
ARENBERG DOCTORAL SCHOOL
Faculty of Engineering Science

Managing Delegation and
Conflicts of Interest in
Role-Based Access Control

Nezar Nassr

Dissertation presented in partial
fulfillment of the requirements for the

degree of Doctor of Engineering
Science (PhD): Computer Science

June 2023

Supervisor:
Prof. dr. ir. Eric Steegmans

Managing Delegation and Conflicts of Interest in
Role-Based Access Control

Nezar NASSR

Examination committee:
Prof. dr. ir. Paul Sas, chair
Prof. dr. ir. Eric Steegmans, supervisor
Prof. dr. ir. Bart Jacobs
Prof. dr. ir. Yolande Berbers
Prof. dr. ir. Bart De Decker
Prof. dr. ir. Jeroen Boydens
Prof. dr. ir. Mehmet Aksit

(University of Twente, The Netherlands)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor of Engineering
Science (PhD): Computer Science

June 2023

© 2023 KU Leuven – Faculty of Engineering Science
Uitgegeven in eigen beheer, Nezar Nassr, Celestijnenlaan 200A box 2402, B-3001 Leuven (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.

Preface

This dissertation is achieved as a result of my research during my doctoral
journey. As I mark this significant milestone in my life, I would like to thank
all people who have inspired me and guided me along the way.

I would like to thank my supervisor, Eric Steegmans, for giving me the
opportunity to pursue my PhD under his supervision. I also thank him for the
support and guidance during the journey. He has also given me the freedom to
choose the direction of my research.

My special thanks goes to, Bart Jacobs, who provided me with exceptional help
and guidance during the PhD, mainly during the implementation phase and
the writing of the thesis. It has been a pleasure working with him and learning
from him.

I would also like to take this opportunity to thank all the members of my
supervisory committee for their support and interest in my research.

I express immense gratitude to my family for their endless support. My mother
and father for their encouragement, my wife and kids for the patience and
continuous support.

i

Abstract

Access control is a field in information security, which is used in any organization
to regulate access to their most sensitive data and resources. Role-Based Access
Control (RBAC) is one of the most used access control models in organizations.
Tremendous amount of research was conducted on RBAC, which has generated
many enhancements and broader coverage of access control policies over the
years. The main advantage of RBAC over any other existing access control
model, is that it simplifies the management of access rights by introducing the
concept of role, a reusable element used to map users to their access privileges
(permissions). Roles represent groups of permissions used by users often playing
the same role in the organization.

Despite robustness of basic RBAC in managing assignment of access rights to
users via the role concept, it is not sufficient as a comprehensive access control
model. Two main access control features, which are delegation of access rights
and mitigation of conflict of interest are necessary to guarantee applicability of
RBAC in a wider range of organizations.

Access rights delegation is a mechanism of performing a takeover on a user’s
access rights. Delegation gives authority of a user on another user’s access
privileges to perform functions of the user originally assigned to the delegated
access rights. While extensions were made to basic RBAC to provide delegation
of access rights features, such extensions are not accepted by most organizations
due to not considering the lines of authorities in organizations in the delegation
process.

Conflict of interest is one of the major risks that organizations face. Conflict of
interest could happen when the decision of the user in the workplace is influenced
by his personal interests. This issue can lead to more serious consequences
such as corruption, fraud, and cause reputation damage for the organization. A
robust access control model must provide capabilities for deterring such risks
before they could happen. Existing RBAC extensions related to this field are

iii

iv ABSTRACT

focusing mainly on just one aspect of conflict of interest, which can be deterred
by separation of duty policies. However, this covers a subset of what can happen
in terms of conflict of interest.

This dissertation provides a new approach to access rights delegation and
mitigation of conflicts of interest. The access rights delegation model
incorporates organization structures to include the lines of authority in an
organization in the delegation process, which complies with organizations
policies towards approvals of the delegation requests by the line managers
of both the delegator and the delegatee. More so, a revamped version of the
basic RBAC model, which enables definition of sophisticated context policies
is provided to serve as a basis for the conflict of interest mitigation policies.
Our approach to conflict of interest policies goes beyond separation of duties, it
utilizes algebraic expressions to defuse a wider range of conflict of interest. The
algebraic expressions support definitions of expressions involving users, actions,
and workflow steps.

Beknopte samenvatting

Toegangscontrole is een domein binnen de beveiliging van informatie dat door
organisaties gebruikt wordt om toegang te verlenen tot gevoelige informatie en
subsystemen. Toegangscontrole gebaseerd op rollen (RBAC) is één van de meest
verspreide modellen voor toegangscontrole in organisaties. Er werd door heen
de jaren reeds heel veel onderzoek gedaan naar RBAC, dat geresulteerd heeft in
aanzienlijke verbeteringen alsook in een bredere ondersteuning van strategieën
voor toegangscontrole. Het grote voordeel van RBAC in vergelijking met andere
modellen voor toegangscontrole zit in de notie van een rol dat het beheren
van toegangsrechten aanzienlijk vereenvoudigt. Een rol maakt het immers
mogelijk om eindgebruikers te mappen op privileges die ze hebben om bronnen
te consulteren. Een rol impliceert een reeks permissies voor eindgebruikers
binnen hun organisatie.

Ondanks de robuustheid van het het basismodel voor RBAC, is het niet krachtig
genoeg voor een uitvoerige en fijnkorrelige toegangscontrole binnen organisaties.
Zo biedt het basismodel van RBAC geen ondersteuning voor het delegeren
van toegangsrechten. Ook moet het mogelijk zijn om soepel in te spelen op
belangenconflicten die zich kunnen stellen tussen eindgebruikers.

Het delegeren vsan toegangsrechten is een mechanisme om toegangsrechten
tijdelijk of permanent over te dragen naar andere gebruikers. In de literatuur
werden diverse uitbreidingen voorgesteld aan het basismodel voor RBAC om
delegatie mogelijk te maken. In de praktijk worden deze uitbreidingen niet
toegepast omdat ze los staan van de hiërarchische organisatie van het personeel
binnen de organisatie.

Het oplossen van belangenconflicten vormen een grote uitdaging voor
organisaties. Dergelijke conflicten doen zich typisch voor wanneer beslissingen
conflicteren met persoonlijke belangen van eindgebruikers. Dit kan resulteren in
corruptie of fraude, en kan daardoor de organisatie grote schade toebrengen. Een
robuust mechanisme voor toegangscontrole moet in staat zijn om te anticiperen

v

vi BEKNOPTE SAMENVATTING

op dergelijke risico’s. Bestaande uitbreidingen aan RBAC richten zich in
hoofdzaak slechts op één facet van belangenconflicten, met name conflicten die
kunnen vermeden worden door plichten van eindgebruikers strikt gescheiden te
houden.

Dit werk introduceert een nieuwe aanpak voor het delegeren van toegangs-
rechten en voor het bestrijden van belangenconflicten. Het delegeren van
toegangsrechten wordt geënt bovenop de structuur van de organisatie. Meer
in het bijzonder wordt bij het delegeren van toegangsrechten terdege rekening
gehouden met de gezagslijnen binnen de organisatie. Hierdoor kunnen
verzoeken om toegangsrechten te delegeren veel beter afgestemd worden op
de verantwoordelijkheden binnen de organisatie van zowel de verlener als
de ontvanger. Dit werk stelt een vernieuwde versie voor van het RBAC
model, waarmee fijnkorrelige strategieën kunnen uitgewerkt worden om
belangenconflicten hetzij te voorkomen, hetzij op te lossen. De aanpak die
in dit werk wordt voorgesteld gaat veel verder dan het strikt gescheiden houden
van verantwoordelijkheden van eindgebruikers. Het model maakt gebruik van
algebraïsche uitdrukkingen om een veel uitgebreidere set van belangenconflicten
te kunnen aanpakken. Meer in het bijzonder voorziet het model in uitdrukkingen
waarin gebruikers, acties en processen dominante concepten zijn.

Contents

Abstract iii

Contents vii

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Key Elements of Robust Access Control 2
1.2 Role-Based Access Control (RBAC) 6
1.3 Problem Statement . 8
1.4 The Organizational Supervised Delegation Model 9

1.4.1 Delegation: The Need and Relation with Authority . . . 9
1.4.2 Characteristics of Delegation in the Context of Basic RBAC 10
1.4.3 Characteristics of Delegation in the Context of Extended

RBAC . 13
1.4.4 The Supervised Delegation Model (OSDM) 14

1.5 Mitigation of Conflicts of Interests 14
1.5.1 Separation of Duty (SoD) 14
1.5.2 Non-SoD Conflicts of Interest 15
1.5.3 Mitigation of Conflicts of Interest 16

1.6 The Role-Oriented Access Control Model (ROAC) 16
1.6.1 The Core ROAC Model 17
1.6.2 Hierarchical ROAC . 18

1.7 Summary of Contributions . 18
1.8 Outline of the Dissertation . 21

2 Related Work 25
2.1 Access Control . 25

2.1.1 Discretionary Access Control 26

vii

viii CONTENTS

2.1.2 Mandatory Access Control 27
2.1.3 Attribute Based Access Control (ABAC) 27

2.2 Role-Based Access Control . 29
2.3 Background and Motivation . 32
2.4 Hierarchical Role-Based Access Control 37
2.5 Parameterized Role-Based Access Control 40
2.6 Role Delegation Models . 42
2.7 Conflicts of Interest and Authorization Policies 44

2.7.1 Overview of the algebra of Li and Wang 46
2.8 Administrative Models of Role-Based Access Control 48

2.8.1 ARBAC97 . 49
2.8.2 ARBAC99 . 51
2.8.3 ARBAC02: Role Administration Using Organization

Structure . 51
2.8.4 Role Hierarchy Administration 52

2.9 Chapter Conclusion . 53

3 Organizational Supervised Delegation Model (OSDM) 55
3.1 Introduction . 56
3.2 Overview of Organizational Structures 58
3.3 Related Work . 59
3.4 The Organizational Supervised Delegation Model 61

3.4.1 Extensions to RBAC . 62
3.4.2 Delegation in OSDM . 64
3.4.3 A UML/OCL Formal Model of OSDM 67
3.4.4 Revocation in OSDM 70

3.5 Discussion . 70
3.6 Conclusion . 71

4 ROAC: A Role-Oriented Access Control Model 73
4.1 Introduction . 74
4.2 Background and Motivation . 76
4.3 The Role-Oriented Access Control Model Overview 78
4.4 ROAC Reference Data Model 80
4.5 Generalization in the Role-Oriented Access Control Model . . 84
4.6 Discussion . 88
4.7 Conclusion and Future Work 89

5 Mitigating Conflicts of Interest by Authorization Policies 91
5.1 Introduction . 92
5.2 Related Work . 95
5.3 Overview of the Role Oriented Access Control Model (ROAC) . 97
5.4 Conflicts of Interest Policies . 98

CONTENTS ix

5.4.1 Extensions to the ROAC Model 99
5.4.2 Specification of Conflicts of Interest Policies 101
5.4.3 Conflict of Interest Policy Enforcement 107

5.5 Discussion . 108
5.6 Conclusion . 109

6 Comparison, Limitations, and Verification 111
6.1 Comparison with ABAC . 111

6.1.1 Expressiveness . 112
6.1.2 Least Privilege . 113
6.1.3 Complexity . 113
6.1.4 Maintainability . 113
6.1.5 Dynamicity . 114
6.1.6 Auditability . 114
6.1.7 Applicability . 115
6.1.8 Policy Specification . 115
6.1.9 Authorization Decision 115
6.1.10 Policy Conflicts . 116
6.1.11 Conflict Detection and Resolution 116
6.1.12 Hierarchies . 117

6.2 Limitations . 118
6.2.1 Limitations of OSDM 118
6.2.2 Limitations of the ROAC Model 120
6.2.3 Limitations of Conflicts of Interest Mitigation 123

6.3 Verification . 125
6.3.1 Verification of Correctness 126
6.3.2 Verification of Safety . 127
6.3.3 Verification of Liveness 128

7 Conclusion and Future Work 131
7.1 Summary . 131

7.1.1 Authority Delegation . 131
7.1.2 Conflicts of Interest Policies 132
7.1.3 The Core ROAC Model 133
7.1.4 The Hierarchical ROAC Model 135

7.2 Future Work . 135
7.2.1 Standardization of Policy Specification 136
7.2.2 Centralized Access Control System 136
7.2.3 Artificial Intelligence . 136

A A Motivating Example 137
A.1 Introduction . 137
A.2 Policy Elements and Relations 138

x CONTENTS

A.2.1 Elements . 138
A.2.2 Relations . 140

A.3 Core Model Policies . 141
A.3.1 Users . 141
A.3.2 Roles . 141
A.3.3 Permissions . 141
A.3.4 User-Role . 143
A.3.5 Role-Permission . 143
A.3.6 User-Permission . 144

A.4 Hierarchical Policies . 144
A.4.1 Role Hierarchy . 144
A.4.2 User Hierarchy . 145

A.5 Delegation Policies . 145
A.6 Conflict of Interest Policies . 146

B ROAC Formal Model 149
B.1 The Core ROAC Model . 149

B.1.1 The Basic ROAC Model (ROAC0) 149
B.1.2 The Parameterized ROAC Model (ROAC1) 157
B.1.3 Parameters . 157
B.1.4 The Context-Aware ROAC Model (ROAC2) 164

B.2 A UML Formal Model of ROAC 173
B.2.1 Validators: . 176
B.2.2 Parameters: . 176

C The Hierarchical ROAC Formal Model 179
C.1 Role Hierarchy . 179
C.2 User Hierarchy . 183
C.3 UML Model . 187

C.3.1 Elements & Relations Inheritance 188
C.3.2 Role Hierarchy . 188
C.3.3 User Hierarchy . 189

D Delegation Formal Model 193
D.1 Python Model . 193

D.1.1 DelegationRelation . 193
D.1.2 DelegationPolicy . 194

D.2 UML Model . 198

E Conflicts of Interest Formal Model 201
E.1 The History Data Structure . 201
E.2 Enforcement of Task Steps Order 203
E.3 Enforcement of Algebraic Expressions 206

CONTENTS xi

E.3.1 Examples of leaf evaluation 208
E.4 Example Policy Enforcement 211

Bibliography 215

Publications 227

List of Figures

1.1 The comprehensive ROAC Model 17

2.1 A basic ABAC authorization scenario 30
2.2 The ANSI Core RBAC . 32

3.1 Software development department users hierarchy of the organi-
zational structure. 59

3.2 Modeling the hierarchy of users of an organization structure by
a general tree data structure . 63

3.3 The activity diagram of the delegation process 66
3.4 The class diagram of OSDM . 68

4.1 UML diagram of the ROAC model. 80
4.2 An example role and permission. 85
4.3 Name conflict resolution in ROAC. 86

5.1 The UML diagram of the ROAC model and its extensions. . . . 98
5.2 Activity diagram showing the remittance payment business process. 99

A.1 Bank branch user hierarchy . 146

B.1 Relationship among the core ROAC models 150
B.2 Relationship among the elements of ROAC0 150
B.3 Relationship among relations of ROAC0 153
B.4 The ROAC1 model . 158
B.5 The ROAC2 model . 166
B.6 The activity diagram of the ROAC2 authorization process . . . 169
B.7 The UML Meta Model diagram of the ROAC model 175
B.8 An Object diagram of sample users, roles, permissions and relations177
B.9 The UML diagram of validator 178
B.10 The UML diagram of parameter 178

xiii

xiv LIST OF FIGURES

C.1 Example of matrix organization structure 183
C.2 A directed graph modeling the users hierarchy of a matrix

organization structure. 185
C.3 Generalization arrows of inheritance and hierarchy 188
C.4 Inheritance of ROAC elements and relations 189
C.5 UML class diagram of role hierarchy. 190
C.6 Object diagram of an example multiple role hierarchy. 191
C.7 The UML Class diagram of user component. 191

D.1 The UML diagram of OSDM 199

E.1 The UML diagram of the ROAC model with history data structure202
E.2 Binary tree representation of expression (7.3) 207
E.3 Evaluation of algebraic expression for policy of a payment task

exceeding 500K . 214

List of Tables

1.1 Access control mappings . 7

2.1 Example of a DAC access matrix 26

6.1 Comparison between ROAC and ABAC 118

A.1 Sample users and their attributes 138
A.2 Sample roles and their target assignees 138
A.3 Sample permissions mapped to the operations they protect . . 139
A.4 Sample user-role assignments 140
A.5 Sample role-permission assignments 140
A.6 Sample role policies . 141
A.7 Sample user-role policies . 143
A.8 Sample role-permission policies 143
A.9 Sample user-permission policies 144

E.1 User-role assignments . 208
E.2 Parameter bindings of the task instance variables 212

xv

Chapter 1

Introduction

The emergence of the concept of digital transformation has increased the reliance
on software applications by different organizations. Digital transformation means
that services are transformed into a digitized form. This has changed the way
operations in organizations are conducted. For example, most organizations are
deploying their applications on the cloud. Most organizations provide services
that used to require their customer presence in person, these services in recent
years are being delivered online. Most governments provide a wide range of
services digitally. Financial institutions are closing more branches day after
day [39], as their clients can do most of their services online. Furthermore,
an increasing number of organizations allow their employees to work remotely,
which means that organizations must make their infrastructures accessible from
the outside.

Digital transformation created new requirements for access control. Existing
traditional access control concepts are not adequate to satisfy the needs of
organizations. One aspect of digital transformation is guaranteeing business
continuity. Therefore, delegation of authority is of paramount importance to
insure smooth transition of duties to other users in case of unavailability of a
key resource. Furthermore, the reliance on digital services has caused a vast
increase in fraud, and the year over year fraud cases are skyrocketing. According
to the UK office of national statistics, there was a 56% increase in fraud and
computer misuse at 6.9 million incidents in the period between October 2020
to September 2021 [3]. Fraud can happen by outsiders, insiders, or by outsiders
with help from insiders. However, in case of insider fraud, the damage is usually
more severe than outsider fraud. Access control can play a significant role
in deterring insider fraud, which can be mainly done by defusing conflicts of

1

2 INTRODUCTION

interests.

In this dissertation, we focus on two main access control dimensions, which are
delegation of authority and mitigation of conflicts of interest, both features are
studied in the context of role-based access control (RBAC). This introductory
chapter starts by providing the key elements of modern access control, then it
introduces role-based access control (RBAC). A brief problem statement is also
provided. Then we dive into some details related to delegation of duties and
conflicts of interest. This is followed by an overview of the contributions and
an outline of the dissertation.

1.1 Key Elements of Robust Access Control

Organizations need to implement many internal and external controls to protect
their resources. Statistics from financial institutions reveal concerning numbers
of insider threats. It is crucial that any security controls that are designated
to prevent or mitigate cyber threats should start by having in place a strong
and efficient access control mechanism to regulate, control, and monitor access
to all internal resources. There are several security controls that need to be
realized by the underlying access control system. We can identify the following
points as important and must be adhered to:

Least Privilege

This concept suggests that users should be given the minimum access
rights needed to accomplish their roles. The least privilege concept
restricts access of any resource that is not necessary for an individual
user, consequently minimizing the risk of insider fraud. Access rights must
be fine grained to the minimal action or resource existing in a software
application in order to provide users with the minimum rights they need.
We can identify two challenges in implementing the least privilege concept
in access control systems:

- The least privilege concept results in a tremendous number of
access privileges, therefore, the access control system must provide
an efficient mechanism for simplifying the management of access
privileges.

- Some required features in access control have an adverse impact on
the least privilege concept. Therefore, much overhead is incurred
when adding new features or extending existing features.

KEY ELEMENTS OF ROBUST ACCESS CONTROL 3

Expressiveness and Context

When access rights are granted to users, the access control system should
allow for different levels of access to users who are assigned the same
access rights. In most organizations, users with similar roles have different
authority levels according to factors such as seniority. For example,
two tellers in a bank might be assigned the same access rights, but with
different granularity levels; imagine a senior teller who is allowed to handle
transactions with an amount threshold of 100K, while a junior teller who
is assigned the same access rights, is allowed to a threshold of 50K. The
underlying access control system must allow this kind of granularity
without the need to introduce a new access right each time a user needs a
different level of access to an existing access right. Without such expressive
power, the access control system would explode with similar access rights
but with different levels. This leads to an inconceivable management of
access rights.
An efficient access control system would not only define access permissions
but would also encapsulate the context for how and when resources are
accessed. For example, some sensitive operations cannot be done by a
single user and might require multiple users to be involved. The access
control system should take into consideration the surrounding context
of the environment in which it is deployed. Temporal properties for
access rights are one major requirement. For example, if a user is on
vacation or on sick-leave, access rights of that user should be frozen. The
access control system should also consider the organizational chart of the
organization as it represents lines of authorities, which are crucial for
some access control features such as role delegation.
We can identify the following challenges when implementing expressiveness
and context in access control systems:

- Auditability: expressiveness and context are usually achieved using
policy rules and parameterization, which is more difficult to trace and
audit than access permissions. Therefore, more efforts are needed to
facilitate tracing and before-the-fact auditability.

- Manageability: context policies can be added gradually as required.
Therefore, the access control system should provide a mechanism for
enabling building on existing policies, and to be able to generalize
policies on various levels, such as on all users granted to a specific
role, on a user level, on a permission level, and on the relation level.

- Specification and enforcement: organizations usually segregate
enforcement and specification. Therefore, the access control

4 INTRODUCTION

system must support both phases and segregation between them.
Furthermore, to provide unambiguous mechanisms for enforcement
of designed policies.

Hierarchical Access Rights

Most organizations have a hierarchical, or pyramidal reporting structure,
with a few senior individuals at the top of the hierarchy, and an increasing
number as you go down the hierarchy. Usually, superiors inherit the roles
of their subordinates. However, in many situations, superiors are not
involved in the day-to-day functions of their subordinates. To implement
this kind of hierarchy while complying with the least privilege principle, an
access control model should provide selective inheritance of access rights.
Yet, in case of the same line of authority, seniors usually inherit the full
access rights of juniors of the same role. Role hierarchy in access control
reduces the administrative burden of the model through modularity.
Access control systems attempt to project organization structures via
access rights hierarchies. However, this does not reflect the real-world
scenarios. Therefore, the main challenge in implementing the hierarchy
concept is to change the concept itself. More specifically, to support two
different hierarchies:

- Organization structure: the hierarchical policies must be able to re-
flect real organization structures, which must include an organization
chart and administrative methods for finding subordinates of a given
superior and vice versa.

- Inheritance: some roles in organizations can contain subsets of
permissions of other roles. Therefore, inheritance of access rights
can simplify their management. However, the concept must support
selective inheritance in order to handle exceptions and maintain a
maximum level of the least privilege concept.

Conflicts of Interest

Operations in organizations are usually managed through systems that
implement workflows. For example, a cross-border payment in a financial
institution represents a good example as it follows a sophisticated workflow.
The payment is initiated from the bank client through a mobile or an
online banking application, etc., which then goes into the core banking
application where the ordering account is debited, and the beneficiary
account is credited. The account holders: the ordering, the correspondent,

KEY ELEMENTS OF ROBUST ACCESS CONTROL 5

and the beneficiary customers are then screened against sanction lists
and checked against fraud. Thereafter, the payment instruction is sent
through the SWIFT network. Many banks implement an authorization
step prior to execution of the transaction. After that, the payment can
traverse another workflow, called a payment corridor, which might involve
multiple corresponding bank nodes until it reaches the beneficiary bank.
Some of the activities in the workflow, such as payment authorization,
investigating of sanction alerts, fraud, etc. are done by human users,
others are automated. In addition, many organizations impose separation
of duty requirements, which means multiple users must participate in
one task, or in multiple steps in the workflow. Separation of duties has
several notions. The Four-eyes principle is commonly used when two users
are required to participate in the same action. For example, one user
releases an alert caused by fraud analysis, then another user confirms
or rejects the tentative action. The first user is usually called a maker,
while the second is called a checker. This kind of redundancy is usually
applied for sensitive tasks, for example, in case of high value transactions.
The concept is sometimes extended beyond 4-eyes to 6-eyes or further.
Separation of duties is often mandated to mitigate user errors, to deter
insider fraud, and to defuse any unknown conflicts of interest.
We can identify the following challenges when implementing separation of
duties in access control:

- The separation of duties concept is not enough to achieve the goal
behind it. We believe a more generalized concept is needed, which
we refer to as conflicts of interest. This concept should include more
policy types aiming to deter other risks, which cannot be remedied
by separation of duty policies in their current form.

- Systems currently utilize workflows in order to implement business
processes. Therefore, the concept must integrate well with workflow
systems to indicate where separation should occur and in which
order.

- Separation of duties must be able to reduce the cost of its expensive
enforcement as it requires extra resources from the organization.
Therefore, an access control system must include a mechanism for
finer grained and efficient enforcement of such polices.

- Separation of duty policies are often complex and very dangerous.
Therefore, a solid expression language is needed to facilitate their
definition. Moreover, a mechanism must be provided in order to

6 INTRODUCTION

automatically enforce policies from the expressions, such that no
unexpected alterations happen at enforcement phase.

Delegation of Duties

Delegation of duties is essential for organizations to ensure continuity of
business when a human resource is absent. It involves assigning a given
set of access rights from one user to another and is usually a temporary
mandate.
Delegation of duties is a complex undertaking. Early on, delegated access
rights should not be assigned without approval from a line of authority of
both the delegatee and the delegator. Moreover, users cannot delegate
their roles directly as most access control models suggest. Users do not
have the authority to grant their access rights to others. Furthermore,
delegated access rights must be controlled by properties such as temporal
aspects. One main question is frequently asked: do we need to delegate
all access rights of an absent user or only a subset?
The main challenges in implementing delegation of duties is its complexity
due to the following reasons:

- Delegation has a lot of characteristics. A good delegation model
must support all of them.

- Delegation must include a workflow supported by policies and decision
matrices.

This dissertation focuses solely on requirements we believe necessary to
realize delegation of duties and mitigation of conflicts of interest. However,
organizations must implement other security controls that are out of the scope
of this work in order to have maximum protection.

1.2 Role-Based Access Control (RBAC)

Access control determines who can access what and when. The main idea is
to restrict access to resources from authorized subjects, i.e., principals. Access
control existed in life thousands of years prior to the invention of computers.
Access to properties has been restricted by means of keys, guards, etc.

In information security, access control represents access restriction of resources
in an information system to authorized subjects. Resources can be data records,

ROLE-BASED ACCESS CONTROL (RBAC) 7

objects, operations, functionalities, actions, peripherals, etc. Subjects are
entities requesting access to an information system. Principals are subjects that
can be uniquely identified by an account. Principals can represent human users
or software processes seeking access to an information system. For example,
a reconciliation application needs to access a payment system to reconcile
payments. Access control restricts access of principals to an information system
by using access rights or privileges. Principals can access a resource if they
possess an access right to that resource. An access right regulates how a resource
can be accessed e.g., read, write, and modify.

Access control is a mapping among principals, access rights, and resources. The
following table demonstrates an example mapping:

Table 1.1: Access control mappings
User Access Right Permission
Sam Read File: xyz.txt
Sam Write File: xyz.txt
Sam Modify File: xyz.txt
John Read File: xyz.txt
John Execute File: xyz.txt

Several access control paradigms were introduced to manage the mappings
among principals, access rights, and resources. The most known paradigms are
discretionary access control, mandatory access control, attribute-based access
control (ABAC), and role-based access control (RBAC).

Role-Based Access Control (RBAC) has gained a vast popularity in software
applications and from research as well. Standard RBAC consists of three main
policy elements: users, roles, and permissions. Users represent principals. Roles
usually represent a job function in an organization, such as clerk, professor, etc.
Permissions represent access rights or privileges to (or how to) access resources.

The mapping between principals and access rights in RBAC is achieved through
roles. Permissions are assigned to roles, and users are assigned to roles. Both
relations are many-to-many. A permission can be assigned to different roles and
a role can be assigned to different users. A user can also be assigned multiple
roles.

The main advantage of RBAC is that it simplifies the administration of access
rights. Access rights (permissions) required by a job function are grouped
together under one role, then the same role can be assigned to several users.
This can greatly reduce the administration burden of access rights. Roles can
be revoked from users and permissions can be revoked from roles.

8 INTRODUCTION

RBAC received a lot of attention from researchers and from the industry, which
led to plenty of enhancements and extensions to basic RBAC. Extensions
included new features such as role hierarchies, separation of duty, and
role delegations, while enhancements improved expressiveness through role
parameters, as well as addition of spatial and temporal properties among others.

1.3 Problem Statement

One side-effect of the least privilege principle in RBAC is that some access
rights get assigned to a small set of users. This might lead to an immense
impact on the respective business unit, should these users not be available. Role
delegation models were proposed on top of RBAC to address such limitation.
However, existing role delegation models increase the complexity of RBAC
models dramatically, as most of them add new relations for roles to control
how a role can be delegated, such as the can_delegate relation. Furthermore,
these relations do not take into account the organizational chart. For example,
a relation that enables a professor role to delegate a teaching assistant role
will allow a professor in computer science to delegate a teaching assistant role
in chemistry. Most delegation models suggest that a role is delegated by its
assignee, which is not valid in real world scenarios. More so, none of the existing
models propose an approval mechanism for role delegation in-line with what
happens in real life cases, where lines of authority have to approve any transfer
or assignment of duties of their subordinates.

There are several extensions to RBAC tackling separation of duties. However,
these models yet lack attention for the underpinning conflicts of interest.
Distribution of a task accomplishment on multiple users cannot necessarily
prevent conflicts of interest. More customized policies are needed to defuse a
conflict between someone’s interests and the organization’s interests. Someone’s
authority must be restrained when an underlying action involves his family
members or relatives. A bank teller must be restrained from being a beneficiary
of transactions he creates or authorizes. Implementation of such policies in
the current form of RBAC is very challenging. RBAC does not provide any
possibilities to define context policies on the model elements nor on the relations.
One cannot specify that a user cannot use his role outside his business hours,
which means that the RBAC model is extremely limited in terms of deterrence
policies. Specification and enforcement of conflicts of interest policies require
an underlying access control model that has enough flexibility to support their
definition.

THE ORGANIZATIONAL SUPERVISED DELEGATION MODEL 9

1.4 The Organizational Supervised Delegation Model

In this section, we explain in which situations delegation is needed and the
characteristics of delegation. Then we introduce our new delegation model,
which is the organizational supervised delegation model (OSDM).

1.4.1 Delegation: The Need and Relation with Authority

Delegation is usually needed in many circumstances in organizations, examples
are:

- Backup of roles [108]; when a key resource is absent, if his tasks cannot
wait until he comes back. In this case, other users get delegated his duties
to achieve at least the tasks that cannot be delayed.

- When users participate in activities that have a fixed duration, e.g.
projects, users get delegated access rights related to tasks in that project.
Then, the delegation ends by finishing the tasks within the project.

- At the moment a job becomes too complex, too diverse, or too voluminous
for one user, the need for delegation arises to have someone else sharing
the workload. In its simplest form, imagine the sole user with objectives
and with no time to accomplish them [65]. In this case, the heavy load
on the user might be temporary, so the management finds an available
resource to share the load, or they decide to hire a new resource. However,
in the latter case, the organization might delegate some responsibilities
from the overloaded user to a temporary resource until the hiring of a
new resource is completed.

- Centralization of authority. When an organization needs to reorganize
functions and distribute functions from higher job positions to lower job
positions in the organizational structure [108].

- Collaboration of work. Users need to collaborate with others to achieve
specific tasks [108].

In organizations context, management is defined as the process of getting results
achieved through subordinates. The manager has certain defined objectives
(i.e., results) to be accomplished. Therefore, the manager is bearing the
responsibility for the tasks to be done to achieve the results. Delegation
facilitates that process by assigning responsibilities, delegating authority, and

10 INTRODUCTION

exacting accountability by employees. When delegated duties, the delegatee
must also have the authority to achieve the delegated responsibilities. However,
the manager is still ultimately responsible. By assigning some of his or her
responsibilities, the manager transfers or creates accountability. If the delegatee
does not exercise the responsibility properly, the manager can always withdraw
the authority. Delegation without control is abdication [65].

Therefore, the role of the manager in delegation is, with no doubt, a key
role. However, more complicated authority exists in organizations, especially in
matrix structures. In which, users report to two different managers: a functional
manager and a project or product manager. The responsibilities in such setup
are distributed over the two managers. Usually, the functional manager is
responsible for the whole objectives of the user, he also approves his vacations,
besides other responsibilities. Product or project managers are responsible for
the tasks within the product or project in which the user is participating. Users
might participate in different projects or products at the same time. More so,
affiliation of a user in a project or product can be temporary. Once a project
is completed, the user gets affiliated with another project, possibly, with a
different project manager.

In functional and divisional organization structures, authority is clear, and
therefore, the accountable for delegation of tasks is the direct line manager.
However, in matrix organization structures, it is difficult to generalize delegation
accountability. A key element in the authority matrix is if both delegator and
delegatee are under the same manager.

1.4.2 Characteristics of Delegation in the Context of Basic
RBAC

The following definitions explain the different characteristics of delegation as
defined in [11]:

Totality:

Totality refers to if the role is completely or partially delegated. Total delegation
happens when a role is completely delegated. The delegatee gets all permissions
of the delegated role. In partial delegation, the delegatee gets a subset from the
permissions of the delegated role.

Delegation in flat roles:

1. Total delegation:

THE ORGANIZATIONAL SUPERVISED DELEGATION MODEL 11

In this case, the delegator delegates a role with all its permissions to the
delegatee. The delegatee must not be a member in that role before the
delegation. The delegated role is assigned to the delegatee with delegation
relation instead of the original role assignment relation. This is important
to identify delegated roles from roles that were originally assigned to users
by the system administrators. The delegatee can start using the role after
this step, and the delegator retains or not the power to use the delegated
role according to monotonicity (see the next definition).

2. Partial delegation:
In this case, the delegator only grants a subset of permissions of a given
role to the delegatee. In existing delegation models, a temporary role is
created and is assigned to the permissions to be delegated. The temporary
role is then assigned to the delegatee with delegation. The delegatee can
start using the delegated permissions after this step, and the delegator
retains or not the power to use the delegated permissions according to
monotonicity.

Delegation in hierarchical roles:

1. Total delegation:
In this case, the delegator delegates a role with all its permissions to the
delegatee. The delegatee then has the power to use the role plus all the
ancestor roles of the delegated role. The delegated role is assigned to the
delegatee with delegation and the delegator retains or not the power to
use the delegated role according to the monotonicity of the delegation.

2. Partial delegation:
This case is similar to the grant partial delegation in flat roles structure.
However, the temporary role includes permissions that are directly assigned
to the delegated role as well as permissions implicitly assigned through
the role-role hierarchy relations.

Monotonicity:

Monotonicity refers to the status of the user-role relation between the delegator
and the delegated role. In monotonic delegation, the delegator keeps possession
of the delegated role. However, in non-monotonic delegation, the delegator loses
power on the delegated role after delegation, either temporarily or permanently.

12 INTRODUCTION

Permanence:

Permanence refers to the time duration of delegation. It has two types:
permanent and temporary delegation. Permanent delegation means that
the delegatee is permanently assigned to the delegated role (or subset of its
permissions). Therefore, the delegatee cannot take the role back. The delegator
can get the role by a new user-role assignment. Example of permanent delegation
is when a user quits the organization or permanently changes his position within
the same organization. Temporary delegations means that the delegation is
bounded in time. The user loses access to delegated permissions upon expiry of
delegation.

Levels of Delegation:

This term specifies if a delegated role or set of permissions can be further
delegated. In single step delegation, delegated access rights cannot be further
delegated. While in multi-step delegation, they can be further delegated to
other users.

Multiple Delegation:

This refers to the number of people to whom a delegated role or subset of its
permissions can be delegated at any given time.

Lateral Agreements:

Two types of agreements can be defined between the delegator and delegatee.
Bilateral agreements specify that both delegator and delegatee need to agree on
the delegation before it can be effective. In unilateral agreements, the delegatee
does have a right to accept or reject the delegated role.

Administration:

Administration describes the actual administrator of the delegation. In self-acted
delegation, the delegator is considered as the administrator of the delegation.
In agent-acted delegation, an agent (third party user) is nominated to conduct
the delegation. This can be used when the delegator is not available.

THE ORGANIZATIONAL SUPERVISED DELEGATION MODEL 13

Cascading Updates

Once the delegation of a role or a subset of its permissions is achieved and the
delegatee starts to use the delegated privileges, changes might afterwards occur
to the delegated role or to the original user-role assignment of the delegator.
Examples are the role is revoked from the delegator, new permissions are
assigned to or revoked from the delegated role, changes to parameter values
assigned to the delegator or changes to the role hierarchy of the delegated role.
These changes are only applicable in case of monotonic delegation, in which the
delegator keeps possession of the delegated role or permissions.

1.4.3 Characteristics of Delegation in the Context of Extended
RBAC

Extending RBAC with parameterization and context policies incurs more
challenging characteristics such as:

Handling of Parameters:

Existing delegation models tackle delegation in the context of RBAC, there is
no existing delegation model that tackles delegation in parameterized RBAC.
Delegation of a role or a subset of its permissions results in assignment of the
delegated access rights to the delegatee. However, since delegation is meant
to substitute a user (i.e. the delegator), parameter values needs to be treated
within the delegation process itself.

Context Policies:

Context policies add another complexity layer to the delegation model. Since
the delegatee is authorized on behalf of the delegator. Therefore, the context
of the delegator rather than the delegatee needs to be validated when the
delegatee activates a delegated role or permission. The same applies for the
user-role context, where the delegatee-delegated role context is validated. The
role, permission, and role-permission context policies are also validated.

14 INTRODUCTION

1.4.4 The Supervised Delegation Model (OSDM)

Our extension related to delegation of authority starts by incorporating the
organizational chart into the underlying RBAC model. This draws the lines of
authority in the organization. Hence a new kind of hierarchy is introduced on
top of users. A protocol is defined to control delegation according to the lines of
authority. The delegation request can be initiated by three different parties, the
delegator, the delegatee, or the line manager of the delegator. Once the request
is initiated, the delegation request is sent for approval to the line managers of
the delegator and the delegatee. The delegation operation is performed when
both approvals are received.

1.5 Mitigation of Conflicts of Interests

In this section we explain the different types of separation of duties, then we
provide some context on non-SoD risks. Afterwards, we introduce our approach
to mitigation of conflicts of interest.

1.5.1 Separation of Duty (SoD)

We can categorize separation of duty into two different types: Static and
dynamic separation of duties.

Static Separation of Duty

Static separation of duty (SSD) represents constraints on the assignment of
users to roles. A common example of static SoD is defining mutually disjoint
user assignments with respect to sets of roles. This means that if a user is
assigned to one role, that user is prohibited from being assigned to a another
mutually exclusive role. An SSD policy can be centrally specified and then
uniformly imposed on specific roles [9].

A major drawback of static SoD is that it needs different sets of users for
mutually exclusive tasks. In many cases, organizations cannot afford such cost.
Imagine two tellers in a bank branch doing transactions, static SoD requires
extra staff to approve their work. This drawback is addressed by dynamic SoD
discussed in the next subsection.

MITIGATION OF CONFLICTS OF INTERESTS 15

Dynamic Separation of Duty

In dynamic separation of duty, if two task steps T1 and T2 are mutually
exclusive, then both cannot be executed by the same user in the same task
workflow instance. However, the user can perform task step T1 for some
workflow instances, while performing task step T2 for other workflow instances.
For example, if a check workflow is two task steps: prepare check and issue
check, then the same user cannot issue a check prepared by himself [18].

Dynamic SoD addresses one major limitation of static SoD discussed in the
previous subsection. In case of the two tellers of the bank branch, the bank can
define creation and approval tasks as mutually exclusive. Then both tellers can
be assigned the creation and approval permissions. Therefore, each teller can
approve a transaction created by the other teller.

Dynamic SoD addresses the need of separated user sets for separated actions.
However, both techniques can succeed in workflows, in which the mutually
exclusive actions cannot be repeated. For example, consider a transaction
workflow that has four different tasks: create, modify, verify, and authorize.
The verify and authorize are mutually exclusive. The condition for dynamic
SoD to work in this case, is when the transaction cannot be modified after
verification or authorization.

1.5.2 Non-SoD Conflicts of Interest

By simply distributing an activity or a workflow over several persons does not
necessarily lead to the elimination of conflicts of interest risk. For example,
existing separation of duty models do not handle tasks in which the authorized
user is a stakeholder. A user possessing permission to create a transaction, can
create a transaction in which he is a beneficiary. Neither static SoD nor dynamic
SoD can mitigate such risks. This is a major concern as it represents a conflicts
of interest risk. Moreover, separation of duty does not help when a medical paper
is reviewed by two reviewers who are financed by a pharmaceutical company
proposing the paper. In this case, the work is distributed on two persons (or
more) but still it does not prevent conflicts of interest. What is required in
this case is a policy preventing researchers financed by an organization from
reviewing papers proposed by that organization.

Separation of duty looks at blind distribution of tasks without the ability to
rule out task participants who might have conflict of interest with the task. In
addition to the extra costs of redundancy when distributing activities on multiple
users. Therefore, more concrete policies are required to delimit conflicts of

16 INTRODUCTION

interest. SoD policies should only be used when the risk cannot be mitigated by
other policies. Therefore, providing more flexibility for addressing different types
of conflicts of interest can reduce the cost of policy enforcement in organizations.

1.5.3 Mitigation of Conflicts of Interest

Our approach to mitigating conflicts of interest is based on the extension of an
existing algebra for defining separation of duties policies. Our model supports
parameterization of algebraic expressions and the usage of workflow variables
in algebraic expressions. Incorporation of workflow into the algebra mitigates
cases where the work can be manipulated after participation of involved parties
in the workflow, consequently exposing the whole process to risk. As an
example, if a policy requires two different users to participate in a high value
transaction, the transaction is modified after both users have done their actions.
Policies and constraints are defined in roles and permissions business logic,
and hence to isolate policy definitions from the application code and business
logic. The incorporation of organization charts into the RBAC model provides
vital capabilities for mitigating conflicts of interest. Lines of authorities can be
referenced easily for approval or participation in workflows, should a sensitive
task require such involvement.

1.6 The Role-Oriented Access Control Model (ROAC)

Definition of sophisticated conflicts of interest policies requires that the
underlying access control model supports definition and enforcement of such
policies. Therefore, we propose a novel access control model: The Role-Oriented
Access Control Model (ROAC).

The Role-Oriented Access Control Model (ROAC) is an access control framework,
which incorporates concepts of the object-oriented paradigm in the definitions
of its elements i.e., users, roles & permissions, and the relations between them,
i.e. user-role assignment and role-permission assignment. Transplanting object-
oriented concepts into access control elements provides a vast scalability and
flexibility. As well, it caters for customizations needed by organizations when
an access control model is applied.

The ROAC model is a comprehensive access control model, which has a standard
definition for its elements and relations. The inheritance concept in the object-
oriented concept enables for easy extension and customization of the elements
by using inheritance. We should differentiate here between inheritance of object-

THE ROLE-ORIENTED ACCESS CONTROL MODEL (ROAC) 17

Figure 1.1: The comprehensive ROAC Model

oriented that we can apply for extensions and customizations from hierarchical
roles. Object-oriented concepts also enable a reliable mechanism to remedy
issues of existing RBAC models, such as expressiveness, context, conflicts of
interest, and roles delegation. Fig. 1.1 shows the comprehensive ROAC model.
In the following subsections, we provide a brief description of the different
features of the ROAC model.

1.6.1 The Core ROAC Model

The core ROAC model plots the model elements and their relations. ROAC
supports the parameterization of roles and permissions with attributes.
Therefore, it is possible to setup multiple instances of the same role with
different levels of granularity. More so, ROAC associates behaviors with roles and
permissions. In specifying permissions, business logic can be defined in elements
and relations to implement specific requirements for granting authorizations
and controlling how the parameters are evaluated and compared against the
values from resources. Elements and relations can be equipped with access

18 INTRODUCTION

to external systems like databases and audit log systems to either extract or
provide feedback. The core RBAC model includes other administrative functions
such as revocation of roles and permissions.

1.6.2 Hierarchical ROAC

Hierarchical ROAC supports multiple inheritance, by allowing a role to inherit
from multiple roles. Inheritance of role permissions in ROAC is based on
selective inheritance rather than the is-a inheritance. To support this concept,
ROAC classifies permissions of roles during inheritance in two sets, inclusive
and exclusive. Only inclusive permissions of the super-role are granted to the
sub-role.

1.7 Summary of Contributions

The main contribution this research achieved are: the organizational delegation
model and conflicts of interest mitigation policies. Moreover, we propose
enhancements on the RBAC model to support the definitions of more
sophisticated conflicts of interest policies.

The contributions provided in this dissertation can be summarized as follows:

Supervised Organizational Delegation

The delegation model defined in this dissertation is based on the lines of
authority in organizations, which is modeled through user hierarchies. Our
model addresses limitations of existing delegation models, which mainly rely
on a relation to authorize delegation that is used to determine which user can
delegate to whom. The delegation relation of existing models (can-delegate)
brings some disadvantages to the delegation model, the points below list these
shortcomings, and show how our model addresses them:

1. The delegation relations in existing delegation models add complexity to
the access control model. Large organizations typically have a rather large
number of roles. By adding delegation relations for most of these roles,
the entire system may explode. This is blocking for large organizations
since they require huge efforts for defining and maintaining such a huge
number of relations.

SUMMARY OF CONTRIBUTIONS 19

We address this limitation by eliminating the delegation relation. Lines
of authority of the organization structure are used to determine who can
delegate a role. This does not add any extra relations to the access control
system.

2. The delegation relations cannot express precise conditions on who can
delegate a specific role. As an example, consider a delegation relation
that states that a professor can delegate the teaching assistant role. This
means that a professor in the faculty of arts can delegate the teaching
assistant role to a user in the computer science department.
We address this limitation by utilizing the organization structure for
modeling hierarchies. Approval requests are sent upwards the hierarchy.
This guarantees that line managers can only approve requests related to
their team roles.

3. The delegation relations may become inconsistent if updates to RBAC
relations are allowed such as updates to the role hierarchy [28]. Such
updates may occur when new activities are deployed in the organization.
This adds huge efforts for the maintenance of the relations, specifically in
cases of updates to roles such as adding or removing permissions, as well
as updates to the hierarchies of roles. Such updates are likely to happen
in organizations.
The delegation mechanism of our model is not sensitive to the role structure.
Furthermore, it is not sensitive to changes in role assignments to users
or permission changes of the roles. It mainly relies on the organization
hierarchy for initiation and approval of delegation.

4. Role delegation models suggest that a user who is delegating an access
right has to be assigned to it [28]. This is not necessarily valid, since it is
possible that the user possessing the access right to be delegated is absent.
Furthermore, it is not guaranteed that another user who possesses the
same access right is available, especially in case of emergency.
The delegation initiation policy in our model has flexibility that allows the
delegation to be initiated by different users, such as HR and the managers.

Users Hierarchy

Our delegation model requires correct projection of organization hierarchies of
the underlying access control system. However, existing access control models
attempt to project organization hierarchies via the role hierarchy concept. Role
hierarchies cannot project organization hierarchies, as the role hierarchy concept

20 INTRODUCTION

does not necessarily implement partial orders on the users. Two users assigned
to hierarchical roles are not necessarily on different levels in the organization
hierarchy, such as senior and junior users. Moreover, many organizations use
the role hierarchy concept to group common permissions, and therefore, some
super roles are not assigned to any user.

Our concept to user hierarchies incorporates users hierarchy according to
positions and seniority in the organization. The users hierarchy projects the
correct lines of authority and reporting levels of users. Furthermore, it caters
for different organization types. Such as functional organizations, where each
user reports to one manager, and matrix organizations, in which a user can
report to multiple managers such as line manager, project manager, and product
manager.

A Mechanism to Defuse Conflicts of Interest

Our approach to mitigation of conflicts of interest incorporates the workflow
steps in the policy definitions, which eliminates ambiguities arise when enforcing
policies. Furthermore, it eliminates attempts of scam to wrap around defined
policies, by manipulating, for instance, the resource after meeting the defined
policies. The conflicts of interest policies can be parameterized in an if-
then-else fashion. Different policies can be applied depending on values of
parameters. This enables specification and enforcement of more sophisticated
policies depending on the severity of the action. For example, in doing a
transaction, if the amount is small, then it is done by one teller. If the amount
is medium, then it is approved by a second teller, if it is high value then a
manager must get involved, and so on.

Other Contributions:

Context Policies:
The ROAC model is a context aware access control model. Context can be
defined in any element or relation to realize complex policies. Context is
validated prior to any access decision. Context policies can be defined on the
level of the access control elements (i.e., users, roles, and permissions), and on
the level of the relations (i.e., user-role and role-permission assignments).

Expressiveness:
Not only does the ROAC model add parameters to roles and permissions,
but it also provides business logic in permissions to validate the parameters.
Therefore, the way the parameters are matched against the values from a resource

OUTLINE OF THE DISSERTATION 21

(e.g., creation of a transaction) is modeled. Existing parameterized RBAC
models do not provide any business logic with parameters. Therefore, only an
equal operator is considered. The business logic provided with parameters can
calculate and convert values. For example, if the parameter is a threshold in
EUR currency and a USD transaction is encountered, the equivalent to EUR
can be calculated. The relations of user-role and role-permission assignment
can also be parameterized.

Authorization Decisions:
In RBAC, authorization decisions are determined based on possession of a
permission or not. However, in the ROAC model it is not sufficient to possess
the permission to get access to the corresponding protected object. An access
decision is determined after validating parameters and context policies. This
approach supports multi-factor authorization decisions.

Selective Hierarchies:
The ROAC model treats roles hierarchies as they are in real-world organizations.
Unlike the is-a inheritance followed by existing models, ROAC gives the ability
to choose which permissions are transferred to the sub-role from the super-role.

A Comprehensive Model:
The ROAC model features all aspects of access control in one model. It provides
the needed features to define core policies, hierarchical roles, user hierarchy,
role delegation, and conflicts of interest. The access control models provided in
the literature focus only on a subset of the features required in access control.
Building a comprehensive model out of existing models is a challenging task as
most of them are tailored for addressing specific shortcomings of existing work
without having a holistic view on the full features.

1.8 Outline of the Dissertation

The remainder of the thesis consists of a literature review chapter, four core
chapters, a concluding chapter, and four appendixes.

Chapter 2 provides a state-of-the-art summary of related work, which presents
a comprehensive background information related to access control. We start by
providing brief information about two access control models, discretionary and
mandatory access control, that were common prior to RBAC, and are still used
such as in operating systems. Then role-based access control models (RBAC)
are reviewed with focus on models and extensions related to our work such as
delegation of authority, conflicts of interest, and context policies.

22 INTRODUCTION

Chapter 3, Organizational Supervised Delegation Model (OSDM), provides
an extension to RBAC to incorporate the organization structure into the
underlying access control model. This extension is necessary to project correct
lines of authority in organizations. The OSDM delegation model relies on user
hierarchies for providing an approval mechanism on delegation. The delegation
starts by an initiation through a request to delegate or to get delegated, then
approvals are collected. Afterwards, the delegation is committed, and the access
rights are in possession of the delegatee. This chapter is derived from the paper
"OSDM: An Organizational Supervised Delegation Model for RBAC" by Nezar
Nassr, Nidal Aboudagga, and Eric Steegmans. Published in the proceedings of
the 15th International Conference on Information Security (ISC’12),September,
2012. Passau, Germany. 1.

Chapter 4, ROAC: A Role-Oriented Access Control Model, transplants object-
oriented concepts in RBAC, which aims to support the definition of context
policies on the level of elements and relations of the model. The chapter
also describes parameterization of roles. Furthermore, the chapter addresses
role hierarchies by proposing an advanced form of inheritance of permissions
through selective inheritance. The chapter is based on the paper: "ROAC:
A Role-Oriented Access Control Model" by Nezar Nassr and Eric Steegmans.
Published in the proceedings of the 6th International Workshop on Information
Security Theory and Practice (WISTP), Jun 2012, Egham, United Kingdom. 2.

Chapter 5, Mitigating Conflicts of Interest by Authorization Policies, extends
an existing separation of duties algebra to widen its context to cover conflict of
interest policies. The extensions integrate workflow steps, parameterization of
expressions, and workflow order. The chapter is based on the paper "Mitigating
conflicts of interest by authorization policies" by Nezar Nassr and Eric Steegmans.
Published in the proceedings of 8th International Conference on Security of
Information and Networks, September 2015, Sochi 3.

Chapter 6, Comparison, Limitations, and Verification, provides three main
additional topics. It includes a comparison between the ROAC model and
ABAC. Then, the chapter discusses some limitations of the OSDM delegation
model, the ROAC model, and the conflict of interest mitigation policies. The
chapter also includes some suggested mechanisms for verification of conflict of
interest mitigation expressions.

Chapter 7 offers concluding remarks, summarizes the contributions of the thesis
and identifies several avenues for future work.

1https://link.springer.com/chapter/10.1007/978-3-642-33383-5_20
2https://link.springer.com/chapter/10.1007/978-3-642-30955-7_11
3https://dl.acm.org/doi/10.1145/2799979.2800013

OUTLINE OF THE DISSERTATION 23

The formal model and Python implementation are provided in the appendixes.

Chapter 2

Related Work

This chapter reviews existing Role-Based Access Control (RBAC) models and
their features. We focus mainly on the features that our model has to fulfill.
We start by introducing access control, then we review some existing role-based
access control models. Thereafter, we review some models of role hierarchies
proposed in the literature. Following that expose, we show how parameterized
RBAC has improved the expressive power of roles. Furthermore, we study
features and requirements that were proposed to complement existing RBAC
models, such as role delegation models and authorization policies. Then we
briefly review administrative models of RBAC.

2.1 Access Control

Security has been of paramount importance for software systems since their
inception. As a consequence, a substantial amount of research has been
focusing on defining security standards and architectures for operating systems,
distributed systems, databases, middle-ware and etc. The demand for
information security has even increased after the deployment of applications
on the Internet. Distributed business applications are required to be protected
in terms of security to prevent and deter unauthorized access to confidential
information. Moreover, they demand a way of regulating the user access to
the system. A business application must determine who can access a software
system as well as how a user can access the system.

An Access Control Mechanism (ACM) can be defined as: "The logical component

25

26 RELATED WORK

that serves to receive the access request from the subject, to decide, and to
enforce the access decision" [44].

Since the introduction of the first discretionary access control model by Lampson
[51]. Many access control models were proposed in the literature, of which only
a few have gained wide acceptance. However, most of the access control models
in the literature are floating around four main models which are Discretionary
Access Control (DAC), Mandatory Access Control (MAC), Role-Based Access
Control (RBAC), and Attribute Based Access Control (ABAC). Most of the
other access control models are extensions or customizations of these models.

In this section, we provide a brief overview of Discretionary Access Control
(DAC), Mandatory Access Control (MAC), and Attribute Based Access Control
(ABAC). Role-Based Access Control (RBAC) is explained in the next section.

2.1.1 Discretionary Access Control

Discretionary Access Control (DAC) defines and controls access between named
users and named objects such as files and programs. Each resource must have an
owner who controls propagation of the object’s access privileges to other users.
Access permission to an object by users not already possessing access permission
shall only be assigned by authorized users [100]. Object access privileges are
operations that can be executed on that object such as read, write and execute.
Access privileges can be granted or revoked by owners of the object. DAC has
been widely used in operating systems and databases.

DAC can be implemented by an access matrix, in which users are given access
rights, e.g., read or write access to objects by the object’s owners. The matrix
has a row for each subject and a column for each object. Cells in the matrix
contains the access rights. Authorization is defined by a set of commands
which has a body and a condition. Conditions specify the access rights that
are required to exist in the matrix before the command body can be executed.
[41, 81]. The following table shows an example of an access matrix.

Table 2.1: Example of a DAC access matrix
File1.txt File2.exe

UserA read, write read
UserB read read

The access matrix size can become very large if the system contains many users
and many objects. This can cause complexities in performance and management

ACCESS CONTROL 27

of the matrix. The access control matrix can be implemented by different
mechanisms such as access control lists (ACL) and capabilities.

2.1.2 Mandatory Access Control

Mandatory Access Control (MAC) restricts access to objects by a system-wide
policy. Unlike in DAC, individual users can grant access in compliance with the
policy and not based on ownership. Subjects and objects are assigned security
levels. Access to objects by subjects is determined by the security levels of both
subjects and objects. In a Mandatory Access Control (MAC) policy, subjects
and objects can receive two kinds of security labels which are classification or
clearance of the object and its formal category. Classification and clearance
mean the allocation of an appropriate level of security to the object (e.g., for
documents: confidential or restricted). Formal category represents the category
of the object such as HR, finance, marketing, etc. [15].

Subjects and objects have security levels which are pairs of classification and
categories. A subject can access the object if its security level dominates
the security level of the object. Classification is hierarchical while categories
represent an unordered set of category elements. The security level of the
subject dominates the security level of the object if the classification of the
subject is in the same level as that of the classification of the object or higher
in the hierarchy and the categories set of the object is a subset of the categories
set of the subject [15].

2.1.3 Attribute Based Access Control (ABAC)

ABAC [105] is one of the most widely used access control models. It has gained a
lot of focus from research and a wide acceptance in the industry. ABAC supports
both mandatory and discretionary access control needs. ABAC is defined by
the National Institute of Standards and Technology (NIST) as "Attribute Based
Access Control (ABAC): An access control method where subject requests to
perform operations on objects are granted or denied based on assigned attributes
of the subject, assigned attributes of the object, environment conditions, and a
set of policies that are specified in terms of those attributes and conditions."
[44]. Attributes represent properties or characteristics and are defined as name-
value pairs. Subject attributes are related to the user requesting access such
as username, job function, seniority, etc. Object attributes are related to the
object itself such as type and sensitivity or related to the actions required on
the object such as read, write, and execute. The environment conditions are

28 RELATED WORK

often called contextual attributes, which specify context such as what time the
access request is initiated, location such as remote or on-premise.

An example of an attribute is that the age value assigned to User1 is 30 { user1,
(Age, 30) }. An example policy on age is {User, (Age >= 20)}, which means
that the user is granted access if his age is greater than or equal to 20.

When a subject requests access in ABAC, the access control decision is based on
the attributes and a set of policies that are specified in terms of those attributes
and conditions. Under this arrangement, policies can be created and managed
without direct reference to potentially numerous users and objects. More so,
users and objects can be provisioned without reference to the policy [44].

ABAC can cater for fine grained access policy needs. Attributes can be used to
define custom access per users, even if they are doing the same job function.
It can also take the environment context into account, which is a powerful
capability in an access control system. Furthermore, a standard policy definition
language (XACML [71]) has been standardized for defining ABAC policies and
for defining authorization decisions.

Fig. 2.1. (from [44]) depicts a sample scenario in which a subject requests access
to a protected object. The authorization decision is evaluated based on the rules,
subject attributes, protected object attributes, and environment conditions.

Attribute-based access control (ABAC) is context-aware, it avoids the need for
protected operations to be directly assigned to subject requesters or to their
roles before the request is made. Instead, policies are activated when a subject
requests access. An access control decision in ABAC is based on the assigned
attributes of the requester, the assigned attributes of the object, environment
conditions, and a set of policies that are specified in terms of those attributes
and conditions [44].

ABAC is very expressive for defining complex and custom policies. However, it
suffers from the following two main shortcomings:

Complexity:
Defining policies in ABAC requires that a potentially large number of attributes
to be managed and understood. Furthermore, selection of attributes is a complex
task, as attributes have no meanings until they are associated with a user or an
object [24]. Moreover, ABAC can also lead to a rule explosion, somewhat in
the same way as RBAC. As a system with a large number of attributes would
have an explosive combinations of possible rules [1].

One major issue with the high number of rules generated by ABAC is
maintainability. Policies in organizations keep changing and by the introduction
of new policies and updating existing policies, administration issues might

ROLE-BASED ACCESS CONTROL 29

emerge due to conflicting policies, erroneous policies, and unnecessary policies.

Another complexity of ABAC is related to the lack of standardization of users’
access. In RBAC, users who do the same job functions might be assigned to the
same roles. However, in ABAC, it is more difficult to have a standard group
of rules of the same users within the same job function. In many cases, new
rules will be added to users for specific access requests, this yields in different
policies associated to users with the same function.

Auditability:
One of the main security requirements is auditability. In access control, the
term before the fact audit is used to refer to the ability to determine what a
user can access. In RBAC, this is quite straight forward, we can check the roles
assigned to a given user, then we can enumerate the permissions assigned to
those roles. However, in ABAC, this is extremely difficult due to the enormous
number of rules in the access control system. For example, to audit if a user
access is in line with the least privilege concept, or to audit correctness of polices
from a huge number of rules becomes a real challenge.

ABAC is an identity-less access control system and users may not be known
before access control requests are made, it is often not possible to compute
the set of users that may have access to a given resource. Even in cases where
the identities of all users and their assigned attributes are known. In order to
calculate the resulting set of permissions for a given user, all objects would need
to be checked against all relevant policies [93]. Furthermore, the rules need to
be checked in the same order in which the system applies them, as a result, it
could be impossible to determine risk exposure for any given employee position
[1]

2.2 Role-Based Access Control

Much research has been focusing on defining security standards and architectures
for software systems and middle-ware. In fact, authorization models have
occupied a considerable portion of security-based research. Mandatory Access
Controls (MAC) and Discretionary Access Controls (DAC) where the dominant
access control models used in military and civilian applications, until Role-Based
Access Control (RBAC) [37] and Attribute-Based Access Control (ABAC) [105]
have emerged. Since then, RBAC and ABAC and their related access control
models have dominated access control.

The core model of standard RBAC, according to the ANSI [9], is expressed
in terms of five elements which are: users, roles, permissions, objects, and

30 RELATED WORK

Figure 2.1: A basic ABAC authorization scenario

operations. Objects represent protected system resources to whom access is
restricted. An object is an entity that contains or receives information, e.g.,
data records, files, peripherals, etc. Operations are executable program images
that when invoked, provide some functions. In this context, operations are used
to access a protected object. For example, read, insert, or update of a database
record. Therefore, objects and operations are what needs to be protected by an
access control system.

The notion of RBAC entails that users are assigned to roles and permissions
are assigned to roles, and hence users get their access privileges in function
of what roles they already have. In fact, this approach greatly simplifies the
management of access control and is very practical in large organizations. Roles
can be assigned to users and revoked from users when necessary. Furthermore,
it facilitates updating role privileges by assigning required permissions to roles.

Permissions are privileges to perform an operation on one or more protected

ROLE-BASED ACCESS CONTROL 31

objects. In many organizations, permissions can be mapped to a wider context,
such as a small functionality in a software system that involves several operations
on different objects. Roles represent job functions within the context of an
organization, with some associated semantics regarding the authority and
responsibility. Users are subjects requesting access to a system. They can be
human users or application users. The center of gravity of RBAC relations is the
role, which maps users to permissions. Core RBAC has two relations: user-role
assignment and role-permission assignment. Both relations are many-to-many
relationships, and so is the indirect relation between users and permissions.

The core RBAC elements and relations are shown in Fig. 2.2.

The simplest formal model of RBAC can be represented by the following
relations:

- A set of users U = u1, u2,un ,

- A set of Roles R = r1, r2,rn,

- A set of permissions P = p1, p2,, pn,

- A many-to-many user to role assignment relation:
UA = (u1,r1),(u2,r1),(u2,r2),(u2,r3).....(un,rn), and

- A many-to-many permission to role assignment relation:
PA = (r1,p1),(r2,p1),(r2,p2),(r2,p3).....(rn,pn).

RBAC supports the principle of least privilege, which entails that users are
assigned the minimum privileges required for achieving their functions. Ensuring
least privilege requires identifying what the user’s job is, determining the
minimum set of privileges required to perform that job, and restricting the user
to a domain with those privileges and nothing more. Through the use of RBAC,
enforced minimum privileges for general system users can be easily achieved
[37].

RBAC research can be broadly classified into two main categories: improvements
to features existing in standard RBAC and extensions to standard RBAC.
Improvements to standard RBAC have been mainly focusing on improving role
hierarchies of the standard RBAC model and on improving expressiveness of
roles by parameterization. Extensions to standard RBAC have been focusing
on adding new features to RBAC such as supporting cross domain roles, role
delegation models, etc.

32 RELATED WORK

Figure 2.2: The ANSI Core RBAC

Several new access control models have emerged which in general address either
limitations of RBAC or are targeted for special environments. We give hereafter
a brief description of some of them.

2.3 Background and Motivation

RBAC is based on four principles: abstract privileges, separation of
administrative functions, least privilege, and separation of duties [87].

Despite the robustness of RBAC, it received great academic attention from
researchers. The literature shows many notable contributions that address
limitations and suggest improvements to RBAC. However, in its current form,
RBAC does not seem to have enough power to express a wide range of security
requirements, nor to capture fine access control granularity when put into
practice [7]. Shortcomings of standard RBAC other than expressiveness are
scalability, incompleteness, and blind authorization decisions. Many models
were proposed to address the shortcomings of RBAC. Yet, these contributions
are considered as silos. Compiling a comprehensive RBAC model from all
extensions is, by itself, a great challenge.

The RBAC96 Model

Since the wide acceptance of RBAC, which has emerged in the 1990s, RBAC96
[87] was a good shift in the direction of dominance of RBAC. A crucial insight
of RBAC96 was the realization that RBAC can range from very simple to very
sophisticated, by providing a family of models rather than a single model. A
single model is too complex for some needs and simple for others. A graded family
of models enables selection of the suitable model for a particular situation [83].
RBAC96 distinguishes between the concept of user groups and roles. Groups
are treated as a collection of users and not as a collection of permissions. A

BACKGROUND AND MOTIVATION 33

role is both a collection of users and a collection of permissions as well. Roles
serve as intermediaries to bring these two collections together [87].

RBAC96 defines a family of four conceptual models. RBAC0 is the base model
of RBAC96, it indicates the minimum requirements for any system that professes
to support RBAC. All the three remaining models of RBAC96 include RBAC0.
RBAC0 consists of a set of users, a set of roles, a set of permissions, and a set of
sessions. Users are assigned to roles in many-to-many relations and permissions
are assigned to roles in many-to-many relations. Sessions are established when
a user activates one or more of its roles to seek an authorization [87].

The model RBAC1 adds role hierarchies to the RBAC0 base model. Role
hierarchies are reviewed in the next section.

The RBAC2 model introduces the concept of authorization constraints to the
RBAC0 base model. Constraints are a powerful mechanism for laying out
higher-level organizational policies [87]. Constraints provide means for further
restricting authorizations such as separation of duties where sensitive tasks are
distributed on several users to discourage fraud and corruption. We review
constraints and authorization policies in detail in section 2.7.

RBAC3 consolidates RBAC1 and RBAC2 to provide both role hierarchies and
constraints in one model. There are several issues that arise by bringing these
two concepts together. For example, a constraint that indicates that two roles
are mutually exclusive so that they cannot be assigned to the same user. This
might cause conflicts when assigning hierarchical roles to both users. Care has
to be taken when using RBAC3, constraints defined over roles must be also
considered in the hierarchies as well [87].

The NIST RBAC Standard

The NIST RBAC model is a standardization of RBAC features that have
achieved acceptance in the industry. The initial standard was published in
2004 and was distributed as INCITS 359-2004 [4]. The standard includes three
key components: core RBAC, hierarchical RBAC, and constrained RBAC,
which includes constraints for static separation of duty relations and dynamic
separation of duty relations. The core RBAC defines the RBAC elements,
element sets, and relations. The core RBAC also introduces the concept of role
activation as part of a user’s session within a computer system. The hierarchical
RBAC component adds relations for supporting role hierarchies defining a
seniority relation between roles. Static separation of duty relations (SSD) adds
exclusivity relations among roles with respect to user assignments. The SSD
relations model component defines exclusivity relations in both the presence

34 RELATED WORK

and absence of role hierarchies. The dynamic separation of duty relations define
exclusivity relations with respect to roles that are activated as part of a user’s
session.

The standard was then revised in 2012, where two new standards were provided,
INCITS 359-2012 [5] and INCITS 494-2012 [6]. INCITS 359-2012 was a
revision of INCITS 359-2004, which included a more comprehensive and
flexible framework for RBAC. INCITS 359-2012 provided enhancements to
role activation, session, and role hierarchies. The INCITS 494-2012 is referred to
as RBAC policy-enhanced standard, which provided a framework and functional
specifications to handle the relationship between roles and dynamic constraints.
Constraints can be used to restrict the use of certain permissions or roles based
on specific conditions, such as context and environment (e.g. time of the day).
This greatly enhances the granularity of the model and provides context-aware
access control policies. The INCITS 494-2012 standard combines the best
features of RBAC and ABAC, by allowing dynamic attributes in RBAC.

The Or-BAC Model

The Or-BAC [50] model introduces the concept of organization and the concept
of context. An organization in Or-BAC represents a business unit, a company,
etc. The specification of the security policy is completely parameterized by
the organization so that it is possible to handle simultaneously several security
policies associated with different organizations. The Or-BAC model aims at
supporting the definitions of security policies that are not restricted to static
permissions but also include contextual rules related to permissions, prohibitions,
obligations, and recommendations [50].

The Or-BAC model considers a ternary relation between organizations, subjects,
and roles. Subjects correspond to users or organizations. Or-BAC makes
it possible to break down an organization into several sub-organizations. In
Or-BAC, the entity Role is used to structure the link between subjects and
organizations. To explain the ternary relation between organizations, subjects,
and roles, consider a user called Alice who is a cardiologist working in the
Hospitalia organization, the relation is modeled as follows: Employee(Hospitalia;
Alice; cardiologist) [50, 63].

In Or-BAC, the definition of permissions, obligations, prohibitions, and
recommendations involve different parameters, which are organizations, contexts,
roles, activities, and views. Activities are tasks defined within an organization.
Views are used to put together objects that apply the same authorization.
Contexts are used to specify the concrete circumstances where organizations
grant role permissions to perform activities on views. The relationship

BACKGROUND AND MOTIVATION 35

Permission corresponds to a relation between organizations, roles, views,
activities, and contexts. The relationships: Prohibition, Obligation, and
Recommendation are defined similarly. If org is an organization, r is a role, v
is a view, a is an activity, and c is a context, then Permission(org; r; v; a; c)
means that organization org grants role r permission to perform activity a on
view v within context c [50, 63].

To demonstrate an example of a permission definition, if Hospitalia is
an organization, r is a role, v is a view and a is an activity, then
Permission(Hospitalia; r; v; a) means that organization Hospitalia grants
role r permission to perform activity a on view v [50].

The TRBAC Model

The Temporal Role-Based Access Control Model (TRBAC) [16] extends RBAC
with temporal properties and constraints for enabling and disabling roles.
Furthermore, TRBAC supports individual exceptions, and the possibility of
specifying temporal dependencies among actions that are expressed by means
of role triggers. A request by a user to activate a role is authorized if the user
assigned to the role, the role is enabled at the time of the activation request, and
no exceptions have been specified for the user for that particular role. Triggers
are active rules that are automatically executed when the specified actions
occur. For example, with TRBAC it is possible to enable a role during a time
interval and disable it outside that time interval. Role triggers can also be used
to constrain the set of roles which a particular user can activate at a given time
instant [16].

In TRBAC, the enabling and disabling of roles is achieved by firing of a trigger
which takes effect either immediately or after an explicitly specified duration of
time. Enabling/disabling actions can be prioritized. This can help in solving
conflicts, such as two simultaneous actions for enabling and disabling the same
role. In this case, the action with the highest priority is executed. Exceptions
can be specified to restrict role enabling and disabling. Exceptions makes it
possible to selectively enable or disable a role only for specific users and keep it
active for other users [16].

The ROBAC Model

The Role and Organization Based Access Control model (ROBAC) [110] is a
family of models that address the issue where classic RBAC does not scale up well
for applications spanning multiple organizations. In this kind of environments,

36 RELATED WORK

privacy issues are the main concern. ROBAC extends RBAC by basing access
decision on both role and organization [109].

ROBAC utilizes both role information and organization information during the
authorization process. The user-role assignment relation of RBAC is therefore
changed. Users are assigned to roles and organization pairs instead of roles
only. Moreover, permissions in ROBAC are defined as operations over object
types instead of operations over objects only. A user can access an object if
and only if the user is assigned to a role and organization pair, and the role is
assigned a permission for accessing the object’s type. Furthermore, the object
being accessed must belong to the organization assigned to that user [110].

Like RBAC96, ROBAC has four models. ROBAC0 is the base ROBAC
model. ROBAC1 extends the ROBAC0 base model with role hierarchies
and organization hierarchies. ROBAC1 defines organization hierarchies in a
similar way to role hierarchies. ROBAC1 suggests that an object belongs
to the organization assigned to the user in the role, organization pair, or
any of its subordinate organizations when determining an authorization
decision. ROBAC1 considers the organization hierarchy as a hierarchy of
multi-organizations, e.g., organization hierarchy of some different schools,
rather than the ordinary organization structure and hierarchy explained by the
organizational behavior concept, in which organization hierarchy shows different
teams and management levels in an organization.

ROBAC2 adds constraints to ROBAC0 and ROBAC3 consolidates both
ROBAC1 and ROBAC2. Again, ROBAC3 inherits problems of RBAC3
described previously in this chapter. Some additional constraints on role
hierarchy (RH) and organization hierarchy (OH) may need to be applied.

The GEO-RBAC Model

The GEO-RBAC [17] model is an access control model with spatial and location-
based capabilities. GEO-RBAC secures access to spatial data in location-aware
applications. GEO-RBAC extends the RBAC model with the concept of spatial
role and supports the homogeneous representation of all spatial aspects involving
roles, objects, and contextual information.

A spatial role in GEO-RBAC represents a geographically bounded organizational
function, e.g., in a specific city. The boundary specifies the spatial extent in
which the user is to be located for being enabled to play such a role. Besides
a physical position, users are also assigned a logical position, which can be
computed from real positions representing the feature in which the user is

HIERARCHICAL ROLE-BASED ACCESS CONTROL 37

located. The role is enabled if the user activating the role is located inside the
spatial boundary of that role.

Like RBAC96, GEO-RBAC consists of three models which are: core, hierarchical,
and constrained GEO-RBAC.

Group Based RBAC (GB-RBAC)

The Group Based RBAC (GB-RBAC) [58] incorporates the groups element into
RBAC. Like RBAC, GB-RBAC consists of users, roles, permissions, and sessions.
GB-RBAC also adopts the role hierarchies and role-permission assignment from
RBAC. However, GB-RBAC adds groups, group-user assignment, and group-role
assignment. Users can be assigned to one or more groups.

Furthermore, GB-RBAC incorporates two kinds of roles: system roles and group
roles. System level roles can be assigned directly to users, while group roles are
assigned to users via the group scope. This means the user can be assigned
to the role if he is assigned to the group that has the role in the set of roles
assigned to that group. The user holds permissions to access resources defined
with the group-level role. GB-RBAC introduces the concept of default group
role set, which is a set of roles that a user can obtain automatically when he is
assigned to the group, without intervention of the security administrator.

2.4 Hierarchical Role-Based Access Control

Role hierarchies are a natural means for structuring roles to reflect an
organization’s lines of authority and responsibility [87]. In standard RBAC,
role hierarchies support multiple inheritance; meaning that a role can inherit
permissions from multiple roles. The general role hierarchy concept in standard
RBAC has two main properties; firstly, the possibility to derive roles from
multiple roles, and secondly, the role hierarchy concept provides a uniform
treatment of user/role and role/role relations. Users can be included in the role
hierarchy, using the same relation to denote the user assignment to roles.

Standard RBAC [9] supports two different types of role hierarchies, the general
and limited role hierarchies. General role hierarchy provides support for an
arbitrary partial order to serve as the role hierarchy, and to include the concept
of multiple inheritances of permissions and user membership among roles [9].
More so, standard RBAC supports the limited role hierarchy concept, in which
hierarchies are limited to the single immediate descendant [9]. The role hierarchy

38 RELATED WORK

concept in standard RBAC suggests that when a senior role inherits from a
junior role, all permissions of the junior role are transferred to the senior role.

Sandhu [87, 82] has introduced the concept of the private role, which is a role
that cannot be further extended. It allows to keep some permissions private to
a role and prevent their inheritance in the hierarchy when the role is inherited
by a superior. In situations where users have private documents that they need
to protect from their superiors, a new private role has to be introduced for
each user. This results in an increased number of roles in the system. This
counter-balances the advantage gained by using hierarchies which is reducing
number of roles in the system [64].

The most familiar form of collaborative working is hierarchical in nature. In
organizational hierarchies, the superior may not take part in the details of a
task, but rather acts as the instigator of the task [10]. In other words, the
most typical form of hierarchy in organizations is the supervision hierarchy [64].
More so, in some situations it is required to keep a role private and inhibit
others from extending it. This has led to the development of new role hierarchy
schemes.

Xuexiong et al. [104] have proposed an approach to tackle excessive inheritance
that occurs when users get more permissions than they should have by permission
inheritance. They resolve the issue by segregating role permissions into private
permissions and public permissions. Then only public permissions are transferred
through inheritance to superiors. If a role r has a set of permissions P , then P
is divided into two sets Pprv for private roles and Ppub for public roles. When a
senior role rs inherits from r, only Ppub are transferred to rs. The main drawback
of this approach is that the private permissions of a role won’t be inherited
by any other role. In organizations, it might be the case that classification of
permissions into private or public is different across superiors of a junior role.
In this situation, it won’t be possible to define the inheritance for such roles.

Cuppens et al. [30] proposed a hierarchical model for the Or-BAC model
(reviewed above). The role hierarchy proposed involve both permissions
inheritance and prohibitions inheritance. Furthermore, the authors identified
two different relationships for role hierarchy, which are: relationships of
specialization/generalization and relationships of organizational hierarchy. An
example of the specialization/generalization relationship is the cardiologist role
which is a specialization of role physician. An example of the relationship
of organizational hierarchy is the role department director which is defined
as hierarchically higher than the role team leader. Permissions are inherited
downward in both hierarchies meaning that the more specialized role (e.g.
cardiologist) inherits from the less specialized role (e.g. physician) and the
senior role inherits from the junior role. Prohibitions are inherited downward

HIERARCHICAL ROLE-BASED ACCESS CONTROL 39

in the specialization/generalization hierarchy (as for permissions), whereas they
are inherited upward in the senior/junior role hierarchy, meaning that the junior
role inherits prohibitions from the senior role.

Jajodia et al. [48] proposed an interesting solution to the problem of inheritance
of all permissions of a role in the hierarchical RBAC model. They label each role
in the hierarchy with pairs such that the role label and the two other components
of the pair (object and action) jointly determine a set of authorization triples
(o,s, (sign)a), where (o,s, −a) is an authorization triple, o is the object to be
accessed, s is the subject(role) label , sign can be negative or positive, and
a is the action to be executed on object o. The triple (o,s,+a) means that
authorization subject s can execute action a on authorization object o. Similarly,
the triple (o,s,−a) states that authorization subject s cannot execute action a
on authorization object o. The negative sign in the action in the authorization
triple will restrict the permission to execute this action.

Moffett and Lupo [64] identified the possible uses of role hierarchies in simplifying
access rules, while remaining within the constraints of organizational control
principles. They identified three role hierarchies: The is − a role hierarchy,
which is based on generalization, the activity role hierarchy, which is based
on aggregation, and the supervision role hierarchy, which is based on the
organizational hierarchy of positions. In the is − a role hierarchy, each role is
more general than the sub-role. Some of the roles in the is − a hierarchy can
be virtual, which means that no user occupies them; they are only defined to
capture qualities, which are shared by real roles further up the is − a hierarchy.
The activity hierarchy depends on aggregation, which is also known as the part
of relationship. Complex roles are aggregated from other roles, since activities in
an organization might be composed from other smaller activities. The activity
hierarchy is partially ordered by subsets of activities. This makes it possible to
define a role hierarchy based on activities. For example, ResponsibleFor and Does
are relationships between roles and sets of activities. If a role is ResponsibleFor
an activity, then either it does it directly or it Delegates responsibility for it
to another role. The activity hierarchy is then composed of a hierarchy of
roles where the higher role is responsible for a superset of the activities of the
lower role. The supervision hierarchy is the most interesting type of hierarchy
identified by the authors, since the nature of relationships in organizations is
supervisory between superiors and their subordinates. The role hierarchy in
RBAC does not correspond to a conceptual relationship between the roles of
an organization and, in particular, it does not reflect the supervision hierarchy
on which most organizations are based. The supervision hierarchy is derived
from the organizational chart, which depicts the positions hierarchy of the
organization [64].

40 RELATED WORK

2.5 Parameterized Role-Based Access Control

Abstract RBAC suggests that each role has a fixed set of permissions. Two users
who are assigned to the same role, consequently, have identical permissions.
However, in organizations, different levels of access might be required for users
playing the same role. Implementing this requirement is RBAC can only be
achieved by adding more roles and more permissions.

Abdallah et al. [7] provide an example of the role AccountHolder, which has
to be given to thousands of online/mobile banking users. Each user is only
entitled to access his account. How could RBAC provide such expressiveness?
it can only be done at the following cost, as stated by the authors:

- The implementation of the role AccountHolder is instantiated to a large
number of roles to cater for every use, which presents a huge burden on
the intellectual manageability of access rights.

- Implementing the AccountHolder role in RBAC reduces scalability of the
access control system. A role definition is needed per user, even though
the different roles are just instances of one role. However, they are treated
as different roles instead of being grouped under one definition.

- Very complex and inconsistent administration burden, as similar roles
treated differently and managed separately.

Lack of expressiveness in role definition has received attention from researchers.
Indeed, slight nuances in a role can only be modeled by introducing a different
role for each such nuance. Parameterized RBAC [7, 38, 47] is an advanced form
of RBAC. It addresses a major drawback of basic RBAC, which is, its lack of
expressiveness in defining roles. Parameterized RBAC includes the components
of core RBAC, parameters data, and new parameterized permissions.

One of the good attempts to address lack of expressiveness of RBAC by using
parameterized roles was defined by Jaeger et al. [47]. The formal definition of
parameterized RBAC was introduced by Abdallah et al. [7]. Parameterized
RBAC provides finer granularity by creating instances of RBAC elements
according to the contexts of their use [7]. This is achieved by associating
parameters with roles and permissions. Parameters are used to define the
granularity level of the role.

Fischer et al. [38] proposed the object-sensitive RBAC (ORBAC), which is
a generalized RBAC model for object-oriented languages. ORBAC addresses
the lack of expressiveness of RBAC by using parameterized roles. In ORBAC,

PARAMETERIZED ROLE-BASED ACCESS CONTROL 41

privileged operations are parameterized by a set of index values, which are used
to distinguish the granularity level of the roles between users. A privileged
operation can only be invoked if both the required role is assigned to the user
who invokes the operation and the role’s index values matches the operation’s
index values.

Parameterized roles include additional information that can be consulted each
time the role is used to determine an authorization request when invoking an
operation or accessing an object. That information corresponds to parameters
as they are known in ordinary programming languages, hence the name
parameterized RBAC. In assigning roles to end users, actual values are assigned
to each of those parameters. When consulting roles, actual parameter values
are available. Obviously, in a parameterized context, instances of the same
role might not necessarily behave in identical ways because of differences in
parameter values. Permissions are parametrized as a result of the instantiation
of the roles that would be parameterized.

The advantages most commonly ascribed to RBAC models still apply should
the roles be modeled as parameterized RBAC. Core RBAC elements, such as
roles, would depend on the values of a parameter. To extend RBAC into a
parameterized model, parameters must be associated with roles and permissions
then depend on both the role and values of parameters [7].

In the example of the AccountHolder role, the role can be parameterized by
AccountNumber then the value of the parameter is passed to the role with
each session. This can guarantee that a user is granted access only to his
account. One role is defined, then instantiations are made according to the
parameter. The privileges of two users holding the same AccountHolder role are
not identical.

Despite the fact that Parameterized RBAC addressed expressiveness issues of
core RBAC, it fails to completely address the problem. Parameterized RBAC
enhances expressiveness to a certain limit. However, it fails to provide different
levels of granularity of a role or a permission. Parameterized RBAC does
not provide any means to define operators or how the parameter value are
matched. The only possibility is to match using an equal operator. In many
organizations, it is required that roles be customized according to users and
their functions, since users assigned same job functions are not necessarily doing
identical functions and do not necessarily have same levels of responsibilities. For
example, consider the role teller that gives bank tellers permissions to execute
transactions. It might be necessary to define several levels of the role for tellers
in the bank according to the transaction amounts they are allowed to handle.
To address this problem with parameterized RBAC, we need again to define
multiple teller roles with different granularity levels, such as SmallAmountTeller,

42 RELATED WORK

MediumAmountTeller and LargeAmountTeller, etc.Parameterized RBAC can
still be adapted to capture such fine grained authorizations by dramatically
increasing the number of distinct roles. Parameterized RBAC cannot be used
to define just one role of type teller with an amount as a parameter, because
paramerized RBAC cannot match the amount using less or equal operator.

Another major disadvantage of parameterized RBAC, is that it does not
provide any facility for dynamic calculation of parameters values. Imagine
the SmallAmountTeller role in a bank that is assigned to a user which enables
him to do up to 10,000. What is the currency used, and what if a different
currency is encountered? If the reference currency used is EUR, can we allow
him to do 20,000 YEN? as 20,000 YEN is much less than 10,000 EUR.

2.6 Role Delegation Models

Several role delegation models [12, 27, 106, 108, 42] studying delegation in the
context of role-based access control have emerged. However, delegation was
studied before RBAC was proposed, and there were some predecessors of RBAC
delegation such as: the access matrix models which introduced the concept of
copy flag, which allows users to delegate rights [41]. Wood and Fernandez [103]
introduced the idea of reverting the rights to the upper level after revoking a
low-level delegation. Graph-based delegation was introduced in [39]. A variety
of delegation approaches were also introduced in [62]. In this section, we focus
on delegation in the context of RBAC.

Delegation in RBAC can have several characteristics depending on the
requirements of the environment where delegation is applied. The main
characteristics of delegation were explained by Barka et al. [11]. These key
characteristics include permanence, monotonicity, totality, administration, levels
of delegation, multiple delegation, lateral agreements, cascading revocation, and
grant-dependency revocation [11].

The first work that studied delegation in RBAC was achieved by Barka and
Sandhu [12, 11]. They proposed the RBDM0 delegation model [12] which studied
delegation in flat roles structure. RBDM0 focused on grant total delegation,
which means that the delegator keeps the power to use the role after delegation
and covers only the delegation of roles. RBDM0 does not support partial role
permissions delegation. RBDM0 controls user-user delegation by means of
the can-delegate relation. The can-delegate relation takes the form of (a, b)
∈ can-delegate. It means that a user who is an original member of the role a
can delegate his role to a user who is an original member of role b. Revocation
in RBDM0 can happen in two ways: firstly, by time outs. Delegations are

ROLE DELEGATION MODELS 43

revoked when the delegation period expires. Secondly, any original member of
the delegated role can revoke the membership of any delegate member in that
role.

RDM2000 [106] was the first delegation model to address delegation with
hierarchical roles. It also supports multi-step delegation. The can-delegate
relation in RDM2000 takes the form: can-delegate ⊆ R × CR × N, where R are
sets of roles, CR are prerequisite conditions, and N is the maximum delegation
depth. The meaning of (r, cr, n) ∈ can-delegate is that a user who is a member
of role r (or a role senior to r) can delegate role r (or a role junior to r) to any
user whose current entitlements in roles satisfy the prerequisite condition cr
without exceeding the maximum delegation depth n.

The permission-based delegation model (PBDM) [108] was the first to address
permission delegation (partial delegation). PBDM supports role as well as
permission delegations with features of multi-step delegation and multi-option
revocation. PBDM comprises in two models: PBDM0 and PBDM1. In PBDM0,
permission delegation involves three steps. Firstly, a temporary delegation
role is created by the delegator. Secondly, the permissions to be delegated are
assigned to the temporary role with permission-role assignment. Thirdly, the
delegator assigns the temporary role to the delegatee by user-role assignment.
Revocation in PBDM0 includes three cases: by revoking the delegated role,
by removing one or more pieces of permissions from the delegated role, or by
revoking the user-delegation role assignment.

PBDM1 extends PBDM0 with two main features. Firstly, it adds support for
role-role delegation, which supports delegating specific permissions of a role to
another role rather than to another user. Secondly, it adds means for controlling
delegation; to restrict delegation only to authorized users. This is achieved by
the can-delegate relation, which takes the form: can-delegate ⊆ DBR × Pre-con
× P-Range × M, where DBR are sets of delegable roles, Pre-con are prerequisite
conditions, P-Range is the delegation range that specifies which permissions
can be delegated, and M is the maximum delegation depth.

Crampton et al. [28] proposed a new model for dealing with transfer delegation.
In transfer delegation, the delegator loses the power of using the access right
after delegation is completed. They also proposed two relations for controlling
delegation: the can-delegate and the can-receive relations. The advantages of
using different relations for controlling delegation include flexibility, greater
control, ease of management, and is less error prone. They also included
constraints on the can-delegate and can-receive relations to ensure that the
relations do not give the authority to a delegator to delegate a right that is not
available to him.

44 RELATED WORK

The capability based delegation model [42] is an interesting work based on the
capability based access control model (CRBAC) presented in the same paper.
The CRBAC model integrates a capability-based access control mechanism into
the RBAC96 model. Roles and permissions are assigned to capabilities and
capabilities are assigned to users. Delegation is achieved by creating a new
capability, then by assigning delegable authority (roles or permissions) to the
capability, then the delegator sends the capability to the delegatee. Unlike
the other delegation models, delegation is authorized by a permission that the
delegator must possess for creating the capability.

2.7 Conflicts of Interest and Authorization Policies

The notion of conflicts of interest has existed in the real word since a long
time. However, it has been brought to the lights after starting the concept of
banking, commercial, and medical organizations. Yet, conflicts of interest did
not receive adequate attention in the context of access control. Most researchers
have focused on separation of duty policies, which do not adequately model
conflicts of interest policies.

In this section, we review some existing authorization policy models. These
models focus on separation of duty since the literature lacks to any broad
authorization policy models that discuss wider range of conflicts of interest
policies.

Clark and Wilson [23] showed how separation of duty is a fundamental principle
of commercial and military data integrity control. The paper of Sandhu [80] was
among the first to describe a mechanism for the purpose of enforcing separation
of duties in computerized information systems, before role-based access control
existence.

Li et al. [54] proposed the statically mutually exclusive roles (SMER) constraints
to enforce static separation of duty (SSoD) policies. They have shown that
directly enforcing SSoD policies is intractable, while enforcing SMER constraints
is efficient. Furthermore, they have characterized the kinds of policies for
which precise enforcement is achievable and shown what constraints precisely
enforce such policies. They have also presented an algorithm that generates all
singleton SMER constraint sets, each of which minimally enforces a role-level
static separation of duty requirement. SMER constrains are limited to static
separation of duty constrains and hence unable to model a large set of conflicts
of interest policies.

Bertino et al. [18] proposed a language for defining constraints on role assignment

CONFLICTS OF INTEREST AND AUTHORIZATION POLICIES 45

and user assignment to tasks in a workflow. The constraint language supports
both static and dynamic separation of duties. They have also devised algorithms
to check the consistency of the constraints to consistently assign roles and users
to tasks in the workflow.

RCL2000 [8] is a role-based constraints specification language built on RBAC96
[87] components. RCL2000 encompasses obligation constraints in addition
to the usual separation of duty and prohibition constraints. RCL2000 can
express both static and dynamic separation of duty constraints. RCL2000 does
not show how constraints written in this language can be efficiently enforced.
However, RCL2000 fails to express history or time-based constraints, which are
increasingly being used [26]. This prevents defining a wide variety of conflicts
of interest policies.

Constraints enforcement have even received less attention from researchers.
Crampton et al [26] have introduced the concept of a constraint evaluation
structure that is used by the constraints enforcement mechanism to determine
whether granting a request would violate a constraint. Two particular constraint
evaluation structures form part of the run-time model they introduce in order to
enforce dynamic constraints. They have built a model for historic information
which is used to record information than is required for enforcing historic
constraints.

Probably the best work that has been proposed in this field is the work of Li and
Wang [56], in which they propose an algebraic language for formal specification
of high-level security policies. It combines qualification requirements with
quantity requirements motivated by separation of duty considerations. The
algebra has two unary and four binary operators, and is expressive enough to
specify a large number of diverse policies [56]. The language is used for high
level policy specification. As an example of the algebra, a policy that requires
either a manager or two different clerks is expressed using the term Manager
∪ (Clerk ⊗ Clerk)). The algebra focuses on separation of duty policies, it
provides high level security policy specification. It is not designed for a specific
authorization model. Furthermore, it does not verify whether a workflow is
compliant with a high-level security policy specified in the algebra. It assumes
zero knowledge of the policy designer about the workflow steps. Specified
policies in the high-level design can be ambiguous in the enforcement design.
Furthermore, its expressiveness is limited and cannot address the definition of
many conflicts of interest policies.

The work of Li and Wang [56] was extended in [14]. The authors addressed
some problems which they reported in the algebra. Firstly, they addressed the
problem related to the fact that no general mapping from the algebraic terms
onto workflows or to dynamic enforcement mechanisms existed. In particular, a

46 RELATED WORK

link between the satisfaction of sub-terms and the actions executed in workflows
was missing. Furthermore, they addressed the problem of how changing role
assignments affect the enforcement of SoD constraints during workflow execution.
They constructed formal models of workflows, access-control enforcement, and
SoD constraints using the process algebra CSP [14]. This extension of the algebra
also inherits the problems of expressiveness and ambiguity of the algebra.

2.7.1 Overview of the algebra of Li and Wang

The main advantages of the alegbra over other existing SoD work, is that it
captures requirements for user attributes. Existing SoD models requires a k
different users to be involved in a sensitive task. However, there are other
minimal qualification requirements for these users, such as te position of the
users involved, e.g. task T1 must be done by a bank branch manager. This is not
covered in other existing work, partly due to the lack of a concise-yet-expressive
language for specifying such high-level security policies.

The terms of the algebra are composed from operands and operators. The
operands can be roles e.g. Manager or users e.g. Alice. Operators of the algebra
are: +, ¬, ⊓, ⊔, ⊙, and ⊗. The unary operator ¬ has the the highest priority,
followed by the unary operator +, then by the four binary operators (⊓, ⊔, ⊙,
and ⊗), which have the same priority. The key word All refers to a user holding
any role.

The operator ¬ means logical NOT. The term ¬Alice means that the user
taking the action must not be Alice. The operator + means multiple. For
example, Manager+ means one manager user or more.

The operator ⊓ represents a logical AND when applied on roles, which
evaluates to just one user, r1 ⊓ r2 means that the user must have roles r1
and r2. And represents set intersection when applied on sets of users. e.g.
{User1, User2}⊓{User2, User3} results the set of users {User2}.

The operator ⊔ represents a logical OR when applied to roles, which evaluates to
just one user, r1⊔r2 means that the user must have role r1 or r2. And represents
set union when applied to sets of users. e.g. {User1, User2} ⊔ {User2, User3}
results the set of users {User1, User2, User3}.

The operator ⊙ represents a logical AND that evaluates to one or different
users. For example, (Teller ⊙ BranchManager) means two users, one must be
a Teller and the second must be a BranchManager. If one user is both a Teller
and a BranchManager, that user by himself also satisfies the requirement.

CONFLICTS OF INTEREST AND AUTHORIZATION POLICIES 47

The operator ⊗ represents a logical AND that evaluates to different users. For
example, (Teller ⊗ BranchManager) means two different users, one must be a
Teller and the second must be a BranchManager. If one user is both a Teller
and a BranchManager, that user by himself does not satisfy the requirement.

Example Terms:

- The term (Manager ⊔ ¬{Alice, Bob}) requires a user that is a Manager,
but is neither Alice nor Bob; the sub-term ¬{Alice, Bob} implements a
blacklist.

- The term ((All ⊗ All) ⊗ All) requires three different users, no matter what
roles they are assigned.

- The term ((SecuritiesClerk ⊔Teller)⊗BranchManager) requires a user
who is either a Teller or a SecuritiesClerk and another user who is a
BranchManager.

The notion of configurations is used to assign meanings to the roles used in the
terms. User sets are then used to satisfy the terms. For example, consider the
term (Teller ⊙ BranchManager), and consider the set of users {Alice, Bob},
where Alice is assigned to both roles Teller and BranchManager, and Bob is
assigned to the role Teller, then both sets of users {Alice}, and {Alice, Bob}
satisfy the term.

Other examples:

- The term ({Alice, Bob, Carl}⊗{Alice, Bob, Carl}) is satisfied by any two
users from the set of the three users.

- The term ((Teller ⊙ SecuritiesClerk) ⊗ BranchManager) is satisfied
by a set of users consisting from a Teller, a SecuritiesClerk, and
a BranchManager. If a single user is assigned to both Teller and
SecuritiesClerk roles, then the term can be satisfied by that user and a
another user assigned to the BranchManager role.

- The term
((Teller⊔SecuritiesClerk)⊗(BranchManager⊓¬OperationsDirector))
is satisfied by a set of users consisting from two different users, one who is
either a Teller or a SecuritiesClerk, and another who is a BranchManager,
but not an OperationsDirector.

48 RELATED WORK

The authors of the algebra suggest a mechanism to enforce a policy (Task, ∅),
a prerequisite is to identify the steps in performing the task by maintaining a
history of each instance of the task, which includes information on who have
performed which steps. For any task instance, one can compute the set of users
who have performed at least one step of the task instance (denoted as Upast).
Before a user u performs a step of the instance, the system checks to ensure
that there exists a super-set of Upast ∪ {u} that can satisfy ∅ upon finishing all
steps of the task. If u is about to perform the last step of the task instance, it
is required by the policy that Upast ∪ {u} satisfies ∅.

Despite the clear advantage of the algebra, which helps formalizing SoD
expressions, it suffers from a major shortcoming. The algebraic terms are
defined on the level of the whole task. For example, given a task T1, which
consists of different steps, and the term ∅1, then ∅1 is satisfied by a user set,
no matter in which step the users are involved. Such kind of enforcement is left
for the workflow designer to determine in which steps specific users get involved.
This is a major security issue, as security controls must be separated from the
application business logic. Therefore, not associating the workflow steps with
the algebraic terms is a major issue. One other security requirement that is not
an application business requirement, is applying different constraints depending
on parameters of the task. The policies 22, 23, 24, 25 in our motivating example
(Appendix A) cannot be expressed by the algebra. The transaction amount
is considered key in determining the SoD policy that needs to be applied on
the transaction workflow. Therefore, different algebraic expressions might be
needed depending on parameters of the task.

2.8 Administrative Models of Role-Based Access
Control

Authorization systems in large organizations usually contain tremendous
numbers of roles, permissions, roles to permissions associations, role hierarchies,
and users to roles assignments. Organizations usually face two main challenges
when managing their access control systems. Firstly, the management of the
access control elements (e.g., roles, permissions, and users). More so, managing
relations between them is a very complex and time consuming task. Hence
organizations are seeking an effective mechanism for managing them. It should
mainly be easy to manage and less error prone. Secondly, given the tremendous
number of elements and relations, security and safety become a major threat.
Who can add roles to the system? Who can assign a role to a user and how?
How revocation of roles from users is achieved? Can a user change his own
privileges? What happens if we assign a new permission to a role? Will all role

ADMINISTRATIVE MODELS OF ROLE-BASED ACCESS CONTROL 49

members be assigned automatically to this permission? Do all the users really
need this permission? And many other questions arise!

Administrative models of role-based access control address the issues of the
administrative operations for creation and maintenance of RBAC elements
and their interrelationships. These operations include creation and deletion of
roles, creation and deletion of permissions, assignment of permissions to roles
and their revocation, creation and deletion (or disabling) of users, assignment
of users to roles and their revocation, definition and maintenance of the role
hierarchy, definition and maintenance of constraints, and all of these in turn
for administrative roles and permissions. Furthermore, the specification of
administrative review functions for performing administrative queries, system
functions for creating and managing RBAC attributes on user sessions, and
making access control decisions. These functions should be flexible and extensible
to meet expectations of organizations [9, 84].

Role-based administrative models in the literature can be classified into two main
groups: centralized and decentralized administrative models. In centralized
models, security administrators perform all administrative tasks. While in
decentralized models, administrative tasks are distributed among different
administrators in a controlled manner and adds a separate administrative role
hierarchy in the original RBAC model [109].

In this section we review some role-based administration models.

2.8.1 ARBAC97

The ARBAC97 model [86] was the first comprehensive model for role-based
administration of roles in RBAC which provides decentralized administrative
capabilities to RBAC. ARBAC97 consists of three components which are: The
user-role assignment component called URA97, the permission-role assignment
component called PRA97 (permission-role assignment ’97) and the role-role
assignment (RRA97) component, which has several components that are
determined by the kind of roles that are involved. Although these three
components are defined in ARBAC97, the URA97 and RR97 components
are explained in two dedicate research papers. We explain the three components
of ARBAC97 hereafter.

The URA97 Administrative Model

The URA97 (user-role assignment 97) model was defined by Sandhu and
Bhamidipati [84]. URA97 is defined in the context of the RBAC96 model

50 RELATED WORK

[87]. URA97 focuses exclusively on the user to role assignment administrative
activity as well as revoking users from roles. URA97 imposes strict limits
on individual administrators regarding which users can be assigned to which
roles and by whom. These restrictions are implemented by using prerequisite
conditions. URA97 uses the can-assign relation to determine if an administrative
user can assign a regular role to a given user. Similarly, the URA97 model
controls user-role revocation by means of the can-revoke relation. Authorization
to assign and revoke users to and from roles is controlled by administrative roles.
URA97 applies only for regular roles. Assignment of users to administrative
roles is centralized under the chief security officer who has complete control
over all aspects of RBAC96.

The PRA97 Administrative Model

The PRA97 model deals with role-permission assignment and revocation. PRA97
is similar to URA97, both models use a prerequisite condition to determine if
an administrative user is authorized to assign permissions to roles or revoke
permissions from roles. The can-assign and can-revoke relations are used for
this purpose. Revocation in PRA97 is weak, which means that permissions can
still be inherited after revocation. It applies only to the role from which the
permission was revoked. Strong revocation of permissions can be applied by
cascading down the role hierarchy [86].

The RRA97 Administrative Model

The RRA97 model (Role-Role Assignment) [88] focuses on decentralized role-
based administration of role hierarchies. The RRA97 model distinguishes three
kinds of roles for role-role assignment, which are abilities, groups, and UP-roles.
Abilities are roles that can only have permissions and other abilities as members.
An ability is a collection of permissions that should be assigned as a single
unit to a role. Groups are roles that can only have users and other groups as
members. A group is a collection of users (e.g., a team) who are assigned as
a single unit to a role. UP-Roles membership can include users, permissions,
groups, abilities, and other UP-roles.

RRA97 uses the URA97 model to produce the GRA97 (group-role assignment)
model. The group-role assignment and revocation are respectively authorized
in GRA97 by the can-assign and the can-revoke relations. Similarly, the ability-
role assignment and revocation are respectively authorized in ARA97 by the
can-assign and the can-revoke relations.

ADMINISTRATIVE MODELS OF ROLE-BASED ACCESS CONTROL 51

The role-role creation, deletion, edge insertion, and edge deletion in the hierarchy
are all authorized in UP-RRA97 (UP-Role-Role Assignment) by the can-modify
relation.

2.8.2 ARBAC99

The ARBAC99 model for administration of roles [89] extends the ARBAC97
administration model with enhancements to the URA and PRA sub-models.
ARBAC99 incorporates the concept of mobile and immobile memberships in
roles. Immobile membership grants the user the authority to use the permissions
of a role but does not make that user eligible for further role assignments. Mobile
membership enables the user to use the permissions of a role and makes that
user eligible for further role assignments.

In URA99, administrative users determine if a user can be assigned to a given
role by the mobile and immobile memberships. URA99 uses the can-assign and
can-revoke relations to authorize role assignment and revocation. The can-assign
relationship is split into two relations: the can-assign-M and the can-assign-
IM. The relation can-assign-M(x, y, Z) deals with mobile membership, and
means that a member of administrative role x can assign a user whose current
membership, or non-membership, in regular roles satisfies the prerequisite y
to a regular role that belongs to the set of roles Z as a mobile member. The
immobile relation can-assign-IM(x, y, Z) enables administrative users to assign
users to roles as immobile members.

The PRA99 model extends PRA97 with mobile and immobile memberships of
permissions in a similar way to URA99.

2.8.3 ARBAC02: Role Administration Using Organization
Structure

The Role Administration Using Organization Structure (ARBAC02) [73]
was proposed to overcome the weaknesses of ARBAC97. The ARBAC97
model has some significant shortcomings. Firstly, URA97 requires multi-
step user assignments. Roles higher in the role hierarchy may require more
assignment steps. This may require intervention of two or more security officers.
Secondly, The URA97 model introduces redundant user-role assignment (UA)
records as result of the multi-step user assignment. Thirdly, URA97 causes a
more complicated role hierarchy, since prerequisite roles are part of the role
hierarchy. Furthermore, the PRA97 model suffers the similar above-mentioned

52 RELATED WORK

shortcomings. In addition, PRA97 cannot restrict which permissions from a
role can be assigned to another role [73].

ARBAC02 uses the organization structure as new user and permission pools
instead of prerequisite roles in a role hierarchy. Furthermore, ARBAC02
uses organization structure for permission-role assignment. ARBAC02 adopts
the same notation of the can-assign and the can-revoke relationships from
ARBAC97. The difference is that, the prerequisite roles conditions are replaced
by organization units. The organization unit is a group of people and functions
(permissions) to achieve the given mission [73]. This simplifies the user
assignment and avoids unnecessary user-role assignment records.

For permission-role assignment, the ARBAC02 model suggests that common
permissions are assigned to lower roles in the role hierarchy and higher roles
inherit common permissions, while special permissions are assigned to higher
roles. This avoids duplicate assignments of the same permission through the
inheritance line of the role hierarchy [73].

2.8.4 Role Hierarchy Administration

Crampton and Loizou [25, 29] introduced the concept of administrative scope
which they use to develop a family of models for role hierarchy administration
(RHA). Administration scope associates each role in the role hierarchy with
a set of roles over which it has control. The administrative scope of a role is
determined by the role hierarchy and changes dynamically as the hierarchy
changes.

The RHA family of models consist of four sub-models. The RHA1 is the base
model and is the simplest of them. It contains operations for managing role
hierarchy, which are: AddRole, DeleteRole, AddEdge, and DeleteEdge. RHA1
can be added to RBAC without the need of any additional relations.

The RHA2 sub-model extends RHA1 by using administrative permissions. A
role is permitted to perform hierarchy operations if the role has appropriate
administrative permissions assigned to it. RHA2 can also be applied without
introducing additional relations and offers finer granularity over RHA1.

The RHA3 sub-model introduces the admin-authority relation. If (a, r) ∈
admin-authority, then a is called an administrative role that controls r. The
admin-authority relation induces an extended hierarchy on the set of roles which
includes the original hierarchy.

The RHA4 sub-model extends RHA3 by adding possibility to administer the
admin-authority relation. RHA3 shows when and how the admin-authority

CHAPTER CONCLUSION 53

relation can be updated by hierarchy operations and by the actions of
administrative roles.

2.9 Chapter Conclusion

This chapter outlined the current state of research in role-based access control
models. The review of existing models has demonstrated both advantages and
weaknesses of existing work.

The chapter started by introducing two access control paradigms that were
widely dominant prior to RBAC, which are Discretionary Access Control (DAC)
and Mandatory Access Control (MAC). The Attribute-Based Access Control
model was also reviewed.

The chapter has also provided background study on role-based access control
(RBAC), we reviewed the most relevant work in relation with our work, as the
outcome of existing research on RBAC is massive.

The basic RBAC model has been presented then a series of enhancements on
top of basic RBAC were also reviewed. We started by introducing RBAC96
which includes a family of four RBAC models that can be consolidated into a
more comprehensive model. Other enhancements were also introduced such as
temporal RBAC. More attention has been given to parameterized RBAC, since
it is considered a major step towards more expressive RBAC.

The chapter then reviewed extensions to basic RBAC such as hierarchical RBAC
models, role-delegation models, and authorization policies with focus on conflicts
of interest policies.

Finally, the chapter presented an important aspect that is considered as part of
any access control model, which is administrative models.

Chapter 3

Organizational Supervised
Delegation Model (OSDM)

This chapter is published in the proceedings of the 15th international conference
on Information Security (ISC’12),September, 2012. Passau, Germany

55

56 ORGANIZATIONAL SUPERVISED DELEGATION MODEL (OSDM)

The dynamic nature of operations in organizations has led to an interest in
roles and permissions delegation to enable a seamless continuity of business.
Delegation involves assigning a given set of access rights from one user to
another. In existing role delegation models, delegation is often authorized and
controlled by a relation that specifies who can delegate to whom. The usage of
such relations in delegation models has some disadvantages; such as complexity
of maintenance, error proneness, inconsistencies, and inabilities to define some
organizational policies related to delegation. In this chapter, we propose a
new delegation model that depends on organizational lines of authority to
authorize and control delegation. The main advantages of this approach are
that it simplifies the management of delegation authorization and complies with
organizational behavior. Furthermore, it eliminates inconsistencies related to
changes to roles and permissions.

3.1 Introduction

Role-based access control (RBAC)[37] has become the dominant authorization
mechanism used in a wide range of organizations. RBAC has gained wide
acceptance since it greatly simplifies the management of access rights. Moreover,
RBAC attempts to simulate organizational structures at a high level by its
hierarchical model. In RBAC, roles are assigned to users and permissions are
associated to roles. Users represent staff in organizations. Roles represent
the job functions of the users or sub-functions in some cases. Permissions are
privileges for accessing objects or performing activities.

High dependability of organizations on access control systems and the dynamic
nature of operations have shown a demand for dynamism in the access control
systems in place. RBAC supports the principle of least privilege [87], which
entails that users are assigned the minimum privileges required for achieving
their functions. However, this has led to situations where some specific privileges
are assigned only to very few users. Despite the clear advantages of this approach,
it restrains access to important resources to a small closed group. At times,
none of those users may be available. This may hamper certain activities within
the organization at stake. These situations have led to requirements of increased
dynamism of the access control systems in place.

Role delegation is a mechanism of performing a takeover on a user’s access
rights. Delegation gives authority of a user on another user’s access privileges
to perform functions of the user originally assigned to the delegated access
rights. Existing delegation models suggest that delegation can take two forms:
administrative delegation and user delegation. In administrative delegation,

INTRODUCTION 57

an administrative user assigns access rights to a user while the administrative
user is not necessarily assigned to the delegated role. In user delegation, a user
assigns a subset of his available rights to another user [28].

Most of the existing delegation models [12][27][106][108][42] use a relation to
authorize delegation, that is used to determine which user can delegate to whom.
The delegation relation often takes the form can-delegate(R, some conditions),
where R is the role to be delegated, the conditions specify who can delegate
the role, in addition to other parameters such as depth of delegation. The
conditions often take the form: a user who has role x can delegate role y. The
delegation relation (can-delegate) brings some disadvantages to the delegation
model:

1. The delegation relations in existing delegation models add complexity to
the access control model. Large organizations typically have a rather large
number of roles. By adding delegation relations for most of these roles,
the entire system may explode. This is blocking for large organizations
since they require huge efforts for defining a huge number of relations.

2. The delegation relations cannot express precise conditions on who can
delegate a specific role. As an example, consider a delegation relation
that states that a professor can delegate the teaching assistant role. This
means that a professor in the faculty of arts can delegate the teaching
assistant role to a user in the computer science department.

3. The delegation relations may become inconsistent if updates to RBAC
relations are allowed such as updates to the role hierarchy [28]. Such
updates may occur when new activities are deployed in the organization.
This adds huge efforts for the maintenance of the relations, specifically
in cases of updates to roles such as adding or removing roles, as well as
updates to the hierarchies of roles. Such updates are likely to happen in
organizations.

4. User delegation models suggest that a user who is delegating an access
right has to be assigned to it [28]. This is not necessarily valid, since it is
possible that the user possessing the access right to be delegated is absent.
Furthermore, it is not guaranteed that another user who possesses the
same access right is available, especially in case of emergency.

In this chapter we propose a novel form of delegation, called the organizational
supervised delegation model (OSDM). The idea came after surveying some
access control models and policies in some organizations. Our surveys included
one of the largest European banks, a European university and a software

58 ORGANIZATIONAL SUPERVISED DELEGATION MODEL (OSDM)

provider. We have discussed the applicability of the delegation authorization
relations provided in existing delegation models [12][27][106][108][42]. All the
surveyed organizations commented negatively on these relations, and mainly
regarding complexity and the huge number of relations to be defined, which
makes managing them extremely hard. Furthermore, organizations often adopt
a different approach for authorizing delegation. We have found that any user-
role assignment or role (or permissions) delegation must be approved by the
line managers of the users. When roles are delegated, the delegation request
is initiated by a user, then approved by another user then executed by a user
or a process. No user can delegate a role assigned to himself without approval.
The user who approves delegation is not necessarily assigned to the role or to
the permissions to be delegated. OSDM depends on organizational hierarchies
to find users who must approve delegation, according to lines of authority
defined in the organizational structure. OSDM addresses the above-mentioned
limitations of existing role delegation models.

The remainder of this chapter is organized as follows: In the second section we
show an overview of organizational structures. In the third section we review
existing role delegation models. The fourth section presents our proposed
delegation model. Section five is a discussion on OSDM. Finally, section six
concludes our work.

3.2 Overview of Organizational Structures

Organizational structures outline the planned pattern of positions of individuals,
job duties and activities to be achieved. They also describe the lines of authority
among different parts of the organization [91]. Organizational structures are
modeled using organizational charts that depict the relationships between
different positions and the hierarchy that represents authority depending on
the rank of users. Organizational structures can take several forms. Most of
structures used are hierarchical, matrix, and flat organizational structures. In a
flat structure, all employees report directly to a single manager. In hierarchical
structures, each individual reports to one and only one manager at the next
higher level [40]. Authority is clear in hierarchical organizations, and managers
have absolute authority on their teams.

The matrix structure involves dual authorities, where individuals can report
to two managers. Employees often have a functional manager and participate
in projects that have a project manager. Users report some activities to the
project manager and some activities to their functional manager. Authority
of functional managers and project managers in the matrix structure varies

RELATED WORK 59

Figure 3.1: Software development department users hierarchy of the
organizational structure.

according to the type of the matrix. Resource assignment is normally controlled
by the functional manager. Therefore, we are interested in functional managers
for our delegation model, since we care about who has the power to approve
resource assignment and therefore delegation.

We have developed an example user hierarchy to be used for explanation
throughout the rest of the paper. Fig. 3.1 depicts the users hierarchy of a
software development department in a technology department of a hierarchical
organizational structure.

3.3 Related Work

In the last few years, several role delegation models [12][27][106][108][42] studying
delegation in the context of role based access control have emerged. However,
delegation was studied before RBAC was proposed, and there were some
predecessors of RBAC delegation such as: the access matrix models which
introduced the concept of copy flag, which allows users to delegate rights [41].
Wood and Fernandez [103] introduced the idea of reverting the rights to the
upper level after revoking a low-level delegation. Graph-based delegation was

60 ORGANIZATIONAL SUPERVISED DELEGATION MODEL (OSDM)

introduced in [39]. A variety of delegation approaches were also introduced in
[62]. In this paper, we focus on delegation in the context of RBAC. Delegation
in RBAC can have several characteristics depending on the requirements of
the environment where delegation is applied. The main characteristics of
delegation were explained by Barka et al. [11]. These key characteristics include
permanence, monotonicity, totality, administration, levels of delegation, multiple
delegation, lateral agreements, cascading revocation, and grant-dependency
revocation [11].

The first work that studied delegation in RBAC was achieved by Barka and
Sandhu [12][11]. They proposed the RBDM0 delegation model [12] which studied
delegation in flat roles structure. RBDM0 focused on grant total delegation
which means that the delegator keeps the power to use the role after delegation
and covers only the delegation of roles. RBDM0 does not support partial role
permissions delegations. RBDM0 controls user-user delegation by means of
the can-delegate relation. The can-delegate relation takes the form of (a, b)
∈ can-delegate. It means that a user who is an original member of the role a
can delegate his role to a user who is an original member of role b. Revocation
in RBDM0 can happen in two ways: firstly, by time outs. Delegations are
revoked when the delegation period expires. Secondly, any original member of
the delegated role can revoke the membership of any delegate member in that
role.

RDM2000 [106][107] was the first delegation model to address delegation with
hierarchical roles. It also supports multi-step delegation. The can-delegate
relation in RDM2000 takes the form: can-delegate ⊆ R × CR × N, where R are
sets of roles, CR are prerequisite conditions, and N is the maximum delegation
depth. The meaning of (r, cr, n)∈ can-delegate is that a user who is a member
of role r (or a role senior to r) can delegate role r (or a role junior to r) to any
user whose current entitlements in roles satisfy the prerequisite condition cr
without exceeding the maximum delegation depth n.

The permission-based delegation model (PBDM) [108] was the first to address
permission delegation (partial delegation). PBDM supports role as well as
permission delegations with features of multi-step delegation and multi-option
revocation. PBDM comprises in two models: PBDM0 and PBDM1. In PBDM0,
permission delegation involves three steps. Firstly, a temporary delegation
role is created by the delegator. Secondly, the permissions to be delegated are
assigned to the temporary role with permission-role assignment. Thirdly, the
delegator assigns the temporary role to the delegatee by user-role assignment.
Revocation in PBDM0 includes three cases: by revoking the delegated role,
by removing one or more pieces of permissions from the delegated role, or by
revoking the user-delegation role assignment.

THE ORGANIZATIONAL SUPERVISED DELEGATION MODEL 61

PBDM1 extends PBDM0 with two main features. Firstly, it adds support for
role-role delegation, which supports delegating specific permissions of a role to
another role rather than to another user. Secondly, it adds means for controlling
delegation; to restrict delegation only to authorized users. This is achieved by
the can-delegate relation, which takes the form: can-delegate ⊆ DBR × Pre-con
× P-Range × M, where DBR are sets of delegable roles, Pre-con are prerequisite
conditions, P-Range is the delegation range that specifies which permissions
can be delegated, and M is the maximum delegation depth.

Crampton et al. [28] proposed a new model for dealing with transfer delegation.
In transfer delegation, the delegator loses the power of using the access right after
delegation is completed. They also have proposed two relations for controlling
delegation. The can-delegate and the can-receive relations. The advantages of
using different relations for controlling delegations include flexibility, greater
control, ease of management and is less error prone. They also included
constraints on the can-delegate and can-receive relations to ensure that the
relations do not give the authority to a delegator to delegate a right that is not
available to him.

The capability based delegation model [42] is an interesting work based on the
capability based access control model (CRBAC) presented in the same paper.
The CRBAC model integrates a capability-based access control mechanism into
the RBAC96 model. Roles and permissions are assigned to capabilities, and
capabilities are assigned to users. Delegation is achieved by creating a new
capability, then by assigning delegable authority (roles or permissions) to the
capability, then the delegator sends the capability to the delegatee. Unlike
the other delegation models, delegation is authorized by a permission that the
delegator must possess for creating the capability.

We discuss the drawbacks of the reviewed models and how OSDM addresses
them in section 5.

3.4 The Organizational Supervised Delegation Model

We have shown in the previous sections that existing delegation models depend
on the delegation relation for determining who can delegate a given role or a
set of permissions. We have also shown the drawbacks of using the delegation
relation for authorizing delegation. Our surveys of different organizations have
revealed that no user is directly allowed to delegate his role to another user
without the approval of the direct line managers of both users. Another problem
with existing role delegation models is that they require that the user performing
the delegation to possess the role to be delegated. This conflicts with one of the

62 ORGANIZATIONAL SUPERVISED DELEGATION MODEL (OSDM)

major reasons for using delegation, which is when the user is absent without
early notification due to an emergency situation, and hence, blocks urgent
activities usually performed by that user.

In this section, we provide our delegation model that aims at addressing issues
of existing delegation models. We start by extending RBAC to enable the user
hierarchy feature, that is used to find the users who must approve the delegation.
Then we provide a detailed description of the delegation model followed by the
formal model of the organizational supervised delegation model (OSDM). The
last subsection explains how revocation is performed in OSDM.

3.4.1 Extensions to RBAC

In RBAC, roles are assigned to users and permissions are assigned to roles. Roles
represent job functions or sub-functions in organizations, while permissions
are privileges to access objects or execute operations. The main advantage of
RBAC is that it simplifies the management of access rights, since users can
be reassigned from one role to another. New permissions can be assigned to
roles as new applications and systems are incorporated, and permissions can be
revoked from roles as needed [87].

RBAC has paid attention to simulating organizational structures after the
concept was originally proposed for user group structures in [36]. RBAC
implements role hierarchies that are a natural means of structuring roles in
organizations [9]. Role hierarchies are partial orders that express inheritance
relations among roles. Although role hierarchies in RBAC can reflect some
points from organizational structures, the functional role hierarchy constructed
through the existing role engineering approaches does not reflect organizational
structures, because they do not take into account the structural characteristics
of organizations [52]. Hierarchies in RBAC implement the is-a relationships
between hierarchical roles. In most organizations, superiors do not need full
access to the permissions of their inferiors. It is not necessary that a manager
inherits from his inferiors since managers are often performing completely
different tasks from their subordinates. In consequence, the application of
the is-a inheritance in these situations results in the assignment of undesired
and unnecessary privileges to superiors. This conflicts with the least privilege
concept. In many situations, senior users have supervision relationships with
junior users. Organizations are seeking flexibility when defining hierarchies
in the access control model that can reflect these nuances [70]. More so, in
organizational hierarchies, lines in the hierarchy mean different levels in the
structure. While in RBAC it is possible that hierarchical roles are assigned to
users in the same level in the hierarchy. For example, in the users structure

THE ORGANIZATIONAL SUPERVISED DELEGATION MODEL 63

Figure 3.2: Modeling the hierarchy of users of an organization structure by a
general tree data structure

depicted in Fig. 3.1, the senior developer role might inherit from the role of the
junior developer, although both are in the same level in the hierarchy.

From the description above, it is clear that the role hierarchies in RBAC
cannot reflect organizational structures, and therefore, we cannot take the role
hierarchies as basis for modeling the organizational hierarchies. Our delegation
model depends on the organizational structure in order to find the user who
must approve the delegation request. It is impossible to know the manager of
a given user in RBAC, since the organizational structure is not available or is
misleading in RBAC. Therefore, we propose an extension to RBAC to define
hierarchies over users. The hierarchy of users must respect the user hierarchies
in organizational structures. In our proposed extension, users hierarchies are
represented as a general tree, where each user has one parent node corresponding
to his direct responsible (line manager). As an example, the structure depicted
in Fig. 3.1 can be represented by the tree model shown in Fig. C.2.

Modeling user hierarchies in RBAC with general trees makes it easier for finding
the responsible (line manager) of any user, who is in charge of approving the
delegation request. The direct line manager is the parent node of the user
node, while the next level manager is the parent node of the direct manager

64 ORGANIZATIONAL SUPERVISED DELEGATION MODEL (OSDM)

node. This complies with hierarchies in organizational structures. Even in
the matrix structure, the functional managers are responsible for approving
task assignments to their employees. Therefore, the parent nodes in matrix
structures represent functional managers.

The proposed model incurs some amendments on the administrative RBAC
model [9]. The AddUser command now has an extra parameter called Parent
that corresponds to the user’s direct responsible. If the node to be added is
a parent node (responsible), then the children nodes can be attached to this
parent node as sub-trees. The DeleteUser is also modified. If the user node
to be deleted has no children, it means that the user is not responsible for
other users, then it can be deleted outright. If the user to be deleted is a
parent of some other nodes, which means that he is a responsible of some other
users. Then we promote the children users and attach them to the parent of
the deleted node. The root node can only be replaced and cannot be deleted.
Other administrative commands remain unchanged.

The extended RBAC model is composed from the following elements and
relations:

- U, R, P : are sets of users, sets of roles and sets of permissions, respectively.
- PA ⊆ P × R, a many-to-many permissions to roles association.
- RA ⊆ U × R, a many-to-many users to roles assignments.
- RH ⊆ R × R, a partial order on R. Also represented by ≥. If r, r′ ∈ R,

then r ≥ r′ means r is higher in hierarchy than r′ and that r inherits all
permissions of r′.

- UH ⊆ U × U , a partial order on U . Also represented by > . If u, u′ ∈ U ,
then u > u′ means u is higher in hierarchy than u′ and that u has authority
on u′.

3.4.2 Delegation in OSDM

The central notion of OSDM is that delegation must be approved by the
line managers of the delegator and the delegatee. OSDM supports both role
delegation and permission delegation. More so, OSDM supports delegation in
both flat and hierarchical roles. In general, the delegation process in OSDM
is accomplished in three main steps: firstly, a delegation request is initiated,
secondly, the delegation request is sent for approval, and finally, the delegated
access rights are assigned to the delegatee.

THE ORGANIZATIONAL SUPERVISED DELEGATION MODEL 65

There are three types of situations in which delegation takes place. Firstly,
backup of roles. When the user is absent, the function needs to be achieved
by others. Secondly, centralization of authority. When an organization needs
to reorganize functions and distribute functions from higher job positions to
lower job positions in the organizational structure. Thirdly, collaboration of
work. Users need to collaborate with others to achieve specific tasks [108].
However, user delegation models discussed in the literature requires that the
user performing the delegation must possess the ability to use the access right
[28]. This is not valid in all cases, since in the backup of role case, the user is
absent and cannot initiate the delegation. Therefore, we enable different users
to initiate the request. Specifically, the delegation request can be initiated by
three different users:

- By the delegator (the user that delegates the role). The delegator asks to
delegate his role or permissions to another user.

- By the delegatee (the user that is to be delegated the access right). The
delegatee asks to acquire an access right from another user.

- By the line manager of the delegator, either by the direct line manager or
by a higher level line manager.

Consider the hierarchy depicted in Fig. 3.1, if Alice needs to delegate one of
her access rights to Bob, then the delegation request can be initiated either by
Alice herself, by Bob, or by one of Alice’s line managers, usually Ted. In case of
absence of Ted, the request can be initiated by Brian, Tim or Steve.

Once the delegation request is initiated, the delegation request becomes pending
for approval. The request must be approved by the line manager of the delegator
and the line manager of the delegatee. The reason for this is that the line
manager of the delegator is responsible for the achievement of his tasks. The
approval of the line manager of the delegatee is required because he is responsible
for assigning the resources to the tasks. The line managers entitled for approval
receive a request to approve the delegation. This means that the delegation
authorization is performed by the parent nodes of the delegator and the delegatee.
Once both of them have sent their approvals, the delegation operation step
can be accomplished; in which the delegated access rights are assigned to the
delegatee. Usually, the delegation request is sent to the first line managers
of the delegator and the delegatee, but in case of their absence, the request
can be redirected on demand to the higher-level line managers of the delegator
or the delegatee. In case that the delegator and the delegatee are supervised
directly by the same first line manager, then only one delegation request is sent
to the line manager. If a user’s access right is to be delegated to his direct

66 ORGANIZATIONAL SUPERVISED DELEGATION MODEL (OSDM)

Figure 3.3: The activity diagram of the delegation process

line manager, then one approval request is sent to the line manager of the
delegatee. The steps of the delegation process in OSDM are depicted in the
activity diagram shown in Fig. 3.3.

To explain the approval step of delegation, we continue our example. When the
delegation request is initiated for delegating some access rights from Alice to
Bob, the request for approval is sent to both Ted and Marc. In case of absence
of either Ted or Marc the delegation request can be sent to Brian, Tim or Steve.
If Ted asks to acquire an access right from Alice, then only one request is sent
to Brian for approval. If Alice needs to delegate some access rights to Tony,
then only one approval request is sent to Ted.

Once the delegation request is approved, then the third step of delegation can
be executed. The delegation operation step depends on the characteristics
of delegation to be implemented. The identified characteristics of delegation
comprise totality, permanence, monotonicity, administration, levels of delegation,
multiple delegation, lateral agreements, cascading revocation, and grant-
dependency revocation [11]. The delegation operation using these characteristics
has been described by several papers [12][27][106][108][11]. In OSDM, we focus
on total and partial grant delegation with flat and hierarchical roles.

THE ORGANIZATIONAL SUPERVISED DELEGATION MODEL 67

We adapted the approach discussed in [12][106][108] for the delegation operation.
We start with delegation operations on flat roles then we move to hierarchical
roles.

Delegation in flat roles:

1. Grant total delegation: In this case, the delegator delegates a role with all
its permissions to the delegatee. The delegatee must not be a member in
that role before delegation. The delegated role is assigned to the delegatee
with delegation relation instead of the original role assignment relation.
This is important to identify delegated roles from roles that were originally
assigned to users by the system administrators. The delegatee can start
using the role after this step, and the delegator retains the power to use
the delegated role.

2. Grant partial delegation: In this case, the delegator only grants a subset
of permissions of a given role to the delgatee. A temporary role is created
and is assigned to the permissions to be delegated. The temporary role is
then assigned to the delegatee with delegation. The delegatee can start
using the delegated permissions after this step, and the delegator retains
the power to use the delegated permissions.

Delegation in hierarchical roles:

1. Grant total delegation: In this case, the delegator delegates a role with
all its permissions to the delegatee. The delegatee then has the power to
use the role plus all the roles in the hierarchy junior to the delegated role.
The delegator is explicitly assigned to the roles junior to the delegated
role. The delegated role is assigned to the delegatee with delegation and
the delegator retains the power to use the delegated role.

2. Grant partial delegation: This case is exactly the same as the grant partial
delegation in flat roles structure.

3.4.3 A UML/OCL Formal Model of OSDM

In this subsection, we include the formal model of OSDM for completeness.
We use the Unified Modeling Language (UML) [76] and the Object Constraint
Language (OCL) [74] to formalize the definitions of OSDM. Fig. 3.4. shows the
UML class diagram of OSDM. The diagram projects the relationships between
the different classes of the extended RBAC model according to the definitions in

68 ORGANIZATIONAL SUPERVISED DELEGATION MODEL (OSDM)

Figure 3.4: The class diagram of OSDM

section 4.1. Furthermore, the diagram depicts the classes required for delegation.
The DelegationRequest class represents the initiated delegation request. The
ApprovalRequest represents the requests for approving the delegation request
and then assigning the delegated role to the user by delegation. The diagram
also depicts the two types of role assignments; the original and delegation
assignments.

The following definitions formalize OSDM constraints in OCL:

Definition 1:
In OSDM, the line manager of a user is the user higher in the hierarchy
(parent node). In case of absence of the direct line manager, then the line
manager is the next level manager.

context::User:getLineManager()
post: if self.Manager.Absent = false
then result = self.Manager
else result = self.Manager.getLineManager()
endif

THE ORGANIZATIONAL SUPERVISED DELEGATION MODEL 69

Definition 2:
Self-delegation is not allowed in OSDM; the delegator and delegatee cannot
be the same user.

context::Delegation
inv: no_self_delegation: self.User <> OriginatingRole.User

Definition 3:
The role assigned to the user by the delegation relation must be exactly
the role in the delegation request; which is the delegated role.

context::Delegation
inv: same_role: self.Role = OriginatingRole.Role

Definition 4:
The delegation request is initialized by the delegator, the delegatee or the
line manager of the delegator.

context::DelegationRequest
inv: InitiatorRule: self.Initiator = self.Delegatee or
self.Initiator = OriginatingRole.User.getLineManager()
or self.Initiator = OriginatingRole.user

Definition 5:
The delegation request can be initialized only if the delegatee is not
assigned to the delegated role.

context::DelegationRequest
inv: Delegator_not_member_in_delegated_role:
self.delegatee.role ->asSet() ->excludes(OriginatingRole.role)

Definition 6:
Proper delegation requests must have been forwarded to a manager of
both users involved in a delegation request.

context::DelegationRequest
inv: requests_initiated:
ApprovalRequest.Manager ->
forSome(manages(self.Delegatee)) and
ApprovalRequest.Manager ->
forSome(manages(self.Delegation.User))

Definition 7:
The role must be assigned to the user once the delegation Request is
approved.

70 ORGANIZATIONAL SUPERVISED DELEGATION MODEL (OSDM)

context::DelegationRequest
inv: delegate_role: if ApprovalRequest.Approved = true
then delegation ->allInstances ->
includes(delegation|delegation.role = self.OriginatingRole
and delegation.user = self.delegatee)
endif

If multi-step delegation is not allowed, then the link between DelegationRequest
and UserRoleAssignment in Fig. 3.4 must be changed to be between
DelegationRequest and Original class. The link between UserRoleAssignment
and DelegationRequest indicates that the delegation request can only be initiated
if the role to be delegated is assigned to the delegator.

3.4.4 Revocation in OSDM

Revocation is the step that ends delegation and deassigns the previously
delegated access rights from the delegatee. Revocation can be performed
when the reason for delegation becomes invalid. For example, if the delegation
was performed because of user absence and the user returns back to duty.
Revocation in OSDM is achieved as follows:

- In case of grant total delegation, the revocation is simply achieved by
deassigning the delegated role from the delegatee.

- In case of grant partial delegation, revocation is achieved either by
deassigning the delegated temporary role, or by revoking one or more
permissions from the temporary role.

In both cases, revocation must be initiated by the delegator, the delegatee or
the line manager of the delegator. The revocation must also be approved by
the line manager of the delegator. The approval of the line manager of the
delegatee is not necessary for revocation, since the line manager of the delegator
is responsible for the accomplishment of his tasks, whereas the line manager of
the delegatee is involved in cases where tasks are to be assigned to his employees.

3.5 Discussion

Controlling delegation is the mechanism in delegation models that determines
the security of the delegation model. Although the proposed delegation control

CONCLUSION 71

relations in existing role delegation models provide a means for authorizing
delegation, they still suffer from disadvantages that will turn organizations away
from using them. Defining such relations introduces complexities and is prone
to error. If the definition of a relation is missing then it prevents delegating
a role, while an erroneous relation enables delegation to none entitled entities.
More so, relations complicate updates to RBAC, organizations need to revise
the relations after each update. Even if organizations can tolerate this great
overhead caused by relations, they will not be able to express some constraints
on delegation such as specifying that manager m should approve delegation of
role r of user u. This is due to the fact that conditions in delegation relations
depend on roles. This could create inconsistencies, given it is possible that two
managers having the same role becomes able to delegate a specific role. Other
models such as CRBAC [42] uses a permission to authorize delegation. This
eliminates complications introduced by the can-delegate relation, but it opens
security breaches since any user that has a permission to create a capability
can delegate his roles and permissions. Furthermore, role hierarchies in RBAC
do not reflect organizations structures as shown in [52][70][64]. This has led to
the idea of OSDM, which models organizational structures in RBAC and then
utilizes them in controlling and authorizing delegation.

The advantages of OSDM other than addressing the above limitations of existing
delegations, are that it complies with organizational policies towards delegation
authorization. OSDM also provides a means for reflecting the organizational
hierarchies and lines of authority in RBAC. In organizational structures, the
functional line managers of users are responsible for resource allocation. Which
means that roles are assigned to users based on the agreement of their line
managers. This is also valid for delegation.

The implementation of the model is straightforward once the organizational
chart is available to be projected and maintained in the access control system
of the organization.

3.6 Conclusion

The central contribution of this chapter is a new roles and permissions delegation
model for role-based access control, the organizational supervised role delegation
model (OSDM). This model provides a new means for controlling and authorizing
delegation based on the organizational hierarchy. The development of the
OSDM model was motivated by surveying some organizations and verifying
their delegation and role assignment mechanisms in place. The survey has

72 ORGANIZATIONAL SUPERVISED DELEGATION MODEL (OSDM)

concluded that such actions are usually approved by managers according to
lines of authority in the organization.

The model starts by extending RBAC to adopt changes required for
implementing organizational hierarchies. Mainly by adding support for user
hierarchies. This enables implementing authority relations among different
users by modeling the hierarchy using a general tree data structure. The
user hierarchy helps in finding users who need to approve delegations and
revocations according the lines of authority in the organization. In existing
delegation models, delegation is authorized by using a delegation relation that
defines who can delegate a given role. We have explained disadvantages of this
approach that could prevent organizations from using delegation models based
on such relations.

The delegation request can be initiated by three different parties, the delegator,
the delegatee, or the line manager of the delegator. Once the request is initiated,
the delegation request is sent for approval to the line managers of the delegator
and the delegatee. The delegation operation is performed when both approvals
are received. OSDM supports both role and permission delegations, as well as
flat and hierarchical role structures. Revocation in OSDM takes similar steps to
delegation. Firstly, a request for revocation is to be initiated by the delegator,
the delegatee or the line manager of the delegator. Afterwards, the revocation
request needs to be approved by the line manager of the delegator, before the
revocation operation is performed.

The future work on OSDM will focus on defining API classes for the model,
and validation on a case study or by implementing our approach at one of the
surveyed organizations. More so, we will be looking at extending the model to
support parametrized roles delegation. We will also be looking at more efficient
modeling of user hierarchies that can implement special lines of authorities and
constraints.

Chapter 4

ROAC: A Role-Oriented
Access Control Model

This chapter is published in the proceedings of the 6th International Workshop
on Information Security Theory and Practice (WISTP), Jun 2012, Egham,
United Kingdom.

73

74 ROAC: A ROLE-ORIENTED ACCESS CONTROL MODEL

Role-Based Access Control (RBAC) has become the de facto standard for
realizing authorization requirements in a wide range of organizations. Existing
RBAC models suffer from two main shortcomings: lack of expressiveness
of roles/permissions and ambiguities of their hierarchies. Roles/permissions
expressiveness is limited since roles do not have the ability to express behavior
and state, while hierarchical RBAC cannot reflect real organizational hierarchies.
In this chapter, we propose a novel access control model: The Role-Oriented
Access Control Model (ROAC), which is based on the concepts of RBAC but
inspired by the object-oriented paradigm. ROAC greatly enhances expressiveness
of roles and permissions by introducing parameters and methods as members.
The hierarchical ROAC model supports selective inheritance of permissions.

4.1 Introduction

The deployment of software applications on distributed networks and on the
web has exposed them to many new security threats. One major risk is that
an application can be accessed by unauthorized users in an easier way than in
the past. Governments and commercial organizations are continuously seeking
strong access control models that can help them prevent unauthorized access
to their systems. Therefore, they maintain their reputation as safe institutions
where confidential information is safeguarded. For example, WikiLeaks could
have been prevented should better access controls have been in place [35]. Role
based Access Control (RBAC) [37] has been used by organizations to protect
resources in their software systems against unauthorized access. RBAC has
become the dominant access control model that is widely accepted in enterprise,
health, and governments systems.

RBAC is based on four principles: abstract privileges, separation of
administrative functions, least privilege and separation of duties [87]. RBAC
is expressed in terms of users, roles, permissions, objects, and operations [9].
Permissions are assigned to roles and roles are assigned to users. Permissions
are privileges to access objects or to execute operations. RBAC models often
support role hierarchies. This feature is known as hierarchical RBAC. Role
hierarchies define partial orders on roles; this is analogous to inheritance in
the object-oriented paradigm. The central advantage of RBAC is that it
simplifies the management of access rights and offers a high level view on
security in organizations by bridging the gap between functional requirements
of organizations and the technical authorization aspects of their security policies
[87], [7].

Despite the robustness of RBAC, it has received a great academic attention

INTRODUCTION 75

from researchers. The literature shows many notable contributions that address
limitations and suggest improvements to RBAC. However, in its current form,
RBAC does not seem to have enough power to express a wide range of security
requirements and capture fine access control granularity when put into practice
[7]. Two main shortcomings of standard RBAC are its lack of expressiveness
when defining roles [7], [38] and ambiguities that may arise in hierarchical role
models [50]. Hierarchies in standard RBAC only support the is-a hierarchy
which does not reflect real organizational hierarchies as we will see later. On
the other hand, parametrized RBAC [7], [38],[47] has been proposed to address
the lack of expressiveness by associating parameters to roles. Shortcomings
related to role hierarchies were addressed by many initiatives. More discussions
regarding this are contained in the next section.

Existing RBAC models consider roles as entities of a simple type that cannot
have member attributes and operations, except parameters as suggested by
parametrized RBAC. This provides a relatively simple and straightforward type
for roles, but it lacks flexibility when defining roles. Roles in RBAC are blind in
the sense that they are not aware of the application environment. They cannot
access data in the system or perform any actions. Roles cannot hold variables,
status, methods, etc. More so, the generalization concept in existing RBAC
models does not reflect real organizational hierarchies. In most organizations,
superiors do not need full access on permissions of their subordinates, hence
application of the is-a inheritance in these situations results in assignment of
undesired privileges to superiors. This conflicts with the least privilege concept
of RBAC. In many situations, senior users have supervision relations to junior
users. Organizations are seeking flexibility when defining hierarchies in the
access control model that can reflect the nuances above.

In this chapter, we propose the Role Oriented Access Control model (ROAC)
as a novel access control model. ROAC addresses limitations of existing RBAC
models through benefiting from the object-oriented concepts. ROAC makes
analogies between roles and classes in object-oriented programming languages,
then utilizes their concepts for constructing a new robust and extendible access
control model. The main contributions of ROAC are:

1. To the best of our knowledge, ROAC is the most expressive access control
model yet defined. ROAC greatly enhances the expressiveness of access
control through associating variables and methods to permissions and roles.
This architecture provides a means to defining one role and then defining
multiple instances from the role with different levels of granularity. More
so, application code is able to invoke methods to validate role parameters
that are defined as part of role permissions. This helps separating the
access control management from the application logic. This all results

76 ROAC: A ROLE-ORIENTED ACCESS CONTROL MODEL

in stronger security and minimizes the risk of different interpretations of
parameters among developers of the application.

2. ROAC greatly enhances RBAC hierarchies by adopting standard object-
oriented inheritance concepts. At the same time, it extends hierarchical
facilities with supervision relationships among roles. It also offers means
for selective inheritance of permissions of junior roles by senior roles. In
this way, ROAC better reflects organizational hierarchies. In other words,
ROAC supports both the is-a and selective inheritance.

3. ROAC addresses scalability issues of existing RBAC models. In addition
to the points mentioned above, ROAC provides a new kind of parameters,
referred to as static parameters. Static parameters have common values for
all instances of the role. Static parameters help updating all instances of
the role at once. For example, if an organization often switches between two
roles, it must be able to disable one type of role and enable the other type.
A static parameter can then be introduced to specify whether all instances
of the role are enabled or not. Moreover, by using validators, organizations
can also provide assertions over the parameters and static parameters.
Validators can also implement authorization policies that can be checked
before authorizing operations. In ROAC, roles and permissions can hold
state. Roles can connect to databases and can have data structures
to hold data. This can be of great usage for auditing and tracking of
authorizations.

The remainder of this chapter is organized as follows: In the next section we
review related work, then in the third section we overview the ROAC model. In
section four, we provide the data model of ROAC. In the fifth section we explain
the generalization model of ROAC. Section six provides a discussion about
how ROAC can implement next generation RBAC concepts and the trade-off
between complexity and fine granularity. Finally, section seven concludes our
work and highlights future tracks.

4.2 Background and Motivation

RBAC has received a lot of attention from academic researchers and from
commercial organizations. This has led to many improvements to the standard
RBAC model [9]. RBAC research can be broadly classified into two main
categories: improvements to features existing in standard RBAC and extensions
to standard RBAC. Improvements to standard RBAC have been mainly focusing
on improving role hierarchies of the standard RBAC model and on improving

BACKGROUND AND MOTIVATION 77

expressiveness of roles by parametrization. Extensions to standard RBAC have
been focusing on adding new features to RBAC such as supporting cross domain
roles, role delegation models, etc. In this paper, we focus on improvements to
RBAC.

In standard RBAC, role hierarchies support multiple inheritance; meaning that
a role can inherit permissions from multiple roles. The general role hierarchy
concept in standard RBAC has two main properties; firstly, the possibility
to derive roles from multiple roles, and secondly, the role hierarchies concept
provides a uniform treatment of user/role and role/role relations. Users can
be included in the role hierarchy, using the same relation to denote the user
assignment to roles. More so, standard RBAC supports the limited role hierarchy
concept, in which hierarchies are limited to the single immediate descendent [9].
The role hierarchy concept in standard RBAC suggests that when a senior role
inherits from a junior role, all permissions of the junior role are transferred to
the senior role.

The most familiar form of collaborative working is hierarchical in nature. In
organizational hierarchies, the superior may not take part in the details of a
task, but rather, acts as the instigator of the task [10]. In other words, the most
typical form of hierarchy in organizations is the supervision hierarchy [64]. More
so, in some situations it is required to keep a role private and inhibit others from
extending it. Sandhu [87], [82] has introduced the concept of the private role,
which is a role that cannot be further extended. In situations where users have
private documents that they need to protect from their superiors, a new private
role has to be introduced for each user. This results in an increased number
of roles in the system. This counter-balances the advantage gained by using
hierarchies, which is reducing number of roles in the system [64]. Xuexiong et
al [104] proposed an approach to tackle excessive inheritance that occurs when
users get more permissions than they should have by permission inheritance.
They resolve the issue by segregating role permissions into private permissions
and public permissions. Then only public permissions are transferred through
inheritance to superiors. If a role r has a set of permissions P, then P is divided
into two sets Pprv for private roles, and Ppub for public roles. When a senior
role rs inherits from r, only Ppub are transferred to rs. The drawbacks of this
approach are that the private permissions of a role won’t be inherited by any
other role. In organizations, it might be the case that private permissions are
different between two superiors of a junior role. In this situation, it won’t be
possible to define the inheritance for the two roles.

Lack of expressiveness in role definition has received attention from researchers
as well. In many organizations, different users may require different granularity
levels of the same role. For example, two tellers in a bank might have the same
role that enables them to perform transactions. But the maximum amount of the

78 ROAC: A ROLE-ORIENTED ACCESS CONTROL MODEL

transactions both can perform might be different depending on their seniority.
Standard RBAC can be adapted to capture such fine-grained authorizations by
dramatically increasing the number of distinct roles. Parameterized roles [7],
[38], [47] were proposed to address the lack of expressiveness of roles. One of the
good attempts to address lack of expressiveness of RBAC by using parameterized
roles was defined by Jaeger et al. [47]. The formal definition of parameterized
RBAC was introduced by Abdallah et al. [7]. Parameterized RBAC provides
finer granularity by creating instances of RBAC components according to the
contexts of their use [7]. This is achieved by associating parameters with roles.
Parameters are used to define the granularity level of the role. In the example
of the bank tellers presented previously, the teller role can be parameterized
by an amount limit parameter. Then each teller can be assigned a maximum
amount limit when assigned to the role.

Fischer et al. [38] proposed the object-sensitive RBAC (ORBAC), which is
a generalized RBAC model for object-oriented languages. ORBAC addresses
the lack of expressiveness of RBAC by using parametrized roles. In ORBAC,
privileged operations are parametrized by a set of index values, which are used
to distinguish the granularity level of the roles between users. A privileged
operation can only be invoked if both the required role is assigned to the user
who invokes the operation and the role’s index values matches the operation’s
index values.

Parameterized RBAC was the first initiative to address lack of expressiveness in
role definitions, but parametrized RBAC is still not sufficient to express many
authorization requirements. In the example discussed above, it is not possible
to check the amount against currencies and to find the amount value against the
home currency of the bank. Expressiveness of RBAC can be further improved
should we introduce possibilities to make validations on parameters. In addition,
we provide a new type of parameters that can have values common to all
instances of roles. In our proposed access control model (ROAC), we address
these limitations and further improve the concept of roles and permissions.

4.3 The Role-Oriented Access Control Model Overview

In the previous section, we showed that parameterized RBAC was proposed
to address standard RBAC’s lack of expressiveness when defining roles. The
proposed approach adds some flexibility when defining roles. In parameterized
RBAC, computations involving parameters of roles must be performed at
the application side. This is similar to plain old record types of structs in
procedural programming languages. Object-oriented programming languages

THE ROLE-ORIENTED ACCESS CONTROL MODEL OVERVIEW 79

have introduced the notion of encapsulation that is wrapping data and methods
within classes in combination with implementation hiding [34]. The idea here
is to transplant those ideas to the definition of roles. With parameterized
RBAC it is possible, for example, to specify an amount limit and a currency
as parameters to the teller role. But it cannot provide further possibilities to
compute the amount against the home currency. As an example, if we pass
to the teller role 1000 as an amount and EUR as a currency, the amount is
not equivalent to 1000 with USD currency. Moreover, it provides no way of
adding static parameters to roles, i.e. when the static parameter is changed it
takes effect on all instances of the role. If an organization requires to disable
a role from the access control system, but the organization cannot delete it,
since it is associated with records in their audit trail. Deleting the role causes
inconsistencies within the system. A better way to cope with this issue is to
flag the role as deleted.

In ROAC, we address limitations of existing RBAC models by adjusting and
transplanting concepts of object-oriented programming languages to the context
of roles and permissions. Roles and permissions in ROAC are analogous to
objects in object-oriented programming languages. Like objects, roles and
permissions can hold data (variables) and operations (methods). Similarly,
objects can inherit from other objects typically expressing an is-a relation, roles
can be organized into hierarchies with different relationships between super
nodes and their sub-nodes.

The core ROAC model consists of three main elements: users, roles, and
permissions. Users are principals requiring access to a software system. Roles
project job functions within organizations. Roles can be further fine grained
to represent sub-functions e.g. a job function can be a teller and a sub-
function can be AccountHolder. Permissions are privileges to execute operations
or access objects in the system. Users are assigned to role instances and
permission instances are assigned to roles. Since permissions usually correspond
to operations and/or objects in a software system, parameters and validators
should be included in permissions and propagated back to roles when permissions
are assigned to roles. This means that roles combine all parameters of their
assigned permissions. The values of parameters are set during users to roles
assignment. The structure of the ROAC model is shown in Fig. 4.1.

ROAC hierarchical model supports two hierarchies; the is-a hierarchy and the
supervision hierarchy. In the is-a hierarchy, senior roles inherit all permissions
and definitions of junior roles. The is-a hierarchy in ROAC does not necessarily
reflect role hierarchies defined in the standard RBAC model, it could be also used
for deriving new roles and re-using definitions of existing roles. The other kind
of hierarchy supported by ROAC is the supervision hierarchy. The supervision
hierarchy reflects organizational hierarchies. The hierarchical ROAC model is

80 ROAC: A ROLE-ORIENTED ACCESS CONTROL MODEL

Figure 4.1: UML diagram of the ROAC model.

explained in more details in the fifth section.

4.4 ROAC Reference Data Model

The central notion of ROAC is that instances of roles and permissions are
considered as objects, therefore, they are able to encapsulate data and perform
operations. In this section, we summarize the main features of ROAC in a
reference data model.

In the ROAC model, we extend the principle of roles and permissions to become
analogous to object-oriented classes. Both roles and permissions are equipped
with variables and methods. Parameters are firstly defined in permissions and
then propagated back to roles. Parameters are attributes (also called fields or
data members) as in object-oriented languages. Once permissions and roles
are defined, instances of both roles and permissions can be created. Roles are
assigned in a many-to-many relationship with permission instances. Roles can
also have extra parameters defined that are not in permission instances assigned
to the role instances. These parameters are of type static. Static parameters
can be defined in permissions and in roles. Once a value is set for a static
parameter, it takes effect for all instances of the role or permission. Static
parameters are similar to static variables in object-oriented languages. Static

ROAC REFERENCE DATA MODEL 81

variables in object-oriented languages store values for the variables in a common
memory location, all objects of the same class are affected if one object changes
the value of a static variable [59]. Static parameter values can be initialized
when static parameters are defined, and their values can be changed by static
setter methods. Roles and permissions can also have private attributes which
are variables defined to be used in methods or validators internally.

Definition 1: Role and Permission Parameters.

Role and permission parameters are attributes of roles and permissions.
Parameters are declared by specifying the parameter name, data type, and
modifiers.

Methods are either used as validators or administrative functions such as setters
and getters. Validators are methods defined in permissions for computing the
authorization decision. The simplest form of a validator is an empty validator.
An empty validator grants authorization on an operation in a software system
to any user that possesses a role that is assigned the permission that contains
the validator definition. Extended form of validators takes inputs from the
environment and may connect to external systems to compute the authorization
decision. Validators always return a Boolean value, True if it grants authorization
and False otherwise. The convenient operations that validators most often
perform are to check parameter values extracted from user/role assignment
against parameters passed to operations in software systems protected with
the ROAC model. Validators can also implement authorization policies. The
choice of parameters, static parameters, and validators often depends on the
organization and the type of operations and objects they need to protect. Static
parameters can hold temporal information about the roles. These temporal
properties can be validated by validators. It could be useful in an organization
to add a new role in their access control system, and they decide to start using
the role on a specific date. The organization can define the role with a static
parameter StartDate and assign the role to users. Then they can validate the
StartDate before granting access on an operation. There are many scenarios
where static parameters can help organizations maintain dynamic properties of
their access control system.

Methods in ROAC are of great importance. Methods can be defined in roles and
in permissions. The purpose of methods in ROAC is to provide administrative
functions over roles and permissions and to handle operations on role and
permission parameters.

82 ROAC: A ROLE-ORIENTED ACCESS CONTROL MODEL

Definition 2: Permission Validators.

A validator is a permission member operation that provides an authorization
decision. The definition of a validator consists of a signature and a body.
The signature specifies the name of the validator and its input parameters.
Validators always return Boolean values. True if authorization is granted and
False if denied. The body of the validator is the implementation of validator,
which consists of a sequence of programming statements implementing the
authorization conditions.

Definition 3: Permission and Role methods.

Methods in permissions and roles are member operations. Method definitions
consist of a signature and a body. The signature specifies method name, input
parameters, and a return value. The body of the method represents the method’s
business logic implementation by a sequence of programming statements.

Definition 4: ROAC Permissions.

A permission is a datatype characterized by operations and attributes.
Operations and attributes definitions are the same for all instances of a
given permission. Permission non-static attribute values are specific to
instances derived from a given permission. A permission determines an access
authorization on one or more objects or one or more operations in a software
system. Permissions in ROAC consist of parameters, validators, and methods.
Parameters are attributes, while validators and methods are operations.

Definition 5: ROAC Roles.

A Role is a datatype characterized by operations and attributes. Attributes in
roles correspond to role parameters propagated from permissions assigned to
the role, and to static attributes of the role. Role operations correspond to role
methods that provide administrative operations.

Definition 6: ROAC Data-Types.

Datatypes in ROAC correspond to the type of parameters in permissions and
roles. Datatypes supported by ROAC depend on the programming language at
stake, which usually are primitive data types and reference data types (objects).

ROAC REFERENCE DATA MODEL 83

Definition 7: User-Role Assignment.

Let U be a set of user instances from user, R be a set of role instances created
from different roles. Let M be a set of parameters of roles and V be a set of
possible values for parameters. The user-role assignment is a many-to-many
relation, given by the following mapping:
UA = ([u,r] (m1=v1,, mn=vn)) , u ∈ U , r ∈ R, m1..mn ∈ M,v1..v2 ∈ V

Definition 8: Role-Permission association.

Let R be a set of different roles, let P a set of permissions instances, let M be a
set of permissions parameters and let R’ be a role instance created from R. The
role-permission association is given by the following mapping:
RA = (r,p(m1..mn)) r ∈ R ,m1..mn∈M , r’ = r(ppre,p) r’∈R’, ppre is the existing
role permissions

We have until now defined the different elements of the role-oriented access
control model. We now discuss how interactions between the different elements
are established. Afterwards we use an example to explain these interactions.

In ROAC, users are assigned to roles and permissions are assigned to roles.
Actually, one of the major advantages of RBAC is simplification of permissions
management. Users can be easily reassigned from one role to another. Roles can
be granted new permissions as new applications and systems are incorporated,
and permissions can be revoked from roles as needed [87]. This is a great
advantage that can be provided if user-role and role-permission assignments
can be achieved dynamically.

We designed relations between ROAC elements to be implemented dynamically.
In the user-role assignment, users are associated to role instances by
administrative methods. The role definition is not changed during this process.
Parameter values of roles are set during the user-role assignment. This enables
organizations to define different parameter values for different users, and
therefore, provide different granularity levels of roles. The role-permission
assignment is also achieved similarly. If a new permission is to be added to
the access control system, it does not need redefinition of roles that need to
be assigned the new permission. Roles have data structures that contain all
permissions assigned to roles. The enumeration can be dynamically updated by
administrative role methods for associating new permission instances to roles.
Roles also have data structures that contain the parameters of permissions.
Parameters of a role are the set of parameters of all permissions associated to
the role. The parameters data structure is updated each time a new permission

84 ROAC: A ROLE-ORIENTED ACCESS CONTROL MODEL

instance is associated to the role. As well, since multiple permissions may share
similar parameters, such as an amount value of a bank teller role permissions;
all similar permission parameters are considered as one parameter. The only
condition is that those parameters must share the same name and datatype. It
might happen that a new permission is added to a role in a live environment
where the role is already assigned to users, so an administrative function is also
provided to set and update particular parameter values for particular users.
More so, depending on authorization requirements, more administrative methods
can be added to roles. When permissions are assigned to roles, static parameters
are not propagated back to roles. Since static parameters are corresponding to
the permission and their values are common to all instances of the permission.

Fig. 4.2. shows an example of a role definition and a permission definition. The
role reflects a junior teller role in a bank. The permission is a privilege for
withdrawing money from a bank account. The Withdraw permission has two
parameters: AmountLimit represents the maximum amount of a transaction the
teller can perform and ListOfCurrencies represents the allowed currencies for the
teller. The static parameters of the role are: StartDate, which determines when
the role is activated and ExpiryDate, which determines when the role expires and
is retired. The Disabled flag determines whether the role is enabled or disabled,
the withdraw permission has also a disabled flag. The Withdraw permission has
one validator to validate the Amount specified in the transaction against the
AmountLimit of the role and to check if the currency of the transaction is in the
ListOfCurrencies of the role. The ValidateHomeAmount() validator converts
the currency of the transaction to the home currency of the bank, and then, it
compares the transaction amount with the AmountLimit. This computation is
required as the home amount value depends on the currency of the transaction.
For example, if the user has an AmountLimit=10000, and the home amount is
EUR, and the amount of the transaction is 20000 with the YEN currency. Then
the transaction should be authorized. The static methods defined in the role
are used for setting and getting values of static parameters and for modifying
and querying permissions. The ValidateHomeAmount validator may check if
the permission is enabled or not before deciding to authorize.

4.5 Generalization in the Role-Oriented Access
Control Model

In the object-oriented paradigm, inheritance is a mechanism that implements
is-a relationships between classes. Inheritance allows hierarchically related
classes to reuse and absorb features by inheriting class members (variables and

GENERALIZATION IN THE ROLE-ORIENTED ACCESS CONTROL MODEL 85

Figure 4.2: An example role and permission.

methods). Most existing RBAC models support role hierarchies based on a
similar inheritance mechanism found in object-oriented languages.

The advantages most commonly associated with inheritance in the object-
oriented paradigm are: malleability and reusability. Malleability facilitates
program construction, maintenance, and extension through factoring the
definitions common to a set of classes into a single class called the super-
class and then any change required in the common behavior can be done only
once in the super-class. Reusability facilitates the reuse of code and data by
defining abstractions in terms of existing abstractions. This greatly reduces the
development efforts by reusing existing software components [21].

Hierarchical ROAC supports multiple inheritance by allowing a role to have more
than one parent. Despite the advantages of multiple inheritance, it introduces a
new complexity. Two or more parents may define identifiers with the same name
[21]. Roles have multiple members such as parameters, static parameters, and
validators. The definition of roles in ROAC might introduce some challenges
as encountered when defining inheritance in object-oriented languages. One
challenge is name conflicts. When two junior roles are to be inherited by a
third senior role, where the two junior roles have two parameters (or static
parameters) that have identical names. This problem has been exposed in
object-oriented languages and there have been some approaches put together
to address this problem. In object-oriented languages, strategies for resolving
conflicts in multiple inheritance are divided into two main categories, depending

86 ROAC: A ROLE-ORIENTED ACCESS CONTROL MODEL

Figure 4.3: Name conflict resolution in ROAC.

on whether resolving the conflict requires interaction with the user or not [33]. In
the category where no interactions are required from the users, object-oriented
languages automatically resolve the conflict. They rank the objects parent
and take the property with highest rank. They use linearization to construct
a total ordering of all classes. Linearization solves runtime conflicts without
human interventions, but it has two drawbacks: it masks ambiguities between
otherwise unordered ancestors, and it fails with inheritance graphs that it deems
inconsistent [21]. The other technique used to solve name conflicts requires
interventions from users, such as explicit designation as in C++, exclusion as in
CommonObjects, and renaming as in Eiffel [33]. Renaming gives the developer
the power to decide on properties names and to choose appropriate names. It
also avoids complexity and inefficiency of linearization. In our approach to role
inheritance, we adopt the renaming approach. If a role is inheriting from two
roles that have the same parameter or static parameter names, then we rename
the parameter if the two parameters are different and we retain parameter
names if they are identical and hence combined into one parameter. In this
case, the two parameters must have identical data-types. Fig. 4.3 shows an
example of how conflicts are solved in ROAC by renaming. In part one of the
figure, role R3 is inheriting roles R1 and R2. R1 has two parameters P1 and P2.
R2 has two parameters P2 and P3. If P2 of R1 is identical to P2 of R2, then R3
inherits only three parameters P1, P2 and P3. In part two of the figure, P2 of
R1 is different from P2 of R2. Then R3 inherits four parameters, and P2 of R1
and P2 of R2 must be renamed as shown in Fig. 4.3.

Generalization in ROAC has two sides: roles and permissions definition
inheritance and permissions inheritance. In the roles and permissions definition
inheritance, the objective is re-usability by factoring the definitions common
to a set of roles or permissions into a single role or permission. Permissions
instances associated to roles are not considered in roles definitions inheritance.
In permissions inheritance, senior roles can inherit subsets of permissions from

GENERALIZATION IN THE ROLE-ORIENTED ACCESS CONTROL MODEL 87

the junior roles. In many organizations, the actual hierarchies are supervision
hierarchies rather than is-a hierarchies. As an example, in a bank, the branch
manager could inherit the teller role, but he might not need to inherit the
permission of initiating payments of the teller role. While it might be required
that other senior users inherit the teller role, and require the permission of
initiating payments, but they do not need the permission of initiating transfers.
Therefore, the inheritance model must enable selective inheritance of roles, to
enable selecting permissions from junior roles.

In the object-oriented paradigm, encapsulation is a technique used for hiding
data within classes and preventing outsiders from manipulating class members
directly. Some object-oriented languages such as Java define access control rules
that restrict the members of a class from being used outside the class. This
is achieved by access control modifiers. The encapsulation model in object-
oriented languages is not satisfactory for access control. As in access control,
it is required to be more selective regarding permissions when performing
inheritance hierarchies. As a consequence, we designed ROAC with two sides
inheritance. Firstly, the inheritance for roles and permissions, in which only the
definition of the role or permission is transferred to sub-nodes. This is useful
for re-using already defined roles and permissions. Another advantage is that a
basic role and a basic permission can be defined and equipped by all common
administrative methods needed to manipulate administrative functions over
roles and permissions. Then all other roles and permissions in the system can
inherit from the basic role and the basic permission. Secondly, the permission
inheritance has to be defined, which is applicable only for roles. In permission
inheritance, permissions of super-roles are transferred to sub-roles. Permission
inheritance supports selective inheritance, where a set of role permissions can
be excluded from being transferred through inheritance. Permissions can be
excluded by providing the permissions exclusion list when defining permissions
inheritance. For example, let X be a role defined with a set of permissions
(p1,p2,p3,..) and let Y be a descendent of X, the exclusion list is (p1, p2).

Our target is to provide a mechanism for specifying which permissions can
be inherited from a junior role by a senior role. In ROAC, permissions list is
defined as a data structure in the role. We can now specify what permissions
can be inherited by which senior roles. This enables us to implement supervision
as well as the is-a hierarchies.

88 ROAC: A ROLE-ORIENTED ACCESS CONTROL MODEL

4.6 Discussion

RBAC supports three well-known security principles: least privilege, separation
of duties, and data abstraction [87]. RBAC suggests that users are assigned to
roles, roles are assigned to permissions, and recommends that roles are assigned
only the minimum set of permissions required for tasks needed by members of
the roles.

The advances in software systems and the high dependability of organizations
on software systems have increased the demand for more requirements on
access control. Sandhu and Bhamidipati [85] offered five founding principles for
next-generation access control including next-generation RBAC, summarized
as ASCAA for Abstraction, Separation, Containment, Automation and
Accountability. The first two are included in RBAC96 [87]. Containment
includes three principles: least privilege, separation of duty from RBAC96, and
incorporates usage limits. Usage limits are constraints on how users can use
roles. ROAC directly supports the user limits concept. Conditions on role usage
can be easily implemented in roles by specifying them in permission validators,
and using static parameters to set values for global parameters. As an example,
if it is required to restrict the number of times a role can be exercised in a time
frame, we can define two static parameters: one for the time frame and the
other for number of exercises, then in the validators we can assert this condition.
Similarly, we can define a time frame where the role can be exercised and the role
becomes inactive outside the time frame. Similarly, the automation principle
can be implemented in ROAC. Constraints can be defined in administrative
methods for user-role assignment. For example, expiry of assignment can be
defined by using parameters to hold the expiry dates and then implementing
the condition in the administrative method that is used to assign users to the
role. Different conditions can be implemented for each role. Accountability can
be implemented in a combination of three ways. Firstly, sensitive operations
require enhanced audit trail, secondly, by notification that requires sensitive
operations to trigger a message to an appropriate user, and finally, by escalating
the authentication required for sensitive operations [85]. The first and second
ways can be incorporated in ROAC. Developers can add any required definitions
for roles in validators. Audit information can be supplied to validators in
applications and then validators can store them in databases or send them to
audit trail systems.

ROAC is an expressive access control model that helps large organizations to
provide fine granularity of roles while reducing the number of roles. However,
this is applicable when multiple roles can be reduced to single role by using
parameters. There is a trade-off between simplifying the management of access
rights and providing fine granularity [7]. Therefore, organizations should pay

CONCLUSION AND FUTURE WORK 89

attention to the design of roles in a way that provides more granularity but
reduces the number of roles. The hierarchical form of ROAC can be used to
reflect organizational hierarchies which also simplify the management and the
view of roles.

We have validated the ROAC model by simulating an implementation using the
Java programming language. We have tested the implementation on a security
service that was implemented by the authors of the paper.

4.7 Conclusion and Future Work

The main contribution of this chapter is proposing a new access control model,
the role-oriented access control model (ROAC). In ROAC roles and permissions
are defined as object-oriented classes, where they can have member attributes
and operations. ROAC has many advantages compared to existing access
control models. One of the main advantages is expressiveness and the possibility
to reflect precise organizational hierarchies by ROAC. Another advantage
is that organizations can implement any specific requirements for granting
authorizations on operations by using validators. The permissions and roles
implementation can contain access to external systems like databases and audit
log systems to either extract or provide information.

We discussed some related work on existing RBAC models. We explained how
existing models attempted to tackle shortcomings of access control models
that are encountered when they are put into practice. We focused mainly on
two points which are expressiveness of RBAC models and hierarchical RBAC
models.

ROAC concepts were validated by an implementation using the Java
programming language. In the implementation we created an API that can be
used for creating roles and permissions as well as defining relations between the
different elements of ROAC such as user/role assignment, role/permissions
assignments, and the administrative functions of ROAC. Moreover, the
implementation simulated the hierarchical ROAC model. Our future direction
from this point is to provide a full feature access control system based on ROAC.
Our ideas are to encapsulate separation of duty, role delegation, as well as other
features. The target is to make an API that can be used by organizations and
researchers, which they can use for constructing their customized access control
systems.

Chapter 5

Mitigating Conflicts of
Interest by Authorization
Policies

This chapter is published in the proceedings of 8th International Conference on
Security of Information and Networks, September 2015, Sochi

91

92 MITIGATING CONFLICTS OF INTEREST BY AUTHORIZATION POLICIES

In many organizations, there are numerous business processes that involve
sensitive tasks that may encourage corruption. Conflicts of interest policies are
defined in an organization to deter corruption before it can happen. Existing
research generally focuses on separation of duties, yet lacks attention for the
underpinning conflicts of interest. Moreover, separation of duty is only one
particular kind of conflicts of interest. Other kinds do exist and must be resolved
as well.

In this chapter a novel approach is proposed to define conflicts of interest policies
and to facilitate their enforcement. Our work provides an expressive mechanism
that can be applied for a wide range of conflicts of interest that go beyond
separation of duty policies. Furthermore, we show how policies can be enforced
in the context of the role-oriented access control model (ROAC), which we
extend to provide a stronger basis for the enforcement of conflicts of interest
policies.

5.1 Introduction

Fraud and corruption are threatening most organizations. The major risk is
when different sensitive activities are performed by a single person. This kind
of concentration of authority can tempt individuals to become fraudulent or
corrupt, especially when a conflict of interest exists between an individual’s
interests and an organization’s interests. Since prevention is always a better
approach than a cure, a fraud and corruption prevention mechanism can help
organizations maintain their security and reputation before scandals happen and
eventually get revealed to the public. Authorization policies can help preventing
fraud and corruption by integrating mechanisms that eliminate conflicts of
interest.

A conflict of interest is defined as a set of conditions under which professional
judgment concerning a primary interest (such as a patient’s welfare or the
validity of research) tends to be unduly influenced by a secondary interest (such
as financial gain) [101]. Separation of duties (SoD) is a well-known security
mechanism that can be used to prevent some of the risks imposed by conflicts of
interest. Separation of duty is used to formulate multi-person control policies,
requiring that two or more different people be responsible for the completion of
a task or a set of related tasks.

SoD can discourage fraud by spreading the responsibility and authority for an
action or task over multiple people [98]. Separation of duty policies alone are
not sufficient to eliminate conflicts of interest in organizations. Indeed, there
are many activities with potential conflicts of interest in organizations that

INTRODUCTION 93

can be done only by one person. Moreover, simply distributing an activity
over several people does not necessarily lead to the elimination of fraudulent
behavior. For example, a bank can distribute the task of granting a loan to two
bankers, but this does not guarantee that the decision is not biased if the loan is
going to one of the decision maker’s family members. In this case, a clear policy
should be implemented to prevent decision makers from participating in the
committee of granting a loan to their family members. Furthermore, consider
an example of preventing a municipality council member from voting for a deal
for a company where he has an interest (e.g. shares). Separation of duty looks
at blind distribution of tasks without the ability to rule out task participants
who have conflicts of interest with the task, in addition to the extra costs of
redundancy when distributing activities on multiple users. Therefore, more
concrete policies are required to delimit conflicts of interest.

To remedy the problems caused by conflicts of interest and enact effective
policies to prevent them, an understanding of how conflicts of interest operate at
the individual level is required as a first step [66]. For example, how to prevent
CEOs of companies from manipulating the prices of shares? How to prevent
bankers from helping money launderers? The next step is to design policies
that can prevent conflicts of interest. According to [56], the design of a policy
comprises two steps, (1) a high-level policy design in which a security policy
designer evaluates the risks, effects, and sensitivity of the task and determines
which users should be involved in the task, and (2) the low-level enforcement
design in which a system designer works out a mechanism to model and control
the execution of the business task in compliance with a given high-level security
policy.

Authorization models are a step in the direction of preventing problems of
conflicts of interest. Role based access control (RBAC) [37] is the most popular
authorization mechanism. RBAC supports the principle of least privilege
[87], which entails that users are assigned the minimum privileges required for
achieving their functions [68]. This concept restrains the access to important
resources only to authorized users. However, those authorized users still should
be further restricted from using authority for achieving their personal interests.
Most existing models of authorization policies e.g. [56] [8] [14] [26] [54] focus
on separation of duty (SoD) policies. However, separation of duty alone is
not sufficient for eliminating conflicts of interest. For example, separation
of duty does not help when a medical paper is reviewed by two reviewers
who are financed by a pharmaceutical company proposing the paper. In this
case, the work is distributed on two persons (or more) but still it does not
prevent conflicts of interest. What is required in this case is a policy preventing
researchers financed by an organization from reviewing papers proposed by
that organization. One of the reasons that restricts the capabilities of existing

94 MITIGATING CONFLICTS OF INTEREST BY AUTHORIZATION POLICIES

models for authorization policies is that they are based on RBAC which lacks
flexibility when defining roles. Roles in RBAC are blind in the sense that they
are not aware of the application environment. They cannot access data in the
system or perform any actions. Roles cannot hold variables, status, methods,
etc. [70].

In this chapter we propose a novel form of authorization policies, in which we
address the limitations of existing policies. We discuss both high-level policy
design and low-level policy enforcement design. The main contributions of our
proposed model are:

- We provide a language for high-level conflicts of interest security policies
design, the language is an extension of the SoD algebra proposed in
[56], which is limited to SoD policies. We adapt the algebra to conflicts
of interest policies. We address expressiveness problems of the algebra
by supporting parameterization and the usage of workflow variables.
Furthermore, we address ambiguity issues of the algebra, by offering
possibilities to associate workflow steps in expressions definitions.

- We discuss how to enforce a high level policy design. We use the object
constraint language (OCL)[74] for that purpose. Policies are enforced by
using an extended version of the Role-Oriented Access Control Model
(ROAC) [70]. The ROAC model is based on object-oriented principles
and gives more flexibility for defining policies.

- We extend the ROAC model to specify organizational hierarchies. We use
organizational hierarchies in solving several conflicts of interest.

- We also extend the ROAC model with a history data structure, such that
records exist of all the workflow steps taken so far. Those records are
available for consultation by conflicts of interest policies.

The remainder of this chapter is organized as follows: Section 2 reviews existing
authorization policies models. Section 3 gives an overview of the role-oriented
access control model. Section 4 presents our proposed conflict of interest policies
model. In section 5, we discuss implications of our proposed approach. Finally,
section 6 concludes our work.

RELATED WORK 95

5.2 Related Work

The notion of conflicts of interest has existed in the real world for a long time.
However, it has been brought to the lights after starting the concept of banking,
commercial and medical organizations. Yet, conflicts of interest did not receive
adequate attention in the context of access control. Most researchers have
focused on separation of duty policies, which do not adequately model conflicts
of interest policies.

In this section, we review some existing authorization policy models. These
models focus on separation of duty since the literature lacks to any broad
authorization policy models that discuss wider range of conflicts of interest
policies.

Clark and Wilson [23] showed how separation of duties is a fundamental principle
of commercial and military data integrity control. The paper of Sandhu [80] was
among the first to describe a mechanism for the purpose of enforcing separation
of duties in computerized information systems, before role-based access control
has emerged.

Li et al. [54] have proposed the statically mutually exclusive roles (SMER)
constraints to enforce static separation of duty (SSoD) policies. They have
shown that directly enforcing SSoD policies is intractable, while enforcing SMER
constraints is efficient. Furthermore, they have characterized the kinds of policies
for which precise enforcement is achievable and shown what constraints precisely
enforce such policies. They have also presented an algorithm that generates all
singleton SMER constraint sets, each of which minimally enforces a role-level
static SOD requirement. SMER constraints are limited to static SOD constrains
and hence unable to model a large set of conflicts of interest policies.

Bertino and Ferrari [18] proposed a language for defining constraints on role
assignment and user assignment to tasks in a workflow. The constraint language
supports both static and dynamic separation of duties. They have also devised
algorithms to check the consistency of the constraints to consistently assign
roles and users to tasks in the workflow.

RCL2000 [8] is a role-based constraints specification language built on RBAC96
[87] components. RCL2000 encompasses obligation constraints in addition
to the usual separation of duty and prohibition constraints. RCL2000 can
express both static and dynamic separation of duty constraints. RCL2000 does
not show how constraints written in this language can be efficiently enforced.
However, RCL2000 fails to express history or time-based constraints, which are
increasingly being used [26]. This prevents defining a wide variety of conflicts
of interest policies.

96 MITIGATING CONFLICTS OF INTEREST BY AUTHORIZATION POLICIES

Constraints enforcement has even received less attention from researchers.
Crampton et al. [26] introduced the concept of the constraint evaluation
structure that is used by the constraints enforcement mechanism to determine
whether granting a request would violate a constraint. Two particular constraint
evaluation structures form part of the runtime model they introduce in order
to enforce dynamic constraints. They built a model for historical information
used to record information than is required for enforcing historical constraints.

Probably the best work that has been proposed in this field is the work
of Li and Wang [56] [57], in which they propose an algebraic language for
formal specification of high-level security policies. It combines qualification
requirements with quantity requirements motivated by separation of duty
considerations. The algebra has two unary and four binary operators, and
is expressive enough to specify a large number of diverse policies [56]. The
language is used for high level policy specification. As an example of the algebra,
a policy that requires either a manager or two different clerks is expressed using
the term (Manager ∪ (Clerk ⊗ Clerk)). The algebra focuses on separation
of duty policies, it provides high level security policy specification. It is not
designed for a specific authorization model. Furthermore, it does not verify
whether a workflow is compliant with a high-level security policy specified
in the algebra. It assumes zero knowledge of the policy designer about the
workflow steps. Specified policies in the high-level design can be ambiguous
in the enforcement design. Furthermore, its expressiveness is limited and
cannot address the definition of many conflicts of interest policies. Our example
payment, shown in the next section, cannot be expressed by the algebra, since
it does not support parameterized expressions.

The work of Li and Wang [56] was extended in [14]. The authors addressed
some problems, which they reported in algebra. Firstly, they addressed the
problem related to the fact that no general mapping from the algebraic terms
into workflows or to dynamic enforcement mechanisms existed. In particular, a
link between the satisfaction of sub-terms and the actions executed in workflows
was missing. Furthermore, they addressed the problem of how changing role
assignments affect the enforcement of SoD constraints during workflow execution.
They constructed formal models of workflows, access-control enforcement, and
SoD constraints using the process algebra CSP [14]. This extension of the algebra
inherits also the problems of expressiveness and ambiguity of the algebra.

OVERVIEW OF THE ROLE ORIENTED ACCESS CONTROL MODEL (ROAC) 97

5.3 Overview of the Role Oriented Access Control
Model (ROAC)

To define policies for conflicts of interest, the authorization model employed must
be very expressive. Furthermore, it must be able to connect to environments
beyond the authorization system (e.g. human resources) to access information
that could be useful for policy enforcement. As an example, consider a policy
that prevents a banker from approving a loan for his or her spouse. Usually,
this kind of social information is typically not available in the authorization
system itself. Instead of copying that kind of information from external systems,
it is much better to consult those external systems directly.

The ROAC model [70] incorporates concepts of object-oriented programming
languages in the definitions of roles and permissions. Users, roles, and
permissions are all defined as object-oriented classes. The ROAC model is
an extended version of RBAC. ROAC extends RBAC with three main features.
Firstly, it supports the parameterization of roles with attributes. In this way,
it is possible to set up multiple instances of the same role with different levels
of granularity. Secondly, it associates behavior with roles and permissions.
In specifying permissions, special kind of methods called validators can be
defined. Validators implement specific requirements for granting authorizations
on operations. They can access external systems like databases and audit log
systems to either extract or provide information. Validators are methods defined
in permissions for computing the authorization decision. Validators always
return a Boolean value, true if it grants authorization and false otherwise.
The convenient operations that validators most often perform are to check
parameter values extracted from user/role assignment against parameters passed
to operations in software systems. Thirdly, the ROAC model provides a new
extension of the role hierarchy, it supports selective inheritance of permissions
in roles to implement supervision relationships among roles.

We selected the ROAC model since it allows the encapsulation of complex
policies in roles and permissions. We adapted two extensions of the ROAC
model, which are the user hierarchies and the history data structure. Extensions
to the ROAC model are shown in section 4. Fig. E.1 shows the UML diagram of
the extended ROAC model. The diagram shows that each instance of an activity
can be controlled by a different user/role assignment in which role parameters
are set (e.g. a role parameter of maximum amount limit of a bank teller role).
Furthermore, each authorization action is logged in the history, information is
extracted from the activity instance and the user/role assignment.

98 MITIGATING CONFLICTS OF INTEREST BY AUTHORIZATION POLICIES

Figure 5.1: The UML diagram of the ROAC model and its extensions.

5.4 Conflicts of Interest Policies

Defining conflicts of interest policies can be a very complex task. The process
generally involves a two-step approach; the high-level policy design and the
low-level enforcement design [57]. There exists no standard set of conflicts of
interest policies that can be applied in all organizations. Usually, the definition
of policies depends on the nature of the operations within an organization.
However, many conflicts of interest policies defined in organizations implement
some type of separation of duties (SoD).

In this section, we start by extending the ROAC model to adapt it for usage
within conflicts of interest policies, then we show how policies can be defined
and enforced. We illustrate the definition of policies with a remittance payment
business process. The first step in this process is initiation of a payment by a
user. In this step, a message is created that contains the details of the payment.
After that, the payment is sent for authorization to a different user than the
one who initiated the payment. Once the payment has been authorized, it
can be sent to its destination if the amount is less than one million. If the
amount is greater than one million, it is sent for approval to a third user that
must be different from the users who were involved in the previous steps of
the business process. In addition, according to the policy of the bank, users
cannot initiate, authorize, or approve a payment in which they or people close
to them are involved as beneficiaries in the remittance. The business process of
the remittance payment is shown in Fig. 5.2.

CONFLICTS OF INTEREST POLICIES 99

Figure 5.2: Activity diagram showing the remittance payment business process.

5.4.1 Extensions to the ROAC Model

In order to support the definition of a wide range of conflicts of interest
policies, we need to have the most expressive authorization model that can be
encountered. Therefore, the ROAC model needs to be extended to support
customizations that are needed to set up fine-grained conflicts of interest policies.
We extended the ROAC model with two main new features. Firstly, we added
user hierarchies, which reflect correct organizational hierarchies that are, in
many cases, referenced when defining policies. This makes it possible, for
example, to express that a manager must approve some tasks performed by the
members of his team. We also added a new component to the ROAC model,
which is the history data structure. The data structure is required to record
events about previous activities in a workflow. This makes it possible to impose
that the same person cannot be involved in several steps of some authorization
processes.

100 MITIGATING CONFLICTS OF INTEREST BY AUTHORIZATION POLICIES

Users Hierarchy:

Role hierarchies in RBAC can reflect some aspects of an organizational structure.
However, typical functional role hierarchies that are constructed in existing role
engineering approaches do not reflect organizational structures. They do not
take into account the structural characteristics of organizations [52]. This also
applies to the ROAC model. The ROAC model provides an extension to the
hierarchical model of RBAC, in which it transplants object-oriented inheritance
concepts and supports permission-based inheritance. However, it is still unable
to reflect precise organizational hierarchies.

In most organizations, superiors do not need to have all the permissions of their
inferiors. It is not necessary for a manager to inherit from his inferiors since
managers often perform completely different tasks than their subordinates. In
many situations, senior users have supervision relationships over junior users
[70]. Furthermore, users who are assigned to roles in different levels in the role
hierarchy can be at the same level in the organizational hierarchy. For example,
a senior developer role typically inherits from the junior developer role, however,
both the senior and junior developers themselves may very well be at the same
level in the organizational hierarchy.

The organizational hierarchy is of paramount importance when designing security
policies. In many cases, the permissions and roles assigned to the user cannot
by themselves determine a correct authorization decision. For example, if a
manager is required to approve an activity of one of his subordinates, the
permission to approve that activity is not enough. We must also check that the
manager is approving the activity of one of his team members and not of a user
from another team.

We can reflect more precise organizational hierarchies in ROAC by adapting
the concept of user hierarchies introduced in [68]. This adaptation leads to
modeling user hierarchies with general tree type data structures. This makes
it easier to find the responsible (line manager) of any user. The direct line
manager is the parent node of the user node, while the next level manager is
the parent node of the direct manager node [68]. When a user is added, he is
positioned at the appropriate level in this hierarchy. The administrative model
of ROAC is also modified to add necessary methods for handling user hierarchy.

CONFLICTS OF INTEREST POLICIES 101

The History Data Structure:

Many conflicts of interest policies reference historical events. The activities that
were performed and the identity of who has performed them are recorded and
made available for consultation by security policies requiring history. Examples
of policies that require historical data are operational and historical separation
of duties. For example, in our remittance payment business process, it is
required that the user approving the payment is being different from the user
who initiated the payment. To monitor this, we need to record the user who has
initiated the payment instance. When a user subsequently attempts to approve
the payment, we can consult the history to verify that the two activities are
not performed by the same user.

We extended the ROAC model with a historical data structure, which contains
records of events for each activity instance. The events contain the activity
instance and the user who has invoked it. The activity instance can be identified
by a unique identifier. For example, each payment instance should have a unique
reference number (usually called the transaction reference). In the future, there
may be a need to extend the history data structure with more fields such as
the role and/or the permission involved. The ROAC model with its extensions
is shown in the UML diagram in Fig. E.1.

The history data structure is populated after each successful authorization.
The activity data can be recorded in the data structure by the permission
validators. We show this in section 4.3. The history data structure is optional
if the application logs contain equivalent information as recorded in the history
data structure, and the information is made accessible to the authorization
system.

5.4.2 Specification of Conflicts of Interest Policies

In this section, we explain the high-level policy design. The first step in the high-
level policy design is identifying conflicts of interest in the organization. The
policy designer plots the high-level design, in which, he specifies how existing
conflicts of interest can be avoided. The policy designer has to understand
organizational objectives and articulate major policy decisions to support these
objectives. The policy is specified at a high-level by the security policy designer
and the actions of the security administrator should be subject to this policy
[8].

Li and Wang [57] proposed an algebra for defining the high-level policies

102 MITIGATING CONFLICTS OF INTEREST BY AUTHORIZATION POLICIES

(hereafter referred to as SoDA), but it suffers from some shortcomings as
explained in section 3. We therefore extend the algebra proposed in [57]
such that we are able to parameterize algebraic expressions, use workflow
variables, specify workflow steps, and utilize the user hierarchies. We give
a brief introduction to the algebraic expressions of Li and Wang in the next
paragraph, and then we explain our extensions.

Definition 1 (SoDA Algebraic Expressions): The components of Li and
Wang [57] algebraic expressions are:

- Atomic terms: which can be any of the following three forms: a role r ∈
R, a set of users S ⊆ U, or the keyword All. Where All refers to the set
of all users.

- Operators: the algebra of Li and Wang [57] has two unary operators (¬
and +) and four binary operators (⊗, ∪, ∩, ⊙). The unary operator ¬
has the highest priority, followed by the unary operator +. The rest of
operators has the same priority. Operators ∪ and ∩ are commutative.

- A SoDA expression ϕ is a group of atomic terms separated by operators.

An SoD policy that requires three different users can be expressed using the
term (All ⊗ ALL ⊗ All). Variables that can be used in the algebra are roles and
sets of users. They consider a role as simply a named set of users, rather than
the role concept in RBAC and ROAC. The expression (Manager ∩ Accountant)
requires a user that is both a Manager and an Accountant to satisfy it. The
expression (Manager ∩ ¬ {Alice, Bob}) requires a user that is a manager, but
is neither Alice nor Bob; the sub-term ¬ {Alice, Bob} implements a blacklist.
The expression (Physician ∪ Nurse) requires a user that is either a Physician or
a Nurse. The expression (Manager ⊙ Clerk) is satisfied by either two different
users a Manager and a Clerk or one user that is both a Manager and a Clerk.
The expression (Manager ⊗ Clerk) requires two different users a Manager and a
Clerk, one user that is both Clerk and Manager does not satisfy the expression
[57].

Parameterization:

The SoDA algebra of Li and Wang [57] is designed for separation of duty policies.
In many organizations, however, policies may require different actions depending
on some parameters such as permission and role parameters or variables of a
workflow activity. The values of role and permission parameters are set during

CONFLICTS OF INTEREST POLICIES 103

user/role assignments, while workflow variables are used to hold data needed
internally by the process, or to exchange data between processes. For example,
specifying a maximum amount for a bank teller role, which means that he
can perform transactions up to the specified amount limit. The corresponding
workflow variable is the payment amount. In our payment example, the algebra
cannot specify that the payment must be approved by two different users if
the amount value is greater than one million, while one user is sufficient for
approving the payment if the amount is less than one million. In most cases,
parameterization is needed to fine tune policy definitions. We therefore extend
the algebra with facilities for parameterizing expressions to define different
actions according to these parameters, which we call parameterized algebraic
expressions.

Definition 2 (Parameterization of expressions):
A parameterized algebraic expression takes the form:
ϕ(x1, x2....., xn), where x1, x2, .., xn are parameters. The parameterized SoDA
expression is defined as a conditional expression of the form:

ϕ(x1, x2, ..., xn) =

ϕ1 , p1 (x1 , x2 ..., xn)
ϕ2 , p2 (x1 , x2 ..., xn)
......
ϕn , Otherwise

(5.1)

where p1, p2, ... , pn are logical expressions. ϕ1, ϕ2, ..., ϕn are SoDA expressions.

To demonstrate how parameters can be used in policy definitions, we show
a policy example for the payment example shown in the activity diagram of
Fig. 5.2. The policy definition is modeled by the following parameterized
algebraic expression:

ϕ(Amt.) =

 Clerk ⊗ Manager , Amt. ≤ 1M
Clerk ⊗ Manager⊗

Manager , Otherwise
(5.2)

Workflow variables:

Variables in the algebraic expressions of [57] can be either users or roles (sets of
users). Using this kind of variables, we cannot specify all kinds of restrictions.
As an example, we are not able to specify a well-known conflict of interest policy
stating that a user cannot authorize a payment if he is a sender or beneficiary
of the payment. Therefore, we extend the algebra with a new kind of variables

104 MITIGATING CONFLICTS OF INTEREST BY AUTHORIZATION POLICIES

that are the workflow variables. In the remittance payment example, we can
use the workflow variables such as sender, beneficiary and amount.

Definition 3 (Extension of SoDA terms with workflow variables):
Atomic terms can take any of the following four forms: a role r ∈ R, a set of
users S ⊆ U, a workflow variable v ∈ V, where V is the set of workflow variables,
or the keyword All.

We can re-write expression (5.2) as follows:

ϕ(Amt.) =

Clerk ⊗ (Manager ∩ ¬
{P ayment.sender,

P ayment.beneficiary}) , Amt. ≤ 1M
Clerk ⊗ (Manager ∩ ¬

{P ayment.sender,
P ayment.beneficiary})
⊗Manager , Otherwise

(5.3)

Another kind of variables that can be used in expressions are variables that can
be derived from the ROAC administrative model. For example, in expression
(5.3), we can specify that the Manager approving the payment has to be the
line manager of the Clerk who approved the payment. In this case, we can use
the administrative model of ROAC to determine the line manager of the Clerk
user. Expression (5.3) can be re-written as follows:

ϕ(Amt.) =

Clerk ⊗ (Manager ∩ ¬
{P ayment.sender,

P ayment.beneficiary}∩
{Clerk.LineManager}) , Amt. ≤ 1M

Clerk ⊗ (Manager ∩ ¬
{P ayment.sender,

P ayment.beneficiary}∩
{Clerk.LineManager})
⊗Manager , Otherwise

(5.4)

Workflow steps:

Another shortcoming of the algebra presented in [57], is the ambiguity
encountered in the enforcement design step. Expressions used during high
level policy design could be ambiguous. For example, the policy that two users
must be involved in a remittance payment does not mean that the remittance
business process is secure. It is important to specify in which steps of the

CONFLICTS OF INTEREST POLICIES 105

business process the users must get involved. The high-level security design
must provide a clear and unambiguous description of the policy. According
to [57], policy designers are not required to have detailed knowledge of the
actual steps through which the tasks are carried out. But this is not always
correct, since in most cases the business process has clear milestones that are
known by the security policy designers. Furthermore, the policy designer needs
to understand the environment for which he is designing policies in order to
provide unambiguous policy definitions. The policy designer must understand
organizational objectives and articulate major policy decisions to support these
objectives.

We extended the algebra with the ability to specify business process steps
in policy definition expressions. To illustrate this idea, consider the business
process of Fig. 5.2. The policy expression (5.2) defined above states that a
Clerk and two different Managers need to be involved in the business process.
But it does not specify in which step of the business process the Clerk and
the Managers need to get involved. During the enforcement design, different
interpretations can be found for this expression. This might yield an insecure
enforcement of the policy. For example, the payment of amount less than
one million can be created by a Clerk then modified by a Manager, then it is
modified by the Clerk who initiated the payment. This complies with expression
(2). It does not matter who approved the payment. But it is not secure from a
payment business process perspective. The policy designer wants the payment
to be approved by a Manager in the last step before it is sent to its destination,
to make sure that the payment is not manipulated after that.

Definition 4 (extension of SoDA terms with Workflow steps):
Atomic terms that take the form of a role can take the form r(s) where r ∈ R is
parameterized with a workflow step w ∈ W, where W is the set of all workflow
steps.

Hence, expression (5.2) can be modified according to our extension as follows:

ϕ(Amt.) =

{
Clerk ⊗ Manager(Authorize) , Amt. ≤ 1M
Clerk ⊗ Manager(Authorize)

⊗Manager(Approve) , Otherwise
(5.5)

The above expression makes it clear that the Managers are involved in the
Authorize and Approve steps.

The term describing the policy for our remittance payment: “Payment is
initiated by a user and must be authorized by a Manager if the payment amount
is less than one million. If the amount of the payment is greater than one
million, the payment must be further approved by another Manager. In both

106 MITIGATING CONFLICTS OF INTEREST BY AUTHORIZATION POLICIES

cases, the managers approving or authorizing the payment should not be parties
in the payment” is modeled by the following term:

ϕ =

All ⊗ (Manager(Authorize)
∩¬{P ayment.sender,

P ayment.beneficiary}) , Amount ≤ 1M
All ⊗ (Manager(Authorize)

∩¬{P ayment.sender,
P ayment.beneficiary})
⊗(Manager(Approve)
∩¬{P ayment.sender,
P ayment.beneficiary}) , Otherwise

(5.6)

The keyword All means any user who has permission to initialize the payment
regardless of the role assigned to him.

The new design of the expression eliminates any ambiguities, by specifying
explicitly the sensitive business process steps in the high-level policy design. It
is also possible to specify that a user cannot be involved in a specific step. For
example, it is possible to specify that: if the payment amount is greater than
one million, the second manager cannot be the user who initiated the payment.

Users Hierarchy:

We have also extended the ROAC model with user hierarchies. In many
organizations, certain user activities within workflows are required to be
approved by the line managers of users who have performed certain activities.
This requirement is usually set to prevent other managers with authority who
belong to other departments from approving the activities of users who do not
belong to their teams.

In order to achieve this requirement, we introduce two functions to the SoDA
algebra which find the line manager(s) of a user and the team members managed
by a line manager.

Definition 5 (extension of SoDA terms with users hierarchy):
Two new atomic terms are added to the algebra, inferior(u) and superior(u).
Where superior(u) is the set of nodes (managers) higher than u in the
organizational hierarchy, inferior(u) is the set of all nodes below the node
u in the organizational hierarchy.

For example, if user Alice is managing users Bob and John. Then superior(Bob)
is Alice and inferior(Alice) is both Bob, John.

CONFLICTS OF INTEREST POLICIES 107

The expression (Manager ⊗ inferior(Alice)) is satisfied by a manager and one
of the team members of Alice who is either Bob or John.

5.4.3 Conflict of Interest Policy Enforcement

Conflict of interest policies enforcement is triggered once the policies are
designed at a high level. Policy enforcement comprises enforcement design
and implementation of the policies. In enforcement design, a system designer
designs a mechanism to model and control the execution of the business task in
compliance with a given high-level security policy [56]. In this step the high-level
policy is mapped to the business processes. For example, In our remittance
payment example, the policy defined in term (5.5) is mapped to the remittance
payment workflow steps in the enforcement design. Thereafter, the designed
enforcement policy is implemented.

We use OCL expressions to model policy enforcement design expressions. The
reasons behind this are, firstly, to make it easier for implementing the policies,
since the ROAC model is object-oriented. Secondly, to eliminate any ambiguities
that might be encountered when transforming algebraic expressions to code.

To illustrate this, we consider again our example remittance payment. The
payment workflow consists of several steps as shown in Fig. 5.2. The enforcement
design of expression (5.5) is as follows:

1- We identify the steps in our workflow that are involved in the enforcement
design. According to the expression, the Authorize and Approve steps
must be involved. Furthermore, we need to involve a third user according
to the expression, represented by the All keyword. This step can be
ambiguous, since we can choose from Initiate, Modify and Execute steps.
Logically, the Initiate step is involved.

2- For all the involved steps, we write the corresponding OCL expression
if an OCL expression is required. For our example, it is not required to
write any OCL expression for the Initiate step, since this step can be done
by any user who has permission to initialize the payment, this is the only
thing checked at this step. For the other steps, Authorize and/or Approve,
it is required to write OCL expressions to verify for example that the
user authorizing a payment has a manager role and was not the user who
initialized the payment. Furthermore, to make sure that the user is not a
party in the payment. The OCL expressions required for the Authorize
and Approve steps are as follows:

108 MITIGATING CONFLICTS OF INTEREST BY AUTHORIZATION POLICIES

context::Permission
inv: Authorize:
Role::Manager in User.AssignedRoles() and
User <> History.getUser(Initiate) and
User not in (Payment.Sender,
Payment.Beneficiary)

context::Permission
inv: Approve:
Role::Manager in User.AssignedRoles() and
User <> History.getUser(Initiate) and
User <> History.getUser(Authorize) and
User not in (Payment.Sender,
Payment.Beneficiary)

Once the policy enforcement design is finished, we can implement the
enforcement policy. At runtime, the policy must be validated when granting
any authorization decision. The policies in enforcement design are implemented
in the validator of each permission mapped to an activity (or a step in the
workflow). If a permission is associated with several activities, then each activity
that requires a policy must have a dedicated validator in the permission.

5.5 Discussion

An important aspect of security policies is their integrity and containment. An
important challenge that is arisen when designing a new model for addressing
conflict of interest is the heterogeneous nature of operations at organizations,
which incurs different requirements for each organization. The main advantage
of our model is that you can develop the policies in object-oriented. This gives a
great flexibility to define probably any conflicts of interest policy. However, this
adds an extra effort; we need to transform the high-level policy to program code.
In other models, it is easier to standardize the implementation of the designed
policies and even to automatize them. However, this is not impossible to achieve
for our model. This can be done by standardizing the way workflow variables and
workflow steps are used with expressions. Furthermore, a key feature that needs
to be added to the model is a parser that translates parameterized algebraic
expressions to ROAC validators. This requires defining the way the ROAC
model communicates and interacts with the workflow. There has been some
work proposed in the literature [77] [102] [69] that discusses how authorization
models can be integrated in workflows and their specification languages.

CONCLUSION 109

Organizations can also minimize conflicts of interest by designing good
organizational structures. Organizational structures describe organizational
behavior and lines of authority inside organizations. Organizations should be
careful when providing permissions for senior directors on functional activities
that are executed by their inferiors. Furthermore, organizations should always
try to adhere to the least privilege concept. We have reflected the organizational
structure in our model by adapting the user hierarchy.

In conflict of interest, the primary interest is determined by the professional
duties of an employee, while the secondary interest is encountered when it
affects professional decisions in favor of the secondary interest. However, the
aim of organizations is not to eliminate or to reduce financial gain or other
secondary interests (such as preference for family or the desire for power). It
is rather to prevent these secondary factors from dominating or appearing to
dominate the relevant primary interest in the making of professional decisions.
Since in many cases secondary interest is not illegitimate in itself, and indeed,
it may even be a necessary and desirable part of professional practice [101].

5.6 Conclusion

In today’s business and corporate environments, wide varieties of security policies
are implemented to ensure data integrity and prevent unauthorized activities as
well as preventing improper usage of authority. Current authorization models
are not expressive enough to support definition of such requirements. Existing
work focuses on one type of conflicts of interest policies, which is separation
of duties, and hence leaves out a wide range of conflicts of interest policies
uncovered.

In this chapter, we proposed a novel approach to conflict of interest policy
definition and enforcement. We have extended the algebra proposed in [56]
[57] to support parameterization of algebraic expressions and the usage of
workflow variables in the algebraic expressions. This offers better flexibility for
defining more precise and fine-grained policies and constraints. Furthermore, we
addressed ambiguity issues of the algebra, by offering possibilities to associate
workflow steps in expressions definitions. We used the role-oriented access
control model (ROAC) as the basis authorization model for implementing
the conflicts of interest policies. ROAC enables us to define the policies and
constraints in the roles and permissions since it is object oriented, and hence to
isolate policy definitions from the application code and business logic. We used
a remittance payment business process example for explanation of the work.
We have also shown how high-level policy expressions can be enforced and how

110 MITIGATING CONFLICTS OF INTEREST BY AUTHORIZATION POLICIES

the algebraic expressions are translated to OCL expressions in the enforcement
design phase.

Chapter 6

Comparison, Limitations, and
Verification

This chapter describes three additional topics, which are a comparison between
the ROAC model and attribute-based access control (ABAC), discussion on
the limitations of our research related to the OSDM delegation model, the
ROAC model, and the mitigation of conflict of interest policies. Moreover,
some suggested mechanisms for verification of mitigation of conflicts of interest
policies are presented.

6.1 Comparison with ABAC

The introduction chapter provided a set of mandatory requirements, of which
two requirements are of paramount importance for the core access control.

The most important requirement is to comply with the least privilege concept,
where users are given the minimum set of access rights needed to accomplish
their roles. The concept also requires that access rights are mapped to the
smallest access unit. Moreover, operations on protected objects in a software
system need to be also fine grained to the smallest possible unit, so that the
access rights mapped to them give the least possible access.

The second important requirement is expressiveness of access rights. An access
right must provide the flexibility to handle different granularity levels when it
is assigned to different users. This requirement prevents adding tremendous

111

112 COMPARISON, LIMITATIONS, AND VERIFICATION

number of access rights to the access control system. On one hand, organizations
need different granularity levels of one access right to cater for the differences
in seniority between their employees. On the other hand, they need such
granularity to account for the same level of an access right that is assigned to
different users in segregated zones. For example, several professors have the
privilege to teach courses, but they do not teach the same courses.

The expressiveness of access rights definition requirement remedies the
consequences of the least privilege concept. However, on top of these mandatory
requirements, other features could affect the applicability of an access control
system in large organizations. One major feature is to have simplified
management of access rights. Organizations usually have many software
applications, which results in a tremendous number of access rights. Moreover,
some organizations have thousands of users. Therefore, the way access rights
are mapped to users must be simple in management and maintainability.

RBAC has remained the dominant access control model in organizations for a
long time and remained prevalent. However, many organizations recently started
to divert away from RBAC towards attribute-based access control (ABAC) [20].
The main reason for diverting to ABAC is that RBAC cannot express their
access control policies. RBAC is restrictive in access policy definitions since
accesses are based only on roles and it is difficult to include other characteristics
of users and contextual or environmental factors in access control policies [19].
Enterprises needed to include attributes, such as time of day and user location,
for distributed and dynamically changing systems. ABAC was identified as a
replacement for or adjunct to RBAC [24].

The ROAC model was proposed to address expressiveness limitations of RBAC,
by enabling attributes and behavior into the RBAC elements and relations.

In this section, we provide a comparison between ABAC and the ROAC model.
Several aspects that affect the applicability of both models are reviewed.

6.1.1 Expressiveness

In ABAC, access control policies are expressed as rules, which represent
conditions on user attributes, environment attributes, or object attributes.
These rules are evaluated in order to determine the authorization decision.
ABAC is highly expressive as any available attributes can be used to express
access policies. However, conditions can be expressed on raw attributes, no
conversions or behaviors are possible within the rules.

On the other hand, the ROAC model supports both attributes and behavior,

COMPARISON WITH ABAC 113

which can be used to provide advanced calculations on attributes (e.g. transfer
amount of foreign currency transaction to the local currency).

6.1.2 Least Privilege

In ABAC access policies are defined using attributes. These attributes can be
anything about users, environment, or objects. Therefore, access control policies
can be fine grained to achieve the required level of the least privilege concept.

On the other hand, the ROAC model relies on the concept of roles, which means
users doing similar job functions are assigned similar permissions. Despite the
simplicity of management advantage of this approach, users doing similar job
functions might not require identical permissions, which might not be relevant
to their job. Policies can be defined on levels of elements or relations to further
restrict user access. However, this might add more complexity to the defined
policies and might cause a role explosion.

6.1.3 Complexity

Defining policies in ABAC requires that a potentially large number of attributes
to be managed and understood. Furthermore, selection of attributes is a complex
task, as attributes have no meanings until they are associated with a user or an
object [20]. Moreover, ABAC can also lead to a rule explosion, somewhat in
the same way as RBAC. As a system with a large number of attributes would
have an explosive combination of possible rules [1].

The ROAC model uses RBAC elements and relations to manage access control.
Policies that cannot be expressed by users, roles, permissions, user-role and
role-permission relations are expressed using attributes and behavior in the
elements and relations. A large percentage of access control requirements of an
organization can be expressed by the RBAC elements and relations. Only the
remaining part is defined in terms of attributes and behavior.

ABAC is far more complex than ROAC, and the complexity depends on the
number of access policies that can be expressed by RBAC elements and relations.

6.1.4 Maintainability

One major issue with the high number of rules generated by ABAC is
maintainability. Policies in organizations keep changing and by the introduction

114 COMPARISON, LIMITATIONS, AND VERIFICATION

of new policies and updating existing policies, administration issues might
emerge due to conflicting policies, erroneous policies, and unnecessary policies.

The ROAC model groups permissions of similar job functions in a role, then
users can be assigned to roles. This offers less maintainability overhead than
maintainability of access rules. However, some access policies that cannot be
expressed by the elements and relations will get defined using attributes and
behavior, this adds complexity to the ROAC model. However, these policies will
still be grouped under elements and relations, which makes their maintainability
much easier than in ABAC.

6.1.5 Dynamicity

In ABAC, an authorization decision is determined based on the user attributes
reflected in objects they want to access. This means that ABAC permissions
can be acquired dynamically by virtue of the user’s attributes [24].

In the ROAC model, the authorization decision first verifies user policy, user-
role policy, then enumerates the roles that are assigned to the user requesting
authorization. Afterwards, it checks the role-permission policy and enumerates
the user permissions, then it checks the permission policy and the user-permission
policy (the parameters). This means that the user must be preassigned to the
roles in advance.

6.1.6 Auditability

In ABAC, before-the-fact auditability is extremely difficult due to the enormous
number of rules in the access control system. For example, to audit if a user
access is in line with the least privilege concept, or to audit correctness of polices
from a huge number of rules becomes a real challenge. Furthermore, ABAC
is an identity-less access control system and users may not be known before
access control requests are made, it is often not possible to compute the set
of users that may have access to a given resource [93]. ABAC allows to base
an authorization decision on some characteristic of the subject other than its
identity [71]. Even in cases where the identities of all users and their assigned
attributes are known. In order to calculate the resulting set of permissions for
a given user, all objects would need to be checked against all relevant policies
[93]. Furthermore, the rules need to be checked in the same order in which
the system applies them, as a result, it could be impossible to determine risk
exposure for any given employee position [1].

COMPARISON WITH ABAC 115

In ROAC, before-the-fact auditability is much easier. Firstly, the model is
identity based, therefore, user identities are used in access policy definitions.
Secondly, roles assigned to a given user can be easily found, then permissions
assigned to those roles can be enumerated. This is a straightforward audit to
know which resources or objects a given user can access. However, policies
defined in elements and relations (using attributes and behavior) can be more
complex to audit.

When the user identity is known, ABAC requires an exhaustive enumeration of
the attributes. The full set of access rules, which could number in thousands in
some cases, must then be instantiated with user and object attribute values.
Because attributes can change dynamically, determining a user’s potential
permission set will also require instantiating rules with all possible attribute
values while a user is active [24]. In the ROAC model, the same strategy can be
used for policies defined in elements and relations when auditing which resources
a given user can access.

6.1.7 Applicability

ABAC is widely deployed in enterprises, government, and healthcare. However,
the ROAC model is not yet deployed in any organization.

6.1.8 Policy Specification

The eXtensible Access Control Markup Language (XACML) [71] is used for
expressing ABAC access policies. XACML provides a declarative language for
policy definition and an architecture for enforcement of the policies.

The ROAC model does not have a policy specification language. This is a
known limitation of the model, and it is discussed in more detail in the next
section.

6.1.9 Authorization Decision

Both ABAC and ROAC support multi-factor authorization decisions. However,
each of them has a different way of determining the authorization decision.
In ABAC, rules are evaluated sequentially one by one, the final authorization
decision is calculated according to the rule combining algorithm applied. In the
ROAC model, policies are evaluated hierarchically in a specific order as follows:

116 COMPARISON, LIMITATIONS, AND VERIFICATION

user policies, user-role policy, role policy, role permission policy, permission
policy, user-permission policy (parameters).

Authorization decision evaluation in the ROAC model is more structured, it
is clear which policies prevail over others. However, policy designers must
categorize the policies in advance into the different levels, e.g., user, user-role,
etc. On the other hand, ABAC authorization decisions depend on the rule
combining algorithm, and gives more freedom to policy designers to choose
which rules prevail.

6.1.10 Policy Conflicts

A policy conflict occurs when an access request matches more than one policy
and policies conflict with each other, i.e., yield different decisions [31]. In ABAC,
security policies are highly flexible and expressive, but conflicts between policies
occur frequently, affecting the security and availability of the system [60]. Such
issues happen at the enforcement phase. Availability issues cause rejecting
a legitimate user access to a resource, and security issues cause allowing an
illegitimate user to access a resource [31].

In ROAC, conflicts can also happen when a user has overlapping access policies,
which mainly happen in the context policies defined in elements and relations.
As an Example, a user is assigned to the same permission via two roles. Both
roles have policies restricting the activation of permission to a specific period of
time. A conflict happens if one policy allows the user to activate the permission
and the other prevents the user from activating the permission. Both ABAC
and ROAC are prone to policy conflicts, the next comparison item we see policy
conflict resolution strategies in both models.

6.1.11 Conflict Detection and Resolution

There are two different conflict types that may occur in access policies:
static and dynamic conflict. In static conflict, incongruence is found during
the initialization phase. In dynamic conflicts, a potential conflict is quite
unpredictable and is the result of a run-time action [13].

In ABAC, static conflict detection methods detect conflicting rules before the
system runs, therefore, providing a reference for policy maintenance. Dynamic
conflict detection is more difficult or even impossible to cover all the possible
conflicts in the policy set [60]. Several conflict detection mechanisms has been
proposed in the context of ABAC and XACML, for example [60, 97, 32, 49, 99].

COMPARISON WITH ABAC 117

XACML uses rules combining algorithms to resolve conflicts at enforcement
phase. The rule combining algorithm defines a procedure for arriving at an
authorization decision given the individual results of evaluation of a set of rules
[71]. XACML 3.0 has 13 algorithms for rules and policy combining. Examples
of XACML rule combining algorithms: deny-overrides, permit-overrides, deny-
unless-permit, permit-unless-deny, first-applicable, and only-one-applicable.

On the other hand, policy conflict detection has not been studied in detail in
the context of the ROAC model. It is up to the policy designer to make sure
that the policies are safe and not conflicting. However, conflicts may occur only
in the context policies defined in elements or relations. Conflicts do not happen
in elements, relations, or parameters, for which a permit-overrides resolution
strategy is adapted.

6.1.12 Hierarchies

Hierarchies in access control aim at simplifying administration of access rights
and to reflect some kind of organization structure. In ABAC, hierarchies are
mainly focusing on simplifying management of access rights. Hierarchies can
be defined on attributes, which can be classified in a tree structure based on
their access control relationship in a system [53]. Hierarchies can also define
user and object groups, which are collection of entities of users or objects.
Group attributes are attributes assigned to groups of users and objects. These
groups get relevant attributes assigned to them, which represent the group
characteristics [19]. Hierarchies can then be defined on the groups such as in
[19, 92].

In the ROAC model, two types of hierarchies are supported: role and user
hierarchies. Role hierarchies represent a role-role relation. Role hierarchies
are used to simplify management of access rights. Descendant roles inherit
permissions from their ancestor roles. The ROAC model supports the is-a
hierarchies and the supervision hierarchy, in which descendant roles inherit a
subset of the ancestor role permissions. User hierarchies in ROAC represent
the lines of authorities of the organization by implementing partial orders on
users. The user hierarchy enables finding the line manager of a user and the
subordinates of a manager. Both ABAC and ROAC implement hierarchies
that simplify the management of access rights. However, the hierarchies in the
ROAC model are more advanced than ABAC, since it supports the supervision
relationship and user hierarchies.

Table 6.1 summarizes the differences between ABAC and ROAC.

118 COMPARISON, LIMITATIONS, AND VERIFICATION

Table 6.1: Comparison between ROAC and ABAC
Feature ABAC ROAC
Expressiveness Medium High
Least Privilege High Medium
Complexity Complex Moderate
Maintainability Moderate Advanced
Dynamicity Advanced Basic
Auditability Difficult Moderate
Applicability Applied Not applied yet
Policy Specification XACML None
Policy Conflicts High High
Authorization Decision Sequential on rules Hierarchical
Conflict Detection &
Resolution Advanced Basic

Hierarchies Basic Advanced

6.2 Limitations

Despite the clear contributions of our research towards improvements on role
delegation, mitigation of conflicts of interests, and context-based RBAC policies,
there are identified limitations in the provided models. Limitations related to the
ROAC model are mainly the absence of some features such as policy specification
language and policy conflict resolution. These features are necessary due to the
increased complexity of the ROAC model, which are introduced for increasing
the flexibility and expressiveness of the model. Limitations in the delegation
model are mainly non-tackled problems that might arise when applying the
model is some specific scenarios. Limitations related to mitigation of conflicts
of interest are related to the algebra that is used for specification of the policies,
which has a limited expressive power.

6.2.1 Limitations of OSDM

The OSDM delegation model provides a mechanism for supervising delegation
by lines of authority in the organization. OSDM supports both role delegation
and permission delegation. Despite the clear contributions of the model, it still
suffers from some limitations, which we discuss in this subsection.

LIMITATIONS 119

Delegator Context Policies

In OSDM, when a role is delegated, the context policies of the role, role-
permission, permissions, user-permission (parameters) are taken into account
and are validated in the authorization decision. However, context policies on
the level of the delelgator user and the user-role assignment are not considered
and not validated. To give an example, delegator u1 delegates his role r1 to
delegatee u2. Consider a context policy defined on user level for delegator
u1 limiting activation of all his roles to time frame 07:00 AM to 05:00 PM.
Consider a policy defined for delegatee u2 limiting activation of any role to
07:00AM to 9PM. If delegatee u2 tries to activate the delegated role r1 at 8:00
PM, the authorization decision will allow him to activate the role, because the
authorization decision takes the delegatee user context policy into consideration
in this case. The same applies for user-role context policies.

In delegation, the authority of the delegatee should not exceed the authority of
the delegator, and the model should be extended to apply the delegator user
and user-role context policies for the delegated roles rather than the delegatee
context policies.

Delegation of Managerial Roles

In most organizations, directors and C-level managers are managed by the
highest authority line in an organization (usually called the CEO). In case of
absence of the CEO, the OSDM model might block the delegation of authority
of an absent user managed by the CEO, and therefore, causing a deadlock. In
most organizations, management roles are delegated in a different way than
other roles in the organization. In most cases, there are predefined rules on
who takes over a given managerial role if its assignee is absent. Therefore, the
OSDM model might have a limitation that affects its applicability for delegation
of managerial roles. The model should be extended with a mechanism that
automatically allows the delegation of certain roles according to predefined
rules, which bypasses approvals from managers of managers.

Restricting Usage of Delegated Roles

Delegation can be required in organizations in different scenarios. Such as
backup of roles, disasters, decentralization of authority, collaboration, etc. In
the case of using delegation in the context of backup of roles, this means that
the delegated role should be used to substitute the job of the delegator who is
absent in this case. In some cases, the access rights and policies might give the

120 COMPARISON, LIMITATIONS, AND VERIFICATION

delegatee more authority than he originally had. The delegatee can get more
permissions or get higher parameter values than parameter values assigned to
him through the original user-role relation. For example, a user u1 working
in a bank, has the right to do both cross-border and domestic transactions is
absent and his role needs to be delegated to a user u2 who is allowed only to
do domestic transactions. Consider that u1 has an amount limit parameter set
to 1 million, and that u2 has the same parameter value set to 100K. When
the role of u1 is delegated to u2, user u2 becomes able to do transactions of
amounts up to 1 million. The OSDM model differentiates between original and
delegated parameters of the user, however, user u2 can use his delegated role to
perform domestic transactions of up to 1 million instead of his original role and
parameter value, which limit him to a maximum of 100K amount. An open
research problem is this context is: how to restrict usage of a delegated role
or permissions to the usage of delegated tasks and how to prevent a user from
applying delegated access rights on his original duties.

6.2.2 Limitations of the ROAC Model

We provided a comparison between ROAC and ABAC in the previous section.
We have seen that the ROAC model is lagging behind in two main features,
which are the absence of a policy specification language and policy conflict
detection and resolution. We focus on these two limitations in this subsection.

Policy Specification Language

Applying security policies comprises two main steps: the high-level policy
specification and the low-level policy enforcement. Policy specification means
how policies can be expressed, whether in natural languages or in formal
languages. Natural language specification has the advantage of ease of
comprehension by human beings, but may be prone to ambiguities, and the
specifications do not lend themselves to the analysis of properties of the set of
constraints [8]. A security policy is enforced through the deployment of certain
security functionalities within the application [43]. In policy enforcement,
policies must be connected to the end application functionalities, which involves
two main tasks: mappings between permissions and protected operations &
objects, then implementing a mechanism for evaluating the specified policies
and computing the authorization decision.

Policy specification is very key in designing access control requirements. Policy
specification needs to be segregated from policy enforcement. The access control
policies are usually specified by the security analysts and officers who are not

LIMITATIONS 121

necessarily aware of the technical details behind the application functionalities,
they are not necessarily software developers.

Moreover, policies must be separated from the implementation of the system,
this enables the policy to be modified dynamically in order to cover the
changes in the strategy for managing the system and controlling the behavior
of users without changing the implementation of the underlying components
of the system [96]. Therefore, we identify two main requirements for applying
security policies, a policy specification language, which must be expressive
enough to express the different policies. Then, the specified policies must be
automatically enforced by enabling automated evaluation of the authorization
decision from the specified policies. Furthermore, to enable enforcing the policies
on the application functionalities in a dynamic way. Formal specification
of security policies provides several important advantages. First, formal
specification minimizes the possibility of misunderstanding between policy
designers and system designers. Second, formal specification facilitates the
analysis of security policies [56]. Third, formal specification enables automated
enforcement of specified policies. Automated enforcement eliminates ambiguities
and misinterpretations of specified policies by application developers.

The eXtensible Access Control Markup Language (XACML) [71] is the most
used policy specification language. It is used to specify policies of different access
control models such as DAC, MAC, RBAC, and ABAC. However, XACML is
mostly used for specifying ABAC policies. XACML is an OASIS standard that
describes both a policy language specification and an access control decision
request/response language. XACML uses XML as the basis for the language
due to the ease of its syntax and semantics. The request/response language
calculates the authorization decisions by evaluating the specified access rules.
The authorization decision is one of four values: Permit, Deny, Indeterminate
(an error occurred, or some required value was missing, so a decision cannot
be made) or Not Applicable (the request can’t be answered by this service).
XACML has a policy enforcement point (PEP), which is responsible for handling
access requests from subjects to access resources. The PEP formulates the
request based on the different attributes, the request is then evaluated by
another component called the policy decision point (PDP), which returns the
authorization decision to the PEP, which then allows or denies the subject’s
request to access the resource [72].

In the ROAC model, there is no formal access control policy specification
language that is supported. Policies are specified in natural language, which
could cause ambiguities and be misinterpreted by the system engineers or the
developers. This limitation can be remedied by supporting a policy specification
language such as XACML. However, efforts are needed to translate the specified
policies to the ROAC object-oriented code. A request/response language is also

122 COMPARISON, LIMITATIONS, AND VERIFICATION

necessary. A request containing the user details and the protected operation
or object details must be evaluated according to the specified policies, then a
response should be returned with the authorization decision result.

Policy Conflicts

One obstacle to accurate access-control policies is human error; policy authors
are prone to making specification errors that could lead to incorrect policies.
During specification, access control policies are divided into smaller units called
access rules. Conflicts happen when one user combines access rules that when
evaluated give conflicting access decisions. For example, a user has an access
rule granting him access to one resource and has another access rule that denies
the same users access to the same resource. This might sound like a trivial
error by a policy author, however, in reality access policies are very complicated
and in many cases are hierarchical, which makes it difficult for policy authors
to specify conflict free policies. The access rule denying access to the resource
might not be associated directly with the user, rather to a group of users in
which he belongs. Access rules within organizations change with time, new rules
are added, and existing rules get updated. Policy authors might leave their
posts and new policy authors join. Furthermore, the high number of access
rules in organizations might be difficult to manage. Research in policy conflicts
is focusing in two main fields, which are policy conflict detection and policy
conflict resolution.

Policy conflicts detection is the process in which conflicts between the policies
or access rules are detected. Once conflicting policies or rules are detected, the
policy resolution algorithm decides what should be done to resolve the conflict.
This is usually done through policy and rule-combining algorithms. There exist
several conflict resolution strategies, such as denial takes precedence and the most
specific authorization takes precedence in the literature of access control models
[22]. Policy conflict resolution strategies can be static or dynamic. In the static
policy detection and resolution, the rules are verified without generating access
requests. While in dynamic detection and resolution, conflicts are detected at
runtime during evaluation of access requests, the resolution strategy is also
applied at runtime.

In XACML, grouping can be defined on policies and access rules. A PolicySet can
contain a set of policies, and a policy can contain multiple access rules. XACML
resolves conflicts using policy combining algorithms, correctly combining the
results from evaluation of different policies into one decision. Evaluation of
policies and rules may yield different access control decisions. XACML defines
strategies for reconciling the decisions of each rule or policy. This is done through

LIMITATIONS 123

a collection of combining algorithms. Each algorithm represents a different way
of combining multiple decisions into a single decision. The combining algorithms
can be defined on the policy level (Policy Combining Algorithms) or on the rule
level (Rule Combining Algorithms). An example of a combining algorithm is the
Deny Overrides Algorithm, which states that no matter what, if any evaluation
returns Deny, or no evaluation permits, then the final result is also Deny. The
combining algorithms are used to build up increasingly complex policies [72].

Policy conflict detection and resolution has not been analyzed in detail in
the context of the ROAC model. A rigid strategy for conflict resolution in
the elements, relations, and parameters is adapted, which is permit-overrides.
However, for context policies, in which conflicts are more likely to happen,
the resolution strategy is left for the policy author, who must decide on how
conflicts are handled. This limitation affects the security and applicability of
the model.

6.2.3 Limitations of Conflicts of Interest Mitigation

Our work related to mitigation of conflicts of interest is based on an extension of
an algebra, which enables the formal specification of high-level separation of duty
policies (SoD). We extended the algebra in order to increase its expressiveness.
Algebraic expressions are extended with new variables, which come from the
protected operations. Furthermore, workflow steps can be associated with
terms. The algebraic expressions were also extended with the possibility to do
conditional parameterization in order to enforce different policy levels according
to conditional expressions. The algebra was also extended with the possibility
to express managers of users in order to set policies requiring managers to
participate in activities of their subordinates. A control on the workflow steps
execution order was also included to ensure that the conflicts of interest policies
are projected correctly on the workflow steps.

The conflicts of interest policy specification algebra provides a means for
specification of conflict of interest policies in an easy and unambiguous way.
However, the algebra has a limited expressive power, which fail at specifying
several conflict of interest mitigation policies.

Spatial and Temporal Context

Spatio-temporal information is of paramount importance in defining access
control policies. Authorization policies can change depending on where and
when a resource is accessed.

124 COMPARISON, LIMITATIONS, AND VERIFICATION

The algebra we use for specification of conflicts of interest policies cannot
use spatio-temporal information in specification of the policies. Spatial and
temporal variables need to be added to the algebra such as TimeOfAccess and
AccessLocation that contain respectively the timestamp and the geographic
location of the subject requesting access to the protected resource. The algebra
should also include operators for matching spatial and temporal information.
To illustrate with an example, an organization might require an extra step of
approval on a transaction from the organization’s premises if all users involved
in the workflow are working remotely. The organization might specify more
restrictive policies if the transaction includes actions from remote users and
outside usual business working hours. Such policies utilizing spatial and temporal
information are key in fraud and conflict of interest policies specification.

Rule-Based Policies

User behavior is of great importance when defining conflict of interest policies.
Policies to defuse conflicts of interest before it could happen need to consider
every possible piece of information about the user, the protected operation, the
environment, and the user behavior. On the one hand, policies should contain
limitations of usage for users. For example, in a conflict of interest policy, policy
authors should be able to specify that a user can do a maximum of a certain
number of approvals within a time frame. On the other hand, the specification
language should support expressing detection and blocking of certain behavior
that can be modeled with business rules. For example, a policy might specify
that the user needed for a given workflow step should be any user who is a
manager, has been working for the company for at least 10 years, and has a
minimum of grade A in latest appraisal. This kind of policy cannot be expressed
in the extended algebra.

Behavioral and Predictive Policies

Machine learning can be used to analyze large data sets containing user access
information. Afterwards, many beneficial models related to mitigation of
conflicts of interest can be developed. Firstly, models to detect anomalous user
behavior. Machine learning can compare a user’s behavior to the past behavior
of the user himself or compare a user behavior to his peers to detect anomalous
behavior. For example, a user is approving a transaction at an unusual time for
the user, a user is approving only high value transactions, while his peers are
approving different value transactions, etc. Secondly, machine learning has a
predictive power, which can be used to develop models to predict conflicts of
interest before they happen.

VERIFICATION 125

Machine learning and advanced behavior analysis of users is not possible to
express using the extended algebra. This needs more research and probably to
build predefined machine learning and behavior detection models, then enable
specifying policies using these models.

6.3 Verification

Access control is used in organizations to regulate and control access to protected
objects by subjects. Organizations centralize their access control policies to
facilitate their management and audit. There are three factors that increase the
complexity of access control policies in organizations. Firstly, subjects require
access to a huge number of protected objects and operations distributed across
many different systems. Secondly, changes and updates are continuously added
to software systems. Thirdly, access control policies are regularly updated
with changes to existing policies and addition of new policies or removal of
existing policies. Identifying discrepancies between policy specifications and
their intended function is crucial because enforcement of policies by applications
is based on the premise that the policy specifications are correct [45].

Access control policies are a critical component in security. Issues in specified
policies such as faulty policies, misconfiguration, or flaws can result in serious
vulnerabilities [45]. Vulnerabilities that might happen due to such reasons might
enable unauthorized access to protected objects in software systems. In order
for policies to achieve the desired protection, the specification and enforcement
of the policies must be correct. Another issue that is usually encountered
when specifying access control policies is inconsistencies, which can also result
in vulnerabilities. Inconsistencies occur when different incompatible policies
can apply in a specific situation [95]. Furthermore, high expressiveness of the
underlying access control system increases the potential for error in policy
implementation and conformance between the specification, and enforcement
may not be guaranteed [61].

Policy specifications must undergo rigorous verification and validation through
systematic verification and testing to ensure that the policy specifications truly
encapsulate the desires of the policy authors [45]. A policy is a set of rules that
define the expected behavior of the system enforcing that policy [94]. Policy
testing is a technique that can be used to verify policies through test cases.
Testing can be used to ensure correct enforcement of specified policies and
to ensure correctness and safety of specified policies. Policy testing requires
definition of exhaustive test cases that covers all possibilities and variations,
which might result in a huge number of test cases. Test cases must be applied

126 COMPARISON, LIMITATIONS, AND VERIFICATION

each time policies are updated, and new test cases must be generated to cover
any updates to the policies. The main challenge in defining test cases is to make
sure that the cases cover all nuances of the policies. An efficient approach to
policy analysis is by using systematic verification. Verifying the conformance of
access control policies is a non-trivial and critical task. One important aspect of
such verification is to formally check different aspects such as safety, correctness,
liveness, inconsistency, and incompleteness of the policies.

Analysis of security policies has received attention from researchers, many
papers were proposed that address different topics such as verifying safety,
inconsistencies, irrelevancy, incompleteness, redundancies, etc. [61, 45, 94, 67,
55, 95] . However, policy verification has not been a focus in our research. In this
section, we provide some verification mechanisms in the context of conflicts of
interest mitigation policies. We focus on three main topics: correctness, liveness,
and safety of policies. We focus on verification in the context of specified policies.
Conflicts of interest mitigation policies are specified using algebraic expressions.
Policies are enforced automatically using a policy enforcement engine which is
provided in appendix E.

6.3.1 Verification of Correctness

Syntax Verification

Syntactic verification of conflicts of interest mitigation algebraic expressions is
the first step required to validate correctness of the expressions. This can be
achieved by syntactic analysis on the expressions through a syntactic verifier,
which receives an expression, parsing it and representing the expression in a
hierarchical format. The syntactic verifier must be able to reject an expression
should its syntax be incorrect. Validation should be done on the operators,
ensuring that only allowed operators are used, then validating correct usage of
operators, e.g. to validate that binary operators are used between two operands
and that unary operators and used with a single operand.

The syntactic verifier should also classify the operands into their correct
categories, for example keyword, role, user, manager of user, workflow step,
and operation variable. Any operand that cannot be classified to one of these
categories should cause the whole expression to be rejected.

VERIFICATION 127

Semantic Verification

Conflicts of interest mitigation policies are specified by algebraic expressions,
which are then automatically enforced by the enforcement engine. A conflict of
interest mitigation algebraic expression is considered semantically correct if it
does its intended functionality at enforcement stage, i.e. meets the requirements
specified in the policy. Semantic verification of policy expressions is not a trivial
task, especially when validating the end functionality of the policy. However,
there are several semantics that can be verified to ensure a level of correctness
of the policy. We give some examples of such semantics hereunder.

- Verifying that operands of category roles specified in the expression exist
in the access control system. This can be done by taking all the operands
that the parser classified as roles and ensuring that each of them is a role
existing in the access control system, the role has already permissions
assigned to it, and the role is assigned to at least one user.

- Verifying that a role specified in expression more than once that evaluates
to multiple users is assigned to at least the number of required users in the
access control system. For example, a role expressed twice with operator
⊗, evaluates to two different users, e.g. Clerk ⊗ Clerk , the expression
requires two different users assigned to the Clerk role. There should be
at least two users assigned to the Clerk role in the access control system.

- If a user’s line manager specified in expression, verify that the user has a
line manager.

- Verify that a workflow step specified in an expression exists in the workflow.

- Verify that a protected operation variable specified in an expression exists
in the protected operation.

- Verify that parameterization variables exist in the protected operation.

- Verify that a user associated to a workflow step in the algebraic expression,
has a permission that enables him to perform the specified workflow step.

6.3.2 Verification of Safety

Safety means that the conflict of interest mitigation policy expression satisfies
the specified safety requirements. Implicit in this description of safety is that

128 COMPARISON, LIMITATIONS, AND VERIFICATION

there is no violation of the constraints specified in the safety requirements and
it is assured that the expression will eventually be in the desired situation
after it took actions in compliance with the policy specification [45]. In this
subsection we suggest some mechanisms to help policy authors ensure safety of
their specified policies.

Verifying that a SoD policy requires multiple users in all situations

This can be achieved by developing a SoD verifier that accepts the SoD level
as input, which is a number representing the minimum number of users that
must participate in a workflow according to the SoD policy. The verifier then
recursively substitutes the operands with all their possible user values in the
expression. For example, substitute a role with all users assigned to it, substitute
the ALL keyword with all users in the system, etc. The verifier ensures that
with all different combinations of substituted values, the minimum number of
users that satisfy the expression must be at least equal to the SoD level. The
SoD verifier can help policy authors to ensure a certain level of safety of their
expressions, however, testing all possibilities of expression evaluation can be an
expensive operation in terms of computation cost.

List of all users who could be part of a workflow according to the expression

Safety is the fundamental property of a conflict of interest mitigation policy,
which ensures that the policy will not result in the leakage of permissions to
unauthorized users. Thus, a policy is said to be safe if no privilege can be
escalated to unauthorized or unintended users [46]. Policy authors might need
to review the list of all users who can participate in a workflow according to
the conflict of interest mitigation specified policy. This can give indications
on policy safety if they find unintended users in the list. This can be achieved
by returning a list of all users in the access control system that can satisfy
the algebraic expression in all possible combinations, which the expression can
evaluate to.

6.3.3 Verification of Liveness

Liveness means that a policy can be satisfied given the access control elements,
relations, and context policies defined on the level of the elements and relations.
And that, there is no deadlock that can cause the workflow to wait forever
for user actions to satisfy the expression due to impossible satisfaction of the
policies.

VERIFICATION 129

To give an example of a policy expression that causes a workflow deadlock,
consider a step in the workflow requiring a bank branch manager role, the bank
branch manager role has a context policy that restricts the member access to
role activation between 9:00 AM till 5:00 PM. Consider that the permission to
perform the desired workflow action restricts activation to between 6:00 PM and
10:00 PM, this means that the branch manager will never be able to perform
the required action in the workflow, and therefore, a workflow instance will
remain unaccomplished forever.

Deadlocks might also happen if the algebraic expression can never be satisfied
given the elements, relations, context policies, parameterization, and protected
operation variable values. Therefore, an expression liveness verifier is needed
to ensure expression satisfiability and that the user permissions and context
policies allow them to perform the required actions. Semantic verification on
the policies can give indications about satisfiability of expressions, however, it
does not cover all different aspects of expression satisfiability such as protected
operation variable values and context policies of elements and relations. This
can be achieved by automatic generation of test cases to test liveness of the
policy expression, which takes into account the different time interval workflow
steps can be executed, different values of protected operation variables, and
different possibilities for workflow steps order. The test cases should also cover
different combinations of users that can satisfy the expression.

Chapter 7

Conclusion and Future Work

The following sections summarize the contributions of this dissertation and
discuss some future research directions that can be further studied.

7.1 Summary

In this research work, we developed two main extensions to RBAC, which are
delegation of duties and mitigation of conflicts of interest. Furthermore, a
new form of role-based access control was also developed that facilitates the
definition of more sophisticated context policies.

7.1.1 Authority Delegation

The central contribution of this dissertation is a new roles and permissions
delegation model for role-based access control: the organizational supervised role
delegation model (OSDM). This model provides a new means for controlling and
authorizing delegation based on the organizational hierarchy. The development
of the OSDM model was motivated by surveying some organizations and
verifying their delegation and role assignment mechanisms in place. The survey
has concluded that such actions are usually approved by managers according to
lines of authority within the organization.

The work starts by remedying a limitation of existing RBAC models, which is
the inability of projecting lines of authorities within organizations using the

131

132 CONCLUSION AND FUTURE WORK

roles hierarchy. This is due to the fact that role hierarchies are designated at
simplifying the management of access rights through inheritance of common
access rights by different roles. This approach does not take the organization
structure into account. Therefore, we started by providing an extension to the
underlying access control model, which is the user hierarchy. The user hierarchy
feature projects the lines of authorities within organizations. This is achieved
through defining the relations between users hierarchically, focusing mainly
on the superior-subordinates relation. This enables implementing authority
relations among different users by modeling the hierarchy using a graph data
structure. The user hierarchy helps in finding users who need to approve
delegations and revocations according to the policies and lines of authority in
the organization. In existing delegation models, delegation is authorized by
using a delegation relation that defines who can delegate a given role. We have
explained disadvantages of this approach that could deter organizations from
using delegation models based on such relations.

The delegation request can be initiated by different parties, such as: human
resources, the delegator, the delegatee, or the line manager of the delegator.
Once the request is initiated, the delegation request is sent for approval according
to the approval matrix, usually involving the line managers of the delegator
and the delegatee. The delegation operation is executed when the necessary
approvals are obtained. OSDM supports both role and permission delegations,
as well as flat and hierarchical role structures.

Revocation of delegation in OSDM takes similar steps to delegation. Firstly,
a request for revocation is to be initiated by a user such as: human resources,
the delegator, the delegatee, or the line manager of the delegator. Afterwards,
the revocation request needs to be approved according to the approvals matrix
before the revocation operation is executed.

7.1.2 Conflicts of Interest Policies

In today’s business and corporate environments, wide varieties of security policies
are implemented to ensure data integrity and prevent unauthorized activities as
well as preventing improper usage of authority. Current authorization models,
however, are not expressive enough to support definition of such requirements.
Existing work focuses on one type of conflicts of interest policies, which is
separation of duties (SoD), and therefore, leaves out a wide range of conflicts
of interest policies uncovered. Furthermore, existing SoD models suffer from
several limitations, mainly breaches related to missing order of task workflow
steps, specification of which task steps to be separated, and ambiguities related
to interpreting specified polices at design phase during the enforcement phase.

SUMMARY 133

We proposed a novel approach to conflicts of interest policy specification
and enforcement. We extended the algebra proposed in [56] to support
parameterization of algebraic expressions, and the usage of task variables in the
algebraic expressions. This offers better flexibility for defining more precise and
fine-grained policies. Furthermore, we addressed ambiguity issues of the algebra,
by offering a possibility to associate task steps in expressions definitions, in
which task steps can be associated with variables in operand terms. Moreover,
we provided a new approach to control the task workflow execution, and to
make sure users are involved at predefined order of task workflow steps. An
expression evaluation engine is also provided in Appendix 5, which enforces
specified algebraic expressions and task order steps. We used a remittance
payment business process example for demonstration of the work, in which
we showed how high-level policy expressions are specified and how they are
enforced.

An important aspect of security policies is their integrity and containment. An
important challenge that arises when designing a new model for addressing
conflicts of interest is the heterogeneous nature of operations at organizations,
which incurs different requirements for each organization. One advantage
of our model is that designed policies are enforced automatically by the
expressions evaluation engine. This approach leaves no possibility for miss-
interpretations of the specified expressions during enforcement. Therefore,
our model standardizes both specification and implementation of conflicts of
interest policies. Furthermore, the expression algebra we proposed provides a
wider range of variables that enables specification of broader SoD policies than
any other SoD model in the literature. In addition, it enables specification of
non-SoD conflicts of interest policies.

7.1.3 The Core ROAC Model

Specification and enforcement of conflicts of interest policies requires a great
expressiveness power of the underlying access control model. Existing RBAC
models suffer from expressiveness issues.

The way permissions are currently described in RBAC suggests that every
role is assigned a set of unique permissions. Two users assigned the same role
have identical access privileges. Users, roles, permissions, and their relations
in RBAC are considered as simple entities, which cannot express any kind of
different granularity of the same element or relation. Furthermore, authorization
decisions in RBAC are based on the user’s association to permissions through
roles. This kind of authorization does not support multi-factor decisions (for
example, decisions dependent on physical location or temporal context). RBAC

134 CONCLUSION AND FUTURE WORK

role assignments tend to be based upon more static organizational positions,
presenting challenges in various access control environments where dynamic
access control decisions are required. Trying to implement these kinds of access
control decisions would require the creation of numerous roles that are ad hoc
and limited in membership, leading to what is often termed “role explosion”
[44], this yields in millions of extra roles and permissions in the access control
system. Parameterized RBAC is a notable initiative to address the lack of
expressiveness of standard RBAC, but it is still not sufficient to express many
authorization requirements. Context policies are an example of policies that
cannot be expressed using parameterized RBAC. The ROAC model is proposed
to provide a solid basis for expressing sophisticated authorization policies and
to serve as the base model for expressing and enforcing conflicts of interest
policies.

The core ROAC model presented the fundamental elements of the model and
their relations. The ROAC model is empowered with object-oriented concepts.
Mainly, providing attributes and behavior to the model elements and behavior.
The ROAC model integrates parameters to permissions. Parameterization
enables expressing policies on the level of the user-permission relation. A
relation that does not exist explicitly in RBAC. The main advantage of our
approach to parameterization is that it enables wider coverage on parameters
that can be used, it enables both continuous and discrete value parameters.
Moreover, permission validators, which are behavior in permissions, enable
multi-factor authorization decisions. Context policies can be added in any
element or relation of the model. The ROAC model is context aware, which
supports the following levels on context polices, they are ordered below top-down
from general to specific:

1. Role

2. Permission

3. Role-permission association

4. User

5. User-role association

6. Parameters (user-permission relation)

Any policy that can be defined in a general level can be defined in a more
specific level. Furthermore, policies must be defined at the most general possible
level to avoid complexity and reduce the number of policies.

FUTURE WORK 135

7.1.4 The Hierarchical ROAC Model

In standard RBAC, role hierarchies support multiple inheritance; meaning
that a role can inherit permissions from multiple roles. The concept of role
hierarchies in standard RBAC has two main properties; firstly, the possibility to
derive roles from multiple roles, and secondly, the concept provides a uniform
treatment of user-role and role-role relations. Users can be included in the
role hierarchy, using the same relation to denote the user assignment to roles.
Several enhancements were suggested over the standard RBAC hierarchical
model. However, the generalization concept in existing RBAC models does
not reflect real organizational hierarchies. Existing role hierarchy concepts
consider an is-a partial order on hierarchical roles. This means that sub-roles
inherit all permissions of their super-roles. We believe that this approach
cannot satisfy organizations needs. We can identify three different types of
role hierarchies in organizations: the superior-subordinate, the senior-junior
and the special-general hierarchy. These relations need to be treated differently
when defining role hierarchies. In the special-general hierarchy, specialized
roles might or might not inherit all permissions of the general roles. In the
senior-junior hierarchy, the senior role usually inherits all permissions of the
junior role. In the superior-subordinate hierarchy, the role of superiors is to
supervise their subordinates. Consequently, they do not do tasks that are done
by their subordinates. Therefore, superiors do not require the permissions of
the roles of his subordinates.

We provided a novel approach to tackle hierarchies in the context of the
Role-Oriented Access Control Model (ROAC). Our approach to role hierarchy
implements selective hierarchies, which enable a descendant role to inherit a
subset of the ancestor’s role permissions. This is achieved by defining permission
exclusion sets over the role-role relations. The main idea behind selective role
hierarchy is to support the supervision relation between superiors and their
subordinates in organizations.

7.2 Future Work

This research proposed extensions to RBAC and an underlying access control
model to enable enforcement of the extensions. While this work significantly
improves role-based access, there are still areas outside the core focus which
represent opportunities for extending the work presented in this dissertation.

136 CONCLUSION AND FUTURE WORK

7.2.1 Standardization of Policy Specification

We used object-oriented modeling for policies specification and enforcement.
However, despite robustness of this approach, policy designers might not
be familiar with object-oriented concepts. Therefore, we see a potential
enhancement for the model by introducing a mathematical expression language
to specify access control policy requirements, and then, to develop a policy
enforcement engine for automatically enforcing the specified policies. This is
similar to what we did in conflicts of interest policies. However, a standard
expression language is needed to cover all other policies such as core, hierarchical,
delegation and conflict of interest policies.

7.2.2 Centralized Access Control System

Access control is enforced in applications separately. Then organizations collect
access rights from all applications and consolidate them in one centralized
access control system. This causes many issues, such as ambiguities, conflicts,
etc. To address this issue, more research is needed to integrate access control
specification and enforcement in programming languages, e.g., using annotations.
Then, APIs need to be developed to communicate with the centralized ROAC
access control system.

This can also enable unit testing of application access control. Security testing
of applications is usually done prior to software release. This usually causes
delays and requires more development efforts of software applications.

7.2.3 Artificial Intelligence

There exist two approaches to policy definition, rule-based and model-based.
Rule-based policies represent policies that can be expressed using rules, which
are usually based on conditions. However, model-based policies are more
sophisticated, which usually rely on machine learning to model behavior of
users and spot anomalies. In nowadays businesses, the rule-based approach
alone is not enough to cover all access risks. Moreover, it is very costly to
organizations, as the policy designer must identify all possible risk areas and
model them into rules. This is only possible for the known-known policies,
which are risks known to the organization. However, this leaves out a wide
range of risks uncovered which are the known-unknowns, and the unknown-
unknowns. Artificial intelligence can detect anomalous behavior not known
to the policy designer. Therefore, we propose a future line of research to
standardize model-based policies in the ROAC model.

Appendix A

A Motivating Example

A.1 Introduction

Access control is integrated into almost all organizations’ IT environments to
regulate access to their resources. Organizations often use an access control
model to implement access control policies that are defined by the organization.
The complexity of the policies can differ from one organization to another.
However, we can comfortably say that access control policies are getting more
and more complex.

Most existing RBAC models fail to satisfy most organizations requirements in
terms of access control policies. To show the motivation and demonstrate our
work, we use this example access control system that uses access control policies
from the financial industry.

The motivating example policies are defined in the context of RBAC, which
means that policies related to RBAC elements, and their relations are firstly
defined, then a set of context policies are defined on top of the RBAC elements
and their relations. The example represents a subset of a banking access control
system, which only allows authorized users to access specific banking services.

The context policies on top of the elements and relations covers four different
types of policies. The core policies are defined in section 3; represent policies
that regulate access to operations that access protected objects. Then, section 4
provides policies related to the organization structure, namely hierarchy of roles
and users. Section 5 provides requirements and policies for delegation of access
rights within the organization. Finally, section 6 provides policies required to

137

138 A MOTIVATING EXAMPLE

mitigate conflict of interest within the organization.

A.2 Policy Elements and Relations

A.2.1 Elements

Users

The users in this banking example are of two different types; bank employees
and bank clients. Table A.1 shows some sample users, and their attributes:

Table A.1: Sample users and their attributes
User Name Type ID Expiry
User1 Charlie Bank Client 01/01/2025
User2 Bob Bank Employee N/A
User3 Alice Bank Employee N/A
User4 Dave Bank Employee N/A
User5 Marc Bank Employee N/A

Roles

Permissions required for a job function are mapped to a role. Table A.2 shows
some sample roles and their target assignees:

Table A.2: Sample roles and their target assignees
Role Target Assignee

BankClient Bank clients
Teller Bank employees

SecuritiesClerk Bank employees
BranchManager Bank employees

Permissions

Permissions are mapped to operations, the mapping relationship can have
different cardinalities. In this example, we assume a one-to-one mapping to the
sample protected operations. The sample permissions are shown in Table A.3.

POLICY ELEMENTS AND RELATIONS 139

Table A.3: Sample permissions mapped to the operations they protect
Permission Protected Operation

CheckBalance CheckBalance(AccountNumber)

TransferFunds WireTransfer(Type, OriginatingAccount,
BeneficiaryAccount, Amount, Currency)

WithdrawCash CashWithdrawal (Account, Amount)
OnboardNewClient ClientOnboarding
ApproveTransaction TransactionApproval (Account, Amount)

Protected Operations

Any access control system aims at protecting a set of operations in an
organization. In this example, we aim at protecting the following operations:

CheckBalance:
This operation is available for both bank employees and bank clients. The
CheckBalance operation is used to check the account balance of a given account.

WireTransfer:
This operation is available for both bank employees and bank clients. The
WireTransfer operation allows a user to transfer funds from an account to
another. Wire transfers have different types, for the sake of simplicity, we
consider three types: domestic, cross-border, and securities.

CashWithdrawal:
This operation is also available for bank employees and bank clients. It enables
a user to withdraw cash either from an ATM machine or over the counter.

ClientOnboarding:
This operation is only available for bank employees. It enables a user to onboard
a new client to the bank.

TransactionApproval:
This operation is only available for bank employees. It enables a manager user
to approve a transaction done by any of his subordinates.

140 A MOTIVATING EXAMPLE

A.2.2 Relations

User-Role Assignment

Users are assigned to roles according to their job functions. Table A.4 shows
the user-role assignment of our example users and roles.

Table A.4: Sample user-role assignments
User Role
User1 BankClient
User2 Teller
User3 Teller
User4 SecuritiesClerk
User5 BranchManager

Role-Permission Assignment

Permissions are assigned to roles according to job functions required permissions.
Table A.5 shows the role-permission assignment of our example roles and
permissions.

Table A.5: Sample role-permission assignments
Role Permission

BankClient
CheckBalance
TransferFunds
DepositCash

SecuritiesClerk
CheckBalance
TransferFunds

Teller
CheckBalance
TransferFunds
DepositCash

OnBoardNewClient

BranchManager
CheckBalance

OnboardNewClient
ApproveTransaction

CORE MODEL POLICIES 141

A.3 Core Model Policies

A.3.1 Users

Policy 1. If a bank employee is also a bank client, then they are considered
two different users.

Policy 2. Each user gets automatically restrained from access if he is on leave
e.g. holiday or sickness.

Policy 3. According to anti-money laundering regulations, banks need to
maintain copies of valid identity cards of their clients. Therefore, a bank client
user has an expiry date that is the expiry date of his ID document. Expired
users cannot perform any protected operation.

A.3.2 Roles

Policy 4. Roles have a remote activation policy, which means some roles can
be activated only from bank premises and some roles can be activated from
anywhere.

Table A.6 shows activation policies of our example roles:

Table A.6: Sample role policies
Role Activation
BankClient Anywhere
Teller Branch
SecuritiesClerk Head Office

A.3.3 Permissions

Permission policies are driven from the protected operations policies given
below.

CheckBalance

Policy 5. If the user is a bank employee, working in a branch, and has
permission CheckBlanace, then he can check the account balance of any client
in his branch only.

142 A MOTIVATING EXAMPLE

Policy 6. If the user is a bank employee, working in the bank head office, and
has permission CheckBlanace, then he can check account balance of any client
in the bank, given that the account is of an account type that the user is allowed
for e.g. loan, current, and savings.

Policy 7. If the user is a bank client, then he can check account balance of his
account or an account for which he is a guardian.

WireTransfer

Policy 8. If the user is a bank employee, then:

- The user is allowed for a predefined set of wire transfer types.

- The user has a threshold for the maximum limit of a wire transfer he can
perform.

Policy 9. If the user is a bank client, then he can do any wire transfer type.
The user must have a threshold limit for the maximum amount of the wire
transfer.

CashWithdrawal

Policy 10. If the user is a bank employee having permission to withdraw cash,
then:

- The user must be a branch bank employee. Head office users cannot
perform cash withdrawal.

- The user can only withdraw cash from an account in his branch.

- The cash withdrawal operation can only be performed from the branch.
The user cannot perform this operation if he is working from home.

- Each user must be assigned a threshold limit for the maximum amount he
can withdraw.

Policy 11. If the user is a bank client, then:

- The user can withdraw from anywhere i.e. from branch, or any ATM.

- The user has a daily limit, a weekly limit, and a limit per withdrawal.

CORE MODEL POLICIES 143

TransactionApproval

Policy 12. This operation is only available for bank employees:

- The user has a threshold for the maximum limit of the transaction he can
approve.

A.3.4 User-Role

Policy 13. A bank policy specifies that a user might hold a role for a temporary
period of time. In this example, let’s consider that User3 to role Teller ends on
his contract end date. The expiry policies for our sample user-role assignments
are shown in Table A.7.

Table A.7: Sample user-role policies
User-Role Expiry
User1-BankClient N/A
User2-Teller N/A
User3-Teller 01/01/2024
User4-SecuritiesClerk N/A
User5-BranchManager N/A

A.3.5 Role-Permission

Policy 14. A policy that is often required for some permissions is the activation
time interval according to the assigned role. Table A.8 shows the sample
role-permission time intervals.

Table A.8: Sample role-permission policies
Role-Permission Activation Interval
BankClient-TransferFunds N/A
Teller-TransferFunds 08:00 to 16:00
SecuritiesClerk-TransferFunds 09:00 to 17:00

144 A MOTIVATING EXAMPLE

A.3.6 User-Permission

Policy 15. There is no direct assignment of users to permissions in RBAC.
This relation is achieved through roles assignment to both users and permissions.
However, policies are often needed to control users activation of permissions.
Table A.9 shows sample policies on the roles assignment to the TransferFunds
permission:

Table A.9: Sample user-permission policies
UserPermission Policies

User1-BankClient-TransferFunds
From Belgium Amount <= 50,000

Outside Belgium Amount <= 10,000
Fund Types: {Any}

Branch: N/A

User2-Teller-TransferFunds From Belgium Amount <= 50,000
Fund Types: {CrossBorder, Domestic}

Branch: Brussels

User3-Teller-TransferFunds From Belgium Amount <= 100,000
Fund Types: {Domestic}

Branch: Brussels

User4-Secur.Clerk-TransferFunds From Belgium Amount <= 100,000
Fund Types: {Securities}

Branch: HeadOffice

User5-BranchMngr-ApproveTrans. From Belgium Amount <= 500,000
Branch: Brussels

A.4 Hierarchical Policies

A.4.1 Role Hierarchy

In real world banking, roles are usually assigned a relatively high number of
permissions. To reduce the administration burden, two policies are required
to reduce the number of direct assignment of permissions to roles representing
hierarchical positions.

Policy 16. The Teller role is considered superior to the SecuritiesClerk role. It
inherits all its permissions. This policy requires elimination of direct assignment
of the permissions included in SecuritiesClerk. Therefore, the Teller gets these
permissions indirectly through the role hierarchy.

DELEGATION POLICIES 145

Policy 17. The BranchManager role is considered superior to all roles in
the branch including the Teller and SecuritiesClerk roles. It inherits all role
permissions excluding a set of permissions that the branch manager is not
allowed to possess. This policy requires elimination of direct assignment of the
permissions included in roles below the BranchManager role.

The Teller role already inherits all permissions from the SecuiritiesClerk role.
Therefore, there is no need to define hierarchy between BranchManager and
SecuirtiesClerk, since it is included implicitly. A hierarchy is needed, therefore,
between the BranchManager and the Teller roles. The set of permissions that
needs to be excluded are: TransferFunds and WithdrawCash. The BranchMan-
ager role has one permission directly assigned to it; ApproveTransaction, which
neither Teller nor SecuritiesClerk possess.

A.4.2 User Hierarchy

The user hierarchy is important to know who is the manager of a given user.
For example, if a manager needs to approve a transaction from one of his
subordinates, we need to know the manager of the subordinate so we can
redirect the approval request to him.
Policy 18. This policy requires that the access control system be aware of who
is managing whom in the branch. The policy simply requires awareness of the
simple user hierarchy depicted in Fig. A.1.

Note that the user hierarchy does not necessarily project the role hierarchy.
For example, the Teller role is inheriting the SecuritiesClerk role, however, the
teller User2 does not manage the securities clerk User4.

A.5 Delegation Policies

Some of the positions in our banking branch example are not redundant. This
means that absence of some resources could be a showstopper for the branch
operations. Therefore, a delegation mechanism is needed in order to assign
access rights of an unavailable resource to another resource. The following
policies control the delegation of user access rights:
Policy 19. If User2, User3, or User4 is absent, then his role can be delegated
to any user in the branch. In this case, the delegated user must get the same
parameter values assigned to User2. Before delegation takes effect, the delegation
must be approved by the branch manager and any other user in the branch.

146 A MOTIVATING EXAMPLE

Figure A.1: Bank branch user hierarchy

Policy 20. If User5 is absent, then his role can be delegated to another user,
provided that the delegation gets approved by the HR manager of the bank and
by the bank branch operations director of the bank head office. In this case, the
delegated user must get the same parameter values assigned to User5.

A.6 Conflict of Interest Policies

In this section, we provide some policies that aim at preventing insider fraud in
the bank branch.

Policy 21. No user in the bank branch is allowed to execute any transaction
involving his own account, as an ordering customer or a beneficiary customer.

Policy 22. Transactions must be subject to the 2X-Eye principle. for any X
above 1, the users representing 2 to X must be the last users to take an action
on the transaction in the workflow.

The 2X-Eye principle means that multiple users must participate in the
transaction workflow. X represents the number of users who must participate
in the transaction. For example, if X=2, then the 4-eyes concept is applied,
which means 2 users. If X=3, then it is the 6-eye concept meaning 3 users.

In case of 4-eyes, the second user must be the last user to take an action on
the transaction. In case of 6-eyes, no other users can take any action on the

CONFLICT OF INTEREST POLICIES 147

transaction after the second and the third users. The idea is to prevent that the
transaction gets modified by any other users after it gets approved by the extra
users. Users actions are allowed after the first 2-eyes user. For example, if 4-eyes
is applicable on a given transaction, then User1 can create the transaction,
User2 modifies the payment instructions, then transaction gets approved by
User3 and User4.

Policy 23. Any over-the-counter transaction that exceeds 50K EUR must get
authorized by a user other than the user who created the transaction. The
authorizor must be an nth line manager of the user who created the transaction.
No authorization is required for transactions below 50K EUR.

Policy 24. Any over-the-counter transaction that exceeds 100K EUR must
get authorized by branch manager. The authorizor must be assigned the role
BankBranchManager

Policy 25. Any over-the-counter transaction that exceeds 500K EUR must
get two different approvals by two users other than the user who created the
transaction. The first approval is called Verifier, which must be a user who is
assigned the role BankBranchManager. The second approval is called Authorizer,
which must be a user in the bank Head Office, and assigned to any of the following
roles:HOOperations, RegionalOperationsManager, or OperationsDirector.

Appendix B

ROAC Formal Model

In this appendix we provide the core ROAC model, which is the flat ROAC
model, it does not include any hierarchies on the model elements. We split the
definition of core ROAC model into a family of three models. The models are
given one by one based on the increasing security functionality of the models.

B.1 The Core ROAC Model

The models are denoted ROAC0, ROAC1 and ROAC2. ROAC0 is a basic model
that is similar to the RBAC standard model but modeled in the object-oriented
paradigm. It serves as an enabler of the next two models. ROAC1 is the
parameterized version of ROAC0, it adds permission parameters and provides
an architecture for managing the parameters. ROAC2 is a context aware version
of ROAC1, which adds context to the model elements and relations. Each
version of the model inherits all characteristics of the previous model. Fig. B.1
shows the relationship among the three ROAC models.

B.1.1 The Basic ROAC Model (ROAC0)

In this basic version of the model, we show the different elements and relations
and their modeling in object-oriented. We also give an administrative model
which we call AuthorizationPolicy that manages the relations and provides the
necessary functionalities to determine the authorization decision.

149

150 ROAC FORMAL MODEL

Figure B.1: Relationship among the core ROAC models

Figure B.2: Relationship among the elements of ROAC0

Policy Elements of ROAC0

ROAC0 has three main elements: users, roles, and permissions. All of these
three elements are descendants from the abstract ROAC element. Fig. B.2
shows the generalization relation among the ROAC elements.

The abstract ROAC element is given by the following Python definition:
@dataclass(frozen=True, eq=False)
class ROACElement:

pass

The following rules apply on the abstract element:

- Members from a given sub-element (e.g. set of users) are defined as
instances from the sub-element definition (e.g. User).

THE CORE ROAC MODEL 151

- Decedents can be defined from each sub-element definition by generalizing
the sub-element definition.

- The abstract element can contain attributes or behavior that is common
among all instances of its sub-elements or their specializations if any.

Definition 1. Users:

A user in the ROAC model is a principal that is uniquely identifiable in a
way making it accountable for its actions. The identity is also used in the
authentication process and other security aspects such as non-repudiation.
Unique identity can be achieved by using unique usernames. Users can
be either humans or computer applications seeking access to information
systems. The user blue-print can have attributes and implementation of
behavior.

The user element is defined as follows in Python:
@dataclass(frozen=True, eq=False)
class User(ROACElement):

name: str
dateOfBirth: date
Other user attributes

An instance from User or its descendants must be defined for each user in the
system.

Definition 2. Roles:

A role is defined as a job function within the context of an organization
with some associated semantics regarding the authority and responsibility
conferred on the user assigned to the role [9]. Role is the centric
element in RBAC relations, which represents a group of access rights
(permissions) required often by a group of users who play a similar role in
the organization.

The role element is defined as follows in Python:
@dataclass(frozen=True, eq=False)
class Role(ROACElement):

pass

152 ROAC FORMAL MODEL

Each role must have a unique identity across all its instances.

Definition 3. Permissions:

A permission is an access right to execute one or more protected operations
that give access to protected objects.

The permission element is defined as follows in Python:
@dataclass(frozen=True, eq=False)
class Permission(ROACElement):

pass

Each permission must have a unique identity across all its instances.

Definition 4. Protected Operations:

A protected operation in the context of the ROAC model is any operation
that represents a programmed business logic, which users need to be
authorized to execute. Operations can also access protected objects that
also require that a user is authorized prior to accessing.

Relations of ROAC0

ROAC0 has two relations: user-role assignment and role-permission assignment.
Both relations are descendants from the abstract ROACRelation. In the ROAC
model, both relations represent a binary association between instances of
two different elements. Therefore, we use the word association rather than
assignment to denote the definition of the relations. The assignments are
mappings between sets of elements, which we tackle in the next subsection.
Fig. B.3 shows the generalization relation on the ROAC relations.

The abstract ROAC Relation is given by the following Python definition:
@dataclass(frozen=True)
class ROACRelation:

pass

The following rules apply on the abstract relation:

- Members from a given relation (e.g. set of user-role associations) are
defined as instances from the relation definition (e.g. UserRoleAssociation).

THE CORE ROAC MODEL 153

Figure B.3: Relationship among relations of ROAC0

- Decedents can be defined from each relation definition by generalizing the
relation definition.

- The abstract relation can contain attributes or behavior that is common
among all instances of relations or their specializations if any.

Definition 5. User-Role Assignment:

The user-role assignment represents a set of user-role associations, which
model how roles are assigned to users. A user-role association is a link
between an instance of a user to a role instance. The assignment relation
is many-to-many. A user instance can be assigned multiple role instances
and the same role instance can be assigned to multiple user instances.

The user-role association relation is defined as follows in Python:

@dataclass(frozen=True)
class UserRoleAssociation(ROACRelation):

user: User
role: Role

Definition 6. Role-Permission Assignment:

The role-permission assignment is a many-to-many mapping of permissions
to roles. It represents a set of binary role-permission associations among
role instances and permission instances.

The role-permission association relation is defined as follows in Python:

154 ROAC FORMAL MODEL

@dataclass(frozen=True)
class RolePermissionAssociation(ROACRelation):

role: Role
permission: Permission

The Administrative Model (AuthorizationPolicy)

Relations assignments are two sets of user-role associations and role-permission
associations. The AuthorizationPolicy has two dictionary data structures to
contain the individual relations. Both relations are modeled using a dictionary
of dictionary.

The definition of class AuthorizationPolicy and the relations data-structures in
Python are shown below:

@dataclass_with_check(frozen=True)
class AuthorizationPolicy:

userRoleAssociations: frozendict[User, frozendict[Role, UserRoleAssociation]]
rolePermissionAssociations: frozendict[Role, frozendict[Permission,

↪→ RolePermissionAssociation]]

The dataclass_with_check is a decorator, which we defined to allow for adding
statements to the end of the constructor without having to define the complete
constructor explicitly.

By creating an instance from AuthorizationPolicy, the following constraints on
the policy elements and their relations apply:

Constraint 1. If one element is associated to multiple elements, then either
the same instance of the elements can be used in the multiple associations, or a
new instance can be created and associated to each of the multiple elements. In
this case, we consider different instances equal if their identifier is the same.

A. If two user instances have the same identity, then they are considered
equal. Therefore, it is not allowed to have instances with the same identity
but different other attributes.

B. If two role instances have the same identity, then they are considered
equal. Therefore, it is not allowed to have instances with the same identity
but different other attributes.

THE CORE ROAC MODEL 155

C. If two permission instances have the same identity, then they are
considered equal. Therefore, it is not allowed to have instances with
the same identity but different other attributes.

In our Python implementation, we used object identities rather than definition
an identity attribute for the sake of simplicity. We pass eq=False as an additional
keyword argument to the @dataclass decorator of Permission, Role, and User.
This causes two instances to be considered equal if and only if they are the
same object.

Constraint 2. The key in userRoleAssociations is the User attribute of the
UserRoleAssociation object. The key of the sub-dictionary in userRoleAssocia-
tions is the Role attribute of the UserRoleAssociation object.

Constraint 3. The key in rolePermissionAssociations is the Role attribute of
the rolePermissionAssociations object. The key of the sub-dictionary in rolePer-
missionAssociations is the Permission attribute of the RolePermissionAssociation
object.

The following Python code is added to the constructor of AuthorizationPolicy
in order to validate constraints: 2 and 3:

Validate Constraint 2
for user in self.userRoleAssociations.keys():

for role, userRole in self.userRoleAssociations[user].items():
assert userRole.user == user and userRole.role == role

Validate Constraint 3
for role in self.rolePermissionAssociations.keys():

for permission, rolePermission in self.rolePermissionAssociations[role].items():
assert rolePermission.role == role and rolePermission.permission == permission

The AuthorizationPolicy class defines a set of administrative methods, which are
used to retrieve authorization information from the relations data structures:

User Roles:

The rolesAssignedToUser method returns a set of all roles assigned to a given
user.

def rolesAssignedToUser(self, user: User) −> frozenset[Role]:
return frozenset(self.userRoleAssociations[user])

156 ROAC FORMAL MODEL

Role Permissions:

The permissionsOfRole method returns a set containing all permissions assigned
to a given role.

def permissionsOfRole(self, role: Role) −> frozenset[Permission]:
return frozenset(self.rolePermissionAssociations[role])

User Permissions:

The permissionsOfUser method returns a set containing all permissions of
all roles assigned to a given user. If multiple roles that contain overlapping
permissions are assigned to the same user, then the permission appears only
once in the set of user permissions.

def permissionsOfUser(self, user: User) −> frozenset[Permission]:
return frozenset(r for rs in self.rolesAssignedToUser(user) for r in self.permissionsOfRole

↪→ (rs))

Assigned Users:

The getAllUsers method returns a dictionary of all users that are assigned to
roles.

def getAllUsers(self) −> frozenset[User]:
return frozenset(r.user for rs in self.userRoleAssociations.values() for r in rs.values())

Assigned Roles:

The getAllRoles method returns a dictionary of all roles that have permissions
assigned to them.

def getAllRoles(self) −> frozenset[Role]:
return frozenset(r.role for rs in self.rolePermissionAssociations.values() for r in rs.values

↪→ ())p

Assigned Permissions:

The getAllPermissions method returns a dictionary of all permissions assigned
to roles.

THE CORE ROAC MODEL 157

def getAllPermissions(self) −> frozenset[Permission]:
return frozenset(r.permission for rs in self.rolePermissionAssociations.values() for r in rs.

↪→ values())

Authorization Decisions in ROAC0

The authorization decision in ROAC0 is calculated simply by verifying that the
set of permissions of the user contains the required permission for executing
the protected operation. The permissions set of a given user can be retrieved
using the administrative method permissionsOfUser defined above.

B.1.2 The Parameterized ROAC Model (ROAC1)

ROAC1 is defined from ROAC0 by adding permission parameters. The
parameterized ROAC model not only gives the possibility to define permission
parameters, but also adds a business logic for validation of parameters.
Validation of parameters specifies how parameters are matched and provides
a mechanism for accessing external information that might be needed for the
validation.

We start by defining permission parameters, then we define permission validators
that are used to validate the parameters. Afterwards, we show updates on the
impacted elements and relations, then we show the updated administrative
model and authorization decision.

The ROAC1 model is depicted in Fig. B.4.

B.1.3 Parameters

Definition 7. Parameters:

A parameter in the ROAC model is a composite structural feature that is
defined in permissions. Parameters are composed of an identity (e.g. object
identity or name), and a data type, which is the data type of the parameter
value. The parameter value is bound during the user-role assignment of a
role that contains parameterized permissions.

158 ROAC FORMAL MODEL

Figure B.4: The ROAC1 model

Parameters represent a policy on the level of user-permission assignment,
a relation that does not exist directly in RBAC. Therefore, a parameter
propagation mechanism is used to propagate parameters to the user-role
assignment relation. Propagation of parameters is given in the next definition.

Definition 8. Propagation of Parameters:

Propagation of parameters has two different types: back propagation and
forward propagation. Back propagation means that, for a given role, all
parameters of all permissions assigned to that role are propagated back
to the user-role association through assigned roles. And for a given user,
who is assigned to one or more roles, values are bound for all parameters
propagated in all roles assigned to that user. Forward propagation means
that a permission can get the values bound to its parameters for a given
user.

Although parameters are defined in permissions, their values cannot be assigned
in permission instances as attributes. Binding parameters in the user-role
association enables each user to have a different binding of the same permission
parameter.

As parameter bindings are set in the user-role assignment relation and the fact
that the authorization decision is calculated locally in permission validators,
permissions must have access to the user parameter bindings. For this reason,
permissions have a combined association with users through roles, which enables

THE CORE ROAC MODEL 159

extracting parameter values for a given user from the user-role relation in a
forward propagation.

The permission parameter is defined as follows in Python:
@dataclass(frozen=True)
class Parameter:

name: str
dataType: type

The ParameterBinding class is used for setting a value for a given parameter.
The constructor of the ParameterBinding validates the following constraints
before an instance is created:

Constraint 4. Correctness of parameter bindings is given by the following
sub-constraints:

A. A parameter cannot be bound to a null value.

B. The value bound to a parameter must respect the data type of the
parameter.

@dataclass_with_check(frozen=True)
class ParameterBinding:

parameter: Parameter
value: object

def __check__(self):
Validate Constraint 4.A
assert self.value is not None

Validate Constraint 4.B
assert isinstance(self.value, self.parameter.dataType)

Permissions

The permission definition is impacted by parameterization. The following
definitions state the changes to parameterized permissions:

Definition 9. Parameterized Permissions:

A parameterized permission is any permission that has parameters. A
parameterized permission is an instance from a parameterized permission

160 ROAC FORMAL MODEL

definition, which must be defined as a descendant of the permission and
must override the validator method. Non-parameterized permissions can
be defined as instances from Permission directly.

Definition 10. Validators:

A validator is a special kind of behavior defined only in permissions for
computing an authorization decision. The validator definition consists of a
signature, a body, and a return value. The signature specifies the validator
name which is always "validator", in addition to input arguments. The
body of the validator contains business logic to determine the authorization
decision. This is usually a result of asserting the parameter values against
the operation values. The business logic can be a simple matching or a more
complex logic that involves conversions, access to external data sources,
etc. Validators always return Boolean values. True if authorization is
granted and false if denied.

The updated Python definition of the parameterized permission is given below:
@dataclass_with_check(frozen=True, eq=False)
class Permission(ROACElement):

parameters: frozenset[Parameter]

def __check__(self):
assert_no_duplicates(self.parameters, lambda p: p.name)

def validator(self, ∗args, ∗∗kwargs) −> bool:
return True

The assert_no_duplicates method verifies that there are no multiple parameters
with the same name in the parameters set.

User-Role Association

The user-role association is impacted by parameterization, as parameters
bindings need to be set at this step. The following constraints are validated
prior to creating any user-role association:

Constraint 5. If two parameters have the same name, they must also
have the same data type.

Constraint 6. If multiple permissions that have overlapping parameters
(with same name and data type) are assigned to a single role, then

THE CORE ROAC MODEL 161

parameters with same name and data type are consolidated to one
parameter in the user-role association.

The updated Python definition of the user-role association is shown below:
@dataclass_with_check(frozen=True)
class UserRoleAssociation(ROACRelation):

user: User
role: Role
parameterBindings: frozenset[ParameterBinding]

def __check__(self):
Validate Constraint 6
assert_no_duplicates(self.parameterBindings, lambda p: p.parameter)

The assert_no_duplicates method verifies that there are no multiple parameters
with the same name in the parameterBindings set.

To satisfy constraint 6, parameterBindings are maintained in a set data-structure.

Administrative Model

The administrative model AuthorizationPolicy is also impacted by parameteri-
zation. New administrative methods are added for managing parameters.

The following constraint on parameters is validated in the constructor of the
AuthorizationPolicy class:

Constraint 7. Correctness of parameters are validated according to the
following sub-constraints:

A. When a role is assigned to a user, then all consolidated parameters
propagated from permissions of that role must be included in the
user-role assignment.

B. If multiple roles, which are assigned permissions with overlapping
parameters, are assigned to the same user, then, overlapping
parameters must have the same value binding.

162 ROAC FORMAL MODEL

userRoleAssocSet = frozenset(r for rs in self.userRoleAssociations.values() for r in rs.
↪→ values())

for userRoleAssoc in userRoleAssocSet:
Valiadte Constraint 7.A
paramsFromBindings = frozenset((binding.parameter for binding in userRoleAssoc.

↪→ parameterBindings))
assert self.parametersOfRolePermissions(userRoleAssoc.role).issubset(

↪→ paramsFromBindings)

Valiadte Constraint 7.B
userParamBindings = self.parameterBindingsOfUser(userRoleAssoc.user)
for paramBinding in userRoleAssoc.parameterBindings:

assert paramBinding.value == userParamBindings[paramBinding.parameter]

Two new administrative methods are added to the AuthorizationPolicy class:

Role Parameters:

The parametersOfRolePermissions returns a set containing all parameters of all
permissions of a given role.

def parametersOfRolePermissions(self, role: Role) −> frozenset[Parameter]:
return frozenset(r for rs in self.rolePermissionAssociations[role].values() for r in rs.

↪→ permission.parameters)

User Parameter Bindings:

The parameterBindingsOfUser returns a set of all parameter bindings of a
given user. This method is used in the permission validators to get the
parameter values assigned to the user requesting authorization. Validators match
the parameter bindings against the corresponding values from the protected
operation.

def parameterBindingsOfUser(self, user: User) −> frozendict[Parameter, object]:
return frozendict({r.parameter: r.value for rs in self.userRoleAssociations[user].values()

↪→ for r in rs.parameterBindings})

Authorization Decision in ROAC1

Authorization decision is ROAC1 involves two steps. The first step is the
authorization decision of ROAC0, which checks if a needed permission is present.

THE CORE ROAC MODEL 163

The second step is verifying the permission parameter bindings of the user.
The authorization decision is determined by the permission validator. For
non-parameterized permission, the validator always returns a positive decision.
However, in parameterized permissions, the decision is determined based on
more complex business logic that implements the required policies related to
parameterization.

An Example Parameterized Permission

Consider the TransferFunds permission in our motivating example. The
permission is parameterized by the maximum amount allowed for a wire transfer
and the wire transfer type. The policy requires that the wire transfer protected
operation gets authorized if the amount is less than or equal to the amount
threshold assigned to the user, and if the wire transfer type is one of the wire
transfer types assigned to the user. The wire transfer protected operation can
accept wire transfers of different currencies. Therefore, the amount given in
the wire transfer might not be ready to be matched directly to the amount
parameter binding of the user. For example, if the base amount in the bank is
EUR, then the amount threshold bindings for users are set against EUR. If the
currency in the wire transfer is YEN, then we need first to find the equivalent
amount against EUR, which is calculated by multiplying the exchange rate of
YEN/EUR to the wire amount. This business logic must be implemented in the
permission validator.

The permission validator gets the parameter bindings of the user from the
AuthorizationPolicy class using the method parameterBindingsOfUser. The
following Python code shows the definition of the TransferFunds permission:

164 ROAC FORMAL MODEL

@dataclass(frozen=True, eq=False)
class Treasury:

exchangeRates = frozendict({"EUR": 1, "USD": 0.82, "YEN": 0.01})

def exchangeRate(self, currency: str):
return self.exchangeRates[currency]

@dataclass(frozen=True, eq=False)
class TransferFundsPermission(Permission):

fundType = Parameter("FundType", frozenset[str])
fundAmount = Parameter("Amount", float)

def __init__(self):
super().__init__(parameters=frozenset([self.fundType, self.fundAmount]))

def validator(self, authPolicy: AuthorizationPolicy, user: User, wireType: str,
↪→ wireAmount: float, wireCurrency: str):

if self not in authPolicy.permissionsOfUser(user):
return False

userBindings = authPolicy.parameterBindingsOfUser(user)

amtBaseCurr = wireAmount ∗ Treasury.exchangeRate(wireCurrency)

return amtBaseCurr <= userBindings[self.fundAmount] and wireType in userBindings
↪→ [self.fundType]

B.1.4 The Context-Aware ROAC Model (ROAC2)

ROAC2 is the parameterized model ROAC1 plus context policies.

Context is defined in the dictionary as "words around other words that help
determine the meaning" and "a time and setting in which an event happens"
[2]. In access control, context represents the information taken into account
while making the access control decisions, such information is also suitable for
applications where access to resources is controlled by exploiting contexts of the
resources in the policy [79]. For example, a policy might depend on contextual
information such as current time, geo-location from which the request has been
initiated, if a user is on holiday, etc.

In ROAC2, context can be defined in any element or relation. When context is
defined in an element or a relation, then the same context is shared across all
instances of the same element or the relation. Unlike permission parameters,
which are considered as custom policies per user assignment to the parameterized

THE CORE ROAC MODEL 165

permission. To explain the difference, consider the CashDeposit permission of
our motivating example, when the permission gets assigned to User1 through
the role R1, we can set the parameter value of Amount to 10,000. However, we
can set a different amount value when we assign the permission to User2 e.g.
5000. Per contra, if we define a context policy for User, e.g. a user must not be
on holiday when he activates any permission, then the same policy is applied
on all user instances.

Context must always be defined at the highest possible parent of an element or
relation. In case context needs to be customized for specific instances of a given
element or relation, then sub-elements or sub-relations needs to be defined using
the inheritance feature of the ROAC model, then specific context is defined in
the sub-element or sub-relation. Policies that are shared among all elements can
be defined in the ROACElement, and similarly context policies that are shared
among the two relations can be defined in the ROACRelation. For example, if a
policy of expiry date is needed for all instances of users, roles, and permissions,
then it can be defined in the ROACElement. If expiry date is only needed for
the instances of users, then that context can be defined in the User element.
However, if an extra context is applicable only on a subset of users, for example,
restricted working hours, that is only applicable on this subset of users, then
a sub-user element can be created e.g. RestrictedUser, in which the restricted
hours intervals can be defined as a context. The same concept applies to other
elements and relations.

The ROAC model have different levels of contexts, they are ordered below
top-down from general to specific:

1. Role

2. Permission

3. Role-permission association

4. User

5. User-role association

6. Parameters (user-permission relation)

There are two constraints applicable on the above levels:

Constraint 8. Any policy that can be defined at a general level can be defined
in a more specific level.

166 ROAC FORMAL MODEL

Figure B.5: The ROAC2 model

Constraint 9. A policy must be defined at the most general possible level, to
avoid complexity and reduce number of policies.

The core ROAC model is depicted in Fig. B.5.

To generate the ROAC2 elements and relations, any element or relation in which
context policies needs to be defined must include:

Context attributes: a dictionary of the element or relation context attributes.
The dictionary key corresponds to the attribute name, and the value represents
the value bound to the attribute. The context attribute dictionary is defined in
the super element ROACElement and the super relation ROACRelation, and
therefore, it is inherited by all elements and relations.

The context attributes dictionary is defined as follows in Python:
contextAttributes: FrozenDict[str, object]

In case attributes are needed for validating context for an element or relation,
the contextAttributes containing these attributes must be passed when creating
an instance of the element or the relation. For example, policy 4 of Table A.6 in
our motivating example states that the BankClient role can be activated from
any ware, when we create an instance from Role, we must pass the activation
location attribute as shown in the following example:

THE CORE ROAC MODEL 167

bankClient = Role(contextAttributes=frozendict({"ActivationPolicy": "AnyWare"}))

Validation of context: the method canBeActivated must be defined in any
context aware element or relation. The method validates the context then
returns a Boolean value to indicate if the context is valid or not. However,
user-permission context policies are validated in the parameterized permission
validator. The canBeActivated method is defined as follows in Python:

def canBeActivated(self, operationAttributes: frozendict[str, object]) −> bool:
Context validation business logic
return True

Validation of context in the canBeActivated method can depend on attributes
that need to be passed from the authorization request to access a given
protected operation or the canBeActivated method can extract the needed
context attributes from the environment, for example, to connect to HR system
to check if a user in on holiday. In case attributes need to be passed from the
authorization request, the attributes are provided in the operationAttributes
dictionary argument of the validator method. Therefore, a new argument is
added to the validator method signature:

operationAttributes: frozendict[str, object]

Authorization Decision:

Authorization decision is ROAC2 is determined on multi-levels. The process
starts by a user requesting authorization on a protected operation. The first
step is to invoke the canBeActivated method of the user in order to validate the
user context. Upon successful validation of the user context, we can move to
the next step, which is validation of the context of all the user-role associations
in which the user is associated. Afterwards, the role context is validated of all
roles of the active user-role associations. Then, the context is validated for all
role-permission associations of all relations in which the user active roles are
associated. Thereafter, the context is validated for all permissions of the active
role-permission relations in which the user roles are associated. The result of
this process is a set of all active permissions of the user.

168 ROAC FORMAL MODEL

If the permission to execute the protected operation is in the set of the user’s
permissions, then we move to the final step which is validating the parameter
values assigned to the user against corresponding parameter values from the
protected operation, and validating the permission context, which is achieved
by invoking the permission validator.

The different steps of the authorization decision are executed sequentially in
the given order. If the result of any step in the authorization decision returns
no active elements or relations, or the result of the permission validator is
False, then the whole process is terminated by giving an access denied decision.
The activity diagram in Fig. B.6 summarizes how an authorization decision is
determined in ROAC2.

The authorization decision business logic that returns the active permissions of
the user is implemented in a new method activePermissionsOfUser added to
the AuthorizationPolicy class. Another method activeRolesAssignedToUser is
also added, which returns the active user roles. The definition of both methods
in Python is given below:

def activeRolesAssignedToUser(self, user: User) −> frozenset[Role]:
roles = set()
if user.canBeActivated():

for k,v in self.userRoleAssociations[user].items():
if v.canBeActivated():

roles.add(v.role)
return frozenset(roles)

def activePermissionsOfUser(self, user: User, operationAttributes: frozendict[str, object])
↪→ −> frozenset:

activeUserPermissions = set()
for role in self.activeRolesAssignedToUser(user, operationAttributes):

for rolePermission in self.rolePermissionAssociations[role].values():
if rolePermission.canBeActivated(operationAttributes) and rolePermission.role.

↪→ canBeActivated(operationAttributes) and rolePermission.permission.
↪→ canBeActivated(operationAttributes):

activeUserPermissions.add(rolePermission.permission)
return frozenset(activeUserPermissions)

Revocation of Access Rights

Revocation of access is an action that involves removal of access rights. The
smallest unit of access right in RBAC is the permission. Therefore, we will

THE CORE ROAC MODEL 169

Figure B.6: The activity diagram of the ROAC2 authorization process

170 ROAC FORMAL MODEL

consider revocation of permissions. Revocation can be permanent or temporary.
Revocation of access rights is needed in various circumstances; we can identify
different types of revocations as follows:

- Revocation of one or more permission from a given role.

- Revocation of one or more permissions from a given user.

- Revocation of a permission from the access control system.

- Revocation of a role from the access control system.

Revocation of permissions from a given role:
Revoking a permission from a role is the simplest revocation type in RBAC.
Revocation can be elegantly achieved by deassigning the permission from the
role, which can be done by updating the role-permission relation. In the
ROAC2 model, the concept of logical revocation is used to revoke a permission
from the role-permission assignment. This can be achieved by introducing a
new Boolean type attribute to RolePermissionAssociation called revoked. The
canBeActivated method in the RolePermissionAssociation returns False if the
value of the revoked attribute is True.

Revocation of permissions from a given user:
Revoking permissions from a given user can be a complex task as there is no
direct assignment between users and permissions. However, revocation can be
straightforward if permissions to be revoked are constituting the permissions set
of a given role. In this case, revocation can be achieved elegantly by revoking the
role from the user. In the ROAC model, we use the concept of logical revocation,
which means that we indicate the relation as revoked. For this purpose, we
add a new Boolean type attribute in the UserRoleAssociation relation called
revoked. The canBeActivated method in the UserRoleAssociation returns False
if the value of the revoked attribute is True. Total revocation of all user access
rights can be simply achieved by revoking all roles assigned to that user.

RBAC does not support revocation of a subset of permissions of a user
role. However, in the ROAC2 model, such revocation can be achieved in
a more complex way. A new attribute can be defined in the User element
of type set, which contains the revoked permissions. Then, the methods
activePermissionsOfUser and permissionsOfUser can exclude the set of revoked
permissions from the set of user permissions.

Revocation of a role or permission from the access control system:
Revoking a role or permission completely from the access control system can be

THE CORE ROAC MODEL 171

achieved in two different ways. One possibility is by deassigning the permission
to be revoked from all roles using the role-permission revocation explained above.
Similarly, a role can be revoked from all users using the user-role revocation.

Alternatively, a new Boolean type attribute can be added to the Role and
Permission elements, called revoked. The canBeActivated method in the Role
and Permission returns False if the value of the revoked attribute is True.
Therefore, users will no longer be able to activate revoked roles or permissions.

Example Policies

To demonstrate how policies are modeled in context aware ROAC, we provide
the Python definition of some policies from our motivating example (Appendix
A).

User Policies:

The user policies 1, 2, and 3 can be defined in the canBeActivated method of
User as follows:

def canBeActivated(self, operationAttributes: frozendict[str, object]) −> bool:
Policy 1
assert self.contextAttributes["userType"] == "Client" or self.contextAttributes["

↪→ userType"] == "Employee"

Policy 2
assert self.checkIfUserIsOff() == False

Policy 3
if self.contextAttributes["userType"] == "Client":

assert self.contextAttributes["userIDExpiry"] >= date.today()

return True

The checkIfUserIsOff method connects queries in HR system and returns False
if the user is off.

User-Role Policies:
Policy 12 of user-role can be defined in the canBeActivated method of
UserRoleAssociation as follows:

172 ROAC FORMAL MODEL

def canBeActivated(self, operationAttributes: frozendict[str, object]) −> bool:
Policy 12
if "UserRoleExpiryDate" in self.contextAttributes:

if self.contextAttributes["UserRoleExpiryDate"] < date.today():
return False

return True

User-Permission Policies:
Policy 14 of user-permission shown in table 3.9 for TransferFundsPermission
can be defined in the validator of TransferFundsPermission as follows:

def validator(self, authPolicy: AuthorizationPolicy, operationAttributes: frozendict[str,
↪→ object], user: User, wireType: str, wireAmount: float, wireCurrency: str, account:
↪→ str):

if self not in authPolicy.activePermissionsOfUser(user, operationAttributes):
return False

userBindings = authPolicy.parameterBindingsOfUser(user)

if userBindings[self.branch] in ["N/A", "HeadOffice", "Any"] or isAccountInBranch(
↪→ account, userBindings[self.branch]):

return False

amtBaseCurr = wireAmount ∗ self.exchangeRate(wireCurrency)

if isSessionIpInBelgium(operationAttributes["Session"].ip):
userAmount = userBindings[self.fundAmount]["Belgium"]

else:
userAmount = userBindings[self.fundAmount]["OutsideBelgium"]

return amtBaseCurr <= userAmount and wireType in userBindings[self.fundType]

The method exchangeRate returns the exchange rate of a given currency. The
returned exchange rate is used for calculating the transaction amount against
the base currency of the bank.

The method isSessionIpInBelgium verifies if an IP address is in Belgium by
referencing a geo-location database.

A UML FORMAL MODEL OF ROAC 173

B.2 A UML Formal Model of ROAC

In this section, we include the formal model of ROAC for completeness. We use
the Unified Modeling Language (UML) [76] to formalize the definitions of the
ROAC model. UML provides four modeling layers: M0, M1, M2 and M3 as they
become more abstract. Layer M0 corresponds to the end instances (objects) or
in other words, the concrete system. M1 is the model of the system, of which
M0 is just one realization. M2 is the language used to describe the model. M3
is the most abstract level, which is used to describe UML itself or any other
modeling language [78]. Specifications of the standard UML metamodel are
provided by OMG in [76]. We start by providing the ROAC model (layers M2,
M3), which is depicted in Fig. B.7, then we provide sample M1 and M0 models,
which are depicted in Fig. B.8.

Fig. B.7 depicts the meta model of the core ROAC model. The diagram
projects the relationships between the different elements of the core ROAC
model according to the definitions of elements and their relations.

The primary goal of the ROAC metamodel (bottom of Fig. B.7 denoted ROAC
Metamodel) is to define a language for specifying the ROAC model and to define
the semantics for how model elements in the ROAC model get instantiated.

Everything in the ROC metamodel is derived from the Element parent. Classifier
is the parent of all the ROAC elements. A classifier has a set of features, some
of which are properties called attributes of the Classifier. Attribute and Behavior
such as Method are sub-elements from the Feature element. Method is called
Operation in the standard UML specifications [76] . Therefore, ROAC elements
which are instances from Classifier have both attributes and behavior.

The Feature hierarchy of the metamodel is extended with a new StructuralFeature
called Parameter, that is the permission parameter of the ROAC model. In the
standard UML metamodel [76], Classifier has a direct association with feature.
However, in the ROAC model, parameters can only be defined in permissions,
therefore, the direct association between Classifier and Feature in the ROAC
meta model has been moved one level down to Attribute and Behavior, excluding
parameter. Therefore, Parameter is directly associated with Permission. The
difference between Parameter and Attribute (both instance and static), is that
it goes across the role-permission relation to roles. We provide later-on an OCL
modeling for parameters propagation.

Similarly, the BehavioralFeature of the standard UML metamodel was also
extended with a new behavior called Validator. Therefore, the BehavioralFeature
in the ROAC metamodel has two sub-features, Method and Validator. The direct
association between Classifier and BehavioralFeature is also downgraded to level

174 ROAC FORMAL MODEL

of the Method, as validators can be only defined in permissions. Therefore, the
diagram includes a direct association between Validator and Permission.

The relations of the ROAC model are instances from Association , as
such is an instance from both Classifier and Relationship. The ROAC
relations (user-role and role-permission assignments) have a similar concept
to the AssociationClass of UML. According to UML specifications [76], "An
AssociationClass is a declaration of an association that has a set of features
of its own. An association class describes a set of objects that each share
the same specifications of features, constraints, and semantics entailed by
the association class as a kind of Class, and correspond to a unique link
instantiating the AssociationClass as a kind of Association". The ROAC
association classes UserRoleAssociation and RolePemissionAssociation specify
semantic relationships between the three ROAC element instances (User, Role
and Permission). Where UserRoleAssociation declares that there can be links
between instances of User and Role. While RolePemissionAssociation declares
that there can be links between instances of Role and Permission

An object diagram of sample users, roles, permissions and their relations is
provided in Fig. B.8. It contains two models. The top model in the figure
denoted Sample ROAC Model) is instantiated from the ROAC metamodel. The
sample ROAC model is specified at layer M1 of the UML language. The bottom
model is an object model, specified at layer M0 of UML, which is instantiated
from the sample ROAC model.

The three users depicted in the figure are instances from BankerUser, which is an
instance from User. Roles JuniorTeller and SeniorTeller are both instances from
BankerRole, which is an instance from Role. However, permissions are treated
differently, a permission instance is defined at layer M1 for each permission.
The instance JuniorDeposit is created from permission Deposit and assigned to
the JuniorTeller role, another instance SeniorDeposit of the same permission
is created and assigned to the SeniorTeller role. Both JuniorDeposit and
SeniorDeposit are considered as two different access rights, because an attribute
is defined in the permission that restricts access according to AccountType,
which has different values in both instances. Alternatively, one instance from
the permission instance CheckAccountBalance is created and assigned to both
SeniorTeller and JuniorTeller roles. The rolePermissionAssignment associates
all parameters of different permissions instances to the role instance to whom
they are assigned. The same role instance can be assigned to multiple user
instances, as shown in the assignment of JuniorTeller to both Alice and Bob.
The parameter values are set per user-role assignment record, e.g. Marc is
SeniorTeller with MaxAmount = 100K and Branch = "Leuven".

Both instances from Deposit permission grant access on the same operation

A UML FORMAL MODEL OF ROAC 175

Figure B.7: The UML Meta Model diagram of the ROAC model

176 ROAC FORMAL MODEL

instance DepositIntoCurrentAccount, which commits a new transaction with
each successful deposit operation.

B.2.1 Validators:

The UML diagram of validator is depicted in Fig. B.9.

In the standard UML meta model specifications include an item called Parameter
that is associated with behavioral features. It refers to a specification of an
argument used to pass information into or out of an invocation of behaviors.
We renamed it to argument in the diagram to avoid confusion with the ROAC
permission parameter.

B.2.2 Parameters:

The UML model of parameter is shown in Fig. B.10.

A UML FORMAL MODEL OF ROAC 177

Figure B.8: An Object diagram of sample users, roles, permissions and relations

178 ROAC FORMAL MODEL

Figure B.9: The UML diagram of validator

Figure B.10: The UML diagram of parameter

Appendix C

The Hierarchical ROAC
Formal Model

In this appendix we provide the hierarchical ROAC model. The model is
composed mainly of role and user hierarchies. Both the Python and UML
models are also provided.

C.1 Role Hierarchy

The Python model of role hierarchy includes an implementation of role
hierarchies, which is modeled as a directed graph data structure. The Python
model also includes changes to the AuthorizationPolicy administration class.

A dictionary data structure is introduced for modeling the vertices and edges
of the role hierarchy. The dictionary key is the hierarchical role, the value is a
sub-dictionary of which the key is the hierarchized role, and the value is the
exclusion set of permissions.

The following constraints are also validated to ensure correctness of the
dictionary.

Constraint 10. A role cannot hierarchize itself.

Constraint 11. The role hierarchy graph cannot include cycles, which means
that a hierarchical role cannot be hierarchized by any of its sub-roles.

179

180 THE HIERARCHICAL ROAC FORMAL MODEL

The following Python fragment shows the graph dictionary and the validation
of the constraints.

@dataclass_with_check(frozen=True)
class RoleHierarchy:

The dictionary is [role: Role, frozendict[subRole: Role, exclusionSet: frozenset]
roleHierarchyDict: frozendict[Role, frozendict[Role, frozenset]]

def __check__(self):
for role in self.roleHierarchyDict.keys():

Constraint 10
assert role not in self.roleHierarchyDict[role].keys()

Constraint 11
assert role not in self.subRoles(role)

The following set of role hierarchy administrative methods are also defined in
the RoleHierarchy class:

allHierarchicalRoles: this method returns all hierarchical roles that hierarchize
other roles.

def allHierarchicalRoles(self) −> frozenset:
return frozenset(self.roleHierarchyDict.keys())

allSubRoles: this method returns all roles that are hierarchized by other roles.
def allSubRoles(self) −> frozenset:

return frozenset({k for k, v in self.roleHierarchyDict.items() for kk, vv in v.items()})

directSubRoles: this method returns all roles that are directly hierarchized by a
given role.

def directSubRoles(self, role: Role) −> frozenset:
if role in self.roleHierarchyDict.keys():

return frozenset(self.roleHierarchyDict[role].keys())
else:

return frozenset()

subRoles: this method returns a set of all roles that are hierarchized by the
given role. The method uses recursion to depth-search all sub-roles.

ROLE HIERARCHY 181

def subRoles(self, role: Role) −> set:
directSubRoles = self.directSubRoles(role)
tmp = set(directSubRoles.copy())
for role in directSubRoles:

tmp.update(self.subRoles(role))
return tmp

subRolesExclusionSets: this method returns a dictionary of which the keys
represent all roles that are hierarchized by the given role, similar to outcome
of the subRoles method. The values of the dictionary are sets of excluded
permissions.

def subRolesExclusionSets(self, role: Role) −> dict:
if role in self.roleHierarchyDict.keys():

directSubRoles = frozendict(self.roleHierarchyDict[role].items())
else:

directSubRoles = frozendict()

tmp = dict(directSubRoles.copy())
for role in directSubRoles.keys():

tmp.update(self.subRolesExclusionSets(role))
return tmp

An instance of RoleHierrachy is defined in AuthorizationPolicy, it enables
accessing the role hierarchies administrative methods from the administration
class.

roleHierarchy: RoleHierarchy

Changes has been also made to some administrative methods, mainly, the
modifications allow to include indirect roles into account in administrative
methods.

ROAC0 :
The permissionsOfRole method is modified so that it returns permissions of
the given role, and permissions of sub-roles of the given role. There are two
implementations of this method, one for the optimistic mode and another for
the pessimistic mode. We use the optimistic implementation as default in
AuthorizationPolicy.

182 THE HIERARCHICAL ROAC FORMAL MODEL

def permissionsOfRole(self, role: Role) −> frozenset[Permission]:
directPermissions = set(self.rolePermissionAssociations[role])
indirectPermissions = set()
for k, v in self.roleHierarchy.subRolesExclusionSets(role).items():

indirectPermissions.update(set(self.rolePermissionAssociations[k]).difference(v))
return frozenset(directPermissions.union(indirectPermissions))

def permissionsOfRolePessimistic(self, role: Role) −> frozenset[Permission]:
directPermissions = set(self.rolePermissionAssociations[role])
indirectPermissions = set()
excludedPermissions = set()
for k, v in self.roleHierarchy.subRolesExclusionSets(role).items():

indirectPermissions.update(set(self.rolePermissionAssociations[k]))
excludedPermissions.update(v)

return frozenset(directPermissions.union(indirectPermissions.difference(
↪→ excludedPermissions)))

ROAC1 :
There are no changes to the ROAC1 model. However, the parameters of
hierarchized roles must be provided with the direct role assignment (the
UserRoleAssignment object). For example if User1 is assigned Role1, which has
parameter P1. Role1 hierarchizes roles Role2, which has parameter P2 and
Role3, which has parameter P3. The parameters, P1, P2, P3 must be provided
in the relation UserRoleAssociation(User1, Role1, params_P1_P2_P3).

ROAC2 :
The method activePermissionsOfUser is modified to validate context of role-
permission associations of hierarchized roles.

def activePermissionsOfUser(self, user: User) −> frozenset:
activeUserPermissions = set()
for role in set(self.rolesAssignedToUser(user)):

for rolePermission in self.rolePermissionAssociations[role].values():
if rolePermission.canBeActivated and rolePermission.role.canBeActivated() and

↪→ rolePermission.permission.canBeActivated():
activeUserPermissions.add(rolePermission.permission)

return frozenset(activeUserPermissions)

USER HIERARCHY 183

Figure C.1: Example of matrix organization structure

C.2 User Hierarchy

Hierarchical RBAC models attempt to project organization structures on role
hierarchy. However, this is not the case in the real world. To explain this
further, consider the organization chart in Fig. C.1. The chart has several
developer positions. However, it is not necessarily that all these positions
are assigned identical roles. The developers might work on different products
or projects in the organization. This might include different development
environments. Moreover, different technology might be used across different
products. Developers who work on a product have access to their products
development environment and have no access to development environments of
other products, in spite of the fact that all of them are on the same level in the
hierarchy and are assigned to the same position in the organization chart.

In a case study of an RBAC based access control system of a German bank [90],
the bank defines roles as a combination of the official position, that is defined
in the organization structure and the job function. Typical official positions
could be that of the ordinary Clerk, Group Manager or Regional Manager. Job
functions represent their daily duties such as being a financial analyst, share
technician or internal software engineer. In matrix structures, a role might
be constructed by combining the positions and products, such as Software
Developer of Product A.

The hierarchical ROAC model is extended to define hierarchies over users. In
hierarchical ROAC, hierarchy of users reflects user hierarchies in organization
structures. User hierarchies are represented as directed graphs, where each
user has at least one parent node corresponding to his direct responsible (line
manager). A user might have a second parent node, if the organization structure

184 THE HIERARCHICAL ROAC FORMAL MODEL

encompasses dual reporting lines, such as matrix structures. The directed graph
is reduced to a general tree for structures with single reporting lines, such as
functional or divisional organizations. Fig. C.2 depicts a sample user hierarchy of
the organization structure of Fig. C.1. Dotted edges represent activity reporting
lines (related to projects or products), continuous lines represent functional lines
of authority (line managers). Some nodes do not have dotted lines reporting
since they are not affiliated in one product, such as the Software Development
Manager. Functional lines of authority are mandatory in our sample structure.
Therefore, all nodes are connected to line managers.

Modeling user hierarchies with directed graphs makes it easier for finding the
right responsible (or reporting line) of any user. The graph also enables finding
the next level manager of a user, i.e. the nth line manager.

Representation of user hierarchies by adopting directed graphs incurs some
changes to user administration. The most interesting information that can
be absorbed from organization hierarchies into the user hierarchy are the line
manager, the activity manager, organization unit, project or product, and
the position title. All these fields can be integrated as attributes in the user
blueprint. However, the line and activity managers represent edges of the
graph. Therefore, administrative functions that add, modify, or delete users
must handle the graph edges when performing any action on users.

Python Model

The Python model of user hierarchy utilizes a dictionary data structure for
defining the vertices and edges of the user hierarchy. The dictionary key is the
user, the value is a sub-dictionary of which the key is the manager and the
value is the type of management relation, e.g. Line or Activity.

The following constraints are also validated to ensure correctness of the
dictionary:

Constraint 12. A user cannot be the manager of himself.

Constraint 13. There exists only one user that does not have a line manager
(The CEO of the organization). It is possible for users not to have activity
managers at all.

Constraint 14. The user hierarchy graph cannot include cycles, which means
that a subordinate user cannot be a line manager of his own line manager nor
can be a manager of his nth level manager.

Constraint 15. A user can have only one line manager. However, he can have
multiple activity managers.

USER HIERARCHY 185

Figure C.2: A directed graph modeling the users hierarchy of a matrix
organization structure.

Constraint 16. The graph edges must be defined between already defined
vertices. In other words, all line managers defined in sub-dictionaries must exist
as keys in the main dictionary.

The following Python fragment shows the graph dictionary and the validation
of the constraints:

186 THE HIERARCHICAL ROAC FORMAL MODEL

@dataclass_with_check(frozen=True)
class UserHierarchyGraph:

userHierarchy: frozendict[User, frozendict[User, str]]

def __check__(self):
for user in self.userHierarchy.keys():

Constraint 12
assert user not in self.userHierarchy[user].keys()

Constraint 14
for manager in self.userHierarchy[user].keys():

assert manager not in self.allSubordinates(user)

Constraint 15
assert len({k for k, v in self.userHierarchy[user].items() if v == "Line"}) <= 1

Constraint 16
assert self.allLineManagers().issubset(self.userHierarchy.keys())

Constraint 13
assert len({k for k, v in self.userHierarchy.items() if v == {}}) == 1

The UserHierarchyGraph includes the following administrative methods:

lineManager: returns the direct line manager of a given user.
def lineManager(self, user: User) −> User:

lineMgr = {k for k, v in self.userHierarchy[user].items() if v == "Line"}
if len(lineMgr) > 0:

return lineMgr.pop()

activityManagers: returns the set of all activity managers of a given user.
def activityManagers(self, user: User) −> frozenset:

return frozenset({k for k, v in self.userHierarchy[user].items() if v == "Activity"})

activityManagers: returns the set of all line managers of the organization.
def allLineManagers(self) −> frozenset:

return frozenset({kk for k, v in self.userHierarchy.items() for kk, vv in v.items() if vv
↪→ == "Line"})

allSubordinatesOfOrganization: returns the set of all users who have line
managers (subordinates).

UML MODEL 187

def allSubordinatesOfOrganization(self) −> frozenset:
return frozenset({k for k, v in self.userHierarchy.items() for kk, vv in v.items() if vv ==

↪→ "Line"})

organizationsCEO: returns the CEO of the organization.
def organizationsCEO(self) −> User:

ceo = {k for k, v in self.userHierarchy.items() if v == {}}
if len(ceo) == 1:

return ceo.pop()

directSubordinates: returns all direct subordinates of a given user.
def directSubordinates(self, manager: User) −> frozenset:

return frozenset({k for k, v in self.userHierarchy.items() for kk, vv in v.items() if kk ==
↪→ manager and vv == "Line"})

allSubordinates: returns all subordinates of a given manager. The method uses
recursion to depth-search all the graph.

def allSubordinates(self, manager: User) −> set:
directSubordinates = self.directSubordinates(manager)
tmp = set(directSubordinates.copy())
for user in directSubordinates:

tmp.update(self.allSubordinates(user))
return tmp

C.3 UML Model

ROAC supports two different types of generalizations: hierarchies and
inheritance. To distinguish between both different relations in the UML models,
we use different UML relationship graphical representations. We dedicate the
UML generalization relationship arrow for inheritance which is represented
graphically as a solid line ending with a triangular hollow arrowhead pointing
to the parent. And a solid filled arrowhead to represent hierarchies. Both
representations are shown in Fig. C.3.

188 THE HIERARCHICAL ROAC FORMAL MODEL

Figure C.3: Generalization arrows of inheritance and hierarchy

C.3.1 Elements & Relations Inheritance

Inheritance in ROAC is provided through the generalization relation of the UML
metamodel, which is provided in the UML superstructure [75]. Inheritance is
defined on the level of classifier, which is inherited by all ROAC elements and
relations as shown in Fig. C.4. Inheritance is a sub-type of DirectedRelationship.
The inheritance navigability between a specific and a general element or relation
is one-way, which is directed towards the general, which means that the specific
knows the general but not vice-versa.

C.3.2 Role Hierarchy

The UML class diagram of the role hierarchy in the ROAC model is shown
in Fig. C.5. The role-role hierarchy relation is defined via a new association
RoleHierrachy which defines a one-to-one exclusion set between each role-role
relation.

In both pessimistic and optimistic modes, permissions of ancestor roles are not
assigned directly to the descendant role, i.e. permissions are not included in the
role-permission assignment data structure. However, permissions of ancestor
roles are always retrieved from the ancestor roles role-permission assignments
according to the activation mode (i.e. pessimistic or optimistic). This mechanism
allows descendant roles to maintain an up to date set permissions of ancestor
roles. This kind of implicit assignment caters for changes which might be made
to ancestor role-permission relations.

Fig. C.6. depicts the object diagram of policies 16 and 17 of our motivating
example. Role BranchManager hierarchizes both Teller and SecuritiesClerk
roles. The hierrachy excludes permissions TransferFunds and DepositCash
from the hierrachy. The hierrachy permissions of role BranchManager are
CheckBalance and OnboardClient . The role BranchManager has another
permission though direct role-permission assignment ApproveTransaction.

UML MODEL 189

Figure C.4: Inheritance of ROAC elements and relations

C.3.3 User Hierarchy

Fig. C.7 depicts the class diagram of the hierarchical user element. It includes two
associations, LineManager to Subordinate which is a one-to-many relationship
and two associations with Activity (e.g. project or product). An activity
can have multiple member users. User membership in activities is optional.
Moreover, the same user can be member in different activities. Unlike elements
and relations inheritance, the user hierarchy relation is an association rather
than a directed association. Therefore, the navigability between LineManager
and Subordinate is two-way, which means that both know each other.

190 THE HIERARCHICAL ROAC FORMAL MODEL

Figure C.5: UML class diagram of role hierarchy.

UML MODEL 191

Figure C.6: Object diagram of an example multiple role hierarchy.

Figure C.7: The UML Class diagram of user component.

Appendix D

Delegation Formal Model

In this appendix, we provide the Python and UML model of OSDM.

D.1 Python Model

D.1.1 DelegationRelation

The DelegationRelation contains the delegator, delegatee, expiry date of the
delegation relation, and whether the delegation is multilevel or not. Furthermore,
it includes a dictionary, of which the keys include the roles to be delegated and
the values contain the sets of excluded permissions of each delegated role, in
case of partial delegation.

@dataclass(frozen=True)
class DelegationRelation:

delegator: User
delegatee: User
delegationRoles: frozendict[Role, frozenset[Permission]]
expiryDate: date
multiLevel: bool

193

194 DELEGATION FORMAL MODEL

D.1.2 DelegationPolicy

DelegationPolicy includes the administrative methods of delegation. Fur-
thermore, it includes two dictionary datastructures. The first dictionary is
approvalMatrix, which includes the approval matrix for all available roles in the
access control system. The key of the dictionary is the role, the value is a set of
sets containing sets of users. The relation between elements of the outer set
is logical AND , the relation between elements of the inner set is logical OR.
Consider policy 19 of our motivating example, the approval for the Teller role
requires the branch manager (User5) and any user of the branch. We can model
this policy using the approvalMatrix dictionary as follows:

{Teller:
{{User5}, {User2, User3, User4}}

}

The dictionary can also contain references to the user managers, for example, a
policy requires approval of the manager of the delegator and the manager of
the delegatee can be modeled as follows:

{Teller:
{{"ManagerOfDelegator"}, {"ManagerOfDelegatee"}}

}

In this case, the users are retrieved from the users hierarchy.

The second dictionary is delegationUserRoleAssociations, which maps users to
their delegation relations.

The DelegationPolicy class includes a reference to AuthorizationPolicy, which is
used supporting the cascading of role-permission relation and context validations.
It also includes a reference to the UserHierarchyGraph, which is used to get the
managers of delegator and delegatee for two purposes, firstly, when validating
the users who initiate the delegation. Secondly, when references to the managers
are used in the approvalMatrix dictionary.

The following code fragment shows the definition of the DelegationPolicy class
and its instance variables:

PYTHON MODEL 195

@dataclass
class DelegationPolicy:

authorizationPolicy: AuthorizationPolicy
userHierarchyGraph: UserHierarchyGraph

approvalMatrix: frozendict[Role, frozenset[frozenset[object]]]
delegationUserRoleAssociations: dict[User, DelegationRelation]

Administrative methods of DelegationPolicy:

delegate:

This method adds the delegation relation to the delegationUserRoleAssociations
dictionary. Prior to affecting the relation, it validates the following constraints:

Constraint 17. The initiator of the delegation request must be allowed to
initiate the delegation request.

Constraint 18. The delegated access rights must be part of the roles assigned
to the delegator at the time of delegation by direct assignment, role hierarchy,
or delegated roles in case multi-level delegation is allowed.

Constraint 19. The delegation cannot be affected unless all necessary approvals
are made.

196 DELEGATION FORMAL MODEL

def delegate(self, delegationRelation: DelegationRelation, delegationInitiator: User,
↪→ delegationApprovals: frozenset[User]):

Validate Constraint 17
assert delegationInitiator in (delegationRelation.delegator, delegationRelation.delegatee,

↪→ self.userHierarchyGraph.lineManager(delegationRelation.delegator), self.
↪→ userHierarchyGraph.lineManager(delegationRelation.delegatee))

Validate Constraint 18
if not delegationRelation.multiLevel:

assert set(delegationRelation.delegationRoles.keys()).issubset(self.authorizationPolicy.
↪→ rolesAssignedToUser(delegationRelation.delegator))

else:
assert set(delegationRelation.delegationRoles.keys()).issubset(self.authorizationPolicy.
↪→ rolesAssignedToUser(delegationRelation.delegator)) or (set(delegationRelation.
↪→ delegationRoles.keys()).issubset(self.delegatedRolesAssignedToUser(
↪→ delegationRelation.delegator)))

Validate Constraint 19
for role in delegationRelation.delegationRoles.keys():

for s in self.approvalMatrix[role]:
tmp = set(s)
for item in s:

if item == "ManagerOfDelegator":
tmp.remove(item)
tmp.add(self.userHierarchyGraph.lineManager(delegationRelation.delegator))

elif item == "ManagerOfDelegatee":
tmp.remove(item)
tmp.add(self.userHierarchyGraph.lineManager(delegationRelation.delegatee))

assert len(delegationApprovals.intersection(tmp)) > 0

Add the delegationRelation to the dictionary
self.delegationUserRoleAssociations[delegationRelation.delegatee] = delegationRelation

delegatedRolesAssignedToUser :

This method retruns all roles that are delegated to a given user.
def delegatedRolesAssignedToUser(self, user: User) −> frozenset[Role]:

if self.delegationUserRoleAssociations[user].expiryDate >= date.today():
return frozenset(self.delegationUserRoleAssociations[user].delegationRoles.keys())

delegatedPermissionsOfUser :

This method retruns all permissions that are delegated to a given user.

PYTHON MODEL 197

def delegatedPermissionsOfUser(self, user: User) −> frozenset:
if self.delegationUserRoleAssociations[user].expiryDate >= date.today():

return frozenset(r for rs, rv in self.delegationUserRoleAssociations[user].
↪→ delegationRoles.items() for r in self.authorizationPolicy.permissionsOfRole(rs).
↪→ difference(rv))

delegatedActivePermissionsOfUser :

This method validates the context policies of the delegator, delegator-role
assignment, delegated role, permission, and role-permission before returning
the user permissions.

def delegatedActivePermissionsOfUser(self, user: User) −> frozenset:
userPermissions = set()
activeUserPermissions = self.authorizationPolicy.activePermissionsOfUser(self.

↪→ delegationUserRoleAssociations[user].delegator)

if self.delegationUserRoleAssociations[user].expiryDate >= date.today():
userPermissions = (r for rs, rv in self.delegationUserRoleAssociations[user].
↪→ delegationRoles.items() for r in self.authorizationPolicy.permissionsOfRole(rs).
↪→ difference(rv))

return frozenset(activeUserPermissions.intersection(userPermissions))

delegatedParameterBindingsOfUser :

This method returns a dictionary of all parameters (and their values bound to
the user) of all permissions of roles delegated to a given user.

def delegatedParameterBindingsOfUser(self, user: User) −> frozendict[Parameter, object]:
↪→

if self.delegationUserRoleAssociations[user].expiryDate >= date.today():
allDelegatorParameters = self.authorizationPolicy.parameterBindingsOfUser(self.
↪→ delegationUserRoleAssociations[user].delegator)

allDelegatedPermissionParameters = frozenset(p for rs in self.
↪→ delegatedPermissionsOfUser(user) for p in rs.parameters)

return frozendict({k: v for k, v in allDelegatorParameters.items() if k in
↪→ allDelegatedPermissionParameters})

Authorization Decision

The authorization decision, first, it checks the assigned permissions (via direct
and hierarchy), in case the needed permissions are not there, or the values bound

198 DELEGATION FORMAL MODEL

to permission parameters are not enough to authorize, it tries to authorize via
the delegation relation. The following code fragment shows a sample validator:

def validator(self, authPolicy: AuthorizationPolicy, delegation: Delegation, user: User,
↪→ loanAmount: float, loanType: str):

if self in authPolicy.activePermissionsOfUser(user):
userParamBindings = authPolicy.parameterBindingsOfUser(user)
if loanAmount <= userParamBindings[self.amount] and loanType in
↪→ userParamBindings[self.loanTypes]:
return True

if self in delegation.delegatedPermissionsOfUser(user):
userParamBindings = delegation.delegatedParameterBindingsOfUser(user)
if loanAmount <= userParamBindings[self.amount] and loanType in
↪→ userParamBindings[self.loanTypes]:

return True

D.2 UML Model

In this section, we include the formal model of OSDM for completeness. We
use the Unified Modeling Language (UML) [76] to formalize the definitions of
OSDM. Fig. D.1. shows the UML class diagram of OSDM. The diagram projects
the relationships between the different components and relations of the ROAC
model extended with the OSDM model that was explained in the previous
section. The DelegationRequest represents the initiated delegation request. The
ApprovalRequest represents the requests for approving the delegation request
and then assigning the delegated role to the user by delegation. The diagram
also depicts the two types of role assignments: the original and delegation
assignments.

If multi-step delegation is not allowed, then the link between DelegationRequest
and UserRoleAssignment in Fig. D.1 must be changed to be between
DelegationRequest and Original class. The link between UserRoleAssignment
and DelegationRequest indicates that the delegation request can only be initiated
if the role to be delegated is assigned to the delegator.

UML MODEL 199

Figure D.1: The UML diagram of OSDM

Appendix E

Conflicts of Interest Formal
Model

Conflict of interest policies enforcement is triggered once the policies are
designed at a high-level. Policy enforcement comprises enforcement design
and implementation of the policies. The approach we take to enforcement of
policies segregates the policies enforcement from the task business logic. This
is achieved by an expression evaluation engine that automatically enforces
the specified policies. Enforcement using the expressions evaluation engine
comprises two steps. In the first step, the expression evaluation engine validates
the order of the task steps and generates a new task instance history (Uordered)
from (Upast), which is then used by the second step to validate the policy
algebraic expression.

E.1 The History Data Structure

Many conflict of interest policies reference historical events. The activities
that were performed and the identity of who has performed them are recorded
and are made available for consultation by security policies requiring history.
Examples of policies that require historical data are operational and historical
separation of duties. For example, in the conflict of interest policies presented
in our motivating example, it is required in policy 24 that the user authorizing
the payment is being different from the user who initiated the payment. To
monitor this, we need to record the user who has initiated the payment instance.

201

202 CONFLICTS OF INTEREST FORMAL MODEL

Figure E.1: The UML diagram of the ROAC model with history data structure

When a user subsequently attempts to authorize the payment, we can consult
the history to verify that the two activities are not performed by the same user.

We extended the ROAC model with a history data structure, which contains
records of events for each task instance. The events contain steps of the task
instance and the user who has invoked it. Each task instance can be identified
by a unique identifier, for example each payment instance should have a unique
reference number (usually called the transaction reference). The ROAC model
with the history data structure extension is shown in the UML diagram in
Fig. E.1.

The history data structure is populated after each successful task step execution.
The task step events can be recorded in the data structure in the permissions
validators. After successful completion of a task workflow, the history data
structure must have the actual workflow the task instance has followed.

The following constraints are applicable on the history data structure:

Constraint 20. Each event represents a single workflow step

Constraint 21. Events must be ordered according to their execution order.

Constraint 22. Each event must contain, the unique reference of the task
instance, the user who executed the step, and the step reference or name. Events
can contain other optional data elements such as timestamps.

ENFORCEMENT OF TASK STEPS ORDER 203

The following Python code elaborates the definition of the history data structure
in the ROAC model. The data structure is modeled by a dictionary of tuple of
dictionaries. The dictionary key is the reference of the task instance. The value
is a tuple that contains dictionaries of user and task step pairs.

Upast: frozendict[str, tuple[dict[User, str]]]

Example:
Upast = frozendict({

"12345": (
{U1: "Initiate"},
{U2: "Verify"},
{U3: "Modify"},
{U4: "Verify"},
{U5: "Authorize"}
),
"67890": (
{U1: "Initiate"},
{U2: "Verify"},
{U3: "Modify"},
{U5: "Authorize"}
)

})

E.2 Enforcement of Task Steps Order

Before getting into the details of enforcement of task steps order, we start be
defining both workflow sequenced steps and workflow ordered steps.

1- Sequenced steps:
Sequenced steps means that order of these steps must be respected
anywhere in the task workflow for all sequenced steps. For example,
if we specify that verify and authorize are sequenced steps, then verify
must be always followed by an authorize step. If a workflow includes
multiple verify steps, of which at least one is not followed by an authorize
step, then the whole task workflow is considered invalid. The sequenced
steps are defined between braces (), e.g. Verify, Authorize

2- Ordered steps:

204 CONFLICTS OF INTEREST FORMAL MODEL

Ordered steps means that the order specified of a set of given steps must
be respected at least once in the task workflow. Moreover, ordered steps
must be specified at the end of the task steps order. For example, if we
specify that verify and authorize are ordered steps, then the task workflow
can contain different verify and authorize steps, the last two steps of the
task workflow must be a verify followed by an authorize.
Ordered steps does not represent any value from SoD perspective if they
are followed by ANY. The main idea behind ordered steps, is to determine
who are the users who must be the last to see the task before it is executed,
which aims to guarantee that nothing has changed after their involvement.

The validation of the task steps order firstly validates the sequenced steps in
Upast, if the order of sequenced steps is not respected, the whole task instance
gets rejected. Secondly, the ordered steps are validated. The order must exist at
the end of Upast. If order is not respected, the workflow is not rejected, however,
it stays invalid until new steps are added to Upast that satisfy the order. Finally,
a new task instance history is generated Uordered, in which all steps of Upast

related to ordered steps that do not respect the ordered steps are reduced. This
is achieved by eliminating the task step associated with the user so that such
steps wont be used for validation of algebraic expressions.

The history data structure is populated after each successful task step execution.
The task step events can be recorded in the data structure in the permissions
validators. After successful completion of a task workflow, the history data
structure must have the actual workflow the task instance has followed. The
following constraints are applicable on the history data structure: Constraint
20. Each event represents a single workflow step Constraint 21. Events must be
ordered according to their execution order. Constraint 22. Each event must
contain, the unique reference of the task instance, the user who executed the
step, and the step reference or name. Events can contain other optional data
elements such as timestamps.

Example:

Consider the Upast example provided in the previous section, and consider the
following task steps order:

{ANY, {modify, Verify}, ANY, Verify, Authorize}

The second step in Upast is a verify, which does not respect the order, therefore,
it is eliminated. The verify step at the fourth step is maintained since it respects
the specified order. Therefore, Uordered will be as follows:

ENFORCEMENT OF TASK STEPS ORDER 205

({U1: Initiate}, {U2: None}, {U3: Modify}, {U4: Verify}, {U5: Authorize})

The following Python code listing shows the validateTaskOrder method, which
validates the task steps order and generates Uordered:

206 CONFLICTS OF INTEREST FORMAL MODEL

class ConflictOfInterest:
Upast: frozendict[str, tuple[dict[User, str]]]

def validateTaskOrder(self, taskOrder: List, taskID: str) −> tuple[dict[User, str]]:
UpastTask = list(self.Upast[taskID])
assert len(taskOrder) >= 1
UpastActivityList = [v for rs in self.Upast[taskID] for v in rs.values()]
if len(taskOrder) == 1 and taskOrder[1] == "ANY":

return self.Upast[taskID]
else:

Validate sequenced steps
for item in taskOrder:

if isinstance(item, list) and len(item) > 1:
for i in range(len(UpastActivityList)):

if UpastActivityList[i] == item[0]:
subList = UpastActivityList[i:i + len(item)]
assert subList == item
break

Validate ordered steps and generate Uordered
Uordered = list(self.Upast[taskID])
flatTaskOrder = [item for sublist in taskOrder for item in sublist]
idxLastAnyOrder = len(flatTaskOrder) − flatTaskOrder[::−1].index("ANY") − 1
if idxLastAnyOrder == len(flatTaskOrder) − 1:

return tuple(UpastTask)
else:

lastSteps = flatTaskOrder[idxLastAnyOrder + 1:len(flatTaskOrder)]
idxLastAnyUpast = len(UpastActivityList) − flatTaskOrder[::−1].index("ANY") −

↪→ 1
assert lastSteps == UpastActivityList[idxLastAnyUpast + 1: len(UpastActivityList

↪→)]
for i in range(len(UpastTask[0: idxLastAnyUpast])):

if list(UpastTask[i].values())[0] in lastSteps:
Uordered[i] = {list(UpastTask[i].keys())[0]: None}

return tuple(Uordered)

E.3 Enforcement of Algebraic Expressions

Validation of algebraic expressions checks if the ordered actual task instance steps
(Uordered) satisfies the conflict of interest policy expression. A prerequisite to
validation is to represent the algebraic expression in a binary tree structure.
The operands of the expressions (i.e., ALL, users, roles, task variables) and the
unary operators associated to them (e.g. ¬) appear in the leaf nodes of the tree,
while interior nodes represent the binary operators (i.e., ⊓, ⊔, ⊗, and ⊙).

Fig. E.2. depicts a binary tree representation of expression (7.3).

ENFORCEMENT OF ALGEBRAIC EXPRESSIONS 207

Figure E.2: Binary tree representation of expression (7.3)

208 CONFLICTS OF INTEREST FORMAL MODEL

The binary tree node is modeled as follows in Python:
class Node:

def __init__(self, value):
self.left = None
self.value = value
self.right = None

Since evaluation of the algebraic expression is done against Uordered, which
includes users and their corresponding task steps, all leaf expressions must
be first evaluated to their corresponding configurations (sets of users). Five
different operands can be encountered: All, a user, a role, a black list of
users, a black list of roles, or a black list of task variable expressions. The
black lists are defined using the unary operator ¬, e.g., ¬{Payment.Sender}
, ¬{BranchManager, Teller}, ¬{Uer1, User2}. The leaf evaluation converts
the operands to a set of users by selecting users from Uordered that satisfy the
operand term.

E.3.1 Examples of leaf evaluation

Given the following Uordered :
({U1: ’Initiate’}, {U2: None}, {U3: ’Modify’}, {U4: ’Verify’}, {U5: ’Authorize’})

Table E.1 below shows the user-role assignments of all users involved in the
task instance (Upast).

Table E.1: User-role assignments
User Roles
U1 SecuritiesClerk
U2 BranchManager, Teller
U3 Teller
U4 BranchManager
U5 OperDirector

(1) The operand term BranchManager(V erify) evaluates to the set of users:
{U4}. U2 is excluded because its verify step was eliminated.

(2) The operand term ¬{U2, U3} evaluates to the set of users: {U1, U4, U5}

ENFORCEMENT OF ALGEBRAIC EXPRESSIONS 209

(2) The operand term ¬{BranchManager, OperDirector} evaluates to the
set of users: {U1, U3}.

The following Python code listing shows how the evaluation of leaves is achieved.
The leaf is represented as a class of operand data, type of the expression, which
must be one of the following possible values: All, Role, User, UserBlackList,
RoleBlackList, TaskExpressionBlackList, the task step associated with the
operand variable, and the operand value (set of users) which is calculated
automatically.

class Leaf:
value: set

def __init__(self, data: object, expressionType: str, taskStep, parameters: frozendict[
↪→ str, object], authPolicy: AuthorizationPolicy, Uordered: tuple[dict]):

self.data = data
self.type = expressionType
self.taskStep = taskStep
self.value = set()

if expressionType == "ALL":
self.value = set([v for rs in Uordered for v in rs.keys()])

if expressionType == "User":
for item in Uordered:

if self.taskStep is not None:
if self.taskStep in item.values() and self.data in item.keys():

self.value.update(item.keys())
else:

if self.data in item.keys():
self.value.update(item.keys())

elif expressionType == "Role":
for item in Uordered:

if self.taskStep is not None:
if self.taskStep in item.values() and self.data in authPolicy.rolesAssignedToUser(

↪→ set(item.keys()).pop()):
self.value.update(item.keys())

else:
if self.data in authPolicy.rolesAssignedToUser(set(item.keys()).pop()):

self.value.update(item.keys())

elif expressionType == "UserBlackList":
if self.taskStep is not None:

taskUsers = set([v for rs in Uordered for v in rs.keys() if taskStep in rs.values()])
self.value = taskUsers.difference(self.data)

else:
taskUsers = set([v for rs in Uordered for v in rs.keys()])
self.value = taskUsers.difference(self.data)

elif expressionType == "RoleBlackList":

210 CONFLICTS OF INTEREST FORMAL MODEL

if self.taskStep is not None:
taskUsers = set([v for rs in Uordered for v in rs.keys() if taskStep in rs.values()])
for user in taskUsers:

if len(authPolicy.rolesAssignedToUser(user).intersection(self.data)) == 0:
self.value.add(user)

else:
taskUsers = set([v for rs in Uordered for v in rs.keys()])
for user in taskUsers:

if len(authPolicy.rolesAssignedToUser(user).intersection(self.data)) == 0:
self.value.add(user)

elif expressionType == "TaskExpressionBlackList":
usersBlackList = set()
for item in self.data:

usersBlackList.add(parameters[item])
if self.taskStep is not None:

taskUsers = set([v for rs in Uordered for v in rs.keys() if taskStep in rs.values()])
self.value = taskUsers.difference(usersBlackList)

else:
taskUsers = set([v for rs in Uordered for v in rs.keys()])
self.value = taskUsers.difference(usersBlackList)

For example, the operand: ¬{BranchManager(V erify)} is represented as
follows:

leaf = Leaf(data=branchManager, expressionType="Role", taskStep="Verify",
↪→ parameters=None, authPolicy=authPolicy, Uordered=Uordered)

After evaluating the leaf nodes to sets of users, the algebraic expression can
be validated by the method evaluateExpressionTree, which is part of class
ConflictOfInterest, which was defined above. The method goes through all the
nodes of the binary tree recursively and evaluates them.

EXAMPLE POLICY ENFORCEMENT 211

def evaluateExpressionTree(self, root: Node) −> set:
assert root is not None

A leaf node
if root.left is None and root.right is None:

return root.value

Evaluate left tree
leftValue = self.evaluateExpressionTree(root.left)

evaluate right tree
rightValue = self.evaluateExpressionTree(root.right)

Which operator to apply
if root.value == ’Intersection’:

return leftValue.intersection(rightValue)
elif root.value == ’Union’:

return leftValue.union(rightValue)
elif root.value == ’OTimes’:

assert len(leftValue) > 0
assert len(rightValue) > 0
return set([(x, y) for x, y in itertools.product(leftValue, rightValue) if x != y])

elif root.value == ’ODot’:
assert len(leftValue) > 0
assert len(rightValue) > 0
return set(itertools.product(leftValue, rightValue))

E.4 Example Policy Enforcement

In this example, we show how to enforce policy (25) of our motivating example.
The policy is applicable on workflows of payments exceeding 500K EUR, and
the algebraic expression of the policy is given in the following expression:

(((ALL ∩ ¬{Payment.beneficiary}) ⊗ BranchManager(V erify)) ⊗
(RegionalOperMgr(Authorize) ⊓ OperDirector(Authorize)))

The task order associated with the expression is: [ANY, V erify, Authorize].

The user-role assignments are given in Table E.1 above.

The actual task history of an example task instance (Upast) is given below:

212 CONFLICTS OF INTEREST FORMAL MODEL

Table E.2: Parameter bindings of the task instance variables
Parameter Value
Amount 600K
Payment.Beneficiary U3

Upast = frozendict({
"12345": (
{U1: "Initiate"},
{U2: "Verify"},
{U3: "Modify"},
{U4: "Verify"},
{U5: "Authorize"}
)

})

The task instance variable parameters are given in Table E.2.

The task parameters can be defined as follows:
taskParameters = frozendict({

"Amount": 600000,
"Payment.Beneficiary": U3

})

The first step of enforcement is validation of correctness of the task steps order
(Upast) and to generate Uordered. The following code listing shows the order
validation step:

taskOrder = [{’ANY’}, {"Verify"}, {"Authorize"}]
coi = ConflictOfInterest(Upast)
Uordered = coi.validateTaskOrder(taskOrder=taskOrder, taskID="12345")

The generated Uordered is:
({U1: ’Initiate’}, {U2: None}, {U3: ’Modify’}, {U4: ’Verify’}, {U5: ’Authorize’})

After validating the order and generating Uordered, we can now validate the
algebraic expression. The first step is to define the leaves of the tree. Afterwards,

EXAMPLE POLICY ENFORCEMENT 213

the expression is represented in binary tree structure, as given in the below
code listing:

Define the leaves
leaf1 = Leaf(data=None, expressionType="ALL", taskStep=None, parameters=None,

↪→ authPolicy=authPolicy, Uordered=Uordered)
leaf2 = Leaf(data={"Payment.Beneficiary"}, expressionType="TaskExpressionBlackList",

↪→ taskStep=None, parameters=taskParameters, authPolicy=authPolicy, Uordered
↪→ =Uordered)

leaf3 = Leaf(data=branchManager, expressionType="Role", taskStep="Verify",
↪→ parameters=None, authPolicy=authPolicy, Uordered=Uordered)

leaf4 = Leaf(data=regionalOperMgr, expressionType="Role", taskStep="Authorize",
↪→ parameters=None, authPolicy=authPolicy, Uordered=Uordered)

leaf5 = Leaf(data=operDirector, expressionType="Role", taskStep="Authorize",
↪→ parameters=None, authPolicy=authPolicy, Uordered=Uordered)

Construct the tree
root = Node(’OTimes’)
root.left = Node(’OTimes’)
root.left.left = Node(’Intersection’)
root.left.left.left = Node(leaf1.value)
root.left.left.right = Node(leaf2.value)
root.left.right = Node(leaf2.value)
root.left.right = Node(leaf3.value)
root.right = Node(’Union’)
root.right.left = Node(leaf4.value)
root.right.right = Node(leaf5.value)

Fig. E.3. shows the resulting evaluation of each node of the tree. The final result
of the evaluation is determined by the value of the root node. The expression
evaluation fails if the set value of the root node is empty.

214 CONFLICTS OF INTEREST FORMAL MODEL

Figure E.3: Evaluation of algebraic expression for policy of a payment task
exceeding 500K

Bibliography

[1] Best Practices in Enterprise Authorization: The Next Generation Access
Control with RBAC/ABAC Hybrid Model. EmpowerID: White Paper.

[2] Cambridge university press: Cambridge dictionary. https://dictionary.
cambridge.org/dictionary/english-french/context.

[3] Crime in England and Wales: year ending September 2021. https://
www.ons.gov.uk/peoplepopulationandcommunity/crimeandjustice/
bulletins/crimeinenglandandwales/yearendingseptember2021.

[4] INCITS 359-2004: Role Based Access Control. American National
Standards Institute, Inc.

[5] INCITS 359-2012: Role Based Access Control. American National
Standards Institute, Inc.

[6] INCITS 494-2012: Role Based Access Control - Policy Enhanced.
American National Standards Institute, Inc.

[7] Abdallah, A., and Khayat, E. A formal model for parameterized
role-based access control. In Formal Aspects in Security and Trust,
T. Dimitrakos and F. Martinelli, Eds., vol. 173 of IFIP International
Federation for Information Processing. Springer US, 2005, pp. 233–246.

[8] Ahn, G.-J., and Sandhu, R. Role-based authorization constraints
specification. ACM Transactions on Information and System Security 3,
4 (nov 2000), 207–226.

[9] ANSI INCITS 359. Standard for role based access control. American
Nat’l Standard for Information Technology (2004).

[10] Barka, E. Framework for Role-Based Delegation Models. PhD thesis,
George Mason University, 6 2002.

215

https://dictionary.cambridge.org/dictionary/english-french/context
https://dictionary.cambridge.org/dictionary/english-french/context
https://www.ons.gov.uk/peoplepopulationandcommunity/crimeandjustice/bulletins/crimeinenglandandwales/yearendingseptember2021
https://www.ons.gov.uk/peoplepopulationandcommunity/crimeandjustice/bulletins/crimeinenglandandwales/yearendingseptember2021
https://www.ons.gov.uk/peoplepopulationandcommunity/crimeandjustice/bulletins/crimeinenglandandwales/yearendingseptember2021

216 BIBLIOGRAPHY

[11] Barka, E., and Sandhu, R. Framework for role-based delegation models.
In In Proceedings of the 16th Annual Computer Security Applications
Conference (2000), ACSAC ’00, IEEE Computer Society, pp. 168–176.

[12] Barka, E., and Sandhu, R. A role-based delegation model and some
extensions. In Proceedings of 23rd National Information System Security
Conference (Baltimore, Maryland, United States, 2000), NISSC, pp. 101–
114.

[13] Basile, C., Cappadonia, A., and Lioy, A. Algebraic models to
detect and solve policy conflicts. In Computer Network Security (Berlin,
Heidelberg, 2007), V. Gorodetsky, I. Kotenko, and V. A. Skormin, Eds.,
Springer Berlin Heidelberg, pp. 242–247.

[14] Basin, D., Burri, S. J., and Karjoth, G. Dynamic enforcement of
abstract separation of duty constraints. In Computer Security – ESORICS
2009 (Berlin, Heidelberg, 2009), M. Backes and P. Ning, Eds., Springer
Berlin Heidelberg, pp. 250–267.

[15] Bell, D., and LaPadula, L. Secure computer systems: Unified
exposition and multics interpretation. In Technical Report, MTR-2997,
The Mitre Corp., Bedford, Mass. (1976).

[16] Bertino, E., Bonatti, P. A., and Ferrari, E. Trbac: A temporal
role-based access control model. ACM Transactions on Information and
System Security 4, 3 (Aug. 2001), 191–233.

[17] Bertino, E., Catania, B., Damiani, M. L., and Perlasca, P. Geo-
rbac: A spatially aware rbac. In Proceedings of the Tenth ACM Symposium
on Access Control Models and Technologies (New York, NY, USA, 2005),
SACMAT ’05, ACM, pp. 29–37.

[18] Bertino, E., Ferrari, E., and Atluri, V. The specification and
enforcement of authorization constraints in workflow management systems.
ACM Transactions on Information and System Security 2, 1 (Feb. 1999),
65–104.

[19] Bhatt, S., Patwa, F., and Sandhu, R. Abac with group attributes
and attribute hierarchies utilizing the policy machine. In Proceedings of the
2nd ACM Workshop on Attribute-Based Access Control (New York, NY,
USA, 2017), ABAC ’17, Association for Computing Machinery, p. 17–28.

[20] Chakraborty, S., Sandhu, R., and Krishnan, R. On the feasibility
of rbac to abac policy mining: A formal analysis. In Secure Knowledge
Management In Artificial Intelligence Era (Singapore, 2020), S. K. Sahay,
N. Goel, V. Patil, and M. Jadliwala, Eds., Springer Singapore, pp. 147–
163.

BIBLIOGRAPHY 217

[21] Chambers, C., Ungar, D., Chang, B., and Holzle, U. Parents are
shared parts of objects: inheritance and encapsulation in self. LISP and
Symbolic Computation (1991), 207–222.

[22] Chinaei, A. H., Chinaei, H. R., and Tompa, F. W. A unified conflict
resolution algorithm. In Secure Data Management (Berlin, Heidelberg,
2007), W. Jonker and M. Petković, Eds., Springer Berlin Heidelberg,
pp. 1–17.

[23] Clark, D. D., and Wilson, D. R. A comparison of commercial and
military computer security policies. In 1987 IEEE Symposium on Security
and Privacy (Los Alamitos, CA, USA, apr 1987), IEEE Computer Society,
pp. 184–184.

[24] Coyne, E., and Weil, T. R. Abac and rbac: Scalable, flexible, and
auditable access management. IT Professional 15, 3 (2013), 14–16.

[25] Crampton, J. Administrative scope and role hierarchy operations. In
Proceedings of the Seventh ACM Symposium on Access Control Models
and Technologies (New York, NY, USA, 2002), SACMAT ’02, ACM,
pp. 145–154.

[26] Crampton, J., and Khambhammettu, H. Data structures for
constraint enforcement in role-based systems. In Proceedings of the
IASTED Conference on Network and Information Security (2005), pp. 158–
167.

[27] Crampton, J., and Khambhammettu, H. Delegation in role-based
access control. In Proceedings of the 11th European conference on Research
in Computer Security (2006), ESORICS 2006, Springer-Verlag, p. 174–191.

[28] Crampton, J., and Khambhammettu, H. Delegation in role-based
access control. International Journal of Information Security (2008),
123–136.

[29] Crampton, J., and Loizou, G. Administrative scope: A foundation
for role-based administrative models. ACM Transactions on Information
and System Security 6, 2 (May 2003), 201–231.

[30] Cuppens, F., Cuppens-Boulahia, N., and Miege, A. Inheritance
hierarchies in the or-bac model and application in a network environment.
In In Proceedings of the 3rd Workshop on Foundations of Computer
Security (FCS’04), Turku, Finland, (2004).

[31] Davari, M., and Zulkernine, M. Policy modeling and anomaly
detection in abac policies. In Risks and Security of Internet and Systems

218 BIBLIOGRAPHY

(Cham, 2022), B. Luo, M. Mosbah, F. Cuppens, L. Ben Othmane,
N. Cuppens, and S. Kallel, Eds., Springer International Publishing, pp. 137–
152.

[32] Davari, M., and Zulkernine, M. Classification-based anomaly
prediction in xacml policies. In Security and Privacy in Communication
Networks (Cham, 2023), F. Li, K. Liang, Z. Lin, and S. K. Katsikas, Eds.,
Springer Nature Switzerland, pp. 3–19.

[33] Ducournau, R., Habib, M., Huchard, M., and Mugnier, M. L.
Monotonic conflict resolution mechanisms for inheritance. In In conference
proceedings on Object-oriented programming systems, languages, and
applications. (1992), OOPSLA ’92, ACM.

[34] Eckel, B. Thinking in Java, 2nd Edition. Pearson Education, 2000.

[35] eWeek. Rethinking access controls: How wikileaks could have
been prevented. http://www.eweek.com/c/a/Security/Rethinking-
Access-Controls-How-WikiLeaks-Could-Have-Been-Prevented/1/.

[36] Fernandez, E. B., Wu, J., and Fernandez, M. H. User group
structures in object-oriented databases. In Proceedings of the IFIP WG11.3
Working Conference on Database Security VII, Status and prospects, Bad
Salzdetfurth, Germany (1994), vol. 60, pp. 57–76.

[37] Ferraiolo, D., and Kuhn, R. Role-based access controls. In Reprinted
from 15th National Computer Security Conference (1992), Baltimore, Oct
13-16, pp. 554–563.

[38] Fischer, J., Marino, D., Majumdar, R., and Millstein, T. Fine-
grained access control with object-sensitive roles. In Proceedings of the 23rd
European Conference on ECOOP 2009 — Object-Oriented Programming
(Berlin, Heidelberg, 2009), Genoa, Springer-Verlag, pp. 173–194.

[39] Griffiths, P. P., and Wade, B. W. An authorization mechanism for
a relational database system. ACM Transactions on Database Systems 1,
3 (Sept. 1976), 242–255.

[40] Harris, M., and Raviv, A. Organization design. Management Science
48, 7 (July 2002), 852–865.

[41] Harrison, M. A., Ruzzo, W. L., and Ullman, J. D. Protection
in operating systems. Communications of the ACM 19, 8 (Aug. 1976),
461–471.

http://www.eweek.com/c/a/Security/Rethinking-Access-Controls-How-WikiLeaks-Could-Have-Been-Prevented/1/
http://www.eweek.com/c/a/Security/Rethinking-Access-Controls-How-WikiLeaks-Could-Have-Been-Prevented/1/

BIBLIOGRAPHY 219

[42] Hasebe, K., Mabuchi, M., and Matsushita, A. Capability-based
delegation model in rbac. In In Proceedings of the 15th ACM symposium
on Access control models and technologies (New York, NY, USA, 2010),
SACMAT ’10, ACM, pp. 109–118.

[43] Horcas, J.-M., Pinto, M., and Fuentes, L. Closing the gap between
the specification and enforcement of security policies. In Trust, Privacy,
and Security in Digital Business (Cham, 2014), C. Eckert, S. K. Katsikas,
and G. Pernul, Eds., Springer International Publishing, pp. 106–118.

[44] Hu, V. C., Ferraiolo, D., Kuhn, R., Schnitzer, A., Sandlin, K.,
Miller, R., and Scarfone, K. Guide to attribute based access control
(abac) definition and considerations, 2014.

[45] Hu, V. C., Kuhn, R., and Yaga, D. Verification and test methods
for access control policies/models. In NIST Special Publication 800-192
(2017), National Institute of Standards and Technology.

[46] Hu, V. C., and Scarfone, K. Guidelines for access control system
evaluation metrics. In NISTIR 7874 (2012), National Institute of
Standards and Technology.

[47] Jaeger, T., Michailidis, T., and Rada, R. Access control in a
virtual university. In IEEE 8th International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises, 1999. (WET
ICE ’99) Proceedings. (1999), pp. 135–140.

[48] Jajodia, S., Samarati, P., Sapino, M. L., and Subrahmanian, V. S.
Flexible support for multiple access control policies. ACM Transactions
on Database Systems 26, 2 (June 2001), 214–260.

[49] Jebbaoui, H., Mourad, A., Otrok, H., and Haraty, R. Semantics-
based approach for detecting flaws, conflicts and redundancies in xacml
policies. Computers and Electrical Engineering 44 (2015), 91–103.

[50] Kalam, A., Baida, R., Balbiani, P., Benferhat, S., Cuppens,
F., Deswarte, Y., Miege, A., Saurel, C., and Trouessin, G.
Organization based access control. In Policies for Distributed Systems
and Networks, 2003. Proceedings. POLICY 2003. IEEE 4th International
Workshop on (2003), pp. 120–131.

[51] Lampson, B. W. Protection. In Proceedings of the Fifth Princeton
Symposium on Information Sciences and Systems, Princeton University
(1971), pp. 437–443.

220 BIBLIOGRAPHY

[52] Lee, H., Lee, Y., and Noh, B. A framework for modeling organization
structure in role engineering. In In Proceedings of the 7th international
conference on Applied Parallel Computing (PARA’04), Springer-Verlag, .
Berlin, Heidelberg (2004), pp. 1017–1024.

[53] Li, J., Wang, Q., Wang, C., and Ren, K. Enhancing attribute-
based encryption with attribute hierarchy. In 2009 Fourth International
Conference on Communications and Networking in China (2009), pp. 1–5.

[54] Li, N., Tripunitara, M., and Bizri, Z. On mutually exclusive roles
and separation-of-duty. ACM Transactions on Information and System
Security (2007).

[55] Li, N., and Tripunitara, M. V. Security analysis in role-based access
control. ACM Transactions on Information and System Security 9, 4 (nov
2006), 391–420.

[56] Li, N., and Wang, O. Beyond separation of duty: An algebra for
specifying high-level security policies. Journal of the ACM (2008).

[57] Li, N., and Wang, Q. Beyond separation of duty: An algebra for
specifying high-level security policies. In Proceedings of the 13th ACM
Conference on Computer and Communications Security (New York, NY,
USA, 2006), CCS ’06, ACM, pp. 356–369.

[58] Li, Q., Zhang, X., Qing, S., and Xu, M. Supporting ad-hoc
collaboration with group-based rbac model. In Collaborative Computing:
Networking, Applications and Worksharing, 2006. CollaborateCom 2006.
International Conference on (Nov 2006), pp. 1–8.

[59] Liang, D. Introduction to Java Programming, Comprehensive Version.
Prentice Hall, 2006.

[60] Liu, G., Pei, W., Tian, Y., Liu, C., and Li, S. A novel conflict
detection method for abac security policies. Journal of Industrial
Information Integration 22 (2021), 100200.

[61] Luong, T.-N., Le, H.-A., Vo, D.-H., and Truong, N.-T. A
framework to verify the abac policies in web applications. In Intelligence of
Things: Technologies and Applications (Cham, 2022), N.-T. Nguyen, N.-N.
Dao, Q.-D. Pham, and H. A. Le, Eds., Springer International Publishing,
pp. 124–133.

[62] Majetic, I., and Leiss, E. L. Authorization and revocation in
object-oriented databases. IEEE Transactions on Knowledge and Data
Engineering 9, 4 (1997), 668–672.

BIBLIOGRAPHY 221

[63] Miege, A. Definition of a formal framework for specifying security
policies. The Or-BAC model and extensions. PhD thesis, Ecole Nationale
Superieure des Telecommunications, Paris, France, 6 2005.

[64] Moffett, J. D., and Lupu, E. C. The uses of role hierarchies in access
control. In Proceedings of the Fourth ACM Workshop on Role-based Access
Control (New York, NY, USA, 1999), RBAC ’99, ACM, pp. 153–160.

[65] Montana, P., and Charnov, B. Management: A streamlined course
for students and business people. Barron’s Business Review Series (1993),
155–169.

[66] Moore, D., and Cain, D. Conflicts of Interest: Challenges and
Solutions in Business, Law, Medicine, and Public Policy. Cambridge
University Press, 2005.

[67] Morisset, C., Willemse, T. A. C., and Zannone, N. Efficient
extended abac evaluation. In Proceedings of the 23nd ACM on Symposium
on Access Control Models and Technologies (New York, NY, USA, 2018),
SACMAT ’18, Association for Computing Machinery, p. 149–160.

[68] Nassr, N., Aboudagga, N., and Steegmans, E. Osdm: An
organizational supervised delegation model for rbac. In Proceedings of the
15th International Conference on Information Security (Berlin, Heidelberg,
2012), ISC’12, Springer-Verlag, pp. 322–337.

[69] Nassr, N., and Steegmans, E. A parameterized rbac access control
model for ws-bpel orchestrated composite web services. In Internet
Technology and Secured Transactions (ICITST), 2011 International
Conference for (Dec 2011), pp. 122–127.

[70] Nassr, N., and Steegmans, E. Roac: A role-oriented access control
model. In nformation Security Theory and Practice. Security, Privacy
and Trust in Computing Systems and Ambient Intelligent Ecosystems
(Berlin, Heidelberg, 2012), I. Askoxylakis, H. C. Pohls, and J. Posegga,
Eds., Springer Berlin Heidelberg, pp. 113–127.

[71] OASIS. extensible access control markup language (xacml) ver-
sion 3.0. http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-
spec-en.html.

[72] OASIS. A brief introduction to xacml. https://www.oasis-
open.org/committees/download.php/2713/Brief_Introduction_to_
XACML.html, 2003.

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-en.html
https://www.oasis-open.org/committees/download.php/2713/Brief_Introduction_to_XACML.html
https://www.oasis-open.org/committees/download.php/2713/Brief_Introduction_to_XACML.html
https://www.oasis-open.org/committees/download.php/2713/Brief_Introduction_to_XACML.html

222 BIBLIOGRAPHY

[73] Oh, S., and Sandhu, R. A model for role administration using
organization structure. In Proceedings of the Seventh ACM Symposium
on Access Control Models and Technologies (New York, NY, USA, 2002),
SACMAT ’02, ACM, pp. 155–162.

[74] OMG. Object constraint language, version 2.4. http://www.omg.org/
spec/OCL/2.4.

[75] OMG. Omg unified modeling languagetm (omg uml), superstructure
version 2.2. http://www.omg.org/spec/UML/2.2/Superstructure.

[76] OMG. Unified modeling language® (omg uml®). https/www.omg.org/
spec/UML/.

[77] Paci, F., Bertino, E., and Crampton, J. An access-control framework
for ws-bpel. International Journal of Web Services Research 5, 3 (2008),
20–43.

[78] Pilone, D., and Pitman, N. UML 2.0 in a Nutshell. O’Reilly Media,
Inc., 2005.

[79] Rajpoot, Q. M., Jensen, C. D., and Krishnan, R. Attributes
enhanced role-based access control model. In Trust, Privacy and Security
in Digital Business (Cham, 2015), S. Fischer-Hübner, C. Lambrinoudakis,
and J. opez, Eds., Springer International Publishing, pp. 3–17.

[80] Sandhu, R. Separation of duties in computerized information systems.
In Proc. of the IFIP WG11.3 Workshop on Database Security (1990).

[81] Sandhu, R. The typed access matrix model. In Proceedings of the 1992
IEEE Symposium on Security and Privacy (Washington, DC, USA, 1992),
SP ’92, IEEE Computer Society, pp. 122–.

[82] Sandhu, R. Role activation hierarchies. In Proceedings of the Third
ACM Workshop on Role-based Access Control (New York, NY, USA,
1998), RBAC ’98, ACM, pp. 33–40.

[83] Sandhu, R. Future directions in role-based access control models. In
Information Assurance in Computer Networks, V. Gorodetski, V. Skormin,
and L. Popyack, Eds., vol. 2052 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2001, pp. 22–26.

[84] Sandhu, R., and Bhamidipati, V. The ura97 model for role-based
user-role assignment. In Database Security XI: Status and Prospects, IFIP
Advances in Information and Communication Technology (Boston, MA,
1998), T. Y. Lin and S. Qian, Eds., Springer US, pp. 262–275.

http://www.omg.org/spec/OCL/2.4
http://www.omg.org/spec/OCL/2.4
http://www.omg.org/spec/UML/2.2/Superstructure
https/www.omg.org/spec/UML/
https/www.omg.org/spec/UML/

BIBLIOGRAPHY 223

[85] Sandhu, R., and Bhamidipati, V. The ascaa principles for next-
generation role-based access control. In Proceedings 3rd International
Conference on Availability, Reliability and Security (ARES) (2008), ARES
’08.

[86] Sandhu, R., Bhamidipati, V., Coyne, E., Ganta, S., and Youman,
C. The arbac97 model for role-based administration of roles: Preliminary
description and outline. In Proceedings of the Second ACM Workshop on
Role-based Access Control (New York, NY, USA, 1997), RBAC ’97, ACM,
pp. 41–50.

[87] Sandhu, R., Coyne, E., Feinstein, H., and Youman, C. Role-based
access control models. Computer 29, 2 (1996), 38–47.

[88] Sandhu, R., and Munawer, Q. The rra97 model for role-based
administration of role hierarchies. In Proceedings 14th Annual Computer
Security Applications Conference (Cat. No.98EX217) (1998), pp. 39–49.

[89] Sandhu, R., and Munawer, Q. The arbac99 model for administration
of roles. In Proceedings of the 15th Annual Computer Security Applications
Conference (Washington, DC, USA, 1999), ACSAC ’99, IEEE Computer
Society, pp. 229–.

[90] Schaad, A., Moffett, J., and Jacob, J. The role-based access control
system of a european bank: A case study and discussion. In Proceedings
of the Sixth ACM Symposium on Access Control Models and Technologies
(New York, NY, USA, 2001), SACMAT ’01, ACM, pp. 3–9.

[91] Schermerhorn, J., Osborn, R., and Uhl-Bien, M. Organizational
Behavior, 12th edition. Wiley, 2011.

[92] Servos, D., and Osborn, S. L. Hgabac: Towards a formal model of
hierarchical attribute-based access control. In Foundations and Practice of
Security (Cham, 2015), F. Cuppens, J. Garcia-Alfaro, N. Zincir Heywood,
and P. W. L. Fong, Eds., Springer International Publishing, pp. 187–204.

[93] Servos, D., and Osborn, S. L. Current research and open problems
in attribute-based access control. ACM Computing Surveys 49, 4 (Jan.
2017).

[94] Shafiq, B., Masood, A., Joshi, J., and Ghafoor, A. A role-based
access control policy verification framework for real-time systems. In 10th
IEEE International Workshop on Object-Oriented Real-Time Dependable
Systems (2005), pp. 13–20.

224 BIBLIOGRAPHY

[95] Shaikh, R. A., Adi, K., Logrippo, L., and Mankovski, S.
Inconsistency detection method for access control policies. In 2010 Sixth
International Conference on Information Assurance and Security (2010),
pp. 204–209.

[96] Sharghigoorabi, M. Access Control Obligation Specification and
Enforcement Using Behavior Pattern Language. PhD thesis, University of
Ontario Institute of Technology (UOIT), Oshawa, Canada, 1 2018.

[97] Shu, C.-c., Yang, E. Y., and Arenas, A. E. Detecting conflicts in
abac policies with rule-reduction and binary-search techniques. In 2009
IEEE International Symposium on Policies for Distributed Systems and
Networks (2009), pp. 182–185.

[98] Simon, R., and Zurko, M. Separation of duty in role-based
environments. In Proceedings 10th Computer Security Foundations
Workshop (Rockport, MA, USA, 1997), CSFW ’97, IEEE, pp. 183–194.

[99] St-Martin, M., and Felty, A. P. A verified algorithm for detecting
conflicts in xacml access control rules. In Proceedings of the 5th ACM
SIGPLAN Conference on Certified Programs and Proofs (New York, NY,
USA, 2016), CPP 2016, Association for Computing Machinery, p. 166–175.

[100] STANDARD, D. O. D. Department of defense trusted computer system
evaluation criteria. DoD 5200.28-STD (1983).

[101] Thompson, D. Understanding financial conflicts of interest. The new
England journal of medicine 329 (1993), 573–579.

[102] Wang, X., Zhang, Y., Shi, H., and Yang, J. Bpel4rbac: An
authorisation specification for ws-bpel. In Proceedings of the 9th
International Conference on Web Information Systems Engineering
(Berlin, Heidelberg, 2008), WISE ’08, Springer-Verlag, pp. 381–395.

[103] Wood, C., and Fernandez, E. B. Decentralized authorization in a
database system. In Fifth International Conference on Very Large Data
Bases, 1979. (1979), pp. 352–359.

[104] Xuexiong, Y., Qinxian, W., and Changzheng, X. A multiple
hierarchies rbac model. In Communications and Mobile Computing (CMC),
2010 International Conference on (April 2010), vol. 1, pp. 56–60.

[105] Yuan, E., and Tong, J. Attributed based access control (abac) for web
services. In IEEE International Conference on Web Services (ICWS’05)
(2005), p. 569.

BIBLIOGRAPHY 225

[106] Zhang, L., Ahn, G., and Chu, B. A rule-based framework for
role-based delegation. In In Proceedings of ACM Symposium on Access
Control Models and Technologies (Chantilly, VA, 2001), SACMAT 2001,
p. 153–162.

[107] Zhang, L., Ahn, G. J., and Chu, B. T. A rule-based framework for
role-based delegation and revocation. ACM Transactions on Information
and System Security 6, 3 (2003), 404–441.

[108] Zhang, X., Oh, S., and R., S. Pbdm: a flexible delegation model in
rbac. In In Proceedings of the eighth ACM symposium on Access control
models and technologies (New York, NY, USA, 2003), SACMAT ’03, ACM,
pp. 149–157.

[109] Zhang, Z. Scalable Role and Organization Based Access Control and its
Administration. PhD thesis, George Mason University, Fairfax, VA, 2008.

[110] Zhixiong, Z., Xinwen, Z., and Sandhu, R. Robac: Scalable role and
organization based access control models. In Collaborative Computing:
Networking, Applications and Worksharing, 2006. CollaborateCom 2006.
International Conference on (2006), pp. 1–9.

Publications

Nezar Nassr, Eric Steegmans: Mitigating conflicts of interest by authorization
policies. SIN ’15: Proceedings of the 8th International Conference on Security
of Information and Networks, September 2015, pp 118–126, Published by: ACM
(was also accepted in INSCRYPT)

Nezar Nassr, Nidal Aboudagga, Eric Steegmans: OSDM: An Organizational
Supervised Delegation Model for RBAC. Information Security Conference ISC-
2012 , Passau, Germany, published by: Springer-Verlag

Nezar Nassr and Eric Steegmans, ROAC: A Role-Oriented Access Control
Model, 6th Workshop in Information Security Theory and Practice (WISTP
2012), London, UK. Published by: Springer-Verlag.

Nezar Nassr, Eric Steegmans: A parameterized RBAC access control model
for WS-BPEL orchestrated composite web services. ICITST 2011: 122-127,
Published By IEEE

227

FACULTY OF ENGINEERING SCIENCE
DEPARTMENT OF COMPUTER SCIENCE

DISTRINET
Celestijnenlaan 200A box 2402

B-3001 Leuven

	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Key Elements of Robust Access Control
	Role-Based Access Control (RBAC)
	Problem Statement
	The Organizational Supervised Delegation Model
	Delegation: The Need and Relation with Authority
	Characteristics of Delegation in the Context of Basic RBAC
	Characteristics of Delegation in the Context of Extended RBAC
	The Supervised Delegation Model (OSDM)

	Mitigation of Conflicts of Interests
	Separation of Duty (SoD)
	Non-SoD Conflicts of Interest
	Mitigation of Conflicts of Interest

	The Role-Oriented Access Control Model (ROAC)
	The Core ROAC Model
	Hierarchical ROAC

	Summary of Contributions
	Outline of the Dissertation

	Related Work
	Access Control
	Discretionary Access Control
	Mandatory Access Control
	Attribute Based Access Control (ABAC)

	Role-Based Access Control
	Background and Motivation
	Hierarchical Role-Based Access Control
	Parameterized Role-Based Access Control
	Role Delegation Models
	Conflicts of Interest and Authorization Policies
	Overview of the algebra of Li and Wang

	Administrative Models of Role-Based Access Control
	ARBAC97
	ARBAC99
	ARBAC02: Role Administration Using Organization Structure
	Role Hierarchy Administration

	Chapter Conclusion

	Organizational Supervised Delegation Model (OSDM)
	Introduction
	Overview of Organizational Structures
	Related Work
	The Organizational Supervised Delegation Model
	Extensions to RBAC
	Delegation in OSDM
	A UML/OCL Formal Model of OSDM
	Revocation in OSDM

	Discussion
	Conclusion

	ROAC: A Role-Oriented Access Control Model
	Introduction
	Background and Motivation
	The Role-Oriented Access Control Model Overview
	ROAC Reference Data Model
	Generalization in the Role-Oriented Access Control Model
	Discussion
	Conclusion and Future Work

	Mitigating Conflicts of Interest by Authorization Policies
	Introduction
	Related Work
	Overview of the Role Oriented Access Control Model (ROAC)
	Conflicts of Interest Policies
	Extensions to the ROAC Model
	Specification of Conflicts of Interest Policies
	Conflict of Interest Policy Enforcement

	Discussion
	Conclusion

	Comparison, Limitations, and Verification
	Comparison with ABAC
	Expressiveness
	Least Privilege
	Complexity
	Maintainability
	Dynamicity
	Auditability
	Applicability
	Policy Specification
	Authorization Decision
	Policy Conflicts
	Conflict Detection and Resolution
	Hierarchies

	Limitations
	Limitations of OSDM
	Limitations of the ROAC Model
	Limitations of Conflicts of Interest Mitigation

	Verification
	Verification of Correctness
	Verification of Safety
	Verification of Liveness

	Conclusion and Future Work
	Summary
	Authority Delegation
	Conflicts of Interest Policies
	The Core ROAC Model
	The Hierarchical ROAC Model

	Future Work
	Standardization of Policy Specification
	Centralized Access Control System
	Artificial Intelligence

	A Motivating Example
	Introduction
	Policy Elements and Relations
	Elements
	Relations

	Core Model Policies
	Users
	Roles
	Permissions
	User-Role
	Role-Permission
	User-Permission

	Hierarchical Policies
	Role Hierarchy
	User Hierarchy

	Delegation Policies
	Conflict of Interest Policies

	ROAC Formal Model
	The Core ROAC Model
	The Basic ROAC Model (ROAC0)
	The Parameterized ROAC Model (ROAC1)
	Parameters
	The Context-Aware ROAC Model (ROAC2)

	A UML Formal Model of ROAC
	Validators:
	Parameters:

	The Hierarchical ROAC Formal Model
	Role Hierarchy
	User Hierarchy
	UML Model
	Elements & Relations Inheritance
	Role Hierarchy
	User Hierarchy

	Delegation Formal Model
	Python Model
	DelegationRelation
	DelegationPolicy

	UML Model

	Conflicts of Interest Formal Model
	The History Data Structure
	Enforcement of Task Steps Order
	Enforcement of Algebraic Expressions
	Examples of leaf evaluation

	Example Policy Enforcement

	Bibliography
	Publications

