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ABSTRACT
Creativity is highly valued in soccer players. It contributes to ex-
citing and unpredictable play, which can help teams to overcome
defensive strategies and create scoring opportunities. Consequently,
evaluating the creative abilities of players is an important aspect of
the player recruitment process. However, there is currently no clear
way to measure creativity in soccer. It is not captured by the typical
result-based performance indicators, as being creative entails going
beyond just doing something useful, to accomplishing something
useful but in a unique or atypical way. Therefore in this paper, we
define a novel metric to quantify the level of creativity involved
in a player’s passes. Our Creative Decision Rating (CDR) utilizes
machine learning techniques to assess two important factors: the
originality of a pass, and its value in terms of increasing the team’s
chances of scoring a goal. We validated our metric on StatsBomb
360 contextual event stream data of the 2021/22 English Premier
League season and show through a number of use cases that it
provides another angle on a player’s skill, complementing existing
player evaluation metrics. Overall, our metric provides a concise
method for capturing and quantifying the creativity of soccer play-
ers and could have important implications for player recruitment
and talent development in the sport.
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1 INTRODUCTION
Quantitative analysis plays a growing role in the recruitment pro-
cess of soccer players [2, 7, 34]. The wide availability of detailed data
and extensive research has led to the creation of newmetrics, which
offer an objective and more complete picture of a player’s abilities
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and potential. Nowadays, teams are increasingly using these met-
rics to help assess a player’s technical [8, 28], physical [19, 26],
tactical [9, 10] and mental [3] skills.

Another skill that is highly valued by coaches, scouts and fans
is creativity, which in soccer refers to a player’s ability to come
up with new and imaginative solutions to problems posed by the
opposing team. Because the presence of creative players within a
team enhances its ability to break down tight defenses and create
goal-scoring opportunities [16], creativity has been emphasized
as an important factor of success by both researchers [23] and
practitioners [5]. Also among fans, the best soccer players are often
described as being “creative”. For example, Kevin De Bruyne is
widely regarded as a master of creativity.

Despite being highly valued, no previous research has looked at
statistical models to objectively quantify creativity. That is because
creativity is generally seen as an intangible quality, something
which cannot be analyzed through statistics. In psychology, creativ-
ity is commonly defined as “the ability to produce work that is both
novel (i.e., unexpected, original) and appropriate (i.e., useful)” [23].
Hence, creativity involves not only accomplishing something use-
ful, but doing it in a unique or atypical way. For example, a cutback
pass almost always puts a player in a good scoring position. Yet,
it is typically not perceived as being creative as it is generally the
most straightforward option when the game state allows it.

In this paper, we operationalize this psychological definition in
the context of soccer by positing that creative actions should (1)
differ from the typical action that the vast majority of players would
select in a given game state, and (2) have more promising results
than this typical choice. Based on this, we propose a novel Creative
Decision Rating (CDR) metric for passes. The CDR assigns a single
value per pass which is the difference between the expected values
of the chosen pass option and the predicted typical pass. In order to
compute the CDR, we need three estimates: the likelihood of each
possible pass destination, the long-term reward of each passing
option and the success probability of each passing option.

We use machine learning methods to learn models for each of
these components from StatsBomb 360 event stream data. This
data describes all on-the-ball actions that were performed during
a game, augmented with snapshots of player locations at the time
of each annotated event.1 Although models for each of the three
aforementioned components have been previously developed for
traditional event stream data and spatiotemporal tracking data, the
hybrid 360 data poses unique challenges. We will compare two

1See https://statsbomb.com/what-we-do/soccer-data/360-2/ for a detailed description
of the data. A subset of the data used in this research is publicly available at https:
//github.com/statsbomb/open-data.
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approaches for learning each of the separate models: a gradient-
boosted trees model based on handcrafted features and a deep
learning CNN model based on the SoccerMap architecture [12].

To validate our metric, we compute the CDR for the 2021/22
English Premier League season and show that Kevin De Bruyne is
indeed the most creative player, followed by Tariq Lamptey and
Trent Alexander-Arnold.When looking at pairs of players, we found
that the interactions between Mohammed Salah and Sadio Mané
exhibited the highest creativity. Additionally, we found that the
average level of creativity is not affected by the game state (i.e., time
remaining and goal difference), but that the variance of creativity
increases as time progresses.

To summarize, this paper makes the following contributions:
(1) We propose a novel metric, the CDR, for capturing the com-

plex notion of creativity in soccer;
(2) We compare deep learning and feature-based approaches for

estimating (i) the likelihood of each possible pass destination,
(ii) the long-term reward of each passing option, and (iii) the
success probability of each passing option from snapshots
of player positioning in StatsBomb 360 data;

(3) We present a number of use cases and highlight the most
interesting findings derived from our metric;

(4) We publish a Python package (available at https://github.
com/ML-KULeuven/un-xPass) that implements the CDR
metric and enables the construction of the underlying ma-
chine learning models.

The remainder of this paper is organized as follows: Section 2
presents our metric for measuring the creativity of a player’s pass
selection. Next, Section 3 presents the experimental setup, and
Section 4 presents a detailed description of the approaches used
for learning the machine learning components that underlie our
metric. Section 5 provides insights into how our metric performs
in practice and presents our most interesting findings. Section 6
discusses related work. Finally, Section 7 concludes the paper and
outlines potential directions for future research.

2 MEASURING CREATIVE PASSING
Our definition of creativity requires quantifying two things about
actions:

(1) Usefulness, which is tied to how an action affects a team’s
chance of scoring a goal

(2) Originality, which is tied to the pass that the vast majority
of players would select in a given game state

After we describe how to model these, we show how both can be
combined to measure creativity. Our approach is based on event
stream data, which describes on-the-ball actions such as passes,
dribbles and shots observed during the match. Each action is de-
scribed by a tuple of attributes 𝑎𝑖 containing the action type, its time
of occurrence in the match, the origin and destination location, the
player who performs the action, and the body part used to execute
the action.

2.1 Valuing the usefulness of actions
When considering event stream data, a soccer match can be viewed
as a sequence of 𝑛 consecutive actions 𝑎1, 𝑎2, . . . , 𝑎𝑛 . Each action

𝑎𝑖 with outcome 𝑜𝑖 ∈ {success, fail} moves the game from state
𝑆𝑖−1 = {𝑎1, . . . , 𝑎𝑖−1} to state 𝑆𝑖 = {𝑎1, . . . , 𝑎𝑖−1, 𝑎𝑖 }. Consequently,
a logical approach to capture the usefulness of actions is by mea-
suring the difference in quality between the pre-action game state
𝑆𝑖−1 and post-action game state 𝑆𝑖 . In recent years, several per-
formance metrics have been introduced based on this idea (e.g.,
xT [30], VAEP [8], g+ [17], PV [21], OBV [31]). At a high level, they
all quantify the usefulness (𝑈 ) of actions according to the following
equation:

𝑈 (𝐴 = 𝑎,𝑂 = 𝑜 |𝑆) = 𝑄 (𝑆 |𝐴 = 𝑎,𝑂 = 𝑜) −𝑄 (𝑆),

where 𝑄 captures the value or quality of a particular game state.
Generally, this quality is expressed in terms of the likelihood of
scoring or conceding a goal. Thus,𝑈 captures the change in scoring
probability following the execution of a particular action.

This typical approach to valuing an action’s usefulness is based
on a holistic viewpoint. However, at the atomic level, each action
comes in three parts:

Action selection. First, a player must select the best possible
action from a set of options. This involves choosing which
of several types of actions (e.g., pass, dribble, shot) to take
and how to exactly implement (“execute”) the action (e.g.,
which corner to target on a shot), within the scope of the
current game state.

Action execution. Second, the player must attempt to suc-
cessfully carry out that action. Each player has different
technical abilities though [14], and this will affect the ac-
tion’s implementation.

Action resolution. Third, a player’s decisions and execution
are translated into results. Typically, these are determined
by teammates (e.g., the player receiving a pass) or opponents
(e.g., the goalkeeper stopping a shot).

We posit that creativity is part of the action selection phase and thus
try to make an abstract away the result.2 Therefore, we compute
the expected usefulness of an action as the weighted sum of the
value of both outcomes:

E[𝑈 (𝐴 = 𝑎 |𝑆)] =
∑︁

𝑜∈{𝑜+,𝑜− }
𝑃 (𝑂 = 𝑜 |𝐴 = 𝑎, 𝑆) ·𝑈 (𝐴 = 𝑎,𝑂 = 𝑜),

where 𝑃 (𝑂 = 𝑜+ |𝐴 = 𝑎, 𝑆) is the probability that action 𝑎 succeeds
in game state 𝑆 , and 𝑃 (𝑂 = 𝑜− |𝐴 = 𝑎, 𝑆) is the probability that it
fails.

2.2 Valuing the originality of actions
The second aspect of creativity concerns originality with respect to
the choice of actions. Generally speaking, in soccer, there are three
possible high-level actions a player can perform with the ball: a
player can try to shoot at the goal, pass it to another teammate, or
drive with the ball up the pitch. In this paper, we restrict the space
of possible actions 𝐴 to passes, since these are the type of action
that is mostly linked to creativity.

More concretely, we characterize a pass 𝑎𝑖 ∈ 𝐴 by its origin and
destination. The origin corresponds to the ball’s current location
and is included in the current game state. The destinations can

2Obviously, a player needs to pair creativity with technical abilities to make an impact.
We discuss this in Section 5.2.

https://github.com/ML-KULeuven/un-xPass
https://github.com/ML-KULeuven/un-xPass
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be defined in terms of player identities (i.e., passing to a specific
player) or in terms of locations on the field. To be able to distinguish
between simple passes to a specific player’s location and (oftenmore
creative) through balls that a player should run into, we opt for the
second approach in this research. Thus, let 𝐿 be the set of all the
possible locations on a soccer field. Then, we can define 𝐷𝑖 to be
the selected pass destination location of pass 𝑎𝑖 and 𝑃 (𝐷 = 𝑙 |𝑆) to
be a transition probability model for passes to any location 𝑙 ∈ 𝐿.
Finally, the originality of a player’s pass selection decision can be
defined as the complement 1 − 𝑃 (𝐷 = 𝑙 |𝑆).

2.3 Valuing the creativity of actions
By comparing the expected usefulness of the chosen pass with that
of other typical passes that the game state allowed, we can now
assess whether a player is performing unexpected actions that lead
to more promising results, thereby indicating a notion of creativity.
Our intuition is that there is seldomly more than one obvious high-
value pass option in any game state and that professional soccer
players are all experts at selecting such options. Therefore, it is
generally sufficient to compare the selected pass with the predicted
most likely pass option 𝑙typical = argmax𝑘∈𝐿 𝑃 (𝐷 = 𝑘 |𝑆).

Combining these insights, we define the creative decision rating
(CDR) of a pass to a location 𝐷 = 𝑙 in a game state 𝑆 as:

𝐶𝐷𝑅(𝐷 = 𝑙 |𝑆) = E [𝑈 (𝐷 = 𝑙 |𝑆)] − E
[
𝑈 (𝐷 = 𝑙typical |𝑆)

]
.

Since the chosen action and the most typical action have the same
pre-action game state, this reduces to

=E [𝑈 (𝐷 = 𝑙 |𝑆)] − E
[
𝑈 (𝐷 = 𝑙typical |𝑆)

]
=(E [𝑄 (𝑆 |𝐷 = 𝑙)] − E [𝑄 (𝑆)]) − (E

[
𝑄 (𝑆 |𝐷 = 𝑙typical)

]
− E [𝑄 (𝑆)])

=E [𝑄 (𝑆 |𝐷 = 𝑙)] − E
[
𝑄 (𝑆 |𝐷 = 𝑙typical)

]
=

∑︁
𝑜∈{𝑜+,𝑜− }

𝑃 (𝑂 = 𝑜 |𝐷 = 𝑙, 𝑆) ·𝑄 (𝑆 |𝐷 = 𝑙,𝑂 = 𝑜)

−
∑︁

𝑜∈{𝑜+,𝑜− }
𝑃 (𝑂 = 𝑜 |𝐷 = 𝑙typical, 𝑆) ·𝑄 (𝑆 |𝐷 = 𝑙typical,𝑂 = 𝑜)

This leads us to the task of estimating three components that
produce a single estimation of pass creativity when combined:

(1) Pass selection 𝑃 (𝐷 = 𝑙 |𝑆): an estimate of the likelihood of a
pass being made to every other location on the field.

(2) Pass success 𝑃 (𝑂 = 𝑜 |𝐷 = 𝑙, 𝑆): an estimate of pass success
probability for a pass to every other location on the field.

(3) Pass value 𝑄 (𝑆 |𝐷 = 𝑙,𝑂 = 𝑜, 𝑆): an estimate of the game
state value following a successful or unsuccessful pass to
every other location on the field.

Each component can be estimated utilizing a standard supervised
machine learning pipeline, where given some input features de-
scribing the game state, we can train a model to yield a probability
between 0 and 1 for each location on the pitch. The next two sec-
tions provide a detailed description of our approach to train these
models.

3 EXPERIMENTAL SETUP
In this section, we describe the dataset used and experimental
settings for the inference and evaluation of each model component.

3.1 Data
We build our datasets based on StatsBomb 360 event stream data.
This type of data is extracted from broadcast video and consists
of the regular human-annotated event stream data enhanced with
snapshots of player positioning. We work with the SPADL repre-
sentation [8] of this event stream. The 360 snapshots are recorded
at the time of each on-the-ball action and include the location and
relationship to the ball carrier (i.e., teammate or opponent) of all
players visible in the video.

Following our model design, we focus exclusively on passes.
Additionally, we discard passes not executed with the foot, passes
originating from dead-ball situations (i.e., we discard corners, free-
kicks, goal-kicks, kick-offs, and throw-ins), and passes where the
origin or destination location falls outside the 360 snapshot. By
applying these criteria, we create a training dataset of 118,758
passes from the data of the 2020 European Championship, and the
top-10 teams in the 2020/21 seasons of the English Premier League.
A random sample of 20% of these passes is used as a validation set
for model selection. A dataset of 93,631 passes extracted from the
top-10 teams in the 2021/22 season of the English Premier League
is set apart for evaluating the models and developing the use cases.

3.2 Model choice and settings
A key design choice revolves around how to represent the game
state. One option is to manually create meaningful features using
expert knowledge [8, 28]. This approach provides interpretability
and leverages our understanding and insights about the game. Alter-
natively, it is possible to use a purely data-driven approach to learn
a good representation of the game situation [11, 13, 18]. The former
is typically used for modeling event stream data, while the latter is
common for modeling full spatial tracking data. Since it is unclear
which approach fits best for the hybrid 360 event stream data, we
compare two classes of models: a deep learning model based on the
SoccerMap [12] architecture and an XGBoost [6] model based on
hand-crafted features.

The SoccerMap architecture is a fully convolutional network-
based architecture, inspired by the deep jet nonlinear feature hier-
archy [20]. Given a tensor-based representation of the ball’s and
players’ current locations, the network can be trained to produce
location-wise predictions (i.e., a 104 × 68 probability surface cover-
ing the full extent of a soccer field) with regard to future actions
and results in a purely data-driven manner. The combination of
layers at different resolutions allows for capturing relevant infor-
mation about the current game state at both local and global levels,
enabling the model to make local predictions that respect global
structure. We train the SoccerMap models using the PyTorch Light-
ning framework with the adaptive moment estimation (ADAM)
algorithm. We perform a grid search on the learning rate (1𝑒−3,
1𝑒−4, 1𝑒−5, 1𝑒−6), and batch size parameters (16, 32, 64). We use
early stopping with patience set to 10 epochs and a delta of 1𝑒−3 for
the pass success probability model, and 1𝑒−5 for the pass selection
and pass value models.

For all XGBoost models, we applied the Tree-structured Parzen
Estimator (TPE) algorithm for optimizing the max tree depth ([1,
9]), learning rate ([1𝑒−2, 0.25]), L1 regularization ([1𝑒−8, 100]), L2
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regularization ([1𝑒−8, 100]), and the minimum loss reduction re-
quired to make a further partition on a leaf node ([1𝑒−8, 1]). We
use early stopping with patience set to 100 boosting rounds. To
obtain a probability surface that covers the full extent of a soccer
field, we simulate a pass to each of the 𝑙 × ℎ grid cells and compute
the corresponding feature representation. The prediction for each
simulated pass is then mapped to the corresponding grid cell. For
computational reasons, we use a coarser 26 × 17 grid, which we
then upscale using bilinear interpolation.

4 INFERENCE OF MODEL COMPONENTS
In this section, we provide a detailed description and empirical eval-
uation of the machine learning components required to compute
the creative decision rating of an action. In our evaluation of these
components, we address the following four research questions:

Q1 Different representations of the input data are generally
used for analyzing event stream data (i.e., features based on
domain knowledge) and tracking data (i.e., data-driven deep
learning). Which of these approaches is best for learning
from StatsBomb 360 event stream data?

Q2 Estimating a pass selection probability surface requires
reasoning about the possible future locations of all other
players. Is the incomplete player location context available
in the StatsBomb 360 data sufficient to obtain a reasonably
accurate estimate?

Q3 The end location of a pass is an important feature when
estimating the success probability of a pass. How should
one deal with the unknown (intended) end location of failed
passes?

Q4 Previous work has suggested the use of expected goals (xG)
values instead of binary goal / no goal labels to estimate
the probability of a goal but both approaches have not been
compared.

4.1 Pass selection
As discussed in Section 2, our goal is to estimate the probability of
making a pass to every other location on the field (e.g., Figure 1),
rather than to specific players. Estimating such a full pass selection
probability surface requires a model that can make fine-grained
local predictions that are calibrated globally over the entire soccer
field, which is difficult to achievewith an XGBoost model. Therefore,
we use SoccerMap to implement this component. The target output
is a sparse matrix where a value of 1 is given for every observed
pass in its corresponding destination location. As the input, we use
the following nine channels which are adapted from [13]:

• Channel A & B: Two sparse matrices with the locations of the
players in the attacking and defending team, respectively.

• Channel C & D: Two dense matrices with the distance to the
ball and the goal for every location.

• Channel E & F: Two dense matrices with the sine and cosine
of the angle between every location and the ball location.

• Channel G: One dense matrix with the angle between every
location and the goal.

• Channel H & I: Two sparse matrices with the two compo-
nents of the velocity vector of the ball, derived from the
timestamps and ball location in the event data during the

Figure 1: Pass selection probability surface on a logarithmic
scale for an example game situation where purple colors
represent more likely pass destinations. Blue and red circles
represent the player’s location of the attacking and defending
team respectively. The blue team is in possession and plays
left to right. The white arrow represents the selected pass.

two preceding actions. These channels give an indication of
the direction in which the ball is moving.

Due to the lack of other approaches for estimating the full pass
selection surface, we compare our results against approaches that
predict the most likely receiver. First, we establish a naive baseline
that consistently predicts the nearest teammate as the most likely
receiver. Second, we train an XGBoost ranking classifier to predict
the likelihood that a given player is effectively the receiver of a
possible pass based on the following set of handcrafted features
for each pass option in the 360 snapshot: origin and destination
location, pass distance, pass angle, angle to goal at origin and des-
tination, distance to the nearest defender at the destination, and
distance of the nearest defender to a straight line between origin
and destination. Per pass, one data point receives a positive label,
the effective receiver, and all the other data points are labeled zero.

Table 1 presents the results for the baseline models and the
SoccerMap model on the test data. To allow for a comparison be-
tween the location-based SoccerMap model and the receiver-based
baseline models, we compute the most likely receiver from the
prediction surface of the SoccerMap model as the teammate closest
to the most likely pass destination and compute the accuracy as
the percentage of passes for which the receiver was predicted cor-
rectly. The SoccerMap model is only slightly less accurate than the
feature-based model. Although, it should be noted that mapping
the location-based predictions to players introduces an additional
error, in particular for passes that are played at a distance from the
player’s current location. Hence, the difference in accuracy between
the XGBoost and SoccerMap models is likely smaller in reality than
what the evaluation reflects. Based on these results and a visual
inspection of the estimated pass selection probability surfaces (e.g.,
Figure 1), we conclude that we can sufficiently accurately predict
the likelihood of each possible pass destination.

4.2 Pass success probability
For estimating pass success, we define a binomially distributed
outcome, according to the definition of success used by StatsBomb.
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Table 1: The average loss and accuracy of three alternative im-
plementations for the pass selection component: (1) a naive
baseline predicting the nearest teammate as the most likely
receiver, (2) an XGBoost model based on handcrafted fea-
tures and (3) a deep learning model based on the SoccerMap
architecture.

Model / Feature set LogLoss Accuracy

Closest teammate 0.395
XGBoost 0.538
SoccerMap 6.277 0.513

That is, passes that reach a teammate on-side are labeled as “suc-
cessful”. All passes that go out of bounds or that are intercepted
are labeled as “failed”.

One important caveat with respect to modeling pass success
is that the intended target location of a pass is only known for
successful passes. The end location of failed passes is recorded as
the location where the ball was intercepted or went out of bounds.
Hence, it is impossible to construct an accurate feature representa-
tion for attempted passes. Previous work has addressed this issue
in two ways: (1) by ignoring the problem and assuming that most
passes will be intercepted near their intended destination [12], and
(2) by estimating the intended receiver based on the direction of
the pass and the positions of potential receivers [1, 27]. Approaches
to estimate the intended receiver range from simple distance-based
rules to advanced physics-based approaches that model the ball
trajectory and player movement [1]. As the 360 snapshots lack in-
formation about the velocity of players and the ball, we follow the
approach of Power et al. [27] and estimate the intended receiver
as the one closest to where the ball was intercepted and with the
smallest angle to the line of the pass:

Expected receiver =
Min Distance
Distance

× Min Angle
Angle

(1)

If the predicted receiver is positioned outside the field’s boundaries,
we clip its coordinates to the field’s nearest boundary. If no player
is within 20◦ of the pass line, we assume that the intended receiver
is not included in the snapshot and we proceed with the observed
end location. Figure 2 illustrates this procedure.

Estimating the intended receiver has some obvious limitations
though. First, the estimate will be inaccurate when the intended
receiver is not included in the 360 snapshot, when the ball is blocked
early in its flight path, when the ball is deflected, or when two
players are close to each other. In addition, the end location of
attempted passes is replaced by the (x,y) coordinates of the expected
receiver at the time of the pass. In reality, a pass is often played in
front of the receiver to run onto.

We implemented three simple location-based gradient-boosted
trees models to evaluate whether the advantages of identifying the
intended receiver outweigh the limitations: (i) receiver-agnostic:
a baseline model in which we use only the origin of the pass; (ii)
observed end location: we use both the observed origin and end
location of the pass; and (iii) intended end location: we replace
the end location of the pass by the coordinates of the most likely
receiver. Instead of the raw coordinates, we use the distance and

angle to the goal and the distance to the sideline as features in each
of these models. Additionally, we describe the relationship between
the start and end location of a pass by the pass distance (total and
along both axes) and angle.

Our results show that using the intended end location provides
little to no advantage. First, we can observe that using the observed
end location is more accurate (Table 2). Although, we hypothesize
this is because the observed end location often gives away the out-
come of a pass. For example, passes with an observed end location
on the sideline or within a 1 meter radius of the origin are most
likely failed passes. More importantly, using the intended end loca-
tion produces inaccurate estimates for through balls, because these
are mapped to player locations when they fail. For example in Fig-
ure 3, the model using the intended end location predicts the prior
probability for a large part of the opponent’s penalty box, since
there are no examples with a potential receiver on that location in
the training data. The main downside of using the observed end
location is that locations near the pass origin are assigned very low
success probabilities, which is probably due to blocked passes.

Given these results, we build further upon the observed end
location and extend the location-based feature set with attributes
available in the event stream:

(1) The ball height (ground, shoulder level, above shoulder level);
(2) The speed (distance covered / time) during the two preceding

actions in the possession sequence;
(3) The time the passer was in ball possession before attempting

the pass.
Furthermore, we craft features from the 360 snapshots that describe
the situation around the passer, receiver and ball trajectory:

(4) The distance of the nearest defender to the passer and re-
ceiver;

(5) The distance of the nearest defender to a straight line con-
necting the pass location and the receiver’s location;

Figure 2: The intended receiver (green circle) is identified as
the teammate closest to where the ball was intercepted or
went out of bounds (red circle) that has the smallest angle to
the line of the pass. Only players within 20◦ of the pass line
(gray area) are considered as potential intended receivers.
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Figure 3: Pass success probability surface for a pass starting
at the location of the blue circle to all other locations using a
receiver-agnosticmodel, amodel trained on the observed end
location of each pass, and a model trained on the estimated
intended end locations.

(6) The number of opposing players in the passing path, where
the path is defined as a triangular corridor between the pass
origin and the receiver’s location with a base of 1 meter at
the receiver’s location.

These features are inspired by recent work of Szczepański and
McHale [33], Anzer and Bauer [1], Goes et al. [15] and Power et
al. [27].

Next to the feature-based models, we again learn a SoccerMap
deep learning model. As the input, we use channels A through G as
defined in the previous section. Finally, we establish a naive baseline
that assigns the average pass completion to all passes. As shown
in Table 2, the XGBoost model using the full set of handcrafted
features generally performs best.

4.3 Pass value
The final two components correspond to the expected usefulness of
completed and failed passes, which reduces to estimating the value
of a game state. Several approaches have been introduced to capture
the value of game states [8, 13, 29], but generally they estimate the
likelihood of scoring (i.e., the offensive value) or conceding (i.e., the
defensive value) a goal in the near future. We train two separate
models for these offensive and defensive components of game state
value; however, we use an equivalent architecture for both cases.
This allows us to inspect the model’s predictions at a higher level
of granularity. The total game state value is then obtained as the
difference between both models’ estimates.

Table 2: The performance of three alternative implementa-
tions for the pass success probability component: (1) a naive
baseline predicting the average pass completion, (2) an XG-
Boost model based on handcrafted features and (3) a deep
learning model based on the SoccerMap architecture.

Model / Feature set Prec. Rec. F1 AUC Brier

Avg pass completion 0.858 1.000 0.924 0.500 0.122
XGBoost

Receiver agnostic 0.871 0.988 0.926 0.704 0.110
Intended end location 0.901 0.980 0.939 0.849 0.131
Observed end location 0.916 0.975 0.945 0.886 0.075
+ event attributes 0.925 0.970 0.947 0.916 0.068
+ 360-based features 0.936 0.966 0.951 0.939 0.062

SoccerMap 0.926 0.975 0.950 0.930 0.065

We define the offensive value as the probability of scoring a goal
in the next 10 actions; and correspondingly the defensive value
as the probability of conceding a goal in the next 10 actions [8].
Since goals are rare and provide a weak learning signal, previous
work has proposed the use of xG values to train possession value
models [17, 32]. Therefore, we make use of StatsBomb’s xG values
to determine the likelihood of scoring from any shot in the next 10
actions. If this sequence of 10 actions contains multiple shots, we
combine their xG value as

𝑥𝐺seq = 1 −
∏

shot∈seq
1 − 𝑥𝐺shot .

This corresponds to taking the complement of the probability that
the defending team does not allow a goal from a sequence of shots.
Our results (Table 3) show that a model trained on xG values indeed
provides more accurate estimates than a model trained on a binary
goal / no goal variable.

Table 3: The performance of five alternative implementations
for the offensive pass value component: (1) the location-based
expected threat (xT) framework, (2) the event data-based
VAEP framework trained on binary goal/no-goal labels and
(3) trained on xG values, (4) the VAEP framework with fea-
tures extracted from 360 snapshots trained on xG values,
and (5) a deep learning model based on the SoccerMap archi-
tecture. All models are evaluated on completed passes only
using binary goal/no-goal labels.

Model / Feature set AUC Brier LogLoss

xT 0.741 0.012 0.062
VAEP 0.757 0.011 0.056
VAEP-xG 0.766 0.011 0.056
VAEP360 0.776 0.011 0.055
SoccerMap 0.743 0.011 0.064

The key difference between various game state value models is
the amount of contextual information they take into account. The
most basic approaches only consider the location of the ball [29,
30, 36], while intermediate approaches leverage more contextual
information that can be extracted from traditional event stream
data [8, 17, 21, 31], and the most advanced approaches extract a
detailed spatial representation from tracking data accounting for the
locations of all players [13]. However, to the best of our knowledge,
no public models exist for estimating the game state value based
on 360 data,3 which can be seen as a limited version of the full
spatiotemporal tracking data as it provides only a partial view of
the player’s locations and lacks information about the velocity and
acceleration of players and the ball. Again, we experiment with a
set of XGBoost models based on handcrafted features and a deep
learning model based on the SoccerMap architecture. As baselines,
we consider the location-based Expected Threat (xT) [30]4 and
event data-based VAEP [8] frameworks.

3Moreover, StatsBomb’s proprietary On Ball Value (OBV) metric does not use the 360
snapshots yet.
4We use the xT grid provided at https://karun.in/blog/data/open_xt_12x8_v1.json

https://karun.in/blog/data/open_xt_12x8_v1.json
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Table 4: The top-10 players who completed at least 250 passes
in the 2021/22 English Premier League season in terms of
our Creative Decision Rating (CDR), normalized for minutes
played.

Player Team CDR90

1 Kevin De Bruyne Manchester City 0.0834
2 Tariq Lamptey Brighton 0.0817
3 Trent Alexander-Arnold Liverpool 0.0584
4 Raphinha Leeds United 0.0563
5 Hakim Ziyech Chelsea 0.0527
6 Martin Ødegaard Arsenal 0.0480
7 Lucas Moura Tottenham Hotspur 0.0473
8 Harry Kane Tottenham Hotspur 0.0472
9 Bukayo Saka Arsenal 0.0415
10 Mason Mount Chelsea 0.0413

For the XGBoost models, we extend VAEP’s game state repre-
sentation with features extracted from the 360 data that capture
the number of outplayed players and the ball interceptability. The
number of outplayed players is computed using a simplified version
of Impect’s Packing Rate: a defender is considered to be packed if
he is positioned between the ball and the goal before a forward pass,
but would be further from the goal than the ball after the pass. For
interceptability, we use the number of defenders in a 3 meter and
5 meter radius around the pass’ end location. For the SoccerMap
models we use the seven input channels described earlier (A- G), as
well as two dense matrices with the number of players of the team
in possession and the opposing team that would be packed after a
pass to each location.

We need the expected value of both completed and failed passes.
Since the outcome of the pass is a feature in VAEP’s game state
representation, a value for completed and failed passes can be ob-
tained by modifying the feature value. For the SoccerMap models,
we learn separate models on completed and failed passes. For sim-
plicity, we only report the performance of all offensive game state
value models on completed passes in Table 3.

5 USE CASES
We now present a number of observations that result from comput-
ing the CDR metric for the 2021/22 Premier League season. First,
we present a ranking of the most creative players and quantify how
their creativity pairs with their technical abilities. Second, we look
at the creativity of interactions between pairs of players. Third, we
look for a relationship between a player’s position and creativity.
Fourth, we look at the effect of the game state on creativity.

5.1 Most creative players
Table 4 shows the top-10 players in terms of Creative Decision
Rating per 90 minutes (CDR90) in our dataset. To obtain a robust
ranking, we only include players who performed at least 250 passes
according to the criteria defined in Section 3. Kevin De Bruyne
tops the ranking, closely followed by Tariq Lamptey. Liverpool’s
right-back Trent Alexander-Arnold completes the top three.

There is a natural tension between the creativity and quantity
of a player’s passes. This is illustrated in Figure 4, which shows the
number of passes that players execute on average per 90 minutes
(quantity) in function of the average creativity of these actions. The
reason is twofold. First, players who perform more passes generally
play in a more defensive position that requires less creativity to
progress the ball. For example, Harry Kane has a very high average
CDR, but attempts relatively few passes as a striker. Second, if a
player performs a high number of passes, then it is harder for each
pass to have a high value. However, as shown by the dotted isoline,
players like Kevin De Bruyne, Tariq Lamptey, Trent Alexander-
Arnold, Raphina and Hakim Ziyech pair a high creativity with a
large number of passes.

5.2 Combining creativity and technical skills
Our creativity metric rewards players who attempt atypical passes,
regardless of the result of the pass. While this enables a fine-grained
evaluation of a player’s creativity, it omits an important piece of a
player’s performance evaluation. To assesswhether a player pairs vi-
sion with the technical abilities to successfully complete the passes
he attempts, we apply the execution rating metric proposed by
Bransen et al. [3]. Their metric measures the technical execution
quality of a pass as the difference between the observed outcome
of the pass (e.g., did the cross reach a teammate) and the predicted
probability that the pass would be successful based on the context
under which it was performed. Formally, the Execution Rating (ER)
is defined as

𝐸𝑅(𝑂 = 𝑜, 𝐷 = 𝑙 |𝑆) =
[
𝑜+

]
− 𝑃 (𝑂 = 𝑜 |𝐷 = 𝑙, 𝑆), (2)

where [𝑜+] takes the value of one if the pass succeeds and is zero
otherwise, and 𝑃 (𝑂 = 𝑜 |𝐷 = 𝑙, 𝑆) is given by the action success
predictor from the previous section. Intuitively, the metric rewards

Figure 4: Scatter plot contrasting a player’s average Creative
Decision Rating (CDR) with the average number of passes
performed per 90 minutes. The dotted isoline shows the gap
between the top-ranked players and the rest. Only players
who completed at least 250 passes in the 2021/22 English
Premier League season are included.
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players who successfully perform difficult passes and punishes
players who flub an easy pass.

Figure 5 compares the average CDR and ER of passes, grouped
by player. In general, we found no strong relationship between
the creative and technical abilities of players. The execution rat-
ing is mainly determined by a player’s position, with defensive
midfielders scoring the highest and strikers scoring the lowest. We
assume this is because the consequences of losing possession are
less detrimental for attacking players. Hence, they can afford more
mistakes.

Figure 5: The relation between average creative decision rat-
ing and execution rating for each player in the 2021/22 Eng-
lish Premier League season.

5.3 Most creative duos
A limitation of our creativity metric is that it gives all credit to
the player who gives the pass. Yet, it is often the player on the
receiving end who enables the pass by slipping into a pocket of
space. Therefore, Table 5 looks at the pairs of players who exhibited
the highest creativity with mutual passes. Unsurprisingly, the pairs
that rank highest have spent many minutes together on the pitch
and are fully attuned to each other. Mohamed Salah and Sadio Mané
have led Liverpool’s attack for five seasons, while Harry Kane and
Heung-Min Son are a sterling duo at Tottenham Hotspur.

5.4 The link between creativity and position
Being creative is most often associated with the role of a playmaker
or “number 10”, who typically operates from the position of an
attacking midfielder. Figure 6 shows that players who operate from
this position indeed score high on our creativity metric. However,
we found that wingers are on average the most creative players
in the 2021/22 Premier League. This position has become more
common for offensive playmakers to carry out in recent years. For
example, Messi typically operates from a wide offensive position.
Another trend is to use awingback as a playmaker. This is illustrated
by Tariq Lamptey and Trent Alexander-Arnold, who both rank
among the top creative players according to our metric.

Table 5: Player pairs with the highest Creative Decision Rat-
ing (CDR) per interaction in the 2021/22 English Premier
League season. Only pairs with at least 50 interactions are
included.

Players Team CDR

1 Mohamed Salah
Sadio Mané

Liverpool 0.0387

2 Harry Kane
Heung-Min Son

Tottenham Hotspur 0.0202

3 Leandro Trossard
Neal Maupay

Brighton 0.0132

4 Bernardo Silva
Kevin De Bruyne

Manchester City 0.0126

5 Kevin De Bruyne
Philip Foden

Manchester City 0.0125

6 Marc Cucurella
Neal Maupay

Brighton 0.0114

7 Raphinha
Rodrigo

Leeds United 0.0114

8 João Cancelo
İlkay Gündoğan

Manchester City 0.0096

9 Bruno Fernandes
Cristiano Ronaldo

Manchester United 0.0095

10 Jordan Henderson
Sadio Mané

Liverpool 0.0079

Figure 6: The average creative decision rating per pass,
grouped by a player’s position on the field. Darker green
colors reflect higher creativity. Insufficient data was avail-
able for the CM and SS positions. For a definition of each
position, we refer to StatsBomb’s data specification guide.

Interestingly, we found a large imbalance between the left and
right wings, with the right wing being significantly more creative.
Further research on other leagues should be carried out to determine
whether this could be generalized or should be attributed to the
player selection in the 2021/22 Premier League season.
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5.5 The link between creativity and game state
Both the time remaining and the goal difference have no clear effect
on the average CDR (Figure 7). However, the variance in creativity
increases as time progresses, particularly in injury time. Possibly,
this could be attributed to fatigue and teams taking more defensive
risks near the end of the game. This creates extra space, which could
be exploited with creative passing. However, as players get more
tired, this also gives rise to more “missed” creative opportunities.

6 RELATEDWORK
Creativity and its importance in team sports have primarily been in-
vestigated in the sports science literature [5, 16, 23]. Specifically for
soccer, Kempe and Memmert [16] showed that successful teams use
more highly creative actions to score goals. However, the evaluation
of creativity in these studies is mostly conducted via psychological
assessments [25, 35] or experts rating each action of a player [22, 24].
Obviously, this approach does not scale.

(a) Effect of time remaining

(b) Effect of goal difference

Figure 7: The distribution of the creative decision rating
grouped by 15-minute time intervals (top) and goal differ-
ence (bottom). A negative goal difference corresponds to the
team in possession being behind.

Creativity can be seen as an aspect of decision-making, which is
typically evaluated as a trade-off between an action’s risks and re-
wards [4, 15, 27]. For example, Goes et al. [15] and Power et al. [27]
evaluate passes based on how likely they are to be successfully com-
pleted to a teammate (i.e., risk), and also by how much they would
increase the chance of something good happening (e.g., scoring)
if successful (i.e., reward). While our creativity metric builds on
these risk-reward frameworks, neither risk nor reward aligns with
what one would intuitively label as capturing creativity. Capturing
creativity requires adding a notion of originality and making an
abstraction of the actual result of the action.

7 CONCLUSIONS
The creativity metric introduced in this paper is a first step towards
capturing the intricate concept of creative abilities in soccer players.
By utilizing this metric, it becomes feasible to compare players’
creativity both in general and across various scenarios. This can
provide clubs and analysts with valuable information during the
scouting process.

The metric primarily focuses on quantifying creativity based
on the deviation from typical pass choices and the expected value
associated with those choices. While it can capture atypical or un-
expected actions, it does not explicitly account for the underlying
reasons behind those actions, such as habit or personal preferences.
This limitation is prevalent in the broader field of soccer analytics,
where the lack of player-specific models hampers the ability to dis-
entangle individual player characteristics from team dynamics and
tactics. To address this limitation and gain a better understanding of
the interplay between habit and creativity, future research could ex-
plore methods to incorporate player-specific models. Furthermore,
our future plans include extending the creativity metric to other
action types, particularly shots and dribbles. Currently, the metric
tends to undervalue the creativity of passes in game states where a
shot or dribble would be the more typical choice. By extending the
pass selectionmodel to an action selectionmodel, this limitation can
be overcome, enabling the evaluation of creativity across different
action types. Finally, we intend to explore alternative approaches
for evaluating the value of typical actions. Although the current
method of selecting the most likely pass works well in practice,
it may yield inaccurate results when multiple passes are equally
probable.
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