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Abstract 

The tau protein (τ) is one of the two hallmark proteins of Alzheimer’s disease (AD) together 

with the amyloid β protein (Aβ). In contrast to Aβ, abnormal phosphorylated τ (p-τ) can also be 

found in non-AD tauopathies. In AD, p-τ is the main component of intraneuronal neurofibrillary 

tangles, which result from aggregation of abnormal phosphorylated and folded τ. In this review, 

we discuss the role of p-τ pathology in Alzheimer’s disease considering neuropathological, 

biochemical, cellular, animal model, and clinical findings. We discuss the relationship between 

p-τ and other AD-related proteins such as Aβ and transactive response DNA-binding protein 

43 (TDP-43). In light of the current state of knowledge, we conclude that p-τ aggregation known 

as primary age-related tauopathy (PART) may represent a prerequisite for the development of 

AD rather that a downstream effect of Aβ toxicity. However, Aβ as well as TDP-43 pathology 

appear to accelerate accumulation and propagation of p-τ pathology once initiated, ultimately 

leading to the full-blown picture in AD. τ seeds can induce granulovacuolar degeneration 

(GVD), AD-typical lesions in which the activated necrosome – required for the execution of 

necroptosis, a programmed form of cell death - can be found. GVD is associated with a 

decreasing neuronal density. Thus, we speculate that p-τ pathology is a major driver for neuron 

loss in AD via GVD-mediated necroptosis. Accordingly, p-τ seems to play a central role in AD 

as it appears to constitute a prerequisite for AD development which can then be accelerated by 

co-factors. This would fit in a probabilistic model of AD, related to the presence and severity 

of the respective co-factors such as Aβ, TDP-43, and others. 

 

Key words: tau protein; Alzheimer’s disease; amyloid β protein; TDP-43; primary age-related 

tauopathy; necroptosis; granulovacuolar degeneration 
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1. Introduction 

Alzheimer’s disease (AD) is the most common dementing disorder in the elderly (Association, 

2021). It is characterized by its hallmark lesions, amyloid plaques and neurofibrillary tangles 

(NFTs) (Alzheimer, 1907). Amyloid plaques consist of extracellular aggregates of the amyloid 

β-protein (Aβ) (Masters et al., 1985) which is a cleavage product of the amyloid precursor 

protein (APP) (Kang et al., 1987). The cleavage of APP by the β- and γ-secretase releases Aβ 

(Haass et al., 1992; Haass and Selkoe, 2007). The active center of γ-secretase is represented by 

either presenilin 1 or 2 (De Strooper et al., 1998; Herreman et al., 2000; Wolfe et al., 1999). 

NFTs are intraneuronal aggregates of abnormal phosphorylated tau (τ)-protein (Grundke-Iqbal 

et al., 1986). Given that mutations in the APP gene, the presenilin 1 (PSEN1) and 2 (PSEN2) 

genes lead to familial forms of AD (Goate et al., 1991; Rogaev et al., 1995; Sherrington et al., 

1995; St George-Hyslop et al., 1992; St George-Hyslop et al., 1987; Tanzi et al., 1987) whereas 

mutation in the τ gene (MAPT) cause frontotemporal lobar degeneration but not AD (Hutton et 

al., 1998), the amyloid hypothesis was formulated predicting that Aβ is the driver of AD 

whereas τ pathology was considered as a downstream effect (Hardy and Higgins, 1992; Selkoe 

and Hardy, 2016). Unfortunately, clinical trials using antibodies against Aβ, active vaccination 

strategies, or secretase inhibitors did not lead to a major modification of the course of the disease 

although amyloid plaques were reduced (Cummings et al., 2020; Liu and Howard, 2021; 

Plowey et al., 2022). This raised the question whether the amyloid hypothesis needs to be 

replaced by a pathogenetic concept that can explain the failure of the anti-amyloid trials. 

Moreover, NFT pathology correlates better with clinical dementia scores than Aβ pathology 

(Arriagada et al., 1992). However, none of the τ-targeting therapies developed so far was 

successfully tested in a clinical trial: one was ineffective whereas other studies are still ongoing 

(Asher and Priefer, 2022). Recently, a probabilistic concept was suggested in which the genetic 

drivers of familial AD as well as apolipoprotein E still have a significant weight but are 
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supplemented by multiple other factors that contribute to the development of AD (Frisoni et al., 

2022). In this review article, we will describe the basic biochemical/biophysical and 

neuropathological features of τ and its roles in AD as a prerequisite for disease development as 

well as a critical player in the execution of neurodegeneration. 

 

2. The τ protein: Aggregation, phosphorylation and maturation 

τ protein is a microtubule associated protein that stabilizes the microtubules in the axon and 

regulates axonal transport (Scholz and Mandelkow, 2014). Alternative splicing of exon 10 of 

the τ gene (MAPT) leads to 6 different τ isoforms (D'Souza and Schellenberg, 2005). Three of 

them carry three repeats (3-repeat τ (3R τ)) in the repeat region of the protein, whereas the 

remaining three isoforms have four repeats (4-repeat τ (4R τ)). Accumulation of τ protein forms 

protofibrils which are then converted to fibrils by forming straight and paired helical filaments 

(PHFs). Protofibrils exhibit disease specific folding architectures at the cryo electron 

microscopy level that allow to distinguish an “Alzheimer fold” from τ folds seen in chronic 

traumatic encephalopathy, Pick’s disease and corticobasal degeneration (Fitzpatrick et al., 

2017; Goedert, 2021). In AD, τ lesions are composed of 3R and 4R τ (Goedert et al., 1989). 

However, the extracellular “ghost” tangles are enriched in 3R τ (Uchihara et al., 2012). 

Phosphorylation of τ protein is a physiological process and is required for the regulation of the 

axonal transport by maintaining microtubule integrity (Scholz and Mandelkow, 2014). The 

physiological phosphorylation of τ occurs in normal processes such as neural development 

(Brion et al., 1993; Kenessey and Yen, 1993) and hibernation (Arendt et al., 2003; Leon-

Espinosa et al., 2013).  

Abnormal phosphorylation of τ, on the other hand, leads to its mislocalization into the 

somatodendritic compartment of neurons (Bancher et al., 1989; Braak et al., 1994). Different τ 

phosphorylation sites are involved in the abnormal phosphorylation of τ (Fig. 1). First, 
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phospho-threonine 231 (pT231, detected with the AT180 antibody) occurs in somatodendritic 

compartment as “initial cytoplasmic τ”. Nearly simultaneously, phospho-serines 396 and 404 

(pS396/pS404, detected with the PHF1 antibody) are found in axonal/synaptic compartments 

of neurons, referred to as “initial neuropil τ” (Aragao Gomes et al., 2021). This is followed by 

the formation of pretangles exhibiting also pS202/pT205-τ (detected with the AT8 antibody). 

Subsequently, an abnormal conformation of the τ protein, called the “paperclip conformation” 

or “MC1” conformation, is detected prior to formation of argyrophilic and ubiquitin/p62 

immunoreactive NFTs (Figs. 1, 2) (Aragao Gomes et al., 2021; Bancher et al., 1989; Moloney 

et al., 2021). The p-τ forms that are measured in blood and cerebrospinal fluid (CSF) as AD 

biomarkers, pT181-τ and pT217-τ,  have been reported to occur in p-τ lesions also exhibiting 

pS202/pT205-τ, pT231-τ, and pS396/pS404-τ (Aragao Gomes et al., 2021; Goedert et al., 1994; 

Wennstrom et al., 2022). 

Although it is well known that abnormal phosphorylation often leads to τ aggregation and 

results in neurotoxicity, τ phosphorylation can also have beneficial effects. Specifically, the 

phosphorylation at T18 promotes normal axonal trafficking (Stern et al., 2017). Another study 

has also observed that the phosphorylation at sites S214, and S262 prevents τ fibrillization into 

PHFs, suggesting that τ phosphorylation in AD may not necessarily result in τ aggregation 

(Schneider et al., 1999). Corroborating these data, Strang and colleagues reported that S305 

phosphorylation also inhibited aggregation in vitro (Strang et al., 2019). Additionally, a 

protective effect of site-specific τ phosphorylation by kinase p38γ was observed in vivo, 

precluding Aβ toxicity (Ittner et al., 2016). Finally, there are reports of τ phosphorylation 

constituting a protective mechanism against oxidative stress in AD (Nunomura et al., 2001). A 

recent review suggested that in advanced disease stages, aberrant phosphorylation of τ may 

overwhelm protective phosphorylation mechanisms and promotes neuronal demise (Xia et al., 

2021). These studies highlight that τ phosphorylation in the brain is a highly complex process 
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involving multiple possible phosphorylation sites. AD-related p-τ formation in this context 

involves tauopathy related phosphorylation sites presumably destabilizing the physiological 

balance of aggregation-prone and aggregation-inhibiting τ phosphorylation sites.   

In addition to phosphorylation, proteomic studies revealed a wide range of additional post-

transitional modifications of τ, including ubiquitylation, acetylation and truncation in AD 

(Dujardin et al., 2020). Colocalization with the transactive response DNA-binding protein 43 

(TDP-43) in a large subset of AD cases (Amador-Ortiz et al., 2007; Higashi et al., 2007; Tome 

et al., 2021) may indicate the contribution of TDP-43 in the maturation process of AD τ 

pathology at least in a subset of AD cases (Fig. 2) with NFT-like TDP-43 aggregates indicative 

for the type β subtype of TDP-43 pathology in non-FTLD-TDP (frontotemporal lobar 

degeneration with TDP-43 pathology) brains (Josephs et al., 2019). TDP-43 accumulation in 

this context can be seen as early as in the pretangle stage (Fig. 3).  

 

3. τ pathology: Lesions, distribution and propagation 

3.1. Neuropathological aspects 

Neuropathologically, we distinguish NFTs, pretangles and neuropil threads in the AD brain 

(Fig. 3) (Braak and Braak, 1991). Inclusions in non-neuronal cells, i.e., astrocytes and 

oligodendrocytes, are restricted to non-AD tauopathies (Dickson et al., 2011; Kovacs et al., 

2016) and will not be in the focus of this article. In addition to NFTs, pretangles, and neuropil 

threads, initial τ aggregates in the cytoplasm of neurons and in the neurites exhibiting only 

single phosphoepitopes of τ have been described as precursor lesions for pretangles. Initial 

cytoplasmic τ aggregates exhibit pT231-τ (Fig. 3) while initial neuropil τ show the 

phosphoepitopes pS396/pS404 (Aragao Gomes et al., 2021). 

The first region in the human brain that exhibits p-τ pathology is the locus coeruleus. Here, only 

neuropil threads occur first (Braak NFT stage “a”), being later accompanied by pretangles 
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(Braak NFT stage “b”) (Braak et al., 2011). Next, pretangle pathology extends into other 

subcortical nuclei, namely the raphe nuclei and the basal nucleus of Meynert (Braak NFT-stage 

“c”) (Braak et al., 2011; Rub et al., 2000; Sassin et al., 2000). The cortical involvement in p-τ 

pathology starts with the transentorhinal cortex (Braak NFT stages “1a, 1b”, I), followed by the 

entorhinal cortex (Braak NFT stage II), the hippocampus and basal temporal neocortex (Braak 

NFT stage III), the entire temporal cortex (Braak NFT stage IV), the rest of the neocortex with 

exception of the primary cortical fields (e.g., primary visual cortex). Finally, the primary 

cortical fields become involved as well (Braak NFT stage VI) (Braak et al., 2011). This pattern 

was described by first Heiko and Eva Braak (Braak and Braak, 1991; Braak et al., 2011) (Fig. 

4) whose guidelines are recommended for determining the degree of NFT pathology in the brain 

of people with AD pathology (Hyman et al., 2012).  

NFT pathology is by definition currently considered as AD neuropathological change (ADNC) 

when Aβ plaques are present as well (Hyman et al., 2012). In the event that NFTs are seen in 

the absence of Aβ plaque pathology they are considered to represent a primary age-related 

tauopathy (PART) (Crary et al., 2014). However, emerging evidence points out that PART may 

represent in most cases an early, pre-amyloid stage of the pathogenesis of AD. This evidence 

is related to the clear sequence of events of p-τ pathology evolution (a) based on the 

topographical expansion pattern according to the Braak NFT stages (Crary et al., 2014; 

Duyckaerts et al., 2015), and (b) based on the maturation processes that are the same in early 

affected brain regions in the absence of Aβ plaques and in later stages with definite ADNCs 

(Aragao Gomes et al., 2021). Another argument for PART being part of the AD pathological 

continuum is the seeding potential similarity of p-τ aggregates from PART and ADNC patient-

derived brain homogenates (Kaufman et al., 2018). Moreover, most PART patients (≥52%) 

exhibited clinical signs of AD (Teylan et al., 2019) and some AD-risk factors are shared (Farrell 

et al., 2022). However, at the moment that PART is diagnosed as PART, one cannot exclude 
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that it does not develop in a different tauopathy than AD, such as NFT-predominant dementia 

(equals PART with clinical symptoms), argyrophilic grain disease and other form of 

frontotemporal lobar degeneration with τ pathology (FTLD-tau) (Crary et al., 2014; Jellinger et 

al., 2015). The presence of genetic risk factors for tauopathies other than AD in PART cases 

(Farrell et al., 2022) argues in favor of the hypothesis that PART can principally lead to the 

development of non-AD tauopathies as well. In approx. 40 % of the PART cases clinical 

symptoms do not fit well with that of AD (Teylan et al., 2019). Interestingly, symptomatic cases 

with PART usually exhibited co-pathologies (best cerebrovascular pathology) that better 

correlated with cognitive function than the Braak NFT-stage (Iida et al., 2021). Other 

researchers showed that PART cases only show language deficits correlating with anterior 

temporal atrophy whereas atrophy and the spectrum of cognitive deficits was more widespread 

in AD than in PART (Quintas-Neves et al., 2022). This difference may be explained by the 

limited distribution of p-τ pathology in PART cases, most frequently representing Braak NFT 

stages I and II whereas AD spectrum cases had usually high Braak stages (IV-VI) in this study 

(Quintas-Neves et al., 2022). Accordingly, this study does in our opinion not argue against the 

hypothesis that AD develops from PART as initiating pathology. In this context, less frequently 

other tauopathies may also arise from the “precursor” lesion PART as proposed earlier (Spires-

Jones et al., 2017), especially when considering that demented cases fulfilling the PART criteria 

equal NFT-predominant dementia. This indicates in our opinion that PART is a “precursor” 

lesion for a number of tauopathies with AD being the by far biggest player among them. 

Interestingly, when accepting the locus coeruleus, the raphe nuclei and the basal nucleus of 

Meynert as initiating foci kicking off the evolution of AD pathology, one can explain the spread 

towards later affected brain regions by anterograde transmission of pathology (Fig. 4) (Braak 

and Del Tredici, 2011a). This hypothesis is supported by the finding that p-τ accumulation in 

pre-α neurons of the entorhinal cortex is first restricted to dendrites and the cytoplasm before 
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p-τ can be visualized in the axonal region of these neurons in the outer molecular layer of the 

dentate gyrus in a later stage (Thal et al., 2000a). Thus, p-τ may be transported within the neuron 

from the somatodendritic compartment to the axon terminals via regular anterograde axonal 

transport as a prerequisite for anterograde neuron-to-neuron spreading. This has been confirmed 

in-vitro in a three-chamber neuron culture system. Here, it was also shown that synaptic and 

non-synaptic mechanisms were involved in the neuron-to-neuron transmission of p-τ pathology 

(Calafate et al., 2015). Alternatively, nanotubes between neurons have also been discussed to 

contribute to the transmission of p-τ pathology (Chastagner et al., 2020). In-vivo spreading of 

p-τ has been demonstrated after injecting seeds into mouse brains (Clavaguera et al., 2009; Iba 

et al., 2015), further supporting the hypothesis of the neuron-to-neuron transmission of p-τ 

pathology. 

Braak NFT stage “a” changes may occur as early as with six years of age, at least in a small 

amount of autopsied cases with this age (Braak et al., 2011). With increasing age, the frequency 

of p-τ pathology in the brain also increases. At 40 years, all investigated cases in a cohort with 

2332 cases exhibited at least Braak NFT stage “a” (Braak et al., 2011). High Braak NFT stages 

(V and VI) become apparent in single cases with 40 years of age and increase with age. In the 

age group 90-100 years approx. 25% of the cases exhibited Braak NFT stages V and VI (Braak 

et al., 2011). This increase in p-τ pathology is accompanied by the deposition of Aβ plaques 

and its spreading in the whole brain (Braak et al., 2011). Interestingly, Aβ pathology usually 

occurs slightly later than p-τ lesions, around 17 years of age at the earliest (Braak et al., 2011). 

Fig. 5 shows a similar distribution of Braak NFT stages I-VI as shown by Braak et al. (Braak 

et al., 2011). The Braak NFT stages “a-1b” were not determined in this cohort. 

 

3.2. Biomarker-related aspects 
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During life, histopathological analysis of different brain regions is not possible without serious 

side effects for patients and is, therefore, not a diagnostic option. Accordingly, it is essential to 

estimate p-τ pathology with the help of biomarkers. Currently, the measurement of total τ and 

p-τ levels is possible in the blood and the cerebrospinal fluid (CSF) (Andreasen et al., 1999; 

Janelidze et al., 2020; Sjogren et al., 2001; Skoog et al., 1995; Thijssen et al., 2021) and the 

distribution and amount of τ pathology in the brain can be estimated by τ positron emission 

tomography (PET) (Pontecorvo et al., 2017; Schwarz et al., 2016). In this context the fluid 

biomarkers for pT181-τ, pT217-τ, and pT231-τ are remarkably specific for AD and correlate 

also with Aβ levels (Andreasen et al., 1999; Janelidze et al., 2020; Karikari et al., 2020; Mila-

Aloma et al., 2022; Palmqvist et al., 2020; Sjogren et al., 2001; Skoog et al., 1995; Thijssen et 

al., 2021; Vanmechelen et al., 2000; Wennstrom et al., 2022). In contrast to the 

neuropathological detection of p-τ accumulation neurons, which precedes Aβ pathology in most 

cases (Fig. 6), τ biomarkers exhibit AD-related changes after Aβ biomarkers become positive 

(Hanseeuw et al., 2019; Jack et al., 2013). That the detection of p-τ and Aβ biomarkers is 

different from the neuropathological sequence of events is related to a lower sensitivity of the 

biomarkers compared to the identification of single NFTs or Aβ plaques by microscopic 

examination in the brain. In this context p-τ biomarkers appear to be less sensitive than Aβ-

related biomarkers. For example, the sensitivity of the flortaucipir τ PET had been investigated 

in an end-of-life study (Fleisher et al., 2020; Pontecorvo et al., 2020). Here, detection of τ 

pathology was restricted to Braak NFT-stages V and VI, i.e., the end stages of AD. Braak stage 

I and II cases were detected in less than 75% of the investigated cases (Fleisher et al., 2020). 

Likewise, blood p-τ showed an increase with Braak NFT stages using assays detecting p-τ181 

with Braak stages I-III showing levels not significantly different from p-τ negative cases 

(Morrison et al., 2022). Thus, it is difficult to detect preclinical AD cases with τ biomarkers. 

Amyloid PET, on the other hand, can identify Aβ phase 3-5 cases covering usually non-
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demented individuals with Aβ phase 3 (La Joie et al., 2018; Thal et al., 2018), i.e., being more 

sensitive than the τ biomarkers.  

Moreover, one study did not find a correlation between CSF p-τ and the post-mortem Braak 

NFT stage (Engelborghs et al., 2007) whereas recently other authors reported a correlation of 

plasma pT181-τ, pT218-τ and pT231-τ with amyloid PET tracer retention. pT231-τ was in this 

context the most sensitive marker (Mila-Aloma et al., 2022).  

 

4. Interplay between τ, Aβ, TDP-43, α-synuclein, and noradrenalin metabolites 

4.1 Interplay with Aβ 

In AD cases, p-τ pathology is accompanied with Aβ plaque pathology. Both pathologies 

increase in parallel in amount and distribution among the brain regions (Braak and Braak, 1997; 

Braak et al., 2011; Spires-Jones et al., 2017; Thal et al., 2002). However, a significant number 

of Braak NFT-stage I and II cases exhibit no Aβ plaque pathology, indicating that p-τ precedes 

Aβ plaque pathology (Braak et al., 2011). Cases showing Aβ plaques in the absence of p-τ 

pathology are, on the other hand, very rare (Braak et al., 2011) (Fig. 6). Since the current 

recommendations of the National Institute of Aging and the Alzheimer Association (NIA-AA) 

for the assessment of AD neuropathological changes define Alzheimer pathology by the 

presence of Aβ plaques, those cases with p-τ pathology in the absence of Aβ do not fall under 

this definition of AD and have been referred to as cases having a primary age-related tauopathy 

(PART) (Crary et al., 2014), which in most instances represents a precursor pathology of AD τ 

pathology, i.e., is part of the AD spectrum (Aragao Gomes et al., 2021; Duyckaerts et al., 2015; 

Kaufman et al., 2018). Interestingly, the increase of p-τ towards Braak NFT stages V and VI is 

always accompanied with an increase in Aβ plaque pathology (Braak et al., 2011; Spires-Jones 

et al., 2017; Thal et al., 2019). This parallel increase of p-τ and Aβ pathology was also seen in 

cases with severe p-τ pathology in a recent longitudinal amyloid and τ imaging study (Therriault 
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et al., 2022) as well as in several blood biomarker studies (Janelidze et al., 2020; Lantero 

Rodriguez et al., 2020). Thus, if PART proceeds in the absence of Aβ it will lead to a non-AD 

tauopathy, e.g., NFT-predominant dementia. 

P-τ and Aβ pathology do not only accumulate in parallel during the preclinical and symptomatic 

stages of AD, but also interact with one another as indirectly shown in animal models and 

imaging studies (Gotz et al., 2001; Lee et al., 2022; Lewis et al., 2001). This interaction of Aβ 

and τ is best documented in mouse models. In single (τ P301L) and double-transgenic mouse 

models (τ JNPL3/APPTg2576; APP23xTAU58), Aβ accelerated p-τ pathology (Gotz et al., 

2001; Lewis et al., 2001) and promoted accelerated propagation of p-τ pathology throughout 

the brain (Gomes et al., 2019). On a cellular and biochemical level, there is evidence that the 

cellular prion protein (PrPC) plays an important role in the interaction between Aβ and p-τ 

because both proteins bind to PrPC in APP23xTAU58 mouse and in human AD brain (Gomes 

et al., 2019). Moreover, functional analysis of the role of PrPC in this context revealed that PrPC 

is essential for this pathological interaction. In the absence of PrPC, Aβ had no major 

pathological impact on τ and neuronal function in iPSC-derived neuronal cell cultures (Corbett 

et al., 2020). An explanation for the role of PrPC in the interplay between Aβ and p-τ could be 

the fact that PrPC has been described to act as a receptor for soluble, oligomeric Aβ species 

responsible for synaptic impairment (Lauren et al., 2009). This hypothesis is supported by the 

fact that APP-transgenic mice show no synaptic impairment when bred on a Prnp-knockout 

background (Gimbel et al., 2010). Other authors did not find such a protection when crossing 

APP-transgenic and Prnp-knockout mice (Balducci et al., 2010; Calella et al., 2010). Moreover, 

a possible mechanism for PrPC to accelerate p-τ pathology is being an interaction partner of 

soluble Aβ oligomers activating Fyn (Chen et al., 2013; De Mario et al., 2015), which itself 

increases the levels of p-τ via Pyk2-related phosphorylation of τ (Li and Gotz, 2018; Salazar et 

al., 2019). 
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These interactions between Aβ and p-τ are mainly related to soluble Aβ species and can be 

observed even in the absence of amyloid plaque pathology in APP23xTAU58 mice (Gomes et 

al., 2019). This means that soluble Aβ aggregates can accelerate p-τ pathology in the absence 

of Aβ plaques. Accordingly, one cannot exclude that even early p-τ lesions occurring in the 

absence of Aβ plaques in the human brain can likewise be interacting with soluble Aβ 

aggregates. On the other hand, the presence of Aβ plaques in the absence of significant p-τ 

pathology in neocortical brain regions of non-demented individuals with AD neuropathological 

changes (Thal et al., 2002; Thal et al., 2000b) or in APP-transgenic mouse lines (Games et al., 

1995; Sturchler-Pierrat et al., 1997) indicates that Aβ alone is not sufficient to kick off full 

blown AD pathology since APP transgenic mice do not develop significant p-τ pathology. τ-

pathology, e.g., PART, as a precursor lesion appears to be essential for Aβ to accelerate it (Gotz 

et al., 2001; Lewis et al., 2001). This hypothesis is supported by the finding that APP-transgenic 

mice on a τ knockout background did not develop cognitive deficits that were usually seen in 

APP-transgenic mice (Roberson et al., 2007). 

 

4.2 Interplay with TDP-43  

The accumulation of TDP-43 pathology in AD cases and in elderly individuals with AD-like 

dementia lacking sufficient amounts of AD pathology is frequent and currently designated as 

limbic-predominant age-related TDP-43 encephalopathy neuropathological change (LATE-

NC) (Nelson et al., 2019). Up to 70% of AD cases present co-morbid LATE-NC. These AD 

patients have smaller hippocampal volumes and a more severe clinical phenotype, when 

compared to demented individuals showing LATE-NC or ADNC alone (Josephs et al., 2017; 

Kapasi et al., 2020; McAleese et al., 2017). Of note, phosphorylated TDP-43 protein (pTDP-

43) has been shown to co-aggregate with NFTs in AD (Amador-Ortiz et al., 2007; Higashi et 

al., 2007; Tome et al., 2021). NFT-like aggregates containing TDP-43 have been considered to 
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represent a distinct morphological subtype of TDP-43 proteinopathy in non-FTLD brains, type-

β, which is predominant in the limbic system (Josephs et al., 2019). Interestingly, these NFT-

like material exhibiting pTDP-43 mainly contained C-terminal species, including non-

phosphorylated TDP-43 and pTDP-43 (serines 409/410, but not 403/404) (Tome et al., 2020). 

We recently observed that τ and TDP-43 proteins interact in symptomatic AD, and that this 

interaction occurs between p-τ and C-terminal TDP-43 species (Fig. 2) (Tome et al., 2021). An 

impact of TDP-43 on τ expression levels was also seen in in vitro and in APP/PS1-transgenic 

mice expressing human TDP-43 (Davis et al., 2017; Gu et al., 2017). In Caenorhabditis elegans, 

it was shown that TDP-43 can increase the toxicity and accumulation of τ (Latimer et al., 2022). 

This is supported by findings in human cases with ADNC. Here, the absence of TDP-43 has 

been associated with resilience and resistance to p-τ pathology (Latimer et al., 2019), whereas 

the presence of TDP-43 immunoreactivity was related to higher burdens of p-τ pathology, even 

in cases matched by Braak NFT stages. Consistently, post-mortem AD cases with TDP-43 

pathology exhibited higher Braak NFT stages, reflecting a more widespread τ distribution than 

those without (Josephs et al., 2014). We also observed this phenomenon in a recent study 

(Koper et al., 2022), in which the burden of hippocampal p-τ was increased in symptomatic AD 

cases with LATE-NC, when compared to cases without LATE-NC. Taken together, these 

studies support synergy between TDP-43 and τ. Thus, it is tempting to speculate that TDP-43 

is an important player in AD worsening its clinical course.  

This does not mean that TDP-43 drives p-τ pathology. Both pathologies appear to develop in 

parallel and TDP-43 acts as accelerator for p-τ. Accordingly, despite the interplay between τ 

and TDP-43 in intraneuronal aggregates, today most researchers consider TDP-43 pathology 

and p-τ pathology in AD cases as lesions of separate origin, TDP-43 linked to LATE and p-τ to 

AD/PART (Montine et al., 2022; Nelson et al., 2019). 

 



Thal & Tomé    16 
 

4.3 Interplay with α-synuclein 

The accumulation and aggregation of α-synuclein (α-syn) is another common co-pathology 

present in many AD patients (Hamilton, 2000). Its neuropathological stage is associated with 

younger ages at death and a faster and more aggressive progression of pathology than in AD 

cases lacking α-syn co-pathology (Galpern and Lang, 2006; Robinson et al., 2021; Tome and 

Thal, 2021).  

Studies have suggested that the involvement of α-syn is relevant in early stages of the disease 

(Twohig et al., 2018). Consistently, an accumulating body of work postulates that α-syn 

contributes to AD pathophysiology (Twohig and Nielsen, 2019): first, high α-syn levels in the 

CSF were found to be associated with the conversion from mild cognitive impairment to 

dementia (Shi et al., 2018); second, there is a significant correlation between α-syn levels and 

both total and p-τ levels in the CSF (Mollenhauer et al., 2008; Wennstrom et al., 2012) and 

third, both τ and α-syn pathological expression is strongly influenced by the APOE ε4 allele 

(Ramanan et al., 2019; Shi et al., 2017; Zhao et al., 2020; Zhou et al., 2016). 

Similarly, patients with dementia with Lewy Body (DLB) also frequently exhibit p-τ pathology 

together with α-syn aggregates, usually co-localizing in NFTs, neurites or Lewy bodies (Arima 

et al., 2000; Ishizawa et al., 2003; Spires-Jones et al., 2017). Plasma p-τ can detect ADNC in 

patients with Lewy body disease (Hall et al., 2021). Importantly, Parkinson’s Disease patients 

are usually at risk for dementia and the neuropathological burden is associated with cognitive 

decline (Aarsland et al., 2005; Braak et al., 2005).   

An interaction between p-τ and α-syn, specifically with the C-terminal domain of α-syn, has 

also been described (Bhasne et al., 2018; Dasari et al., 2019; Giasson et al., 2003). Specifically, 

α-syn was shown to increase τ phosphorylation and increase its aggregation in vitro (Gassowska 

et al., 2014; Oikawa et al., 2016; Waxman and Giasson, 2011), namely in the context of liquid-
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liquid phase separation (Siegert et al., 2021). Moreover, α-synuclein was observed to modulate 

p-τ pathology in transgenic mice (Bassil et al., 2021; Haggerty et al., 2011). 

Overall, these studies also suggest a crosstalk between τ and α-synuclein proteins in the context 

of AD and DLB, although the biological and clinical implications of this interaction are not yet 

fully elucidated (Twohig and Nielsen, 2019) it may be tempting to speculate that the 

accumulation of α-syn causes deleterious effects in the AD brain that ultimately contribute to 

neurodegeneration alike TDP-43.  

 

4.4 Interplay with noradrenaline metabolites 

Recently it was shown that τ can be modified by the monoamine oxidase A (MAO-A) 

metabolite of norepinephrine 3,4-dihydroxyphenylglycolaldehyde (DOPEGAL) towards an 

increased aggregation and propagation throughout the brain (Kang et al., 2022). This 

modification is due to the reaction of DOPEGAL with the Lys353 residue of τ. Kang et al. 

blocked the oxidation of norepinephrine with MAO-A inhibitors and inhibited, by doing so, the 

spreading of pathological τ. They observed a similar effect after replacing Lys353 residue of τ 

by Arg353 (Kang et al., 2022). These findings may have importance because the locus 

coeruleus, one of the earliest sites of p-τ accumulation in the brain (Attems et al., 2012; Braak 

and Del Tredici, 2011b), represents the primary source of the neurotransmitter norepinephrine 

(= noradrenaline) (Breton-Provencher et al., 2021; Dahlstrom and Fuxe, 1964). Accordingly, it 

is tempting to speculate that norepinephrine oxidation by MAO-A into DOPEGAL leads to an 

interaction with τ that causes production and aggregation of p-τ in locus coeruleus neurons. 

Furthermore, chronic stress can lead to an increased production of norepinephrine in the locus 

coeruleus (Ross and Van Bockstaele, 2020). Therefore, it cannot be excluded that stress has 

impact on the amount of τ phosphorylation and aggregation. Moreover, the neurons of the locus 

coeruleus project in multiple different brain regions and are involved in stress and sleep-wake 
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regulation (Ross and Van Bockstaele, 2020; Saper and Fuller, 2017; Van Egroo et al., 2022). 

These widespread afferents (Fig. 4) warrant widespread propagation of p-τ via locus coeruleus 

neurons once p-τ generation may have been initiated by the norepinephrine metabolite 

DOPEGAL. 

 

5. τ pathology, granulovacuolar degeneration, necroptosis and neuron loss 

The presence of ghost tangles is known for decades and demonstrates that neurons with NFTs, 

i.e., with p-τ pathology are subject to neuronal death (Fig. 2, 3) (Alzheimer, 1911). Although 

apoptosis has been scarcely observed in AD, it may not be a major contributor for AD-related 

neuron death (Stadelmann et al., 1999). Multiple other programmed forms of cell death exist 

(Tang et al., 2019). Recently, necroptosis – a programmed form of necrosis - has been reported 

in AD (Caccamo et al., 2017). Necroptosis is characterized by the formation of the necrosome 

complex consisting of phosphorylated receptor-interacting serine/threonine-protein kinase 1 

(pRIPK1), pRIPK3, and phosphorylated mixed lineage kinase domain-like protein (pMLKL). 

pMKLK oligomers act, in this context, as final executor of necroptosis (Grootjans et al., 2017). 

Recently, we described that in AD brain, the necrosome is formed in lesions that are 

morphologically defined as granulovacuolar degeneration (GVD) (Koper et al., 2020). GVD 

consists of accumulated vacuoles with granules which exhibit autophagy markers (Funk et al., 

2011), casein kinase 1δ and ε (Kannanayakal et al., 2006; Schwab et al., 2000; Thal et al., 2011), 

and many other mostly phosphorylated proteins including p-τ (Dickson et al., 1987), pTDP-43 

(Kadokura et al., 2009; Lippa et al., 2009), and phosphorylated Aβ (Köhler, 2016; Kumar et al., 

2016). In these vacuoles and granules, all activated necrosome components are also found 

(Koper et al., 2020). Interestingly, GVD occurs in τ transgenic but not in APP transgenic mice 

(Kohler et al., 2014) and can be induced by τ seeds in primary neuronal cell cultures (Wiersma 

et al., 2019). A recent study indeed showed that p-τ induces necroptosis and inflammation in 
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vitro and in a τ-transgenic mouse model, which can be inhibited with Nec-1, a necroptosis 

inhibitor (Dong et al., 2022). Therefore, it is tempting to speculate that τ pathology induces 

GVD and, by doing so, the activation of the necroptosis pathway. Since necrosome expression 

in GVD was associated with a reduction of the neuronal density in AD (Koper et al., 2020), it 

appears to be very likely that this form of GVD-mediated necroptosis is an important form of 

neuronal death in AD that can be induced by τ pathology. Recently, we observed that the 

expression of the necroptosis executor pMLKL was augmented in AD cases with co-morbid 

LATE-NC (Koper et al., 2022).  Given that p-τ and TDP-43 also interact in AD, it is tempting 

to speculate that both τ and TDP-43 contribute to the induction of GVD-mediated necrosis. 

Initial evidence for a TDP-43 contribution on GVD-mediated necroptosis was seen in the 

hippocampal formation of ALS patients. Here, necrosome activation in GVD was associated 

not only with p-τ but also with TDP-43 pathology (Van Schoor et al., 2021). On the other hand, 

brain regions showing only pTDP-43 pathology in ALS, such as the motor cortex or the spinal 

cord, did not show GVD or any kind of necrosome accumulation pointing to the presence of p-

τ as a potential prerequisite for the accumulation of the necrosome. Overall, the road from p-τ 

accumulation to GVD-mediated necroptosis may deserve more attention in the future as it offers 

potential for therapeutic intervention probably by employing already available inhibitors such 

as Nec-1 that showed a rescue of neurons in τ-transgenic mice (Dong et al., 2022). 

Interestingly, the GVD distribution across the brain indicates that those brain regions related to 

chronic stress regulation and the modulation of the sleep-wakefulness state appear to be most 

vulnerable for GVD (Thal et al., 2011). All these regions receive afferent fibers from locus 

coeruleus (Breton-Provencher et al., 2021; Ross and Van Bockstaele, 2020; Saper and Fuller, 

2017), i.e., from the brain region that is most vulnerable for developing p-τ pathology very early 

in the disease (Braak et al., 2011). Accordingly, these regions are presumably exposed to p-τ 



Thal & Tomé    20 
 

aggregates that can trigger GVD and necroptosis since the initiation of p-τ pathology in the 

brain.  

 

6. A central role for τ in the pathogenesis of Alzheimer’s disease (Fig. 7) 

In light of the described neuropathological age-related prevalence of p-τ pathology, its 

maturation in a given region, its propagation into further brain regions, and its interaction with 

Aβ and other proteins/metabolites, one can conclude that p-τ pathology is a prerequisite for the 

development of Alzheimer’s disease, even though Aβ may be necessary for the conversion from 

the preclinical and mild cognitive impairment stage to full-blown dementia (Therriault et al., 

2022). Arguments in favor of this hypothesis are (1) all symptomatic AD cases have p-τ 

pathology, usually of Braak NFT stage IV and higher (Thal et al., 2010; Thal et al., 2002), (2) 

p-τ pathology correlates better with cognitive decline than Aβ plaque pathology (Arriagada et 

al., 1992; Thal et al., 1998), (3) p-τ can lead to neuronal death as indicated by the presence of 

ghost tangles and by inducing GVD-mediated necroptosis pathway activation (Alzheimer, 

1911; Bancher et al., 1989; Koper et al., 2020; Wiersma et al., 2019), and (4) p-τ pathology is 

accelerated by Aβ (Gotz et al., 2001; Lewis et al., 2001), which seems to be crucial to reach 

fully developed p-τ pathology (Braak NFT stages V-VI) (Braak et al., 2011; Spires-Jones et al., 

2017). Braak NFT stage V/VI τ pathology is usually not seen in cases with PART and NFT-

predominant type of dementia (Crary et al., 2014; Yamada, 2003). Another argument favoring 

this hypothesis is the fact that APP overexpressing mouse models do not develop neurofibrillary 

pathology (Games et al., 1995; Hsiao et al., 1996; Sturchler-Pierrat et al., 1997) and GVD 

(Kohler et al., 2014) as long as there is no expression of mutant τ protein (Lewis et al., 2001). 

Given that the noradrenergic neurons of the locus coeruleus are the first to be involved in the 

development of p-τ pathology (Braak and Del Tredici, 2011b) and that norepinephrine (= 

noradrenaline) metabolites modify τ and enhance its aggregation potential and toxicity (Kang 



Thal & Tomé    21 
 

et al., 2022), the primary involvement of these neurons may be crucial for further propagation 

of τ pathology. Neuron-to-neuron propagation appears to be accelerated by Aβ probably via a 

PrPC-linked mechanism (Gomes et al., 2019). Another way of accelerating p-τ pathology 

spreading could be related to TDP-43 aggregates, which have been shown to propagate from 

neuron-to-neuron as well (Feiler et al., 2015; Porta et al., 2018), and can accelerate p-τ 

pathology (Latimer et al., 2019; Latimer et al., 2022). Finally, τ fibrils are capable of initiating 

GVD-meditated activation of the necroptosis pathway (Kohler et al., 2014; Wiersma et al., 

2019), which ultimately leads to neuronal death, the culprit of neurodegeneration. Accordingly, 

it is tempting to reject the amyloid hypothesis and to replace it with a hypothesis that gives τ a 

more central role employing a probabilistic model in which genetic, environmental players and 

co-pathologies contribute towards the development of dementia (Frisoni et al., 2022). Such a 

central role of τ in the pathogenesis of AD explains, in this context, the lacking or low efficiency 

of Aβ targeting therapeutical approaches and strongly encourages the development of τ 

targeting therapies including those directed against downstream execution pathways of 

neurodegeneration, e.g., the necroptosis pathway. 
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Figures 

Figure 1 – τ isoforms and important phosphorylation sites. τ protein exhibits six isoforms, 

(a) 4R- or (b) 3R-τ, both with 3 isoforms each, which are expressed in AD cases and are 

distinguished by the presence or absence of exon 10, respectively. The most important 

phosphorylated epitopes are represented, which relate to τ maturation seen in human AD cases: 

pThr231 (AT180) and pSer202/Thr205 (AT8), followed by pSer396/pSer404 (PHF1), pThr181 

(AT270), pThr212/pSer214 (AT100) and finally, by the conformational paperclip modification 

MC1. 
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Figure 2 – Maturation and formation of τ NFTs in AD. In healthy brains, physiologically 

phosphorylated and non-phosphorylated τ is expressed (a). pThr396/pThr404-τ (PHF1) and 

pThr231-τ (AT180), are expressed in in the neuropil (IN-) or in the cytoplasm (IC) which 

precedes the formation of pretangles (b). Pretangles containing pSer205/pSer205 (AT8) are 

formed (c1), which can be accompanied by phosphorylated C-terminal TDP-43 species (c2). 

Conformationally-modified τ exhibiting the MC1 epitope occurs later and is found in all AD 

cases, with (d1) or without TDP-43 (d2). Gallyas-positive NFTs can then be detected (e1), co-

expressing with pTDP-43 in a large subset of AD cases (e2). Ghost tangles can be observed in 

later stages of the disease, reflecting residual NFTs after the neurons have died (f1,f2). 

PP P

P

P P

 

P

P

P

P

P

P

P

P

P

P

P

P

P

PP
P

P

P

P

P

P
P

P

P

P

P

P

c1. tangle formationPre

P

P

 P P
P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P P

P

P

P

P

P
P

P

P

P

P

c2. tangle formationPre

PP P PP     

a. Normal brain

P

P

P

P

P

P P
P

P

P
P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

b. ifferential phosphorylationD  ( , )IC-tau IN-tau

PP P PP    P P PP

P



Physiological phosphorylation P Phosphorylated-S396/S404- τ

Phosphorylated-T23 -1 τ

argyrophilic NFTs

P Phosphorylat S202/T205ed- -τ

f . Ghost tangle1

P P PP

P

P

P

P
P

P

P
P

P

P

P

P

PP

P

P

P

P

P

P

P

d1. onformational modificationMC1-c

P

PP PP
P

P

P

P

P

P

P

P

P

P
P

P


P P

P

P

P

e1. Neurofibrillary tangle formation


P

P



P P

M

M M M

M

M
M

M

M

M

M

M

M

M M M M

M

M

M

M

M

M

M

M

f . Ghost tangle2

PP P PP P PP

P

P

P

P

P

P

P

P

P

P

P
P

P

P
P

P

P

P

P

P
P

P

P
P

P

d2. onformational modificationMC1-c

P

PP P PP P PP



P

P

P

P

P

P

P

P

P

P

P

P
P

P

P
P

P

P

P

P
P

PP



P

P
P

P

P

P



P

P

e2. Neurofibrillary tangle formation


P

P

P

P

M

M

M M M M

M

M

M

M

M
M

M

MM

M

M

M

M

M M M M M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

Maturation of  pathology - NFT formationτ

P Phosphorylated TDP-43 C-terminal species- 

PPP P PPP P PP P P PPP PP P

P P

P P

P PP

PP PP

PP

P
P

P

P

P P P P

P

P

P

P
P

  

   

     

 

 

Physiological tau protein P

M Paperclip  of -conformation τ

(7-9; 313-322)





+ TDP-43 (C-t)

P

M

P

P

 

  



Thal & Tomé    36 
 

Figure 3 – τ lesions observed in post-mortem AD tissue. Neuropil threads are early lesions 

observed consisting of p-τ accumulation in distal dendrites (a-b, white arrowheads). τ protein 

can also be observed diffusely distributed in the cytoplasm, known as IC-τ (a, black arrows). 

Pretangles are observed in the cytoplasm and do not yet exhibit fibrillary structure (a, white 

arrow), in addition to neurons negative for τ pathology (a, black arrowheads). NFTs consisting 

of fibrillar p-τ aggregates are observed (b, black arrow) in later stages of p-τ pathology 

maturation, while “ghost” tangles remain after death of an NFT-bearing neuron (c). p-τ 

pathology in AD is commonly also seen in dystrophic neurites of neuritic plaques (d). In a 

subset of AD cases pTDP-43 can be observed in neurons with p-τ pathology, here depicted in 

the pretangle stage (e). Stainings: a: anti-pT231-τ (AT180); b, d: anti-pS202/pT205-τ (AT8); c: 

Gallyas silver staining; e: double label immunofluorescence - anti-pS202/pT205-τ (AT8; red) 

and anti-pTDP43 (S409/S410). 
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Figure 4 – Anterograde spreading of τ pathology in AD. Braak NFT stages as described by 

Braak et al. (Braak et al., 2011) including the brainstem stages a-1b (a) and anatomical 

spreading of τ pathology considering the anterograde neuronal transport pathways (b). Stages 

a-1b highlight the early involvement of the locus coeruleus, raphe nuclei, and the basal nucleus 

of Meynert, which later facilitates the spreading to the hippocampus and cortical areas by 

anterograde transport, resulting in a widespread distribution of τ aggregates in late stages of the 

disease.  
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Figure 5 – Frequency of Braak NFT stages between 0-100 years. In a hospital-based cohort 

including 706 cases, we found only Braak NFT stage I cases until 40 years of age representing 

less than 20 % of the cases in the respective age groups. Between 41 and 60 years, Braak NFT 

stage I was observed in more than 60 % of the cases, with a few cases exhibiting higher stages. 

With increasing age (61-100 years), higher Braak NFT stages were more frequently seen and 

only a very small amount of cases remained negative for p-τ pathology. 
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Figure 6 – Frequency of the occurrence of Aβ and τ pathologies alone and together in a 

hospital-based cohort (n=628). We observed that the majority of cases (n=423, 67,4%) 

exhibited both pathologies (AD), while 193 cases (30,7%) presented PART and only 12 (1,9%) 

presented only Aβ pathology (ADNC). In this analysis only cases exhibiting Aβ and/or p-τ 

pathology were included. Cases not fulfilling the diagnostic criteria for ADNC and/or PART 

were not included. 
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Figure 7 – Schematic representation of the hypothetical, central role of p-τ pathology in 

AD. Propagation and Acceleration: p-τ pathology in the form of a primary tauopathy is 

considered to represent a prerequisite for the development of AD. This may be initiated by 

interaction of the norepinephrine metabolite DOPEGAL with τ leading to an accelerated 

phosphorylation and propagation of p-τ pathology (Kang et al., 2022). After the first seeds are 

available, the primary tauopathy can increase in severity and starts to spread into brain regions 

that become affected in later stages. In AD, this spreading and increase of τ pathology is 

presumably accelerated by additional factors, i.e., Aβ and, in cases with TDP-43 pathology, 

probably TDP-43 (Gomes et al., 2019; Gotz et al., 2001; Latimer et al., 2019; Latimer et al., 

2022; Lewis et al., 2001). Maturation and neuron death: In parallel, neurons with p-τ 

pathology undergo  maturation from initial cytoplasmic/ neuropil τ (IC-τ/IN-τ) accumulation, 

pretangle and NFT formation in each region (Aragao Gomes et al., 2021; Bancher et al., 1989; 

Braak et al., 1994) before the neuron eventually exhibits the active necrosome complex in GVD 

bodies. This probably leads to GVD-mediated necroptosis and neuron death (Koper et al., 2020) 

leaving only a ghost tangle behind (Alzheimer, 1911). Whether other cell death pathways also 

contribute to p-τ induced neuron death is not yet fully understood. 
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