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Globally Optimal SISO H2-Norm Model Reduction Using Walsh’s Theorem

Sibren Lagauw, Oscar Mauricio Agudelo, and Bart De Moor Fellow, IEEE & IFAC & SIAM

Abstract— We present a novel methodology for single-

input single-output (SISO) H2-norm model reduction that

guarantees global optimality of the obtained solution(s). By

exploiting Walsh’s theorem, which is an elegant formulation

of the first-order necessary conditions for optimality, we

reformulate the model reduction problem as a multiparameter

eigenvalue problem (MEVP), the real-valued eigentuples of

which characterize the globally optimal solution(s) of the

model reduction problem. While aiming for global optimality

comes at the cost of a combinatorial growth of the problem

complexity for increasing model orders, the novel methodology

allows us to tackle larger problems compared to the few other

globally optimal approaches in the literature. In particular, the

degree of the obtained MEVP is independent of the order of

the original higher order and obtained reduced-order model,

a property that is favorable from a computational point of

view. We perform three numerical experiments to illustrate

the effectiveness of the methodology.

Model/Controller reduction; Linear systems; Optimization

I. INTRODUCTION

We consider the model reduction problem for systems
in M, the class of minimal, stable, causal single-input
single-output (SISO) linear time-invariant (LTI) continuous-
time systems with real-valued impulse response, a problem
that already has been studied extensively, see e.g., [1], [2]
and references therein. The model reduction problem can
be summarized as follows: given a strictly proper transfer
function H(s) 2 M of order n,

H(s) =
b(s)

a(s)
=

bn�1s
n�1 + · · ·+ b1s+ b0

sn + an�1s
n�1 + · · ·+ a1s+ a0

, (1)

we search for a model Ĥ(s) 2 M of order m < n,

Ĥ(s) =
b̂(s)

â(s)
=

b̂m�1s
m�1 + · · ·+ b̂1s+ b̂0

sm + âm�1s
m�1 + · · ·+ â1s+ â0

, (2)

so that Ĥ(s) is a ‘good approximation’ of H(s). Define
the coefficient vectors a, b 2 Rn as (an�1, . . . , a0)T and
(bn�1, . . . , b0)T respectively, and define â, b̂ 2 Rm similarly
using the coefficients of respectively â(s), b̂(s).
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In this letter, we seek for an approximant Ĥ(s) that
minimizes the H2-norm of the approximation error E(s) =
H(s)� Ĥ(s). The problem under consideration becomes:

Ĥ(s) 2 argmin
Ĥ(s)2M

J
2
, (3)

where
J
2 = kE(s)k2

H2
=

1

2⇡

Z 1

�1
|H(j!)� Ĥ(j!)|2 d!

=

Z 1

0

⇣
h(t)� ĥ(t)

⌘2
dt,

(4)

with h(t) and ĥ(t) the impulse responses of H , Ĥ , respec-
tively. Assuming that H and Ĥ are stable implies that the
roots of a(s) and â(s) lie in left half-plane of the complex
s-plane, guaranteeing that the H2-norm is well-defined [2].

The optimization problem in (3) over the decision vari-
ables {âi, b̂i}i=0,...,m�1 is generally non-convex, implying
that the solution space can contain (many) local optima.
This non-convexity makes it very challenging to aim for
global optimality. Instead, state-of-the-art techniques ‘solve’
the problem by iteratively computing a solution that satisfies
the first-order necessary conditions for optimality (FONC),
i.e., a stationary point of the optimization problem in (3).
These FONC have been formulated both in terms of Lya-
punov equations [3], [4] and interpolatory conditions [5], [6],
dividing the landscape of high-performance algorithms into
interpolation-based methods (e.g., [6], [7]) and Lyapunov-
based methods (e.g., [8]). Note that both frameworks for the
FONC have been shown to be equivalent [6, Lemma 3.7].

Although the above-mentioned iterative techniques are
very useful in practice, we consider them suboptimal from
a mathematical point of view: their performance depends
heavily on the heuristic choice of a ‘good’ initial point and at
most local optimality with respect to (3) can be guaranteed.
By contrast, we deem the model reduction problem mathe-
matically ‘solved’ if and only if the globally optimal reduced
model(s) have been identified up to machine precision by
means of a deterministic procedure, e.g., by solving a system
of linear equations or an eigenvalue problem.

The approach of the few existing globally optimal meth-
ods [9]–[12] is, roughly speaking, to compute all reduced
models that satisfy the FONC of (3), so that this set of
stationary points is guaranteed to contain the globally op-
timal reduced model(s). Inspired by iterative rational Krylov
algorithms (e.g., [6]), the author of [11] shows that all
optimal sets of interpolation points, which implicitly define
the stationary points Ĥ(s), can be retrieved via a multipa-
rameter eigenvalue problem (MEVP) [13]. In particular, each
eigentuple of the MEVP is used to construct a univariate
polynomial, the roots of which correspond to a set of



interpolation points. The coefficient matrices of the MEVP
are composed using a state-space model of the higher order
system. The methodology is a generalization of the results
in [9], where only first- and second-order reduced models
are considered. Alternatively, the authors of [12] exploit the
Lyapunov equation to rewrite the objective function (4) in
terms of a controllability Grammian, where they use the
control canonical form to describe the reduced model in
terms of the model parameters {âi, b̂i}i=0,...,m�1. In turn,
the authors reformulate the FONC of this obtained objective
function as an MEVP, the eigentuples/-vectors of which
contain the optimal model parameters. For the case of order-
one reductions, the authors of [10] retrieve the globally
optimal solution(s) via the common roots of a system of
quadratic polynomial equations.

Aiming for global optimality comes at the cost of an
(enormous) increase in computational burden. The efficiency
of the globally optimal methods [11], [12] is completely
determined by the difficulty involved with the computation
of all the eigentuples of the obtained MEVP. So, it is clear
that the viability of these approaches depends on the degree
and the size of the to-be-solved MEVPs.

Contributions: In this letter, we propose a novel
methodology for globally optimal SISO H2-norm model
reduction. The methodology combines properties of the two
globally optimal approaches in the literature: we use the
interpolatory framework of the FONC (Walsh’s theorem) to
reformulate the problem as an MEVP, similarly as in [11],
and the optimal model parameters can be retrieved directly
from the eigentuples and eigenvectors of the obtained MEVP,
similarly as in [12]. However, contrary to the existing ap-
proaches [11], [12], the proposed methodology solely uses
the frequency-domain representation (transfer function) of
the models, eliminating the use of state-space descriptions.
Furthermore, we argue that the MEVPs obtained with the
proposed methodology have favorable properties from a com-
putational point of view, especially noticeable for growing
model orders. Lastly, this letter provides a concise summary
of the literature related to globally optimal H2 model reduc-
tion.

Remark: Note that we do not insinuate that the above-
mentioned ‘approximate’ methods [6]–[8] are not useful in
practice. The globally optimal approaches should not be
considered as meant to be competitive with respect to these
established techniques in the context of large-scale models.
Rather, we address a theoretical problem, the solution of
which could potentially be used for benchmarking purposes.

II. CHARACTERIZING FIRST-ORDER OPTIMALITY

In this Section, we briefly describe the interpolatory for-
mulation of the FONC of the model reduction problem in (3).
In the context of systems theory and control, these optimality
conditions date back to the 1940s, where they arose from
a network-synthesis problem considering real-valued and
simple poles [14]. Later, the framework has been generalized
to multiple poles that are allowed to be complex-valued [5].
Model reduction for linear systems interacts in many ways

with the mathematical discipline of approximation on the
complex domain, a connection investigated in [15]. In par-
ticular, the model reduction problem in (3) and its equivalent
for discrete-time systems can be considered as rational l2-
approximation problems, see e.g., [1]. So, it comes as no
surprise that the interpolatory conditions derived in [5], [14]
were already known in the field of classical analysis in the
1920s, e.g., by Walsh [16].
A. Interpolatory conditions for optimality

Theorem 1 (Meier and Luenberger [5]): Given a stable
SISO model H(s) 2 M of order n, let Ĥ(s) of order m

(m<n) be a stationary point of the H2-norm model reduction
problem in (3). Then for all poles pi of Ĥ(s),

H(�pi)
(j) = Ĥ(�pi)

(j)
, j = 0, . . . , di, (5)

where di is the multiplicity of the pole pi and the superscript
j denotes the jth derivative with respect to s, i.e.,

F (a)(j) =
djF (s)

dsj

����
s=a

,

for any function F (s) and a 2 C.
We give a high-level view on how the conditions in (5)

follow naturally from the model reduction problem (3),
assuming, for the ease of notation, that Ĥ(s) has simple poles
only. By expressing Ĥ(s) in a partial fraction expansion:

Ĥ(s) =
c1

s� p1
+

c2

s� p2
+ · · ·+ cm

s� pm
, (6)

the model reduction problem (3) becomes an optimization
problem over the 2m decision variables ci and pi. The FONC
could now be constructed by equating all partial derivatives
of J

2 with respect to the real and imaginary parts of these
decision variables to zero. However, Wirtinger derivatives1

can be used to deal with the complex decision variables,
resulting in an equivalent but more elegant formulation of
the FONC. The Wirtinger derivative of J

2 with respect to
ci, where Ĥ(s) is parametrized as in (6) and ci denotes the
complex conjugate of ci, gives:

@J
2

@ci
=

1

2⇡j

Z
j1

�j1

⇣
H(s)� Ĥ(s)

⌘
@

@ci

⇣
H(s)� Ĥ(s)

⌘
ds

=
�1

2⇡j

Z
j1

�j1

⇣
H(s)� Ĥ(s)

⌘✓ 1

s� pi

◆
ds, (7)

and similarly:

@J
2

@pi
=

�1

2⇡j

Z
j1

�j1

⇣
H(s)� Ĥ(s)

⌘✓
ci

(s� pi)2

◆
ds. (8)

Because the objective function J
2 is real-valued, we know

that the partial derivatives with respect to ci and pi are equal
to the complex conjugates of (7) and (8), respectively:

✓
@J2

@ci

◆
=

@J
2

@ci
and

✓
@J2

@pi

◆
=

@J
2

@pi
.

1The Wirtinger derivative of f(s, s) wrt. s (resp. s) is calculated using the
standard rules of differentiation, while considering the variable s (resp. s)
as a constant, i.e., s and s are treated as two independent variables for the
purpose of differentiation. This is also called CR-calculus [17].



It therefore suffices to equate the expressions in (7)–(8) to
zero for all i = 1, . . . ,m, to compose the FONC. Using
properties of the Laplace transform, these 2m equations can
be shown to be equivalent to the interpolatory conditions
described in Theorem 1. See, e.g., [5], for more details.
B. Walsh’s theorem

The conditions in Theorem 1 can be expressed compactly
using the polynomial â(�s), which has the mirror images of
the poles pi of the approximant Ĥ(s) as its roots.

Theorem 2 (Regalia [1]): Given a stable SISO model
H(s) 2 M of order n, let Ĥ(s) of order m with m<n

be a stationary point of the model reduction problem (3).
Then for all s 2 C:

H(s)� Ĥ(s) =
b(s)

a(s)
� b̂(s)

â(s)
=


â(�s)

â(s)

�2
G(s), (9)

with G(s) the Laplace-transform of some real-valued, stable
and causal signal, and where a(s), b(s), â(s) and b̂(s) are
defined as in (1)–(2).

The denominator of the right-hand side of (9) contains
the factor [â(s)]2 to illustrate that the residual contains an
‘all-pass’ filter defined by the poles of Ĥ(s), hinting to the
connection with the operator-theoretic result of Beurling–
Lax2. Because the roots of â(s) lie in the complex left half-
plane, the factor could equally well be ‘absorbed’ into G(s).

The formulation in (9) has been encountered in [18] and
the equivalent relation phrased for discrete-time models,
which is similar to the continuous-time case upon changing
the setting from the Laplace- to the z-domain, has been
derived as a limiting case of an iterative model reduction
algorithm [19], based on polynomial algebra [20] and using
the result of Beurling–Lax [1]. The author of [1] labeled
the result as Walsh’s theorem, recognizing its origins within
approximation theory. The relation has been extended to
multiple-input multiple-output (MIMO) models in [21] and
[22], in the continuous- and discrete-time setting respectively.

III. METHODOLOGY

In this Section, we show how Theorem 2 can be exploited
to retrieve all mth order stationary points Ĥ(s) of the model
reduction problem in (3) via the eigentuples of an MEVP.
A. System of multivariate polynomial equations

Theorem 3: For any given stable SISO model H(s) of
order n and mth order approximant Ĥ(s) with m<n as
defined in (1)–(2), define the polynomial,

l(s) = b(s)â(s)� a(s)b̂(s)� [â(�s)]2G̃(s), (10)

where G̃(s) is a polynomial parametrized in the coefficients
g = (g0, . . . , gn�m�1)T 2 Rm�n:

G̃(s) = gn�m�1s
n�m�1 + · · ·+ g1s+ g0.

2The transfer function of systems in M can be considered as an element
of the Hardy space H2 of functions analytic on the complex right half-
plane (for discrete-time systems this becomes the Hardy space of functions
analytic on the exterior of the unit-disc). Beurling–Lax’s theorem describes
how an inner function (in this case the all-pass filter) induces an orthogonal
decomposition of this space into two shift-invariant subspaces [1].

Then, Ĥ(s) is a stationary point of (3) if and only if,

9 g s.t. l(s) = 0, 8s 2 C. (11)

Proof: Define G̃(s) = G(s)[a(s)/â(s)] so that we can
rewrite (9) from Theorem 2 as,

b(s)â(s)� a(s)b̂(s) = [â(�s)]2G̃(s). (12)

The left-hand side of (12) is a polynomial in s of degree
n+m�1, so that G̃(s) must be a polynomial of degree
n�m�1. It follows that, given a stable SISO model H(s) of
order n and a stationary point Ĥ(s) of order m of the model
reduction problem (3), there exists a polynomial G̃(s) such
that (11) holds. This proves the ) direction. Conversely,
if, for a given approximant Ĥ(s) of order m, there exists
a polynomial G̃(s) such that (11) is true, then (9) holds as
well. The latter implies that Ĥ(s) satisfies the interpolatory
conditions described in Theorem 1, indicating that Ĥ(s) is
a stationary point of the model reduction problem in (3).

Proposition 1: Let fk be the coefficient corresponding to
s
k in the polynomial from (10) and consider the parameter

vectors â, b̂ 2 Rm containing the coefficients of respectively
â(s) and b̂(s) as in (2). Define the algebraic variety,

VR =
�
(â, b̂, g) 2 Rm+n : fk(â, b̂, g) = 0,

8k = 0, . . . ,m+n�1
 
,

(13)

and consider the subvariety V 0
R ✓ VR that contains the tuples

(â, b̂, g) 2 VR for which all roots of â(s) lie in the complex
left half-plane. Then, we know by Theorem 3 that the tuples
in V 0

R describe all mth order stationary points Ĥ(s) of (3).
Stationary points for which Ĥ(s) has one or more pole-

zero cancellations – the order of Ĥ(s) is strictly smaller
than m – are not described by the relation in (9). As such,
they cannot be retrieved via V 0

R. However, these stationary
points have been shown to correspond to saddle points of the
H2-norm model reduction problem [1, Theorem 5.3] and, by
consequence, they are of no interest to us in our search for
the globally optimal minimizer of (3).

Example 1: Consider the third order model used in [12]:

H(s) =
s
2 + 9s� 10

s3 + 12s2 + 49s+ 78
,

for which we search the optimal first-order (m = 1) approx-
imation. The polynomial l(s) from (10) is equal to,

(1� g1 � b̂0)s
3 + (â0 � 12b̂0 � g0 + 2â0g1 + 9)s2

+ (9â0 � 49b̂0 + 2â0g0 � â
2
0g1 � 10)s

+ (�g0â
2
0 � 10â0 � 78b̂0).

The variety VR defined in (13) corresponds to the set of
real-valued common roots of the following square system of
polynomial equations in the model parameters {â0, b̂0} and
auxiliary variables {g0, g1},

8
>>><

>>>:

0 = f3 = 1� g1 � b̂0,

0 = f2 = â0 � 12b̂0 � g0 + 2â0g1 + 9,

0 = f1 = 9â0 � 49b̂0 + 2â0g0 � â
2
0g1 � 10,

0 = f0 = �g0â
2
0 � 10â0 � 78b̂0.

(14)



B. Quadratic m-parameter eigenvalue problem

Closer observation of the system of equations in (14)
shows that only the parameter â0 appears nonlinearly, justi-
fiably indicating that the nonlinearity of the model reduction
problem is solely caused by the search for the optimal
poles, i.e., the optimal values for the parameters in â. We
can make this (partially) linear structure of the problem
explicit by ‘extracting’ the variables that appear only linearly
(the {b̂i}i=0,...,m�1 and {gi}i=0,...,n�m�1) in the system
of polynomial equations from Proposition 1, and organize
them into an eigenvector, giving a quadratic m-parameter
eigenvalue problem:

0

@
X

{↵}

M↵â
↵

1

A

| {z }
M(â)

2

4
1
b̂
g

3

5 = 0, (15)

where the vectors b̂, g are similarly defined as before, and
M(â) 2 R(n+m)⇥(n+1)[â] is a matrix polynomial3 in the
monomials â↵ = â

↵0
0 . . . â

↵m�1

m�1 .
Proposition 2: Given the square system of m+n equations

f0 = · · · = fn+m�1 = 0 and the variety VR, both defined
as in Proposition 1, consider the corresponding quadratic m-
parameter eigenvalue problem as defined in (15). Denote the
set of real-valued eigentuples of this MEVP by VR(â). Then,
VR(â) is equal to the projection of VR onto â.

Example 1 (continued): Extracting the variables that ap-
pear only linearly out of the system in (14) leads to the
polynomial matrix M(â0):

2

664

1 �1 �1 0
9 + â0 �12 2â0 �1

�10 + 9â0 �49 �â
2
0 2â0

�10â0 �78 0 �â
2
0

3

775

| {z }
M(â0)

2

664

1
b̂0

g1

g0

3

775 = 0,

which can be rewritten as a quadratic polynomial eigenvalue
problem (PEVP) in the parameter â0:

 
2

664

1 �1 �1 0
9 �12 0 �1

�10 �49 0 0
0 �78 0 0

3

775

| {z }
M0

+

2

664

0 0 0 0
1 0 2 0
9 0 0 2

�10 0 0 0

3

775

| {z }
M1

â0

+

2

664

0 0 0 0
0 0 0 0
0 0 �1 0
0 0 0 �1

3

775

| {z }
M2

â
2
0

!
2

664

1
b̂0

g1

g0

3

775 = 0. (16)

3Each term in the system of equations from Proposition 1 is mapped
to a specific position in one of the coefficient matrices of the MEVP. The
term has a monomial in â as a factor that determines in which coefficient
matrix the coefficient of the term has to be included. The position within
that matrix depends on the equation to which the term belongs (the row)
and the presence of a variable from the eigenvector of the MEVP in the
term (the column).

TABLE I
PROPERTIES OF THE SYSTEM OF POLYNOMIAL EQUATIONS FOR THE

GLOBALLY OPTIMAL TECHNIQUES DESCRIBED IN THE LITERATURE.

(n,m) Approach #eqs #vars dmax nB

(3, 1)

Agudelo’s approach [12] 2 2 8 32
Alsubaie’s approach⇤ [11] 7 7 2 128
Novel methodology 4 4 3 18

(6, 2)

Agudelo’s approach [12] 4 4 15 10290
Alsubaie’s approach⇤ [11] 14 14 2 16384
Novel methodology 8 8 3 1458

(17, 4)

Agudelo’s approach [12] 8 8 41 O(10
11
)

Alsubaie’s approach⇤ [11] 38 38 2 O(10
11
)

Novel methodology 21 21 3 O(10
9
)

⇤for this methodology additional post-processing is required.

C. Computing the stationary points

From Theorem 3, we know that all stationary points Ĥ(s)
of order m can be computed via a polynomial root finding
problem, for which advanced solvers exists (e.g., [23]).
However, as these root finding techniques generally work
over the field of complex numbers, one has to prune away the
complex-valued common roots to obtain VR. Alternatively,
we can exploit the partially linear structure of the problem
and calculate VR via, VR(â), the real-valued eigentuples of
the MEVP, as described in the above-mentioned proposition.
By definition, the matrix M(â) is rank deficient when
evaluated in one of its eigentuples, allowing to calculate for
each eigentuple the corresponding values for the parameters
b̂ via the null space of M(â). Specialized solvers (e.g., [24],
[25]) can be used to compute the eigentuples of the MEVP.

D. Comparing complexity

There is no standard means to quantify the complexity
of a system of polynomial equations before it has been
solved, but the size of the system, measured as the number
of variables (#vars) and the number of equations (#eqs), and
the highest polynomial degree present in the system (dmax)
serve as good indicators. Bézout’s number nB, equal to the
product of the degree of each of the polynomials in a square
system of equations, scales with the above-mentioned indi-
cators and could therefore be used as an elementary4 proxy
for its complexity. We compare the alternative approaches
for globally optimal SISO H2-norm model reduction [11],
[12] in Table I, which depicts the properties of the to-be-
solved system of polynomial equations5 for three scenarios of
(n,m) that correspond to the examples tackled in Section IV.

For growing (n,m) the novel approach comes with
the lowest complexity. Contrary to the approach proposed
in [12], each polynomial in our system of equations is at most
cubic, which makes the corresponding MEVP quadratic,
independent of the model orders (n,m). This low degree is
advantageous, e.g., in the context of homotopy continuation

4There exist more sophisticated bounds that, often based on mixed-volume

computations, additionally consider the sparsity of the polynomials [26].
5Comparing the complexity of MEVPs is even less straightforward. So,

to be able to include the methods of [11], [12], which lead to MEVPs, we
consider the properties of the system of polynomial equations obtained by
writing out the matrix-vector product of the to-be-solved MEVP.



methods the step size of the continuation procedure typically
has to be reduced when operating on systems of higher
degree to avoid path jumping [27], thereby increasing the
overall computation time. Alsubaie’s approach [11] leads
to linear MEVPs, but the obtained numbers of equations
are relatively large (see Table I). This indicates that the
coefficient matrices have more rows compared to the novel
approach, resulting in an overall higher complexity.

E. Additional notes

Discrete-time: The results of this Section can also be
derived in the discrete-time setting. The factor [â(�s)]2

in (10) has to be replaced by [zmâ(z�1)]2, adjusting for the
change in the definition of the ‘mirror images’ of the poles.

Secular equations: When m = 1, the MEVP from
(15) becomes a PEVP with square coefficient matrices
{M↵}↵=0,1,2 2 Rn+1⇥n+1. In this case, we can alterna-
tively calculate the eigenvalues of the PEVP by rooting a
univariate polynomial: the square matrix M(â0) is singular
if its determinant is equal to zero. To give an example, the
determinant of the PEVP in (16) gives:

det(M(â0)) = â
5
0+15â40�89â30�1191â20�2596â0+780. (17)

This reformulation of the system of equations from (13),
eliminating the n ‘linear’ variables at the cost of higher
polynomial degrees, is possible for arbitrary model orders
(n,m). Indeed, all minors6 of the rectangular matrix M(â)
from (15) should vanish when evaluated in an eigentuple
of the MEVP. So, by equating these minors to zero we
obtain an overdetermined system of equations in the m

variables from â, the common roots of which correspond to
the eigentuples of the MEVP. The number of all possible
minors grows quickly with (n,m). However, it turns out
that not all minors are required to be able to retrieve all
the eigentuples of the MEVP. We will consider this in more
detail in future work.

At infinity: The nullity of block Macaulay matrices for
growing degree d and the rank structure of the rows in their
null space, can be used to analyse both the affine solution
set of the MEVP in (15) as the solution set at infinity7 [13].
Although for all of our numerical experiments the affine
solution set has been zero-dimensional, the solution set at
infinity seems to be (m�1)-dimensional: for m = 2 the
number of solutions at infinity found via the block Macaulay
matrix of degree d grows linearly with d (constant increases
of 5), for m = 3 the growth of the number of solutions
at infinity grows linearly with d (constant increases of 7),
and so on. Furthermore, we observed that the system of
equations from (13) has an m-dimensional solution set at
infinity, which indicates that the reformulation as MEVP
removes one dimension of the solution set at infinity. Lastly,
the set of secular equations of the MEVP in (15), i.e., the
minors of the matrix M(â), has no solutions at infinity.

6The minors are the
�n+m
m�1

�
determinants of the (n+1)⇥(n+1) subma-

trices, obtained by omitting m�1 rows, of the polynomial matrix M(â).
7Only the affine solutions are of interest in the context of (3). When

working with the Macaulay matrix framework, the effects of the solutions
at infinity can be eliminated via a column compression. See e.g., [13], [24].

IV. NUMERICAL EXAMPLES

To validate the proposed methodology we compute8 the
numerical solutions of Example 1 and tackle two other
examples from the literature. We only consider the affine
common roots (eigentuples) of the obtained systems of
polynomial equations (resp. the MEVPs).

Example 1 (continued): The univariate polynomial in (17)
has five roots: {9.679,�16.619, 0.267,�4.164 ± 0.903j},
which coincide with the eigenvalues of the PEVP in (16).
The nullity of the block Macaulay matrix [13] composed
from (16) stabilizes at d = 4, allowing to retrieve the
eigenvalues via the shift-invariance property of its null space.
The system of equations in (14) has 5 common roots,
the values for the variable â0 of which correspond to the
above-mentioned eigenvalues of the PEVP. Only two solu-
tions (â0, b̂0) remain after pruning for the stationary points:
V 0
R = {(9.679, 1.279), (0.267,�0.0437)}. We can select the

globally optimal minimizer using their respective objective
function values: J={0.278, 0.398}.

Example 2: Consider the four disk system (discrete-time,
n = 6) described in [19] for which we want to calculate the
globally optimal second-order approximant (m = 2):

H(z)= 0.0448z5+0.2368z4+0.0013z3+0.0211z2+0.2250z+0.0219
z6�1.2024z5+2.3675z4�2.0039z3+2.2337z2�1.0420z+0.8513 .

Equating the coefficients with respect to the powers of z in
the discrete-time equivalent of (10) to zero, gives a square
system of 8 polynomial equations. The polynomial matrix
M(â1, â0) from the MEVP formulation in (15) is equal to:
2

66666666664

0.045 �1 0 �â0 0 0 0
0.045â1+0.24 1.20 �1 �2â0â1 �â

2
0 0 0

0.045â0+0.24â1+0.001 �2.37 1.20 �â
2
1�2â0 �2â0â1 �â

2
0 0

0.24â0+0.001â1+0.02 2.01 �2.37 �2â1 �â
2
1�2â0 �2â0â1 �â

2
0

0.001â0+0.02â1+0.22 �2.23 2.01 �1 �2â1 �â
2
1�2â0 �2â0â1

0.02â0+0.22â1+0.02 1.04 �2.23 0 �1 �2â1 �â
2
1�2â0

0.22â0+0.02â1 �0.85 1.04 0 0 �1 �2â1
0.02â0 0 �0.85 0 0 0 �1

3

77777777775

which leads to a quadratic 2-parameter eigenvalue problem:
⇣
M0 +M10â0 +M01â1 +M20â

2
0 +M11â0â1

+M02â
2
1

⌘ ⇥
1 b̂1 b̂0 g3 g2 g1 g0

⇤T
= 0,

with coefficient matrices M↵ 2 R8⇥7. The block Macaulay
matrix of degree 10 suffices to retrieve the 49 eigentuples, 11
of which real-valued. The variety V 0

R contains 5 stationary
points, listed in Table II.

Example 3: We search for the globally optimal 4th order
reduced model (m = 4) of the continuous-time state-space
model (n = 17) considered in Example 3 of [28]. The
model describes the interaction between a torque activator
and an approximately collocated torsional rate sensor for the
ACES structure [29]. Because of the high complexity (see
Table I) we used the package of [23] to calculate the common
roots of the system of equations from (13), which took

8We used a MacBook Pro with a 6-core Intel i7 CPU (2019) working
at 2.6GHz with access to 32GB RAM. All timings are averaged over
5 consecutive runs and the numerical results are rounded for displaying
purposes. A MATLAB implementation of the (block) Macaulay method [24]
is available online at www.macaulaylab.net.

www.macaulaylab.net


TABLE II
THE STATIONARY POINTS CORRESPONDING TO EXAMPLE 2.

J
†

â1 â0 b̂1 b̂0

0.868 �0.293 0.941 0.139 0.266

1.076 0.505 0.930 �0.254 �0.120

1.124 0.267 0.820 �0.294 0.167

1.174 �1.423 0.969 0.069 0.028

1.254 �0.992 0.534 0.132 0.086

†the discrete-time equivalent of (4).

3 h 24min 2 s. Contrary to the block Macaulay method [24],
homotopy continuation methods can exploit parallelism in
the computations, allowing to tackle larger problems. The
poles pi of the four stationary points with smallest value for
J are depicted in Table III, the first of which corresponds to
the globally optimal solution. For comparison, we applied the
iterative method described in [6] using random sets of initial
interpolation points to this example: the iteration generally
converged to locally optimal reduced models. Only in (very)
rare cases the globally optimal solution was obtained.

V. CONCLUSION AND FUTURE WORK

We derived a novel methodology for globally optimal
SISO H2-norm model reduction. The parameters of the
optimal model(s) are retrieved via the eigentuples of a
multiparameter eigenvalue problem (MEVP). The MEVP
is quadratic, independent of the model orders, which is
favorable from a computational point of view. We compared
the complexity of the novel technique with the few alternative
globally optimal approaches in the literature, and solved three
numerical examples to validate the proposed methodology.

In future work, we want to develop specialized solvers that
compute only the real-valued eigentuples of the MEVP, since
these are the only ones of interest. Ideally, we would solve for
the global optimal minimizer(s) only. The observation that
also for MIMO models (tangential) interpolatory conditions
for first-order optimality exist, motivates the search for a
generalization of the presented methodology.
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