
Revisiting OAuth 2.0 Compliance: A Two-Year Follow-Up Study

Pieter Philippaerts
imec-DistriNet, KU Leuven

Leuven, Belgium
Pieter.Philippaerts@kuleuven.be

Davy Preuveneers
imec-DistriNet, KU Leuven

Leuven, Belgium
Davy.Preuveneers@kuleuven.be

Wouter Joosen
imec-DistriNet, KU Leuven

Leuven, Belgium
Wouter.Joosen@kuleuven.be

Abstract—OAuth 2.0 is a widely used authorization protocol
that allows third-party access to an authorization service
on behalf of a user. Like any security protocol, it requires
careful implementation to ensure security. Previous research
has thoroughly analyzed the security of the OAuth protocol,
but popular deployments remain vulnerable due to incorrect
or limited implementation of the standards. In our previous
work, we introduced a tool called OAUCH to measure and
improve compliance with the OAuth standards. We used the
tool to measure the compliance of 100 OAuth implementa-
tions and created a unique overview of the state of practice
within the OAuth ecosystem. This paper revisits these prior
results and updates our measurements. We compare the
latest results to the original baseline and identify changes
in the ecosystem. Our analysis shows that IdPs have become
more compliant in the past two years, but a substantial
number still lack fundamental countermeasures.

1. Introduction

OAuth 2.0 is a widely used authorization protocol
that allows a third party, called the relying party (RP), to
access an authorization service on behalf of a user. The
interactions between the authorization service, hereinafter
referred to as the identity provider (IdP)1, and the RPs are
precisely defined in a set of standards that make up the
OAuth protocol.

Compared to its OAuth 1.02, OAuth 2.0 is less com-
plex and easier to understand. However, like any secu-
rity protocol, it requires careful implementation. Security
specifications are scattered throughout the main OAuth
standard, and additional ones are outlined in documents
such as the OAuth Threat Model [12] and the OAuth
Security Best Current Practices [1].

Although the security of OAuth has been thoroughly
analyzed, including a comprehensive formal analysis by
Fett et al. [4], [5], popular OAuth deployments remain
vulnerable due to a limited or incorrect implementation
of the standards.

In our previous work [13], we set out to improve the
overall security of the OAuth landscape. We introduced
a tool, called OAUCH, to measure how well OAuth IdP

1. In the OAuth standard, the relying party (RP), identity provider
(IdP), and user are referred to as the client, authorization server, and
resource owner, respectively. However, in this paper, we use the more
common terminology.

2. In this paper, the focus is solely on OAuth 2.0, and not on the older
and substantially different OAuth 1.0 protocol. Therefore, whenever the
term OAuth is used, it refers to version 2.0 of the protocol.

deployments adhere to the standards and to provide de-
tailed and targeted feedback to operators to improve their
services’ compliance. We then used OAUCH to measure
the compliance of 100 IdPs and created a unique overview
of the state of practice within the OAuth ecosystem.

In this paper, we revisit our results and update our
measurements of the OAuth ecosystem. Our goal is to
investigate whether there have been any changes in the
level of compliance of the OAuth providers over time.
We compare the latest results to the original baseline and
identify changes in the ecosystem. Our analysis shows that
IdPs have become more compliant in the past two years,
resulting in fewer unmitigated threats. Yet, despite the
advancements that have been made, the rate of progress
has been slow, and a substantial number of IdPs still lack
fundamental countermeasures.

2. Background

Web APIs allow different software systems and appli-
cations to communicate and share data with each other
seamlessly, enabling the development of complex and
interconnected software ecosystems. To avoid abuse and
to enable user-specific services, most of these APIs require
some form of authentication and/or authorization.

When the traditional client-server authentication
model is used, an app authenticates with the server by
presenting the user’s credentials. This behavior is not
desirable, because it requires third parties to process and
store user credentials. Furthermore, it reduces the service
provider’s ability to implement alternative authentication
mechanisms (for example, two-factor authentication), to
easily revoke access, and to limit the resources the third-
party app can access. The popular OAuth 2.0 protocol
solves many of these problems.

This section briefly introduces OAuth and the related
OpenID Connect protocol. It also introduces OAUCH, a
tool that has been built to measure the compliance of
OAuth authorization servers with respect to the security-
related specifications in the OAuth standards and best
practices.

OAuth 2.0
The OAuth 2.0 protocol [6] is a widely used as an au-

thorization framework that enables third-party applications
to access a service with limited permissions. It separates
the role of the user and the RP, where the user grants
access to a protected resource and the RP requests access
to the resource on behalf of the user. The IdP issues

access tokens when the user successfully authenticates and
authorizes the RP to access the resource. These access
tokens are linked to a user and a specific scope, defining
granular permissions for the RP to access data or perform
actions. Access tokens can be used on the resource server
to access the protected resource.

OAuth defines four modes of operation called grants
or flows, with additional flows proposed for other use cases
[3], [11]. To receive authorization, an RP must first register
with the IdP. During the registration process, the RP
receives a client identifier that is used to uniquely identify
the client app. In most cases, an RP also registers one
or more callback URIs that identify the valid redirection
URIs for the client. If the IdP issues a secret or uses
another mechanism to authenticate an RP, the RP is said
to be confidential. If no authentication credential is issued,
the RP is called a public RP.

Refresh tokens may be granted with access tokens and
can be exchanged for a new access token and refresh
token. This allows an access token — which is frequently
used and more prone to leakage — to be short-lived. When
the token expires, the RP can use the refresh token to
request a new access token without involving the user.

OpenID Connect (OIDC) is an authentication protocol
and can be used for single sign-on and federated identity
functionalities. It is built on top of OAuth 2.0 and extends
the OAuth specifications with a very thin identity layer
that retains compatibility. OIDC introduces the concept
of an identity token that contains information about the
authenticated user. An identity token has a well-defined
structure that can be interpreted by the resource server,
and it is cryptographically signed to ensure its integrity.

OAuch OAUCH [13] is an open-source tool that checks
OAuth 2.0 IdP implementations for compliance with the
security best practices. Its primary goal is to reveal po-
tential threats and suggest security improvements.

The tool tests an IdP by executing a large number
of test cases to verify compliance with security specifica-
tions established in the OAuth 2.0 standard [6], [7], and
additional documents that refine the security assumptions
and requirements. These documents include the OAuth
threat model [12], the Security Best Current Practices [1],
and others [2], [3], [8]–[10], [14]. OAUCH also supports
OpenID Connect providers [15].

OAUCH leverages the OAuth threat model [12] to
provide accurate feedback to users. The test cases identify
the countermeasures that are implemented by the IdP,
and OAUCH combines this information with the OAuth
threat model to determine which threats are mitigated.
For each threat, OAUCH compares the list of proposed
mitigations from the threat model with the mitigations
that have been detected. If all relevant countermeasures
are in place, the threat is considered fully mitigated. If no
relevant countermeasures are detected, the threat is marked
as unmitigated. In cases where only some countermea-
sures have been implemented, the threat is categorized as
partially mitigated.

3. Ecosystem

This section presents the results of the follow-up study
on the OAuth ecosystem, which focused on measuring the

compliance of OAuth providers with the OAuth security
specifications. Our previous work [13] measured the base-
line against which the new measurements will be com-
pared. These results were collected in November 2020.

3.1. Selection of OAuth providers

The ProgrammableWeb3 maintains a catalog of pub-
licly available APIs and has identified 187 websites in
the top 10,000 and over 300 additional websites in the
top 1,000,000 that host an OAuth 2.0 IdP. In [13], we
selected a representative sample of 100 IdPs.

Out of the original 100 tested websites, 92 were
retested in March 2023. The remaining eight sites could
not be retested due to a variety of reasons. Three sites were
offline or otherwise unavailable, one site was bought (and
replaced) by another site in the list, one site changed their
OAuth implementation which made it incompatible with
the standard, another site required payment, and the last
two sites did not accept developer registrations anymore.

The sample of 92 IdPs that were tested contained 18
IdPs that support the OpenID Connect protocol. This ratio
is consistent with the original dataset, where one out of
every five IdPs supported OIDC. There are 68 IdPs among
the top 10,000 sites, and this ratio is also in line with the
original dataset.

To be able to compare the new results with the original
results, the original results have been recalculated to only
take into account the 92 sites that were retested. Hence,
the results presented in this paper that refer to the initial
measurement may slightly differ from the results reported
in [13].

Ethical Considerations In accordance with our coor-
dinated disclosure policy, we reached out to all parties
involved after the initial measurement in 2020. After our
new measurements, we have reached out to all IdPs for
which we detected a regression (i.e., a countermeasure that
was previously implemented but has since been removed),
or when we identified flaws in new functionalities.

3.2. Test Cases

OAUCH implements a total of 113 test cases, each of
which is based on a security specification in one of the
OAuth standards. A single test case performs a basic check
to verify whether the IdP correctly implementated the
specification. Hence, each test case can be regarded as a
binary question that confirms whether the implementation
is compliant with a specific security specification or not.
As a consequence, there is a direct mapping between se-
curity specifications and test cases. OAUCH automatically
determines which test cases are relevant for the IdP and
runs them. The number of test cases run for each IdP may
vary depending on the features supported by that IdP.

An important metric is the failure rate of the test cases.
This is computed by dividing the number of failed tests
by the total number of executed tests. The failure rates
can be computed per IdP, per OAuth standards document,
per test case, and can be split per requirement level. Each
security specification in OAuth is assigned one of three

3. https://www.programmableweb.com/

TABLE 1. THE AVERAGE SECURITY COMPLIANCE SCORES OVER THE ENTIRE ECOSYSTEM, LISTED PER DOCUMENT. THE PERCENTAGES ARE
THE FAILURE RATES OF THE TEST CASES (LOWER IS BETTER).

November 2020 → March 2023

Normative Document Overall Must Should May

OAuth 2.0 (RFC6749) 24.9% ↘ 24.1% 19.7% ↘ 19.1% 39.7% ↘ 36.9% 51.7% → 51.7%

Bearer Tokens (RFC6750) 7.9% ↘ 7.5% 0.7% ↘ 0.4% 61.5% ↗ 62.2%

Threat Model (RFC6819) 22.1% ↘ 21.2% 2.6% ↘ 1.8% 22.5% ↘ 21.6% 63.8% ↘ 61.8%

Token Revocation (RFC7009) 8.9% ↘ 6.9% 5.8% ↘ 4.3% 12.5% → 12.5% 25.0% ↘ 12.5%

JWT Grant Type (RFC7523) 30.0% → 30.0% 12.5% → 12.5% 100.0% → 100.0%

PKCE (RFC7636) 19.5% ↘ 16.1% 11.4% ↘ 8.4% 100.0% → 100.0%

Security Best Current Practices 60.3% ↘ 56.1% 38.5% ↘ 31.7% 66.1% ↘ 65.6% 85.0% ↘ 80.7%

OpenID Connect 13.1% ↗ 15.3% 13.8% ↗ 16.2% 5.6% ↘ 5.3%

All documents combined 32.9% ↘ 31.6% 19.9% ↘ 18.9% 56.1% ↘ 54.5% 80.6% ↘ 78.8%

requirement levels (must, should, or may) to indicate its
priority.

Table 1 lists the overall failure rates of the entire
ecosystem, listed per document. With some exceptions
(marked in red), the results show that the failure rate has
decreased and thus compliance has improved. In particular
the improved compliance with the Security Best Current
Practices (BCP) is of importance, because the BCP is the
main source of up-to-date security guidelines. Among the
individual test cases, a few stand out based on their rate
of improvement.

Require user consent for public RPs The recommended
mitigation to always require explicit user consent for
public RPs has seen the largest increase in adoption (a
14.7-point increase, from 44.1% to 58.8%). For clients
without secrets, this countermeasure protects against im-
personation attacks.

Access token rotation Token rotation enhances the secu-
rity of access tokens by frequently replacing tokens with
newly minted tokens. It reduces the risk of exploitation
of a stolen token, as the token becomes invalid after a
short period of time. According to the measurements, the
adoption of this important mandatory countermeasure has
increased by 9.8 percentage points to 58.9%.

Proof Key for Code Exchange (PKCE) The adoption
of PKCE—a security extension that protects against au-
thorization code injection attacks—has increased by 7.3
percentage points to 31.8%. PKCE prevents attackers
from using an intercepted authorization code to obtain
access tokens. Although it was initially only intended for
public clients to protect against CSRF attacks, it is now
mandatory to implement for all client types because of its
effectiveness against authorization code injection attacks.

The regression in the results of the OpenID Connect
security requirements is largely due to one site that started
supporting OpenID identity tokens, but has implemented
it in a way that is non-compliant. The identity tokens are
missing several required security attributes and are not
digitally signed, opening them up to abuse. The site’s
failure to pass a significant number of test cases has a
magnified effect on the reported failure rates due to the
limited number of sites that support OpenID.

3.3. Threats

The OAuth threat model outlines the possible attack
vectors that an attacker may try to abuse and the corre-
sponding security measures that can be implemented to
mitigate them. OAUCH combines the information from
the threat model with the measurements provided by the
test cases to give relevant insights into the weaknesses of
an IdP implementation.

OAUCH evaluates 42 threats and calculates the appro-
priate classification. When a threat has been completely
mitigated, it is labeled as fully mitigated. Conversely,
when there are no countermeasures in place, the threat is
categorized as unmitigated. Threats may also be partially
mitigated if only some of the relevant security measures
have been implemented. Finally, threats can be not rele-
vant if the threat does not apply to the IdP’s configuration.

Figure 1 shows how the number unmitigated threats
has evolved over time. The initial measurement showed
that on average, each IdP had 3.9 unmitigated threats. This
has slightly improved to an average of 3.6 unmitigated
threats per IdP. However, the average number of partially
mitigated threats has made the reverse movement from
an average of 6.9 to 7.1 partially mitigated threats per
provider.

Table 2 shows how the top threats have evolved over
time. In general, the trend is positive, as most of the threats

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9+

#
 I
d

P
s

Unmitigated threats

Nov-20 Mar-23

Figure 1. The histograms of the number of threats that are not mitigated.
An unmitigated threat is a threat for which none of the countermeasures
that are suggested in the OAuth threat model are implemented.

TABLE 2. AN OVERVIEW OF THE TOP UNMITIGATED THREATS IN
THE ECOSYSTEM AND THE CORRESPONDING FAILURE RATES (LOWER

IS BETTER).

Threat Nov 2020 → Mar 2023
Auth. code injection 75.3% ↘ 68.2%
Obtaining access tokens 72.5% ↗ 73.6%
Obtaining client secrets 55.9% ↘ 39.4%
PKCE downgrade attack 42.9% ↘ 37.0%
Token leakage 39.5% ↘ 35.7%

have more mitigations in place.

Authorization code injection The uptake of the PKCE
countermeasure, as described in Section 3.2, directly
translates into an improved protection against the autho-
rization code injection threat. Yet, despite the improve-
ment, only 31.8% of the IdPs support this required coun-
termeasure.

Obtaining access tokens There are different ways that
access tokens may be revealed to an attacker. Using short-
lived access tokens is a relatively simple but effective way
to mitigate such risks. Although the OAuth standard does
not specify the lifetime of a short-lived token, OAUCH
adopts a commonly used maximum lifetime of one hour.
The token lifetime has remained relatively constant over
time, with one IdP even extending the lifetime of its
tokens. This is surprising, because more IdPs have added
support for token rotation, which allows them to reduce
the lifetime of their tokens.

Obtaining client secrets Public OAuth clients do not
have a client secret, which makes them vulnerable to
impersonation attacks. An important mitigation for this
threat is to always explicitly ask the user for consent when
a public client requests authorization, even if such consent
has already been given in the past. Almost a third of all
IdPs that were not compliant in the initial measurement
have corrected their behavior.

PKCE downgrade attack The PKCE downgrade threat’s
failure rate has decreased, which can be attributed to
IdPs who were previously non-compliant during the initial
assessment but have since corrected their implementation.
In this subgroup of IdPs, the failure rate has dropped to
28.6%. However, implementing PKCE correctly to avoid
the downgrade attack remains difficult. Of the IdPs that
have implemented PKCE after our initial measurements,
only one in three has implemented it correctly.

Token leakage Access tokens are usually sent to the
API endpoint via the AUTHORIZATION HTTP header.
However, some API endpoints also accept access tokens
that are sent via URI query parameters. This behavior is
not recommended, because these parameters may leak to
log files and the HTTP referrer.

3.4. Deprecated Features

The OAuth protocol has evolved over time to improve
security and functionality. Some features are now deemed
outdated or no longer secure and have been deprecated.
While IdPs may maintain support for deprecated features
to ensure backward compatibility, certain features could

TABLE 3. AN OVERVIEW OF THE NUMBER OF IDPS IN THE
ECOSYSTEM THAT SUPPORT VARIOUS DEPRECATED FEATURES

(LOWER IS BETTER).

Deprecated Feature Nov 2020 → Mar 2023
Old versions of TLS 46 ↘ 23
Implicit flow 35 → 35
Password flow 2 → 2
OIDC id token token flow 5 ↘ 4
OIDC code token flow 4 ↘ 3
OIDC code id token token flow 4 ↘ 3
Plain PKCE 12 ↗ 17

potentially pose a security risk. Table 3 gives an overview
of the deprecated features in OAuth and lists the number
of IdPs that offer support for these features.

Old versions of TLS TLS 1.0 and 1.1 have been officially
deprecated in March 2021 by the IETF, but already half
of the tested sites in the initial measurement had removed
support for these older versions. After the official depre-
cation, another 25% of IdPs removed support, leaving just
one quarter of all IdPs that support the older protocols.

Deprecated flows OAuth and OpenID Connect have dep-
recated certain flows that were initially supported to en-
able certain use cases, but are now deemed insecure. Most
IdPs continue to support the same flows, with the implicit
flow being particularly popular. We have not observed
significant changes in this regard.

Plain PKCE The PKCE standard defines two variations of
the countermeasure: hashed and plain. The hashed version
is mandatory-to-implement and has better security prop-
erties. However, the standard also defined a simpler (and
less secure) version that avoids hashing. Although plain
PKCE is not recommended for use, many IdPs implement
it because it is part of the standard. The increase in support
for plain PKCE compared to the initial measurement, as
shown in Table 3, is a testament to the improved adoption
of the PKCE standard.

4. Conclusion

In this paper, we presented an update to the security
compliance analysis of the OAuth 2.0 ecosystem that was
originally published in [13]. We used the OAUCH tool to
repeat the analysis of 92 IdPs and compared the results
with the original baseline

The analysis shows that IdPs have become more com-
pliant in the past two years. The test case failure rates
are consistently lower over all the requirement levels and
the various OAuth standard documents, with only a few
exceptions. This indicates that IdPs implement more coun-
termeasures and support fewer deprecated features. This
improved compliance has a positive effect on the number
of (partially) mitigated threats. We did not find significant
differences between high-ranked and low-ranked websites
in terms of improved compliance.

Although progress has been made, we find that there
are still problems with many implementations. A consider-
able number of IdPs still lack essential security measures
and have multiple threats that are left completely unmiti-
gated.

Acknowledgements

This research is partially funded by the Research Fund
KU Leuven, the APISEC project, and by the Flemish
Research Program Cybersecurity.

References

[1] John Bradley, Andrey Labunets, and Daniel Fett. OAuth 2.0
security best current practice. https://datatracker.ietf.org/doc/html/
draft-ietf-oauth-security-topics, October 2020. [Online; accessed
May 20, 2021].

[2] Brian Campbell, John Bradley, Nat Sakimura, and Torsten Lodder-
stedt. OAuth 2.0 mutual-TLS client authentication and certificate-
bound access tokens. https://datatracker.ietf.org/doc/html/rfc8705,
February 2020. [Online; accessed May 20, 2021].

[3] William Denniss, John Bradley, Michael Jones, and Hannes
Tschofenig. OAuth 2.0 device authorization grant. https://
datatracker.ietf.org/doc/html/rfc8628, August 2019. [Online; ac-
cessed May 20, 2021].

[4] Daniel Fett, Ralf Küsters, and Guido Schmitz. A comprehensive
formal security analysis of OAuth 2.0. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications
Security (CCS’16). Association for Computing Machinery, 2016.

[5] Daniel Fett, Ralf Küsters, and Guido Schmitz. The web SSO
standard OpenID Connect: In-depth formal security analysis and
security guidelines. In Proceedings of the IEEE 30th Computer
Security Foundations Symposium (CSF’17), pages 189–202, 2017.

[6] Dick Hardt. The OAuth 2.0 authorization framework. https:
//datatracker.ietf.org/doc/html/rfc6749, October 2012. [Online; ac-
cessed May 20, 2021].

[7] Dick Hardt and Michael Jones. The OAuth 2.0 authorization
framework: Bearer token usage. https://datatracker.ietf.org/doc/
html/rfc6750, October 2012. [Online; accessed May 20, 2021].

[8] Michael Jones and Brian Campbell. OAuth 2.0
form post response mode. https://openid.net/specs/
oauth-v2-form-post-response-mode-1 0.html, August 2015.
[Online; accessed May 20, 2021].

[9] Michael Jones, Brian Campbell, and Chuck Mortimore. JSON
Web Token (JWT) profile for OAuth 2.0 client authentication and
authorization grants. https://datatracker.ietf.org/doc/html/rfc7523,
May 2015. [Online; accessed May 20, 2021].

[10] Torsten Lodderstedt, Stefanie Dronia, and Marius Scurtescu.
OAuth 2.0 token revocation. https://datatracker.ietf.org/doc/html/
rfc7009, August 2013. [Online; accessed May 20, 2021].

[11] Maciej Machulak and Justin Richer. User-managed access (UMA)
2.0 grant for OAuth 2.0 authorization. https://docs.kantarainitiative.
org/uma/wg/rec-oauth-uma-grant-2.0.html, January 2018. [Online;
accessed May 20, 2021].

[12] Mark McGloin and Phil Hunt. OAuth 2.0 threat model and se-
curity considerations. https://datatracker.ietf.org/doc/html/rfc6819,
January 2013. [Online; accessed May 20, 2021].

[13] Pieter Philippaerts, Davy Preuveneers, and Wouter Joosen. OAuch:
Exploring security compliance in the OAuth 2.0 ecosystem. In
Proceedings of the 25th International Symposium on Research in
Attacks, Intrusions and Defenses (RAID’22), RAID 2022, pages
460–481. Association for Computing Machinery, 2022.

[14] Nat Sakimura, John Bradley, and Naveen Agarwal. Proof key for
code exchange by OAuth public clients. https://datatracker.ietf.
org/doc/html/rfc7636, September 2015. [Online; accessed May 20,
2021].

[15] Nat Sakimura, John Bradley, Michael B. Jones, Breno de Medeiros,
and Chuck Mortimore. OpenID Connect. https://openid.net/specs/
openid-connect-core-1 0.html, November 2014. [Online; accessed
May 20, 2021].

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics
https://datatracker.ietf.org/doc/html/rfc8705
https://datatracker.ietf.org/doc/html/rfc8628
https://datatracker.ietf.org/doc/html/rfc8628
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc6750
https://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html
https://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html
https://datatracker.ietf.org/doc/html/rfc7523
https://datatracker.ietf.org/doc/html/rfc7009
https://datatracker.ietf.org/doc/html/rfc7009
https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html
https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html
https://datatracker.ietf.org/doc/html/rfc6819
https://datatracker.ietf.org/doc/html/rfc7636
https://datatracker.ietf.org/doc/html/rfc7636
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html

	Introduction
	Background
	Ecosystem
	Selection of OAuth providers
	Test Cases
	Threats
	Deprecated Features

	Conclusion
	References

