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ABSTRACT

Adapting a trained Automatic Speech Recognition (ASR) model to
new tasks results in catastrophic forgetting of old tasks, limiting the
model’s ability to learn continually and to be extended to new speak-
ers, dialects, languages, etc. Focusing on End-to-End ASR, in this
paper, we propose a simple yet effective method to overcome catas-
trophic forgetting: weight averaging. By simply taking the average
of the previous and the adapted model, our method achieves high
performance on both the old and new tasks. It can be further im-
proved by introducing a knowledge distillation loss during the adap-
tation. We illustrate the effectiveness of our method on both mono-
lingual and multilingual ASR. In both cases, our method strongly
outperforms all baselines, even in its simplest form.

Index Terms— end-to-end automatic speech recognition, con-
tinual learning, conformer, transformer, weight averaging

1. INTRODUCTION

Catastrophic Forgetting (CF) [1] remains a problem when adapting
a trained Automatic Speech Recognition (ASR) model to new tasks,
regardless of whether the new tasks are new languages, dialects, ac-
cents or simply new speakers. CF thus severely limits the ability
of ASR models to be extended to new domains (e.g. to build very
powerful ASR models able to perform well for all dialects, accents,
speakers, etc.), or to exploit all the (recently become available) data
at its disposal. To overcome CF, one needs to re-introduce all past
data when extending the ASR models, which soon becomes very
expensive in terms time, energy and resources.

Alternatively, one could use Continual Learning (CL) methods
to enable models to learn continually without suffering from CF. CL
has been a hot research topic in image classification, with many CL
methods being proposed. These CL methods can be grouped into
three categories [2]: (i) regularization-based methods add a term to
the loss to regularize training, e.g. [3, 4, 5]; (ii) rehearsal-based
methods rehearse previous tasks through a small memory of sam-
ples from previous tasks, e.g. [6, 7]; (iii) architectural-based meth-
ods increase the model capacity when learning new tasks, e.g. [8].
For ASR, CL is still a relatively new topic. [9] and [10] implement,
respectively, four and nine CL methods for (End-to-End) E2E ASR,
both finding that rehearsal-based methods remain the most practi-
cal way to overcome CF. [11] applies Gradient Episodic Memory
[12], also a rehearsal-based method, to E2E ASR, while assuming
that task boundaries are not known. However, the disadvantage of
rehearsal-based methods is that they require storing a memory (i.e.
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a set of samples from previous tasks), which may not always be al-
lowed due to privacy concerns. [13] finds that using rehearsal-based
methods is not necessary to prevent CF when task-specific adapters
[14] are used, which comes, however, at the cost of introducing task-
specific parameters, possibly requiring a task label at inference time.

Similar to [9, 10, 13], this paper focuses on CL (with known task
boundaries) for E2E ASR, and proposes a simple yet very effective
method to overcome CF: weight averaging. By simply computing
the (weighted) average of the model before and the model after adap-
tation to the new task, CF can be prevented while learning the new
task well. Though already very effective by itself, weight averaging
can be further improved by introducing knowledge distillation losses
(as in [15]) during the adaptation. Overall, our method remains very
simple, while, compared to the best methods from [9, 10], not requir-
ing a memory. We illustrate the effectiveness of our method on both
monolingual and multilingual experiments, consisting of six and five
tasks, respectively. On both experiments, our method strongly out-
performs all baselines, even in its simplest form.

2. ASR MODEL

Our ASR model is an E2E encoder-decoder model consisting of a
Conformer encoder [16] and a Transformer decoder [17]. The output
of the model are o word pieces, and its loss is a combination of
the decoder cross-entropy (CE) loss and a CTC loss computed after
applying a linear layer to the encoder output. We refer to the model
parameters as θ ∈ RN with N the number of parameters. f ctc(X; θ)
and f dec(X; θ) are the outputs (after applying the softmax) of the
CTC and decoder, respectively, for an input utterance X ∈ RL×di ,
which consists of L input frames. Given Lctc(X, y; θ) the CTC loss
and Ldec(X, y; θ) the decoder CE loss for utterance X with y its
ground truth (of W word pieces), the loss of the model is given by:

Lce(X, y; θ) = αLctc(X, y; θ) + (1− α)Ldec(X, y; θ) (1)

3. CONTINUAL LEARNING

There are T tasks which must be learned in sequence (e.g. because
they become available at different times). For each task t, we have
access to its train set Dtrain

t and validation set Dval
t , which both con-

tain pairs (X, y). Importantly, the access to Dtrain
t−1 and Dval

t−1 of pre-
vious task t− 1 is assumed to be lost once it has been learned by the
model and the new task t becomes available. Consequently, given a
model trained on task t − 1 with parameters θt−1, the objective of
Continual Learning is to be able to train this model on a new task t,
obtaining parameters θt while satisfying two criteria:



(a) retain high performance on all previous tasks 1 to t− 1. Ide-
ally, thus, for each task j ∈ {1, ..., t− 1}:∑

(X,y)∈Dtrain
j

Lce
(
X, y; θt

)
≤

∑
(X,y)∈Dtrain

j

Lce
(
X, y; θt−1)

(2)
This criterion is referred to as knowledge retention [18]. The
difficulty lies in the fact that Dtrain

j is no longer available.

(b) achieve high performance on the new task t. Thus, θt should
satisfy (within early stopping):

θt = argmin
θ

∑
(X,y)∈Dtrain

t

Lce (X, y; θ) (3)

This is referred to as forward transfer [18].

Note that in case the parameters θ of the model can be written as
θ = {θS , θU} with θS the parameters shared across tasks and θU

the task-specific parameters, θt = {θS,t, θU,1, ..., θU,t} with θU,i

the task-specific parameters for task i ≤ t. To transcribe an utterance
X of task i ≤ t, parameters {θS,t, θU,i} are then used.

Combined, the two criteria above require that after training on
task t, the model must have high performance on all seen tasks 1
to t. To achieve this, it has access to the parameters of a single
model performing well on tasks 1 to t− 1, and Dtrain

t and Dval
t of the

new task t. Since naively (i.e. fine-tuning) training the model with
parameters θt−1 on Dtrain

t will result in catastrophic forgetting, we
discuss in the remainder of this Section how our model combats CF.

3.1. Weight Averaging

The major aspect of our approach is weight averaging [19]. Before
training on task t, we have a model with parameters θt−1. Next,
we proceed in two steps. First, we train this model on task t to
obtain parameters θ̂t, either by naively fine-tuning (which will result
in catastrophic forgetting) or by using a CL method (see Sec. 3.2).
Second, we combine the parameters of the ’old’ model (θt−1) and
those of the new model (θ̂t) as follows:

θt = (1− η)θt−1 + ηθ̂t, 0 ≤ η ≤ 1 (4)

with θt the final parameters after learning task t. If θ = {θS , θU},
i.e. there is a shared and task-specific part, Eq. 4 is applied to the
shared part θS of θt−1 and θ̂t only. Regarding η, we consider: (a)
η = 0.5; (b) η = t−1. For (a), Eq. 4 can be written as an exponential
moving average in which the contribution of θ̃i goes exponentially
to zero as |i − t| increases. For (b), we can write Eq. 4 as θt =

t−1 ∑t
i=1 θ̃

i, and this is thus an average over θ̃i for all i ≤ t.

3.2. Adding Knowledge Distillation Loss

As explained in Sec. 3.1, before averaging the weights, we first
adapt the model with parameters θt−1 to the new task t, obtain-
ing a model with parameters θ̂t. This adaptation can be done ei-
ther naively (i.e. fine-tuning) or by using a CL method. For the
latter case, we consider Learning Without Forgetting (LWF) [15], a
regularization-based CL method. We consider LWF since it is a rel-
atively simple method, which does not require a memory (i.e. it is
not a rehearsal-based method) and is very storage efficient [10]. As
shown in [10], by itself, LWF is not strong enough to prevent CF in
E2E ASR (though still works better than fine-tuning), but it might
improve the CL performance of weight averaging while still keeping
the overall method relatively simple and memory-free.

When training task t starting from the model with parameters
θt−1, LWF uses a knowledge distillation loss [20] between the ’old
model’ (with parameters θt−1) and the current model:

Llwf(X; θ) = α

L∑
i=1

o∑
j=1

fctc
i,j (X; θt−1

old ) log fctc
i,j (X; θ)

+ (1− α)

W∑
i=1

o∑
j=1

fdec
i,j (X; θt−1

old ) log fdec
i,j (X; θ)

(5)

with fdec
i,j the decoder probability of the jth word piece for the ith

element in the output sequence of utterance X; fctc
i,j is the same

for CTC; and θt−1
old = θt−1 if the entire model is shared, otherwise

θt−1
old = {θS,t−1, θU,t}, i.e. X , which belongs to task t, is sent

through the old model’s shared part but through the task-specific part
of task t. LWF thus transfers knowledge from the old to the new
model, and to this end it uses the new task’s data. During training,
the above loss is added to the loss from Eq. 1, so that the loss when
training the model with parameters θt−1 on task t becomes:

L(X, y; θ) = Lce(X, y; θ) + λLlwf(X; θ) (6)

With λ ≥ 0. After training with the above loss, we obtain param-
eters θ̂t, which are then averaged with θt−1, as explained in Sec.
3.1, to obtain θt. We refer to our method as FTA (Fine-Tuning with
Averaging) if λ = 0 and LWFA (LWF with Averaging) if λ > 0.

4. EXPERIMENTS

We consider two experiments (done in ESPnet [21]): one monolin-
gual, where the entire model is shared across tasks; and one multi-
lingual, where the encoder is shared while the decoder and the linear
layer of the CTC loss are made task-specific (i.e. language-specific).

Data. For the experiments, we consider the Common Voice
(CV) [22] dataset (version 7.0). For the monolingual experiments,
we consider CV English, which we split into 6 dialects: United
States (US), England (ENG), Australia (AUS), India (IND), Scot-
land (SCO), Ireland (IRE). The tasks (i.e. dialects) are learned in this
order, which was randomized, except that we start with the largest
task, followed by the second largest task, which seems the most re-
alistic scenario in practice. The number of utterances ranges from
approximately 350k for US to 7k for IRE. For the multilingual ex-
periments, the first task is the same as for the monolingual experi-
ments, i.e. US; then, we learn in the following order: Dutch (NL),
Swedish (SV), Polish (PL) and Russian (RU). The ordering is based
on the languages’ similarity to English (US), with similar languages
coming first. In this case, the smallest task is SV with 23k utterances.

Model. The model contains 12 Conformer encoders and 6
Transformer decoders, with attention dimension 256 and feedfor-
ward dimension 2048. The output dimension o equals 5000 word
pieces generated with [23]. The number of parameters equals 46.8M.
The optimizer is Adam [24], reset after each task. The learning rate
is ten times smaller for subsequent tasks than for the initial one.
The final model after learning a task is obtained by averaging ten
best checkpoints [17]. For the monolingual experiments, the entire
model is shared, including the output layers and the word pieces
generated on the first task (US). For the multilingual experiments,
the decoder, the output layers and the word pieces are language-
specific, which means that only the encoder and thus 71.5% of the
model is shared. Moreover, for all multilingual models, learning a
new language is done in two steps: 1) we freeze the encoder and
only train the task-specific layers; 2) we train the entire model.



Table 1: Results on the CV English experiments after learning the six tasks (i.e. dialects) in sequence. All WERs are expressed in percentages.
WERs are reported per task, evaluated on the final model, in addition to the summary results (AVG, BWT and FWT). η is the weight in weight
averaging (see Sec. 3.1). ’Mem.’ indicates the number of utterances stored in a memory, if applicable. Best model is highlighted in bold.

WER per task Summary

Model η Mem. T1–US T2–ENG T3–AUS T4–IND T5–SCO T6–IRE AVG BWT FWT
Sep. Model 17.3 10.8 10.6 16.7 12.1 11.4 13.14 0.0 0.0
Fine-Tuning 19.4 12.7 14.0 20.6 13.4 11.4 15.25 -2.5 0.0

KD 0.5k 18.4 12.2 13.7 20.2 12.8 10.8 14.67 -2.0 +0.2
ER 0.5k 18.4 12.1 13.6 18.8 13.0 11.1 14.49 -1.6 +0.0
ER 2.0k 18.1 12.0 13.0 18.6 12.7 10.8 14.20 -1.3 +0.1
LWF 19.0 12.2 13.7 20.7 12.6 11.1 14.88 -2.3 +0.2

FTA = 0.50 17.5 11.4 12.8 19.6 12.0 10.4 13.94 -0.8 -0.1
= t−1 17.2 11.1 12.0 19.3 12.4 10.4 13.72 -0.1 -0.5

LWFA = 0.50 17.2 11.2 12.7 19.2 11.9 10.5 13.79 -0.7 +0.0
= t−1 17.1 11.1 11.9 19.5 12.4 10.3 13.72 -0.1 -0.5

Baselines. We consider the following baselines: (i) Fine-
Tuning: naively adapts the model to new tasks, suffering from CF;
(ii): Separate Model (Sep. Model): same as Fine-Tuning, but stores
all past models θi for task i, so that each task has its separate model
(i.e. after t tasks it stores t models) – this violates the idea of CL but
can be considered an upper bound; (iii) Experience Replay (ER) [7]:
rehearsal-based method, which trains jointly on a mini-batch from
the new task and one sampled from the memory set; (iv) Knowledge
Distillation (KD): rehearsal-based method as used in [10], in which
it was the best CL method - it uses the loss of LWF (Eq. 5), but
computed on a mini-batch from the memory set; (v) LWF [15]:
best regularization-based method from [10]. For the multilingual
experiments, we add Freeze Encoder (Freeze Enc.), which freezes
the encoder after training on US. For the rehearsal-based methods, a
memory with fixed size M (i.e. M/t utterances per task for t seen
tasks) is formed by sampling uniformly from each task’s training set.
We consider M = 0.5k and M = 2.0k. For all methods, including
LWF in LWFA, the hyper-parameters from [10] are used.

Metrics. We use the same metrics as [10], based on WER: Aver-
age WER (AVG) is the average WER over all seen tasks, evaluated
on the final model; Backward Transfer (BWT) [12] is the average
decrease in WER of previous tasks since they were first learned -
negative BWT is forgetting; Forward Transfer (FWT) [12] is the av-
erage decrease in WER on each new task compared to Fine-Tuning,
so that a positive FWT means better learning than Fine-Tuning. It
is clear that AVG is the main metric, and whether one method out-
performs another is determined by their AVG. However, BWT and
FWT can give an idea to which extent the model satisfies the criteria
knowledge retention and forward transfer from Sec. 3.

5. RESULTS

5.1. Monolingual Experiments

Table 1 shows the results of the monolingual experiments, where the
methods must learn six dialects of English in sequence.

First, note the effectiveness of weight averaging for the mono-
lingual tasks. All settings of our method outperform all baselines,
including ER with 2.0k utterances, while our methods do not even
require storing a memory. Note also how Fine-Tuning and LWF,
which are the same as FTA and LWFA without weight averaging,
suffer from forgetting and are unable to perform well.

Second, considering our methods, we find, on the one hand, that
for η (see Sec. 3.1), η = t−1 works better than η = 0.50. In the lat-
ter, the contribution of an adapted model θ̂i for task i in the current
model θt+1 goes exponentially to zero as |i − t| increases. Conse-
quently, it should not be a surprise that η = 0.50, though it learns the
new task very well (FWT), suffers from slight forgetting. Neverthe-
less, given that after six tasks, the contribution of the model trained
on T1–US is less than 2% (i.e. 0.506), it is surprising to see that
even for η = 0.50, our methods suffer from less forgetting than the
baselines and retain higher WER on the first three tasks. Thus, even
for relatively high η, weight averaging is able to alleviate forgetting.
When η = t−1, each adapted model θ̂i for task i contributes equally
in the current model θt+1. This results in slightly poorer learning of
new tasks (FWT), but also almost zero forgetting (BWT), for both
FTA and LWFA. Overall, for both FTA and LWFA, η = t−1 is a
better option than η = 0.50. On the other hand, comparing LWFA
to FT, we find that LWFA improves the performance of FTA only
for η = 0.50. Since for η = 0.50, the contribution of older models
goes exponentially to zero, it is not surprising to find that LWFA,
which contains a mechanism to reduce forgetting during the adapta-
tion, retains more old knowledge than FTA. Indeed, for η = 0.50,
LWFA outperforms FTA for all of the five previous tasks. However,
the need for a CL method during the adaptation is overcome when
using η = t−1. In that case, an equal focus is put on all tasks and the
mechanism in LWFA that reduces forgetting during the adaptation
does not improve the performance.

Overall, we can conclude that FTA and LWFA with η = t−1

(and to a slightly lesser extent with η = 0.50) are extremely effec-
tive and enable CL in monolingual ASR, approximately achieving
knowledge retention and forward transfer (Sec. 3). To achieve their
high performance, they do not even require a memory, unlike the
strongest baselines. They improve the strongest baseline, ER with
2.0k utterances, by 3.4%, without requiring a memory. Compared
to baselines storing only 0.5k utterances or even zero utterances, our
method improves their performance by 5.3% and 7.8%, respectively.

5.2. Multilingual Experiments

However, it might be that weight averaging only works for similar
tasks, which is the case for the monolingual experiments. To this
end, we test our method on the multilingual experiments, in which
the tasks are much more dissimilar. Table 2 shows the results.



Table 2: Results on the CV Multilingual experiments after learning the five tasks (i.e. languages) in sequence. All WERs are expressed in
percentages. WERs are reported per task, evaluated on the final model, in addition to the summary results (AVG, BWT and FWT). η is the
weight in weight averaging (see Sec. 3.1). ’Mem.’ indicates the number of utterances stored in a memory. Best model is highlighted in bold.

WER per task Summary

Model η Mem. T1–US T2–NL T3–SV T4–PL T5–RU AVG BWT FWT
Sep. Model 17.3 10.5 38.0 8.1 11.0 16.97 0.0 0.0
Freeze Enc. 17.3 17.9 55.1 13.8 21.2 25.06 0.0 -10.1
Fine-Tuning 59.4 30.7 61.7 10.9 11.0 34.73 -22.2 0.0

KD 0.5k 37.5 36.1 59.8 13.1 12.2 31.71 -18.1 -0.3
ER 0.5k 36.8 20.4 57.4 11.2 12.4 27.64 -12.9 -0.4
ER 2.0k 31.0 16.0 49.3 9.9 12.0 23.65 -8.1 -0.3
LWF 54.4 34.3 57.2 8.9 10.0 32.93 -21.1 +1.2

FTA = 0.50 28.1 15.6 44.2 8.4 12.5 21.76 -4.8 -1.2
= t−1 21.2 13.3 41.2 10.2 15.5 20.28 -1.2 -2.9

LWFA = 0.50 26.8 14.8 43.7 8.2 12.1 21.12 -4.4 -0.8
= t−1 20.4 12.7 39.6 10.1 14.8 19.54 -0.9 -2.3

First, it is indeed clear that forgetting is an even more severe
problem for the multilingual experiments, where the tasks are more
dissimilar, than for the monolingual experiments. In particular for
Fine-Tuning and LWF, the forgetting can indeed be considered catas-
trophic. However, as for the monolingual experiments, our method
still proves to be extremely effective in reducing CF, strongly out-
performing all baselines, including ER with 2.0k utterances. The
latter, using a large memory, and our methods are the only methods
outperforming Freeze Enc., which freezes the encoder after US.

Second, considering our methods, for the value of η (Sec. 4), the
same conclusions can be drawn as for the monolingual experiments:
η = t−1 is better than η = 0.50, with much less forgetting (BWT)
and only slightly worse FWT; nevertheless, η = 0.50 performs sur-
prisingly well on old tasks (better than the baselines). Regarding
LWFA compared to FTA, we find that, while in the monolingual ex-
periments the advantage of LWFA over FTA was very small, in the
multilingual experiments, where the forgetting is more severe, the
advantage of using LWFA over FT is much more significant.

Overall, FTA and LWFA with η = t−1 reduce the forgetting of
ER with 2.0k utterances by, respectively, 85.2% and 88.9%, while
not requiring a memory. Given that their FWT is only slightly worse
than the latter’s, they improve the latter’s performance by 14.2% and
17.4%, respectively. If the number of utterances that can be stored
is further limited to 0.5k or even zero, LWFA improves the strongest
baseline by, respectively, 29.3% and 40.7%. In addition, it improves
Freeze Enc., overall the second strongest method, by 22.0%. Con-
sequently, FTA and especially LWFA can again be said to have ap-
proximately achieved knowledge retention and forward transfer.

6. DISCUSSION

In checkpoint averaging, the final model is obtained by averaging
over the most recent or best performing checkpoint. Checkpoint av-
eraging is commonly associated with Transformers [17]. [25] argues
that averaging all the checkpoints along the trajectory of stochastic
gradient descent leads to wider optima, and, consequently, better
generalization. Checkpoint averaging has been used by [26] which
combines averaging over checkpoints stored every 500 iterations
with Elastic Weight Consolidation [3], to overcome overfitting when
fine-tuning a pre-trained model to a target domain. [27] proposes
to average the most recent checkpoints after each epoch during

training, in order to reduce training time.
More broadly, averaging weights of Artificial Neural Networks

(ANN) has been used as early as 1996, by [19], in which it is shown
that averaging over ANNs trained on the same task but different data,
and from the same pre-trained model, reduces the variance. Similar
work, focusing on neural machine translation, is [28], which com-
putes the average weights of four models in an ensemble, finding that
the resulting model nearly matches the performance of the ensemble
itself. [29] introduces ’model soups’, which average the weights of
multiple models trained on the same task and from the same ini-
tialization but with different hyper-parameter configurations. [30]
uses weight averaging between a pre-trained zero-shot model and
the same model fine-tuned on distribution shifts to improve the ro-
bustness of the model and achieve high performance on the target
domain as well as on the distribution shifts. For an explanation of
why this works, they consider [31], which observes that ”pre-trained
weights guide the optimization to a flat basin of the loss landscape.”

Our experimental observations are compatible with the explana-
tion from [25, 31] that weight averaging leads to wider optima and
hence better generalization.

7. CONCLUSION

In this paper, we proposed weight averaging as a simple yet effec-
tive method to overcome catastrophic forgetting in E2E ASR. Our
method proceeds in two steps: 1) it trains the model on the new task,
either by fine-tuning or using LWF; 2) it computes the average of the
old model and the new model with weights 1−η and η, respectively.
We illustrated the effectiveness of weight averaging on both mono-
lingual and multilingual experiments, on which our best method out-
performed the best baseline by 3.4% and 17.4%, respectively. This
baseline required storing a memory of 2.0k utterances, while our
methods do not. Consequently, our method is able to achieve very
high CL performance, without even requiring a memory, which was
previously found to be necessary for CL in E2E ASR to work well.
Regarding η, we found that η = t−1 for after t tasks works best, re-
sulting in nearly zero forgetting on old tasks while learning new task
well. Using LWF instead of fine-tuning during the first step of our
method improved the performance only in the multilingual experi-
ments, in which the tasks are more dissimilar; in the monolingual
experiments, fine-tuning worked equally well.
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