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Abstract  17 

Functional ultrasound imaging is a breakthrough technology for imaging brain activity at 18 

high spatiotemporal resolution. As it monitors hemodynamic activity, the resulting images 19 

are a non-standard representation of local anatomy. This leads to difficulties when 20 

determining the exact anatomical location of the recorded image, which is necessary for 21 

correctly interpreting the data. Here we propose a convolutional neural network-based 22 

framework for accurately navigating the brain during functional ultrasound imaging solely 23 

based on vascular landmarks. Our approach uses an image classification task to identify 24 

a suitable set of reference positions, from which the anatomical position of an image can 25 

be inferred with a precision of 102 ± 98 µm. Further analysis revealed that the predictions 26 

are driven by deep brain areas. The robustness of our approach was validated using an 27 

ischemic stroke model. It confirms that functional ultrasound imaging information is 28 

sufficient for positioning even when local blood flow is disrupted, as observed in many 29 

brain pathologies.  30 
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Introduction 31 

The brain is often identified as the most complex organ of the human body. It consists of 32 

very intricate webs of interconnected neurons and is responsible for every thought, action, 33 

memory and feeling that we experience. To support their activity, neurons require a large 34 

amount oxygen and nutrients, which is dynamically provided by a complex vascular 35 

system1–3. 36 

 37 

As neurons do not have internal reserves of energy, their firing creates an energy 38 

demand, which causes a local increase in blood flow4,5. This mechanism linking neuronal 39 

firing to a local increase in cerebral blood flow is also known as neurovascular coupling6,7. 40 

Monitoring these local hemodynamic changes forms the basis of several functional brain 41 

imaging techniques8. The leading technology is blood-oxygen-level-dependent functional 42 

magnetic resonance imaging (BOLD-fMRI)9, which is widely used in clinical studies10. 43 

However, in a preclinical context, the spatiotemporal resolution of this technique is limited 44 

and the required infrastructure make it expensive while implementing complex behavioral 45 

paradigms is challenging8,11. 46 

 47 

Overcoming these limitations, functional ultrasound imaging (fUSI) is a breakthrough 48 

technology combining large depth of field, high spatiotemporal resolution and 49 

affordability8,12. fUSI tracks hemodynamic changes in small vessels at several frames per 50 

second using ultrafast plane-wave illumination of the tissue13–15. Similar to BOLD-fMRI, 51 

the fluctuations in cerebral blood volume which are measured with fUSI are a proxy of 52 

local neuronal activity16–19. In particular, fUSI has recently been used in preclinical 53 

research to identify the brain regions involved in the optokinetic reflex17, to map the 54 

networks activated by specific cell types in the superior colliculus18 and to report functional 55 

activity in primates during active tasks and visual stimulation20,21. 56 

 57 

A peculiarity of the technology is that, unlike fMRI, a fUSI recording only provides 58 

information on the local vasculature - termed a micro-Doppler image - which is a non-59 

standard anatomical representation. Navigating the brain using this information has 60 

proven to be challenging and requires expert knowledge of the vasculature. Indeed, for 61 

interpreting the recorded activity, scientists need to be able to map the hemodynamic 62 

changes to the corresponding anatomical regions. This is typically performed by 63 

registering the data to a reference atlas such as the Allen Brain22 or Paxinos atlas23. To 64 

achieve such registration, it is necessary to identify the anatomical position at which the 65 

data is acquired precisely. This is usually done by looking for morphological similarities 66 

between the recorded image and the anatomical reference atlas, e.g., cortical thickness 67 

or anatomical structures such as the ventricles and vascular landmarks. This topic has 68 

been recently addressed in ref.24, who developed an automated ultrasound-based neuro-69 

navigation system to roughly identify their position in the brain. In their approach, they 70 

couple online registration of the recorded micro-Doppler volume to a pre-registered 71 

reference volume acquired at the start of every experiment. 72 

 73 

Here we propose an alternative deep learning approach leveraging the power of 74 

Convolutional Neural Networks (CNN) for image classification. Solely based on the 75 

vasculature, it allows for accurately locating single micro-Doppler images without the 76 

need for a pre-registered reference. Instead of predicting real-valued positions by 77 

registering the recorded micro-Doppler image to a vascular template, we defined multiple 78 

target classes, each corresponding to an anatomical position. This set of key positions 79 

forms a reference grid on the brain from which one can infer the actual location of the 80 

recorded image. 81 
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We selected a DenseNet121-CNN and an additive chi-square kernel support vector 82 

machine with a histogram of oriented gradients features extractor (HOG-SVM) 83 

respectively as main and baseline models25,26, based on a prior performance evaluation. 84 

Both were trained for classification on high-quality micro-Doppler images from in vivo 85 

acquisitions on a set of 51 rats accounting for the intrinsic morphological variability 86 

encountered in brain-wide navigation. First, we compared the two models in terms of 87 

effect of the spacing between consecutive classes on the classification accuracy. The 88 

spacing with the highest classification accuracy allowed us to identify a suitable set of key 89 

anatomical positions. Second, we calculated the expected resolution we can achieve 90 

based on these key positions. Third, we used the Gradient-weighted Class Activation Map 91 

(GradCAM) technique to locate the discriminative features underlying accurate 92 

classification27. Finally, the robustness of the model was evaluated in a rat stroke model 93 

where the cerebral blood flow is locally disrupted. Our approach has shown to be robust 94 

to such image degradation, with a very limited effect on the quality of the predictions. 95 

 96 

Results 97 

Micro-Doppler datasets. The work presented here was performed using a micro-98 

Doppler dataset that was acquired from 51 rats. By stepping the ultrasound probe along 99 

the antero-posterior axis of the brain, images were acquired in different coronal planes, 100 

with an in-plane resolution of 100×110 µm and 300 µm slice thickness. The step size 101 

between consecutive images was set at 125 µm (Fig. 1a) from the anatomical reference 102 

point Bregma (B) +3.0 to -6.5 mm. Fig. 1.b displays example micro-Doppler images, on 103 

which major anatomical structures were annotated.  104 

 105 

Anatomical reference grid: optimal spacing of key positions based on their 106 

classification accuracy. To determine which set of key positions is the most suited for 107 

forming a reference grid, five datasets were created by down-sampling the initial brain 108 

scans from the original step size (125 µm) to step values ranging from 250 to 750 µm 109 

(Fig. 1c). Each dataset can be identified by its step size subscripted with the 110 

corresponding number of positions, e.g., ‘50020’ stands for the dataset with a 500 µm step 111 

size therefore comprising 20 images per animal. This dataset is depicted in 112 

Supplementary Fig. 1, with major vessels labeled using a vascular atlas28. 113 

  114 

After a preliminary performance evaluation (Supplementary Table 1, Materials and 115 

Methods – Model selection), a DenseNet121-CNN and HOG-SVM with additive chi-116 

square kernel were selected respectively as main and baseline models21,22. Both were 117 

trained to classify images with respect to their anatomical position on a subset of 25 rats. 118 

The hyperparameters were tuned on a validation set of 13 rats, and their performance 119 

were assessed on a testing set of 13 animals.  120 

 121 

For both models, we observed an increase in the classification accuracy along with the 122 

step size, ranging from respectively 56.2% / 58% (dataset 25039) to respectively 98.2% / 123 

95.9% (dataset 75013), for DenseNet121-CNN and HOG-SVM (Fig. 1d, Supplementary 124 

Table 2). The validation and testing accuracies are broadly similar, and interestingly, the 125 

largest drop in performance as compared to the previous dataset occurs for dataset 25039 126 

(-25.7% for DenseNet121 and -22.4% for HOG-SVM, Supplementary Table 2). This is 127 

the only dataset whose step size is below the technology resolution, i.e., 300 µm. 128 

 129 

The testing accuracy is lower for the HOG-SVM compared to the DenseNet121-CNN, 130 

irrespective of the step size. However, the performance comparison using the McNemar29 131 

statistical test exhibited no statistically significant differences apart from dataset 50020 132 
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(**p=0.0012, Supplementary Table 2). With regards to the extrema, both models achieve 133 

similar maximum class accuracy, while the DenseNet121-CNN provides respectively 134 

higher and lower minimum class accuracy than the HOG-SVM for datasets 62515 / 50020 135 

and 37526 / 25039. We selected dataset 50020 as the set of key positions as the 500 µm 136 

step size offers a good trade-off between the number of positions (20) and their 137 

identification confidence (DenseNet121-CNN: 93.1%; HOG-SVM: 85.0%). 138 

 139 

 
Fig. 1 Selection of the key positions based on classification accuracy. a, Schematic representation 
of the setup used for micro-Doppler imaging on rats. The ultrasonic probe was positioned along the 
antero-posterior axis using a motorized linear stage. The imaging was performed from B +4.0 to -7 mm 
with a 125 µm step size for a total number of 89 images. A: anterior, L: left, V: ventral. b, Example micro-
Doppler images extracted from a single rat. A simplified version of the Paxinos brain atlas23 is overlaid 
in white. Large anatomical structures are identified in black. The number in lower right corner 
corresponds to the Bregma position (mm) of the image. Ctx: cortex, Hip: hippocampus, Tha: thalamus, 
Str: striatum. Scale bar: 2 mm. c, Schematic representation of the datasets created for determining the 
best set of key positions. Left: each set of 2D scans is down-sampled with 5 different factors, 
corresponding to the increase in the step size between two consecutive images, illustrated with colored 
arrows. Right: Each dataset can be identified by its step size subscripted with the corresponding number 
of positions (<spatial step>number of locations). Arrows color code: purple 250 µm, blue 375 µm, green 500 
µm, orange 625 µm, red 750 µm. d, Testing classification accuracy of DenseNet121 and HOG-SVM 
models for each set of 2D scans ordered by their corresponding step size (n=13). The first set with 
accuracy above 90% is 50020. 

 140 

Resolution assessment. We further investigated the per-Bregma position classification 141 

accuracies (Fig. 2a, Supplementary Table 3), which are non-uniformly distributed and 142 

range from 80 to 100%. The DenseNet121-CNN outperforms the HOG-SVM at every 143 

position, and the anterior part of the brain exhibits in general lower accuracies for both. 144 

The DenseNet121-CNN-associated confusion matrix reveals that misclassifications map 145 

to neighboring classes (Fig. 2b) and were not concentrated in a subset of animals. 146 

 147 

Based on this observation, we evaluated the actual resolution of our methodology. For 148 

each position, we created an additional dataset comprising of the position itself and 149 

images from the four closest anterior and posterior planes. The interval between those 150 

neighboring planes is 125 µm, which is the smallest step size available from the original 151 

scan. For instance, the dataset for the position B +1.0 mm consists of positions +0.500, 152 

+0.625, +0.750, +0.875, +1.000, +1.125, +1.250, +1.375, +1.500 mm. All data from the 153 

validation and test sets were aggregated together. 154 
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Fig. 2 Per-key position analysis of 
the DenseNet121 and HOG-SVM 
prediction. a, Per-Bregma position 
display of the DenseNet121 model 
accuracies for the dataset 50020 

evaluated on 26 animals, including 
validation and testing sets. The 
horizontal dashed line represents 
the mean classification accuracies 
of DenseNet121. For each position, 
the black bar represents the HOG-
SVM model accuracy. b, Graphical 
representation of the DenseNet121 
misclassifications. Each arrow goes 
from the true position to the 
predicted position. The light grey to 
black intensity represents the 
number of rats for which cross-
sections were misclassified. 

 155 

We processed each position with the DenseNet121-CNN model trained on the dataset 156 

50020 and collected the output probabilities. Then we identified the position with the 157 

highest probability and computed its absolute deviation from the target position. The 158 

mean and standard deviation of this absolute deviation are presented position-wise in 159 

Table 1.  160 

 161 
Bregma position 

(mm) 
Mean 
(µm) 

Standard 
deviation (µm) 

-6.5 NA NA 

-6.0 135 104 

-5.5 87 103 

-5.0 87 76 

-4.5 77 78 

-4.0 96 111 

-3.5 48 78 

-3.0 77 61 

-2.5 87 76 

-2.0 87 58 

-1.5 77 78 

-1.0 115 115 

-0.5 135 77 

0.0 135 77 

0.5 115 104 

1.0 106 96 

1.5 115 104 

2.0 106 108 

2.5 163 142 

3.0 NA NA 

Average 102 98 
 

Table 1. Absolute deviation 
from the target position at 
each key position. Mean and 
standard deviation of the 
absolute deviation from the 
target position. For a given key 
position T, such absolute 
deviation corresponds to the 
positioning error made when 
taking the maximum probability 
of class T in a set comprising 
the target position and the four 
closest anterior and posterior 
planes. 

 162 
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On average, the set of key positions in the dataset 50020 are identified with a tolerance of 163 

102 ± 98 µm. Though the positions with highest deviations do not always correspond to 164 

the lowest classification accuracy, most of the highest mean and standard deviation are 165 

in the anterior part of the dataset.  166 

 167 

Spatial localization of the discriminative patterns. To further estimate the reliability of 168 

the key positions, we searched for the discriminative features using Gradient-weighted 169 

Class Activation Maps (GradCAM)27, a visualization technique that highlights the image 170 

areas contributing the most to the network’s inference toward a given prediction27. We 171 

registered the 2D scans with a digital version of the rat Paxinos atlas23 to adjust for 172 

potential differences in probe positioning and to allow for inter-animal comparison. For 173 

each position, the GradCAM results were averaged across animals and thresholded to 174 

alleviate the effect of interpolating these low resolution heatmaps (Fig. 3a). 175 

 176 

The averaged maps obtained for the set of keys positions were overlaid on the 177 

corresponding set of registered micro-Doppler images (Fig. 3b). According to the 178 

outcome, a single part in the image is driving the classification irrespective of the location 179 

in the brain, at the exception of B -2.0 mm which exhibits two small, connected areas. 180 

The identification of the local vasculature associated with the heat maps’ location reveal 181 

that the branches of several large vessels play a major role in the classification process 182 

(Supplementary Fig. 1) including the thalamo-perforating arteries diverging from the 183 

posterior cerebral artery (PCA), the thalamostriate veins and branches (tlv), and the 184 

patterns produced by neighboring vessels such as the great cerebral vein of Galen and 185 

the longitudinal hippocampal veins. Furthermore, we observed that the classification of 186 

the four most anterior cross-sections (B +1.5, +2.0, +2.5, +3.0 mm) mostly relies on the 187 

anterior cerebral artery (ACA), the azygos pericallosal arteries (APCA) and the 188 

thalamostriate veins/arteries. Most of these vessels supply brain regions located in 189 

subcortical regions, such as the thalamus, the hippocampus and the striatum as shown 190 

in Fig. 1c.  191 
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 192 

Evaluating model robustness on a cortical stroke model. To further validate the 193 

reliability of subcortical vascular patterns for accurate position identification, we assessed 194 

the performance of both HOG-SVM and DenseNet121-CNN on a cortical stroke model. 195 

In these experiments, a subset of 28 rats were subjected to stroke by means of the 196 

permanent occlusion of the left middle cerebral artery provoking a significant decrease of 197 

signal (-60%) in the cortex of the left hemisphere. Whole-brain micro-Doppler scans were 198 

acquired before and 70 mins after stroke induction (Fig. 4a; see ref.30 for details). From 199 

these 28 datasets, 14 were part of the training set, 7 of the validation set and 7 of the 200 

testing set. 201 

 202 

 

Fig. 4 Effect of a cortical 
stroke on the classification 
accuracy. a, Set of micro-
Doppler images before (top 
row) and after stroke induction 
(bottom row). Number 
corresponds to the Bregma 
position (mm) of the image. 
Scale bar: 2 mm. b, Proportion 
of micro-Doppler images 
misclassified after the stroke 
induction at each key position, 
for DenseNet121 (black curve) 
or HOG-SVM (grey curve; 
n=28). 

 203 

 
Fig. 3 Visualization of image areas driving DenseNet121’s predictions using Gradient-weighted 
Class Activation Map (GradCAM) on the set of key positions. a, Schematic representation of the 
workflow to produce the average heatmap. Each image is processed through the DenseNet121-CNN 
model to collect the GradCAM heatmaps, and in parallel registered for in-plane alignment. The 26 
heatmaps, including validation and testing sets, are averaged and thresholded at 0.7. b, Display of the 
averaged heatmaps overlaid on registered reference micro-Doppler images at each position. The color 
scale indicates the GradCAM intensity (arbitary unit, a.u.). Number corresponds to the Bregma position 
(mm) of the image. Scale bar: 2 mm. c, For each position, the proportion of the GradCAM heatmap 
located in the subcortex is presented in orange. The error bar corresponds to the 95% confidence 
interval. The black curve displays the corresponding proportion of cortex and was computed from a 
reference individual. 
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To evaluate the accuracy of our models in such pathological conditions, the positions of 204 

the post-stroke images were predicted with both DenseNet121-CNN and HOG-SVM 205 

without prior re-training. For each model, the proportion of accurately classified pre-stroke 206 

images whose position were incorrectly inferred after stroke was computed (Fig. 4b). 207 

Images originally from the training, validation and testing sets were aggregated together 208 

for this experiment as no substantial differences were observed. For the DenseNet121-209 

CNN model, the overall proportion of misclassification is 2.7%. Only two positions exhibit 210 

a proportion higher than 10% (4/28 and 3/27 images respectively for B +1.0 and +2.0 211 

mm) while for 75% of the positions only one image is misclassified. For the HOG-SVM 212 

model, the overall proportion of misclassifications is 8.5%. 8 positions exhibit a proportion 213 

higher than 10%, including 3 over 20%, and 45% of the positions have at most one 214 

misclassified image. For both models we observed that the stroke has a larger effect on 215 

the predictions in the anterior part of the brain (Fig. 4c). 216 

 217 

Discussion  218 

In this study, we proposed a novel framework for brain navigation in functional ultrasound 219 

imaging experiments. Our approach relies on CNN-based image classification to identify 220 

a set of anatomical positions that serve as a reference frame, from which the location of 221 

a micro-Doppler image can be inferred with high precision. We selected a DenseNet121-222 

CNN as main model and an HOG-SVM as baseline model.  223 

 224 

First, we defined a set of anatomical reference positions which act as the classes in our 225 

image classification task. By analyzing the effect of different step sizes on the 226 

classification accuracy we were able to select a set of key positions offering a trade-off 227 

between the identification confidence and the number of positions in the reference grid. 228 

We concluded that with a 500 µm step size, both models accurately classify each image 229 

to the corresponding anatomical position (>90%). The effect of the step size on the 230 

accuracy above 375 µm is linear-like for HOG-SVM while exponential-like for 231 

DenseNet121. This can explain the statistically significant difference in performance on 232 

datasets 50020 and 62515. Such decrease can be attributed to the similarity in vasculature 233 

across neighboring planes at the technology resolution. This hypothesis is supported by 234 

the drop in the minimum class accuracy along with the step size for both models. We then 235 

computed on the set of key positions an estimated positioning error of 102 ± 98 µm for 236 

DenseNet121, which is smaller than the micro-Doppler image thickness (300 µm) and 237 

therefore sufficient. 238 

 239 

Further analysis using the GradCAM visualization technique revealed that the 240 

classification was mainly driven by highly consistent vascular structures located in the 241 

subcortex. This subcortical prevalence can partially be explained by the in-plane 242 

resolution of the current fUSI technology: the voxel size of 100×110×300 µm3 is likely 243 

insufficient to highlight the vascular differences between cortical areas, where the 244 

penetrating arterioles have a diameter between 50 and 100 µm1. Another potential 245 

explanation comes from the CNNs sensitivity to texture differences when pretrained on 246 

ImageNet. This might explain why the cortical curvature and thickness variation across 247 

anatomical locations are not decisive factors in our approach. Finally, we validated the 248 

CNN’s predictions in a rat stroke model where normal blood flow is disrupted. Analysis 249 

revealed that the number of misclassified images was marginal compared to the pre-250 

stroke dataset (2% for DenseNet121-CNN, 8% for HOG-SVM), thus confirming the 251 

robustness of the inference. 252 

 253 
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The automated positioning of micro-Doppler images is a problem that has only recently 254 

been tackled. At the time of writing there is only one publication on this topic, where the 255 

recorded micro-Doppler image is automatically registered to a pre-aligned reference 256 

volume31. The main drawback of this method lies in the acquisition of a reference micro-257 

Doppler volume at the start of every experiment, which is manually registered to a brain 258 

atlas. Our approach, on the other hand, does not require an animal-specific reference 259 

and therefore offers more flexibility in the experimental design. Furthermore, due to the 260 

large training dataset, our model is less sensitive to differences in brain size and shape, 261 

including in pathological conditions such as stroke. This will be strengthened even further 262 

as more fUSI data becomes available. Finally, the CNNs' computational efficiency allows 263 

for real-time image identification and can therefore be seamlessly integrated in an 264 

experimental workflow. 265 

 266 

Although our work is validated on a rat model, we expect that the presented approach is 267 

universal and can easily be adapted to different use cases, including applications in other 268 

animal models such as non-human primates, pigeons or ferrets20,21,32,33. Early results 269 

support the applicability of our methodology to mice datasets (data not shown) and 270 

elicited similar results. Future work should also focus on extending the model to different 271 

probe orientations (e.g. sagittal) or different types of ultrasound transducers such as the 272 

recently developed volumetric fUSI system34,35, which acquires dozens of planes 273 

simultaneously at the cost of a lower spatial resolution. Additionally, micro-Doppler 274 

imaging has also been successfully applied to humans in neurosurgery36–38 and non-275 

invasively in newborns by imaging through the fontanel39. In those contexts, an accurate 276 

positioning methodology would be of great value but comes with new challenges, such 277 

as the limited depth of imaging and the large differences in vessel scales. The increasing 278 

adoption of fUSI and related data diversity will allow further generalization of this 279 

approach. 280 

 281 

To conclude, we believe that our methodology will constitute a valuable tool for the 282 

neuroscientific community in the coming years, as it will allow non-expert users to exploit 283 

the full potential of the fUSI technology. 284 

 285 

286 
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Supplementary Materials 287 

 288 

 
Supplementary Fig. 1, Set of micro-Doppler images extracted from the dataset 50020 covering a large part of 
the brain for one rat. Major vessels are identified in black. Number corresponds to the Bregma position (mm) of 
the image. ACA: anterior cerebral artery, AchA: anterior choroidal artery, ApA: azygos pericallosal artery, GcvG: 
great cerebral vein of Galen, lhV: longitudinal hippocampal vein, lsv: lenticulostriate vessels, thv: transverse 
hippocampal vessels, tsV: thalamostriate vein, tpv: thalamoperforating vessels, SSS: superior sagittal sinus, Ctx: 
cortex, Hip: hippocampus, Tha: thalamus, Str: striatum, A: anterior, L: left, V: ventral. Scale bar: 2 mm. 

 289 

 290 

Model 
ResNet5

0 
DenseNet12

1 (main) 

HOG-SVM 
chi2 

(baseline) 
HOG-SVM 

rbf 
SIFT-SVM 

rbf 
PCA-SVM 

rbf 

Validation 
accuracy (%) 82.5 85.2 71.6 65.1 29.3 53.5 

Testing accuracy 
(%) 77.2 81.9 80.4 68.3 24.5 64.5 

 

Supplementary Table 1. Performance evaluation of a set of classical models on dataset 37526. 

 
 291 

  292 
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 293 

            

 Step size (µm) 250 375 500 625 750  

 
Number of positions 39 26 20 15 13 

 

 

DenseNet121 

Validation accuracy (%) 64.3 85.2 95.4 100 100  

 Test accuracy (%) 56.2 81.9 93.1 96.9 98.2  

 

Difference between test and 
validation accuracy 

8.1 3.3 2.3 3.1 1.8 
 

 

Maximum class accuracy 
test (%) 

84.6 100 100 100 100 
 

 

Minimum class accuracy 
test (%) 

0.0 30.8 84.6 84.6 84.6 
 

 

HOG-SVM 

Validation accuracy (%) 54 71.6 81.9 88.7 92.9  

 Test accuracy (%) 58 80.4 85 90.8 95.9  

 

Difference between test and 
val. Accuracy 

-4 -8.8 -3.1 -2.1 -3 
 

 

Maximum class accuracy 
(%) 

84.6 100 100 100 100 
 

 

Minimum class accuracy 
(%) 

20.3 61.5 53.8 53.8 84.6 
 

 McNemar test 

Test statistic 
86.00

0 
28.00

0 
12.00

0 
4.000 1.000 

 

 
P-value 0.552 0.450 

0.002 
(**) 

0.012 
(*) 

0.219 
 

             

Supplementary Table 2. DenseNet121 and HOG-SVM performance metrics on the datasets with 
different step sizes. *p-value<0.05, **p-value<0.01. 
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  restricted 

Bregma position (mm) -6.5 -6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 

                     

Validation set                     

Accuracy (%) 100 100 100 100 100 100 100 100 100 92.3 84.6 92.3 92.3 92.3 100 100 92.3 84.6 76.9 100 

Precision 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.93 0.92 0.92 0.86 1.00 1.00 0.93 0.93 0.92 0.92 0.91 0.87 

Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.92 0.85 0.92 0.92 0.92 1.00 1.00 0.92 0.85 0.77 1.00 

F1-score 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.92 0.88 0.89 0.96 0.96 0.96 0.96 0.92 0.88 0.83 0.93 

                     

Testing set                     

Accuracy (%) 100 100 92.3 100 100 92.3 84.6 100 92.3 84.6 92.3 100 100 100 92.3 84.6 84.6 84.6 84.6 92.3 

Precision 1.00 0.93 1.00 1.00 0.93 1.00 1.00 0.81 0.86 1.00 1.00 0.93 1.00 0.93 0.86 0.92 0.92 0.79 0.85 1.00 

Recall 1.00 1.00 0.92 1.00 1.00 0.92 0.85 1.00 0.92 0.85 0.92 1.00 1.00 1.00 0.92 0.85 0.85 0.85 0.85 0.92 

F1-score 1.00 0.96 0.96 1.00 0.96 0.96 0.92 0.90 0.89 0.92 0.96 0.96 1.00 0.96 0.89 0.88 0.88 0.81 0.85 0.96 

 
Supplementary Table 3. Per Bregma position classification metrics on dataset 50020 of DenseNet121. 
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Materials and Methods 297 
Animals. Experimental procedures were approved by the Committee on Animal Care of the Catholic University of 298 
Leuven, in accordance with the national guidelines on the use of laboratory animals and the European Union 299 
Directive for animal experiments (2010/63/EU). Adult male Sprague-Dawley rats (n=51; Janvier Labs, France) with 300 
an initial weight between 200-300 g were housed in standard ventilated cages and kept in a 12:12 hrs reverse 301 
dark/light cycle environment at a temperature of 22 °C with ad libitum access to food and water. 302 
 303 
Cranial window for brain-wide imaging and stroke induction. A cranial window extended from B +4.0 to −7.0 304 
mm AP, laterally ±6.0 mm was performed in all rats under isoflurane anesthesia (Iso-Vet, Dechra, Belgium) with a 305 
mixture of 5% isoflurane in compressed dry air was used to induce anesthesia, subsequently reduced to 2.0-2.5% 306 
during surgery, and to 1.5% for imaging (see ref.30 for details on surgical procedure). Xylocaine (0.5%, AstraZeneca, 307 
England) and Metacam (0.2mg/kg, Boehringer Ingelheim, Canada) were injected subcutaneously as pre-operative 308 
and post-operative analgesia; respectively. Intraperitoneal injection of 5% glucose solution was provided every 2hrs 309 
to prevent dehydration. 28 rats were subjected to stroke by the mean of permanent occlusion of the distal branch 310 
of the left middle cerebral artery as detailled in ref.30. 311 
 312 
2D scan micro-Doppler ultrasound imaging of brain vasculature. The data acquisition was performed using a 313 
functional ultrasound imaging scanner equipped with custom acquisition and processing software described in 314 
ref.11. In short, the scanner is composed of a linear ultrasonic transducer (15 MHz, 128 elements, Xtech15, Vermon, 315 
France) connected to 128-channel emission-reception electronics (Vantage, Verasonics, USA) that are both 316 
controlled by a high-performance computing workstation (fUSI-2, AUTC, Estonia). The transducer was motorized 317 
(T-LSM200A, Zaber Technologies Inc., Canada) to allow antero-posterior scanning of the brain. The acoustic 318 
coupling between the brain and the probe is ensured by a 2 mm layer of ultrasound gel (Aquasonic Clear, Parker 319 
Laboratories Inc, USA). Each coronal Doppler image is 12.8 mm width and 9 mm depth and is composed of 300 320 
compound images acquired at 500 Hz. Each compound image is computed by adding nine plane-wave (4.5 kHz) 321 
with angles from -12° to 12° with a 3° step. The blood signal was extracted from 300 compound images using a 322 
single value decomposition filter and removing the 30 first singular vectors40. The Doppler image is computed as 323 
the mean intensity of the blood signal in these 300 frames that is an estimator of the cerebral blood volume14,15. 324 
This sequence enables a temporal resolution of 0.6 sec, an in-plane resolution of 100×110 µm, and an off-plane 325 
(thickness of the image) of 300 µm11. Finally, we performed a high-resolution 2D scan of the brain vasculature 326 
consisting of 89 coronal planes from B +4.0 to -7.0 mm spaced by 125 µm.  327 

 328 
Registration of micro-Doppler images. The micro-Doppler 2D scans from all animals were aligned along the 329 
antero-posterior axis with respect to 2 reference cross-sections (B -3.0 and -1.0 mm) selected for their recognizable 330 
vascular patterns (Fig. 1c). This alignment for correcting potential shifts occurring either during surgery or imaging. 331 
Reference cross-sections were independently identified for every animal by two experts. Any disagreement was 332 
resolved post-hoc by consensus. Each micro-Doppler image is then identified by its anatomical position with respect 333 
to the Bregma reference point, e.g., B -3.0 mm. 334 
 335 
Generation of datasets. Several datasets have been extracted from the initial scans using a down-sampling factor 336 
ranging from 2 to 5. This corresponds to an artificial increase in the step size between two consecutive cross-337 
sections. To create the dataset associated with a given factor F, we extracted images from position B -3.0 mm with 338 
a step size of Fx125 µm, within the limits of the craniotomy (Fig. 1b). The 5 datasets stepped by [250, 375, 500, 339 
625, 750] µm, respectively contain [39, 26, 20, 15, 13] different positions. We randomly selected 50% of the animals 340 
for training, 25% for tuning the hyperparameters (validation) and 25% for evaluating the final performances of the 341 
model (testing). We augmented the size of the training set with rotations of ±4°and ±8°. 342 
 343 
Image preprocessing. To increase the contrast and reduce the intensity amplitude to a [0 1] interval, a correction 344 
factor (power of 0.25) has been applied to every pixel of all images in each dataset. The overall process has been 345 
implemented using MATLAB (R2018b, Mathworks, USA). 346 
 347 
Model selection. To select the best model for the experiments, we evaluated 2 classical CNN architectures 348 
(ResNet5041 and DenseNet12125), SVMs with different feature extraction methods (HOG26, SIFT42, PCA) and 349 
kernels43. These models were selected for their compatibility with datasets of relatively small sizes. Both ResNet50 350 
and DenseNet121 were pretrained on ImageNet44 as suggested in ref.45. The last layer of the network - the classifier 351 
- was replaced by a fully connected layer outputting n values, n being the number of anatomical locations, and 352 
passed through a softmax layer afterwards. Both CNN and SVM models were trained and evaluated on the dataset 353 
37526, corresponding to the smallest step size above the technology resolution along the antero-posterior axis and 354 
therefore the largest dataset without overlapping information. They were respectively implemented with the 355 
‘torchvision’ (PyTorch, version 0.7.0). and ‘scikit-learn’ (version 0.23.1) Python packages.   356 
 357 
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Training and evaluation procedures for CNNs. For each of the datasets used in this work, images were resized 358 
to 224×320 pixels by bicubic interpolation, and their grey channel extended in RGB to fit the ImageNet format 359 
imposed by the pre-training. All the data were normalized with the mean and standard deviation of the full dataset. 360 
We augmented the size of the training set with rotations of ±4°and ±8°. The network’s weights were optimized with 361 
the stochastic gradient descent algorithm using a cross-entropy loss function. The hyperparameters were selected 362 
through a random search and the final model performance was evaluated on the testing set. The overall procedure 363 
has been performed on a single machine, equipped with Xeon E5-2620 CPU (Intel, USA), 64 Gb RAM and 4 364 
RTX2080 (8 GB) GPUs (Nvidia, USA).  365 
 366 
Visualization of relevant features for image classification using GradCAM. We extracted the pixels in the input 367 
image driving the classification using the Gradient-weighted Class Activation Map (GradCAM) technique, following 368 
the recommendations from ref.46 on the relevant visualization approaches. Briefly, this method aggregates the 369 
gradients associated with the prediction for each feature map in a given layer, to produce a coefficient measuring 370 
the contribution of each of the map to the network’s prediction. Here, the gradients and feature maps were extracted 371 
at the last layer before the classifier. The output heatmaps were then resized by bilinear interpolation to the original 372 
image and thresholded at 0.7 to limit the effect of interpolation on the map. 373 
 374 
GradCAM registration on stereotaxic atlases for anatomical regions extraction. We used a digital version of 375 
the rat Paxinos atlas23,30 to extract the anatomical regions associated with the GradCAM. The input scan was taken 376 
as a volume and interpolated to fit the atlas resolution (50×50×50 µm3 voxel size). A 3D rigid registration was 377 
performed using a MATLAB custom script11,30. This procedure has been applied to all the samples from the 378 
validation and testing sets by an expert. To extract the regions from the GradCAM heatmap, a volume (89 planes 379 
as the input data) was constructed from the heatmaps by zero-padding the missing sections before applying the 380 
transformation matrix. 381 
 382 
Evaluation on the stroke dataset. We used 28 rats subjected to stroke (see above and ref.30). All rats were imaged 383 
in the original dataset, and 14/7/7 individuals were respectively present in training/validation/testing sets. The scans 384 
were registered and a dataset with 500 µm step size was created following the same procedure as for the previous 385 
experiment. The classes predictions were obtained by processing the images through the DenseNet121-CNN and 386 
HOG-SVM previously trained on dataset 50020 without re-training.  387 
  388 
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