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Editorial on the Research Topic

Imaging the immune response in inflammatory preclinical in vivo models
The immune response to pathological conditions is the result of a complex and

coordinated activity of specialized cells, tissues and organs, aimed at promoting an effective

host defense. Although in vitro models have been used to describe several aspects of the

immune system, they often fail to reconstitute the dynamic complexity of in vivo

multicellular systems. In the last decades, major breakthroughs in the fields of imaging

and mouse engineering have opened the door to investigate such a complexity. Indeed, the

possibility to select the appropriate imaging technique to address a specific biological

question has made it possible to unveil novel aspects of the immune response at different

levels of temporal and spatial resolution.

The aim of this Research Topic is to provide an overview of the different imaging

technologies and their application to analyse immune responses in in vivo models.

Conventional histology and immunohistochemistry represent the techniques of choice

to visualize the expression of inflammatory mediators in pathological tissues. He et al.

demonstrated, by immunohistochemistry, Hematoxylin & Eosin and Masson staining that

Sinomenin, a biologically active alkaloid isolated from the roots and stems of the plant

Sinomenium acutum, suppresses epithelial to mesenchymal transition in a mouse model of

ovalbumin-induced asthma.

Besides ex vivo techniques, a variety of non-invasive imaging methodologies were

developed to study the biodistribution and tissue accumulation of targeting probes and

drugs in preclinical models of disease. Positron Emission Tomography (PET) and Single

Photon Emission Computed Tomography (SPECT) are the most widely used, due to their

capability to provide information about the metabolic and molecular activity of the

analysed tissue. Moreover, PET and SPECT are routinely used in patients, thus

facilitating the translation of data from pre-clinical models to human clinical practice.

De Vlaminck et al. and Sandker et al. provided examples of SPECT to study the

pharmacokinetics of targeting molecules. De Vlaminck et al. generated nanobodies able

to recognize the signal regulatory protein alpha (SIRPa) for the SPECT targeting of tumor-
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associated myeloid cells in a mouse model of glioblastoma. They

showed that the monovalent format of anti-SIRPa nanobodies has

an improved tumor penetration compared to the bivalent

counterpart and that myeloid cells infiltrated glioblastomas even

in absence of blood-brain barrier permeabilization. Sandker et al.

analyzed the effect of infectious stimuli in the pharmacokinetic and

tumor targeting capability of an anti-PD-L1 antibody. They found

that anti-PD-L1 antibody pharmacokinetics and tumor

accumulation can be altered by a severe inflammatory response,

thus requiring an appropriate modulation of the injected dose of

the tracer.

Similarly, Rothlauf et al. applied PET and radiolabeled anti-

CD8 nanobodies to track CD8+ T cells infiltration in a mouse model

of influenza A virus infection. They visualized CD8+ T cells

throughout the progression of the infection, showing that CD8+ T

cells initially accumulate in mesenteric lymph nodes, then migrate

into the infected lungs, and finally exit the lungs as the mice

recovered. Likewise, using non-invasive optical imaging and PET,

Traenkle et al. generated anti-human CD4 nanobodies to visualize

and quantify CD4+ T cells in human tumor xenogratfs and in CD4+

T cell-rich tissue in human CD4 knock-in mice. Waaijer et al. used

PET to study, for the first time, the biodistribution of a CSF1R-

binding monoclonal antibody. They demonstrated that anti-CSF1R

monoclonal antibodies do not exclusively target tumor

macrophages but preferably distribute to other organs with high

macrophage infiltration, highlighting the need for more studies to

enhance the understanding of macrophage-specific antibodies for

their potential application as targeting agents in humans. The use of

CSF1R targeting strategies in the context of neurological disorders

was also reviewed by Barca et al. They revised the supporting

evidence on the role of CSF1R in neurological disorders and the

efficacy of CSF1R-inhibition as therapeutic strategy. In addition,

they discussed the recent development of in vivomolecular imaging

of CSF1R, with a specific focus on the translocator protein (TSPO)-

PET as a CSFR1 inhibition therapy readout.

Macrophages represent an interesting target not only in tumors

but also in the onset of other inflammatory disease. Steinz et al.

reviewed the application of folate-based PET for macrophage

targeting in rheumatoid arthritis. Radiolabeled folate interacts

with folate receptor b expressed on macrophages and it is a useful

tracer in both preclinical and clinical applications. Similarly, Palani

et al. showed that the glutamine analog (2S,4R)-4-18F-

fluoroglutamine (18F-FGln) can be used for PET of macrophage

metabolic activity in a mouse model of atherosclerosis. They

experimentally showed that 18F-FGln PET is superior to 18F-FDG

PET in detecting inflamed atherosclerotic lesions in mice, paving

the road for its clinical application.

Although PET and SPECT are useful to study the

biodistribution of injected probes and the metabolic activity of

diseased tissues, they do not provide anatomic information on the

organs of interest. For this reason, PET and SPECT are usually

combined with computed tomography (CT) or magnetic resonance

imaging (MRI), thus linking accurate spatial localization with

metabolic/molecular data. Examples of this combined application

were reported by De Vlaminck et al., Traenkle et al., Palani et al. and

Sandker et al. Moreover, dedicated microCT can be also used as a
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stand-alone technique to monitor structural changes in tissues.

Nagai et al. applied microCT to visualise the morphological and

histological properties of peripheral and temporomandibular joints

(TMJ) in a mouse model of rheumatoid arthritis with or without the

exposure to mechanical strain on the TMJ. 3D morphological

evaluation by microCT revealed morphological changes in the

posterior part of the mandibular condyle and signs of bone

destruction in a mouse model of anti-collagen antibody-

induced arthritis.

As shown by Traenkle et al., beside PET and SPECT, optical

imaging can be used to monitor biological process in live animals.

However, a drawback of this technique is that light scattering and

absorption by tissues limit its applicability for non-invasive imaging

at high spatial resolution. Less subjective to these limitations are

techniques such as fluorescence-guided surgery and intravital

microscopy, that have been developed for the visualization of

surgically exposed organs, allowing the possibility to analyse

biological processes at both cellular and subcellular level.

Pizzagalli et al. discussed the investigation of the migratory

patterns of immune cells in living animals by intravital

microscopy. They described the morpho-dynamic properties

associated with immune cell migration during immune responses

and the computational methods employed for their quantification.

Moreover, recent advances in super-resolution microscopy have

enabled the analysis of biological events in living organisms beyond

the light diffraction limits. In this context, Johanson et al. reviewed

the usefulness of this technique to investigate immune cell function

and molecular processes underlying inflammatory responses and to

answer long-standing fundamental questions in this matter.

In conclusion, a variety of imaging methodologies, each with their

distinct features and possible applications, are available for researchers

to investigate the complexity of the immune response in living animals.

Differently from conventional ex vivo imaging methods, that generally

provide snapshot data from fixed samples, in vivo imaging approaches,

such as intravital microscopy and whole-body imaging techniques

(PET, SPECT, CT, MRI, etc.), have the great potential to add the

temporal dimension to immunological investigations. The choice of the

right imaging technique, or even better, the combination of appropriate

imaging methodologies strictly depends on the biological questions

asked, aimed at collecting as much information as possible from single

experiments in animal disease models.
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