257 
2019 were introduced no more than 4 years before the outbreak and after the most recent 258 
Northeast EEEV outbreak in 2014. 259 
 260 
 261 
 262 
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 263 
 264 
Figure 3 | Detection and persistence of EEEV lineages in the Northeast 265 
A) Time-scaled phylogeny estimating EEEV introductions into the Northeast, taking sporadic 266 
sampling into account by splitting up clusters with very long internal branches (see Methods). B) 267 
Distributions of time from introduction to first (top) and last sample (bottom) for Northeastern 268 
clusters of more than three EEEV sequences. C) Time of first node in the Northeast, first sample, 269 
and last sample for each cluster with more than three EEEV sequences, colored by state 270 
 271 

Multi-state spread of EEEV originating in Massachusetts  272 

Considering that EEEV lineages have a short lifespan in the Northeast (Fig. 3), we subsequently 273 
investigated the extent to which they could spread within the region during that time. We found 274 
that most of the Northeast EEEV clusters were detected within a single state, suggesting that 275 
inter-state regional spread is rare. Where we did detect between-state spread, however, 276 
Massachusetts appeared to be an important regional source. 277 
  278 
Of the 26 Northeast clusters with three or more EEEV sequences (Fig. 3C), most (n=19) were 279 
from a single state, and only a single cluster was found in three states despite the density of 280 
sequencing in the region. Of the 7 clusters with sequences from multiple states, we found that 281 
most viral movements were inferred to be from Massachusetts to other states (7 out of 8 282 
movements in the MCC tree, Fig. 4A) and the origin of 5 out of 6 subtrees was in Massachusetts 283 
(Fig. 4B). The subtree that does not have an origin in Massachusetts circulated mostly in 284 
Connecticut but does contain a sequence from Massachusetts. Importantly, multi-state clusters 285 
were not necessarily sampled in neighboring counties (Fig. 4B), indicating true spread within the 286 
region, possibly by infected birds. 287 
 288 
It is worth noting that only two of these multi-state clusters contain sequences from New York, 289 
despite the majority of EEEV sequences being from that state, and its size and central location in 290 
the region. These New York sequences were from the southeast part of the state (Fig. 4B), closer 291 
to the prominent Massachusetts-Connecticut focus rather than the transmission clusters in 292 
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upstate New York. Therefore, while limited spread is happening in the region, it primarily only 293 
involves the eastern part of the region where smaller states are close together.  294 
 295 
While none of the multi-state clusters were solely sampled in 2019, we found that half of them 296 
contain EEEV sequences sampled in 2019 (Fig. 4B). Therefore, the 2019 outbreak appears to 297 
have a wider within-cluster geographical spread than previous ones (e.g., 2012-2014 sequences 298 
are only found in 2 subtrees; Fig. 4B). The spread in 2019 was possibly driven by the high 299 
numbers of infected mosquitoes (Fig. 1D) leading to more infected birds and more opportunities 300 
for cross-state movements. We emphasize, however, that cases were mostly reported in 301 
counties that had previous EEEV cases (Fig. 1C), and so this was strictly a within-cluster effect 302 
and the outbreak as a whole does not show geographical expansion.  303 
 304 
 305 

 306 
 307 
Figure 4 | Phylogeographic spread of EEEV within the Northeast 308 
A) Between-state movements from the maximum clade credibility (MCC) tree of the 309 
phylogeographic analysis within the six Northeastern EEEV clusters which have between-state 310 
movement. Width of lines relates to the number of movements, and direction is anti-clockwise. 311 
B) Maps showing sampling location to the county level for each EEEV cluster with multiple states 312 
where available. Stars indicate where there are sequences with information only at the state level 313 
(n=2 in New Hampshire, n=1 in Massachusetts and n=3 in Vermont). Corresponding subtrees 314 
are shown to the right of each map, colored by inferred location to the state level. 315 

Associations of virus, human, and bird factors with EEEV outbreaks were 316 
not found 317 

The general epidemiology underlying the 2019 EEEV outbreak appears to be similar to previous 318 
outbreaks, with short-lived introductions from Florida driving transmission in the Northeast (Fig. 319 
2-3), and infections occurring in similar locations (Fig. 1). Therefore the change in the lead-up to 320 
the 2019 outbreak, which underlies the increase in cases, may be due to mosquito population, 321 
virus evolution, human behavior, or bird populations, and there are multiple possible factors that 322 
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are not mutually exclusive. Determining which factors were important for the 2019 outbreak may 323 
help us to understand what drives EEEV outbreaks in general. First, we ruled out that the 2019 324 
outbreak was driven by virus evolution. Then, we examined case demographics and aspects of 325 
human behavior, and we did not find any associations between the age, sex, or timing of human 326 
cases to outbreak years, nor were humans spending more time outside in 2019 compared to 327 
2018. Finally, we did not find strong evidence for the population sizes of key bird species as a 328 
correlate of cases or mosquito infection rates, though we are lacking important data on bird 329 
immunity to EEEV. Together, with the data available to us,  virus genomics, case demographics, 330 
and bird population sizes fail to  explain or predict EEEV outbreaks. 331 
 332 

Intrinsic viral factors and effective population size 333 

A major concern when any pathogen leads to a large increase in case counts is that it has evolved 334 
to have a higher virulence or transmissibility. In the case of EEEV, increased transmissibility would 335 
refer to a higher infection success in either mosquitoes or birds. Increased virulence would lead 336 
to increased case ascertainment, as diagnosis occurs on hospitalized individuals and most 337 
human infections are probably asymptomatic (Morens et al., 2019). We would expect to see a 338 
phylogenetic signal for any intrinsic variability in transmissibility or virulence. 339 
 340 
We searched the alignment for any nucleotide substitutions, relative to a reference sequence 341 
from 2005, which are common to some or all of the 2019 EEEV sequences. There were 17 342 
substitutions across the genome shared by all of the 2019 sequences, a further two that more 343 
than 90% of them shared, and an additional two that 75% of them shared. These 21 344 
substitutions, however, were found across the whole phylogeny, in at least 93% of non-2019 345 
EEEV sequences. We found no shared substitutions unique to more than 75% the sequences 346 
sampled in 2019. This was expected given that these sequences are spread across the 347 
phylogeny (Fig. 2D), as there would have to be extremely strong positive selection leading to 348 
multiple instances of convergent evolution for unique shared substitutions to be possible.  349 
 350 
Past population size of viruses can be useful in inferring underlying transmission dynamics. In the 351 
case of EEEV, this can be done using a skygrid model (Gill et al., 2012), which we used to 352 
estimate changes in virus effective population size (in birds and mosquitoes) over time across the 353 
whole of the US. We found that there was a steady increase in effective population size in the 354 
1990s, which then plateaued and decreased more recently in the late 2010s (Fig. S2A). 355 
 356 
To explore if this could be formally connected to EEEV infections in humans and horses, we used 357 
an extension of the skygrid model to incorporate case data as covariates (Gill et al., 2016). We 358 
hypothesized that increased transmission in the mosquito-bird cycle could lead to more 359 
infections and reported cases in humans and horses. We tested 9 different covariates 360 
independently using data from 2003 onwards: all human and horse cases, only horse cases and 361 
only human cases each with no lag, a 1 year lag or a 2 year lag (Fig. S2B). We did not find any 362 
significant associations between the viral population size and any of these covariates. There is, 363 
therefore, no simple association between national circulation and reported cases, meaning that 364 
regional dynamics are likely more important for regional cases. More recent sequencing data in 365 
general, particularly from the Northeast to allow the inference of population dynamics around the 366 
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outbreak in 2019, could confirm this. 367 
 368 

Case demographics and human behavior 369 

Human behavior could be one explanation for the increase in human EEEV cases in 2019, which 370 
could be revealed by analyzing the case demographics. Since 2003, we found that the cases 371 
have been predominantly male (including in 2019, where 62% of the cases were male), and this 372 
proportion was not found to vary across years (Fisher’s exact test, p=0.838, Fig. S3A). In 373 
comparison, the proportion of cases in different age categories were found to vary across years 374 
(p=0.047, Fig. S3B). To determine if this variation was meaningful, we divided years with cases 375 
since 2003 into large outbreak years (5 or more human cases) or small outbreak years. When we 376 
compared these two groups, we did not find any evidence of a difference in age distribution 377 
(Fisher’s exact test, p=0.322). Finally, we compared the timing of human and horse cases in the 378 
Northeast. The median month of symptom onset in all years was either August or September, 379 
with earliest cases in July and latest in October. We tested whether the median month of infection 380 
correlates with the number of cases and found that it does not (Pearson’s correlation, p=0.777, 381 
Fig. S3C-D). 382 
 383 
To further explore whether human behavior may have changed in 2019, leading to a higher EEEV 384 
exposure rate, we compared the length of time individuals spent outside in relevant counties in 385 
Massachusetts, Connecticut, and New York (Fig S3E). We performed a paired t-test on the 386 
indoor activity seasonality metric for each of these counties in June, July, August, and September 387 
between 2018 and 2019 (data only available for these years) using data from (Susswein et al., 388 
2022). We found no evidence of a difference in indoor-ness, and by extension the reciprocal 389 
outdoor-ness, between 2018 and 2019 in counties that had ever had a human case of EEEV 390 
(p=0.56) or only those which had a case in 2019 (p=0.72). Therefore, human behavior, the timing 391 
of cases, and case demographics do not appear to be the primary drivers of EEEV outbreaks 392 
based on our analysis of the available data. Although, understanding the behaviors and activities 393 
linked to human exposure is still an important area of research. 394 
 395 

Bird populations 396 

Bird populations likely have a complicated role in EEEV outbreaks. While the presence of 397 
competent bird species is a necessity for EEEV transmission, abnormally large bird populations 398 
may dilute the virus, decreasing the likelihood of mosquito infection during blood feeding (Kramer 399 
& Ciota, 2015). Moreover, when sufficient opportunities exist for mosquitoes to feed on birds, it 400 
may limit the pursuit of mosquitoes to feed on alternate sources, such as humans and horses. 401 
Finally, bird population immunity is likely a key component of the potential for EEEV perpetuation, 402 
but studies that routinely collect bird serology data are difficult and not often conducted.  403 
 404 
While data on birds are limited, we examined the effect of the (1) absolute abundance and (2) 405 
proportion relative to all species of 8 bird species for which Cs. melanura has a high blood feeding 406 
preference (Armstrong & Andreadis, 2022; Molaei et al., 2016) on (A) human and horse cases 407 
and (B) mosquito EEEV infection rate using a Poisson regression. We also compared these 408 
metrics for 8 bird species for which a low feeding preference was estimated (Molaei et al., 2016) 409 
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as a control (Fig. S4). In New York, we found very few significant relationships between the 410 
abundance or proportion of any of the high-preference bird species to case counts or infection 411 
rates. There are, however, several significant relationships in the low-preference bird species, 412 
suggesting that this comparison is not valid for New York. Further, the comparisons to mosquito 413 
infection rate almost all have high p-values regardless of state, bird species, or metric. In 414 
Massachusetts and Connecticut, we found several positive relationships between high-415 
preference bird species and case counts, notably the common grackle (abundance only; 416 
p<0.001 for both states), chipping sparrow (proportion only; p<0.01 for both states), tufted 417 
titmouse (proportion only; p<0.01 for both states), and warbling vireo (abundance and proportion; 418 
p<0.01 for both states). There are, however, some low-preference birds with significant 419 
relationships (although fewer), meaning that the relationship between specific bird presence and 420 
EEEV transmission/cases is complicated and not easily solved here. 421 
 422 

EEEV outbreaks are primarily driven by the infection dynamics within 423 
mosquito populations 424 

After ruling out or not finding associations with other factors, we subsequently focused on 425 
mosquitoes where we have detailed temporal data. After the CDC expanded the arboviral 426 
surveillance reporting system (ArboNET) and federal funding to the states in the early 2000’s 427 
(Hadler et al., 2015), many states began to routinely trap and test mosquitoes for multiple viruses, 428 
including EEEV and West Nile virus. This provides a glimpse into the transmission cycle of the 429 
virus, and allows us to explore if mosquito populations or infection rates are associated with 430 
outbreaks. We used mosquito surveillance data from all three states, and detailed data from 431 
Connecticut and Massachusetts, to develop a transmission model. Overall, we found that a high 432 
abundance of Cs. melanura, connected to environmental factors, is necessary, but not sufficient, 433 
for an outbreak of EEEV in humans and horses. When infection rates are included, however, 434 
these two metrics together are predictive of overall human and horse cases. We then applied this 435 
model to obtain predictions of total human and horse cases based on early season 436 
measurements. 437 
 438 
To begin with, we found when there were more EEEV-positive Cs. melanura pools (i.e. 439 
mosquitoes were tested in groups of up to 60 from the same trap and date), there were more 440 
human and horse cases in Massachusetts, Connecticut, and New York. (Fig. 5A). Further, in 441 
2019, there were more positive mosquito pools detected in Massachusetts and Connecticut than 442 
previously recorded. In comparison, the number of EEEV-positive mosquito pools detected in 443 
New York was more within the expected range of historic values, which aligns with the normal 444 
number of case counts in 2019 for that state. It must be noted that Massachusetts and 445 
Connecticut practice reactive sampling, and so more mosquito traps are set when EEEV-positive 446 
mosquitoes are found. To account for this, we also found the same strong correlation between 447 
the Cs. melanura EEEV infection rates (MLE per 1000 mosquitoes, see methods) and case 448 
counts (Fig. S5A-B). Therefore, our data suggest that human and horse cases are primarily 449 
driven by the abundance of infected mosquitoes more so than behaviors that increase exposure 450 
to mosquitoes. 451 
 452 
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To further explore the within-season EEEV dynamics, we focused on Connecticut and 453 
Massachusetts, for which we have more detailed mosquito data. We plotted the monthly Cs. 454 
melanura abundance (mosquitoes/trap/day), EEEV infection rate, and vector index (abundance 455 
multiplied by the infection rate to estimate the relative number of infected mosquitoes (Fauver et 456 
al., 2016; Nasci et al., n.d.) for each state, highlighting 2019 (Fig. 5B). While there were 457 
considerable yearly variations in both states, in general Cs. melanura abundance rapidly 458 
increased in early summer and tended to peak by June to July. The EEEV infection rates lagged 459 
behind, peaking in August or September, with infected mosquitoes often being detected in 460 
Massachusetts earlier than Connecticut. Vector index, therefore, tended to rise earlier (July) and 461 
persist longer in Massachusetts than Connecticut, though it often peaks in August in both states. 462 
In 2019, we found that both the Cs. melanura abundance and EEEV infection rates were high in 463 
both states, leading to the highest vector index values in the 17-year dataset (Fig. 5B). Thus the 464 
2019 EEEV outbreak was driven by environmental conditions that supported larger Cs. melanura 465 
populations and transmission dynamics that led to high infection rates. 466 
 467 
We next investigated whether environmental data could help explain the high abundances or 468 
EEEV infection rates. To explore this, we used index P (Obolski et al., 2019), a modeled estimate 469 
of reproduction number of mosquito-borne viruses based on climate factors, including 470 
temperature and humidity, by including prior estimates for Cs. melanura-borne transmission of 471 
EEEV (Table S2). Our assumption was that index P would best model the vector index. While 472 
our index P estimates usually peaked in July to August, similar to the vector index, we found that 473 
it actually correlated most closely with the Cs. melanura abundance dynamics (Fig. S5C; 474 
correlation coefficient of 0.57, p-value < 0.0001 for Connecticut, 0.24 and p<0.05 for 475 
Massachusetts). Furthermore, our modeled index P in 2019 was relatively average across the 17 476 
years in both states (rank 9/17 for Connecticut, 7/17 for Massachusetts). Thus, for EEEV in the 477 
Northeast, index P is useful for describing the seasonal dynamics of transmission, but the 478 
temperature and humidity variables alone are not capable of describing which years will have a 479 
high number of EEEV-infected mosquitoes. 480 
 481 
To interrogate further how different factors combine to explain cases, we built a negative binomial 482 
regression model that uses index P, vector index, state, month of first EEEV detection, the year, 483 
and the month to explore counts of total human and horse cases (Fig. 5C-D, Table S3; results 484 
from different variations of the model are shown in Fig. S6). Because of the yearly variation in 485 
EEEV cases (Fig. 5D, see “Actual” cases), we found that year and being in the month of August 486 
or September lead to no significant changes in risk of cases (Fig 5C). Vector index (2.07, 95% 487 
CI: 1.5-3.0), the month of first detection compared to June (3.17, 95% CI: 1.34-7.92), index P 488 
with a 1 month lag (2.31, 95% CI: 1.19-4.65), and being in the month of October (4.18, 95% CI: 489 
1.39-13.55), however, all lead to a significant increase in the risk of human and horse cases (Fig. 490 
5C). Further, being in Massachusetts as compared to Connecticut had the largest increase in 491 
risk (11.95, 95% CI: 3.88-43.70). When used to fit cases each year, our modeled estimates 492 
tracked closely with observed cases, where cases with the model being off on average by 0.47 493 
cases per observation (Mean Absolute Error (MAE) = 0.47) and had strong explanatory power 494 
(Nagelkerke R2 = 0.80; Fig. 5D). Importantly, vector index was an important driver of the outbreak 495 
in 2019, where elevated levels correspond well with high case counts. 496 
 497 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted March 6, 2023. ; https://doi.org/10.1101/2023.03.06.23286851doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.06.23286851
http://creativecommons.org/licenses/by-nc/4.0/


16 

Next, we applied this model to examine if there were early season predictors which might indicate 498 
an increased risk of horse and human cases later in the season (Fig. 5E). While index P varies 499 
from year to year and is connected to mosquito abundance, it does not correlate well with vector 500 
index as it cannot predict when EEEV is present in the Northeast (Fig. S5C). We therefore held 501 
index P constant and simulated vector index across a range of values to predict the total human 502 
and horse cases for the year, and to explore its relationship with the month of first detection. We 503 
found that our model underpredicts cases when the vector index is low, as the real data points 504 
fall outside of the prediction intervals (Fig. 5E), indicating a potential lag in identification of EEEV 505 
cases. This could be due in part to stochastic chance in surveillance programs missing EEEV 506 
with low levels of virus circulation. As the vector index increases, however, our predicted values 507 
become closer to the observed data points. 508 
 509 
The timing of the first detection of EEEV in mosquitoes is also important, and of particular note is 510 
that years with high case counts always first detected EEEV in July (Fig. 5E). This makes intuitive 511 
sense as the virus has more time to circulate to high levels in birds while there are sufficient 512 
mosquitoes present for it to transmit to humans. While the interaction between first EEEV 513 
detection in July and the vector index is not significant, this could be in part due to no cases 514 
being detected in years when the vector index was high but EEEV was first detected after July. 515 
The impact of the timing of the vector index is clear however, with a 220% increase in risk of 516 
cases when EEEV is detected in July (Fig. 5E). This is reflected in the empirical data, as the 517 
maximum number of cases in years when EEEV is detected after July is only 5. 518 
 519 
Our negative-binomial regression model could be used as a tool for mosquito surveillance 520 
programs to estimate the risk of cases, which typically are reported in August-October, based 521 
on the timing of first detection and the vector index. For example, if EEEV is detected in 522 
mosquitoes in July in Massachusetts, and the vector index in August is 0.15 (similar to the value 523 
measured in 2019), we predict 7.0 human and horse cases in total that year (95% CI: 2.9-16.6), 524 
compared to 2.2 cases (95% CI: 0.6-7.9) if EEEV is detected after July during a typical summer 525 
season. In Connecticut, the same situation would correspond to an expected 0.6 cases (95% 526 
CI: 0.2-1.8) for July detection and 0.2 cases (95% CI: 0.1 to 0.6) for a later detection. With a 527 
more extreme August vector index of 0.30 in Massachusetts (higher than has ever been 528 
measured), our model predicts 89.2 cases (95% CI: 17.0-468.5) if EEEV is detected in July versus 529 
28.2 cases (95% CI: 3.4-231.3) cases being detected later. While these predictions have wide 530 
confidence intervals, they provide a relative estimate of the possible extent of the cases in a given 531 
year, and therefore an indication of how much effort should be put into various mosquito control 532 
measures. 533 
 534 
Finally, while all of our previous results focused on Cs. melanura, Coquillettidia perturbans is also 535 
thought to be an important bridge vector for infections in horses and humans (Armstrong & 536 
Andreadis, 2022; Sherwood et al., 2020). This species is more abundant on average in 537 
Connecticut than Cs. melanura (Fig. S5D), with populations peaking in late June. However, only 538 
9 Cq. perturbans pools were positive for EEEV from 2003-2019 in the state, or 1.9% of all positive 539 
pools; and it was only the 8th most commonly positive mosquito species for EEEV. In 2019, there 540 
were six EEEV positive pools of Cq. perturbans sampled in Connecticut, making it the third most 541 
commonly sampled positive mosquito species for the year, although it still only made up 5% of 542 
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the positive mosquito pools. This does vary between states, however, as Cq. perturbans made 543 
up a third of positive pools in Massachusetts in 2019 (Armstrong & Andreadis, 2022). Therefore, 544 
Cq. perturbans may still have a role as a bridge vector, but the transmission dynamics of EEEV 545 
in these states is primarily driven by Cs. melanura. 546 
 547 
 548 

 549 
 550 
Figure 5 |  Model predictions of EEEV cases using mosquito infection estimates 551 
A) Poisson regression by state of the number of EEEV positive Cs. melanura pools sampled and 552 
human and horse cases. B) Monthly trends across the year of mosquito abundance (Cs. 553 
melanura collected per trap per day), infection rate (MLE per 1000 Cs. melanura), vector index 554 
(abundance multiplied by the infection rate) and index P (modeled estimate of reproduction 555 
number), for Connecticut and Massachusetts. 2019 values are highlighted in red. C) Results of a 556 
negative binomial regression model for both Connecticut and Massachusetts combined of case 557 
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risk predicted by vector index, first month of EEEV detection, index P with a 1 month lag, year, 558 
and risk compared to the month of May-July of cases in August, September, and October. The 559 
covariate for state was removed for scale, as its estimate is 11.95 (95% CI: 3.88 to 43.70) 560 
with Connecticut being the reference group. D) Actual and predicted case counts for each year 561 
based on the modeled results presented in C. Shaded areas denote error in the predicted values. 562 
E) Simulations using the previously described model. Predicted cases and intervals utilized a 563 
range of plausible vector index values and whether EEEV was detected in July or not, with index 564 
P held constant using the average value derived from the years studied for each month; and split 565 
by state. Shaded areas represent 95% confidence intervals and points are real data points from 566 
the EEEV mosquito surveillance program discussed elsewhere. Stars indicate values from 2019 567 
and darker points indicate the actual modeled value of Index P. 568 
 569 

Discussion 570 

The 2019 EEEV outbreak in the Northeast US was exceptional in that it had the highest number 571 
of human cases recorded in more than 50 years, along with dense Cs. melanura vector 572 
populations with high virus infection rates (Fig. 1 & 5). We found that other components of 2019 573 
were similar to outbreaks of years past. We showed that EEEV is not persistently maintained in 574 
the Northeast, with virus lineages typically going extinct within the region within a few years (Fig. 575 
3). Instead, the virus is frequently reintroduced into the region from Florida where EEEV is 576 
endemic (Fig. 2). Thus, EEEV outbreaks in the Northeast are limited by stochastic and 577 
deterministic factors that support new virus introductions, and to habitats that are suitable for the 578 
mosquito vectors. We identified two primary transmission foci in the Northeast: (1) an eastern, 579 
coastal focus which encompasses most of Massachusetts and Connecticut, and (2) a western 580 
focus in central New York towards Lake Ontario (Fig. 1). The 2019 outbreak primarily occurred 581 
in the former, especially in regards to human cases. We found that human and horse cases are 582 
associated with a high vector index (large number of EEEV infected Cs. melanura mosquitoes), 583 
and we constructed a model using environmental and mosquito surveillance data that could 584 
estimate cases (Fig. 5). Finally, we found that a high early season vector index can be used by 585 
surveillance systems to predict human EEEV risk and direct control efforts (Fig. 5E). It remains 586 
unclear as to what causes high EEEV infection rates in mosquitoes, and therefore what 587 
contributed to the exceptionally high rate in 2019. 588 
 589 
We conducted a phylodynamic analysis of our 80 newly-generated EEEV genome sequences 590 
combined with historical samples to explore the dynamics of EEEV in the Northeast of the US, 591 
with a focus on 2019 (Fig. 2). As both EEEV isolates and extracted RNA are designated as Select 592 
Agents in the US, it is extremely difficult to obtain clearance to store, transport, and in this case, 593 
sequence them. Thus our genomic dataset is critical to support future EEEV research. Using 594 
these additional sequences, we confirmed earlier studies which identified Florida as the source 595 
of EEEV introductions into the Northeast and other parts of the US (Tan et al., 2018) (Fig. 2). The 596 
documented endemic transmission in Florida and the limited number of EEEV cases reported 597 
outside of the US add further support to the hypothesis of Florida as a source for the Northeast. 598 
EEEV sequences from outside of the US, however, are limited in number (n=3) and we did not 599 
include these data in our analysis. Therefore, we cannot rule out a non-US external source of 600 
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introductions into the Northeast. Further sequencing from other countries, enabling a broader, 601 
regional analysis of EEEV would allow the investigation of the international dynamics of EEEV and 602 
the identification of at-risk regions. 603 
 604 
 605 
We found that while interstate spread of EEEV within the Northeast is not common, 606 
Massachusetts appears to be an important focus for when it does happen (Fig. 4). This may be 607 
in part due to bird migration routes, more consistent EEEV activity in Massachusetts compared 608 
to the surrounding states (Fig. 1 & 5), and/or that EEEV infection in mosquitoes in Massachusetts 609 
increases earlier in the year than it does in Connecticut (Fig. 5). Thus, controlling EEEV 610 
transmission in Massachusetts may help to alleviate some EEEV transmission in other states.  611 
 612 
In discussing the movement of EEEV across the US, it is important to note that there is significant 613 
sampling bias in our dataset, in terms of both time and location of the sequences. Most of the 614 
sequences are from the Northeast US, and there are no sequences from Florida after 2014. While 615 
we have attempted to mitigate the latter point by splitting Northeastern clusters with long 616 
branches (see Methods), geographical heterogeneity can lead to overconfidence in the transition 617 
times (Layan et al., 2023). Further, the lack of EEEV sequences from other East Coast states may 618 
lead to an underestimate of the importance of those states in the spread of EEEV from Florida, 619 
and we are unable to examine the introduction or transmission dynamics in any other region of 620 
the country. After Florida, the Northeast has the most reported human and horse cases in the 621 
US. It therefore has an outsized importance for understanding the dynamics of EEEV. Obtaining 622 
data from other EEEV outbreaks (e.g. Michigan) would provide another opportunity to examine 623 
the outbreak dynamics. The sequencing of EEEV samples prior to 2003, a wider geographical 624 
range of samples in all time periods, and from Florida after 2014 would greatly add to the reliability 625 
and resolution of any phylodynamic study of EEEV. 626 
 627 
While some characteristics of the EEEV outbreak in 2019, such as human case traits and climate 628 
factors, were within expected ranges, it is clear that many mosquito factors were unusually high 629 
(Fig. 5). For example, both Massachusetts and Connecticut had a very high abundance of Cs. 630 
melanura and the vector index for the latter state was the highest ever recorded. While EEEV has 631 
a complex ecology, by using data from detailed mosquito surveillance programs, we were able 632 
to find strong connections between mosquito infection rate, abundance (connected to climate 633 
factors), and human and horse cases. We then developed and applied a negative binomial 634 
regression model to utilize early season values of mosquito-specific predictors (most notably the 635 
month of first detection and vector index) to provide early estimates of overall case counts for 636 
that year. This important development will provide departments of health with estimates to help 637 
direct control strategies, and enable more effective communication of risk to the public. 638 
 639 
Our models and estimates have several limitations. First, our negative binomial regression model 640 
to predict cases is likely more informative for Massachusetts than Connecticut, as there are more 641 
cases in Massachusetts to inform it. As such, the Connecticut predictions are heavily influenced 642 
by Massachusetts case counts, and given the highly localized nature of EEEV to forested wetland 643 
habitats, the model may not accurately represent conditions in Connecticut. In addition, our 644 
model was restricted to a monthly time scale to match monthly case data. Given the short 645 
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duration of the EEEV transmission season, certain dynamics may be missed on the weekly or 646 
even daily timescale. There was not enough case data within each month to explore impacts of 647 
detection on a month by month basis, making the month detection piece of the analysis less 648 
specific. While vector index is a direct risk estimate of EEEV cases, index P had a greater effect 649 
estimate in our model. This could be due to our model not fully accounting for the inherent 650 
seasonality of EEEV transmission that overlaps with high values of index P or that the true 651 
value of index P, which is modeled with a certain degree of uncertainty, lies a significant 652 
distance outside the determined estimate. Due to lack of information on EEEV in Cs. 653 
melanura, index P is estimated using the transmission probability, bird incubation period, bird 654 
infectious period and extrinsic incubation period derived from previous West Nile virus research 655 
of Culex pipiens species (Lourenço et al., 2020). This lack of data for EEEV priors may be 656 
confounding the predictive power of this parameter. Finally, veterinary cases are reported 657 
voluntarily and the true case counts include interventions undertaken in those years. These 658 
interventions include a highly recommended horse vaccination and mosquito spraying: the former 659 
will cloud the association between mosquito factors and case counts as exposures may not 660 
convert to cases. Both lead to an underestimate of true, unaltered case counts as the model is 661 
fitted to partially controlled epidemics. 662 
 663 
Despite these limitations, on a short timescale, we have some predictive ability of human and 664 
horse cases of EEEV (Fig. 5). When considering longer timescales, we still cannot use climate-665 
informed models, like index P, for annual predictions of outbreaks. This is because, while climatic 666 
factors are vital for the high abundance of Cs. melanura required for an intense EEEV year, they 667 
cannot predict when the virus will be present. Index P therefore may be a more effective way to 668 
predict EEEV case counts in Florida where the virus is continuously maintained (Bigler et al., 669 
1976), but should be used with caution in scenarios where the virus must be introduced. 670 
 671 
To provide longer-term predictions (i.e. on a time scale of years), we must therefore understand 672 
what drives introductions of EEEV from Florida into the Northeast. The missing piece here is 673 
large-scale studies on bird immunity, as waves of infection in the Northeastern bird population 674 
are likely driven by the renewal of the susceptible population, potentially through birth (Armstrong 675 
& Andreadis, 2022; Elias et al., 2017). Theoretically, the dynamics could be similar to those of 676 
Middle Eastern Respiratory Syndrome (MERS) (Dudas et al., 2018), wherein cycles of infection 677 
due to buildup of susceptibles in the reservoir population leads to spillover events into other 678 
species. Certainly, we found that EEEV appears to have waves of introductions into the Northeast 679 
which co-circulate before going extinct shortly afterwards, which would be expected from local 680 
depletion of susceptible birds.  681 
 682 
In understanding EEEV outbreaks in humans and horses, we must look to a combination of 683 
dynamics of other arboviruses like West Nile and dengue in terms of the mosquito populations, 684 
as well as viruses that mostly exist in reservoir populations and spillover into humans, such as 685 
MERS. The complex interplay of these factors make long-term prediction with our current data 686 
sources difficult, as we do not have enough information on bird immunity and its interaction with 687 
EEEV transmission and spillover. We do know, however, that a large mosquito population, 688 
enabled by warm and wet conditions, is necessary, and an increase in years with warm and wet 689 
summers and mild winters may increase the frequency of outbreaks. Therefore, while the 690 
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interactions in EEEV with climatic factors are more complex than with some other arboviruses, 691 
climate change may still represent an increase in risk as more years will be permissive for 692 
outbreaks in mammals. In any case, all of these results rest on a timely and robust mosquito 693 
surveillance program, as currently exists in New York, Massachusetts, and Connecticut. 694 
Widespread and consistent trapping and rapid analysis provides the data required to calculate 695 
vector index, which is the strongest correlate of human and horse cases later in the season. It is 696 
imperative that programs like this, also of use for other mosquito-borne viruses such as West 697 
Nile virus, continue to be funded and expanded, even as competition for public health funding 698 
increases.  699 
 700 

 701 

Materials and Methods 702 

Ethics 703 

No human samples or direct clinical data were used in this study. This study was determined to 704 
be Not Human Research by the Yale University Human Research Protection Program Institutional 705 
Review Board. All EEEV case data were aggregated and available from public surveillance 706 
databases as described below. Sequencing of remnant veterinarian samples by the Wadsworth 707 
Center were done following institutional protocols. 708 

Case data and availability 709 

EEE, caused by EEEV, is a notifiable human disease, therefore human case data is routinely 710 
reported to the federal government. Horse data reporting is voluntary and so is likely an 711 
underestimate. Data can be accessed on request from ArboNET 712 
(https://www.cdc.gov/mosquitoes/mosquito-control/professionals/ArboNET.html). 713 
 714 
Base layers for all map figures were taken from the Global Administrative Database (gadm.org).  715 

Mosquito surveillance 716 

In New York State (NYS), mosquito surveillance was carried out in 13-43 counties throughout 717 
the state including an EEEV endemic area of Central NYS (Onondaga, Oswego, Oneida 718 
Counties), annually from May-October, as previously described (Oliver et al., 2018). Trapping was 719 
completed using a combination of Centers for Disease Control and Prevention (CDC) light traps, 720 
gravid traps and diurnal resting boxes. Resting boxes were primarily used in EEEV endemic areas 721 
to collect Cs. melanura. Mosquito specimens were sorted by species and pooled for testing. 722 
Pools of 10-60 mosquitoes were shipped on dry ice to the NYS Arbovirus Laboratory for EEEV 723 
testing by molecular and cellular methods. Specifically, pools containing a zinc-plated steel bead 724 
and 1ml mosquito diluent (20% heat-inactivated fetal bovine serum (FBS) in Dulbecco’s 725 
phosphate-buffered saline plus 50 μg/mL penicillin/streptomycin, 50 μg/mL gentamicin, and 2.5 726 
μg/mL Fungizone) were homogenized using a mixer mill for 30 sec at 24Hz and centrifuged for 727 
5 min at 6000 rcf.  Quantitative reverse transcriptase polymerase chain reactions (qRT-PCR) were 728 
performed using two distinct primer and probe sets, following RNA extraction and purification, 729 
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as previously described (Zink et al., 2013). In addition, 100 μL of supernatant from Cs. melanura 730 
pools were inoculated on Vero cell culture and monitored for cytopathic effect.  EEEV isolates 731 
obtained from a single round of amplification were used for sequencing. 732 
 733 
In Massachusetts, mosquito surveillance was conducted from mid-May through to mid-October, 734 
as previously described (Kinsella et al., 2020; Molaei et al., 2013). Trapping was performed by 735 
the Massachusetts Department of Public Health (MDPH) in collaboration with 10 local mosquito 736 
control projects (MCP) at semi-variable frequencies visiting non-fixed trap sites spread across all 737 
14 counties. Site visitation frequency increased with high volume collections of vector species 738 
and narrowed to weekly-biweekly over time in correlation with increased site-specific target 739 
mosquito abundance. Targeted sites visitation frequency increased to weekly at minimum when 740 
EEEV activity was detected and persisted through the duration of the seasonal surveillance 741 
period. Weekly collections were performed at 10 fixed collection sites in Bristol and Plymouth 742 
counties known to be historically active EEEV sentinel sites. These site collections increased to 743 
twice a week after initial EEEV detection. 744 
  745 
Mosquito collection methods varied depending on MCP, however nearly all successful Cs. 746 
melanura collections were performed using primarily CDC-Miniature Light traps with a CO2 747 
source (either dry ice or regulated tank flow ranging from 250-500cc), gravid traps baited with an 748 
infusion of lactalbumin-yeast-hay with oak leaves, or resting boxes placed primarily in locales with 749 
both deciduous and evergreen freshwater forested swamps. Light traps and gravid traps were 750 
placed in the early morning-late afternoon and retrieved 24 hours later, and resting boxes were 751 
visited once weekly. Mosquito trap canisters collected from the field were transported to the 752 
laboratory in an igloo cooler lined with dry ice, freeze-killed in an ultra-low -80°C freezer, identified 753 
by species using a dichotomous key to characterize morphological differences with a 754 
stereoscope, and pooled in sample vials of 5-50 female mosquitoes. Sample pools were grouped 755 
by species/trap site/date of collection before being submitted to the MDPH Molecular 756 
Diagnostics lab for arbovirus testing. 757 
 758 
In Connecticut, mosquito trapping and arbovirus surveillance was conducted from the beginning 759 
of June through the end of October at 91 fixed collection sites, distributed among all 8 counties. 760 
Trapping locations, where Cs. melanura were likely to be collected or where there was historical 761 
record of EEEV activity, were established in sparsely populated rural settings that included 762 
permanent fresh-water swamps (red maple/white cedar) and bogs, coastal salt marshes, horse 763 
stables, and swamp-forest border environs. Additional trap sites are located in more densely 764 
populated urban or suburban locales, including parks, greenways, golf courses, undeveloped 765 
wood lots, sewage treatment plants, dumping stations, and temporary wetlands associated with 766 
waterways.   767 

Mosquito trapping was conducted with CO2 (dry ice)-baited CDC miniature light traps equipped 768 
with aluminum domes or gravid mosquito traps baited with a lactalbumin-yeast-hay infusion.  769 
Traps were placed in the field in the afternoon, operated overnight, and retrieved the following 770 
morning. Trapping frequency was minimally made once every ten days at each trap site over the 771 
course of the entire season. Mosquito trapping frequency was increased at EEEV-positive sites 772 
to twice per week after the virus was isolated from that site. Adult mosquitoes were transported 773 
alive to the laboratory each morning in an ice chest lined with cool packs.  Mosquitoes were 774 
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immobilized with dry ice and transferred to chill tables where they were identified to species with 775 
the aid of a stereo microscope (90X) based on morphological characters. Female mosquitoes 776 
were pooled in groups of 50 or fewer by species, collection date, trap type, and collection site 777 
and stored at -80°C until processed for virus isolation. Processed mosquito pools were 778 
inoculated into Vero cell cultures and screened for cytopathic effect (CPE) as previously described 779 
(Armstrong et al., 2011). CPE positive virus cultures and the original mosquito pool were then 780 
tested for EEEV by TaqMan RT-PCR assay (Armstrong et al., 2012).   781 

Maximum-likelihood estimation of infection rate, relative abundance, and 782 
vector index 783 

The maximum-likelihood estimation (MLE) of the infection rate is a pooled infection rate of positive 784 
EEEV pools, and was estimated using the CDC R software package PooledInfRate 785 
(https://github.com/CDCgov/PooledInfRate). This estimation procedure takes into account that 786 
there may be different numbers of positive mosquitoes in each positive pool, and so estimates 787 
the likely number of positive mosquitoes in each pool based on the overall number of positive 788 
pools. The relative abundance was calculated as the average number of mosquitoes captured 789 
per trap per night. Vector index is these two metrics multiplied together (Fauver et al., 2016; 790 
Nasci et al., n.d.). 791 

RNA isolation and virus sequencing 792 

RNA was extracted on the MagMax-96 Express robot (Applied Biosystems, Foster City, CA) with 793 
the Magmax Viral isolation kit (ThermoFisher Scientific, Waltham, MA), according to 794 
manufacturer’s specifications.  50 μL of sample was added to 130 μL of lysis buffer containing 795 
20 μL of RNA binding beads diluted 1:1 with wash buffer. RNA was eluted in 90 μL of elution 796 
buffer. Primer pairs, ATAGGGTACGGTGTAGAGGCAACC, TGGTCCGGCATCCCCTTTCTTTAC, 797 
and CGTTAACGGAGGGGCACTGAAT, GCGTAGATGCCGGTAGATAACAAC, and 798 
AAAGCGCACCTCGTCAAGCATTCT, GCGGTGAGTCTTATCGGGTTTGTC, and 799 
CGAAACGGAATTGCAATGTCACTC, CTGATCATAGGCTCGGCTGTCGTA, and 800 
CCAAAAGGGGGTTACAGTCAAA, TCGGTGTCGCAGAAGCAGTAGG, and 801 
CAAAAGTGCCGTCTCCAGTAGTGA, GAAATATTAAAAACAAAATAAAAACATAAAA, were used 802 
to generate 6 overlapping fragments of approximately 2.5 kb each using one-step superscript III 803 
RT–PCR with platinum Taq (Life Technologies, Carlsbad, CA). Each reaction utilized 5 μL of RNA, 804 
1 μL of enzyme, and a 0.4 μM final concentration of primer pairs in a total reaction volume of 25 805 
μL. Thermocycler amplification was completed using the following conditions: 55°C for 30 min; 806 
94°C for 2 min; 40 cycles of 94°C for 15 sec, 55°C for 30 sec, 68°C for 3.5 min; and a final 807 
extension of 68 °C for 10 min (Simpliamp by Applied Biosystems, Waltham, MA). Two uL of 808 
amplicons were visualized on a 1% agarose gel to confirm size and quality, and subsequently 809 
purified using Zymo DNA Clean and Concentrate (Zymo Research, Irvine, CA). Amplicons from 810 
individual isolates were pooled and sent to the Wadsworth Center Advanced Genomic 811 
Technologies Core for library preparation and indexing using the Nextera XT kit (Illumina, San 812 
Diego, CA) according to manufacturer's protocols. 813 
 814 
Sequencing was performed on the Illumina MiSeq platform (San Diego, CA). Paired-end reads 815 
were assembled to a 2014 Connecticut isolate from Cs. melanura (KX029260) deploying 816 
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Geneious Prime’s reference mapping tool with high sensitivity and free end gaps using 10 817 
iterations of fine tuning and trimming paired read overhangs. Mean coverage/base ranged from 818 
703-2132x. Resultant consensus sequences were used for downstream analyses. We generated 819 
complete genome consensus sequences for all 80 sequenced isolates.  820 

Nucleotide alignments and phylogenetic analysis 821 

In total, 80 new samples of EEEV were sequenced from 2015-2019. These were deposited in 822 
Genbank with accession numbers OQ511733-OQ511812. 451 additional whole genome 823 
sequences from prior to this study were downloaded from Genbank. Those not from the US and 824 
without location data were removed, and the remaining combined with the new sequences to 825 
give a dataset of 523 sequences. 826 
 827 
We aligned the sequences using Mafft version 1.3.7 (Katoh & Standley, 2013), and removed the 828 
non-coding regions at either end of the genome, giving a final multiple sequence alignment with 829 
a length of 11,277 bases. A maximum-likelihood phylogenetic tree was generated using IQ-TREE 830 
2.1.4 (Minh et al., 2020) and temporal signal was assessed in TempEst (Rambaut et al., 2016). 831 
A single molecular clock outlier (ID: AY722102) was removed, as described in (Hill & Baele, 832 
2019). 833 
 834 
We estimated introductions into the Northeast (defined as New York, Connecticut, 835 
Massachusetts, New Hampshire, Vermont, Rhode Island and Maine) by conducting a discrete 836 
trait phylogeographic analysis (DTA) at the state level in BEAST 1.10 (Suchard et al., 2018), with 837 
an asymmetric CTMC model. We also used a non-parametric skygrid coalescent model (Gill et 838 
al., 2012) estimated using Hamiltonian Monte Carlo sampling (Baele et al., 2020), an HKY 839 
substitution model (Hasegawa et al., 1985), and a strict clock model (Ferreira & Suchard, 2008). 840 
We used tip-date sampling for those sequences without exact sampling dates, with a starting 841 
date given as 0.6 of the way through the appropriate year (i.e. August) with a standard deviation 842 
of three months. We estimate Markov jump histories for the full posterior to obtain estimates of 843 
location transitions between states in the DTA, and summarize them using 844 
TaxaMarkovJumpHistoryAnalyzer (Lemey et al., 2020). We performed two independent 845 
replicates of this analysis, with each chain running for 100 million iterations, removing 10% for 846 
burn-in. Convergence and mixing were assessed in Tracer 1.7 (Rambaut et al., 2018). 847 
 848 
An introduction node was considered to be the first node which was inferred to be in one of the 849 
Northeastern states and downstream tips were counted as part of the cluster. One introduction 850 
left Massachusetts and returned to Florida. As this is unlikely given bird migration patterns, and 851 
the confidence in the location of the node was low (52% Massachusetts, 46% Florida), we instead 852 
used the child node which was found in Massachusetts, thereby excluding the Florida sequence 853 
from this cluster. 854 
 855 
As there are no sequences from Florida (which was estimated to be the backbone of the 856 
phylogeny) after 2014, and relatively few before, the DTA will underestimate the number of 857 
introductions in total as they will not be broken up by Florida sequences. The date of the 858 
introduction node (the first node in the cluster inferred to be in the Northeast) will therefore also 859 
be too far in the past, as the lack of Florida sequences in the cluster means that the location of 860 
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the node is inferred incorrectly. Therefore, we set out to split up some introductions which 861 
contained long branches and likely represented unsampled Floridian diversity. We identified all of 862 
the clusters which contained tips only from the Northeast  with more than three sequences and 863 
more than 50% of the sequences sampled in 2014 or earlier (i.e. when the last Floridian sequence 864 
was sampled); and calculated their average branch length (1.28 years). We then traversed the 865 
tree, and for any branches where both the parent and child node were inferred to be in the 866 
Northeast, but were more than twice the standard deviation (1.52 years) above the average 867 
branch length (threshold = 4.33 years), we assigned the introduction node as the child of the pair 868 
instead of the parent. This therefore moved the introduction node closer to the present, and 869 
sometimes excluded Northeastern sequences on the sister branch, making separate 870 
introductions. The final number of introductions into the Northeast before this procedure was 42 871 
prior to 2014 and 19 after, and 49 and 26 respectively, adding 14 more introductions in total. 872 
 873 
To test for nucleotide substitutions common to 2019 sequences, we compared the consensus 874 
sequences to the reference sequence used in (Yu et al., 2015), which has Genbank accession 875 
ID KJ469556. 876 

Effective population size using a skygrid model 877 

To identify any possible associations between effective population size and case counts, we 878 
applied the latter as covariates to the estimation of population size using the skygrid model (Gill 879 
et al., 2016). We began by comparing 12 possible covariates (all human and animal cases, just 880 
human cases, just horse cases, and all cases in Massachusetts, Connecticut, and New York with 881 
0, 1 and 2 year lags) to effective population estimated sizes using a skygrid model with no 882 
covariates (Gill et al., 2012). On the basis of this preliminary analysis, we ran formal analyses with 883 
all cases, human cases, and horse cases and the relevant lags. We also only used sequence and 884 
case data from 2003 onwards (n=423), when the surveillance program began, in order to 885 
eliminate some noise from the data. BEAST runs were set up as above with tip-date sampling, 886 
HKY substitution models and a non-parametric skygrid coalescent model. Grid points were 887 
externally set to correspond to the start of each year. 888 
 889 
Case counts for years between the inferred time of origin of the tree and 2003 were estimated 890 
independently using a normal prior, whose mean is the recorded case count. The standard 891 
deviation was calculated such that all national cases and horse case covariates were allowed to 892 
have ±5 cases in the 95% confidence interval; and human covariates were allowed to have ±1 893 
cases in the same interval, as the recording of the latter is more precise. This was also undertaken 894 
for 2021 data for both analyses with the 2 year lag covariates, as finalized data has not been 895 
released by ArboNET at time of writing.  896 
 897 
Starting values for unobserved years were taken from news reports and other publicly available 898 
sources. Most of the researched outbreaks were reported in (Corrin et al., 2021), and data were 899 
supplemented by going to each of the references given in that paper. Data for outbreaks in Michigan 900 
were supplemented by information in (Stobierski et al., 2022), and Massachusetts data were 901 
supplemented using (Feemster, 1938; Grady et al., 1978; Massachusetts Department of Public 902 
Health, 2022). Data for all states were supplemented using CDC Morbidity and Mortality Weekly 903 
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reports in relevant years. Horse cases used are both confirmed and suspected, due to a lack of 904 
equine testing, especially in the earlier epidemics. 905 
 906 

Human outdoorness measurements 907 

How much time people spent indoors or outdoors was taken from (Susswein et al., 2022), who 908 
used anonymized GPS data from mobile phones. This data was only available for 2018 and 2019. 909 
We took the average indoor/outdoorness for each county which had a case in 2019, or had ever 910 
had a case and performed a dependent t test for paired samples to compare the metric between 911 
years.  912 

Bird abundance 913 

Bird banding data to calculate abundance and proportion were obtained from the North 914 
American Bird Banding Program dataset (Celis-Murillo et al., 2022). All ages of birds were used. 915 
Bird species were selected using data from (Molaei et al., 2016), who calculated the relative 916 
feeding preference of Cs. melanura in Connecticut using a blood meal analysis and normalizing 917 
it by abundance of the bird species in question. High-preference birds in this analysis were the 8 918 
species identified in this paper, and low-preference birds were randomly selected from their list 919 
of birds for which Cs. melanura appeared to have no preference. We conducted Poisson 920 
regressions for each combination for the abundance or proportion of a bird species in a given 921 
year against the human and horse cases or mosquito infection rate (both defined above).  922 

Mosquito transmission suitability model - index P 923 

Index P is an estimate of the transmission potential by a single female mosquito using Bayesian 924 
methods and mosquito-virus specific priors (Table S3), including transmission probability as a 925 
function of temperature and relative humidity. Unlike the basic reproduction number, R0, index P 926 
does not need to be greater than one to cause sustained transmission, as index P is multiplied 927 
by the ratio of human to mosquitoes to derive R0. We estimated the variable index P using the 928 
Mosquito Virus Suitability Estimator (MVSE), an R package to download the functions for 929 
modeling the suitability of a given environment for mosquito-borne virus transmission (Obolski et 930 
al., 2019). Temperature and humidity data for each state were calculated by taking the average 931 
temperature for each day in the center of each county in the state. These county level data were 932 
then averaged to obtain a single temperature estimate for the entire state. All weather data were 933 
provided by visualcrossing.com. Index P was calculated from April to October, in line with the 934 
transmission season for EEEV. All negative temperatures were set to zero in the model to avoid 935 
erroneous results, as at zero or below, mosquitoes are in a hibernation state and so there is no 936 
mosquito activity that varies by temperature.  937 
 938 
We used a 1 month lag time from index P to cases to account for delays caused by requiring 939 
transmission into humans and horses, followed by incubation times and time to diagnosis. 940 
Therefore the relevant mosquito activity will be before human and horse cases are reported. 941 
 942 
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While index P is seen as an important covariate in the negative binomial regression model, it is 943 
difficult to tease out the seasonality of the mosquito season with cases. Due to the sporadic 944 
nature of EEEV in the Northeast, index P is a necessary but not sufficient parameter to consider. 945 
To test whether temperature could be used as a proxy, an additional model was tested by 946 
replacing index P with temperature which resulted in a slightly higher Akaike information criterion 947 
(AIC) score (231.4 vs 232.3) and wider confidence interval. Given the widespread use of modeled 948 
mosquito viability parameters, we opted to keep index P. However, future research and 949 
surveillance programs may wish to utilize temperature, an easily obtained parameter with little 950 
uncertainty in its estimate. 951 

Regression model fit to cases 952 

We restricted the case data (described above) to Connecticut and Massachusetts for the model 953 
where we had sufficient mosquito data to calculate the Vector Index. Dispersion was detected 954 
with a dispersion parameter alpha = 0.18 (p-value = 0.019) using the dispersion test from the 955 
AER package in R (Cameron & Trivedi, 1990). This led us to fit a negative binomial regression 956 
model (estimated using ML) to predict human_equine with vector_index (formula: human_equine 957 
~ vector_index + month_detected_july + indexP_lag1 + st_grp + year_index + month_f).  958 
 959 
Given the vast differences in cases between Massachusetts and Connecticut we attempted to 960 
run stratified models of each state separately. However the model failed to converge for 961 
Connecticut, likely due to low availability of cases. Thus a model combining both was used.   962 
Months were included as categorical variables with the months May through July as reference 963 
groups. These months were combined due to May and June having no cases, making parameter 964 
estimates fail to converge when separate. The parameter ‘first month detected July’ was a binary 965 
variable determined by identifying the month when the first non-zero value for the vector index 966 
occurred for each year. All continuous data were normalized so interpretation of estimates are 967 
for a 1 standard deviation increase in the term. 968 
 969 
Effect modification of vector index by month of detection was explored in addition to the original 970 
model without effect modification. AIC scores of the model with effect modification and without 971 
were nearly identical (231.4 vs 231.2 respectively) and an ANOVA test was conducted between 972 
the two models and found to have no difference (p-value = 0.14). While no difference was 973 
identified, this may be due in part to the small sample size of years where the month detected 974 
was after July.  975 
 976 
In addition to effect modification, given some of the complexity of index P, we explored the terms 977 
temperature 1-month lag and mosquito abundance 1-month lag in replacement of index P. 978 
Utilizing the two point rule of thumb for AIC, the abundance model performed worse (231.4 vs 979 
233.2) and its estimate was not significant (CI 95%: 0.57-1.62). The temperature performed 980 
slightly worse but similar to the index P model (AIC 231.4 vs 232.3) but had a larger standard 981 
error (CI 95%: 1.15-9.31). Given the desire to explore the utility of index P and its higher 982 
performance we opted to focus on this model. However, for simplicity sake future work may 983 
utilize temperature for its ease of use and similar performance (Figure S6 and Table S4). 984 
 985 
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Utilizing the DHARMa version 0.4.6 package in R (https://CRAN.R-986 
project.org/package=DHARMa) , we simulated the residuals 1,000 times to test for 987 
heteroskedasticity, zero inflation, and autocorrelation. Upon visual inspection no 988 
heteroskedasticity of the residuals was detected. The simulated ratio of expected to actual zeros 989 
was 1.01 (p-value = 0.776) The Durbin-Watson test for autocorrelation was conducted on a 990 
subset of the Massachusetts data to avoid duplicate time indexes. In addition to subsetting the 991 
data, index P with and without a 1-month lag was tested per the suggestion of the Durbin-Watson 992 
test to avoid lagging covariates. Autocorrelation was borderline but insignificant without the index 993 
P lag (DW = 1.59, p-value = 0.051). 994 
 995 
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