
IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE 1

Mitigating Bias in Bayesian Optimized Data while
Designing MacPherson Suspension Architecture

Sinnu Susan Thomas, Member, IEEE, Guillaume Lamine, Jacopo Palandri, Mohsen Lakehal-ayat, Punarjay
Chakravarty, Friedrich Wolf-Monheim, and Matthew B. Blaschko

Abstract—With the rise of artificial intelligence, the automotive
industry searched for novel ways to improve future product
design. We focus on designing automatic MacPherson suspension
architecture for the automotive sector. It takes time for an
automotive engineer to design vehicle parts and thus slows
the pace of innovation in this field. Given the car’s particular
kinematic characteristics, we propose to predict an architecture
by positioning the hardpoints. This work deals with the biased
data generated using the discipline models using the dataset shift
learning paradigm. The optimized data are created with random
and uniform sampling, with more samples with random sampling.
We resolve the bias in the data, using a novel criterion for tuning
the kernel mean matching and a weight estimation algorithm and
designing the required target characteristics.

Impact Statement—In the early stages of vehicle suspension
design and development, decisions are generally made regarding
suspension architecture within the constraints of a given packag-
ing space, vehicle weight, and required travel. Kinematic char-
acteristics are traditionally derived from a disciplined model. A
disciplined model is a software program that studies the behavior
of interconnected rigid and flexible mechanical components as
they undergo translational and rotational displacements resulting
from applied forces or motion as measured by displacement,
velocity, and acceleration. We design the suspension based on the
data produced using the disciplined models. This paper helps the
community of automotive engineers to use artificial intelligence
and make their design process fast.

Index Terms—MacPherson Suspension Architecture, Bias,
Kernel Mean Matching, Covariate Shift, Bayesian Optimization.

I. INTRODUCTION

THE possibilities of artificial intelligence have been ex-
plored extensively in the automotive industry during

the past few years. The automobile manufacturing sector is
interested in the automatic design process of the suspension
architecture of their cars and an algorithm for suggesting
suitable geometries for a given set of desired characteristics. In

“FORD supported the work through the FORD-KU Leuven Alliance. This
research received funding from the Flemish Government under the “Onder-
zoeksprogramma Artificiële Intelligentie (AI) Vlaanderen” programme.”

Sinnu S. Thomas is with the School of Computer Science and Engineering,
Digital University Kerala 695317 India. e-mail: sinnu.thomas@duk.ac.in

G. Lamine is with Eura Nova, Belgium. e-mail: guillaume-
lamine@hotmail.com

J. Palandri, M. Lakehal-ayat, and F. Wolf-Monheim are with Ford Research
& Innovation Center, Süsterfeldstraße 200, 52072 Aachen, Germany. e-mail:
{jpalandr, mlakehal, fwolf5}@ford.com

P. Chakravarty is with Planet, USA. e-mail: punarjay@gmail.com
Matthew B. Blaschko is with the Department of Electrical Engineering, KU

Leuven, 3001 Belgium. e-mail: matthew.blaschko@esat.kuleuven.be
Manuscript received October 12, 2022; revised February 7, 2023, and March

27, 2023; accepted May 04, 2023.

the manual process, we explore the design of the MacPherson
suspension geometry of a car using the following design
process:
• a specific set of characteristics needed for the car;
• designer chooses geometry;
• a model of the car is created and simulated in Multibody

System (MBS) Software [1] or using Finite Elements
Method (FEM) Model [2].

• designer chooses an updated geometry, and the overall
procedure is repeated if the current characteristics do not
match the desired ones.

The guarantee of desired characteristics of the car is assured
by the presence of a human and his sufficient knowledge while
choosing the geometry. While designing the geometry in an
automotive manner, these aspects of the iterative process are
mitigated. In this work, the focus is on the simplified problem:
the positioning of the fixation points for the suspension of
the rear wheels of a car. These fixation points are also called
hardpoints (HP). The positioning of HP for MacPherson sus-
pension [3], [4] of the rear wheels in a car is generated using
ADAMS [5] - the MBS software resulting in the kinematics
performances in terms of target characteristics of the car.
The forward problem is to design target characteristics from
the hardpoints. However, since we have the desired target
characteristics, we pose the design as an inverse problem in
the proposed approach.

The data generated using the discipline models were uni-
formly random sampled, and those using Bayesian Opti-
mization (BO) [6, 7]. The algorithm’s performance greatly
depends on the data distributed in the search space. The data
created using discipline models are costly and under different
sampling techniques. The data we created had a bias in the
sampling. Even though the data is biased, these data give
details about different target characteristics. We conduct a
broad study on the influence of the data distribution on the
performances of a generated data set. Generally, we assume
the training and the testing data are identically distributed. We
focus on a more general learning approach depending on the
data distribution. We use Dataset Shift and Biased Learning
for two initial training sets. The two training sets are created
using random and uniform sampling of BO experiments.

To compare two training sets using Dataset Shift, we use
Kernel Mean Matching (KMM) for a weighted sample of the
data set to optimize the performance of the generated test set.
We introduce a novel criterion for optimizing the parameters
of the KMM in this paper.

Finally, we study a general learning approach for different

2 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE

training sets to see the performances. We discuss some insights
on the influence of the initial training data distribution on the
final regression performances. Lastly, we find an algorithm
for a dataset with a particular training mode, best for an
automotive design.

The readers are encouraged to read our previous work [6,
7] to get a broader perspective on the design of MacPherson
architecture. The current paper aims to reuse the data generated
by our previous work [6, 7] using BO to train a learning
algorithm that could provide exciting answers to the regression
problem. If the dataset gives enough insight into the entire
search space, the estimation function is as good as the BO but
with no time delay.

The main contributions of this paper are as follows:
• Designed a Data Shift model for the automotive data

having a bias.
• Designed a novel criterion for optimizing the parameters

of the KMM. KMM is tuned manually, but in the pro-
posed approach, KMM is tuned according to the available
data.

• Verified the validity of the approach for the toy problem
and several suspension design settings. Several suspen-
sion design settings indicate several hardpoints of the
suspension. The details are given in the Experiments
Section.

This paper is organized into four sections. Section 2 gives
a brief overview of the state-of-the-art approaches in this
area. Section 3 proposes an optimal design for the suspension.
Simulation results are presented in Section 4. Lastly, the final
section concludes the paper.

II. LITERATURE REVIEW

Engineers have been designing the mechanical architecture
for decades before using machine learning and data for op-
timization. The automatic design community has developed
tools to find the best characteristics of the design of cars
depending on their suspension architectures. The MacPherson
suspension architecture is a commonly used architecture for
vehicles. The positioning of the hardpoints alters the static
and kinematic performances of the car. The state-of-the-art
approaches [8]–[12] use mechanical models that perform a
space search with the help of human experts.

Various statistical solutions exist in the literature, and better
algorithms to optimize new mechanical designs are at ease
with the growing hardware computing power and artificial
intelligence. In many scenarios, the classical gradient-based
optimization algorithms [13] is used. However, because the
search spaces are usually vast and no derivatives are available,
genetic algorithms (GA) are often utilized [14, 15].

There are many approaches where generative models are
used [16]–[18] and are used when the search space is vast,
data is not condensed in tabular arrays, and the computation
of each point in the space is costly. The design also uses
descriptive models in the literature [6, 7]. GA needs to train
the same model on multiple hyperparameters, whereas BO is
used to train a single model, thus making it computationally
efficient. BO is derivative-free global optimization [19]–[21]

used for expensive functions such as computing ADAMS.
The training of neural networks is computationally expensive,
whereas optimization using BO is computationally efficient.

BO is the optimization procedure, which uses a surrogate
model approximating the truly optimized setting [19, 20,
22]–[25]. These surrogate models can be Artificial Neural
Networks (ANN), Gaussian Processes (GP), and most classical
descriptive models. BO has been studied in many fields for
the optimization of unknown functions. The performance of
BO is highly dependent on the choice of acquisition function
made to find the best-observed value. Nguyen et al. [26]
proposed convergence criteria for these acquisition functions
to avoid unwanted evaluations. It has been applied with great
success in machine learning applications [21], analog circuits
[27], voltage failures [28], aerospace engineering [29], asset
management [30], pharmaceutical products [31], laboratory
gas-liquid separator [32], multi-objective optimization [33],
electron lasers [34], controllers, road network design [35, 36]
and autonomous systems.

We assume that the training and test datasets are, i.i.d.
drawn from a standard probability distribution. A dataset shift
occurs when the distribution on either side does not match.
Covariate shift [37] is a standard data set shift caused by
sample selection bias. This problem is solved by reweighting
the training points such that the means of the training and
test points in a reproducing kernel Hilbert space (RKHS) are
close. Kernel Mean Matching (KMM) [38] is a milestone
in density ratio or Radon - Nikodym derivative estimation
problem. It gives density ratios between training and test data
by minimizing their maximum mean discrepancy (MMD) in a
RKHS [39]. MMD [40] witness the difference in distributions.
It converges quickly and is not specific to any distribution
[40]–[44]. The convergence rates of KMM depend on some
regularity measure of the regression function and the capacity
measure of the kernel [45]. The standard KMM is tuned
using MMD to estimate the essential weights. However, the
parameters are difficult to adjust. Hence Miao et al. [46] used
Normalized Mean Squared Error to tune the parameters of
KMM. Wasserstein distance (WD) is very efficient when we
want to move from one optimal design to another. In this
paper, we use WD to tune the KMM to transport it from one
suspension design to another.

We limit this work to descriptive models as the designed
problem contains tabular data, and the amount of data is
reduced but, in practice, is relatively inexpensive to achieve. A
point of a search space from ADAMS takes about 10 minutes
of computation. The use of descriptive models to learn the re-
lations between mechanical architecture and its characteristics
exist in the literature. However, to our knowledge, the reuse
of data generated in a biased way for mechanical design was
never studied.

III. DATA SHIFT IN AUTOMOTIVE SETTING

In this approach, we use the data generated using BO and
this technique for tuning optimization of the Kernel Mean
Matching algorithm useful for dataset Shift.

THOMAS ET AL.: MITIGATING BIAS IN BAYESIAN OPTIMIZED DATA WHILE DESIGNING MACPHERSON SUSPENSION ARCHITECTURE 3

A. Inverse Problem in BO

BO optimizes black-box function f with large search spaces
and expensive models. The process uses information from
the problem evaluated at a certain point of the search space
without any gradient information. BO adopts a search strategy
depending on the statistical criteria to maximize and build a
probabilistic surrogate model of the black box. Acquisition
functions such as the Maximum Probability of Improvement
(MPI), the Expected Improvement (EI), and the Confidence
Bounds (CB) [19] decide upon the point in the search space
to be evaluated.

The surrogate model represents the approximated under-
lying probability distribution of the evaluated data points.
A popular surrogate model is Gaussian Process (GP), and
we chose GP for this approach since it is a non-parametric
model and the structure of the model is not known as apriori.
This model resembles the actual distribution by a normal
distribution. This work focuses on the Expected Improvement
acquisition, Gaussian Process [6, 7] and the ones used to
optimize the KMM parameters.

For the design of the suspension, we denote the set of
possible statistics of the kinematics curve or the desired
vehicle characteristics as X where X ⊆ Rd. We address
the design of suspension hardpoints Y in this paper where
Y ⊂ Rm is a bounded domain for a given target x ∈ X .
Automotive engineers design target characteristics X from the
suspension design parameters Y and y ∈ Y . The d and m
are the target characteristics and hardpoints space dimensions,
respectively.

Given g : Y → X and a target X , find a value y such
that g(y) ≈ x, we pose this problem as an inverse problem.
This problem is an ill-posed problem that can have multiple
y satisfying g(y) = x for a given x or none. The existence
of the solution can be restored by solving for the minimum
norm solution

g†(x) := argmin
y∈Y

‖g(y)− x‖2︸ ︷︷ ︸
=:f(y)

, (1)

where g† defines a generalized inverse of g.
The desired suspension design parameters are designed

using BO where g is computed using the multibody dynamic
software, and BO is used to minimize f for y [6, 7].

B. Minimizing Risk functional

The primary purpose of this paper is to learn the inverse of
the discipline models, such as learning geometrical points from
the target characteristics. We create the dataset [6] generated
using BO is biased, and we want to analyze its performance.
Given a user-defined actual hypothetical distribution of the
target characteristics for the feasible cars, we assume that the
target set is distributed in the y domain following a Gaussian
and uniform distribution. We infer the true probabilistic rela-
tion given a collection of empirical data using the frequentist
approach [47]. Data learning is based on the general statistical
problem of minimizing the functional risk based on empirical
data.

We learn a L- Lipschitz continuous function f : X → Y
that maps from the input space X to the output space Y in a
noise free domain. In order to quantify the performance of a
function f , we consider learning with a discrete loss function
L [48]

L : Y × Y → R+ (2)

.
The risk R associated with the hypothesis f is then defined

as the expectation of the loss function [49]

R(f(x)) =
∫
L(f(x), y) dP (x, y) (3)

where P (x, y) is a distribution that governs the probability
that x and y are jointly observed in a correctly labeled data
sample. Since we do not have access to the real probability
distribution P (x, y) = P (y|x)P (x), and only empirical data
is available in the training set, it is needed to formulate a novel
constructive criterion based on empirical data that could serve
to minimize the true risk functional.

The goal is to minimize the risk R over a class of functions
F and find an optimal function f∗

f∗ := argmin
f∈F

R(f) (4)

Empirical risk minimization substitutes an approximation to
R based on an empirical sum over losses incurred on the finite
n training sample, using an i.i.d. sampling assumption [50].
The empirical risk becomes

R(f) ≈ R̂(f) := 1

n

n∑
i=1

‖f(xi)− yi‖2 (5)

C. Dataset Shift Paradigm

Usually, in machine learning, training, and test sets are
assumed to be the same. The dataset shift paradigm is noticed
when the available dataset is not sampled like the actual
probability distribution of interest. Bias in experimental de-
sign, non-reproducibility of testing conditions, and evolution
of the problem with time can be real-world data problems. We
apply this concept since there is a substantial difference in the
distributions of the training set for the testing set.

We face covariate shifts in the dataset created. In this paper,
the data available for the training has been generated by a BO
approach [7] for an automotive setting. The data has been
developed for one vector of target characteristics (TC) of a
hypothetical car, and the algorithm searches for the optimal
geometrical positions of the vehicle. There is also a dataset of
vectors randomly sampled in a small range around the target
characteristic point, constituting an entire distribution.

y ∼ Pbo(y) or y ∼ Punif (y) (6)

where Pbo is the distribution using the outputs from the BO
sampling and Punif is the distribution using the combination
of random sampling and BO sampling. We mitigate this
problem by creating a dataset mixture of training and test
instances and then using importance-weighted cross-validation
[51].

4 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE

D. Kernel Mean Matching

Generally, in machine learning applications, we assume that
the training and test datasets are, i.i.d. drawn from a standard
probability distribution P (x). Still, in practice, we face sample
selection bias.

In the regression estimation, we assume the pairs Z =
(X,Y) of the input set X and the output set Y . For the sake of
the reasoning, let us define the training set as Ztr = (Xtr, Ytr)
and the test set as Zte = (Xte, Yte). These are respectively
drawn from the training and testing probability distributions
Ptr(x, y) and Pte(x, y) respectively. The subscripts tr denote
the training samples, and te denotes the testing samples. In
the proposed approach, we consider that the input labels x are
available from the actual distribution, i.e., the test set, also
called unlabeled data [38].

The weights are directly inferred by distribution matching
without solving a probability density estimation problem.
Instead, the weights are computed such that the means of the
training and test points in RKHS are near Kernel Mean Match-
ing. When the RKHS is universal, the mathematical solution
for the weights is the ratio Pte(x,y)

Ptr(x,y) . We compute the bound on
the convergence of the empirical means. We make covariate
shift assumptions for this work. The learning process with
two different distributions Pte(x, y) and Ptr(x, y) is unsolvable
if the two distribution are arbitrarily far apart. In practice,
nothing can be inferred if there is no similarity between a
previous experience (training) and the current case (test). A
simplifying assumption is made - the two probability distribu-
tions differ only by the input label distribution y. Therefore,
Pte(x, y) = P (y|x)Pte(x) and Ptr(x, y) = P (y|x)Ptr(x). The
conditional probabilities remain unchanged. The problem with
learning is minimizing the real risk.

R(f(x)) =
∫
L(f(x), y) dPte(x, y) (7)

The joint distribution is unknown. We have already seen
that the empirical risk minimization induction principle that
one could instead minimize Remp

Remp(f) =
1

n

n∑
i=1

‖f(xi)− yi‖2 (8)

We have a different Pte(x, y) and Ptr(x, y). The risk is
minimized for the distribution Pte(x, y) in Eq. 7. We define
the weights

β(x, y) =
Pte(x, y)
Ptr(x, y)

(9)

Substituting into Eq. 7, we have

R(f(x)) =
∫
L(f(x), y) β(x, y) dPtr(x, y) (10)

For Eq. 10 to exist reweighting coefficients β(x, y) should
be properly defined, i.e. that the support of Pte(x, y) should
be contained in the support of Ptr(x, y).

As the weight function β(x, y) is considered to be unknown
in the proposed approach, it must be estimated from the
observed data. Note that the fact that we are in the covariate

shift case simplifies further β(x, y) to β(x) = Pte(x)
Ptr(x) and

estimate weighted empirical risk Remp,w.

β(x) =
Pte(x)
Ptr(x)

(11)

Remp,w(f) =
1

n

n∑
i=1

βi ‖f(xi)− yi‖2 (12)

Let λ : X → F be a map into the feature space. ν : H → F
is the mathematical expectation in the feature space.

ν(Ptr) :=

∫
λ(x) dPtr(x) (13)

In conclusion, if we know the kernel mean of the real test
set distribution on the input space x: Pte(x), we can infer a
suitable β by solving the following minimization problem [38]
called as Kernel Mean Matching (KMM) procedure.

minimize
β

∥∥∥∥∫ λ(y) dPte(x)−
∫
β(x) λ(x) dPtr(x)

∥∥∥∥
subject to

∫
β(x) dPtr(x) = 1, β(x) ≥ 0

β(x) ≥ 0

Following certain conditions, one can show that the solution
of this problem gives Pte(x) = β(x) Ptr(x). Note that in
order to solve such a problem, Pte(x) and Ptr(x) must still
be known. In practice, the distributions are unknown, and we
have the input samples Ytr and Yte of respective size mtr and
mte.

The empirical estimate of the β(x) expectation is normally
distributed. β is bounded by Q. (β(x) ∈ [0, Q]). We study
the deviation between the empirical means of Pte(x) and
β(x) Ptr(x) in feature space, given β(x) is chosen perfectly in
the population sense. Both expectations are replaced by their
sample mean approximation and optimized the parameters of
the empirical KMM using [38, Equation (11)].

∥∥∥∥∥ 1

mtr

mtr∑
i=1

β(xtr,i)λ(xtr,i)−
1

mte

mte∑
i=1

λ(xte,i)

∥∥∥∥∥ (14)

Eq. 14 is a constrained quadratic empirical KMM optimiza-
tion that can be solved using interior-point methods or any
other successive optimization procedure subject to constraints
on β [37]. Researchers [52] use several methods to tune the
parameters of KMM. We use statistical Wasserstein distance
(WD) between the target and weighted train distribution. To
use WD, we apply weighted sampling on the training set with
the optimized weights given by the KMM algorithm. We use
first-order WD to compare the two CDFs. WD compares two
probability distributions when one variable is derived from the
other by small, non-uniform noise.

THOMAS ET AL.: MITIGATING BIAS IN BAYESIAN OPTIMIZED DATA WHILE DESIGNING MACPHERSON SUSPENSION ARCHITECTURE 5

IV. EXPERIMENTAL RESULTS

We discuss the results using the current setting for the
suspension design. We gather the data generated by [7].
Moreover, clean it for processing, then explore and understand
the datasets’ characteristics. The working of the KMM is
validated and compared to the WD efficiency for better tuning.
Once the best-weighted dataset is generated, the procedure
for training and comparing the different models is shown.
The final goal is to analyze their behavior for data size and
decide which performs best. Data was produced in several
batches with the uniformly distributed points and the optimally
sampled points using [7]. For each iteration of the BO, mul-
tiple uniform samples were generated. The exact proportion
between uniform and BO samples is 16. The BO chose the
best next point after 16 uniformly generated points at every
iteration.

In the first case, we analyze the position of the outer tie rod
in x, y, z coordinates, and we assume other hardpoints to be
constant at this time. This can lead to multiple constant target
characteristics in the output space. Moreover, some dimensions
behave peculiarly as they display a discrete sampling with two
possible values. This is peculiar because all variables should
vary in the continuous domain. This observation is important
and could lead to strange behavior in KMM. Because this dis-
crete behavior is due to rounding errors and only a few points
present, those dimensions were assumed to be constant. We
have nBO = 511 data points from BO and nunif = 8218 from
uniform sampling. For the higher dimension HP architecture,
nBO = 142 and nunif = 0. Note that there are only a few
BO samples and no uniform ones.

A. Toy Regression Data

We consider first a toy regression model with input and
output in the R1 space. We consider

f(x) = x3 − x+ w (15)

where w ∼ N (0,
range(y)

100 = 0.0375) and x ∈ [−1.5; 1.5]
and y ∈ [−1.875; 1.875] (range(y) = 3.75, range(x) = 3.0).

Eq. 15 represents the data generator’s forward model. It
is equivalent to the ADAMS model of the car, which is
assumed to be a function. However, this function is invertible,
which is impossible for ADAMS. Therefore, this first model is
positioned in a more straightforward setup.

B. Automotive dataset

The second model is a partial analytical model of a
MacPherson architecture developed by [53]. A simple model
that is easy to dash is purely kinematic and does not need any
Ordinary Differential Equation solver (ODE). All the Suspen-
sion Design Factors are kinematic and geometric measures.
The main goal of this model is to arrive at a level of complexity
similar to the ADAMS model.

A summary of all the output characteristics and behavior
in the 1HP dataset is shown in Table I. The discrete di-
mensions are removed from learning to make optimization
more straightforward. The ranges of each variable are stated

but without absolute reference in the space for data privacy
reasons. This lets us realize how much variable space is
covered in mechanical units. All higher-dimension HP setup
values vary in input-output domains, and no variables are
removed.

The final dimension spaces are the following: for the one
HP setup, there are the (x, y, z) dimensions in input space and
only 19 characteristics dimensions in output space; and for the
higher dimension HP setup, there are 3 · 8 = 24 dimensions
in input space and all the 19 characteristics dimensions in
output space. The quantitative values of the positions of
the hardpoints and values for the target characteristics is
normalized between [0, 1] relative to the full range of each
dimension.

Once the two models are defined, the data is generated
similarly to the one in the ADAMS dataset. The data is
generated for uniform sampling straightforwardly using the
models. The samples using BO are developed for both models.
The parameters for BO were chosen according to the original
ADAMS experiment. The datasets from ADAMS are relatively
scarce to be able to make a suitable study and extract accurate
conclusions. To cope with this issue, a broader study is
made on a toy regression and a sub-model of MacPherson
to generalize the observations better.

C. Validation of KMM

We study novel criteria to tune the KMM algorithm and
analyze how the underlying data distribution influences the
performances of the KMM and the training. We validate the
functioning of the KMM using the toy regression problem
with a linear model. Moreover, because computing the WD
in dimension problems is costly, we approximate it by the L2

norm of the WD between each pair of matching dimensions.
We optimize the KMM algorithm for different criteria to

find the best σ parameter. One approach is a pure grid search
of σ space and choosing the best result. The parameter σ is
the kernel size in kernel mean matching. The sigma space is
taken between [−1, 1]. The other approach is a BO to find the
best point. Both approaches were simulated for 30 iterations
and compared using final histograms and evolution of criteria
with size.

We tested our results on all the four datasets we have
created, such as toy problem, simple Car model, 1 HP,
and 2HP. Fig. 1 and 2 show the KMM parameter without
tuning. We choose the σ parameter of the kernel purely in
a heuristic manner. The kernel bandwidth is chosen as the
median of the pairwise distances between samples [54], [55].
We tested for a customarily distributed target set. We choose
the mean, variance, and covariance matrix of the target normal
distribution, respectively, as the mean of the BO set, and the
variance and covariance of the BO set divided by a factor of
5. The training set used for the example is the BO set of the
toy regression. Once the target set and σ factor are chosen,
the optimal weights are computed with the KMM. We see the
histograms of the initial train and target set in Fig. 1(a) and
the weighted sample of the BO set with the target set in Fig.
1(b).

6 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE

Name Description Behaviour 1 HP
1 castor_angle Castor angle Constant
2 castor_trail Castor trail Constant
3 castor_offset Castor offset Discrete
4 kingpin_angle Kingpin angle Constant
5 scrub_radius Scrub radius Constant
6 kingpin_offset Kingpin offset Discrete
7 EAL Effective Arm Length Continuous
8 RCH Roll center height Continuous
9 FLCA_L2W_Ratio Front Lower Control Arm Ratio Constant

10 Ackerman_20deg Ackerman at 20 deg Continuous
11 Ackerman_fulllock Ackerman in full lock Continuous
12 Bump_Steer Bump steer Continuous
13 Bump_Camber Bump Camber Continuous
14 Bump_Caster Bump Caster Discrete
15 Kin_WC_Rec Kinematic wheel centre recession Continuous
16 Damper_Ratio Damper ratio Discrete
17 Spring_Ratio Spring ratio Discrete
18 Roll_Steer Roll steer Continuous
19 Roll_Camber Roll camber Continuous

TABLE I: Complete names of the output characteristics of the ADAMS model for both 1 HP and 8 HP. The behavior in the
1 HP setup is noted. All the constant and discrete dimensions were removed for learning. Discrete means generally that the
data had two values very close to each other, only due to rounding errors. Moreover, there was a high bias where most points
presented one of the two values. For more details about the meaning of these measures, see Thomas et al.([6], and [7])

0.0 0.2 0.4 0.6 0.8 1.0
x

0

2

4

6

8

10

Pr
ob

ab
ili

ty
 d

en
si

ty

Target set vs. full set - x1
xTarget
x

(a)

0.0 0.2 0.4 0.6 0.8 1.0
x

0

5

10

15

20

Pr
ob

ab
ili

ty
 d

en
si

ty

Target set vs weighted test set - Heuristic - x1
xTarget
x

(b)

Fig. 1: (a) Unweighted training set. (b) Weighted training set
(heuristic choice). Comparison of the histograms and estimated
densities between the unweighted and weighted training sets
with the weights chosen heuristically. Target sets are normally
distributed.

After computing the weights, a simple linear regression
model is trained to observe the influence of the KMM. If the
model fits the ground truth everywhere, the weighted training
has less margin for improvement [56] as shown in Figs. 2(a)
and 2(b).

Fig. 1(b) shows that the two probability density functions,
approximated with the histograms, are similar to Fig. 1(a).
It is characterized by WD = 0.012 and J = −1.11. In Fig.
2(a) and 2(b), the linear model fits at the center of the space
as the target distribution is concentrated at the center of the
space. This is a biased estimation as it assumes that the weights
computed for the test set are perfectly weighting the Pte(x)
to obtain the Ptarg(x). Moreover, it is also biased as the
Ptarg(x) distribution is an abstract distribution that could even
be impossible to exist in the search space.

Next, we see the evolution of the σ parameter for the KMM
performance metrics such as WD, J score [57] and Maximum

0.0 0.2 0.4 0.6 0.8 1.0
y true

0.0

0.2

0.4

0.6

0.8

1.0

1.2

y
pr

ed
ic

tio
n

R^2 fitted to train data for y1
ideal
test
train

(a)

0.0 0.2 0.4 0.6 0.8 1.0
y true

0.0

0.5

1.0

1.5

y
pr

ed
ic

tio
n

R^2 fitted to weighted train data for y1
ideal
test
train

(b)

Fig. 2: (a) Unweighted training - R2
w = 0.63. (b) Weighted

training (heuristic weights) - R2
w = 0.89. Comparison of the

resulting Coefficient of determination plots between the linear
model predictions for weighted and unweighted training. The
ypred predicted y are plotted against the real values y. The
perfect situation is when the data points are aligned from 0 to
1. Target sets are normally distributed.

Mean Discrepancy (MMD), and time in Fig. 3. MMD [40] is a
criterion that determines whether two sets of data are from the
same or different probability distributions. The behavior of the
different metrics stays quite similar for all the datasets, and the
analyses here can be generalized to the other datasets studied.
The performances were computed using cross-validation for
each σ parameter. We use cross-validation to estimate the final
metric for the whole set. This lets us know how much the
metrics vary for the same σ, train, and target set. Fig. 4 shows
the histogram of the target and weighted train sets, and the
weights of the weighted training set are computed for four
different σ parameters.

We see from Fig. 4(b) that the WD metric presents a good
landscape for optimization, and there is one optimal point for
σ that offers the smallest WD. This property is desirable for

THOMAS ET AL.: MITIGATING BIAS IN BAYESIAN OPTIMIZED DATA WHILE DESIGNING MACPHERSON SUSPENSION ARCHITECTURE 7

WD vs - Target : gauss; Train source : bo

10
-2

10
0

10
2

0.1

0.15

0.2

W
D

(a)

J vs - Target : gauss; Train source : bo

10
-2

10
0

10
2

-20

0

20

40

60

80

100

J

s
c
o

r
e

(b)

MMD vs - Target : gauss; Train source : bo

10
-2

10
0

10
2

10
-10

10
-5

10
0

M
M

D

(c)

Time vs - Target : gauss; Train source : bo

10
-2

10
0

10
2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

T
im

e
 [

s
]

(d)

Fig. 3: (a) WD. (b) J . (c) MMD. (d) Time. Evolution of the
median and 0.25−, 0.75−quantiles of the metrics WD, J, and
MMD, and the time with the parameter σ. The values are ob-
tained by cross-validation (CV = 10). Dataset : toy regression;
Train distribution : BO; Target distribution : Normal.

BO to avoid getting stuck at a local minimum. At the extremes,
when σ is very small or very big, the WD is maximal as the
weighted training set, and the initial train set is the same.
The weighted set is unchanged, and the weights converge to
all. Moreover, the quantiles are narrow compared to the broad
scale of variation of the median WD. We also see that the
estimation of the distribution functions for the target set and
the weighted training set are similar.

In Fig. 4(c), the spread is higher than in WD. It is about one
order of difference as the ratio between inter quantile space
and full median range is about 1e − 3 for WD and 1e − 2
for the J score. The J score presents, in a general way, more
local minima, which was observed at different dataset sizes
and different datasets. Fig. 4(c) shows the same distribution
function for the target and weighted training sets.

Fig. 4(d) shows that MMD is not a criterion for higher-order
optimization as it is biased towards higher σ. KMM converges
quickly to all ones for the weights, and the time decreases with
the increasing σ. We assume the optimal σ is found for the
smallest WD. WD is a consistent metric for the full dataset
size of 1000 points as it has a good histogram overlay and
usually agrees with the J score.

Next, we saw the effect of the KMM performance metric
w.r.t. on the dataset size. We evaluate how different metrics
vary with the data size for an optimal σ parameter. The
samples are produced with BO and a normal distribution for
the target. Fig. 5 are produced with BO samples and a normal

0.0 0.2 0.4 0.6 0.8 1.0
x

0

5

10

15

20

Pr
ob

ab
ili

ty
 d

en
si

ty

Target set vs weighted test set - Heuristic - x1
xTarget
x

(a)

0.3 0.4 0.5 0.6 0.7
x

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Pr
ob

ab
ili

ty
 d

en
si

ty

Target set vs. weighted set - x1
xTarget
x

(b)

0.2 0.4 0.6 0.8
x

0

2

4

6

8

10

12

14

Pr
ob

ab
ili

ty
 d

en
si

ty

Target set vs. weighted set - x1
xTarget
x

(c)

0.0 0.2 0.4 0.6 0.8 1.0
x

0

2

4

6

8

10

12

Pr
ob

ab
ili

ty
 d

en
si

ty

Target set vs. weighted set - x1
xTarget
x

(d)

Fig. 4: (a) Heuristic choice - σ = 0.19819. (b) WD optimum -
σ = 0.0026. (c) J optimum - σ = 0.3039. (d) MMD optimum
- σ = 0.9237. Comparison of the optimization approaches on
their best chosen σ parameter with histograms and estimated
probability densities of the weighted training and target sets.
Target sets are normally distributed.

distribution for the target. The metrics are drawn with median
and 0.25− 0.75− quantiles through cross-validation to avoid
over-fitting.

From Fig. 5(d), we see that the combination BO + WD
and GS+WD seem to agree most of the time concerning the
range of σ. This is not the case between BO + J and GS + J
as shown in Fig. 5(b) as the landscape of the WD metric is
straightforward with one global minimum compared to the J
score, the BO converges more often to the actual minimum.
This is not the case for the J score. Still, what is surprising
is that both algorithms optimizing for the J score are the ones
with the minor J score due to the presence of the multiple local
minima of the J landscape. The general observation is that the
BO does not give better results than the more straightforward
GS approach. Indeed, GS gives smaller WD and smaller J
when optimizing as the search space is relatively small (uni-
dimensional). BO could lead to good results if we tried to tune
all the parameters of the KMM simultaneously.

It is visible from Fig. 5(a) and 5(b) that all the J scores
of the five approaches are not very distinct and that the
WD approaches have a fluctuating J. However, despite the
fluctuations, the algorithms optimizing the WD are BO+WD
and GS + WD. The MMD is minimized by the BO + J
combination as it results in the high σ values. The heuristic
approach results in a constant value of σ because the choice
depends not on data size but only on the nature of the

8 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE

(a) (b)

(c)

10
-2

10
-1

10
0

proportion [0,1]

10
-4

10
-2

10
0

10
2

10
4

 vs prop - Target : gauss; Train source : bo

BO + J

GS + J

BO + WD

GS + WD

Heuristic

(d)

Fig. 5: (a) WD - Toy data. (b) J - Toy data. (c) MMD - Toy
data. (d) σ parameter - Toy data. Evolution of the median and
0.25−, 0.75−quantiles of the optimization metrics WD and J
as well as the MMD and the σ parameter with the data size and
comparison between the five possible optimization combina-
tions. The values are obtained by cross-validation (CV = 10).
Dataset : toy regression; Full data size nsamp = 1000 (BO =
Bayesian Optimization; GS = Grid Search)

distributions.
Finally, the algorithms have the same behavior except for

unstable oscillations. Note that there is a general tendency for
the WD to decrease with the data size. This is probably be-
cause the space is covered with more samples, so the weighted
distribution can be refined and have a better statistical distance.

We now compare the different training modes: with and
without the weights computed by the KMM. Fig. 6 and 7
shows the weighted Coefficient of Determination (R2

w) and
the weighted Mean Square Error (MSEw). The values are
computed with cross-validation (CV) to estimate the final
scores on future points drawn with the median and the best-
found CV result’s 0.25−, 0.75− quantiles. We compare two
training modes and the performance on the test set when the
machine is trained on the same test set. The weights are from
the GS + WD. For the training, the full set was split every
time in train and test set in portions of 80% and 20%.

We compare the influence of the training mode (weighted
or not) between the linear model (LIN) and the Support
Vector Regressor (SVR) in Fig. 6, one can compare for the
toy regression problem. The Linear model has its MSEw
improved by the weighting; however, it is not statistically
significant to conclude the SVR model as the model fits
the ground truth properly, and weighting the points does not

(a) (b)

(c) (d)

Fig. 6: (a) Toy data - Linear model - nmax,samp = 1000.
(b)Toy data - Linear model - nmax,samp = 1000. (c) Toy data -
Support Vector Regressor model - nmax,samp = 1000. (d) Toy
data - Support Vector Regressor model - nmax,samp = 1000.
Comparison of the medians and quantiles of the weighted
MSE and R2 between the two training modes: with and
without weights. The values were produced by the SVR
(Support Vector Regressor) and LIN (linear) models for the
toy regression dataset - Test set values were computed on a test
set with 20% of the full data. The weights were obtained with
the WD criterion. The values are obtained by cross-validation
(CV = 10). Full data size nsamp = 1000. (trainw = weighted
training; train = unweighted training; test = training direct
on test set.)

have a considerable effect. The test set result in green can
be interpreted as the maximal possible performance as the
algorithm is trained directly on the test set. However, as the
test set is only 20% of the entire group, its performance is
lower for the complete dataset’s same total proportion p.

Fig. 7 shows the extreme situation in all datasets. Indeed,
R2
w is trending towards 1 with increasing dataset size for the

datasets of toy and adams1hp. On the contrary, the datasets
of adams8hp and simpCar are never above 0. Negative R2

means that we are doing worse than just using the mean value
of the output characteristic values; the model does not learn
anything.

Two possible reasons for such behavior could be that we
are missing data. The system converges to higher solutions
with more data, or the function is under-specified. The model
can not approximate the data by a function in this condition.
This happens if the forward function used is not invertible. In
our case, the inverse of the ADAMS model for adams8hp

THOMAS ET AL.: MITIGATING BIAS IN BAYESIAN OPTIMIZED DATA WHILE DESIGNING MACPHERSON SUSPENSION ARCHITECTURE 9

(a) (b) (c)

(d) (e) (f)

Fig. 7: (a) Analytical car model data (simpCar) - nmax,samp = 1000. (b)Analytical car model data (simpCar) - nmax,samp =
1000. (c) 1 HP ADAMS data - nmax,samp = 511. (d) 1 HP ADAMS data - nmax,samp = 511. (e) 8 HP ADAMS data -
nmax,samp = 142. (f) 8 HP ADAMS data - nmax,samp = 142. Comparison of the weighted MSE and R2 between the two
training modes: with and without weights. The SVR model produced the values for the different datasets (simpCar, adams1hp,
adams8hp) - Test set values were computed on a test set with 20% of the full data. The weights were obtained with the WD
criterion. (trainw = weighted training; train = unweighted training; test = training direct on test set.)

was not guaranteed. It is probably not invertible, and the
simpCar model is similar. The adams1hp model, on the
other hand, is invertible in the region studied. Indeed, if one
trains a system in a forward way for the simpCar model, the
system has enough points to approximate the function, and
the R2 values are close to 1. We can probably accept that the
non-invertibility of simpCar and adams8hp is the reason.
Moreover, one could argue that the small number of points
(nsamp = 142) for adams8hp could be the reason. However,
because adams8hp is a black box model similar to simpCar,
we assume that more data for the 8 HP setup does not increase
the performance.

Remark also that the function is very well approximated and
possibly simple because R2

w is almost 1 for the adams1hp
dataset. This is confirmed by comparing with the linear model
for which R2

w = 0.9869 for the total dataset size of 1000
points. Because the adams1hp has been sampled on a minimal

space area (1 [cm3]), the relations are well approximated by
a linear hyper-plane. Because of these extreme situations for
learning, more needs to be said about the efficiency of the
training mode. The weighted MSE is worse for the models
that are not invertible, but it needs to be more apparent for
the 1 HP, and toy regression results were insignificant. This
is still due to a proper function well approximated without
weighting because of its non-complexity.

Next, we compare the performance metrics for the different
systems (GP, SVR, LIN, and KRR) and their evolution with
data size. We use the data of BO samples and the average
target distribution to compare the influence of the data source
on the final performances. Fig. 8(a) and 8(b) shows that GP,
SVR, and KRR are better than the LIN model, even after the
weighting. Fig. 8(c) and 8(d) shows that for 1 HP set, the SVR
seems to be consistently better than the other systems.

10 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE

(a) (b) (c) (d)

Fig. 8: (a) Toy data. (b) Toy data. (c) 1 HP ADAMS data. (d) 1 HP ADAMS data. Comparison of the weighted MSE and R2

between the four trained algorithms for a − b) the toy regression d − e) 1 HP ADAMS data. The weighted trained models
produce the weighted metrics. (LIN = linear; SVR = Support Vector Regressor; KRR = Kernel Ridge Regression; GP =
Gaussian Process)

D. Comparison of performances due to data source

Next, we study the influence of the initial dataset distribu-
tion (BO-based or uniform) on the final performances of the
test sets. The comparison is made for all systems and both
target distributions: the standard and uniform. We compare
based on MSEw with weights and data originating from the
BO MSEw,bo and Uniform sets of samples MSEw,unif for
each regression and are linked to the exact risk minimization
as they have the same target. However, it can happen only if
the KMM ideally chooses the weights.

Note that because there is no standard unbiased metric to
compare all the combinations, the only analysis possible is to
look at both MSEw values. If they agree on a data source with
minor errors for both of them for a given target, then we say
it produces better performances for the given target.

The MSE measures are produced for the complete datasets
of size nsamp = 1000. The best system was selected for each
algorithm for each target set and each training source using
GridSearch. After that, each best system was evaluated on
the test set. The whole experiment was repeated five times to
estimate each combination’s mean and standard deviation. The
process was only done for the 1 HP and toy regression setups
because they are the only ones where the system converges,
as shown in Tables II and III.

Table II shows that for the toy regression, the linear model
has both metrics with means smaller for the BO training data.
It is the case for both targets. For the KRR and SVR linear
model and the uniform target, the standards of the MSEw
agree that the consistent training data for the constant target
is the best. This is probably because the KMM works better
to reproduce the suitable target distribution if the training
distribution is non-zero at any point of the target. In other
words, because the training samples of BO are concentrated
at the center of the space, the KMM reproduces a good target
if the target is uniform in the space.

In all other combinations, the results seem to be mainly
influenced by the bias: the best data source is chosen by
MSEw,bo and MSEw,unif are respectively the BO and Uniform
training sets. Nevertheless, note that it is hard to affirm that

Algo TargSo TrSo MSEw,bo MSEw,unif

LIN normal bo (5.38± 0.93) e−4 (4.44± 0.85) e−4
unif (5.57± 0.36) e−4 (4.61± 0.63) e−4

unif bo (4.7± 0.46) e−3 (5.4± 0.59) e−3
unif (5.3± 0.57) e−3 (5.5± 0.41) e−3

KRR normal bo (4.21± 0.68) e−4 (3.75± 0.75) e−4
unif (4.61± 0.73) e−4 (3.2± 0.25) e−4

unif bo (1.49± 0.25) e−4 (1.4± 0.23) e−4
unif (1.47± 0.5) e−4 (1.15± 0.18) e−4

SVR normal bo (4.27± 0.64) e−4 (3.87± 0.69) e−4
unif (4.74± 0.67) e−4 (3.26± 0.27) e−4

unif bo (1.64± 0.26) e−4 (1.53± 0.24) e−4
unif (1.56± 0.55) e−4 (1.21± 0.13) e−4

GP normal bo (4.33± 0.64) e−4 (3.36± 0.87) e−4
unif (4.53± 0.74) e−4 (3.11± 0.24) e−4

unif bo (1.29± 0.27) e−4 (1.33± 0.17) e−4
unif (1.46± 0.44) e−4 (1.16± 0.20) e−4

TABLE II: Artificial data - Toy regression - Weighted MSE
values on the test sets for comparison between the training
data distribution types (BO, Uniform) for each target data
distribution type (Normal, Uniform). Values having the lowest
mean are shown in bold. Both MSEw,bo and MSEw,unif
mean the weighted MSE on the test data and weights coming
respectively from BO and Uniform distributions

the differences in the data source are significant given the
standard deviation values for all these results. If there is a
slight advantage in the mean effect, it is not evident and
considerable. As seen in previous sections, the only significant
difference is the recurrent fact that the SVR, GP, and KRR
are close to each other but significantly better than the linear
model. Ain these results are surprising.

Concerning the 1 HP setup of ADAMS, the data source
that seems to give the best results for most algorithms with a
standard target is uniform training. The fact that it is recurrent
for all algorithms seems quite significant. This is different from
toy regression. Alternatively, the uniform target needs to be
clarified. Finally, the linear model’s performances are less far
from the other linear model than the toy regression, showing
the high linearity of the 1 HP problem.

THOMAS ET AL.: MITIGATING BIAS IN BAYESIAN OPTIMIZED DATA WHILE DESIGNING MACPHERSON SUSPENSION ARCHITECTURE 11

Algo TargSo TrSo MSEw,bo MSEw,unif

LIN normal bo (3.28± 4.19) e−4 (4.17± 3.76) e−5
unif (2.85± 2.44) e−4 (1.53± 0.50) e−6

unif bo (1.05± 0.65) e−2 (3.91± 5.26)
unif (7.1± 3.7) e−3 (2.2± 2.6) e−3

KRR normal bo (3.12± 4.11) e−4 (2.58± 2.03) e−5
unif (2.84± 2.43) e−4 (1.77± 0.68) e−6

unif bo (3.5± 1.3) e−3 (2.14± 1.05) e−2
unif (7.2± 3.7) e−3 (3.1± 3.4) e−3

SVR normal bo (3.13± 4.35) e−4 (1.51± 0.47) e−4
unif (2.86± 2.42) e−4 (2.44± 2.08) e−6

unif bo (4.3± 1.9) e−3 (5.63± 2.84) e−2
unif (7.0± 3.7) e−3 (2.6± 3.6) e−3

GP normal bo (3.05± 4.38) e−4 (9.93± 4.88) e−5
unif (2.84± 2.44) e−4 (2.44± 1.28) e−8

unif bo (5.3± 2.6) e−3 (6.48± 1.59) e−2
unif (7.1± 3.7) e−3 (2.7± 3.7) e−3

TABLE III: ADAMS data - 1 HP - Weighted MSE values on the
test sets for comparison between the training data distribution
types (BO, Uniform) for each target data distribution type
(Normal, Uniform). Values having the lowest mean are shown
in bold. Both MSEw,bo and MSEw,unif mean the weighted
MSE on the test data and weights coming respectively from
BO and Uniform distributions

E. Benefits of KMM

The data collected using Bayesian Optimization for auto-
motive design shows a selection bias in the data [58]. We
assume the bias to be a covariate shift since it is impossible
to correct shift absent assumptions [58]. We see that KMM
is adaptive since it is not needed in advance to know the
parameters of the regularization constant compared to other
approaches. Since KMM uses the training and testing data in
the learning phase, it converges faster, and the rate of several
training samples ntr increases. KMM converges at the rate
of O(n−

1
2

tr + n
− 1

2
te) when the regression function lies in the

RKHS [59]. KMM works very well in our high dimensional
case since it estimates the important values at training points
without going through density estimation [60, 61].

V. CONCLUSION

This paper deals with the dataset shift on the samples
generated by the multibody simulation tool for automotive
data. We analyzed the performance while tuning the Kernel
Mean Matching using Wasserstein Distance and analyzed the
regression performance for several parameters. This paper
helps a car manufacturer decide the target characteristics
based on specific hardpoint selection. In this work, we de-
sign the hardpoints of the vehicle using the required target
characteristics. Many further studies can be conducted using
a higher sample space and a higher number of hardpoints.
The limitation of this method lies in the higher dimensional
input space. The higher dimensional space leads to boundary
problems in BO due to the curse of dimensionality.

REFERENCES

[1] M. Blundell and D. Harty, “The Multibody Systems Approach to Vehicle
Dynamics 2nd Edition,” 2014.

[2] R. J. Melosh, “Finite Element Analysis of Automobile Structures,” SAE
Transactions, pp. 1341–1355, 1974.

[3] E. S. MacPherson, “Vehicle Wheel Suspension System,” 1953, US Patent
2,624,592.

[4] E. S. Macpherson, “Wheel Suspension for Motor Vehicles,” 1953, US
Patent 2,660,449.

[5] M. Software, “ADAMS: Multibody Dynamics Simulation Software,” url:
https://www.mscsoftware.com/product/adams, last checked on 2020-08-
01.

[6] S. S. Thomas, J. Palandri, M. Lakehalayat, P. Chakravarty, F. Wolf-
Monheim, and M. B. Blaschko, “Designing MacPherson Suspension
Architectures using Bayesian Optimization,” in Benelearn, 2019.

[7] S. S. Thomas, J. Palandri, M. Lakehal-ayat, P. Chakravarty, F. Wolf-
Monheim, and M. B. Blaschko, “Kinematics Design of a MacPherson
Suspension Architecture based on Bayesian Optimization,” IEEE Trans-
actions on Cybernetics, vol. 53, no. 4, pp. 2261–2274, Apr 2023.

[8] M. S. Fallah, R. Bhat, and W.-F. Xie, “H∞ Robust Control of Semi-
active Macpherson Suspension System: New Applied Design,” Vehicle
System Dynamics, vol. 48, no. 3, pp. 339–360, 2010.

[9] A. A. Patil, “Mathematical Model for Kinematic Analysis of MacPher-
son Strut Suspension,” SAE Technical Paper, Tech. Rep., 2016.

[10] S. Dehbari and J. Marzbanrad, “Kinematic and Dynamic Analysis for A
New MacPherson Strut Suspension System,” Mechanics and Mechanical
Engineering, vol. 22, no. 4, pp. 1223–1238, 2018.

[11] Z. Chi, Y. He, and G. F. Naterer, “Design Optimization of Vehicle Sus-
pensions with a Quarter-vehicle Model,” Transactions of the Canadian
Society for Mechanical Engineering, vol. 32, no. 2, pp. 297–312, 2008.

[12] X. Liu, M. Wang, X. Wang, C. Li, H. Guo, and J. Luo, “Hardpoint
Correlation Analysis and Optimal Design for Front Suspension of A
Formula SAE Car,” Australian Journal of Mechanical Engineering,
vol. 13, no. 2, pp. 67–76, 2015.

[13] M. L. Felzien and D. Cronin, “Steering Error Optimization of the
MacPherson Strut Automotive Front Suspension,” Mechanism and Ma-
chine Theory, vol. 20, no. 1, pp. 17–26, 1985.

[14] Q. Gao, J. Feng, and S. Zheng, “Optimization Design of the Key
Parameters of MacPherson Suspension Systems using Generalized
Multi-dimension Adaptive Learning Particle Swarm Optimization,” The
Institution of Mechanical Engineers, Part D: Journal of Automobile
Engineering, vol. 233, no. 13, pp. 3403–3423, 2019.

[15] Z. Su, F. Xu, L. Hua, H. Chen, K. Wu, and S. Zhang, “Design
Optimization of Minivan MacPherson-strut Suspension System based on
Weighting Combination Method and Neighborhood Cultivation Genetic
Algorithm,” The Institution of Mechanical Engineers, Part D: Journal
of Automobile Engineering, vol. 233, no. 3, pp. 650–660, 2019.

[16] B. Sauthoff and R. Lachmayer, “Generative Design Approach for
Modelling of Large Design Spaces,” in World Conference on Mass
Customization, Personalization, and Cocreation, 2014, pp. 241–251.

[17] A. Nilsson and M. Thönners, “A Framework for Generative Product
Design Powered by Deep Learning and Artificial Intelligence: Applied
on Everyday Products,” 2018.

[18] M. Cherti, “Deep Generative Neural Networks for Novelty Generation:
A Foundational Framework, Metrics and Experiments,” Ph.D. disserta-
tion, 2018.

[19] E. Brochu, V. M. Cora, and N. De Freitas, “A Tutorial on Bayesian
Optimization of Expensive Cost Functions, With Application to Active
User Modeling and Hierarchical Reinforcement Learning,” CoRR, vol.
abs/1012.2599, 2010.

[20] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas,
“Taking the Human out of the Loop: A Review of Bayesian Optimiza-
tion,” Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2015.

[21] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian Optimiza-
tion of Machine Learning Algorithms,” in NeurIPS, 2012, pp. 2951–
2959.

[22] J. Mockus, “On Bayesian Methods for Seeking the Extremum,” in IFIP
Technical Conference. Springer-Verlag, 1974, p. 400–404.

[23] M. Poloczek, J. Wang, and P. Frazier, “Multi-Information Source Opti-
mization,” in NeurIPS, vol. 30, 2017, pp. 4288–4298.

[24] S. F. Ghoreishi and M. Imani, “Bayesian Optimization for Efficient
Design of Uncertain Coupled Multidisciplinary Systems,” in ACC, 2020,
pp. 3412–3418.

[25] R. Baptista and M. Poloczek, “Bayesian Optimization of Combinatorial
Structures,” in ICML, 2018, pp. 462–471.

[26] V. Nguyen, S. Gupta, S. Rana, C. Li, and S. Venkatesh, “Regret for
Expected Improvement over the Best-Observed Value and Stopping
Condition,” in ACML, vol. 77, Nov 2017, pp. 279–294.

[27] W. Lyu, P. Xue, F. Yang, C. Yan, Z. Hong, X. Zeng, and D. Zhou, “An
Efficient Bayesian Optimization Approach for Automated Optimization
of Analog Circuits,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 65, no. 6, pp. 1954–1967, Jun 2018.

https://www.mscsoftware.com/product/adams

12 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE

[28] H. Hu, P. Li, and J. Z. Huang, “Enabling High-Dimensional Bayesian
Optimization for Efficient Failure Detection of Analog and Mixed-Signal
Circuits,” in DAC, 2019, pp. 17:1–17:6.

[29] R. Lam, M. Poloczek, P. Frazier, and K. E. Willcox, “Advances in
Bayesian Optimization with Applications in Aerospace Engineering,”
in AIAA Non-Deterministic Approaches Conference, 2018, p. 1656.

[30] J. Gonzalvez, E. Lezmi, T. Roncalli, and J. Xu, “Financial Applica-
tions of Gaussian Processes and Bayesian Optimization,” CoRR, vol.
abs/1903.04841, 2019.

[31] S. Sano, T. Kadowaki, K. Tsuda, and S. Kimura, “Application of
Bayesian Optimization for Pharmaceutical Product Development,” Jour-
nal of Pharmaceutical Innovation, Mar 2019.

[32] J. Kocijan and A. Grancharova, Application of Gaussian Processes to
the Modelling and Control in Process Engineering. Springer, 2014, pp.
155–190.

[33] H. Wang, H. Xu, Y. Yuan, J. Deng, and X. Sun, “Noisy Multiobjective
Black-box Optimization Using Bayesian Optimization,” in GECCO,
2019, pp. 239–240.

[34] J. Kirschner, M. Mutny, N. Hiller, R. Ischebeck, and A. Krause,
“Adaptive and Safe Bayesian Optimization in High Dimensions via One-
Dimensional Subspaces,” in ICML, vol. 97, Jun 2019, pp. 3429–3438.

[35] J. Cui, B. Yang, B. Sun, and J. Liu, “Cost-aware graph generation: A
deep bayesian optimization approach,” AAAI, vol. 35, no. 8, pp. 7142–
7150, May 2021.

[36] J. Cui, B. Yang, B. Sun, X. Hu, and J. Liu, “Scalable and Parallel Deep
Bayesian Optimization on Attributed Graphs,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 33, no. 1, pp. 103–116,
2022.

[37] A. Gretton, A. Smola, J. Huang, M. Schmittfull, K. Borgwardt, and
B. Schölkopf, Dataset Shift in Machine Learning. Cambridge, MA:
MIT Press, 2008, pp. 131–160.

[38] J. Huang, A. J. Smola, A. Gretton, K. M. Borgwardt, and B. Schölkopf,
“Correcting Sample Selection Bias by Unlabeled Data,” in NeurIPS,
2006, pp. 601–608.

[39] W. Jitkrittum, P. Sangkloy, M. W. Gondal, A. Raj, J. Hays, and
B. Schölkopf, “Kernel Mean Matching for Content Addressability of
GANs,” in ICML, vol. 97, 2019, pp. 3140–3151.

[40] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola,
“A Kernel Two-Sample Test,” JMLR, vol. 13, no. 25, pp. 723–773, 2012.

[41] Y. Chen, M. Welling, and A. Smola, “Super-Samples from Kernel
Herding,” in UAI, 2010, p. 109–116.

[42] F. Bach, S. Lacoste-Julien, and G. Obozinski, “On the Equivalence
between Herding and Conditional Gradient Algorithms,” in ICML, 2012,
p. 1355–1362.

[43] S. Lacoste-Julien, F. Lindsten, and F. Bach, “Sequential Kernel Herding:
Frank-Wolfe Optimization for Particle Filtering,” in AISTATS, 2015, pp.
544–552.

[44] W. Y. Chen, L. W. Mackey, J. Gorham, F. Briol, and C. J. Oates, “Stein
Points,” in ICML, 2018, pp. 843–852.

[45] Y. Yu and C. Szepesvari, “Analysis of Kernel Mean Matching under
Covariate Shift,” CoRR, vol. abs/1206.4650, 2012.

[46] Y.-Q. Miao, A. K. Farahat, and M. S. Kamel, “Auto-Tuning Kernel Mean
Matching,” in ICDM Workshops, 2013, pp. 560–567.

[47] V. N. Vapnik, Statistical Learning Theory. Wiley-Interscience, 1998.
[48] J. Yu and M. Blaschko, “A Convex Surrogate Operator for General Non-

Modular Loss Functions,” in AISTATS, vol. 51, May 2016, pp. 1032–
1041.

[49] M. Blaschko, “Advances in Empirical Risk Minimization for Image
Analysis and Pattern Recognition,” Ph.D. dissertation, ENS Cachan,
Nov. 2014.

[50] V. N. Vapnik, The Nature of Statistical Learning Theory. Springer-
Verlag New York, Inc., 1995.

[51] M. Sugiyama, M. Krauledat, and K.-R. Müller, “Covariate Shift Adap-
tation by Importance Weighted Cross Validation,” JMLR, vol. 8, p.
985–1005, Dec. 2007.

[52] Y. Miao, A. K. Farahat, and M. S. Kamel, “Auto-Tuning Kernel Mean
Matching,” in IEEE ICDM Workshops, 2013, pp. 560–567.

[53] J. Gillberg and D. Zapardiel, “Steering Performance Dependence on
Front Suspension Design,” Master’s thesis, Chalmers University of
Technology, 2015.

[54] B. Schölkopf, A. J. Smola, F. Bach et al., Learning with Kernels: Support
Vector Machines, Regularization, Optimization, and Beyond. MIT press,
2002.

[55] M. Sugiyama, T. Suzuki, and T. Kanamori, Density Ratio Estimation in
Machine Learning. Cambridge University Press, 2012.

[56] J. Quionero-Candela, M. Sugiyama, A. Schwaighofer, and N. D.
Lawrence, Dataset Shift in Machine Learning. The MIT Press, 2009.

[57] W. J. Youden, “Index for Rating Diagnostic Tests,” Cancer, vol. 3, no. 1,
pp. 32–35, 1950.

[58] S. Rabanser, S. Günnemann, and Z. Lipton, “Failing Loudly: An
Empirical Study of Methods for Detecting Dataset Shift,” in NeurIPS,
vol. 32, 2019.

[59] F. Li, H. Lam, and S. Prusty, “Robust Importance Weighting for
Covariate Shift,” in AISTATS, vol. 108, Aug 2020, pp. 352–362.

[60] T. Kanamori, S. Hido, and M. Sugiyama, “A Least-squares Approach to
Direct Importance Estimation,” JMLR, vol. 10, no. 48, pp. 1391–1445,
2009.

[61] M. Cheng and X. You, “Adaptive Matching of Kernel Means,” in ICPR,
2020, pp. 2498–2505.

Sinnu Susan Thomas is currently a faculty member at the Department
of Computer Science and Engineering, Digital University Kerala (formerly
IIITMK), India.

Guillaume Lamine @ Eura Nova is currently a Machine Learning Engineer
at EuraNova, Belgium.

Jacopo Palandri is currently a Project Manager and Research Engineer at
the Ford Research and Innovation Center in Aachen (Germany).

Mohsen Lakehal-ayat is currently a Senior Engineer at the Ford Research
and Innovation Center in Aachen (Germany).

Punarjay Chakravarty is currently a Staff Edge ML Engineer at Planet,
USA.

Friedrich Wolf-Monheim is currently a Project Manager at the Ford Research
and Innovation Center in Aachen (Germany) and a Lecturer at the Institute
of Structural Mechanics and Lightweight Design of the RWTH Aachen
University.

Matthew B. Blaschko is currently a faculty member at the Electrical
Engineering Department, KU Leuven, Belgium.

	Introduction
	Literature Review
	Data Shift in Automotive Setting
	Inverse Problem in BO
	Minimizing Risk functional
	Dataset Shift Paradigm
	Kernel Mean Matching

	Experimental Results
	Toy Regression Data
	Automotive dataset
	Validation of KMM
	Comparison of performances due to data source
	Benefits of KMM

	Conclusion
	References
	Biographies
	Sinnu Susan Thomas
	Guillaume Lamine
	Jacopo Palandri
	Mohsen Lakehal-ayat
	Punarjay Chakravarty
	Friedrich Wolf-Monheim
	Matthew B. Blaschko

