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ABSTRACT 
Federated Learning (FL), also known as collaborative learning, is a 
distributed machine learning approach that collaboratively learns 
a shared prediction model without explicitly sharing private data. 
When dealing with sensitive data, privacy measures need to be care-
fully considered. Optimizers have a massive role in accelerating the 
learning process given the high dimensionality and non-convexity 
of the search space. The data partitioning in FL can be assumed to 
be either IID (independent and identically distributed) or non-IID. 
In this paper, we experiment with the impact of applying diferent 
adaptive optimization methods for FL frameworks in both IID and 
non-IID setups. We analyze the efects of label and quantity skew-
ness, learning rate, and local client training on the learning process 
of optimizers as well as the overall performance of the global model. 
We evaluate the FL hyperparameter settings on biomedical text 
classifcation tasks on two datasets ADE V2 (Adverse Drug Efect: 
2 classes) and Clinical-Trials (Reasons to stop trials: 17 classes). 

CCS CONCEPTS 
• Computing methodologies → Information extraction; Su-
pervised learning by classifcation; • Security and privacy → 
Domain-specifc security and privacy architectures. 
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1 INTRODUCTION 
Federated Learning (FL) [22] is a distributed machine learning ap-
proach where the training takes place across multiple clients with-
out sharing data between the clients. FL allows multiple clients to 
collaboratively learn a shared prediction model without explicitly 
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exchanging the data samples thus avoiding the need to store and 
share the private data. 

Conventional centralized learning machines require that all train-
ing data located at diferent client locations are uploaded to a server 
for training a centralized model. This may give rise to serious pri-
vacy concerns. Especially, when dealing with sensitive data like 
patient data or personal information, privacy measures need to be 
considered and followed with due care. In the context of the web 
domain, these privacy measures are of utmost relevance as well 
since personal information found on the web together with other 
information of that person found at other locations could be used 
to infer sensitive information, hence the need for a privacy secure 
federated learning. 

FL allows training the model in a decentralized way that allows 
multiple clients to collectively train a machine learning model that 
ensures training takes place across multiple clients without sharing 
data between the clients, thus keeping the data private. Such a 
setup is valuable, for instance, in the medical and fnancial domains 
when retrieving information from sensitive documents or deter-
mining similar patients from diferent hospitals while preserving 
the patient’s privacy. The two key aspects of FL approaches include 
dealing with imbalanced and heterogeneous data and incorporating 
data privacy constraints. 

The main challenge of FL is dealing with the data heterogeneity 
among the diferent clients (non-IID). One of the key research areas 
in FL is to understand how the shared prediction model performance 
is impacted by the varying level of heterogeneity (non-IID) in the 
client data [14, 15]. The data heterogeneity can arise due to label 
imbalance in the data (label skew; some clients have a certain set 
of labels which others do not have), or data quantity imbalance 
(quantity skew; the amount of data available per client can be vastly 
diferent) or both. There exist other challenges like communication 
costs and delays which arise due to the communication rounds 
between clients and global model and local training of the client 
models. These are important parameters that need to be analyzed 
in order to improve federated training. 

Optimizers have a massive role in accelerating the learning pro-
cess given the high dimensionality and non-convexity of the search 
space. A number of modifcations have been proposed to tradi-
tional machine learning setups to accelerate the learning process. 
Adaptive optimizers like Adam, Adagrad, etc., have been shown 
to improve the model performance and have faster convergence 
rates. In this paper, we present our experiments to analyze hyper-
parameter optimization (HPO) to tackle data heterogeneity in an 
FL setting on biomedical classifcation tasks. We study the efect of 
diferent optimization methods when training neural networks in 
a federated manner both in IID and non-IID setups. We make use 
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of 2 biomedical datasets: ADE V2 [24] (identity text with Adverse 
drug efect mentioned) and Clinical_trials (identify the reasons to 
stop a clinical trial from text). 

This paper investigates several key issues that can be optimized 
for federated learning. Communication efciency and data hetero-
geneity arising from data being highly imbalanced and coming 
from diferent distributions are important factors to be explored 
when studying federated setups. This work also studies the im-
pact of incorporating adaptive optimizers with varying learning 
rates to federated model updates and validates their efectiveness 
in accelerating convergence. Several adaptive optimizers such as 
Adam [2], Adagrad [3], and Yogi [4] are compared and we analyze 
their convergence in the presence of IID and non-IID data in an FL 
setting. We also perform extensive experiments on varying levels of 
label skewness and quantity skewness in the non-IID data and show 
that the use of adaptive optimizers can signifcantly improve the 
performance of federated learning. Further, we analyze the impact 
of varying learning rates, local training epochs, client fractions, 
varying non-IID-ness, and freezing model parameters on federated 
model performance. 

2 RELATED WORK 
Several works explored the limited aspects of hyperparameter tun-
ing in FL (e.g. step-size) on a general setting [7–9]. A monitoring 
scheme was proposed to reduce the negative efect of label skew by 
detecting the class imbalance in FL [10]. Nevertheless, this method 
relies heavily on auxiliary data and poses potential privacy issues. 
In contrast, we tune a wide range of hyperparameters in realistic 
federated networks on biomedical classifcation tasks to understand 
the infuence of various optimization mechanisms. 

Several methods were investigated to optimize the FL training 
process to address non-IID challenges. Federated Averaging (Fe-
dAvg) [20] is a predominant algorithm used for training in FL. It 
experiences performance degradation in terms of low accuracy, 
slow convergence, and divergence on non-iid data [14, 15]. Several 
alternate approaches such as FedAdagrad, FedYogi, and FedAdam 
models have been proposed to mitigate the data heterogeneity 
impact in FedAvg-based FL. The federated versions of adaptive 
optimizers, including Adagrad, Adam, and Yogi, were analyzed for 
their convergence in the presence of heterogeneous data for general 
nonconvex settings [19]. We experiment with the impact of using 
multiple adaptive optimizers on diferent non-IID distributions. 

FedEx [16, 17] is an FL-HPO framework to accelerate a general 
HPO. It is important because the choice of hyperparameters (num-
ber of clients, local minibatch size, number of local epochs, and the 
learning rate) can have a dramatic impact on performance [18]. To 
further improve the efciency of HPO, several approaches were 
proposed in the recent literature. [11] discard the worst confgura-
tions during tuning. The MENNDL framework [12] uses genetic 
algorithms [13]. In this work, we perform benchmark experiments 
on HPO addressing key properties of FL such as label and quantity 
skewness, identifying optimal learning rate, client sampling, FL 
with frozen model parameters, handling data heterogeneity, and 
privacy issues. 

3 METHOD 

3.1 Federated averaging 
FL requires defning an aggregation strategy. The server aggregate 
function aggregates the model weights received from every client 
and updates the global model with the updated weights. The stan-
dard aggregation strategy used in FL is FedAvg [13]. The learning 
process is performed in rounds. The global server samples a frac-
tion of � clients from a total of � clients during each round. These 
selected clients receive the current shared global model. These 
clients train this model by optimizing the loss on their local private 
training data using SGD for multiple epochs and updating the pa-
rameters of the model. After each communication round between 
the global server and sampled clients, local parameter updates are 
sent to the global model. The global server aggregates the locally 
updated parameters by performing a weighted average. Further, 
the updated global model with aggregated parameters are sent to 
the sampled clients in the next communication round. The above 
procedure is repeated until the algorithm converges. 

The original FedAvg algorithm implicitly set the server and client 
optimization to be SGD with a fxed learning rate. Though SGD [1] 
is commonly used in optimization for federated averaging, it can 
sometimes lead to slow convergence [21]. 

FedAvg algorithm is a fexible algorithm that can be generalized 
to have a diferent optimization update rule for the client side and 
a diferent update rule for the global model. Following [25], the 
FedAvg algorithm can be parameterized by two gradient-based 
optimizers: a client optimizer with a client learning rate and a 
server optimizer with a server learning rate. Client optimizer is 
used to update the local models and the global model takes the 
aggregate of local model updates as a pseudo-gradient and updates 
the global model. 

To deal with the high dimensionality and noisy gradients of 
the loss function during federated training, we experiment with 
adaptive optimizers like Adam, Adagrad, and Yogi, together with 
varying learning rates both at the client side and server side. We 
also look into the impact of local training, and client fraction which 
are important factors that infuence the model performance and 
convergence. 

The learning rate is an important factor in the learning process 
that infuences the model performance and convergence. For the 
local training, we experiment with multiple learning rates with 
diferent adaptive optimizers Adam, Adagrad, and Yogi along with 
SGD. Since the number of communication rounds and the local 
training iterations play a signifcant role in determining the overall 
communication cost of the model, we also analyze the efect on 
model performance by varying these factors. 

3.2 Data partitioning 
To simulate the FL setup, the training dataset is partitioned among 
the � clients. We explore both the IID and non-IID distributions of 
data. 

IID: The data is equally divided among the clients and repre-
sents the balanced (IID) case. Here the data points can be seen as 
representative of the overall data distribution. 
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Figure 1: (a) Test accuracy vs non-IID shard sizes on (b) Test accuracy vs Alpha values on CT dataset(c) Test accuracy vs non-IID 
shard sizes (d) Test accuracy vs Alpha values on ADE dataset for 10 communication rounds with diferent optimizers using 
multiple learning rates. 

non-IID: The data partitions for each client are drawn from a 
diferent distribution. The local data cannot be seen as a representa-
tive sample of the overall distribution. The data partitioning among 
clients can result in label skewness, quantity skewness, or both. For 
non-IID, we investigate the following setups. 

nIID-1: We sort the dataset according to the label index. The 
dataset is then divided into � shards of equal size. Shard refers 
to multiple independent groups of input text. Given we have � 
clients and � training examples, �/� shards are assigned to each 
client randomly. Thus, when � is small the distribution will be more 
non-IID, and when � is closer to � it simulates an IID setting. In 
this approach, only the label skewness is considered and not the 
quantity skewness. 

nIID-2: Secondly, we follow a more probabilistic approach where 
the samples are drawn based on Dirichlet distribution [5, 6], which 
we call D(�), where � controls the skewness of the distribution. 
� = 100 indicates a more IID distribution between clients with a 
relatively similar number of labels per client. An � = 0.1 indicates 
a case of non-IID setup where there is a high probability that each 
client receives instances belonging purely to a single class. The 
smaller the � the more the non-IID nature of the distribution is 
accentuated. This setting takes both the label and quantity skewness 
into account. 

4 EXPERIMENTAL SETUP 
To analyze the infuence of the optimizer algorithms on FL, we train 
models on heterogeneous client data using adaptive optimizers. 
We also look into communication costs incurred in the federated 
training setup. For this, we study parameters like the number of 
local updates performed on the client data before the global update 
and the client participation at each round. We perform FL on a 
2-class and a 17-class biomedical classifcation task where given an 
input text, the goal is to correctly identify the class to which the 
input text belongs. The test dataset is created by holding out 20% of 
the training set. We report the accuracy of the shared global model 

on the test dataset. We use two biomedical datasets to benchmark 
our results. 

4.1 Dataset 
ADE-Corpus-V2 (ADE): is a dataset for classifcation tasks to 
identify if an input text is Adverse Drug Efect (ADE) related or not. 
The dataset comprises of 23516 sentences labeled with 2 classes. 
Clinical_trial_reason_to_stop (CT): This is a classifcation dataset 
comprising of reasons why a clinical trial sufered an early stop. 
The dataset is available at the HuggingFace1 datasets repository. 
The text has been extracted from clinicaltrials.gov, the largest re-
source of clinical trial information by Open Targets organization to 
provide data relevant to drug development. The dataset comprises 
5000 examples labeled with 17 classes. 

4.2 Setup 
For the nIID-1 setup, � shards of data are assigned to each client 
where � can be 10, 40, 160, 640. For nIID-2 setup 2, we experiment 
with � = 0.1, 1, 100 where � controls the distribution skewness. We 
run it over � = 10 clients in total, selecting only a fraction of � = 0.5 
in each round for training. We experiment with modifying the 
client training with adaptive optimizers Adam, Adagrad, and Yogi 
along with SGD. Since learning rates have a signifcant infuence on 
optimizer learning, we experiment with varying learning rates 0.01, 
0.001, 0.0001, and 0.00001. We follow the same experimental setup 
for the IID case also. For the model, we used a batch size of 16, and 
a maximum sequence length of 128. Each experiment was repeated 
3 times and accuracy scores are reported. The target models are 
evaluated on the development set every 750 step. The checkpoints 
are saved based on the accuracy obtained on the development set. 

To understand the communication overhead of FL in a non-IID 
setup, we see how many local epochs (�) are sufcient for accept-
able model performance and experiment with � = {1, 5, 10, 15}. We 
fxed the communication rounds to 10 rounds. Further, we also 

1https://huggingface.co/datasets/opentargets/clinical_trial_reason_to_stop 
2The dataset splits will be made publicly available after acceptance 
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Figure 2: (a) Test accuracy vs non-IID shards for active clients sampled from � = [0.3, 0.5, 1] from a total of 10 clients and (b) Test
accuracy vs Alpha values for active clients sampled from � = [0.3, 0.5, 1] from a total of 10 clients and (c) Test accuracy vs no.
of local epochs per communication round. We perform 10 communication rounds. We experiment with both frozen and full 
model parameter fne-tuning settings. These experiments are evaluated on the CT dataset. 

experiment with diferent client fractions � = {0.3, 0.5, 1} to study 
the impact of the fraction of clients participating per communica-
tion round on the overall model performance. We further look into 
freezing the model parameter and fne-tuning only a few of the 
layers to see its efect on FL. 

5 RESULTS AND DISCUSSION 

5.1 Role of optimizers in dealing with data 
heterogeneity in a federated setup 

The FL experiments using diferent optimizers with multiple learn-
ing rates are evaluated on the datasets described above. From Figure 
1, it can be seen that the Yogi optimizer achieves an accuracy close 
to 70% in the nIID-1 setup with 10 shards (most non-IID setup) 
with the best confguration of hyperparameters (�� = 0.0001) . Sim-
ilarly the Adam optimizer achieves an accuracy close to 69% with 
(�� = 0.00001). Adagrad’s performance reaches around 60% accu-
racy with the best confguration of hyperparameters (�� = 0.0001)
while decreasing the learning rate (�� = 0.00001) leads to a dramatic 
drop in accuracy (to around 40%) in the most non_IID case. 

In the nIID-2 setup label and quantity skewness in the data is 
simulated by varying the � value. From Figure 1, it can be seen 
that the Adam optimizer (�� = 0.00001) achieves an accuracy close 
to 71% in the nIID-2 setup with � = 0.1 (most non-IID setup). 
This is followed by the Yogi optimizer achieving an accuracy of 
around 66% (�� = 0.00001) and the SGD optimizer achieving an 
accuracy of around 64% (�� = 0.001). However, it can be seen that 
the Adagrad optimizer (�� = 0.00001) performance drops below 
30% in the extreme non-IID case (� = 0.1) but further increases to 
60% as the non-IID-ness decreases. The results show that Adam 
and Yogi demonstrate poor performance with higher learning rates 
(�� = 0.01, 0.001) reaching at most a 25% accuracy without further 
improvement, while SGD performs better at higher learning rates. 
Since Adagrad aggregates the entire history of the gradients it can 
lead to fast decay in the learning rate resulting in weak performance 
when dealing with a highly non-IID setup. 

The results clearly show that incorporating momentum and 
adaptive optimization methods like Adam and Yogi are critical 
components for training federated deep neural networks. The re-
sults validate their efectiveness in accelerating convergence. The 
server-side momentum simulates the similar efect of increasing the 
number of clients selected every round. Due to the exponentially 
weighted averaging of pseudo-gradients, local model updates from 
selected clients in previous rounds also contribute to the global 
model updates in the present round. 

The results elucidate that by incorporating server-side adaptiv-
ity using adaptive optimizers like Adam and Yogi, models achieve 
much faster convergence and higher performance. These adaptive 
optimizers are easier to tune and are more robust when training 
highly heterogeneous data with both label and quantity skew (CT 
dataset) thanks to their faster convergence and adaptivity and ro-
bustness to hyperparameters whereas SGD and Adagrad are more 
sensitive to the hyperparameters and lead to slower convergence. 
However, in cases where label skew is minimal (ADE dataset), the 
SGD optimizer performs quite well (See Figure 1(c),(d)). 

5.2 Infuence of local client training 
We see that the performance of the model using federated averaging 
saturates or even degrades with the increased number of local 
epochs from 1 to 15 epochs. When clients perform n local model 
updates, the communication cost per client model update can be 
efectively reduced by a factor of n. However when client data are 
extremely non-IID, and when we use a greater number of local client 
model updates, the federated averaging algorithm communicates 
less frequently with the global model. This may hinder convergence 
since more local steps result in client updates in FedAvg Algorithm 
being biased towards the local minima. There is thus a trade-of 
between convergence and communication efciency. In this setup, 
the best value of local model update steps is 5 epochs after which the 
model performance saturates. Optimizing the number of local client 
training steps is an important parameter in potentially reducing 
the overall communication cost of the training. 

frozen-niid1-10 niid1-10 
frozen-niid2-0.1 niid2-0.1 
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5.3 Impact of freezing the federated model 
parameters 

From our experiments, freezing the model parameters for federated 
training and only fne-tuning the last 2 linear layers result in a 
degradation in performance in the extreme non-IID setup. This 
can be attributed to the fact that the initial model (BERT-base) 
needs more domain-specifc examples and local training to ft to 
the biomedical domain. This is evident in Figure 2(c), that increasing 
the number of local epochs of client training from 1 to 15 for the 
frozen model improves the test accuracy from 20% to 60% on the 
CT dataset. 

5.4 Efect of client fraction sampling to FL 
For both non-IID setups, we observe that increasing the fraction 
of clients participating per communication round from 0.3 to 0.5 
improves the model performance. This indicates that we can im-
prove the learning performance of FL by selecting more clients in 
each round. This can be contributed to the fact that using too few 
clients per round can signifcantly increase the stochastic noise in 
the training process. However, using all the clients during each 
communication round does not lead to further improvement either. 
This can be due to the inclusion of clients with high label noise and 
a smaller dataset. Looking at it from the perspective of communi-
cation cost incurred, reducing the number of clients participating 
in each communication round by sampling a smaller subset can 
potentially reduce the communication cost and per-round commu-
nication delay that monotonically increases with the number of 
clients participating. The average of all client’s computing delays 
is further increased by additional time for waiting for the slowest 
one. Including better client selection algorithms can help select 
optimal clients in each round. Reducing the number of participat-
ing clients to half at each round help in potentially reducing the 
communication overhead per round. 

6 CONCLUSION 
FL enables privacy-preserving collaborative training of deep learn-
ing models respecting data privacy in applications that use or re-
trieve information from documents dealing with sensitive data. 
The predominant factors of FL that are crucial to the model per-
formance are investigated. We performed experiments on varying 
levels of label skewness and quantity skewness in the non-IID data 
and demonstrate that adaptive optimizers like Adam and Yogi are 
more robust to data heterogeneity. Adam and Yogi perform best 
at lower learning rates while SGD performs better if label skew 
is not signifcant and at higher learning rates due to its slower 
convergence. 

Minimizing communication between the global server and par-
ticipating clients is crucial both for system efciency and to support 
the privacy goals of federated learning. Optimizing the number of 
local client training steps is an important parameter in potentially 
reducing the overall communication cost of the training. When the 
majority of the model parameters are frozen, increasing the local 
training is desirable to improve the model performance. Reducing 
the number of participating clients to half at each round help in 
potentially reducing the communication overhead per round and 
provides optimal performance. 

The next step would be to look into aspects that further reduce 
the communication overhead of FL algorithms as well as training 
models with diferential privacy that adds noise to the model in 
each round, thus preventing the model from memorizing every 
unique training example. Another promising research direction is 
to add a personalization layer to the federated learning framework 
by keeping track of the client state and further global model fne-
tuning on the client side. 

In the web domain, clients participating in an FL model setup can 
be huge. This can open doors to a variety of attacks and vulnerabili-
ties on the privacy of the client and server models. A compromised 
communication channel could be addressed using a cryptography 
public key, which keeps message content secure and safe through-
out the communication. The global server, the most critical part 
of the network, must be robust and secured to prevent intrusions 
access by unauthorized persons. To make reverse inferences of data 
from gradients more complex, the addition of noise to gradients 
and compression of gradients can be useful techniques. 

In spite of overcoming some centralized machine learning issues, 
FL faces new challenges related to learning biases [26][27] which 
can impact model decisions and can yield discrimination of data 
partitions. Learning bias can in fact be aggravated by FL since 
bias can be seen mostly related to the non-IID nature of the data 
distributed across the clients. Here optimizing the parameters of FL 
like the optimizer algorithms, the number of participating clients 
and the communication costs incurred are quite prominent. Bias 
mitigation techniques must be adapted to the specifc context of 
FL. Techniques such as detecting communities of clients that share 
similar behaviors and building up a global model that integrates 
all those populations in an equal way can reduce bias. Such an 
approach could also help detect specifc outliers such as poisoning 
sources and thus increase security. 

Thus future works in FL would involve the development of fed-
erated models that take into account the information security, con-
fdentiality, and integrity of the participating clients and address 
the learning biases accentuated by the non-IID nature of the data. 
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