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Preface

When Edward Snowden betrayed the world’s largest cryptanalytic organization
in June 2013, he concluded his missive to journalists with the words “Let us
speak no more of faith in man, but bind him down from mischief by the chains of
cryptography”. True or not, they left their mark on a high-schooler interested in
cryptography. Following a sequence of events so unlikely that their description
cannot be compressed to fit this page, I was told by a teacher that she had
arranged for me to meet professor Vincent Rijmen. Given that it was April 1,
2014, my first thought was that this was an elaborate prank – apparently not
realizing that not every language teacher knows what the advanced encryption
standard is. Two months later, I began my first internship at COSIC. At the end
of my stay, Vincent Rijmen suggested that I look into correlation matrices. This
profound but unsung idea, due to professor Joan Daemen, led to my master’s
thesis and ultimately to this PhD thesis. I am grateful to my promotor Vincent
for his confidence in me and for all his advice, not least this initial suggestion
almost a decade ago.

I would like to thank doctor Anne Canteaut, professors Joan Daemen, Gregor
Leander, Hugo Van hamme and Fréderik Vercauteren for being part of my
examination committee, as well as professor Paul Sas for chairing it. In
September 2017, I had the opportunity to visit Anne Canteaut at INRIA-
Paris. I hope that Chapter 4 solves the problem that we worked on to her
satisfaction. Her work with Christina Boura on parity sets inspired Chapter 5.
As already mentioned, Joan Daemen’s correlation matrices started everything.
His ideas about side-channel countermeasures influenced Chapter 11. Gregor
Leander invited me to Bochum during the first week of my doctoral studies in
September 2021. Unaware of his work on invariants, I had started to investigate
the eigenvectors of correlation matrices. The connection with his work led to
the first application (Chapter 6) of my theoretical ideas. Our joint work on
backdoored ciphers appears in Chapter 12. Fréderik Vercauteren might recall
some of our discussions when reading Section 10.4 on the Legendre PRF. I will
not be surprised if he comes up with a subexponential attack some day.

I also want to acknowledge my coauthors that were not yet mentioned, in
degree reverse lexicographical order: Yu Long Chen, Bart Mennink, Christoph
Dobraunig, Siemen Dhooghe, Friedrich Wiemer, María Naya-Plasencia, Léo
Perrin, Zhenda Zhang, Giuseppe Vitto, Aleksei Udovenko, Yosuke Todo, Danilo
S̆ijac̆ić, Aein Rezaei Shahmirzadi, Yu Sasaki, Adrián Ranea, Amir Moradi,
Yunwen Liu, Chaoyun Li, Gaëtan Leurent, Patrick Felke, Maria Eichlseder, Itai
Dinur, Begül Bilgin, Ward Beullens, Christof Beierle and Tomer Ashur.
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Preface ii

A few more acknowledgments are in order. Michiel Verbauwhede completed
a successful master’s thesis under the supervision of Chaoyun Li and myself,
and might have made the previous list if this thesis had been finished a few
months later. Wouter Castryck has been incredibly generous with his time,
answering my questions about exponential sums on more than one occasion.
Taking his courses on algebraic number theory and combinatorics has been a
pleasure. The Fonds Wetenschappelijk Onderzoek (FWO) supported my work
financially through a PhD fellowship for fundamental research.

I wanted to write another paragraph to thank some people personally, but it
seems more prudent to do this the right way:
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Abstract

The first part of this thesis develops a general approach to symmetric-key
cryptanalysis. It brings together linear, differential and integral cryptanalysis in
a single framework, and extends these techniques in several ways. A universal
notion of trails is introduced, leading to a systematic method to evaluate the
properties of iterated functions. The theory provides a unified description of
extensions of linear cryptanalysis, and clarifies the connections between them.
For differential cryptanalysis, it leads to the definition of quasidifferential trails,
which make it possible to estimate the probability of differential characteristics
without relying on assumptions of probabilistic independence. In integral
cryptanalysis, it suggests a spectrum of properties between zero-sums and
saturation. These can be obtained and analyzed using a new theory of
ultrametric trails, that generalizes division or monomial trails.

The second part of this thesis turns to applications of cryptanalysis. Using a
characterization of invariants as eigenvectors of correlation matrices that follows
from the first part, weak key attacks on reduced-round Midori-64 and MANTIS
are given. The South-Korean and American format-preserving encryption
standards FEA and FF3-1 are broken using multidimensional linear cryptanalysis.
Differential attacks on Rectangle, KNOT and Speck are reevaluated using
quasidifferential trails, showing that some of these attacks were invalid and that
others work only for a subset of keys. A new generic attack on contracting Feistel
ciphers leads to attacks on the Chinese commercial encryption standard SM4
with a reduced number of rounds. The security of several arithmetization-
oriented primitives is analyzed, leading to attacks on some instances of
GMiMC-erf, GMiMC-crf, HadesMiMC and the Legendre PRF. An attack on
the backdoored cipher LowMC-M is given, and two new backdoored ciphers
that follow more standard design principles are proposed. Finally, it is shown
how linear cryptanalysis can be used to analyze the security of side-channel
countermeasures.
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Beknopte samenvatting

Het eerste deel van deze thesis ontwikkelt een algemene theorie van symmetrische-
sleutel cryptanalyse. Ze brengt lineaire, differentiële en integrale cryptanalyse
samen in eenzelfde kader. Een universele definitie van paden maakt het mogelijk
om de eigenschappen van geïtereerde functies op een systematische manier te
bepalen. De theorie laat toe om de uitbreidingen van lineaire cryptanalyse
op een uniforme manier te beschrijven. Voor differentiële cryptanalyse leidt
ze tot de definitie van quasidifferentiële paden, die het mogelijk maken
om de kans van differentiële karakteristieken te bepalen zonder gebruik te
maken van probabilistische onafhankelijkheidsveronderstellingen. In integrale
cryptanalyse geeft de theorie aanleiding tot een spectrum van eigenschappen
tussen nulsommen en saturatie. Deze eigenschappen kunnen ontdekt en
onderzocht worden met behulp van een nieuwe theorie van ultrametrische
paden, een veralgemening van monomiale paden.

In het tweede deel van deze thesis worden cryptanalytische toepassingen
besproken. Op basis van een karakterisatie van invarianten als eigenvectoren
van correlatiematrices die uit het eerste deel volgt, worden zwakke sleutel
aanvallen op Midori-64 en MANTIS met een verminderd aantal ronden gevonden.
De Zuid-Koreaanse en Amerikaanse standaarden voor formaat-bewarende
encryptie FEA en FF3-1 worden gebroken met behulp van meerdimensionale
lineaire cryptanalyse. Differentiële aanvallen op Rectangle, KNOT en Speck
worden herbekeken met behulp van quasidifferentiële paden, waaruit blijkt
dat sommige fout zijn en andere enkel voor een deel van de sleutels werken.
Een nieuwe generische aanval op samentrekkende Feistel constructies leidt
tot aanvallen op de Chinese commerciële blokcijferstandaard SM4 met een
verminderd aantal ronden. Een analyse van de veiligheid van verschillende
aritmetisatiegeoriënteerde primitiven leidt tot aanvallen op sommige voorbeelden
van GMiMC-erf, GMiMC-crf, HadesMiMC en de Legendre PRF. Er wordt
een aanval gegeven op het blokcijfer LowMC-M, dat een achterdeurtje bevat.
Bovendien worden twee nieuwe blokcijfers die meer gangbare ontwerprinciples
volgen, maar toch een achterdeurtje bevatten, ontwikkeld. Ten slotte wordt
aangetoond hoe lineaire cryptanalyse kan gebruikt worden om de veiligheid van
beschermingsmechanismen tegen nevenkanaalaanvallen te analyseren.
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1
Introduction

Unlike the four puzzles or ‘cryptograms’ in the preface, real cryptography
protects important information that is not meant to be recovered so easily.
In the 1920s, William Friedman defined cryptanalytics as “the science which
embraces all the principles, methods and means employed in the analysis of
cryptograms, that is, their reduction or solution without a knowledge of the
system or the key, or the possession of the code book, by a detailed study
of the cryptograms themselves” [144], and cryptanalysis as the application of
cryptanalytics to cryptograms.

Nevertheless, no puzzle accurately reflects the nature of modern cryptanalysis.
Contemporary research in cryptanalysis is concerned with the general analysis
of cryptosystems, rather than the solution of specific cryptograms. The end goal
of this research is either a general method to break the system, or additional
insight that can be used to improve its design.

This chapter sketches the context of this thesis. Symmetric-key cryptography
is introduced in Section 1.1. The term ‘symmetric’ refers to the fact that the
same key is used for encryption and decryption. Section 1.2 clarifies what is
meant by a secure cryptosystem. Constructions of symmetric-key cryptography
are discussed in Section 1.3, and the main techniques for their analysis are
introduced in Section 1.4. Section 1.5 outlines the goals of this thesis.

1.1 Symmetric-key cryptography

This thesis is concerned with the cryptanalysis of symmetric-key cryptography,
and more specifically with the analysis of primitives. These are the elementary
components from which all practical symmetric-key constructions are built.

There are three types of primitives that underpin the majority of applications,
and that play an important role in this thesis: (i) cryptographic permutations,
(ii) block ciphers, and (iii) tweakable block ciphers. The principles behind
their construction are largely the same, and they can be constructed from each
other in various ways. Permutations are the most bare-bones primitives: they
provide an invertible, unstructured mapping between inputs and outputs. The

1
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meaning of ‘unstructured’ depends on the context and is discussed extensively
in Section 1.2. Block ciphers are permutations parameterized by a key: they
provide an invertible, secret mapping between inputs and outputs. Finally,
tweakable block ciphers include an additional non-secret tweak input. Every
choice of the tweak yields a new block cipher.

The primitives (i) to (iii) do not exist in isolation. This section provides
an overview of the broader context in which they are used. In particular,
Sections 1.1.1 to 1.1.3 describe how primitives are used to achieve the main
goals of cryptography.

1.1.1 Confidentiality

Confidentiality refers to the ability to keep secrets. Encryption schemes provide
this functionality: given a secret key, they convert arbitrary-length messages
or plaintext into ciphertext. Decrypting the ciphertext to recover the original
message should be infeasible unless the secret key is known.

In the past, encryption schemes were often constructed using a code book: a
table with sequences of symbols in one column and their code equivalents in
another. Generating code books is harder than it might appear to be, and
storing large tables is not really practical either. Block ciphers address both
problems by replacing the traditional code book with a mathematical function
Ek parameterized by a secret key k.

m1 m2 m3 . . . ml

Ek Ek Ek
. . . Ek

c1 c2 c3 . . . cl

Figure 1.1: Electronic code book encryption.

Building an encryption scheme using a code book or block cipher might seem
obvious: split the message into blocksm1, . . . ,ml and compute the corresponding
ciphertext blocks as shown in Figure 1.1. Unfortunately, this approach is not
secure because duplicate message blocks result in duplicate ciphertext blocks.
Nevertheless, it was widely used before the widespread use of machine- and
computer-based cryptography – although policies such as frequent replacement of
keys (‘supersession’) and compartmentation were used to control the damage [69].
To achieve modern standards of security, each message block in Figure 1.1 should



3 Introduction

really be encrypted using a different block cipher. This goal can be achieved
more efficiently by using a tweakable block cipher Etk. For example, if the tweak
t takes integer values, then E1

k, . . . ,Elk are l different block ciphers.

There are other ways to construct encryption schemes. One particularly common
example is counter mode [117]. The basic principle is shown in Figure 1.2:
rather than encrypting the message blocks, a public value known as the nonce
is encrypted to generate a keystream. The ciphertext is obtained by adding
the message to this keystream. The addition is usually in a vector space of
the form Fn2 , i.e. using exclusive or. Every nonce can be used at most once,
for similar reasons as above. The variant of counter mode in Figure 1.2 was
first proposed by Peyrin and Seurin in 2016 [233]. Conventional counter mode
includes the counter in the input of the block cipher. AES-GCM [130] is a
widely-used example and is part of TLS1. This avoids the use of a tweakable
block cipher, but achieves lower security because distinct messages always result
in distinct ciphertexts. Yet another approach uses the key, nonce and counter
as the input to a cryptographic permutation with feedforward. This is used in
Chacha20-Poly1305 [193], another mode supported by TLS.

nonce . . .

E1
k E2

k E3
k

. . . El
k

. . .m1 m2 m3 ml

c1 c2 c3 . . . cl

Figure 1.2: Counter mode encryption using a tweakable block cipher.

Instead of using a permutation or (tweakable) block cipher in counter mode, it
is also possible to build a dedicated primitive to generate a keystream. This is
called a stream cipher. Rather than generating blocks, these primitives typically
generate the output bit by bit. They do not play a role in this thesis.

1Transport layer security is used for secure web browsing, as well as other applications.
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1.1.2 Integrity

Encrypting a message does not guarantee that the integrity of the plaintext is
protected. For example, if the adversary flips a bit in the ciphertext of a message
encrypted using counter mode, then the corresponding bit in the decrypted
message will also be flipped. This can have disastrous consequences.

To address the integrity problem, message authenticated codes (MACs) can be
used. Given a secret key, a MAC function outputs a tag. Creating a tag without
the key (‘forgery’) should be infeasible. Like encryption schemes, MACs can be
constructed from permutations, block ciphers or tweakable block ciphers.

A wide variety of MAC functions have been proposed. One example is shown
in Figure 1.3. It is a variant of the LightMAC construction [211]. The output
of the last block cipher call can be truncated to reduce the length of the tag,
provided that it is long enough to avoid forgery by trial and error.

m1 m2 m3 . . . ml

E2
k E3

k
. . . El

k

. . . E1
k

tag

Figure 1.3: Variant of LightMAC using a tweakable block cipher.

Confidentiality and integrity are often combined into a single security notion:
authenticated encryption. This functionality can be achieved by applying a MAC
function to the plaintext (‘mac-then-encrypt’) or by generating the tag from the
ciphertext (‘encrypt-then-mac’), but there are also dedicated constructions. In
August 2018, the United States national institute of standards and technology
(NIST) issued a call for submissions to a standardization project focused on
lightweight authenticated encryption.

Together with Yu Long Chen, Christoph Dobraunig and Bart Mennink, the
author of this thesis submitted Elephant [49]. It is an encrypt-then-mac
construction that combines the encryption scheme from Figure 1.2 and the
MAC from Figure 1.3. It uses a tweakable block cipher constructed from a
cryptographic permutation. The design rationale of Elephant is discussed in
the joint papers [47, 50]. In March 2021, Elephant was selected as one of the
finalists. NIST announced Ascon [125] as the winner in February 2023.
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1.1.3 Other functionalities

Encryption schemes and message authentication codes are not the only
functionalities provided by symmetric-key cryptography. Listing all applications
is beyond the scope of this section, but two examples are worth mentioning.

As discussed in Section 1.1.1, counter mode can be used to generate an
unpredictable stream of bits. This is in itself an important application of
symmetric-key cryptography, and there are several other constructions to achieve
the same functionality. Unpredictable bits are necessary to generate keys and
are an important resource in many protocols.

Hash functions are particularly important and several examples of them will
be encountered in Part II of this thesis. A hash function is a public function
that maps arbitrary length messages to fixed-length digests. Depending on
the application, one or more of the following security properties are desired:
(i) it is infeasible to find a message that hashes to a given digest, (ii) given
a message it is infeasible to find another message with the same digest, and
(iii) it is infeasible to find two different messages with the same digest. These
requirements are called preimage resistance, second preimage resistance and
collision resistance respectively. Depending on the application, additional
properties may be required. Hash functions are widely used; for example, most
digital signature schemes hash the message before producing a signature.

The hash functions discussed in this thesis are based on the sponge construction.
The most important example is the NIST standard SHA-3. As shown in
Figure 1.4, the message blocks are added to the top r input bits of an n-bit
cryptographic permutation P. This is called the absorption phase. After all
message blocks have been processed, the digest is extracted by truncating the
output of the permutation. This is called the squeezing phase. In fact, it is
possible to extend this process to extract arbitrary-length digests. Constructions
that provide this functionality are called extendable-output functions.

iv1

iv2

m1

P

m2

P

m3

P

. . .

. . .

ml

P

digest
b·cd

Figure 1.4: Sponge construction based on a cryptographic permutation P.
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The parameter r is called the rate, and c = n− r is the capacity. The domain
of the permutation P typically needs to be quite big, because the capacity must
be large enough to avoid internal collisions.

1.2 Defining security

The security of all the examples in Section 1.1 relies on the assumption that
solving some problem is infeasible. The feasibility of solving a problem clearly
depends on the capabilities of the adversary. However, formalizing these
capabilities turns out to be difficult.

Formalizing security is important because it makes it possible to formulate
precise security claims, which can then be proved or disproved. Unfortunately,
as pointed out below, all existing definitions have significant limitations.
Sections 1.2.1 to 1.2.3 briefly introduce the main approaches to defining security.
The discussion follows an anti-chronological order.
Remark 1.1. Security definitions generally start from the assumption that the
adversary lacks some knowledge, such as what key was used for encryption.
Probability theory provides a convenient mathematical model for this situation.

A finite probability space consists of a finite set S, the sample space, and a
probability function that maps the subsets of S to [0, 1]. The probability of
a subset A of S in denoted by Pr[A], and Pr[S] = 1. Furthermore, if A and
B are disjoint subsets of S, then Pr[A ∪B] = Pr[A] + Pr[B]. Throughout this
thesis, the probability space will often be implicit.

A random variable x is a function x : S → X to a set X. For x in X,
the probability Pr[{s ∈ S | x(s) = x}] is denoted by Pr[x = x]. For familiar
concepts such as the average Ex and the variance Varx of a random variable, the
reader is referred to standard references such as the first volume of Feller [142].
A uniform random permutation is a random variable taking values in the set of
permutations (on a finite set), so that all permutations are equally probable. .

1.2.1 Reductionist security

Under the influence of computational complexity theory, reductionist security
notions were introduced in cryptography in the 1980s beginning with Goldwasser
and Micali [145]. Bellare et al. [30] proposed the first non-asymptotic definitions.
These definitions also keep track of more detailed information about the
adversary, such as the number of queries it can make. Indeed, the concrete
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security of an encryption scheme typically depends on the number of messages
(chosen by the adversary itself) for which the ciphertext is known.

A reductionist security proof shows that every attack on a cryptographic
system solves a problem that is conjectured to be hard. Confidence in the
difficulty of the problem then leads to confidence in the security of the system.
There are, however, a few practical issues such as the potential overhead
incurred by reductions and the fact that no problem has ever been proven to
be hard. Furthermore, this approach to security is not useful in symmetric-key
cryptography because designing primitives is about constructing rather than
repurposing hard problems.

A more fundamental problem is the fact that reductionist security definitions do
not lead to meaningful assumptions on symmetric-key primitives. To illustrate
this, consider the standard model for constructions based on block ciphers [30,
209]. This model reduces the security of an encryption scheme or message
authentication code to the pseudorandomness of a block cipher. A block cipher
is a (q, t, ε)-secure pseudorandom permutation if no algorithm with runtime t
and making q queries can tell the difference between the cipher with a uniform
random key and a uniform random permutation with advantage greater than ε.
The advantage is the absolute value of the difference between the probability
that the algorithm correctly recognizes the block cipher and the probability
that it falsely recognizes the uniform random permutation.

For an n-bit key, exhaustive search shows that ε ≥ t/2n if t is measured in block
cipher evaluations. One might conjecture that this is essentially optimal for a
secure block cipher. However, the following example shows that ε ≥

√
t/2n.

This does not imply that all block ciphers are broken, but rather highlights the
issues with computational security definitions.

Example 1.1. Koblitz and Menezes [186] and Bernstein and Lange [34] point
out that a block cipher Ek with an n-bit key is at most a (1, 1, 2−n/2)-secure
pseudorandom permutation. Let f be a Boolean function that is easy to compute
and balanced, i.e. taking the values zero and one an equal number of times. If
f(c) is zero, then conclude that the ciphertext c was encrypted using the block
cipher. Otherwise, conclude that it is the output of a permutation sampled
uniformly at random from all permutations.

This attack works because of the typical properties of the function k 7→ f(Ek(p))
for a fixed plaintext p. If 1

2 + γ is the fraction of keys k that are mapped to
zero, then the value of γ depends on f but γ ≈ ±2−n/2 is common. Hence, the
advantage is

∣∣( 1
2 ± γ) − 1

2
∣∣ ≈ 2−n/2. Although prp-security does not rule out

this attack, it is not meaningful in practice because the sign of γ is unknown
unless excessive precomputation is performed.
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Using a cryptographic hash function, it is easy to construct several functions
f1, . . . , ft with the same properties as f from above. Furthermore, with enough
precomputation it can be ensured that every function fi results in a positive
bias γi ≥

√
2π 2−n/2. For a uniform random key, the majority of the outputs of

f1, . . . , ft are zero with probability approximately Φ(
√

2πt 2n), where Φ is the
cumulative standard normal distribution. Since Φ(

√
2πt 2n)− 1

2 ≈
√
t/2n, the

parameter ε satisfies ε ≥
√
t/2n. .

A similar problem occurs for collision-resistant hash functions: since a hash
function is public, there is clearly an efficient algorithm that outputs a collision.
Like in Example 1.1, the problem is that finding this algorithm is infeasible.

In practice, prp-security is used as a (poor) justification for replacing block
ciphers with uniform random permutations during the security-analysis of a
construction. This turns the analysis into a purely probabilistic problem and is
known as information-theoretical security.

1.2.2 Information-theoretical security

Information theory and its application to cryptography were introduced in
two influential papers of Shannon [250,251]. He formalized the intuitive idea
that ciphertext should not reveal anything about plaintext and called this
security notion perfect secrecy [251, §10]. Vernam had already proposed such an
encryption scheme thirty years earlier [172, §13]. His telegraph-based system uses
the exclusive-or of the message and a keystream as the ciphertext. Mauborgne
realized that this system is perfectly secure if the keystream is uniform random.

The idea of perfect secrecy is a simplification of reality, because it hinges on the
availability of uniform random bits. A lack of careful analysis of the methods
used to generate these bits can easily turn the lofty ideal of perfect secrecy into
a security disaster. From a cryptanalytic viewpoint, the analysis of most ‘true
random number generators’ is at best flimsy, and cryptographic post-processing
is required in any case. The main difficulty is not so much to generate some
data that the adversary cannot predict, but rather making it difficult to tell
the difference between this data and uniform random bits.

High-level constructions such as encryption schemes are usually analyzed in
the so-called ideal model [209]. This model replaces block ciphers by uniform
random permutations and tweakable block ciphers by families of independent and
uniform random permutations. Cryptographic permutations are also modelled
as uniform random permutations, but the adversary has the ability to query
them. A stronger model of block ciphers, known as the ideal cipher model, gives
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the adversary query access to the cipher (with the key as an input) and assumes
that each key results in an independent and uniform random permutation.

The ideal model is information-theoretical, but the most common security notion
is indistinguishability rather than perfect secrecy. For example, it should not
be possible to reliably distinguish an encryption scheme from an idealization
that outputs uniform random ciphertext. Like in the definition of prp-security
from Section 1.2.1, the insecurity of the system is quantified by the maximum
possible advantage over all possible adversaries. The advantage is a function
of the number of queries made by the adversary, but the ideal model does not
restrict computational resources. In other words, an adversary is a hypothesis
test and its advantage is equal to the absolute value of the difference between
its success-probability and its false-positive rate.

Although the information-theoretical approach is useful to show the absence
of certain generic attacks on high-level constructions, its applications to the
analysis of primitives are limited. Two exceptions are worth mentioning. The
first exception is the use of information-theoretical proofs as sanity checks for the
overall internal structure of a primitive. Two examples of this will be mentioned
in Section 1.3. The second exception is Vaudenay’s decorrelation theory [275],
which is an information-theoretical approach to block cipher design.

1.2.3 Cryptanalytic security

Given that that neither the reductionist nor the information-theoretical approach
provide adequate security definitions, one is left with the informal adage that
a cryptosystem is secure if no attack on it is known to the adversary. Hence,
confidence in the security of primitives comes from their analysis.

Nevertheless, it is important to be precise about the resources required by an
attack. Likewise, designers must make specific security claims even if these
cannot be formalized. These requirements help to avoid needless debate about
whether or not the security of a primitive has been violated. The most important
aspects of an attack on a primitive are its goal, its access model, and its cost.

For (tweakable) block ciphers, the goal of the adversary is often either to recover
the key or to distinguish the ciphertext from the output of a uniform random
permutation. However, neither of these goals is meaningful for cryptographic
permutations. An attack on a cryptographic permutation should exhibit some
unexpected structure that can be exploited to attack one of the constructions
in which the permutation might be used.

The input and output access models listed in the first column of Table 1.1 are
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Table 1.1: Common access models for primitives.

Input and output Key Tweak
ciphertext only single key known tweak
known plaintext weak key weak tweak
chosen plaintext related key [57] related tweak
chosen ciphertext known key [182] chosen tweak

self-explanatory. It is common practice to assume that a chosen ciphertext
attack can also use chosen plaintexts. An adversary is called non-adaptive if the
plaintexts and ciphertexts it chooses are predetermined. For block ciphers, the
role of the key must also be specified. This leads to the models in the second
column of Table 1.1. Somewhat confusingly, attacks in the single key model
are supposed to work for all or most keys – as opposed to weak key attacks. In
a related key attack, the adversary can query the cipher under two different
keys that are somehow related. Not all relations can be allowed [242]. The
related key and known key models are mainly meaningful in the context of
block cipher based hash functions. In addition to the access models listed in
Table 1.1, it is possible that the implementation of the primitive unintentionally
reveals information. This is called side-channel leakage.

The cost of an attack is determined by several parameters, the most important
of which are (i) its success-probability and false-positive rate, (ii) its data
complexity, (iii) its time complexity, and (iv) its memory requirements. For a
key-recovery attack, the false-positive rate is equal to the fraction of remaining
candidate keys. Data complexity (ii) refers to the number of known or chosen
plaintexts and ciphertexts required by an attack. The time complexity is
traditionally measured in terms of equivalent evaluations of the primitive.

1.3 Construction of cryptographic primitives

Sections 1.3.1 to 1.3.3 introduce common approaches to the construction of
symmetric-key primitives. Generally speaking, the same principles are used for
permutations, block ciphers and tweakable block ciphers. Design decisions are
influenced by two factors: the ability to argue that known cryptanalytic attacks
will not be successful, and the efficiency of the primitive (implementation size,
latency, throughput, ...) on the target platform.

All of the constructions described below are iterated. That is, the final primitive
F is obtained as a composition F = Fr ◦ · · · ◦F2 ◦F1 of simple functions or rounds.
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The idea of composing several weak systems to obtain a stronger one dates back
to premodern cryptography, when it was known as superencipherment [172].
Shannon explicitly proposed to build ‘mixing transformations’ as compositions of
non-commuting transformations [251]. It is common practice to use more rounds
than suggested by the preliminary security analysis. As in other engineering
disciplines such as structural and mechanical engineering, this is meant to
provide a safety margin against oversights in the analysis.

1.3.1 Feistel networks

Figure 1.5 shows two rounds of a Feistel network. This structure is always
invertible, even if the functions F1 and F2 are not. Feistel networks are named
after Horst Feistel, who was part of the IBM team that designed the first
commercial encryption standard DES for the United States. They have the
interesting feature that encryption and decryption are identical up to reversing
the order of the round functions. This saves area in hardware implementations,
since the same circuit can be used for encryption and decryption.

F1

F2

Figure 1.5: Two rounds of a Feistel network.

The Feistel structure has been generalized in various ways, for example by
extending the number of branches to more than two. In addition to DES, there
are numerous other primitives based on (generalized) Feistel networks. For
example, this thesis includes cryptanalytic results on FEA [198], FF3-1 [129],
Speck [24], SM4 [118] and GMiMC [6].

The information-theoretical analysis of Feistel constructions was initiated by
Luby and Rackoff [208]. Although these results indicate that the Feistel structure
is generally sound, they assume that F1,F2, . . . are uniform random functions.
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As discussed in Section 1.2.2, such results say little about the concrete security
of a primitive. In practice, most attacks use the fact that the functions F1,F2, . . .
have exploitable structure. One way to instantiate these functions is using a
combination of modular addition, bitwise rotation and exclusive-or operations
(‘ARX’). Another approach is to use a substitution-permutation network.

1.3.2 Substitution-permutation networks

A round of a substitution-permutation network consists of an S-box layer and a
reordering of the bits of the state. An S-box is a permutation that is applied to
a small part of the state. Substitution-permutation networks can be used as a
part of a construction such as a Feistel cipher, or as a standalone primitive.

An archetypical example is shown in Figure 1.6. The figure shows one round
of the ISO-standardized block cipher PRESENT [71]. In addition to the S-box
and bit-permutation layers, the round function of PRESENT includes a round
key addition. The round keys are derived from the key using a key-scheduling
algorithm.
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Figure 1.6: One round of PRESENT.

It has become conventional to expand the meaning of ‘substitution-permutation
network’ to more general structures such as the one shown in Figure 1.7. That
is, the bit-permutation is replaced by a more general linear layer L. The term
‘linear’ refers to the fact that L is a linear map on the state space, usually Fn2 .

A carefully chosen linear layer can improve the security of the primitive against
certain attacks. The designers of SHARK [243] first proposed to choose a linear
function L : Fn2m → Fn2m that maximizes

bL = min
x∈ Fn

2m

x 6= 0

wt(x) + wt(L(x)) ,
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S

L

S S S S S S S

Figure 1.7: One round of SHARK.

with wt(x) = |{1 ≤ i ≤ n | xi 6= 0}| the Hamming weight of x. The largest
possible value of bL is n+1 and is achieved if x 7→ (x, L(x)) generates a maximum
distance separable (MDS) code. Intuitively, bL is a measure of ‘diffusion’: if i
coordinates of the input are changed, then at least bL − i coordinates of the
output must change. More importantly, bL is the differential branch number and
leads to a security argument against differential cryptanalysis (see Section 1.4.2).

The ideas described in the previous paragraph are part of the wide trail
strategy, which was introduced by Daemen [99] and extended by Daemen
and Rijmen [104, 107, 241]. The downside of SHARK’s linear layer is that it
is relatively expensive to implement. To address this issue, the block ciphers
Square [102] and BKSQ [103] represent the state as a two-dimensional array and
apply an MDS matrix only to either the rows or the columns. To ensure mixing
in both dimensions, the linear layer additionally includes a cell-permutation.
This work led to the design of Rijndael, the 128-bit variant of which was selected
as the advanced encryption standard or AES by NIST. Its round function is
depicted in Figure 1.8, along with the standard names for each of the four
steps. The linear layer consists of ShiftRows (cell-permutation) and MixColumns
(column-wise multiplication by an MDS matrix).
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Addki SubBytes ShiftRows MixColumns

Figure 1.8: One round of the AES.

Aside from PRESENT, SHARK, Square and the AES, there are many
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other substitution-permutation networks. For example, this thesis includes
cryptanalytic results on Midori [18], MANTIS [29], Rectangle [292], KNOT [293],
HadesMiMC [152] and LowMC-M [234]. All of these follow the wide-trail strategy
in one form or another.

Unlike Feistel structures, the inverse of a substitution-permutation network
can in general not be computed with the same circuit. For most applications,
this is not an important downside. In fact, many encryption schemes (such as
counter mode) never use the inverse of the primitive. Nevertheless, substitution-
permutation networks with a similar self-inverse property have been proposed.
A first approach is based on using involutive S-boxes and linear layers. This
idea is used in Midori. Another approach is described in the next section.

1.3.3 Reflection ciphers

Reflection ciphers are (tweakable) block ciphers for which decryption is the
same as encryption under a related key. The high-level structure is shown in
Figure 1.9: decryption is the same as encryption up to adding a constant α to
the round keys. This construction was introduced by the low-latency cipher
PRINCE [76]. The tweakable block cipher MANTIS is based on the same idea.
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kr+1 + α

F−1
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F−1
1
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Figure 1.9: Reflection cipher.

In joint work with Yu Long Chen, the author of this thesis has analyzed the
information-theoretical security of two-round reflection ciphers. This result was
published at Crypto 2022 [45]. Similar to the results of Luby and Rackoff [208]
about Feistel ciphers, it says little about the concrete security of reflection
ciphers.
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1.4 Analysis of cryptographic primitives

As discussed in Section 1.2.3, confidence in the security of primitives is ultimately
derived from their cryptanalysis. An outline of the main principles of modern
cryptanalysis is given Section 1.4.1. Sections 1.4.2 to 1.4.4 introduce three
specific techniques in chronological order of discovery: differential, linear and
integral cryptanalysis. They dominate contemporary research, both in applied
and in theoretical work. Although there are several other important methods,
none of them have led to a comparable wealth of applications and theory.

1.4.1 General principles

Cryptanalytical attacks usually exploit unexpected properties of primitives to
break functionalities such as confidentiality, integrity, collision-resistance, etc.
that a cryptographic system might claim to provide. A property is considered
to be ‘unexpected’ if it does not hold for the information-theoretical idealization
of the primitive (see Section 1.2.2). This is an informal description, since not
all such properties are actually meaningful. A formal definition would have to
avoid the theoretical issues that were discussed in Section 1.2.1. Furthermore,
some properties are meaningful but do not break the functionality of the system.

The first step in almost every attack is the identification and analysis of a useful
property. Due to the size of the search space, and the fact that cryptanalytic
properties are often subtle, black-box methods do not suffice. Instead, techniques
that exploit the structure of the primitive must be used. The most influential
methods are described in Sections 1.4.2 to 1.4.4. All of them rely on the
iterative structure of primitives, which enables the round-by-round analysis or
equivalently propagation of properties.

Once a useful property has been identified, it can be used as a distinguisher
between the primitive and its idealization. In many cases, it is possible to test
the property by random sampling. This approach is sometimes called statistical
cryptanalysis. In statistical terms, a distinguisher is a hypothesis test between
two alternatives: were the samples obtained from the real primitive, or from its
idealized variant? The hypothesis test is based on a test statistic that counts
the number of samples for which the property is valid. The number of samples
is related to the data complexity of the distinguisher, but not necessarily the
same. In particular, in some cases such as for attacks based on pairs of inputs,
the number of samples can exceed the amount of data.

The following result estimates the number of samples that are sufficient to
obtain a constant distinguishing advantage. It assumes nothing about the
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sampling method, other than that the standard deviation of the test statistic is
proportional to 1/√q for q samples. Stronger results can be obtained if more
assumptions about the distribution of the test statistic are made. Nevertheless,
Theorem 1.1 is often close to optimal for intermediate advantages (such as 1/2).

Theorem 1.1 (Data-complexity). Let treal and tideal be complex-valued random
variables with averages µreal and µideal respectively. Let q be a positive integer
such that Var treal ≤ σ2

real/q and Var tideal ≤ σ2
ideal/q. If

q ≥ 2
ε

(
σreal + σideal
|µreal − µideal|

)2
,

then treal and tideal can be distinguished with advantage 1− ε.

Proof. Consider a hypothesis test with the half-plane below the dashed line in
Figure 1.10 as its acceptance region. If treal is contained in the disk of radius τreal
around µreal, then it is in the acceptance region. Likewise, if tideal is contained
in the disk of radius τideal around µideal, then it cannot be in the acceptance
region. Since the advantage 1− ε is equal to the difference between the success

µideal

µreal

τ rea
l
τ ide

al

Figure 1.10: Separating treal and tideal with a line in the complex plane.

probability and the false-positive rate, the parameter ε satisfies

ε ≤ Pr
[
|treal − µreal| ≥ τreal

]
+ Pr

[
|tideal − µideal| ≥ τideal

]
.

Applying Chebyshev’s inequality to both terms yields

q ≥ 1
ε

(
σ2

real
τ2

real
+ σ2

ideal
τ2

ideal

)
.

The lower bound on q is minimized by setting τreal = (σreal/σideal)τideal. Since
τreal + τideal = |µreal − µideal|, this yields τideal = |µreal − µideal|/(1 + σreal/σideal).
Substituting this equality into the lower bound for q yields the result.
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Although Theorem 1.1 does not state it explicitly, its proof implies that the
distinguisher can be implemented efficiently provided that |µreal − µideal| and
σreal/σideal are known. If the test statistic is a consistent estimator, then the
value of µreal follows from the theoretical analysis. Estimates for µideal and
σreal/σideal are usually easier to obtain.

F1 F2
. . . Fr−1 Fr

guess part of krguess part of k1

distinguisher

Figure 1.11: Key-recovery by prepending or appending rounds.

Distinguishers are often only the first step leading to an attack against the
broader system. To limit the scope of this section, only key-recovery attacks
are discussed here. There are two mechanisms by which key material can be
extracted from a cryptanalytic property. The first approach assumes that the
property is key-dependent. Little can be said about this in general, since the
techniques are not generic. The other mechanism is illustrated in Figure 1.11.

As shown in Figure 1.11, one can guess key material from the first and/or last
round and use a distinguisher for the middle rounds to check the validity of
these guesses. In general, more than one round can be prepended or appended
provided that the number of candidate keys is not too large. It is usually not
necessary to guess all of the key material involved in these rounds, because
most properties only depend on part of the state. To uniquely determine the
correct guess, the distinguisher must have a low false-positive rate. The whole
method relies on the assumption that a wrong guess breaks the middle-round
property. For some properties, it is reasonable to assume that the behaviour for
wrong guesses is comparable to that of the ideal primitive. This is called the
wrong-key-randomization hypothesis.

To implement the key-recovery strategy from Figure 1.11, the test statistic
has to be computed for all possible candidate keys. If there are n candidate
keys and the distinguisher requires q samples, then the time complexity of
a naive implementation of this idea is dominated by qn partial encryptions
or decryptions. Chosen-plaintext attacks may require additional data if key
material in the first round is guessed. The naive approach can be significantly
improved when the test-statistic t is of the form t =

∑q
i=1 fk(zi) for samples

z1, . . . , zq. For properties based on a rare event, it is often possible to discard
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many samples without knowing the entire candidate key. Figure 1.12 illustrates
another approach that will be referred to as distillation.

= ×

number of
occurrences
of value z

test-statistic
for key k

contribution to
test-statistic
for key k and
value z

n× 1 n×m m× 1

Figure 1.12: Key-recovery using distillation.

Distillation exploits the fact that the test statistic can often be computed
from only part of the input and/or output of the middle rounds. Hence, it is
worthwhile to separately count the number of samples with a given value for
the relevant part. The results are stored in a vector of length m, as shown in
the rightmost part of Figure 1.12. An n×m matrix containing the contribution
fk(z) to the test statistic for every candidate key k and every value z is then
constructed. The matrix-vector product yields the values of the test statistic
for every key because

∑

z

∣∣{1 ≤ i ≤ q | zi = z}
∣∣ fk(z) =

q∑

i=1
fk(zi) = t .

The time complexity of this method is O(q + nm), which is often lower
than O(qn). The memory-complexity is O(q + n + m) as opposed to O(q).
Furthermore, as observed by Collard, Standaert and Quisquater [95], the matrix
is circulant in many attacks. In this case, and with n = m, the time complexity
reduces to O(q + n logn) by using the fast Fourier transform (FFT) method to
multiply with a circulant matrix.

1.4.2 Differential cryptanalysis

Differential cryptanalysis was proposed by Biham and Shamir at Crypto
1990 [58], and used to obtain attacks on reduced-round DES. They subsequently
extended these results to the first attack on full-round DES [59]. Although their
attack improves over exhaustive search, it requires a large number of chosen
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plaintexts. This is in large part due to the fact that differential cryptanalysis was
taken into account by the IBM team – assisted by the United States National
Security Agency (NSA) – that designed DES. Indeed, although sources disagree
about the relative involvement of IBM and NSA, the technique of differential
cryptanalysis was known but classified in the 1970s [97,170,200].

Differential cryptanalysis is concerned with pairs of input and output differences,
also known as differentials. The probability p of a differential (a, b) for a
function F : Fn2 → Fm2 is the number of solutions of the difference equation
F(x+ a) = F(x) + b in x, divided by 2n. Equivalently, with x uniform random
on Fn2 , the probability p satisfies

p = Pr
[
F(x+ a) = F(x) + b

]
.

Differential cryptanalysis is a statistical attack in the sense that solutions (also
called right pairs) can be found by sampling random values of x – although
sometimes, such as in the analysis of hash functions, there are better options.
If a differential has probability p, then 1/p samples will contain one right pair
on average. This agrees with Theorem 1.1, which predicts a constant advantage
for q = Ω(1/p). Indeed, if the test statistic is equal to the number of observed
right pairs divided by q, then µreal = p and σ2

real ≈ p whereas µideal ≈ 2−n
and σ2

real ≈ 2−n. More precise results can be obtained from the fact that the
distribution of the test-statistic converges to a Poisson distribution as q →∞.

The key observation is that differentials can be propagated round-by-round.
This provides a way to estimate the probability of a differential for a function
F of the form F = Fr ◦ · · · ◦ F1, where the functions Fi admit differentials
with relatively high probability and are easier to analyze. In particular, the
probability can be estimated based on characteristics. A characteristic is a
sequence of intermediate input and output differences for each of the functions
Fi. The probability of the characteristic (a1, . . . , ar+1) is

Pr
[∧r

i=1 Fi(xi + ai) = Fi(xi) + ai+1
]
,

with xi+1 = Fi(xi) for i = 1, . . . , r and x1 uniform random on Fn2 .

By the law of total probability, the probability of a differential is equal to the
sum of the probabilities of all characteristics with matching input and output
differences. Many analyses are based on the assumption that one or a few
characteristics dominate the probability. However, estimating the probability of
characteristics is still nontrivial: it amounts to counting the number of solutions
to a system of several coupled difference equations. Lacking a better method, it
has become common practice to multiply the one-round probabilities as if they
correspond to independent events. Although this heuristic has been useful, it is
clear that it cannot be correct in general.
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Example 1.2 (Differential cryptanalysis of DES). Figure 1.13 shows the overall
structure of the characteristic used in Biham and Shamir’s attack on DES [59].
The arrows are labeled by the differences on the values they carry. Only two
rounds are shown because the input and output differences are the same; such a
characteristic is called iterative. Careful analysis reveals two differences a that
result in a zero-difference at the output of F with probability 35/8192. In fact,
due to the structure of F, this result already uses the independence assumption
mentioned above. Making further use of this assumption, the probability of the
13-round characteristic is approximately (35/8192)6 ≈ 2−36.

F

a 0
00

k1

0 a

F
a0

a 0

k2

Figure 1.13: Iterative differential characteristic for DES.

The full-round attack prepends one round by choosing a structured set of inputs
that is likely to contain a pair with the desired input difference. In addition, two
rounds are appended. Each right pair suggests only a few complete candidate
keys. Hence, candidates can be tested directly without storing a table. Biham
and Shamir estimate the data complexity as 247 chosen plaintexts [59]. .

The wide-trail strategy ensures that all differential characteristics have low
probability, assuming the independence heuristic. For example, based on
the differential branch number of MixColumns, it can be shown that any
characteristic over four rounds of the AES must have a nonzero input difference
in at least 25 S-boxes. Such S-boxes are called differentially active. Since each
S-box has a maximum differential probability of 2−6, this leads to a probability
upper bound of 2−150. In fact, it can be shown that the probability of every
four-round differential is at most (53 · 2−34)4 ≈ 2−121, when averaged over
independent and uniform random round keys [175].
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1.4.3 Linear cryptanalysis

At Eurocrypt 1993, Matsui [215] introduced linear cryptanalysis as a new
known-plaintext attack on DES. Linear cryptanalysis is based on probabilistic
linear relations or linear approximations, a concept that was first used by Tardy-
Corfdir and Gilbert in their attack on FEAL [261]. According to Coppersmith,
linear cryptanalysis was not known to the designers of DES [97].

A linear approximation of a function F : Fn2 → Fm2 consists of a pair of bitvectors
(u, v) in Fn2 × Fm2 . The masks u and v determine linear Boolean functions
x 7→ uTx =

∑n
i=1 uixi and x 7→ vTx =

∑m
i=1 vixi. These functions define an

equation uTx = vTF(x) in x. If F is a uniform random function, then the number
of solutions is close to 2n−1 with high probability. The bias ε is equal to the
number of solutions minus 2n−1, and divided by 2n. It turns out to be more
convenient to work with the correlation c = 2ε rather than the bias. That is,
with x uniform random on Fn2 , the correlation c satisfies

c = 2 Pr
[
uTx = vTF(x)

]
− 1 .

Like differential cryptanalysis, linear cryptanalysis is a statistical attack: the
correlation of an approximation can be estimated empirically by sampling
random values of x. The test-statistic that estimates c by counting the number
of solutions among q independent samples satisfies µreal = c and σ2

real = (1−c2)/q.
For the ideal case, µideal ≈ 0 and σ2

ideal ≈ 1/q + 2−n. Hence, by Theorem 1.1, a
constant advantage can be achieved when q = Ω(1/c2). More accurate results
can be obtained from the observation that the distribution of the test-statistic
converges to a normal distribution as q →∞.

If F = Fr◦· · ·◦F1 with functions Fi that are relatively easy to analyze, then linear
approximations can be analyzed round-by-round using linear trails. A linear
trail is a sequence of compatible intermediate input and output masks for each
of the functions Fi. The correlation of a linear trail is equal to the product of
the correlations of the one-round approximations it encompasses. Tardy-Corfdir
and Gilbert [261] and Matsui [215] combine the one-round approximations in a
trail by adding up the corresponding equations. To compute the correlation of
the combined approximations, Matsui introduced the following lemma.

Lemma 1.1 (Piling-up [215]). For all independent random variables z1, . . . ,zr
on F2 with ci = 2 Pr[zi = 0]− 1, it holds that 2 Pr[

∑r
i=1 zi = 0]− 1 =

∏r
i=1 ci.

Let (u1, . . . , ur) be a linear trail and let xi+1 = Fi(xi) for i = 1, . . . , r with x1
uniform random on Fn2 . Matsui applies Lemma 1.1 with zi = uT

i xi + uT
i+1Fi(xi)

to estimate the correlation of the linear approximation (u1, ur+1). This is a
heuristic argument, since Lemma 1.1 assumes that z1, . . . ,zr are independent –
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which they are clearly not. Under this assumption, the correlation of the trail
is an estimate for the correlation of the corresponding approximation.

It was shown by Daemen et al. [101] that the correlation of a linear approximation
is equal to the sum of the correlations of all linear trails with matching input and
output masks. This is conceptually similar to the relation between differentials
and differential characteristics from Section 1.4.2 but, unlike for the probability
of a characteristic, no heuristics are necessary to calculate the correlation of a
trail. Many analyses, including Matsui’s analysis of DES [214,215], rely on the
assumption that a single trail dominates the correlation.

Example 1.3 (Linear cryptanalysis of DES). Figure 1.14 shows a linear trail
for three rounds of DES [215, §5]. The arrows are labeled by the masks
or the variables they carry. There exist masks u and v that define a linear
approximation of F with correlation ±5/8. Hence, the correlation of the trail in
Figure 1.14 is ±25/64. The sign depends on a linear combination of key bits.
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v 0
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Figure 1.14: Linear trail for three rounds of DES.

Matsui [214] describes a 14-round trail with correlation approximately ±2−20.
The key-recovery strategy uses the distillation method described in Section 1.4.1.
The data complexity is around 243 for a success probability above 80%.

The linear attack has some advantages compared to the differential attack
from Example 1.2. The data complexity is considerably lower, and the attack
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only requires known plaintexts. A downside of the attack is that the success
probability plummets when not enough data is available. If low success
probabilities are acceptable, such as when the number of targets is large,
then a differential attack is preferable because the probability of finding a right
pair is proportional to the number of samples (when it is small). .

The wide-trail strategy leads to a security argument against linear cryptanalysis.
For AES-like ciphers, the correlations of trails can be upper bounded in terms of
the linear branch number of the linear layer. The linear branch number is defined
similarly as the differential one, but with the transpose of the linear layer. Any
linear trail over four rounds of the AES must have a nonzero output mask on at
least 25 S-boxes. Such S-boxes are called linearly active. Since the maximum
absolute correlation of any linear approximation over the S-box is 2−3, one
obtains an upper bound of 2−75 on the absolute correlation of any linear trail.
In fact, it can be shown that the squared correlation of any linear approximation
over four rounds of the AES is at most (109 953 193 · 2−54)4 ≈ 2−109 when
averaged over independent and uniform random round keys [84,175].

1.4.4 Integral cryptanalysis

Integral cryptanalysis originated in a dedicated attack on the block cipher
Square [102], leading to the early name Square attacks. At FSE 2001, Knudsen
and Wagner [184] systematized and extended these attacks and coined the
term integral attacks. Nevertheless, until 2015, describing integral cryptanalysis
alongside differential and linear attacks as one of the main families of techniques
would have been far-fetched. This changed with the introduction of the division
property by Todo [263,264] and the follow-up work that ensued.

The attack on Square works by propagating a set of plaintexts with some
constant cells and some saturated cells. A cell is saturated if all its possible
values are realized, and every value occurs an equal number of times. One
concludes that all ciphertexts sum to zero. A similar approach works for the
AES, and in fact yields one of the most interesting reduced-round attacks.

Example 1.4 (Integral cryptanalysis of the AES.). The notation of Knudsen
and Wagner [102] will be used. Constant cells are labeled by ‘C’, saturated cells
by ‘A’ and cells that sum to zero by ‘S’. To indicate that some combination
of cells is saturated, subscripts will be used. In particular, all saturated cells
labeled by the same subscripts are jointly saturated.

Figure 1.15 illustrates the propagation of a set of 232 plaintexts with constant
off-diagonal elements and a saturated diagonal through four rounds of the AES.
The functions F1, . . . ,F4 are the first four rounds, as depicted in Figure 1.8.
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Figure 1.15: Integral property for four rounds of the AES.

After the last MixColumns step, none of the cells retains the saturation property.
However, all bits of the state have the zero-sum property because every saturated
set sums to zero and this property is preserved by linear maps.

The property from Figure 1.15 leads to a six-round key-recovery attack. The
most efficient approach is based on the distillation framework described in
Section 1.4.1, using the FFT-method [265]. .

Several years before the attack on Square, Knudsen [181] proposed another
way to find zero-sum properties. Every Boolean function f : Fn2 → F2 can be
represented as a unique multivariate polynomial in the ring F2[x1, . . . , xn]/(x2

1−
x1, . . . , x

2
n − xn). This polynomial is called the algebraic normal form of f .

If its degree is d or lower, then
∑
x∈V f(x) = 0 for all vector spaces V of

dimension d+ 1 and higher. Such sums were called higher-order derivatives by
Lai [190], which motivated Knudsen to call this method higher-order differential
cryptanalysis. Although integrals and higher-order differentials can both be used
to deduce zero-sum properties, the underlying methods are different. Higher-
order differential attacks traditionally focus on degree bounds, whereas integral
attacks focus on the structure of the input set.

At Eurocrypt 2015, Todo [264] introduced a refinement of the zero-sum property.
Specifically, a multiset S ⊆ Fn2 has the conventional division property of order k if
all polynomials of degree strictly less than k sum to zero on S. If S is a nonempty



25 Introduction

set, then the division property of order n corresponds to the saturated property.
From a theoretical perspective, the division property partially reconciles the
algebraic viewpoint of higher-order differentials with the structural viewpoint
of integral attacks. However, it does not provide a complete unification because
the saturated property is not a special case of the division property except
for sets. From a practical perspective, the division property led to significant
improvements to many integral attacks. For example, Todo [263] obtained the
first full-round attack on the block cipher MISTY-1.

The structure of many block ciphers does not allow for a cell- or word-based
analysis. This led to the desire to use the division property at the bit level. The
original proposal of Todo and Morii [268], called the bit-based division property,
was imperfect in the sense that it cannot explain all zero-sum properties. This
gap was closed by subsequent theoretical work [79,158,166] and several nearly
equivalent ‘perfect’ theories now exist; an overview is given by Hebborn, Leander
and Udovenko [161]. From a contemporary point of view, a division property
of a function F : Fn2 → Fm2 is characterized by a pair (u, v) in Fn2 × Fm2 . The
exponents u and v correspond to monomial functions x 7→ xu =

∏n
i=1 x

ui
i and

x 7→ xv =
∏m
i=1 x

vi . For two such monomials, one can determine the coefficient
of xu in the algebraic normal form of the Boolean function x 7→ Fv(x). To show
that

∑
x∈S Fv(x) = 0, it suffices to show that xu does not occur in Fv(x) for

all u such that
∑
x∈S x

u = 1. This connection was first made explicit by the
parity set description of Boura and Canteaut [79].

If F = Fr ◦ · · · ◦ F1, then the coefficient of xu in Fv(x) can be determined using
trails. A trail is a sequence (u1, . . . , ur+1) of compatible intermediate input and
output exponents such that Fui+1(x) contains the monomial xui for i = 1, . . . , r.
Hao et al. [158] use the term division trails, whereas Hu et al. [166] use the term
monomial trails2. In particular, xu1 occurs in Fur+1(x) if and only if the number
of trails between u1 and ur+1 is odd. Zero-sum properties are often obtained by
showing the absence of trails. This is easier than counting trails, but potentially
misses some properties. The conventional division property is less precise, as it
only keeps track of the Hamming weights of parts of the exponents.

2There is a subtle difference between both concepts that will be ignored until Chapter 5.
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1.5 Goals

Successful cryptanalysis often builds on previous work, and over time this has
led to the development of cryptanalytic theory. This theory is the subject of
the first part of this thesis; its applications are examined in the second part.

1.5.1 Theory

It appears to be the case that new cryptanalytic techniques are only developed
when the right target presents itself. Differential and linear cryptanalysis were
developed in the wake of the publication of DES and FEAL. Integral cryptanalysis
began as a dedicated attack on Square, and plenty of other techniques that
follow the same pattern are discussed in later chapters of this thesis.

Although this ‘bottom-up’ approach to cryptanalysis has led to important
advances, it also has its downsides – and there are good reasons to be critical
of progress in academic cryptanalysis. Thirty years of research in differential
cryptanalysis did not result in a general way to estimate the probability of
differentials without relying on independence heuristics. The theory of linear
cryptanalysis is fragmentary at best, making it difficult to advance beyond
the analysis of linear trails. It took more than fifteen years to develop the
potential of integral cryptanalysis, and even the division property does not fully
consolidate the structural and algebraic approach to integral attacks. These
examples illustrate three general problems in symmetric-key cryptanalysis:

(i) A lack of urgency to investigate assumptions leads to errors and missed
opportunities. Heuristics can be useful, but they must be understood.

(ii) A lack of unification leads to duplication of effort.

(iii) A lack of perspective on the development of new techniques results in
relatively few new proposals of general cryptanalytic methods.

Part I of this thesis hopes to contribute to the solution of these issues. To
do so, an attempt will be made to approach cryptanalysis from the other
end: rather than deducing theory from specific attacks, a general approach to
symmetric-key cryptanalysis will be developed. This program intends to explain
the extraordinary success of linear, differential and integral cryptanalysis from
first principles. It aims to fill the gaps in existing results, to unify different
techniques, and to suggest where to look for new methods.

Chapter 2 introduces and develops a proposal for such a general approach. It is
used to reconstruct and extend the existing theory of linear, differential and
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integral cryptanalysis in Chapters 3 to 5. For reasons that will be clarified in
Chapter 2, it will be called the geometric approach.

Chapter 3 explores the consequences of the geometric approach in the context of
linear cryptanalysis. The focus is on generalizations of linear cryptanalysis that
have been proposed in the literature, in particular those that must be described
by the higher-dimensional case of the geometric approach.

Chapter 4 is concerned with differential cryptanalysis, with emphasis on the
problem of the independence heuristic. The one-dimensional case of the theory
from Chapter 2 is applied.

Finally, Chapter 5 investigates the consequences of the one-dimensional case
of the geometric approach for integral cryptanalysis. If the reader had any
doubts about the inclusion of integral attacks alongside differential and linear
cryptanalysis in Section 1.4, then Chapter 5 intends to dispel those.

1.5.2 Applications

Part II of this thesis serves a double purpose. On the one hand, it provides
applications of the theoretical concepts introduced in Part I. On the other hand,
it contributes to the cryptanalysis of concrete primitives.

Chapters 6 to 8 rely on Part I of this thesis. Chapter 6 discusses block cipher
invariants from the point of view of Chapter 3 and contains attacks on round-
reduced Midori-64 and MANTIS. Linear attacks on the tweakable block ciphers
FEA-1, FEA-2 and the NIST standard FF3-1 are presented in Chapter 7. Finally,
Chapter 8 reevaluates the differential cryptanalysis of Rectangle, KNOT and
Speck using the methods from Chapter 4.

Chapters 9 and 10 present attacks that do not directly rely on the geometric
approach, although in hindsight the results from Part I would have led to
improvements in some cases. Chapter 9 presents attacks on generalized Feistel
ciphers, with applications to the cryptanalysis of SM4. Further applications to
GMiMC-crf and GMiMC-erf are given in Chapter 10, in addition to attacks on
HadesMiMC and the Legendre PRF. These ‘arithmetization-oriented primitives’
are optimized for use in cryptographic protocols such as zero-knowledge proofs
and multi-party computation.

Chapters 11 and 12 present applications of cryptanalysis outside of the
traditional security analysis of primitives. Chapter 11 applies linear
cryptanalysis to the analysis of countermeasures against side-channel attacks.
Chapter 12 constructs block ciphers with intentional weaknesses or backdoors.
In addition, an attack on an earlier such proposal, LowMC-M, is presented.
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On the contribution of the author

Large parts of this thesis are based on published papers, some of which are
joint work with other authors. For this reason, every chapter lists all relevant
publications. Unless stated otherwise, all results presented in this thesis are
due to the author alone.
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2
Geometric approach to cryptanalysis

This chapter develops a general approach to the combinatorics of symmetric-key
cryptanalysis. It is based on the observation that many combinatorial problems
in cryptanalysis can be approached using the geometry and linear algebra of
normed vector spaces.

The term ‘geometric approach’ was first used in the paper “A geometric approach
to linear cryptanalysis” [40] (Asiacrypt 2021), which applied the techniques
from this chapter to the particular case of linear cryptanalysis. Nevertheless,
the results in this chapter have not appeared elsewhere in the same generality.
Particular cases of the theory, such as linear cryptanalysis, are worked out in
Chapters 3 to 5.

2.1 Introduction

As discussed in Section 1.4, the last three decades of research in symmetric-key
cryptanalysis have been dominated by three major families of techniques: linear,
differential and integral cryptanalysis. Part I of this thesis shows that these
three techniques can be described in a uniform way. What is more, applying
the same set of general principles results in new insights for each case. This
chapter sets up the required definitions and derives these principles.

At their core, linear, differential and integral cryptanalysis involve a
combinatorial problem. In linear and differential cryptanalysis, the cryptanalyst
builds a distinguisher by comparing the observed number of solutions to certain
equations to a theoretically computed value. Calculating the exact number of
solutions is too difficult in most cases, so it is necessary to rely on approximations.
This description may not seem to be applicable to integral cryptanalysis, where
the cryptanalyst only determines the parity of the number of solutions. However,
it will be shown in Chapter 5 that this can also be interpreted as a form of
approximation that fits within the same framework. From this point of view,
this chapter essentially develops a method for approximate counting.

The starting point of the geometric approach is a reformulation of cryptanalytic
properties, such as linear approximations and differentials, in terms of pairs

31
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of vector spaces. The input space corresponds to one or more functions that
assign weights to the inputs of a primitive. The output space consists of linear
functions that can be evaluated on the output weighting. Each such evaluation
is the solution of a combinatorial problem of the type described above. This
correspondence between cryptanalytic properties and pairs of vector spaces is
explained in detail in Section 2.3.

The remainder of the chapter develops methods for approximate evaluation of
cryptanalytic properties. The techniques are introduced gradually: Section 2.4
discusses the simpler case of properties defined by two one-dimensional vector
spaces. This requires little more than expressing the results of Section 2.3 in an
appropriately chosen basis. The principles for choosing this basis are the same
for linear, differential and integral cryptanalysis and are also outlined in this
section. The main result is a general theory of one-dimensional trails – linear
trails, differential characteristics and division trails are examples that will be
developed in Chapters 3, 4 and 5 respectively. Section 2.5 discusses the general
case from a basis-free point of view. Apart from a generalized definition of
trails, some results about perfect and zero-correlation approximations are given.

Section 2.6 provides a blueprint for specializing the theory to particular cases.

2.2 Linear algebra

This section elaborates on the mathematical setting for the theory that will be
developed in Sections 2.3 to 2.5. Since no new results are presented, it may be
safely skipped by readers who are familiar with the material.

Let V be a finite-dimensional vector space over a field k. The algebraic dual of
V is introduced in Section 2.2.1, and its main properties are discussed to the
extent that they will be used in the next sections. Section 2.2.2 introduces a
metric structure on V and its dual. Finally, Section 2.2.3 reviews tensor product
spaces and how they relate to the concepts from Sections 2.2.1 and 2.2.2.

2.2.1 Dual vector space

Recall that every vector space has a dual vector space, defined as in Definition 2.1.
Like all results in this section, the following definition can be found in most
linear algebra textbooks.

Definition 2.1 (Dual vector space). Let V be a vector space over a field k.
The dual space V ∨ of V is the k-vector space of all linear functions V → k.
The elements of V ∨ are called linear functionals.
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It is not difficult to see that a linear combination of two linear functions is
again a linear function, so that the set V ∨ defined in Definition 2.1 is indeed
a vector space. The following result shows that dimV = dimV ∨ by explicitly
constructing a basis for V ∨.

Theorem 2.1 (Dual bases). Let V be a k-vector space with basis {b1, . . . , bd}.
If the linear functions bi : V → k with i in {1, . . . , d} are defined by

bi(bj) =
{

1 if i = j

0 otherwise,

then {b1, . . . , bd} is a basis for the dual space V ∨ of V .

The bases {b1, . . . , bd} and {b1, . . . , bd} in Theorem 2.1 are called dual bases.

Since dimV and dimV ∨ are equal, the vector spaces V and V ∨ are isomorphic.
Indeed, one can map a basis of V to a basis of V ∨. The choice of isomorphism
is arbitrary because different bases usually result in different isomorphisms, and
will be avoided for now to avoid certain technical difficulties later on1.

However, there is a ‘canonical’ isomorphism between V and V ∨∨ that can be
specified without such an arbitrary choice of basis. It is given in Theorem 2.2.

Theorem 2.2. Let V be a finite-dimensional vector space. For all v in V ,
define an ‘evaluation map’ evv : V ∨ → k by evv(f) = f(v). The function
V → V ∨∨ : v 7→ evv is an isomorphism of vector spaces.

Finally, recall that every subspace U of V has an annihilator. This is the
subspace of linear functionals that vanish on U .

Definition 2.2 (Annihilator). Let V be a finite-dimensional vector space. The
annihilator of a subspace U of V is the subspace

U0 =
{
v ∈ V ∨ | ∀u ∈ U : v(u) = 0

}
.

Applying Definition 2.2 to V ∨ and using the canonical isomorphism between
V ∨∨ and V , one likewise obtains the ‘annihilator’ of a subspace U of V ∨ as

U0 =
{
v ∈ V | ∀u ∈ U : u(v) = 0

}
,

which is just the solution space of the system of equations defined by U .
1Choosing such an isomorphism is equivalent to choosing a bilinear form on V . However,

such a form may be isotropic. For example, if k is a finite field with odd characteristic and
dim V ≥ 3, then any bilinear form on V is isotropic [96, Theorem 6.23]. This would lead to
artificial limitations in Section 2.5.
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∪ ∩

Figure 2.1: Antitone Galois connection between the subspaces of V and V ∨.

It holds that dimU0 = dimV − dimU and U00 = U . Taking the annihilator of
a subspace is an inclusion-reversing operation, as illustrated in Figure 2.1. In
other words, it is an antitone Galois connection [111, §7.23] between the lattices
of subspaces of V and V ∨.

2.2.2 Normed vector spaces

In Sections 2.3 to 2.5, suitable definitions of the magnitude of elements of k
and the ‘length’ of vectors are needed. These concepts will be used to compare
the quality of different cryptanalytic properties, and to measure the size of
approximation errors.

Technically, V will be assumed to be a normed vector space. However, before
norms can be introduced, the absolute value of elements of k must be defined.
Additional background about absolute value functions can be found in textbooks
such as [93, §8.2].

Definition 2.3 (Absolute value). Let k be a field. An absolute value on k is a
real-valued function | · | : k → R on k such that

(1) For all x in k, |x| ≥ 0 with equality if and only if x = 0.

(2) The function | · | is multiplicative: for all x and y in k, |xy| = |x| |y|.

(3) The triangle-inequality holds: for all x and y in k, |x+ y| ≤ |x|+ |y|.

Furthermore, if the strong triangle-inequality |x+y| ≤ max{|x|, |y|} holds, then
| · | is called a non-Archimidean or ultrametric absolute value. Otherwise, | · | is
called Archimidean.
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Definition 2.3 is inspired by the standard absolute value function on Q and R.
Another elementary example is the absolute value on C defined by |a+

√
−1 b| =√

a2 + b2. Another example is given in Example 2.1. It will play a central role
in Chapter 5.
Example 2.1. Let p be a prime. Every nonzero rational number x can be
written as x = pe (a/b) with a and b integers indivisible by p. Let |x|p = p−e and
|0|p = 0. For example, |10|2 = 1/2. The function x 7→ |x|p is a non-Archimidean
absolute value on Q. It is called the p-adic absolute value. .

Definition 2.3 provides a suitable notion of ‘magnitude’ for the elements of a
field k. An absolute value also induces a metric: the distance between x and y
in k is defined by |x− y|. Normed vector spaces over a field k with an absolute
value can now be defined.
Definition 2.4 (Normed vector space). Let V be a vector space over a field k
with absolute value | · |. A norm on V is a real-valued function ‖ · ‖ : V → R on
V such that

(1) For all x in V , ‖x‖ ≥ 0 with equality if and only if x = 0.

(2) For all x in V and λ in k, ‖λx‖ = |λ| ‖x‖.
(3) The triangle-inequality holds: for all x and y in V , ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Furthermore, if the strong triangle-inequality ‖x+ y‖ ≤ max{‖x‖, ‖y‖} holds,
then | · | is called a non-Archimidean or ultrametric norm. Otherwise, ‖ · ‖ is
called Archimidean. A vector space with a norm is called a normed vector space.

Several examples of norms on vector spaces are given in Example 2.2.
Example 2.2. Several norms can be defined on the vector spaces Qn, Rn and
Cn with respect to the standard absolute value | · | on Q, R and C. The p-norm
of x is defined by

‖x‖p =
(

n∑

i=1
|xi|p

)1/p

.

The p-norm with p = 2 is also called the Euclidean norm.

Let p be a prime and | · |p the p-adic absolute value on Q from Example 2.1. A
corresponding norm on Qn can be defined as

‖x‖ = max
1≤i≤n

|xi|p .

This ultrametric norm will be important in Chapter 5. .
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The following theorem shows that the dual of a finite-dimensional normed vector
space is again a normed vector space.

Theorem 2.3 (Dual norm). Let V be a finite-dimensional normed vector space
with norm ‖ · ‖. The function ‖ · ‖∨ : V ∨ → R defined by

‖u‖∨ = sup
v ∈V
‖v‖≤1

|u(v)| ,

for all u in V ∨, is a norm on V ∨.

The norm ‖·‖∨ from Theorem 2.3 is called the dual norm of ‖·‖. If k is complete
with respect to | · |, then the supremum in Theorem 2.3 may be replaced by
a maximum. Using this norm, the isomorphism between V and V ∨∨ from
Theorem 2.2 becomes an isometry provided that k is complete: ‖evv‖∨∨ = ‖v‖.
Example 2.3. The dual norm of the p-norm from Example 2.2 is the 1/(1−1/p)-
norm with respect to the dual basis of the standard basis. In particular, the
2-norm is its own dual. The p-adic norm defined in Example 2.2 is also self-dual
relative to the dual basis of the standard basis. .

Finally, the operator norm of a linear map L : U → V between normed vector
spaces U and V is defined as

‖L‖op = sup
u∈U
‖u‖U≤1

‖Lu‖V ,

with ‖ · ‖U the norm on U and ‖ · ‖V the norm on V .

2.2.3 Tensor products

The tensor product of vector spaces can be defined in one of several ways. The
most general definition is that the tensor product of k-vector spaces V1, . . . , Vn
is another k-vector space V1 ⊗ · · · ⊗ Vn of dimension

∏n
i=1 dimVi together with

a multilinear map ⊗ :
∏n
i=1 Vi →

⊗n
i=1 Vi, which has the universal property

that it uniquely linearizes arbitrary multilinear maps. Specifically, for any
T :

∏n
i=1 Vi → W linear in each variable (multilinear), there exists a unique

linear map L :
⊗n

i=1 Vi →W such that T (v1, . . . , vn) = L(v1 ⊗ · · · ⊗ vn). This
characterizes the tensor product up to unique isomorphism of vector spaces.

A more concrete but basis-dependent definition is as follows. Let Bi be a basis
for Vi. The tensor product space V1 ⊗ · · · ⊗ Vn can be informally defined as

V1 ⊗ · · · ⊗ Vn = Span
{
b1 ⊗ b2 ⊗ · · · ⊗ bn

∣∣ bi ∈ Bi for i = 1, . . . , n
}
,
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where b1 ⊗ b2 ⊗ · · · ⊗ bn are formal basis vectors. This can be formalized as a
quotient of the free vector space. Furthermore, the tensor product of vectors
v1, . . . , vn with vi =

∑
b∈Bi

cb b is defined by bilinearity:

v1 ⊗ · · · ⊗ vn =
∑

b1∈B1

· · ·
∑

bn∈Bn

(∏n
i=1 cbi

)
b1 ⊗ · · · ⊗ bn .

Since the dual spaces V ∨1 , . . . , V ∨n are themselves k-vector spaces, the above also
defines the tensor product space V ∨1 ⊗ · · · ⊗ V ∨n . Throughout this thesis, this
space will be identified with (V1 ⊗ · · · ⊗ Vn)∨ using the canonical isomorphism
that maps f1 ⊗ · · · ⊗ fn to (x1 ⊗ · · · ⊗ xn) 7→ f1(x1) · · · fn(xn).

More generally, the set of linear operators between two k-vector spaces is itself
a vector space over k. Hence, the tensor product of linear operators is well-
defined. Throughout this thesis, the tensor product L1⊗· · ·⊗Ln of linear maps
Li : Vi → Ui will be identified with the linear map

n⊗

i=1
Vi →

n⊗

i=1
Ui

v1 ⊗ · · · ⊗ vn 7→ (L1v1)⊗ · · · ⊗ (Lnvn) .

In general, norms on the spaces V1, . . . , Vn do not extend to V1 ⊗ · · · ⊗ Vn in a
canonical way. However, all of the norms that will be used in this thesis satisfy
‖v1 ⊗ · · · ⊗ vn‖ = ‖v1‖ · · · ‖vn‖.
The following definition will be important in Chapter 3.
Definition 2.5 (Tensor rank). Let V1, . . . , Vn be k-vector spaces. The rank of
a vector v in

⊗n
i=1 Vi is the least integer r ≥ 0 such that

v =
r∑

i=1
λi v

(i)
1 ⊗ · · · ⊗ v(i)

n ,

where v(i)
1 ∈ V1, . . . , v

(i)
n ∈ Vn and λ1, . . . , λr ∈ k.

Example 2.4. Let V = R2⊗R2. The vector (1, 0)⊗(1, 0) in R2⊗R2 has tensor
rank one. Furthermore, it is easy to check that (1, 0)⊗ (1, 0) + (0, 1)⊗ (0, 1) has
rank two. However, (1, 0)⊗ (1, 0) + (1, 0)⊗ (0, 1) + (0, 1)⊗ (1, 0) + (0, 1)⊗ (0, 1)
has rank one because it is equal to (1, 1)⊗ (1, 1). .

2.3 Cryptanalytic properties

This section introduces the class of combinatorial problems that Part I of this
thesis intends to address. The goal is to approximately evaluate cryptanalytic
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properties. Section 2.3.1 formalizes cryptanalytic properties as a pair of vector
spaces. The effect of applying a function on these subspaces is discussed in
Section 2.3.2. Finally, a general definition of correlation is given in Section 2.3.3.

2.3.1 Properties

Let X and Y be finite sets and F : X → Y a function. In concrete cases of the
theory, the sets X and Y will be related to the state space of a cryptographic
primitive. For example, X could be the set of all possible inputs, or the set of
all possible input pairs. The function F will be the primitive itself or function
derived from it, such as an extension that works on pairs.

In the combinatorial problems that we consider, each element of X is assigned
a weight. It will be assumed that these weights are numbers, i.e. elements
of some field k. Mathematically, such an assignment of weights is described
by a function from X to k. The set of all functions from X to k is denoted
by kX . The sum of functions f and g in kX is the function f + g defined by
(f + g)(x) = f(x) + g(x). Similarly, a function f can be multiplied by a scalar
λ to obtain a function λf defined by (λf)(x) = λf(x). Hence, kX is a vector
space over the field k. Alternatively, one can think of kX as the free k-vector
space over the set X.

Applying a function F : X → Y to the state transforms the assignment of
weights on X to a corresponding assignment on Y . In the simplest case, when
X = Y and F is a permutation, it leads to a rearrangement of the weights
that were assigned to elements of X. Section 2.3.2 below describes the effect of
general functions F : X → Y . For now, it is sufficient to say that the result is
characterized by some function T F : kX → kY .

It is rarely necessary to keep track of all the weights assigned to elements of
Y . Instead, it is sufficient to know the evaluation of a function kY → k on the
vector of output weights. In this thesis only linear functions, i.e. elements of the
dual space (kY )∨ of kY , are considered. This assumption may seem stringent at
first, but it is more than sufficient to describe all of the techniques mentioned
in Section 1.4. This is not a coincidence, since linearity is implied by several
rudimentary properties such as being able to evaluate properties by summing
values obtained from individual input-output pairs.

Summarizing the above, the problem reduces to evaluating an expression of the
form v(T Fu), for u in kX and v in (kY )∨. Cryptanalysis often involves multiple
such expressions. That is, one is interested in the value of v(T Fu) for all u in U
and v in V , where U ⊆ kX and V ⊆ (kY )∨ are subsets. Due to linearity, U and
V can be assumed to be subspaces. This leads to the following definition.
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Definition 2.6 (Cryptanalytic property). A cryptanalytic property for a
function F : X → Y is a pair (U, V ) with U a subspace of kX and V a
subspace of (kY )∨. The evaluation of a property at u in U and v in V is equal
to v(T Fu).

The problems addressed in Chapters 2 to 5 of this thesis can now be described
as follows: given a property (U, V ) for a function F, estimate its evaluations
v(T Fu) at arbitrary u in U and v in V . The meaning of ‘estimate’ is with
respect to a metric structure on k. For this purpose, it is assumed that the field
k comes with an absolute value function | · | : k → R.

To end this section, a basic example of a cryptanalytic property in the sense of
Definition 2.6 is given. More significant examples will be discussed in Chapters 3
to 5.

Example 2.5. Consider a distinguisher that relies on encrypting elements of a
set A and counting the number of outputs that are elements of a set B. The
sets A and B together determine a cryptanalytic property that can be brought
into the form of Definition 2.6 as follows.

Let U = Span{1A}, where 1A : X → k is the indicator function of a subset A
of X. In particular, 1A is defined by 1A(x) = 1 if x ∈ A and zero elsewhere.
Furthermore, let V = Span{SB} with SB : kY → k the ‘summation’ functional
defined by SB(f) =

∑
x∈B f(x).

If F is a permutation, then T F1A = 1F(A). Hence, the evaluation of the
cryptanalytic property (U, V ) at 1A and SB is equal to

SB(T F1A) =
∑

x∈A
1B(F(x)) = |{x ∈ A | F(x) ∈ B}| . (2.1)

Even if F is not a permutation, the above equality remains valid. This will be
shown in Section 2.3.2. .

2.3.2 Propagation

This section describes how an assignment of weights to the state changes when
a function is applied. This will be referred to as propagation, in analogy to the
propagation of masks and differences in linear and differential cryptanalysis. In
fact, it will be shown in Chapters 3 to 5 that the familiar rules for propagation
are simple consequences of the results in this section.

As mentioned in Section 2.3.1, the effect of applying a function F to the state
can be described by a function T F : kX → kY . This function is defined formally
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in Definition 2.7. Below, for all x in X, the function δx : X → k is defined by

δx(y) =
{

1 if y = x ,

0 otherwise .

The functions δx with x in X are linearly independent. Since f =
∑
x∈X f(x) δx

for any f in kX , the set {δx | x ∈ X} is a basis for kX . It will be called the
standard basis of kX .

Definition 2.7 (Pushforward operator). Let F : X → Y be a function. The
pushforward operator along F is the linear map T F : kX → kY defined by

T F δx = δF(x) ,

for all x in X.

As mentioned in Section 2.3.2, if F is a permutation, then applying T F amounts
to a rearrangement of weights. If F is not a permutation, then Definition 2.7
implies that the weight of y in Y is obtained by adding the weights of all the
preimages of y under F. That is, for any f in kX , it holds that

(
T Ff

)
(y) =

∑

x∈F−1(y)

f(x) =
∑

x∈X
δy(F(x))f(x) . (2.2)

Since T F is a linear operator, it can be represented as a matrix. For convenience,
the matrix representation of T F with respect to the standard bases of kX and
kY will also be denoted by T F. By (2.2), the coordinates of T F are equal to

T F
y,x = δy(F(x)) .

Since the standard bases of kX and kY are indexed by elements of X and Y ,
using the same convention to denote the coordinates of T F avoids arbitrary
choices. This result implies (2.1) in Example 2.5 for arbitrary functions F, since
(T F1A)(y) =

∑
x∈A δy(F(x)) and hence SB(T F1A) =

∑
y∈B

∑
x∈A δy(F(x)).

Example 2.6. Let F : F2
2 → F2

2 be the function defined by F(x) = (x1, x1x2).
The matrix T F is given by:

T F =




1 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1


 ,

where the standard basis of kF2
2 is ordered as δ(0,0), δ(0,1), δ(1,0), δ(1,1). .
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Definition 2.7 and the discussion following it describe propagation in the forward
direction. However, it is sometimes useful to start from an element of (kY )∨
and propagate it backwards through a function F to obtain an element of (kX)∨.
The natural way to do this is given in Definition 2.8. In this definition, the
functionals δy : kY → k are defined by δy(f) = f(y). The set {δy | y ∈ Y } is
the standard basis of (kY )∨. It is the dual basis of the standard basis of kY .
Definition 2.8 (Pullback operator). Let F : X → Y be a function. The
pullback operator along F is the linear map T F∨ : (kY )∨ → (kX)∨ defined by

T F∨ δy = δy ◦ T F ,

for all y in Y .

An alternative formulation of Definition 2.8 is that the pullback operator T F∨

is the adjoint of the pushforward operator T F. In other words, forward and
backward propagation are dual to each other. Indeed, Definition 2.8 implies
that all v in (kY )∨ satisfy T F∨v = v ◦ T F. Combining Definitions 2.7 and 2.8
shows that for all u in kX and v in (kY )∨,

(
T F∨v

)
(u) = v

(
T Fu

)
.

It also follows that the matrix representation of T F∨ with respect to the standard
bases of (kX)∨ and (kY )∨ is the transpose of the matrix T F. Specifically,

T F∨
x,y =

(
T F∨δy

)
(δx) = δy(F(x)) = T F

y,x.

The following example constructs T F∨ for the function F from Example 2.6.
Example 2.7. For the function F : F2

2 → F2
2 defined by F(x) = (x1, x1x2) from

Example 2.6, the matrix corresponding to the pullback operator is

T F∨ =




1 0 0 0
1 0 0 0
0 0 1 0
0 0 0 1


 ,

where the standard basis of (kF2
2)∨ is ordered as δ(0,0), δ(0,1), δ(1,0), δ(1,1). It is

the transpose of the matrix given in Example 2.6. .

Theorem 2.4 states the main properties of pushforward and pullback operators.
They are all simple to state and prove. However, as shown in Sections 2.4
and 2.5 and especially Chapters 3 to 5, their consequences are profound.

Note that property (1) holds up to the canonical isomorphism between kX and⊗n
i=1 k

Xi for X =
∏n
i=1Xi. This isomorphism maps the standard basis vector

δx = δ(x1,...,xn) to the tensor
⊗n

i=1 δxi .
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Theorem 2.4 (Properties of pushforward and pullback operators.). Let F :
X → Y be a function. The pushforward operator T F and pullback operator T F∨

satisfy the following properties:

(1) If F(x) = (F1(x1), . . . ,Fn(xn)), then T F =
⊗n

i=1 T
Fi and T F∨ =

⊗n
i=1 T

F∨i .

(2) If F = Fr ◦ · · · ◦ F1, then T F = T Fr · · · T F1 and T F∨ = T F∨1 · · · T F∨r .

The same properties apply to the matrix-representations of T F and T F∨ , with
the tensor product ⊗ corresponding to the Kronecker product of matrices and
the composition of linear maps to matrix multiplication.

Proof. Property (1) follows from

T Fδx = δF(x) =
⊗n

i=1δFi(xi) =
⊗n

i=1T
Fiδxi

=
(

n⊗

i=1
T Fi

)
⊗n

i=1 δxi
,

for all x in X. The proof of the corresponding property for T F∨ is similar, or
alternatively follows from standard results about adjoint maps.

For property (2), it is sufficient to see that for all x in X,

T Fδx = δF(x) = δ(Fr◦···◦F1)(x) = T Frδ(Fr−1◦···◦F1)(x) = . . . = T Fr · · ·T F1δx .

Again, the proof of the corresponding property for T F∨ is similar, or can be
deduced using standard results about adjoint maps.

Example 2.8. Let G : F4
2 → F4

2 be defined by G(x) = (x1, x1x2, x3). Since G
is essentially the same as (F, id) with F defined in Example 2.6 and id(x3) = x3,
Theorem 2.4 (1) yields

TG = T F ⊗ T id =




1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




,

where the standard basis of kF
3
2 is ordered as δ(0,0,0), δ(0,0,1), . . . , δ(1,1,1).

In addition, one can verify that TGTG = TG◦G = TG as expected from
Theorem 2.4 (2). .
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2.3.3 Correlation

Before turning to methods to approximate evaluations of cryptanalytic
properties, a final comment on Definition 2.6 is in order. In order to compare
different properties, it is sometimes useful to define the ‘principal correlation’
of a property. This terminology is due to the link with absolute correlations in
linear cryptanalysis, which will be explained in Chapter 3.

Definition 2.9 (Principal correlation). Let k be a field with absolute value | · |
and let ‖ · ‖X and ‖ · ‖Y be norms on kX and kY respectively. The principal
correlation of a cryptanalytic property (U, V ) for a function F : X → Y with
U ⊆ kX and V ⊆ (kY )∨ is equal to

sup
v ∈V
‖v‖∨Y ≤1

sup
u∈U
‖u‖X≤1

|v(T F u)| ,

where ‖ · ‖∨Y denotes the dual norm of ‖ · ‖Y .

The definition of the dual norm implies that the correlation is a value between
zero and ‖T F‖op. The principal correlation is sometimes a good measure of
the quality of a property, but it is not the case that only properties with high
correlation are useful. At the extreme end, properties with principal correlation
equal to zero (‘zero-correlation’) have many applications.

It is worth emphasizing that the main purpose of the theory in Part I of this
thesis is not to identify cryptanalytic properties with high principal correlation.
Instead, the theory addresses the more basic problem of accurately evaluating
properties.

2.4 One-dimensional theory

This section develops a simplified version of the more general theory that will
be introduced in Section 2.5. The simplification is due to the fact that only
‘one-dimensional’ properties, i.e. with dimU = dimV = 1 in Definition 2.6, are
considered. Restricting to this case has the advantage that most results can be
obtained simply by expressing the results from Section 2.3.2 in an appropriately
chosen basis. The downside of this approach is that it does not work well in
the multidimensional case. Nevertheless, the one-dimensional case is important
enough by itself to warrant a separate discussion.
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2.4.1 Change-of-basis

Let B = {b1, b2, . . . , b|X|} be a basis for kX . Recall that a change-of-basis
transformation from the standard basis of kX to B is an invertible linear map
from k|X| to itself, which maps the standard basis coordinates of bi to the ith

standard basis vector of k|X|. In order to allow arbitrary labelings of the basis
vectors, the following variation on this definition will be used in this thesis.
Definition 2.10 (Change-of-basis). Let B = {bβ | β ∈ B} be a basis for kX
labeled by a set B. The change-of-basis transformation from the standard basis
of kX to the basis B is the linear map PB : kX → kB defined by PB bβ = δβ for
all β in B. Furthermore, the dual change-of-basis transformation is the linear
map P−∨B : (kX)∨ → (kB)∨.

The dual change-of-basis transformation defined in Definition 2.10 maps the
dual basis of B to the standard basis of (kB)∨. Recall that the dual basis of B
is the unique basis B∨ = {bβ | β ∈ B} such that bα(bβ) = δα(β) for all α and β
in B. If PB is the change-of-basis transformation for B as in Definition 2.10,
then the linear map P−∨B : (kX)∨ → (kB)∨ satisfies

(
P−∨B bα

)
(δβ) =

(
bα ◦ P−1

B
)
(δβ) = bα(bβ) ,

for all α and β in B. By the uniqueness of dual bases, it follows that P−∨B bα = δα.
Hence, P−∨B can be interpreted as a change-of-basis transformation from the
standard basis of (kX)∨ to the basis B∨.
Example 2.9. Let B = {b1, b2} ⊂ kF2 with b1 = δ0 + δ1 and b2 = δ1. This is a
basis for kF2 , with change-of-basis transformation given by

PB =
[

1 0
91 1

]
,

where the matrix-representation is with respect to the standard bases of kB
and kF2 . Indeed, the first standard basis vector δb1 of kB is equal to PB(δ0 + δ1)
and δb2 = PBδ1. The dual basis of B is given by B∨ = {b1, b2} with b1 = δ0 and
b2 = δ1− δ0. The corresponding dual change-of-basis transformation is given by

P−∨B =
[

1 1
0 1

]
,

again with respect to the standard bases of (kB)∨ and (kF2)∨. .

From a strictly theoretical point of view, Definition 2.10 (and change-of-basis in
general) is redundant. Practically, however, a good choice of basis can simplify
the matrix representation of the pushforward and pullback operators T F and
T F∨ . Nevertheless, it will be clarified in Section 2.5 that the same results can
be obtained without choosing a basis.
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2.4.2 Propagation

This section takes up the same topic as Section 2.3.2, namely the propagation of
state functions through a function F : X → Y . Recall that this is described by
a pushforward operator T F : kX → kY , or dually by the corresponding pullback
operator T F∨ . Change-of-basis transformations can also be applied to these
operators.

Definition 2.11 (Relative pushforward and pullback). Let F : X → Y be a
function and X and Y bases for kX and kY respectively. The pushforward
operator of F relative to X and Y is the linear transformation BF = PYT

FP−1
X .

The pullback operator relative to X and Y is the dual map BF∨ .

Example 2.10. From the basis B = {δ0 +δ1, δ1} for kF2 from Example 2.9, one
can construct a basis X = Y = {δ(0,0) +δ(0,1) +δ(1,0) +δ(1,1), δ(0,1) +δ(1,1), δ(1,0) +
δ(1,1), δ(1,1)} for kF

2
2 by taking tensor products. The pushforward operator of

the function F : x 7→ (x1, x1x2) from Example 2.6 relative to X and Y is then
given by the matrix

BF =




1 0 0 0
91 1 0 0
91 0 1 0
1 91 91 1







1 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1







1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1




=




2 1 0 0
92 91 0 0
91 91 1 0
2 2 0 1


 .

The matrix representation of the relative pullback operator of F is the transpose
of the above matrix. .

The relative pushforward operator BF has the same properties as T F. In
particular, the following variation on Theorem 2.4 holds in the relative setting.

Theorem 2.5 (cf. Theorem 2.4). Let F : X → Y be a function. The
pushforward operator BF and pullback operator BF∨ relative to bases X and Y
satisfy the following properties:

(1) Let X1, . . . ,Xn and Y1, . . . ,Yn be bases such that PX =
⊗n

i=1 PXi
and

PY =
⊗n

i=1 PYi
. If F(x) = (F1(x1), . . . ,Fn(xn)), then

BF =
n⊗

i=1
BFi and BF∨ =

n⊗

i=1
BF∨i ,
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where BFi and BF∨i are relative to Xi and Yi.
(2) Let X1 = X ,X2, . . . ,Xr+1 = Y be bases. If F = Fr ◦ · · · ◦ F1, then

BF = BFr · · · BF2 BF1 and BF∨ = BF∨1 BF∨2 · · · BF∨r ,

where BFi and BF∨i are relative to Xi and Xi+1.

The same properties apply to the matrix-representations of BF and BF∨ , with
the tensor product ⊗ corresponding to the Kronecker product of matrices and
the composition of linear maps to matrix multiplication.

Proof. Both properties are direct consequences of the corresponding properties
in Theorem 2.5. For (1), it follows from T F =

⊗n
i=1 T

Fi that

PYT
FP−1
X =

(
n⊗

i=1
PYi

)(
n⊗

i=1
T Fi

)(
n⊗

i=1
P−1
Xi

)
=

n⊗

i=1
PYi

T FiP−1
Xi

.

The result then follows by Definition 2.11. Property (1) follows from the equality
T F = T Fr · · ·T F2T F1 , since

PY T
FP−1
X = (PXr+1

T Fr P−1
Xr

) · · · (PX3
T F2 P−1

X2
)(PX2

T F1 P−1
X1

) .

Applying Definition 2.11 yields the result.

Example 2.11. Consider the function G : (x1, x2, x3) 7→ (x1, x1x2, x3) defined
in Example 2.8. Construct a basis for kF3

2 by tensoring the basis B from
Example 2.9 three times. The relative pushforward matrix of G is given by

BG = BF ⊗Bid =




2 0 1 0 0 0 0 0
0 2 0 1 0 0 0 0

92 0 91 0 0 0 0 0
0 92 0 91 0 0 0 0

91 0 91 0 1 0 0 0
0 91 0 91 0 1 0 0
2 0 2 0 0 0 1 0
0 2 0 2 0 0 0 1




.

It can be checked that BGBG = BG◦G = BG. .

2.4.3 Approximations and trails

This section considers cryptanalytic properties of a function F : X1 → Xr+1
that can be decomposed as F = Fr ◦ ◦ · · ·F2 ◦ F1 where Fi : Xi → Xi+1. For
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i = 1, . . . , r, fix a basis Bi = {bβi
| βi ∈ Bi} of kXi . For notational convenience,

it is assumed that all basis vectors have the same norm.

The cryptanalytic properties we consider are of the form (U, V ) with U =
Span{bβ1} and V = Span{bβr+1} with bβ1 in B1 and bβr+1 the dual basis vector
of bβr+1 in Br+1. Recall from Section 2.3 that one is interested in evaluating
bβr+1(T F bβ1). By changing bases, one obtains

bβr+1(T Fbβ1) =
(
P∨Br+1 δ

βr+1
)
T F(P−1

B1
δβ1

)
= δβr+1

(
PBr+1

T FP−1
B1

)
δβ1 = BF

βr+1,β1 ,

where BF is relative to B1 and Br+1. Hence, evaluating the property (U, V ) is
equivalent to computing a coordinate of the standard-basis matrix-representation
of BF.

The pair (β1, βr+1) is an example of what will be called a forward approximation
of F in Section 2.5. The name refers to the idea that we try to ‘approximate’
T Fbβ1 by a scalar multiple of bβr+1 . To be consistent with the evaluation of
the property, the multiplier should equal BF

βr+1,β1
. This quantity is called

the correlation2 of the approximation. Its absolute value equals the principal
correlation of (U, V ).

Although the difference between the approximation and the cryptanalytic
property may seem minimal, it is useful to keep these concepts separate. For
the general case discussed in Section 2.5, the differences are more apparent.

The main result about approximations is that their correlation can be computed
as the sum of the correlations of trails. A trail is a tuple of r+ 1 basis functions
that defines a chain of compatible approximations for the intermediate functions
Fi. For instance, the trail (β1, β2, . . . , βr+1) defines the approximations (β1, β2),
(β2, β3), . . . , (βr, βr+1).

Theorem 2.6 (Sum of one-dimensional trails). Let F = Fr ◦ · · · ◦ F2 ◦ F1. The
matrix representation of BF has standard-basis coordinates

BF
βr+1,β1 =

∑

β2,...,βr

r∏

i=1
BFi

βi+1,βi
,

where β1 ∈ B1, βr+1 ∈ Br+1 and the sum is over all (β2, . . . , βr) in
∏r
i=2Bi.

In practice, such as for the bases chosen in Chapters 3 to 5 and for common
primitives, Theorem 2.6 is not used directly because the number of trails is too
large. Instead, the sum is restricted to a set of ‘dominant’ trails to estimate the
correlation.

2Assuming that all basis vectors have the same length, in particular ‖bβ1‖ = ‖bβr+1‖.



2.4 One-dimensional theory 48

Corollary 2.1 (Dominant trail approximation). Let F = Fr ◦ · · · ◦ F2 ◦ F1. For
all subsets Λ of the set Ω of all trails from β1 in B1 to βr+1 in Br+1,

∣∣∣∣∣∣
BF
βr+1,β1 −

∑

β∈Λ

r∏

i=1
BFi

βi+1,βi

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

β∈Ω\Λ

r∏

i=1
BFi

βi+1,βi

∣∣∣∣∣∣
.

In practice, a good enough error bound is often difficult to obtain. Hence, it is
common to rely on the assumption that if |∏r

i=1B
Fi

βi+1,βi
| is much smaller for β

in Ω \Λ than for β in Λ, then the error will be small too. This will be called the
dominant trail assumption. This hypothesis is false in general, but nevertheless
useful. However, if | · | is an ultrametric absolute value, then the dominant trail
assumption is actually a theorem. This will be important in Chapter 5.

2.4.4 Group and monoid actions

By performing a change of basis, it is theoretically possible to simplify the
matrix-representation of the pushforward and pullback operators. However, the
actual choice of basis was not discussed in Sections 2.4.1 to 2.4.3. Ideally, many
of the matrices BFi should be diagonal, so that the propagation of basis vectors
simplifies to scalar multiplication. From the point of view of Theorem 2.6, this
also keeps the number of trails with a nonzero correlation small.

In general, it is not possible to find bases that simultaneously diagonalize all or
even most of the pushforward operators T Fi . Hence, this section is limited to
specific classes of functions. In particular, only functions coming from a group
or monoid action are considered.

Let M be a monoid acting on a set X. The action of m in M on x in X will be
denoted by m · x. For every m in M , one can define a function Fm(x) = m · x.
Using Definition 2.7, this extends the action of M on X to an action on kX
by setting m · f = T Fmf for all f in kX . With some abuse of notation, the
notation Tm = T Fm will be adopted. These extended actions are closely related
to representation theory. For completeness, the definition of a representation is
recalled below.

Definition 2.12 (Representation). Let k be a field. A representation of a
monoid M is a homomorphism M → End(V ), where V is a k-vector space.
Equivalently, a representation is a k-vector space V together with an M -action
on V .

Definition 2.13 (Subrepresentation). Let V be a representation of a monoid
M . A subrepresentation of V is a subspace U of V that is left-invariant under
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the M -action. That is, m · U ⊆ U for all m in M . A representation V is called
irreducible if its only subrepresentations are {0} and V .

In our case, V = kX and the homomorphism is given by m 7→ Tm. A central
question in representation theory is whether or not a representation V can be
decomposed as a direct sum

⊕n
i=1 Vi of irreducible subrepresentations V1, . . . , Vn.

Concretely, does there exist a basis for kX such that the matrices Bm are all
block-diagonal with blocks of minimal sizes dimVi, i = 1, . . . , n?

An important result in representation theory says that this is possible whenever
M is an inverse monoid, up to some constraints on the characteristic of k. This
is a monoid M such that for every x in M , there exists a unique y in M with
xyx = x.

If all the irreducible representations have dimension one, i.e. dimVi = 1 for i =
1, . . . , n, then the block-diagonalization reduces to a complete diagonalization.
It turns out that this is possible if M is commutative and inverse.

A particularly important case is that of a monoid M acting on itself by
multiplication, i.e. X = M and m · x = mx. By Definition 2.12, the irreducible
representations of a commutative inverse monoidM are homomorphismsM → k.
These functions are called characters.

Definition 2.14. A character of a commutative inverse monoid M is a
homomorphism of monoids χ : M → k. That is, χ(1) = 1 and χ(xy) = χ(x)χ(y)
for all x and y in M .

Theorem 2.7. The characters of a finite commutative inverse monoid M
form a finite commutative inverse monoid under pointwise multiplication. This
monoid is called the dual monoid and denoted by M̂ .

The term dual monoid is due to the canonical isomorphism M → ̂̂
M : x 7→ evx

with evx(χ) = χ(x). For groups and with k = C, the duality between M and
M̂ is known as Pontryagin duality and M and M̂ are isomorphic.

Let bχ with χ in M̂ be the basis vectors corresponding to the irreducible
representations Vχ = Span{bχ} in the decomposition kM =

⊕
χ∈M̂Vχ. By

definition, the basis functions bχ satisfy

Tmbχ = χ(m) bχ .

In particular the diagonal of Bm relative to this basis is given by BF
χ,χ = χ(m).

In fact, the dual basis of {bχ | χ ∈ M̂} can be constructed explicitly from the
characters of M . The construction is given in Theorem 2.8.
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Theorem 2.8. For each character χ of M , let bχ =
∑
x∈M χ(x) δx. The

vectors bχ form a basis for (kM )∨ such that for all m in M , the vector bχ is an
eigenvector of Tm∨ with eigenvalue χ(m). Furthermore, bχ(bψ) = δχ(ψ) for all
characters χ and ψ.

Proof. The function bχ is an eigenvector of Tm∨ since for all y in M ,
(
Tm

∨
bχ
)
(δy) =

∑

x∈M
χ(x)δx(δmy) = χ(my) = χ(m) bχ(δy) .

Combining the equalities Tm∨ bχ = χ(m)bχ and Tmbψ = ψ(m)bψ yields

χ(m)bχ(bψ) =
(
Tm

∨
bχ
)
(bψ) = bχ

(
Tmbψ

)
= ψ(m)bχ(bψ) .

This implies that {bχ | χ ∈ M̂} and {bχ | χ ∈ M̂} are dual bases. That is,
bχ(bψ) = δχ(ψ).

If χ in M̂ is an invertible element, then one can verify that bχ = χ−1/|M |.
Explicit formulas for bχ when χ is not invertible are more complicated and are
discussed in Section 5.3.

2.5 Multidimensional theory

In the previous section, one-dimensional cryptanalytic properties where
discussed. This section extends these results to the general case. In order
to do this, basis-free definitions of approximations and trails are introduced.

2.5.1 Approximations

Let F : X → Y be a function and let U be the input space of some cryptanalytic
property. The idea of an approximation is to project the vectors T F u with u in
U on another space V . In practice, the space V will be low-dimensional. The
projection should be done in such a way that evaluations of the cryptanalytic
property are preserved. In other words, from the point of view of the property,
no approximation errors are made.

For the next definitions, we introduce the following notation. Let U be a
subspace of kX . The inclusion map on U is the map ιU : U → kX defined
by ιU (x) = x. Likewise, for a subspace V of (kX)∨, it holds that ιV (x) = x.
Finally, a projection on a subspace W of kX or (kX)∨ is a linear map πW onto
W such that π2

W = πW . A projection is uniquely determined by its kernel.
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Definition 2.15 (Forward approximation). A forward approximation of a
function F : X → Y is a pair of subspaces (U, V ) of kX and kY respectively,
together with an algebraic complement V c of V . The approximation map
of (U, V ) is the linear operator 〈V,U〉F = πV T

F ιU : U → V , with πV the
projection on V with kernel V c.

Although the choice of the complement V c is an essential part of the
approximation, it is often convenient to refer to approximations by the pair
(U, V ) alone. In such cases, the complement will be clear from the context. For
example, the notation 〈V,U〉F does not include V c although the map depends
on it. This does not lead to confusion because, in this thesis, at most one
complement V c will be considered for any given V .

Dually, one can define backward approximations using T F∨ . The idea is similar,
but the definition starts from the output space of the property.

Definition 2.16 (Backward approximation). A backward approximation of a
function F : X → Y is a pair of subspaces (V,U) of (kY )∨ and (kX)∨ respectively,
together with an algebraic complement U c of U . The approximation map of
(V,U) is the linear operator 〈U, V 〉F = πU T

F∨ιV : V → U , with πU the
projection on U with kernel U c.

A forward approximation (U, V ) with complement V c preserves evaluations of
the cryptanalytic property (U, (V c)0). That is, for all u in U and v in (V c)0,

v
(
〈V,U〉F u

)
= (v ◦ πV )

(
T Fu

)
= v
(
T Fu

)
,

where the second equality is due to v ◦ πV = v for v in (V c)0. Hence, the
approximation map can be used to evaluate the cryptanalytic property (U, (V c)0).
Conversely, if one can evaluate the property, then the approximation map can
be computed. Similarly, a backward approximation (V,U) with complement U c

is related to the cryptanalytic property ((U c)0, V ). The following result is a
simple consequence of these relations.

Theorem 2.9. Let (U, V ) be a forward approximation of F : X → Y with
complement V c. The principal correlation of (U, (V c)0) is equal to ‖〈V,U〉F‖op,
with ‖ · ‖op the operator norm induced by the norms on kX and kY .

Proof. The operator norm ‖〈V,U〉F‖op satisfies

‖〈V,U〉F‖op = sup
u∈U
‖u‖≤1

‖〈V,U〉F u‖ = sup
u∈U
‖u‖≤1

‖ev〈V,U〉F u‖∨∨ ,
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where evx : (kY )∨ → k is the evaluation map at x. By definition, the double-dual
norm of ev〈V,U〉F u is equal to

‖ev〈V,U〉F u‖∨∨ = sup
v∈V ∨
‖v‖∨≤1

|ev〈V,U〉F u(v)| = sup
v∈(V c)0

‖v‖∨≤1

|v(T Fu)| ,

where the second equality follows from the fact that π∨V : V ∨ → (kY )∨ has
range (V c)0. The result follows by taking the supremum with respect to u.

Example 2.12. Let X = {xα | α ∈ A} and Y = {yβ | β ∈ B} be bases for kX
and kY respectively, and choose xα in X and yβ in Y. If U = Span{xα} and
V = Span{yβ} with complement V c = SpanY \ {yβ}, then the approximation
map of (U, V ) satisfies

〈V,U〉F(λxα) = λ yβ(T Fxα) = λBF
β,α ,

where yβ is the dual basis vector of yβ and BF is relative to X and Y. .

2.5.2 Trails

Throughout this section, fix functions F : X1 → Xr+1 and Fi : Xi → Xi+1 for
i = 1, . . . , r such that F = Fr ◦ · · · ◦ F2 ◦ F1. As in the one-dimensional case,
trails provide a method to estimate the map of an approximation of F by gluing
together the maps of approximations of the functions Fi. Equivalently, due to
the link between approximations and properties discussed in Section 2.5.1, the
evaluation of a property for F is estimated by evaluating sequences of properties
for the functions Fi.

Definition 2.17 (Forward trail). A forward trail for F is a sequence
(U1, U2, . . . , Ur+1) such that (Ui, Ui+1) is a forward approximation of Fi.

Like approximations, trails can be defined either in the forward or backward
direction.

Definition 2.18 (Backward trail). A backward trail for F is a sequence
(Ur+1, . . . , U2, U1) such that (Ui+1, Ui) is a backward approximation of Fi.

Informally, the following result shows that the map of an approximation
(U1, Ur+1) of F is equal to the sum of the maps of all trails between U1 and
Ur+1. The map of a trail is the composition of the maps of its constituent
approximations. If all vector spaces are one-dimensional, then this result is
equivalent to Theorem 2.6.
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Theorem 2.10 (Sum of forward trails). For i = 1, . . . , r + 1, let Ωi be a set of
subspaces of kXi such that kXi =

⊕
U∈Ωi

U . Fix the complement of Ui in Ωi for
any approximation as U c

i =
⊕

U∈Ωi\{Ui} U . For every forward approximation
(U1, Ur+1) of F with U1 in Ω1 and Ur+1 in Ωr+1,

〈Ur+1, U1〉F =
∑

U2,...,Ur

〈Ur+1, Ur〉Fr
· · · 〈U3, U2〉F2〈U2, U1〉F1 ,

where the sum is over all (U2, . . . , Ur) in
∏r
i=2 Ωi.

Proof. By Definition 2.15, 〈Ur+1, Ui〉Fr◦···◦Fi
= πUr+1T

Fr◦···◦FiιUi
. Furthermore,

by the definition of Ωi+1, the map
∑
U∈Ωi+1

πU is the identity. Hence,

〈Ur+1, Ui〉Fr◦···◦Fi
=

∑

Ui+1∈Ωi+1

〈Ur+1, Ui+1〉Fr◦···◦Fi+1〈Ui+1, Ui〉Fi
.

The result follows by repeatedly applying this equality for i = 1, . . . , r − 1.

Theorem 2.10 can equivalently be formulated in terms of backward approxima-
tions and trails. The proof is analogous.

Theorem 2.11 (Sum of backward trails). For i = 1, . . . , r + 1, let Ωi be a set
of subspaces of (kXi)∨ such that (kXi)∨ =

⊕
U∈Ωi

U . Fix the complement of
Ui in Ωi for any approximation as U c

i =
⊕

U∈Ωi\{Ui} U . For every backward
approximation (Ur+1, U1) of F with U1 in Ω1 and Ur+1 in Ωr+1,

〈U1, Ur+1〉F =
∑

U2,...,Ur

〈U1, U2〉F1〈U2, U3〉F2 · · · 〈Ur, Ur+1〉Fr ,

where the sum is over all (U2, . . . , Ur) in
∏r
i=2 Ωi.

Theorems 2.10 and 2.11 are usually not directly useable in practice because
the number of trails is either too large, or because some of the trails involve
approximations that are too complicated. Instead, the following corollary is
used. A similar result holds for backward trails.

Corollary 2.2 (Dominant trail approximation). For i = 1, . . . , r + 1, let Ωi be
a set of subspaces of kXi such that kXi =

⊕
U∈Ωi

U . Fix the complement of Ui
in Ωi for any approximation as U c

i =
⊕

U∈Ωi\{Ui} U .

For every approximation (U1, Ur+1) of F with U1 in Ω1 and Ur+1 in Ωr+1, let
Ω be the set of all forward trails (U1, U2, . . . , Ur+1) between U1 and Ur+1 with
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Ui in Ωi for i = 2, . . . , r. For all subsets Λ of Ω,
∥∥∥∥∥〈Ur+1, U1〉F −

∑

U∈Λ
〈Ur+1, Ur〉Fr · · · 〈U3, U2〉F2〈U2, U1〉F1

∥∥∥∥∥

≤
∥∥∥∥∥
∑

U∈Ω\Λ
〈Ur+1, Ur〉Fr · · · 〈U2, U1〉F1

∥∥∥∥∥ .

Proof. The result follows from Theorem 2.10.

Corollary 2.2 is neither surprising nor particularly difficult. Nevertheless, its
applications are extensive. It enables the analysis of linear, differential and
integral properties (Corollary 2.1), and their higher-dimensional generalizations.

2.5.3 Perfect and zero-correlation approximations

Two special cases of Definitions 2.15 and 2.16 are important enough to deserve
a separate discussion. The first of these are perfect approximations.

Definition 2.19 (Perfect approximation). Let F : X → Y . A forward
approximation (U, V ) of F is perfect if and only if T F U ⊆ V . A backward
approximation (V,U) of F is perfect if and only if T F∨V ⊆ U .

For trails consisting only of perfect approximations, the sum in Theorem 2.10
contains a single term. Hence, such a trail yields the exact approximation map.
Iterative perfect approximations are called invariants.

Definition 2.20 (Invariant). Let F : X → X. A forward invariant of F is a
subspace V of kX such that (V, V ) is a perfect forward approximation of F. A
backward invariant of F is a subspace V of (kX)∨ such that (V, V ) is a perfect
backward approximation.

The following result is not surprising, but it is worth noting because it will be
useful in Chapters 3 and 6. An analogous result holds for backward invariants.

Theorem 2.12. Let V be a forward invariant of a permutation F : X → X. If
the field k is algebraically closed and of characteristic zero, then V has a basis
consisting of eigenvectors of T F.

Proof. The map T F is diagonalizable over any algebraically closed field of
characteristic zero. Indeed, since Fn is the identity function for some n ≥ 1, the
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minimal polynomial of T F divides xn − 1. This polynomial has distinct roots
over an algebraically closed field of characteristic not dividing n.

If V is an invariant and F a permutation, then T FV = V . It follows that
the minimal polynomial of the restriction T F|V : V → V divides the minimal
polynomial of T F. Hence, T F|V is diagonalizable.

Recall from Section 2.3.3 that a zero-correlation property (U, V ) has principal
correlation equal to zero. Equivalently, T FU ⊆ V 0.

Definition 2.21 (Zero-correlation approximation). Let F : X → Y . A forward
approximation (U, V ) of F with complement V c is zero-correlation if and only
if T FU ⊆ V c. A backward approximation (V,U) of F with complement U c is
zero-correlation if and only if T F∨V ⊆ U c.

A zero-correlation approximation (U, V ) satisfies 〈V,U〉F = 0. In general,
zero-correlation approximations can be found by showing that all trails in the
expansion in Theorem 2.10 or Theorem 2.11 contain an approximation with
a trivial map. One can often use a miss-in-the-middle approach to simplify
this process. Let F = F2 ◦ F1 be a function, (U,W1) a forward approximation
of F1 and (V,W2) a backward approximation of F2. The miss-in-the middle
principle states that if W1 ⊆ W 0

2 or equivalently W 0
1 ⊇ W2, then (U, V ) is a

zero-correlation property.

Finally, perfect and zero-correlation approximations are related as follows.

Theorem 2.13. A forward approximation (U, V ) with complement V c is zero-
correlation if and only if (U, V c) is perfect with complement V . A backward
approximation (V,U) with complement U c is zero-correlation if and only if
(V,U c) is perfect with complement U .

Proof. Consider the forward case, the backward case is similar. A forward
approximation (U, V ) of F is zero-correlation if and only if T FU ⊆ V c. That is,
if and only (U, V c) is perfect.

The statement and proof of Theorem 2.13 are deceptively simple, but the result
generalizes non-trivial connections between established cryptanalytic techniques.
This will be discussed in Chapter 3.
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2.6 Specializing the theory

In the next three chapters, the theory developed above will be specialized by
instantiating three parameters. The first parameter is the relation between the
function F : X → Y and the cryptographic primitive under analysis. A second
aspect is the choice of the field k, its absolute value function, and the metric
structure of kX . Finally, in each case a monoid action on X (and Y ) will be
specified, leading to a preferred choice of basis as discussed in Section 2.4.4.

It turns out that appropriate choices of these parameters yield the core
techniques of modern cryptanalysis: linear cryptanalysis (Chapter 3), differential
cryptanalysis (Chapter 4) and integral cryptanalysis (Chapter 5). In fact, in
each case, a rich generalization of existing techniques is obtained. An overview
is shown in Table 2.1.

Table 2.1: Three applications of the geometric approach to cryptanalysis.

Linear Differential Integral
Chapter 3 Chapter 4 Chapter 5

X
Group G, + Group G⊕G, + Monoid M, ·
Commutative Commutative Commutative inverse

F Primitive Primitive for pairs Primitive

k C C Cp
| · | |a+ bi| =

√
a2 + b2 |a+ bi| =

√
a2 + b2 |α| = |α|p

Norm Euclidean Euclidean ‖f‖ = maxx∈X |f(x)|

Action Translation Translation Coordinate scaling
x 7→ x− t (x, y) 7→ (x− t, y − t) x 7→ t · x

Basis Fourier Quasidifferential† Ultrametric†

Matrix Correlation Quasidifferential Ultrametric transition
matrix CF transition matrix DF matrix AF

† These terms will be defined in Chapters 5 and 8.

2.6.1 Linear cryptanalysis

The case of linear cryptanalysis is the most straightforward. The function F is
the same as the primitive, so that X and Y correspond to the input and output
space of the primitive. Typically, X = Fn2 and Y = Fm2 , but with an eye to
the applications in Part II, it is useful to develop the theory for arbitrary finite
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commutative groups. The field k is chosen as the complex numbers, with the
modulus function as the absolute value. Mathematically, this naturally leads
one to consider the Euclidean norm on kX . As will be discussed in Chapter 3,
this choice also has a cryptanalytic motivation.

The one-dimensional theory from Section 2.4 leads to linear trails and
approximations. These concepts follow automatically by choosing the basis that
diagonalizes the translation action x 7→ x− t of group elements t. Performing
the corresponding change-of-basis on T F gives the correlation matrix CF. These
matrices were introduced from a different point of view by Daemen et al. [101]
shortly after the discovery of linear cryptanalysis.

Since the one-dimensional theory of linearly cryptanalysis is relatively well-
understood by means of correlation matrices, Chapter 3 focuses on extensions
such as multiple linear cryptanalysis, invariants and nonlinear approximations.
A full description of these variants of linear cryptanalysis relies on the basis-free
theory from Section 2.5.

2.6.2 Differential cryptanalysis

Differential cryptanalysis does not deal with properties of individual inputs,
but of input pairs. In particular, the input and output spaces are of the
form X = G ⊕ G and Y = H ⊕ H with with G and H finite commutative
groups – typically vector spaces over F2. The function F is then equal to
F((x, y)) = (G(x),G(y)), with G the actual primitive. As in linear cryptanalysis,
k = C and kX is equipped with the Euclidean norm.

Contrary to linear cryptanalysis, even the one-dimensional theory is new in the
case of differential cryptanalysis. In Chapter 4, a suitable basis that diagonalizes
the translation action (x, y) 7→ (x−t, y−t) is introduced. This leads to the notion
of quasidifferential trails. The dominant theory of differential cryptanalysis is
obtained when all results are averaged over independent and uniform random
round keys.

Consequently, Chapter 4 primarily develops the one-dimensional theory of
quasidifferential trails.

2.6.3 Integral cryptanalysis

Integral cryptanalysis considers parts of the ciphertext that are saturated or sum
to zero. Evaluating a zero-sum property implies that one solves a combinatorial
problem modulo two, i.e. one should expect to use the theory from this chapter
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with k = F2. This turns out to be possible, and even quite successful: it
naturally leads to the parity set description of the division property by Canteaut
and Boura [79], and to division trails.

Since F2 comes with the discrete topology, some of the concepts introduced
in this chapter become trivial or less natural – for example, the correlation
of a trail is either zero or one. For this reason, Chapter 5 proposes a broad
extension of integral cryptanalysis that makes the theory more complete and
highlights the similarity with linear and differential cryptanalysis. This theory
is constructed by choosing k to be an algebraically closed extension of the field
of p-adic numbers Qp. As explained in Chapter 5, there is also a cryptanalytic
motivation for the proposed extension.

As in linear cryptanalysis, the function F is the primitive itself with X and
Y the input and output space respectively. It will be assumed that X and
Y are commutative inverse monoids. Typical examples are the monoids Fnq
with coordinate-wise multiplication. The monoid action x 7→ t · x obtained by
multiplying with a constant leads to a preferred basis. The space kX is equipped
with a natural ultrametric norm. This non-Archimidean metric structure is an
essential difference with both linear and differential cryptanalysis.

Chapter 5 focuses on the one-dimensional case. The existing theories of division
trails and parity sets can be understood as approximations of the 2-adic theory
for X = Fn2 and Y = Fm2 , by dropping all trails with absolute correlation below
1/2.



3
Linear cryptanalysis

This chapter applies the geometric approach from Chapter 2 to linear
cryptanalysis. As the one-dimensional theory of linear trails was already known
prior to this work, the multidimensional theory is the main focus of this chapter.
Most of the results in this chapter are obtained by translating previously
proposed extensions of linear cryptanalysis into the geometric framework, and
subsequently exploring the implications.

Large parts of this chapter are based on the paper “A geometric approach
to linear cryptanalysis” [40] from Asiacrypt 2021. The first ideas for this
paper came from my master’s thesis “Linear cryptanalysis in the weak-key
model” [38], which was supervised by Vincent Rijmen. I also thank Gregor
Leander and Christof Beierle for interesting discussions about this work at
Ruhr-University Bochum. In addition to the results of [40], this chapter includes
several unpublished results.

3.1 Introduction

Linear approximations over multiple rounds of a cipher are typically obtained by
combining several one-round approximations. Matsui [215] initially accomplished
this by assuming the independence of the one-round approximations, so that
the ‘piling-up lemma’ could be applied. Shortly after, the theoretical advances
of Nyberg [224] and Daemen et al. [101] led to additional insight into this
heuristic approach. In Sections 3.2 and 3.3 of this chapter, it is shown that
the one-dimensional theory from Section 2.4 reproduces the correlation matrix
approach of Daemen. As the choice of basis is determined by the group
action corresponding to key or constant additions, the importance of linear
cryptanalysis is not surprising from this viewpoint.

The success of linear cryptanalysis has led to the development of a myriad of
extensions and variants of linear approximations. Kaliski and Robshaw [173]
suggested using multiple linear approximations. Hermelin, Cho and Nyberg [162]
proposed the related multidimensional linear attack. Both extensions are widely
used. Generalizations of linear cryptanalysis to groups other than Fn2 were

59
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proposed by Granboulan, Levieil and Piret [148] and Baignères, Stern and
Vaudenay [17]. The use of nonlinear approximations is another natural extension,
and has been attempted by Knudsen and Robshaw [183], Harpes, Kramer and
Massey [159] with I/O sums, Harpes and Massey [160] with partitioning attacks
and by Beierle, Canteaut and Leander [26]. Section 3.4 of this chapter serves as a
dictionary between all of these cryptanalytic properties and their representation
as pairs of vector spaces following Definition 2.6. An overview is shown in the
third column of Table 3.1.

The analysis of cryptanalytic properties for iterated primitives depends
on forward and backward approximations. Although approximations and
cryptanalytic properties are different in general, there is a one-to-one
correspondence between them in the case of linear cryptanalysis and throughout
this chapter. Section 3.5 extends Sections 2.5.1 and 2.5.3 with results about
approximations that are specific to this context. For example principal
correlations are introduced in Definition 2.9 as a natural multidimensional
extension of the correlation of a linear approximation.

Table 3.1: Cryptanalytic properties (U, V ) for a function F with U and V vector
spaces of dimension d.

Zero-correlation Perfect General
CFU ⊆ V 0 CFU ⊆ V 〈V,U〉F

d = 1

Linear zero-
correlation [73]
Nonlinear zero-
correlation §3.8

Invariant subspaces [196]
Nonlinear invariants [266]
Eigenvectors of CF [37]

Linear cryptanalysis [215]
Abelian groups [17]
I/O sums [159]
Beierle et al. [26]
Rank-one (Section 3.7)

d ≥ 1

Multidim. zero-
correlation [72]

Saturation attacks [184]
General invariants
(Definition 2.20, §3.5.1)

Multiple linear [63,173]
Multidim. linear [162]
Partitioning [160]
Projection, χ2 [16, 274,280]

Thm. 3.4
Section 3.6.2

Several lightweight block ciphers have been found vulnerable to weak key attacks
based on invariant subspaces [196] and nonlinear invariants [266]. These attacks
have led to renewed interest in linear cryptanalysis and its generalizations.
Indeed, nonlinear invariants provide one of the most compelling examples
of nonlinearity in cryptanalysis, with applications including the analysis of
SCREAM, iSCREAM,Midori andMANTIS [37,266]. Theorem 2.12 in Section 2.5.3
leads to describing invariant subspaces and nonlinear invariants as eigenvectors
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of pushforward operators. Applications of this approach to the cryptanalysis of
Midori-64 and MANTIS are discussed in Chapter 6.

In a different direction, Bogdanov and Rijmen [73] introduced zero-correlation
linear cryptanalysis to exploit unbiased linear approximations. Zero-correlation
linear properties are examples of Definition 2.21. Several extensions are listed
in the first column of Table 3.1. At Asiacrypt 2012, Bogdanov, Leander,
Nyberg and Wang [72] established a link between multidimensional linear
zero-correlation approximations and integral distinguishers with the saturation
property [184]. Corollary 3.4 in Section 3.5.2, a straightforward consequence of
Theorem 2.13, generalizes this result.

Section 3.5.3 shows how the principal correlations of approximations relate to
the data complexity of optimal distinguishers. This extends earlier results by
Baignères, Junod and Vaudenay [16].

All of the variants of linear cryptanalysis in the third column of Table 3.1 rely on
heuristic methods to glue together several approximations over multiple rounds of
a cipher. These methods will be collectively referred to as the piling-up principle.
This principle has traditionally been justified using independence or Markov
chain assumptions [16, 280], similar to the initial approach in ordinary linear
cryptanalysis. However, such assumptions are hard to reconcile with the key-
dependence of approximations and the increased importance of cryptographic
permutations. In fact, key-dependence is one of the fundamental difficulties
of nonlinear cryptanalysis. Alternatively, the correlation matrix framework of
Daemen et al. [101] is more suitable for the fixed-key setting. However, it only
applies to ordinary linear cryptanalysis. In Section 3.6, it is shown that a general
piling-up principle can be deduced from the dominant trail approximation from
Corollary 2.1, thereby avoiding the independence heuristic.

Abdelraheem, Ågren, Beelen and Leander [1] found links between invariant
subspaces and linear cryptanalysis. Beierle, Canteaut and Leander [26] extended
these links to some classes of nonlinear invariants. In Section 3.6.2, the
characterization of invariants as eigenvectors of correlation matrices is combined
with the general piling-up principle to simplify and extend these results.

The aforementioned results established a strong link between nonlinear invariants
and linear cryptanalysis, but a true statistical generalization of the nonlinear
invariant attack was left open in previous work. Section 3.7 introduces rank-
one approximations to analyze cell-oriented ciphers. A tool to find optimal
rank-one trails is introduced, and its application to searching for invariants is
discussed. Perhaps surprisingly, the tool is based on numerical optimization
on a Riemannian manifold. This is enabled by introducing new types of
approximations, resulting in a smooth search space. Rank-one approximations
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are used in Section 3.8 to resolve a problem introduced by Beierle et al. [26],
which is representative of other concrete problems.

3.2 Mathematical setting

Let F : G→ H be a cryptographic primitive with G and H finite commutative
groups. This could be generalized to arbitrary sets G and H together with
suitable group actions, but this case will not be considered in this thesis. The
properties considered in linear cryptanalysis involve counting over the integers
or more generally the rational numbers. Distances are measured using the
ordinary absolute value function | · |. Since Q is not complete with respect to
| · |, it is mathematically more convenient to work over the field of real numbers
or its algebraic closure C.

It was already mentioned in Section 2.6.1 that the vector spaces CG and CH
can be equipped with the Euclidean norm ‖ · ‖2. In fact, to be precise, a scaled
variant of this norm is used in this chapter. Section 3.2.1 reviews the theory of
inner products, which are closely related to the Euclidean norm. Section 3.2.2
motivates the choice of the Euclidean norm.

Finally, Section 3.2.3 discusses the choice of the group actions on CG and CH .

3.2.1 Inner product spaces

This section reviews the theory of inner products. Since no new results are
presented, readers who are familiar with linear algebra in inner product spaces
may skip this section. Additional information can be found in standard references
such as Halmos’ textbook on finite-dimensional vector spaces [157].

Definition 3.1 (Inner product space). Let V be a vector space over C. An
inner product on V is a function V × V → C, denoted by 〈·, ·〉, such that

(1) For all x, y and z in V and λ and µ in C, 〈x, λy+ µz〉 = λ〈x, y〉+ µ〈x, z〉.

(2) It is antisymmetric: 〈x, y〉 = 〈y, x〉 for all x and y in V .

(3) For all x in V , 〈x, x〉 ≥ 0 with equality if and only if x = 0.

A vector space with an inner product is called an inner product space.

Example 3.1. The map (x, y) 7→∑n
i=1 xiyi is an inner product on Cn. .
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The next result shows that every inner product space is normed. Throughout this
chapter, norms on inner product spaces are always defined as in Theorem 3.1.

Theorem 3.1. If V is a vector space with inner product 〈·, ·〉, then x 7→ ‖x‖ =√
〈x, x〉 is a norm on V .

The norm on an inner product space satisfies the Cauchy-Schwarz inequality.

Theorem 3.2 (Cauchy-Schwarz inequality). Let V be a vector space with inner
product 〈·, ·〉 and corresponding norm ‖ · ‖. For all x and y in V , it holds that
|〈x, y〉| ≤ ‖x‖‖y‖ with equality for y = x/‖x‖.

Inner products are closely related to dual spaces. Specifically, as shown by
Theorem 3.3, every inner product defines a one-to-one correspondence between a
vector space and its dual. Recall that an anti-isomorphism of vector spaces over
C is an invertible map f such that f(λx+ µy) = λf(x) + µf(y) for all vectors
x and y and scalars λ and µ. A map is called isometric if it preserves norms.
Theorem 3.3 can be deduced from the Cauchy-Schwarz inequality (Theorem 3.2).

Theorem 3.3. Let V be a finite-dimensional vector space with inner product
〈·, ·〉. For any x in V , define x∗ in V ∨ by x∗(y) = 〈x, y〉 for all y in V . The
map x 7→ x∗ is an isometric anti-isomorphism.

It was mentioned in Example 2.3 that the Euclidean norm ‖ · ‖2 has the
remarkable property that it is self-dual. Using Theorem 3.3, this can be
explained by the fact that ‖x‖2 =

√
〈x, x〉 with 〈x, y〉 =

∑n
i=1 xiyi the standard

inner product on Cn.

Recall that a linear map L : U → V between finite-dimensional vector spaces
U and V has an adjoint L∨ : V ∨ → U∨ defined by L∨ f = f ◦ L for all f in
V ∨. If 〈·, ·〉U and 〈·, ·〉V are inner products on U and V respectively, then by
Theorem 3.3 there exists a linear map L† : V → U such that (L†v)∗ = L∨v∗ for
all v in V . In terms of inner products, L† satisfies

〈L†v, u〉U = 〈v, Lu〉V ,

for all u in U and v in V . The map L† is also called the adjoint of L.

Example 3.2. Let F : X → Y be a function between sets X and Y . If CX and
CY are inner product spaces, then the adjoint of T F is the linear map represented
by the transpose of the matrix T F. That is, up to the anti-isomorphism from
Theorem 3.3, T F† is equivalent to the pullback operator T F∨ . .

Inner products come with a geometric interpretation. Two vectors whose
inner product is zero are said to be orthogonal. A basis consisting of mutually
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orthogonal vectors with norm one is called an orthonormal basis. The orthogonal
complement of a subspace V of an inner product space W is the vector space
V ⊥ of all vectors orthogonal to V :

V ⊥ =
{
w ∈W | 〈v, w〉 = 0 for all v in V

}
.

Orthogonal complements are also algebraic complements. That is, W = V ⊕V ⊥.
Hence, one can define a projection πV : W → V with kernel V ⊥. For any w in
W , πV (w) is the orthogonal projection of w on V .

More generally, the modulus of the inner product between two normalized
vectors can be interpreted as the cosine of the smallest angle enclosed by them –
although for non-real vectors, several definitions of angles are plausible.

The concept of angles between vectors can be generalized to subspaces of an
inner product space W . For this purpose, it is convenient to extend the inner
product notation 〈·, ·〉 to subspaces. For subspaces U and V , define the linear
map 〈V,U〉 : U → V by 〈V,U〉 = πV ιU , where ιU : U →W is the inclusion map
and πV : W → V is the orthogonal projection on V . Note that 〈V,U〉 = 〈U, V 〉†
since projection and inclusion are adjoint.

Example 3.3. Let U and V be one-dimensional subspaces of W spanned
by unit-norm vectors u and v respectively. By definition, ιU (λu) = λu and
πV (x) = v〈v, x〉. Consequently, 〈V,U〉 : U → V is the map λu 7→ 〈v, u〉λv. The
matrix representation of this map is thus simply the 1× 1 matrix containing
the inner product 〈v, u〉. .

The transformation 〈V,U〉 comes with a geometric interpretation, which will
be important in Sections 3.5 and 3.6. Due to standard properties of orthogonal
projection, 〈V,U〉 maps any u in U to the nearest vector v in V . In addition,
no other vector in V of the same length makes a smaller angle to u than v. This
suggests that 〈V,U〉 encodes all information about the ‘angles’ between U and
V . This claim can be made precise using the notion of principal angles between
subspaces, which is due to Jordan [171]. The characterization below follows
Björck and Golub [66].

Definition 3.2 (Principal angles). Let U and V be finite-dimensional subspaces
of a vector space with inner product 〈·, ·〉 and corresponding norm ‖ · ‖, and let
d = min{dimU,dimV }. The principal angles 0 ≤ θ1 ≤ . . . ≤ θd ≤ π/2 between
U and V are recursively defined by (for i = 1, 2, . . . , d)

cos θi = 〈ui, vi〉
‖ui‖ ‖vi‖

= max
u∈Ui\{0}
v∈Vi\{0}

|〈u, v〉|
‖u‖ ‖v‖ ,
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where ui in Ui and vi in Vi are nonzero vectors for which the maximum
in the right-hand side is achieved with 〈ui, vi〉 a non-negative real number,
Ui = U ∩ Span{u1, . . . , ui−1}⊥ and Vi = V ∩ Span{v1, . . . , vi−1}⊥.

The cosines of the principal angles are precisely the singular values of 〈V,U〉,
and the singular vectors are the directions along which these angles are to
be measured. This follows directly from the variational characterization of
singular values. Further details may be found in [66]. For completeness, the
spectral characterization of singular vectors is given in Definition 3.3. Note that
this definition relies on the observation that L†L is positive semi-definite and
self-adjoint. Hence, by the spectral theorem, its eigenvalues are non-negative
real numbers.

Definition 3.3 (Singular value decomposition). Let L : U → V be a linear
map between inner product spaces U and V and let σ2

1 ≥ . . . ≥ σ2
dimU be the

eigenvalues of L†L. A singular value decomposition of L consists of orthonormal
bases {u1, . . . , udimU} and {v1, . . . , vdimV } for U and V respectively, such that
for all x in U

L(x) =
d∑

i=1
σi〈ui, x〉 vi ,

with 〈·, ·〉 the inner product on U and d = min{dimU,dimV }. The values
σ1, . . . , σd are called the singular values of L and the vectors v1, . . . , vd and
u1, . . . , ud are called left and right singular vectors respectively.

The Frobenius norm of a linear map L : U → V with singular values σ1, . . . , σd
is defined by

‖L‖fr =

√√√√
d∑

i=1
σ2
i .

Due to Definition 3.3, the squared Frobenius norm also equals the sum of
the squared absolute values of the coordinates of any matrix representing L
relative to orthogonal bases for U and V . Furthermore, one can shown that
‖L‖fr =

√
〈L,L〉fr where 〈L,M〉fr = Tr(L†M) is the Frobenius inner product

between linear maps L and M .

3.2.2 Motivation for the Euclidean norm

Throughout this chapter, the following norm on CG is used:

‖u‖G =
√
|G| ‖u‖2 =

√
|G|

∑

x∈G
|u(x)|2 .



3.2 Mathematical setting 66

The ‖ · ‖G-norm is induced by the inner product 〈v, u〉G = |G| ∑x∈G v(x)u(x).
Hence, by Theorem 3.3, the map v 7→ 〈v, ·〉G is an isometric anti-isomorphism
from CG to (CG)∨.

The correspondence between CG and (CG)∨ leads to a number of simplifications
and brings out additional geometric aspects of the theory. In particular, forward
and backward approximations (Definitions 2.15 and 2.16) are simplified by
choosing orthogonal complementary spaces. This will be clarified in Section 3.5.

The existence of an inner product makes the (scaled) Euclidean norm a natural
choice from a mathematical point of view. However, it can also be motivated
on cryptanalytic grounds. More specifically, the norm ‖ · ‖G has a statistical
motivation.

Recall from Definition 2.6 that the evaluation of a cryptanalytic property (U, V )
for F : G→ H at u in U and 〈v, ·〉H in V is equal to

〈v, T F u〉H = |H|
∑

x∈G
u(x)v(F(x)) .

Let (x1, y1), . . . , (xq, yq) be q plaintext-ciphertext pairs in G×H. An unbiased
known-plaintext estimator of 〈v, T F u〉H is given by

t = |G| |H|
q

q∑

i=1
u(xi)v(yi) .

Let tideal be the random variable obtained from the estimator t when the
plaintext-ciphertext pairs (xi, yi) are independent and uniform random on
H ×G. The label ‘ideal’ refers to the fact that tideal is often a good model for
the estimator when the data is obtained from the ideal primitive1.

If E tideal = 0, then the variance of tideal satisfies

Var tideal = |G|
2 |H|2
q

E|u(x)|2 |v(y)|2 = ‖u‖2G ‖v‖2H/q .

A fair comparison of the quality of different choices of u and v should keep the
variance of tideal constant. Indeed, Theorem 1.1 shows that the data complexity
of many attacks depends on the variance of tideal. This is a strong motivation
for the ‖ · ‖G- and ‖ · ‖H -norms.

However, the data complexity also depends on the variance of the test-statistic
for the real primitive. For linear cryptanalysis and many of its variants, the
real-case variance is close to the variance of tideal. Section 3.5.3 contains a more
detailed discussion of the data complexity for cryptanalytic properties satisfying
this condition.

1This is a simplification of reality even if the ideal primitive is a uniform random function.
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3.2.3 Group action

As discussed in Section 2.4.4, the specification of a group action on CG leads to
a preferred basis. Since G is a group, any element t of G acts on G by x 7→ x− t
and hence on CG by (

T tf
)
(x) = f(x+ t) ,

where the positive sign is due to the fact that T t describes forward propagation.

The group action x 7→ x− t is a natural choice from a cryptanalytic viewpoint
because most primitives involve both key and constant additions. Hence, it is
useful to choose a basis that simplifies these operations as much as possible.
This can be achieved by diagnalizing the operators T t, which has the additional
benefit of keeping the number of trails small. The resulting preferred basis will
be obtained in Section 3.3.1, following the general principles from Section 2.4.4.

3.3 One-dimensional theory

In this section, the one-dimensional theory from Section 2.4 is applied to the
setting that was described in Section 3.2. Specifically, Section 3.3.1 shows that
the preferred basis resulting from the group action defined in Section 3.2.3 is
the Fourier basis. Expressing pushforward operators in terms of the Fourier
basis leads to correlation matrices. In Section 3.3.2, it is shown how the known
properties of correlation matrices are immediate consequences of this fact. The
resulting theory of one-dimensional approximations and trails is that of classical
linear cryptanalysis (extended to arbitrary groups), and is briefly reviewed in
Section 3.3.3.

3.3.1 Fourier basis

Following Section 2.4.4, the matrices T t corresponding to the action of t in G
are simultaneously diagonalized in the basis of group characters. All characters
in this chapter are assumed to be complex-valued. That is, they are group
homomorphisms from G to C×.

Recall from Theorem 2.7 that the characters of G form a commutative group Ĝ
under pointwise multiplication. The group Ĝ is the Pontryagin dual of G.

Example 3.4. The dual of the additive group F2 is F̂2 = {x 7→ 1, x 7→ (−1)x}.
Indeed, these are the only two group homomorphisms from F2 to C×. .
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A few standard properties of the dual group are given in Theorem 3.4 below.
The third property also holds for monoids, but the first two are specific to
groups. Property (2) shows that the basis of characters is orthogonal.

Theorem 3.4 (Properties of dual groups [262]). If G is a finite commutative
group with dual Ĝ, then:

(1) The dual group Ĝ is isomorphic to G.

(2) For all χ and ψ in Ĝ, it holds that 〈χ/|G|, ψ/|G|〉G = δχ(ψ).

(3) If G = G1 ⊕G2 with ⊕ the internal direct sum, then Ĝ = Ĝ1 ⊕ Ĝ2.

By Theorem 3.4 (1), Ĝ can be identified with G. In general, this identification
is not unique. However, as discussed in Section 2.4.4, there is a functorial
isomorphism between the double dual of G and G itself, which identifies g in G
with the evaluation map χ 7→ χ(g) in the dual of Ĝ. In order to avoid arbitrary
choices, isomorphisms between Ĝ and G will be avoided throughout Part I. This
makes no difference in specific calculations, but it is theoretically more elegant.

Example 3.5. Since the additive group Fn2 is the direct sum of n copies of F2,
it follows from Theorem 3.4 (3) that the dual group is essentially the direct sum
of n copies of F̂2. Specifically, F̂n2 = {x 7→ ∏n

i=1(−1)uixi = (−1)uTx | u ∈ Fn2}.
Note that identifying F̂n2 and Fn2 requires choosing a basis for Fn2 . .

Similar to the annihilator of a subspace, the annihilator of a subgroup is defined
as follows. Despite the similarities to Definition 2.2, one should keep in mind
that group characters are homomorphisms to the multiplicative group C×,
whereas linear functionals are homomorphisms to the additive group C.

Definition 3.4 (Annihilator). Let G be a finite commutative group. The
annihilator of a subset H of G is the subgroup

H1 =
{
χ ∈ Ĝ | ∀x ∈ H : χ(x) = 1

}
.

Taking the annihilator is an antitone Galois connection between the lattices of
subgroups of G and Ĝ. Furthermore, it holds that |H1| = |G|/|H|.
By Definition 2.10, the change-of-basis transformation FG : CG → CĜ to
the basis {χ/|G| | χ ∈ Ĝ} is defined by FG χ/|G| = δχ for all characters χ.
The factor 1/|G| is due to the fact that the correct basis actually consists of
the functions χ/|G|, as explained in the last paragraph of Section 2.4.4. The
transformation FG is also known as the Fourier transformation on G. Due
to the orthogonality of group characters, i.e. Theorem 3.4 (2), the following
definition is equivalent.



69 Linear cryptanalysis

Definition 3.5 (Fourier transformation [262]). The Fourier transformation is
the map FG : CG → CĜ defined by

(
FGf

)
(χ) = 〈χ, f〉 =

∑

x∈G
χ(x)f(x) ,

for all χ in Ĝ.

It is worth mentioning that FG is an isomorphism of algebras which swaps the
pointwise product and convolution. This is by construction, since the set of
convolution operators is generated by translations.

The vector space CĜ can be equipped with the standard inner product

〈f, g〉 =
∑

χ∈Ĝ

f(χ) g(χ) .

Due to the orthogonality of characters, the inner product between u and v in
CG coincides with the above inner product of their Fourier transformations:

〈
FG u,FG v

〉
=
∑

χ∈Ĝ

∑

x,y∈G
χ(x− y)u(x)v(y) = 〈u, v〉G .

In other words, FG is a unitary map relative to the inner products 〈·, ·〉G and
〈·, ·〉. That is, F−1

G = F †G with F †G the adjoint of FG.

To end this section, consider the case G =
⊕n

i=1Gi. As mentioned above, one
has CG =

⊗n
i=1 CGi up to canonical isomorphism. By Theorem 3.4 (3), the

dual group satisfies Ĝ =
⊕n

i=1 Ĝi. Hence, one also has CĜ =
⊗n

i=1 CĜi .
Consequently, the Fourier transformation on FG is given by

⊗n
i=1 FGi .

Equivalently, the matrix representation of FG in the standard basis is the
Kronecker product of the matrix representations of FG1 , . . . ,FGn

in the
standard basis.

3.3.2 Correlation matrices

This section discusses the implications of expressing the pushforward operator
of a function F : G→ H relative to the Fourier bases of CG and CH , following
Definition 2.11. The matrix representation of the resulting operator will be
called the correlation matrix of F.

Correlation matrices (for G = Fn2 and H = Fm2 ) were introduced by Daemen et
al. [101] shortly after the discovery of linear cryptanalysis. They provide a
natural description of linear cryptanalysis.
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Definition 3.6 (Correlation matrix). Let F : G → H be a function between
finite commutative groups G and H. Define CF : CĜ → CĤ as the pushforward
operator of F relative to the Fourier basis. That is, CF = FH T

F F−1
G , with

FH and FG the Fourier transformation on CH and CG respectively.

The correlation matrix of F is the matrix representation of CF with respect to
the standard bases of CĜ and CĤ .

As usual, the notation CF refers to both the linear operator and its standard
matrix representation. The coordinates of CF are given by

CF
χ,ψ = 〈δχ, CFδψ〉 = 〈χ/|H|, T Fψ/|G|〉H = 1

|G|
∑

x∈G
χ(F(x))ψ(x).

For G = Fn2 and H = Fm2 , and after identifying these groups with their dual, the
expression above coincides with the original definition of correlation matrices
by Daemen.

The following two theorems list the main properties of correlation matrices that
will be used throughout this thesis. Corollary 3.1 is an immediate consequence
of Theorem 2.5.

Corollary 3.1 (Properties of correlation matrices). The correlation matrix CF

of F : G→ H has the following properties:

(1) If F(x1, . . . , xn) = (F1(x1), . . . ,Fn(xn)), then CF =
⊗n

i=1 C
Fi .

(2) If F = Fr ◦ · · · ◦ F2 ◦ F1, then CF = CFr · · ·CF2CF1 .

Theorem 3.5 (Properties of correlation matrices). The correlation matrix CF

of F : G→ H has the following properties:

(1) If F is a bijection, then CF is a unitary matrix.

(2) If F is a group homomorphism, then CF
χ,ψ = δχ◦F(ψ).

(3) If G = H and F(x) = x−t for some constant t in G, then CF is a diagonal
matrix with CF

χ,χ = χ(t).

Proof. As discussed in Chapter 2, if F is a permutation, then T F is a permutation
matrix and thus unitary. Furthermore F−1

G and FH are unitary with respect
to appropriate inner products. Property (1) follows since the composition of
unitary maps is unitary and CF = FHT

FF−1
G .

For (2), note that if F is a group homomorphism, then so is χ ◦ F : G → C×.
Hence, by the orthogonality of group characters, CF

χ,ψ = δχ◦F(ψ). As discussed
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in Section 3.3.1, property (3) holds by construction of the Fourier transformation.
Indeed, note that T F = T t.

3.3.3 Approximations and trails

An ordinary linear approximation corresponds to a property (U, V ) with U =
Span{χ} and V = Span{〈ψ, ·〉H} for χ in Ĝ and ψ in Ĥ. Following the general
principles from Section 2.4.1, the evaluation of this property at χ/|G| and
〈ψ/|H|, ·〉H is equal to CF

ψ,χ.

Corollary 3.2 (Sum of linear trails, cf. Theorem 2.6). If F = Fr ◦ · · · ◦F1, then
the correlation CF

χr+1,χ1 is equal to

CF
χr+1,χ1 =

∑

χ2,...,χr

r∏

i=1
CFi
χi+1,χi

,

where the sum ranges over all intermediate group characters.

Corollary 3.2 is the main theoretical result of ordinary linear cryptanalysis. It
states that the correlation of a linear approximation is equal to the sum of the
correlations of all trails within the approximation. For G = Fn2 and H = Fm2 ,
Corollary 3.2 was first obtained by Daemen [101, §6.1]. Truncating the sum to
a subset of trails leads to the principle of dominant trails, i.e. Corollary 2.1 for
the Fourier basis.

Corollary 3.3 (Dominant trail approximation cf. Corollary 2.1). Let F =
Fr ◦ · · · ◦ F2 ◦ F1. For all subsets Λ of the set Ω of all trails from χ1 to χr+1,

∣∣∣∣∣∣
CF
χr+1,χ1 −

∑

χ∈Λ

r∏

i=1
CFi
χi+1,χi

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

χ∈Ω\Λ

r∏

i=1
CFi
χi+1,χi

∣∣∣∣∣∣
,

with χ = (χ2, . . . , χr).

Tardy-Corfdir and Gilbert [261] and Matsui [215] implicitly relied on
Corollary 3.3 with Λ a singleton. That is, early work in linear cryptanalysis
relied on a single trail (χ1, . . . , χr+1) with the largest absolute correlation and
the estimate

CF
χr+1,χ1 ≈

r∏

i=1
CFi
χi+1,χi

.

This approximation is known as the piling-up heuristic.
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At Eurocrypt 1994, Nyberg [224] presented a result similar to but weaker than
Corollary 3.2 for G = Fn2 and H = Fm2 . If Fk = Rr ◦ · · · ◦ R1 is a key-dependent
function with k in Gr and Ri(x) = Fi(x) + ki for i = 1, . . . , r, then

Ek|CFk
χr+1,χ1 |2 =

∑

χ2,...,χr

r∏

i=1
|CFi
χi+1,χi

|2 , (3.1)

where the round keys k1, . . . ,kr are independent and uniform random. This
can be shown by substituting CRi

χ,ψ = χ(k)CFi

χ,ψ into Corollary 3.2 and using the
fact that the variance of uncorrelated random variables is additive. For general
finite commutative groups, (3.1) was first obtained by Baignères, Stern and
Vaudenay [17].

It is important to mention that, in general, (3.1) is not a reliable way to estimate
the squared correlation of a linear approximation. In many cases, the fixed-key
squared correlation differs significantly from the average squared correlation.
Hence, indiscriminate usage of the average as a substitute can lead to incorrect
results.

3.4 Cryptanalytic properties

As the one-dimensional theory of linear cryptanalysis is relatively well-
understood, the remainder of this chapter focuses on the multidimensional
theory.

The one-dimensional theory from Section 3.3 describes classical linear
cryptanalysis and its extension to arbitrary groups, but it does not apply to many
important variants such as multiple and multidimensional linear cryptanalysis,
χ2-distinguishers, invariant subspaces and nonlinear invariants, ...

The discussion below is structured as a dictionary between conventional
descriptions of cryptanalytic properties and the corresponding pairs of subspaces.
Once these subspaces are known, the general machinery from Section 2.5 can be
applied. As a side-effect, this point of view often clarifies the relations between
different properties.

A short summary for G = Fn2 is given in Table 3.2. The table includes both
the subspaces of CG and their Fourier transforms, which are subspaces of CĜ.
Importantly, there are other useful subspaces which do not correspond to any of
the constructions discussed below. One example will be discussed in Section 3.7.



73 Linear cryptanalysis

Table 3.2: Commonly used cryptanalytic properties and their corresponding
subspaces. The characters of Fn2 are denoted by χu(x) = (−1)uTx, where u ∈ Fn2 .

Property Basis for subspace Applications
V ⊆ CFn

2 FFn
2
V ⊆ CF̂n

2

Affine space
a+ U ⊆ Fn2

{1a+U} {χa 1U⊥} Invariant subspaces

Affine spaces
a1 + U1, . . . ⊆ Fn2

{1a1+U1 , . . .} {χa1 1U⊥1
, . . .} Saturation attack

Probability dist.
p : Fn2 → [0, 1]

{p} {FFn
2
p } Statistical saturation

Linear
Mask u ∈ Fn2

{χu} {δχu
} Linear cryptanalysis

Multidim. linear
Subspace U ⊆ Fn2

{χu | u ∈ U} {δχu
| u ∈ U} Multidimensional

linear cryptanalysis
Multiple linear
Subset U ⊆ Fn2

{χu | u ∈ U} {δχu | u ∈ U} Multiple linear
cryptanalysis

Nonlinear
Fun. P : Fn2 → F2

{(−1)P} {FFn
2
[(−1)P]} Nonlinear invariants

I/O sums
Projection
Fun. P : Fn2 → X

{δx ◦ P | x ∈ X} {FFn
2
(δx ◦ P) | x ∈ X} Partitioning attacks

χ2 distinguishers

3.4.1 Indicator functions

Several cryptanalytic properties correspond to subspaces spanned by one or
more indicator functions. The general principle behind such properties was
already briefly discussed in Example 2.5.

A first example are properties spanned by indicators of affine subspaces of
Fn2 , such as the invariant subspace attack of Leander et al. [196]. Specifically,
the property is of the form (U,U∗) = (Span{1A},Span{〈1A, ·〉Fn

2
}) with A

an affine subspace. The approximation (U,U) is an invariant in the sense of
Definition 2.20. This generalizes to arbitrary groups.

Integral properties of the ‘saturated’ type provide another example. A saturated
property expresses that the marginal distribution of a part of the output is
uniform. In this case, the corresponding vector spaces are spanned by the
indicator functions of all sets which are saturated on certain bits. They are
typically higher-dimensional as they express several possible sets in which the
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state could be contained. The actual sets, especially at the output side, tend to
be defined implicitly. Example 3.10 on page 80 works out the vector spaces in
detail.

Not many variants of linear cryptanalysis are directly based on non-uniform
probability distributions. The statistical saturation attack of Collard and
Standaert [94], in its original form, can be considered an example. In this
attack, one estimates the key-dependent probability distribution of the state
of a block cipher when some of the plaintext bits are constant and the others
are uniform random. However, depending on how the estimated distribution is
used, it may be more appropriate to approach this attack using the projection
functions discussed below.

3.4.2 Projection functions

Let P : G → Z be a function between a finite commutative group G and a
finite set Z, with Z typically much smaller than G. Such functions play an
important role in Wagner’s framework of ‘commutative diagram cryptanalysis’,
where they are called projections [280]. Baignères et al. [16] analyze the
statistical properties of distinguishers based on balanced projections, such
as χ2-attacks [274], partitioning cryptanalysis [160] and multidimensional linear
attacks [162].

Properties defined by projection functions form an important subclass of those
defined by indicator functions. Although any property described by projection
functions can also be described by indicator functions, many properties are
more naturally described using the former approach.

Viewed as a subspace of (CG)∨, a projection function gives access to the
evaluation of P on the state. Equivalently, it allows observing the inner product
with any linear combination of the functions δz ◦ P, where {δz | z ∈ Z} is the
standard basis of CZ . More generally, any function on Z can be ‘pulled back’
to G along the projection function P. This leads to Definition 3.7 below.
Definition 3.7 (Pullback space). Let P : G→ Z be a function. The pullback
space (of CZ to CG) along P is the vector space defined by

imTP† =
{
f ◦ P | f ∈ CZ

}
.

Similarly, the Fourier transformation FG imTP† will be called the pullback (of
CZ to CĜ) along P. If Z is a commutative group, then FG imTP† = imCP†.

Let VP be the vector space corresponding to the projection property defined by P,
i.e. the pullback along P. It was already mentioned above that {δz ◦ P | z ∈ Z}



75 Linear cryptanalysis

is a basis for VP. However, if Z is a commutative group, then it is often more
convenient to use the basis of functions χ ◦ P where χ ∈ Ẑ. This choice behaves
particularly well for homomorphisms P : G→ Z when working with the Fourier
transformation of VP, since FG(χ ◦ P)/|G| = δχ◦P.

The following example describes the vector space corresponding to a Boolean
projection function in more detail. Such properties are closely related to classical
linear cryptanalysis, and more generally to the I/O-sums of Harpes et al. [159]
and the nonlinear approximations considered by Beierle et al. [26]. However, as
discussed in Section 3.4.3, there is a subtle difference.

Example 3.6. Let P : Fn2 → F2 be a Boolean function. Denote the characters
of Fn2 by χu(x) = (−1)uTx. The pullback space VP along P is equal to

VP = Span{δ0 ◦ P, δ1 ◦ P} = Span{1, (−1)P} ,

with 1 = χ0 the trivial character of Fn2 . Hence, the Fourier transformation of
VP is given by

FG VP = Span{δ1,FG[(−1)P]} .
The function FG[(−1)P] is often called the Walsh-Hadamard transformation
of P. If P is a linear function, then P(x) = uTx for some u ∈ Fn2 . Hence,
(−1)P = χu and consequently FG V = Span{δ1, δχu

}. .

3.4.3 Subspaces of pullbacks

Example 3.6 generalizes to other finite commutative groups. Let Z be a finite
commutative group and P : G→ Z a homomorphism. Since χ ◦ P ∈ Ĝ for any
character χ of Z, the pullback along P is spanned by the functions χ ◦ P with χ
in Ẑ. Hence, dimV = |Z|. However, the dimension could be reduced by one for
permutations. This leads to the generalization of linear cryptanalysis proposed
by Granboulan et al. [148, §3].

However, it is also reasonable to consider only one of the functions χ ◦ P. This
results in one-dimensional subspaces and is closer to the spirit of ordinary linear
cryptanalysis. This leads to the generalization of ordinary linear cryptanalysis to
other groups from Section 2.4, which was (partially) developed by Baignères et
al. [17].

The difference between multiple and multidimensional linear cryptanalysis is of
the same nature. For multiple linear properties, one uses subspaces spanned
by one or more group characters. In multidimensional linear cryptanalysis,
these characters form a subgroup and consequently the subspace is the pullback
along a homomorphism to some subgroup. In particular, for this reason, the
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statistical analysis of Baignères et al. [16] applies to multidimensional but not
to multiple linear cryptanalysis.

3.5 Approximations

The inner-product structure of the vector spaces CG and CH leads to a
simplification of the definition of forward and backward approximations. Indeed,
by Definition 2.15, an approximation is a pair of subspaces (U, V ) of CG and
CH together with an algebraic complement V c of V . In general, the choice of
the complement V c is arbitrary. However, in inner product spaces, the choice
V c = V ⊥ is natural. Hence, one obtains the following simplified version of
Definition 2.15.
Definition 3.8 (Approximation). Let G and H be finite commutative groups.
An approximation of a function F : G→ H is a pair (U, V ) of subspaces U of
CG and V of CH .

The approximation map of (U, V ) is the linear transformation 〈V,U〉F : U → V
defined by 〈V,U〉F = πV T

F ιU , with ιU the inclusion map and πV the orthogonal
projection on V .

Definition 3.8 refers to subspaces of CG and CH . An equivalent definition could
be given for subspaces of CĜ and CĤ , taking into account that T F should be
replaced by CF in the definition of the approximation map.

If (U, V ) is an approximation in the sense of Definition 3.8, then (U, V ) is
a forward approximation with complementary space V c = V ⊥ in the sense
of Definition 2.15. Due to Theorem 3.3, a separate definition for backward
approximations is not necessary.

Throughout this chapter, the complementary space for all approximations will be
chosen as the orthogonal complement, as in Definition 3.8. With this assumption,
every approximation (U, V ) uniquely corresponds to the cryptanalytic property
(U, V ∗) with V ∗ the subspace obtained by applying the anti-isomorphism from
Theorem 3.3 to V . Indeed, recall that an approximation (U, V ) with complement
V c preserves evaluations at u in U and v in (V c)0. The result then follows from
(V ⊥)0 = V ∗.

Given orthonormal bases u1, u2, . . . and v1, v2, . . . for U and V respectively, the
coordinates of the matrix representing the approximation map are given by the
inner products 〈vi, T Fui〉.
Example 3.7. Consider a linear approximation of a function F : G → H.
As listed in Table 3.2, linear properties correspond to one-dimensional spaces
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U = Span{ψ} and V = Span{χ} with characters ψ in Ĝ and ψ in Ĥ. The
inclusion map is defined by ιU (x) = x and the orthogonal projection by πV (x) =
〈χ, x〉H χ/|H|2. Hence, 〈V,U〉F is given by

λ
ψ

|G| 7→
〈
χ/|H|, T Fψ/|G|

〉
H
λ
χ

|H| = CF
χ,ψ λ

χ

|H| .

That is, in the Fourier basis, 〈V,U〉F corresponds to multiplication by CF
χ,ψ. .

As illustrated in Figure 3.1, two geometrically intuitive edge cases of
Definition 3.8 can be identified: parallel or orthogonal spaces V and T FU .
Approximations in the former category will be called ‘perfect’. This includes
the important case of invariants. The latter category is a broad generalization
of zero-correlation linear approximations. In the remaining cases, the vector
spaces V and T FU are neither completely parallel nor fully orthogonal. All
three cases are discussed in detail in Sections 3.5.1 to 3.5.3.

VT FU

(a) Perfect.

V
T FU

(b) Zero-correlation.

V

T FU

(c) General case.

Figure 3.1: Geometric interpretation of Definition 2.15.

The following definition extends Definition 2.9 with additional principal
correlations. Note that ‖〈V,U〉F‖op is equal to the largest singular value of
〈V,U〉F, such that the largest principal correlation defined in Definition 3.9
indeed equals the principal correlation from Definition 2.9.

Definition 3.9 (Principal correlations). Let (U, V ) be an approximation of
a function F : G → H between finite commutative groups G and H. Let
d = min{dimU,dimV }. The principal correlations of the approximation (U, V )
are the d largest singular values of the approximation map 〈V,U〉F.

The geometric interpretation of the principal correlations is clarified by the
following result, which relates them to the principal angles between the subspaces
T FU and V .

Theorem 3.6. Let (U, V ) be an approximation of a function F : G → H
between finite commutative groups G and H. Let d = min{dimU,dimV }. If F
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is balanced, then the principal correlations of (U, V ) are equal to the cosines of
the d smallest principal angles between the subspaces T FU and V .

Proof. If F is balanced, then a direct calculation shows that T F†T F is a nonzero
multiple of the identity map. That is, T F preserves the inner product up to
multiplication by a constant.

If T F preserves the inner product up to multiplication by a nonzero constant,
then 〈ui+1, ui〉G = 0 implies 〈T Fui+1, T

Fui〉H = 0. Hence, the result follows
from the fact that the variational characterization of singular values is equivalent
to the definition of principal angles (Definition 3.2).

3.5.1 Perfect approximations and invariants

Following Definition 2.19 in Section 2.5.3, an approximation (U, V ) of F is called
perfect if and only if T FU ⊆ V . A perfect approximation of the form (V, V )
was called an invariant in Definition 2.20.

Integral properties of the saturated type are perfect, but Chapter 5 provides a
more complete approach to integral cryptanalysis. However, invariants are of
particular interest as they include the invariant subspaces of Leander et al. [196]
and the nonlinear invariants of Todo et al. [266].

By Theorem 2.12 and because C is algebraically closed, every invariant V has
a basis consisting of eigenvectors of T F. Equivalently, relative to the Fourier
basis, any invariant is spanned by eigenvectors of CF. This characterization
of invariant subspaces and nonlinear invariants was the basis of the paper
“Block cipher invariants as eigenvectors of correlation matrices” from Asiacrypt
2018 [37]. This point of view will be applied in Chapter 6.

Example 3.8 (Invariant subspaces). If S is an invariant subset for F, then
T F 1S = 1S or equivalently CF 1̂S = 1̂S with 1̂S = FG1S . Invariant subspaces
are obtained by taking S affine. .

Example 3.9 (Nonlinear invariants). A nonlinear invariant for F : G→ G is
a function P : G→ Z such that P(F(x)) = P(x) + c for some constant c in Z
with Z a finite commutative group. Following Section 3.4 and Example 3.6 in
particular, the pullback space VP along P is equal to VP = Span{δz ◦P | z ∈ Z}.
The approximation (VP, VP) is an invariant for F since T F VP = VP.

As discussed above, any invariant is spanned by eigenvectors of T F. A basis of
eigenvectors is easy to obtain: since P◦F and P differ by a constant, it is natural
to consider the basis {χ◦P | χ ∈ Ẑ} of VP. It holds that T F(χ◦P) = χ(c) (χ◦P).
Equivalently, FG (χ ◦ P) is an eigenvector of CF with eigenvalue χ(c).
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For G = Fn2 and Z = F2, the last result is equivalent to [37, Corollary 1],
which states that the Walsh-Hadamard transform of a nonlinear invariant is an
eigenvector of CF. .

To compute the invariants of a permutation F, one could resort to standard
numerical algorithms to compute the eigenvectors of T F or CF. This is not a
particularly efficient approach: the computational cost is O(|G|3), which is of
the same order as the ANF-based algorithm proposed by Todo et al. [266] to
find nonlinear invariants.

In fact, due to the structure of the matrices T F and CF, their eigendecomposition
can be computed using at most Õ(|G|2) operations. The following algorithm
generalizes the cycle structure approach that is mentioned by Todo et al. [266]
as “potentially applicable”. For each cycle (x0, . . . , xl−1) of F, and for every
0 ≤ k < l, one obtains an eigenvector2 v =

∑l−1
i=0 ζ

−i δxi
with corresponding

eigenvalue ζ, where ζ = e2πk
√−1/l. Indeed,

T Fv =
l−1∑

i=0
ζ−i T Fδxi =

l−1∑

i=0
ζ−(i−1)δxi = ζv .

As the sum of all cycle lengths is |G|, this method yields a complete eigenvector
basis. The time complexity is

∑
i l

2
i = O(|G|2), with li the length of the ith cycle.

The eigenvectors of CF can be computed by taking |G| Fourier transformations.

Even the improved algorithm above is impractical for most realistic state sizes.
Furthermore, although this method outputs a complete eigenvector basis, one is
usually interested in eigenvectors with some additional structure. For instance,
as shown by the following result, the requirement that an invariant is preserved
by many key-additions directly restricts its structure.

Theorem 3.7. If v is an eigenvector of Ck for all k in a subset K of G, then
supp v ⊆ χK1 for some χ in Ĝ. Furthermore, v is an eigenvector of Ck with
corresponding eigenvalue χ(k) for all k in the subgroup generated by K.

Proof. If v is an eigenvector of Ck with eigenvalue λ(k) for all k in K, then
λ(k) v(ψ) = ψ(k)v(ψ) for all ψ in Ĝ and all k in K. This implies that there
exists a character χ of G such that λ(k) = χ(k) for all k in K. Indeed, it suffices
to take any χ in the support of v. The identity (ψ/χ)(K) = 1 for all ψ in supp v
then implies that supp v ⊆ χK1. This proves the first part of the result.

For the second part, let k be an element of the subgroup 〈K〉 generated by K.
By the above, every character in supp v is of the form χψ with ψ in K1. Since

2It is not hard to see that it is linearly independent from previously computed eigenvectors.



3.5 Approximations 80

〈K〉1 = K1, it follows that

(χψ)(k) v(χψ) = χ(k)v(χψ) .

That is, Ckv = χ(k) v. This proves the second part of the result.

Examples of invariants will be given in Section 3.7 and Chapter 6.

3.5.2 Zero-correlation approximations

Zero-correlation linear approximations were introduced by Bogdanov and
Rijmen [73]. They are linear approximations (Span{ψ},Span{χ}) such that
CF
χ,ψ = 0. That is, χ is orthogonal to T Fψ. This corresponds to the geometric

situation sketched in Figure 3.1b, and is captured by Definition 2.21. In
particular (U, V ) is a zero-correlation approximation if and only if V ⊥ T FU .

Recall that Theorem 2.13 showed that zero-correlation and perfect ap-
proximations are closely related, despite being opposite extremes. For
completeness, Corollary 3.4 restates this result for approximations with
orthogonal complements. This result is also clear from a geometrical point of
view, see for instance Figures 3.1a and 3.1b.

Corollary 3.4 (cf. Theorem 2.13). If (U, V ) is a zero-correlation approxima-
tion, then (U, V ⊥) is a perfect approximation and conversely.

Corollary 3.4 is deceptively simple, but the result is powerful. Indeed, it
generalizes the well-known correspondence between multidimensional linear zero-
correlation approximations and saturation properties in integral cryptanalysis,
first noted by Bogdanov et al. at Asiacrypt 2012 [72]3 and discussed further by
Sun et al. [258].

Example 3.10. Let (U, V ) be an integral property of saturation type for F :
G→ H. That is, U = Span{1x | x ∈ G/A} for a subgroup A of G. The output
space V is typically implicitly defined by a projection homomorphism P : H → B
to a subgroup B of H. That is, V = Span{v ∈ CH | ∃λ ∈ C : TPv = λ1}.
Since every χ in A1 is constant on the cosets of the subgroup A, it holds
that U ⊇ SpanA1. In fact, comparing dimensions shows that this is an
equality. Hence, U = SpanA1. Furthermore, V = kerTP + Span{1} because
TP1 = |H|/|B|1. It is not difficult to see that kerTP = Span Ĥ \ (kerP )1. It
follows that V ⊥ = Span (kerP )1 \ {1}.

3For the case of multidimensional zero-correlation approximations with ‘coupled masks’,
apply Corollary 3.4 to the function x 7→ (x, F(x)) to obtain their result.
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By Corollary 3.4, (U, V ) is a perfect approximation if and only if (U, V ⊥) is
a zero-correlation approximation. In particular, for all ψ in A1 and χ 6= 1 in
(kerP )1, it holds that CF

χ,ψ = 0. The converse also holds. This extends the
main results of [72] to arbitrary commutative groups. .

3.5.3 General approximations

The behavior of most approximations is in-between the extremal cases of zero-
correlation and perfect approximations. As described in Section 2.5.2, such
approximations are typically obtained using the principle of dominant trails.
This means that usually only an estimate of the approximation map is available.
Section 3.6 discusses how such an estimate can be obtained using trails. This
section focuses on a different issue, namely that of judging the quality of
approximations. The main observation is that the principal correlations are
central to this issue.

It follows from Example 3.7 that the unique principal correlation of an ordinary
linear approximation equals the absolute value of its correlation. For fixed
advantage, the data complexity of a linear distinguisher is inversely proportional
to the square of the correlation. Hence, the quality of a linear approximation is
arguably determined by its unique principal correlation.

The preceding paragraph can be generalized as follows. Let (U, V ) be an
approximation of a function F : G→ H. In many cases, the principal correlations
determine the optimal data complexity of known-plaintext distinguishers based
on estimates of the evaluations 〈vi, T Fui〉H for r ≤ max{dimU,dimV } pairs
(ui, vi) in U × V .

As in Section 3.2.2, the estimators of 〈vi, T Fui〉H for i = 1, . . . , r are given by

t(ui, vi) = |G||H|
q

q∑

j=1
ui(xj)vi(yj) ,

with (x1, y1), . . . , (xq, yq) the given plaintext-ciphertext pairs. Let treal(ui, vi)
denote the ith estimator when the pairs are obtained from the real cipher and
tideal(ui, vi) the ith estimator for uniform random pairs. It will be assumed that
the mean of tideal(ui, vi) is zero.

For independent plaintext-ciphertext pairs, the joint distribution of the
estimators tends to normal as q → ∞. This follows from the multivariate
central limit theorem, although one should bear in mind that convergence need
not be fast. If in addition the variances of treal(ui, vi) and tideal(ui, vi) are equal,
then the acceptance region of an optimal distinguisher is defined by a separating
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hyperplane. That is, a linear combination of the estimators is used as the
test-statistic of a simple hypothesis test. This is known as linear discriminant
analysis in the statistics literature. The data complexity is determined by the
distance between the averages of the real and ideal test-statistics, measured
in units of standard deviation. Hence, the optimal choice of the separating
hyperplane maximizes this distance for constant variance:

∆ = max
c1,...,cr∈C

max
u1,...,ur∈U
v1,..., vr∈V

∣∣∣∣∣E
r∑

i=1
ci treal(ui, vi)

∣∣∣∣∣

subject to Var
r∑

i=1
ci tideal(ui, vi) = 1/q ,

(3.2)

where (c1, . . . , cr) is a vector orthogonal to the separating hyperplane. Since
the estimators are unbiased, E

∑r
i=1 ci treal(ui, vi) =

∑r
i=1 ci〈vi, T Fui〉H . For

the variance, a trite calculation shows that

Var
r∑

i=1
ci tideal(ui, vi) = 1

q

∑

1≤i,j≤r
cj〈vi, vj〉H ci〈ui, uj〉G .

To simplify the solution of (3.2), the Frobenius inner product from Section 3.2.1
will be used. Recall that the Frobenius inner product between linear operators
A : CG → CH and B : CG → CH is 〈A,B〉fr = Tr(A†B). The Frobenius norm
of A is ‖A‖fr =

√
〈A,A〉fr. Using this notation, one can see that

r∑

i=1
ci〈vi, T Fui〉H =

r∑

i=1
ci Tr

(
T Fui〈vi, ·〉H

)
=
〈∑r

i=1 ci vi〈ui, ·〉G, 〈V,U〉F
〉

fr
.

Similarly, the variance can be rewritten as
∑

1≤i,j≤r
cj〈vi, vj〉H ci〈ui, uj〉G =

∥∥∑r
i=1 civi〈ui, ·〉G

∥∥2
fr .

Setting X =
∑r
i=1 civi〈ui, ·〉G, the optimization problem (3.2) is equivalent to

∆ = max
X :U→V

∣∣∣
〈
〈V,U〉F, X

〉
fr

∣∣∣

subject to ‖X‖fr = 1 and rankX ≤ r .

(3.3)

The solution to (3.3) is given by Theorem 3.8, which can be interpreted as a
refinement of the Cauchy-Schwarz inequality (Theorem 3.2). It can also be
rewritten as a variant of the Eckart-Young theorem [132] involving relative
errors.
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Theorem 3.8. Let U and V be finite-dimensional inner product spaces, and let
〈·, ·〉fr be the induced Frobenius inner product. For every linear map L : U → V
with singular values σ1 ≥ σ2 ≥ . . . ≥ σd, and for every linear map X : U → V
with rankX ≤ r ≤ d,

|〈L,X〉fr| ≤ ‖X‖fr

√√√√
r∑

i=1
σ2
i .

Furthermore, equality is achieved for X =
∑r
i=1(σi/σ)ui〈vi, ·〉 where ui and vi

are left and right singular vectors corresponding to σi and σ =
√∑r

i=1 σ
2
i .

Due to Theorem 3.8, we have ∆ =
√∑r

i=1 σ
2
i where σ1 ≥ σ2 ≥ . . . ≥ σr

are the first r principal correlations of (U, V ). Assuming normality, using
q = α/

∑r
i=1 σ

2
i data results in success probability PS = Φ(Φ−1(PF)−√α) for

false-positive rate PF.

Choosing r = d results in the lowest data complexity, i.e. around 1/‖〈U, V 〉F‖2fr
because the squared Frobenius norm is equal to the sum of the squared principal
correlations. The quantity ‖〈U, V 〉F‖2fr regularly pops up in previous work about
statistical aspects of linear cryptanalysis. Two examples are given below.

Example 3.11 (Capacity). Let F : G→ H be a function and S ⊂ Ĝ, T ⊂ Ĥ
subsets of group characters. Relative to the Fourier basis, the approximation
map of the multiple linear approximation (SpanT, SpanS) is represented by a
submatrix of CF with coordinates CF

χ,ψ for ψ in S and χ in T . Hence, the sum
of the squared principal correlations is equal to

‖〈V,U〉F‖2fr =
∑

χ∈T
ψ∈S

∣∣CF
χ,ψ

∣∣2 .

This quantity is known as the fixed-key capacity, and it is inversely proportional
to the data complexity of an optimal distinguisher. Despite this result, the
squared principal correlations are not equal to the correlations of the individual
linear approximations. .

The Frobenius norm of the approximation matrix is also related to the squared
Euclidean imbalance, which was shown to be inversely proportional to the
data complexity of optimal distinguishers based on balanced projections by
Baignères et al. [16].

Example 3.12 (Squared Euclidean imbalance). Let F : G → H be a
permutation and PG : G → ZG and PH : H → ZH balanced projections.
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As discussed in Section 3.4.2, these projections correspond to subspaces
U = Span{δz ◦ PG | z ∈ ZG} and V = Span{δz ◦ PH | z ∈ ZH} by the
pullback construction. The approximation map 〈V,U〉F can be represented as a
matrix with coordinates

〈δy ◦ PH , T F(δx ◦ PG)〉H
‖δy ◦ PH‖H ‖δx ◦ PG‖G

=

√
Pr [PG(zG) = x]
Pr [PH(zH) = y] Pr [PH(F(zG)) = y |PG(zG) = x],

where zG is uniform random on G and zH is uniform random on H. Since the
approximations considered by Baignères et al. are balanced, Pr [PG(zG) = x] =
|ZG|/|G| and Pr [PH(zH) = y] = |ZH |/|H|, and the prefactor simplifies to√
|ZG|/|ZH |. It follows that the Frobenius norm of 〈V,U〉F is given by

‖〈V,U〉F‖2fr = |ZG||ZH |
∑

x∈ZG
y∈ZH

Pr [PH(F(zH)) = y |PG(zG) = x]2.

In particular, ‖〈U, V 〉F‖2fr − 1 is equal to the squared Euclidean imbalance as
defined by Baignères et al. [16, Definition 7]. The term −1 is due to the trivial
invariant corresponding to the uniform distribution. .

Although r = d results in the lowest data complexity, it can be useful to choose
r < d. Indeed, decreasing r reduces the time complexity of the attack. This
trade-off is especially attractive when some of the principal correlations are
comparatively small.

Finally, it should be emphasized that the above results only apply to known-
plaintext distinguishers. The chosen-plaintext data complexity can be much
lower.

3.6 Trails

As discussed in Section 2.5.2, the standard approach to compute the
approximation map of a non-perfect, nonzero-correlation approximation of
a function F = Fr ◦ · · · ◦ F2 ◦ F1 is based on gluing together approximations for
the functions F1, . . . ,Fr using the dominant trail approximation. This technique
was formalized in Corollary 2.1 for the general case, and carries over to this
chapter without changes.



85 Linear cryptanalysis

This section investigates two special cases of Corollary 2.1 that are important
in the context of linear cryptanalysis. First, Section 3.6.1 derives a general
piling-up principle from Corollary 2.1 with a single dominant trail. Second,
Section 3.6.2 briefly discusses the ‘constructive interference’ phenomenon and
applies the piling-up principle to analyze the constructive interference of linear
trails in functions with invariants.

3.6.1 Piling-up principle

For a single dominant trail and using approximations with orthogonal
complements, Corollary 2.1 reduces to Corollary 3.5 below. This result is called
the piling-up principle after the special case of ordinary linear cryptanalysis.

Corollary 3.5 (Piling-up principle). Let (U1, U2, . . . , Ur+1) be a trail for a
function F = Fr ◦ · · · ◦ F1. The approximation map of the approximation
(Ur+1, U1) of F satisfies

〈Ur+1, U1〉F = 〈Ur+1, Ur〉Fr
· · · 〈U3, U2〉F2〈U2, U1〉F1 + E ,

where the error term E is given by

E =
∑

V2,...,Vr

〈Ur+1, Vr〉Fr
· · · 〈V3, V2〉F2〈V2, U1〉F1 ,

where (V2, . . . , Vr) ∈
∏r
i=2 {Ui, U⊥i } such that Vi = U⊥i for at least one i.

Several piling-up principles for variants of linear cryptanalysis have been
proposed in the literature, including for nonlinear approximations [159],
partitioning cryptanalysis [160] and projection functions [16,280]. Traditionally,
these piling-up principles have been justified by invoking a Markov chain
assumption. That is, one multiplies transition probabilities as if they correspond
to independent events. Since all transitions are actually deterministic4, this
assumption can never be true. Furthermore, when it fails, it is often hard to
understand why or how to resolve the problem.

The dominant trail interpretation of the piling-up principle is theoretically
more sound, but it was previously limited to the case of ordinary linear
cryptanalysis. For example, Beierle et al. [26] propose to compute the correlation
of nonlinear approximation by applying ordinary linear cryptanalysis to a
nonlinear transformed variant of a cipher. However, there is no canonical

4It is perhaps relevant here to stress that round keys are fixed throughout an attack, with a
few exceptions such as in tweakable block ciphers based on the TWEAKKEY framework [169].
However, in the latter case, round keys are even partially controlled by the adversary.
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representative set of all nonlinear approximations, so this introduces an
undesirably arbitrary choice. A basis-free perspective helps to overcome this
difficulty.

Corollary 3.5 provides a general piling-up principle that is applicable in all of
the above-mentioned cases, but it also offers an alternative motivation based
on dominant trails rather than independence assumptions. The premise is
that each approximation in a trail corresponds to a transformation of its input
space, followed by an orthogonal projection on the input space of the next
approximation. Each of these successive projections introduces an error, but
orthogonal projection is optimal in the sense that it keeps the inner product
between the state and its approximation maximal and the norm of the error
minimal. Ultimately, the approximation relies on the assumption that the
contribution of the chosen trail is dominant compared to that of the trails
involving one-or-more complementary subspaces.

The one-dimensional case of Corollary 3.5, with Ui spanned by a character χi,
was already discussed in Section 3.3.3. The composition result of Beierle et
al. [26, Theorem 3] for nonlinear approximations is another special case of
Corollary 3.5 for one-dimensional approximations. A few examples of the
higher-dimensional case can be found in the literature. Two examples are
discussed below: the piling-up principle for properties based on projections
functions as proposed by Baignères et al. [16] and Wagner [280], and some cases
of multiple-linear cryptanalysis.

Example 3.13 (Projection functions). Suppose all spaces Ui are pullbacks
along balanced projection functions Pi : Gi → Zi. As shown in Example 3.12,
relative to the bases {δx ◦ Pi/‖δx ◦ Pi‖Gi | x ∈ Zi} for Ui, the map 〈Ui+1, Ui〉Fi

can be represented by a matrix with coordinates
√
|Zi |
|Zi+1|

Pr [Pi+1(F(z)) = y |Pi(z) = x],

where z is uniform random on Gi. That is, up to a constant scaling of rows
and columns, 〈Ui+1, Ui〉Fi is the transition matrix considered in [16,280]. These
works follow the Markov chain assumption, which leads to using the product of
round transition matrices as an approximation for the true transition matrix.
The row and column scaling indeed cancel out, so that Corollary 3.5 yields the
same result up to scaling of rows and columns. .

Example 3.14 (Multiple linear cryptanalysis). For any multiple linear
approximation, the coordinate representation of 〈Ui+1, Ui〉Fi in the Fourier
basis is a submatrix of the correlation matrix CFi . Hence, Corollary 3.5 suggests
multiplying submatrices of correlation matrices.
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This approach has been (sometimes indirectly) used in several works, notably
in the multiple linear cryptanalysis of PRESENT [90], PUFFIN [195] and
SPONGENT [70]. For these ciphers, strong approximations can be found by
taking into account all trails with masks of Hamming weight one. This approach
is often combined with key-averaging, leading to multiplying matrices of squared
correlations. However, a careful analysis of the key-dependency would be both
feasible and preferable in most cases. .

3.6.2 Linear approximations from invariants

A minimal condition for the applicability of the piling-up approximation is that
one chooses the best trail from a predetermined class of candidates, where the
principal correlations can be used as a measure of quality. Indeed, the error
term in Corollary 3.5 can be large if other trails are better or comparable.

However, it is also possible that the class of candidate trails is too limited to
obtain a good estimate for 〈Ur+1, U1〉F. In the context of linear cryptanalysis,
this is related to a phenomenon that was called ‘constructive interference’ by
Daemen and Rijmen [104]. This phenomenon occurs when a large number of
linear trails with a small correlation result in a linear approximation with an
extraordinary large correlation. The qualification ‘extraordinary’ is important.
An approximation with n dominant trails with correlation ±c, is expected to
have an overall correlation of ±√n c. However, if all n trails have the same sign,
then the correlation will be ±n c. This is constructive interference.

In some cases, constructive interference can be explained by considering different
types of trails. For example, a good linear approximation may be explained by
a trail of nonlinear approximations. In Chapter 6, an example of a perfect linear
approximation over full-round Midori-64 with modified round constants will be
presented. However, full-round Midori-64 does not admit any high-correlation
linear trails. This observation can be thought of as an extreme case of a more
general phenomenon. At Crypto 2012, Abdelraheem et al. [1] showed that
invariant subspaces give rise to linear approximations with higher-than-expected
correlation. The same observation was later generalized to plateaued nonlinear
invariants by Beierle et al. [26]. Plateaued nonlinear invariants are characterized
by a flat Walsh-Hadamard transformation, taking only two values up to sign.
The results of Abdelraheem et al. [1] and Beierle et al. [26] can be summarized
and generalized as follows.

Theorem 3.9. Let F : G → G be a function on a finite commutative group
G. Let u in CG be any function with Fourier transform û = FG u such that
|û(χ)| = 1/

√
| supp û| for all χ in supp û and zero elsewhere. If Span{u} is
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an invariant of F, then there exist characters χ and ψ in supp û such that
|CF
χ,ψ| ≥ 1/| supp û|.

Proof. By Definition 2.20, it holds that (the sum is over χ and ψ in supp û)

1 =
∣∣〈û, CFû〉

∣∣ =

∣∣∣∣∣∣
∑

χ,ψ

û(χ)û(ψ)CF
χ,ψ

∣∣∣∣∣∣
≤ |supp û|max

χ,ψ

∣∣CF
χ,ψ

∣∣.

It follows that |CF
χ,ψ| ≥ 1/| supp û| for at least one pair (χ, ψ).

Note that the same result is spread over two theorems in previous work [26,
Theorem 4 and 5]: one for invariant subspaces, and one for plateaued nonlinear
invariants. This illustrates the convenience of the general definitions. To apply
the results to the case of invariant subspaces, one only needs to know that
the Fourier transformation of the indicator function of a subgroup H of G
is flat with support size |G|/|H|. This follows from the Poisson-summation
formula [262, Theorem 1]. See also the first entry of Table 3.2 for G = Fn2 .

Theorem 3.9 and the results above illustrate that a strong approximation using
one kind of property can result in unexpectedly good approximations using
other properties. This can be understood using Corollary 3.5. For example,
let Span{u} with ‖u‖G = 1 be any invariant of F with û = FG u. Consider an
ordinary linear approximation, i.e. a pair (Span{ψ},Span{χ}) where ψ, χ are
characters. The correlation of the linear approximation over F can be estimated
using the following trail:

ψ
I−−−−−→

〈u, ψ〉G
u

T F
−−→

1
u

I−−−−→
〈χ, u〉G

χ.

Corollary 3.5 yields the estimate |〈u, ψ〉G〈χ, u〉G| = |û(ψ)û(χ)| for the absolute
correlation. If û is flat as in Theorem 3.9, then the piling-up approximation
suggests that all approximations with ψ and χ in supp û will have a correlation
of roughly 1/| supp û|. In fact, this resolves a question of Beierle et al., who
note that “our arguments are non-constructive and therefore, we are not able
to identify those highly-biased linear approximations” [26, §1]. In fact, it is
easy to identify the highly-biased approximations in practice: generically, any
approximation with ψ and χ in supp û will do.

3.7 Rank-one approximations

It is often convenient to represent the domain of a cipher as an array of m cells,
because most of the operations in the cipher act on the cells in an independent
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way. In fact, in ciphers such as the AES, only the MixColumns step results in
diffusion between cells. That is, let G = Hm for some commutative group H.
Recall that up to canonical isomorphism, CHm = (CH)⊗m and similarly for the
dual group.

Example 3.15. The probability distribution of a state with independent
cells having distributions p1, . . . , pm, is represented by the rank-one tensor
p1 ⊗ · · · ⊗ pm (see Section 2.2.3 for definitions). .

A rank-one approximation (U, V ) is any approximation such that U and V are
spanned by a rank-one tensor. No further conditions are imposed on U and
V . An important class of rank-one approximations is obtained from balanced
functions P : Hm → Z such that P(x1, . . . , xm) =

∑m
i=1 Pi(xi). As shown in

Table 3.2 for H = Fn2 , one can associate a vector space to P spanned by a
function χ ◦P =

⊗m
i=1 χ ◦Pi with χ a character of Z. Equivalently, the Fourier

transformation of the corresponding vector space is spanned by

FG(χ ◦ P) =
⊗m

i=1 FH(χ ◦ Pi),

where FH(χ ◦ Pi) is the Walsh-Hadamard transformation of Pi when H = Fn2
and Z = F2. The invariants that will be discussed in Chapter 6 and the
nonlinear approximations considered by Beierle et al. [26] and in Section 3.8
are of this type.

3.7.1 Theoretical analysis of rank-one trails

By Corollary 3.1 (1), the correlation matrix of a layer of m identical S-boxes
S is equal to (CS)⊗m. Indeed, correlation matrices are themselves tensors and
the tensor rank (not to be confused with matrix rank) of (CS)⊗m is one. This
expresses the fact that the S-box layer preserves independence of cells. A similar
result holds for the key-addition step. Whereas the S-box layer preserves the
rank-one structure of approximations, the linear layer tends to increase the rank.
In fact, it is reasonable to interpret the rank as a measure of diffusion between
the state cells. Since the correlation matrix of any function F : Hm → Hm is a
tensor, it can be decomposed as

CF =
r∑

i=1
λi
⊗m

j=1 Ci,j ,

where Ci,j are |H| × |H| matrices and r is the tensor rank of CF.
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Lemma 3.1. Let F : (Fn2 )m → (Fn2 )m be a function such that F = (G,G, . . . ,G)
for some G : Fn2 → Fn2 . If CG =

∑r
i=1 λi

⊗n
j=1 Ci,j, then

CF =
∑

i1,...,im

(
∏m
k=1 λik )

⊗m
k=1

⊗n
j=1 Cik,j ,

where i1, . . . , im ∈ {1, . . . , r}. In particular, CF has tensor rank at most rm.

Proof. By Corollary 3.1 (1), it holds that CF = (CG)⊗m. The result follows by
expanding this expression using the multilinearity of tensor products.

Lemma 3.1 can be used to obtain a decomposition of the correlation matrix
of the MixColumn map of the block ciphers Midori-64 [18] and MANTIS [29]
into 28 rank-one terms. This map M : (F4

2)4 → (F4
2)4 can be represented by the

following matrix over F24 : 


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


 .

Up to a reordering of the input bits, one can think of M as a map M̃ =
(L, L, L, L) where L corresponds to the same matrix as above, but over F2.
Specifically, M̃ = σMσ where σ : (F4

2)4 → (F4
2)4 is the bit permutation defined

by σi(x1, . . . , x4) = (x1,i, . . . , x4,i). Since CL is a 16× 16 matrix, one can check
that

CL = 1
2

([
1 0
0 1

]⊗4
+
[

0 1
1 0

]⊗4
+
[

1 0
0 -1

]⊗4
−
[

0 1
-1 0

]⊗4
)
.

To see this, it is helpful to observe that CL is symmetric as a tensor. Since
M̃ = σMσ where σ is a linear map corresponding to a reordering of bits, it
follows from Theorem 3.5 (2) and Lemma 3.1 that

CM = 2−4
∑

i1,i2,i3,i4

(
∏4
j=1 λij )

[⊗4
j=1 Cij

]⊗4
.

where i1, . . . , i4 ∈ {1, . . . , 4}, λ1 = λ2 = λ3 = 1 and λ4 = −1 and

C1 =
[

1 0
0 1

]
, C2 =

[
0 1
1 0

]
, C3 =

[
1 0
0 -1

]
, C4 =

[
0 1
-1 0

]
.

Hence, the tensor rank of CM is at most 28. This is significantly lower than
the worst-case of 216. Practically speaking, this enables a detailed analysis of
rank-one approximations for Midori-64 in Section 3.8.3. In fact, one can show
that this decomposition is minimal i.e. the rank of CM is equal to 28.
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Lemma 3.2 (Lemma 3.5 in [114]). Let V1, . . . , Vd be finite-dimensional vector
spaces over C. If xi,1, . . . , xi,r in Vi are linearly independent for i = 1, . . . , d,
then the vector

∑r
i=1 x1,i ⊗ x2,i ⊗ · · · ⊗ xd,i in

⊗d
i=1 Vi has tensor rank r.

To see why Lemma 3.2 implies the result, let Vi be the vector space of 16 ×
16 matrices over C. This is an inner product space under the Frobenius
inner product. It is easy to check that the matrices Ci defined above are
mutually orthogonal with respect to this inner product. This implies the mutual
orthogonality of the matrices

(⊗4
j=1 Cij

)⊗4. The result follows by the linear
independence of orthogonal vectors.

3.7.2 Automated analysis of rank-one trails

Let F = Fr ◦ · · · ◦ F1 be a permutation on Hm. By Corollary 3.5, an optimal
rank-one trail for F can be found by solving the following optimization problem:

maximize
r∑

i=1
log2

∣∣〈⊗m
j=1vi+1,j , C

Fi
⊗m

j=1 vi,j
〉∣∣

subject to ‖vi,j‖2 = 1 for i = 1, . . . , r + 1, j = 1, . . . ,m

vi,j(1) = 0 for (i, j) ∈ A and vi,j = δ1 otherwise,

where the last condition ensures that the vectors vi,j are active and balanced,
i.e. orthogonal to δ1, on a predetermined pattern of cells A. Clearly, at least one
cell must be active to obtain a nontrivial result. In practice, it is better to take
the logarithm of the objective function in order to avoid vanishing gradients.

The above is an optimization problem over the product of several copies of the
(|H| − 1)-dimensional unit sphere. This domain is a Riemannian manifold, and
common iterative numerical optimization techniques such as steepest descent
and conjugate gradients have been generalized to this setting [253]. This is the
basic approach behind the automated method proposed in this section. An
implementation of this method for H = Fn2 can be found online5. It relies on
the Pymanopt library [269].

The power of this method lies in the fact that it enables iterative convergence to
an optimal trail. This is made possible because the general nature of rank-one
approximations results in a relaxed, continuous optimization problem rather
than a discrete one. Although it is sometimes necessary to ensure that the
outermost vectors of the trail correspond to (for example) Boolean functions,

5https://github.com/TimBeyne/Geometric-approach

https://github.com/TimBeyne/Geometric-approach
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there is no reason to impose the same condition on vectors which are internal
to the trail.

Example 3.16. The tool can be applied to find rank-one invariants of arbitrary
functions with a limited number of input and output bits, which is a difficult
problem in general. For example, Figure 3.2 shows the iterative convergence
towards an invariant of the Midori-64 linear layer. This process takes about a
second on an ordinary computer. By optimizing over the sphere of unit-norm
vectors in the eigenspaces Eλ(CS) of the correlation matrix CS, joint invariants
for the linear and S-box layer can be found. An alternative approach to finding
such invariants will be discussed in Chapter 6.

The standard Riemannian variant of the conjugate gradients algorithm was
chosen as the optimization method. For further details such as the line search
method, the reader is referred to the Pymanopt source code (no custom
optimizations were introduced). The tool also implements a barrier method to
find all rank-one invariants for a given linear layer. .

0 2 4 6 8 100

1

2

3

4

Step (j)

−
lo

g 2
|c j
|

vi ∈ CF̂4
2

vi ∈ E+1(CS)
vi ∈ E−1(CS)

Figure 3.2: Correlation cj at each step of the optimization process for finding
invariants of the form v1 ⊗ v2 ⊗ v3 ⊗ v4 with vi(1) = 0 for the Midori-64 linear
layer.

A number of challenges remain for larger problems. These include addressing
key-dependence and convergence issues.

In many cases, it is possible to fix the key and analyze the key-dependence
afterwards. Due to Theorem 2.12, using the Fourier transformation simplifies
this process. The disadvantage of this approach is that it does not ensure that
the approximation will hold for many keys. This can be resolved by optimizing
over spheres B S2n where B is a matrix whose columns are an orthonormal
basis for an invariant subspace of several key-additions.

Another issue is that the optimization problem may have many local optima.
Lack of global convergence is mainly an issue when the number of variables
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in the problem is large – for the examples discussed in this thesis, this issue
was not encountered. For large problems, several restarts may be necessary
to find a globally optimal solution. The tool automates this process, but
restarting necessarily slows down convergence. For this reason, it is advisable to
predetermine the activity pattern and to enforce symmetries wherever possible.

3.8 Open problem of Beierle et al.

This section explains observations of Beierle et al. [26] on a nonlinear
approximation of two rounds of Midori-64. More broadly, the results lead
to a deeper understanding of many nonlinear approximations of the Midori-64
round function.

3.8.1 Problem statement

Beierle et al. [26, Section 4.4] consider a nonlinear approximation over two
rounds of Midori-64, restricted to a single column of the state. Denote this
function by F. Its correlation matrix is equal to

CF = CM[CS]⊗4ClCM[CS]⊗4Ck,

where k and l are 16-bit keys, S is the S-box and M the matrix defined
in Section 3.7.1. Recall from Section 3.6.1 that Beierle et al. describe
nonlinear approximations using linear properties of a nonlinearly transformed
representation of the cipher. The details of their approach will not be discussed
here; the geometric framework will be used instead. The nonlinear functions
considered by Beierle et al. are of the form

∑4
i=1 Pi(x) with Pi : F4

2 → F2
and consequently, as discussed in Section 3.7 on page 88, correspond to
approximations spanned by rank-one vectors. Specifically, the pair of nonlinear
functions considered in [26, Section 4.4] corresponds to a one-dimensional
approximation (Span{u⊗ v⊗3},Span{u⊗ v⊗3}) for F with

u = 1/4 · (0, 1, 0,−1, 0, 1, 0,−1, 0,−1, 0, 1, 0,−1, 0,−3)

v = 1/2 · (0, 0, 0,−1, 0, 0, 0,−1, 0, 0, 0, 1, 0, 0, 0,−1) .

The coordinates above are given relative to the Fourier basis {χw/24 | w ∈ F4
2}

with lexicographic ordering of w. Note that v is an eigenvector of CS. Beierle et
al. estimate the correlation of the above approximation using the following
two-round trail, which has absolute correlation at least (9/32)2:

u⊗v⊗3 [CS]⊗4Ck

−−−−−−−→
±1 or±1/2

u⊗v⊗3 CM
−−−→
9/16

u⊗v⊗3 [CS]⊗4Cl

−−−−−−−→
±1 or±1/2

u⊗v⊗3 CM
−−−→
9/16

u⊗v⊗3. (3.4)
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The computation of the correlation over CM was done by a direct evaluation
of the inner product 〈u ⊗ v⊗3, CM u ⊗ v⊗3〉. This trail was believed to hold
whenever k and l are in F4

2 × K3, with K = {(0, 0, x, y) | x, y ∈ F2}. The
weak key set K ensures the invariance of the tensor product factor v under
key addition. Based on the above, one estimates an absolute correlation of at
least (9/32)2 over F. However, Beierle et al. experimentally observe that this
estimate is not accurate:

(i) When l ∈ (F4
2 \K)×K3, the correlation is found to equal zero.

(ii) For other keys, the correlation takes on various values, but is always
significantly larger than the estimated minimum of 81/1024. Specifically,
for k and l in K4, the correlation ranges from 35/64 to 40/64 = 5/8. For
other keys, it lies between 39/256 and 65/256.

In their conclusion, the authors remark that understanding this phenomenon is
“a major open problem”.

3.8.2 Optimal rank-one trail

As shown in Section 3.7.1, the effect of the linear layer is nontrivial and this
makes finding an optimal rank-one trail difficult. Hence, a simple explanation
for observation (ii) could be that the trail (3.4) proposed by Beierle et al. is not
a good guess. Using the tool from Section 3.7.2, it is easy to find the optimal
rank-one trail – ignoring the effect of key-addition for now. The tool yields the
following trail with absolute correlation at most 9/16:

u⊗ v⊗3 [CS]⊗4Ck

−−−−−−−−→
±3/4 or±1/4

v⊗4 CM
−−→

1
v⊗4 [CS]⊗4Cl

−−−−−−→
±1

v⊗4 CM
−−→
3/4

u⊗ v⊗3.

A short calculation shows that the third step requires that l ∈ K4, otherwise
the trail has correlation zero. Furthermore, the correlation 3/4 in the first step
occurs if and only if k ∈ K4. In hindsight, one might have guessed the above
trail without detailed analysis: the choice of v⊗4 as an intermediate step is
natural, since v⊗4 is an invariant for the round function. This is an instance of
the general phenomenon discussed in the last paragraph of Section 3.6.2.

3.8.3 Theoretical analysis of the problem

The correlations predicted by the rank-one trail obtained in Section 3.8.2 are
within 10 to 30% of the observed correlations reported by Beierle et al. [26, Tables
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1–4]. However, the trail does not yet explain the zero-correlation approximation.
In this section, the results from Section 3.7.1 will be used to find a minimal
and complete set of rank-one trails for the approximation.

The propagation of u ⊗ v⊗3 under F will first be analyzed. For the zero-
correlation case, the miss-in-the-middle strategy can be used. It will then be
shown that a relatively short formula for the exact key-dependent correlation of
the approximation can be computed.

Let k = (k1, k2, . . . , k16) and l = (l1, l2, . . . , l16). The results in Section 3.7.1
can be used to compute the image of u⊗ v⊗3 under one round:

CM[CS]⊗4Ck u⊗ v⊗3 = −ν CM(CSC(k1,...,k4)u
)
⊗ v⊗3 = ν v ⊗

(∑16
i=1ci v

⊗3
i

)
,

where ν = −∏4
i=2(−1)k4i−1+k4i . The coefficients ci and the vectors vi are listed

in Table 3.3. Note that, because CM has rank 28, one initially obtains 28 terms.
However, this can be reduced to 16 by grouping terms appropriately. This
can be done manually by exploiting the structure of the rank-decomposition,
but Sage code to automate this can be found online6. Since the vectors vi
are mutually orthogonal, Lemma 3.2 implies that the above decomposition is
minimal. Interestingly, not all of the vectors vi correspond to Boolean functions
or probability distributions.

A similar computation can be performed for the inverse of the second round.
Specifically, recalling that S and M are involutions,

Cl[CS]⊗4CM u⊗ v⊗3 = µC(l1,...,l4)v ⊗
(∑8

i=1di
⊗3

j=1(C(l4j ,...,l4j+4)wi)
)
.

The coefficients di and the vectors wi are listed in Table 3.4 and µ = (−1)l3+l4+1.
The minimality of the above decomposition can again be established using
Lemma 3.2.

3.8.4 Zero-correlation approximation

Let U = Span{v} ⊗ (CF̂4
2)⊗3 and V = Span{C(l1,...,l4) v} ⊗ (CF̂4

2)⊗3. The
decompositions above clearly imply the following inclusions:

CM[CS]⊗4Ck u⊗ v⊗3 ∈ U and Cl[CS]⊗4CM u⊗ v⊗3 ∈ V.

Consequently, if U and V are orthogonal, then the miss-in-the-middle principle
implies that the approximation has correlation zero. This happens whenever

6https://github.com/TimBeyne/Geometric-approach/blob/main/midori_rankone.sage

https://github.com/TimBeyne/Geometric-approach/blob/main/midori_rankone.sage
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〈v, C(l1,...,l4) v〉 = 0. That is,
〈
(0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,−1, 0, 0, 0, 1),

(0, 0, 0, 1, 0, 0, 0, (−1)l2 , 0, 0, 0, (−1)1+l1 , 0, 0, 0, (−1)l1+l2)
〉

= 1 + (−1)l1 + (−1)l2 + (−1)l1+l2 ,

which equals zero unless l1 = l2 = 0. This explains the condition l ∈ (F4
2\K)×K3

observed by Beierle et al. [26].

3.8.5 Refining the correlation estimate

Assume that l ∈ K4, so that the correlation is nonzero. A closer inspection of
the vectors vi and wj reveals that |〈vi, C(l4j ,...,l4j+4)wj〉| ≤ 1/2 unless i = 3 and
j = 1. That is, when the inner product

〈
ClCM[CS]⊗4 u⊗ v⊗3, [CS]⊗4CMCk u⊗ v⊗3〉

is expanded using the decomposition above, the term corresponding to c3d1
has a weight of one whereas all other terms have weight at most 2−3. Since
v3 = w1 = v, this term corresponds to the trail from Section 3.8.2.

The correlation estimate can be improved by including additional trails. In
principle, all 128 terms in the expanded inner product between the forward and
backward expressions can be computed. A Sage script that computes a short
formula for the exact key-dependent correlation of the approximation can be
found online7.

In fact, due to the low rank of CM, the same technique can be used to analyze
all rank-one approximations of F. This includes all linear approximations. In
general, the minimal number of rank-one trails can be higher or lower than
16× 8 depending on the choice of the input and output property.

7https://github.com/TimBeyne/Geometric-approach

https://github.com/TimBeyne/Geometric-approach


4
Differential cryptanalysis

In this chapter, the geometric approach from Chapter 2 is applied to differential
cryptanalysis. Unlike for linear cryptanalysis, the one-dimensional theory
already leads to new results and is consequently the focus of this chapter. The
systematic application of Section 2.4 to differential cryptanalysis leads to the
theory of quasidifferential trails, which keep track of probabilistic linear relations
on the values satisfying a differential characteristic in a theoretically sound way.
It is shown that the fixed-key probability of a differential can be expressed as
the sum of the correlations of its quasidifferential trails.

This chapter is based on the paper “Differential cryptanalysis in the fixed-key
model” [56] from Crypto 2022, which was joint work with Vincent Rijmen. The
main differences are that this chapter considers differential cryptanalysis on
arbitrary finite commutative groups rather than Fn2 only, and the omission of
the applications to Rectangle, KNOT, Speck and Simon. The latter results are
discussed in Chapter 8 instead.

4.1 Introduction

The central problem of differential cryptanalysis is to count the number of
inputs of a function for which a given input difference results in a particular
output difference or, what amounts to the same, to compute the probability
of a differential. For functions that can be written as a composition of simple
operations, the standard procedure is to analyze sequences of intermediate
differences or characteristics. The probability of a characteristic is then
heuristically estimated by multiplying the probabilities of the intermediate
differentials. In the context of block ciphers, Lai, Massey and Murphy [191]
showed that this procedure yields the correct value of the key-averaged probability
for Markov ciphers.

However, since the key is fixed throughout a differential attack, even the average
data complexity cannot be computed from the average probability of differentials
alone. Hence, Lai et al. [191] introduced an additional assumption known as the
hypothesis of stochastic equivalence. It states that the probability for each key

99



4.1 Introduction 100

is close to the average probability. In practice, it turns out that the probability
can vary significantly between keys. Hence, standard assumptions may lead
to incorrect conclusions. Furthermore, averages may hide weak key attacks
that can considerably degrade security. Finally, the same formalism is used
even when there is no key, such as for cryptographic permutations, or when the
cryptanalyst has full control over the key, such as in many hash functions.

Daemen and Rijmen [105] showed that the fixed-key probability of two-round
characteristics of the AES is either zero or 2h, with h an integer independent
of the key. Such characteristics are called plateau characteristics, and have
been used in several other contexts [75, 83, 205, 217, 259]. Although plateau
characteristics are the only systematic method to analyze fixed-key probabilities
for S-box-based ciphers, their scope remains limited. They assume that the
input or output values satisfying a differential over the S-box form an affine
space. Furthermore, their analysis becomes difficult for more than two rounds.

For constructions relying on modular additions, several techniques were
developed in the context of collision attacks on hash functions. These methods
keep track of additional information about the values satisfying a characteristic.
For example, the breakthrough results of Wang and Yu [283] rely on signed
differences. De Cannière and Rechberger [112] extended these to generalized
differences, allowing arbitrary constraints to be imposed on individual bits.
Leurent [199] proposed a framework for ARX-constructions based on two-
bit conditions. Xu et al. [287] introduced signed sums, which are single-bit
conditions. Despite their merit, these techniques have significant limitations.
Imposing conditions directly on values becomes difficult for keyed functions, since
key-additions result in conditions that potentially depend on many unknown
bits. Hence, these methods are limited to keyless functions except for localized
or key-independent effects. Furthermore, the conditions that are imposed cannot
fully explain the probability of a characteristic, and the right choice of the type
of conditions to use depends on the function under analysis.

From a theoretical viewpoint, it can be argued that the standard approach
to differential cryptanalysis is incomplete, since it does not offer any tools to
compute probabilities beyond the average case. Furthermore, as mentioned
above, existing techniques such as plateau characteristics and generalized
differences still have important limitations. This is in contrast to linear
cryptanalysis, where it is known that the correlation of a linear approximation
is precisely equal to the sum of the correlations of all its linear trails.

To achieve parity with linear cryptanalysis, this chapter applies the geometric
approach from Chapter 2 – and Section 2.4 in particular – to differential
cryptanalysis. Section 4.3 constructs a preferred ‘quasidifferential basis’ that
diagonalizes round key additions. This leads to an extension of the difference-
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distribution table that will be called the quasidifferential transition matrix. It
represents a pushforward operator relative to the quasidifferential basis. Hence,
quasidifferential transition matrices are analogous to correlation matrices in
linear cryptanalysis. Their main properties are discussed in Section 4.3.2. By
applying the results from Section 2.4.3, quasidifferential transition matrices in
turn lead to a notion of quasidifferential trails. Corollary 4.2 shows that the
sum of the correlations of all quasidifferential trails in a differential is equal to
its exact fixed-key probability. This is an immediate but powerful consequence
of Theorem 2.6.

The remaining sections of this chapter likewise focus on the one-dimensional
theory of quasidifferential trails. An efficient algorithm to compute the
quasidifferential transition matrix of a given function is given in Section 4.4.
Section 4.5 shows that the probability of a differential characteristic is the
sum of the correlations of all quasidifferential trails in the characteristic.
This is a refinement of the abovementioned result for differentials. A few
quasidifferential trails often capture the essence of the key-dependence. For
example, Knudsen [180] already observed significant deviations from the
hypothesis of stochastic equivalence for the characteristics used in the differential
analysis of DES. This effect is explained in Section 4.5.2 by taking into account
one additional one-round quasidifferential trail.

4.2 Mathematical setting

Unlike linear cryptanalysis, differential cryptanalysis is concerned with pairs
of values rather than individual values. Hence, the geometric approach from
Chapter 2 will be applied to the function (x, y) 7→ (F(x),F(y)) with F : G→ H
the primitive. As in Chapter 3, it will be assumed that G and H are finite
commutative groups. In this case, the pushforward operator of the function F is
equal to T F ⊗ T F. Many results in this chapter can be generalized to arbitrary
functions from G ⊕ G to H ⊕H, which may be interesting in the context of
related key and related cipher attacks. To keep the presentation simple, only
functions from G to H will be considered in this chapter.

Following Definition 2.6, cryptanalytic properties are pairs of subspaces of
CG⊕G = CG ⊗CG and (CH⊕H)∨ = (CH)∨ ⊗ (CH)∨. As in Chapter 3, the field
C is equipped with its ordinary absolute value function | · |.
The vector spaces CG⊕G and CH⊕H are equipped with the Euclidean norm, up
to a constant factor. This choice is discussed in more detail in Section 4.2.1.
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Finally, the group action that will lead to the one-dimensional theory is defined
in Section 4.2.2.

4.2.1 Motivation for the Euclidean norm

Due to its self-duality property, the Euclidean norm is a natural choice from
a theoretical point of view. This was already discussed in Section 3.2.1.
Nevertheless, it is not necessarily the only reasonable choice and the statistical
motivation from Chapter 3 does not carry over completely to differential
cryptanalysis. In any case, the norm plays a less prominent role in the one-
dimensional theory – which is the focus of this chapter.

Throughout this chapter, the Euclidean norm will be scaled by a factor
√
|G|.

This is to ensure consistency with Chapter 3, since fixing the input difference
to zero reduces differential cryptanalysis to linear cryptanalysis. Specifically,
the norm of u in CG⊕G is equal to

‖u‖G =
√
|G| ‖u‖2 ,

which is self-dual with respect to the inner product 〈v, u〉G = |G| 〈v, u〉. A similar
definition is used for CH⊕H . As in Chapter 3, this implies that v 7→ 〈v, ·〉H is
an isometric anti-isomorphism between CH⊕H and (CH⊕H)∨.

4.2.2 Group action

Since G is a group, any t in G acts on G⊕G by (x, y) 7→ (x− t, y − t). This
action extends to CG⊕G by

(
(T t ⊗ T t) f

)
(x, y) = f(x+ t, y + t) ,

where the positive sign is due to the fact that T t ⊗ T t describes forward
propagation.

The action (x, y) 7→ (x − t, y − t) extends the action x 7→ x − t on G from
Chapter 3. Since most primitives involve key and constant additions, it is a
natural choice. However, the order of G is only the square root of the dimension
of CG⊕G, so the action of G does not determine a complete basis. The remaining
degrees of freedom will be used up in Section 4.3.1
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4.3 One-dimensional theory

This section applies the one-dimensional theory from Section 2.4 to the setting
that was introduced in Section 4.2. Section 4.3.1 shows how the group
action from Section 4.2.2 leads to a preferred basis by following Section 2.4.4.
This is less straightforward than in Chapter 3, because the group action
alone does not lead to a unique choice. The resulting basis is called the
quasidifferential basis, and expressing pushforward operators relative to this
basis yields quasidifferential transition matrices. The properties of these matrices
are discussed in Section 4.3.2. The resulting one-dimensional theory of trails
is described in Section 4.3.3. It is an extension of the standard description of
differential cryptanalysis, which is only valid on average for independent and
uniform random round keys.

4.3.1 Quasidifferential basis

In ordinary differential cryptanalysis, input pairs are chosen from a set A =
{(x, x + a) | x ∈ G} and the number of output pairs that are contained in a
set B = {(x, x+ b) | x ∈ G} is counted. This corresponds to the cryptanalytic
property (Span{1A},Span{〈1B , ·〉H}).
Due to the above, an appropriate basis for CG⊕G (and likewise for CH⊕H)
should include the indicator functions (x, y) 7→ δa(y − x) for all a in G. Clearly,
these functions alone do not form a basis. However, the group action defined
in Section 4.2.2 leads to additional conditions. Below, these conditions will be
used to construct a complete basis for CG⊕G.

Recall from Section 2.4.4 that CG⊕G together with the G-action defined by T t
for t in G is a representation of G. Furthermore, the elements of the following
subrepresentation are fixed by all T t ⊗ T t with t in G:

{
(x, y) 7→ u(y − x) | u ∈ CG

}
⊂ CG⊕G

Let ϕ : CG ⊗ CG → CG⊕G be the isomorphism of representations defined by
ϕ(u ⊗ v) : (x, y) 7→ u(x) v(y − x), so that CG⊕G ∼=ϕ CG ⊗ CG. Since the
action of G on CG is diagonalized by the character basis (see Section 3.3.1),
the representation CG⊕G can be decomposed as the following direct sum of
subrepresentations:

CG⊕G ∼=ϕ

⊕

χ∈Ĝ

Span{χ} ⊗ CG .

Hence, any choice of |G| bases for CG yields a basis that diagonalizes T t ⊗ T t
for all t in G. For simplicity, assume that the same basis is used for each
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term in the decomposition. If the basis is required to include the functions
(x, y) 7→ δa(y − x), then one obtains Definition 4.1 uniquely up to scaling.

Definition 4.1 (Quasidifferential basis). Let G be a finite commutative group.
For every χ in Ĝ and a in G, the function qχ,a : G⊕G→ C is defined by

qχ,a(x, y) = χ(x) δa(y − x)/|G| .

The set of all functions qχ,a will be called the quasidifferential basis for CG⊕G.

The functions qχ,a are not only linearly independent, but also orthogonal. This
is shown in Theorem 4.1, which also states the important translation-invariance
property.

Theorem 4.1. The quasidifferential basis defined in Definition 4.1 is
translation-invariant and orthogonal. Specifically:

(1) For all (ψ, a) and (χ, b) in Ĝ⊕G, it holds that 〈qχ,b, qψ,a〉G = δχ(ψ) δb(a).

(2) For all (χ, a) in Ĝ⊕G and t in G, it holds that

qχ,a(x+ t, y + t) = χ(t) qχ,a(x, y) .

Proof. The first result follows immediately from the orthogonality of group
characters, i.e. Theorem 3.4 (2). Explicitly,

〈qψ,b, qχ,a〉G = 1
|G|

∑

(x,y)∈G⊕G
ψ(x) δb(y − x)χ(x) δa(y − x) .

Indeed, if a 6= b, then y − x = a and y − x = b never hold simultaneously. If
a = b, then the result follows from the orthogonality of the characters χ and ψ.
The translation-invariance follows from the fact that χ(x+ t) = χ(t)χ(x).

The change-of-basis transformation QG : CG⊕G → CĜ⊕G from the standard
basis to the quasidifferential basis is defined by QG qχ,a = δ(χ,a) as in
Definition 2.10. Equivalently, QG can be defined as in Definition 4.2, analogous
to the Fourier transformation in Definition 3.5.

Definition 4.2 (Quasidifferential change-of-basis). The quasidifferential change-
of-basis transformation is the linear map QG : CG⊕G → CĜ⊕G defined by

(
QGf

)
(χ, a) =

〈
qχ,a, f

〉
G

=
∑

x∈G
χ(x)f(x, x+ a) ,

for all χ in Ĝ and a in G.
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4.3.2 Quasidifferential transition matrices

Let F : G→ H be a function. Following Section 2.4.1, the pushforward operator
T F ⊗ T F can be expressed relative to the quasidifferential basis. This results
in Definition 4.3. This definition should be compared with Definitions 2.11
and 3.6.

Definition 4.3 (Quasidifferential transition matrix). Let F : G → H
be a function between finite commutative groups G and H. Define
DF : CĜ⊕G → CĜ⊕G as the pushforward operator of F relative to the
quasidifferential basis. That is, DF = QH(T F ⊗ T F)Q−1

G .

The quasidifferential transition matrix of F is the coordinate representation of
DF with respect to the standard bases of CĜ⊕G and CĤ⊕H .

To make Definition 4.3 more concrete, we compute the coordinates of DF. By
the same conventions as in Chapters 2 and 3, the coordinates of DF will be
indexed by pairs (ψ, a) in Ĝ⊕G and (χ, b) in Ĥ ⊕H. By the orthogonality of
the quasidifferential basis (Theorem 4.1 (1)), it holds that QHδ(χ,b) = |H| qχ,b
and consequently

DF
(χ,b), (ψ,a) = 〈δ(χ,b), DFδ(ψ,a)〉 = 〈qχ,b ◦ F, qψ,a〉H .

Working this out yields the following expression:

DF
(χ,b), (ψ,a) = 1

|G|
∑

(x,y)∈G⊕G
ψ(x)χ(F(x)) δa(y − x)δb(F(y)− F(x))

= 1
|G|

∑

x∈G
F(x+a)=F(x)+b

χ(F(x))ψ(x) . (4.1)

For ψ = 1G and χ = 1H , (4.1) reduces to the probability of the differential
with input difference a and output difference b. That is,

DF
(1H ,b),(1G,a) = DDTF

a,b/|G| .

For a = 0 and b = 0, one obtains the coordinates of the correlation matrix of F.
Specifically,

DF
(χ,0),(ψ,0) = CF

χ,ψ .

More generally, the right hand side of (4.1) can be interpreted as a kind of
correlation matrix for the function F but restricted to the right pair set of the
differential (a, b).
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Example 4.1. For G = Fn2 and H = Fm2 , (4.1) shows that DF
(χ,b),(ψ,a) equals

(
2 Pr[vTF(x) = uTx | F(x+ a) = F(x) + b]− 1

)
Pr[F(x+ a) = F(x) + b] ,

when χ(x) = (−1)vTx and ψ(x) = (−1)uTx and with x uniform random on
Fn2 . The first factor is the correlation of the linear approximation (ψ, χ), but
conditional on the event that the differential (a, b) holds. The second factor
is the probability of the differential (a, b). That is, the coordinates of DF

express the correlations of probabilistic linear relations (‘linear approximations’)
between the input and output values of the right pairs. .

The following results summarize the main properties of quasidifferential
transition matrices. Corollary 4.1 is a consequence of Theorem 2.5. Theorem 4.2
is specific to the quasidifferential basis, although property (1) is identical to
Theorem 3.5 (1) for correlation matrices. This is because it only relies on the
orthogonality of the basis.

Corollary 4.1. The quasidifferential transition matrix DF of F : G→ H has
the following properties:

(1) If F = (F1, . . . ,Fn), then DF =
⊗n

i=1D
Fi .

(2) If F = Fr ◦ · · · ◦ F2 ◦ F1, then DF = DFr · · ·DF2DF1 .

Theorem 4.2. The quasidifferential transition matrix DF of F : G → H has
the following properties:

(1) If F is a bijection, then DF is an orthogonal matrix.

(2) If F(x) = x− t for t in G, then DF
(χ,b),(ψ,a) = χ(t) δχ(ψ) δb(a).

(3) If F is a homomorphism, then DF
(χ,b),(ψ,a) = δχ◦F(ψ) δb(F(a)).

Proof. Property (1) follows from the fact that T F is a permutation matrix when
F is a bijection and the fact that Q−1

G and QH are unitary matrices with respect
to appropriate inner products by Theorem 4.1 (1). The second property is due
to the translation invariance and orthogonality of the quasidifferential basis
(Theorem 4.1 (2)). Finally, Property (3) can be deduced from (4.1):

DF
(χ,b), (ψ,a) = 1

|G|
∑

x∈G
F(x+a)=F(x)+b

(χ ◦ F)(x)ψ(x) = δχ◦F(ψ) δb(F(a)) ,

where the second equality follows from the orthogonality of characters and the
fact that F(x+ a) = F(x) + b if and only if b = F(a).
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Example 4.2. Consider the S-box S : F4
2 → F4

2 of the lightweight block
cipher Rectangle, shown in Table 4.1. The 256× 256 quasidifferential transition
matrix of S is shown in Figure 4.1, with colors representing the absolute
value of the entries. The integer indices correspond to pairs (χu, a) by the map
(χu, a) 7→ int(u) + 16× int(a), where int(u) =

∑4
i=1 ui24−i and χu(x) = (−1)uTx.

Table 4.1: The S-box of Rectangle (hexadecimal representation).

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
S(x) 6 5 c a 1 e 7 9 b 0 3 d 8 f 4 2

Figure 4.1 immediately reveals a number of properties of quasidifferential
transition matrices. The top-left square in Figure 4.1 corresponds to the
correlation matrix of S. Each block shows the correlations of probabilistic
linear relations between the input and output values for the right pairs. Hence,
Figure 4.1 is a ‘magnified’ version of the difference-distribution table of S. .

Figure 4.1: The quasidifferential transition matrix DS of the Rectangle S-box S.
Blue cells correspond to values of absolute value 1/8, orange cells to 1/4, and
green cells to 1/2. Empty cells correspond to zeros.
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4.3.3 Approximations and trails

A differential corresponds to a property (U, V ) with U = Span{q1,a} and V =
Span{〈q1,b, ·〉H}. This can be generalized by considering nontrivial characters.
Following Section 2.4.3, evaluating such a property is equivalent to computing
DF

(χ,b),(ψ,a). This quantity will be called the correlation of the quasidifferential
approximation ((χ, a), (ψ, b)).

Throughout this section, Fi : Gi → Gi+1 denotes a function between finite
commutative groups Gi and Gi+1. As in Section 2.4.3, if F = Fr ◦ · · · ◦ F1, then
the correlation of an approximation of F can be estimated using trails. This is
enabled by Theorem 2.6, which is repeated in Corollary 2.1 for the special case
of the quasidifferential basis.

Corollary 4.2 (Sum of quasidifferential trails, cf. Theorem 2.6). If F = Fr ◦
· · · ◦ F1, then the correlation DF

$r+1,$1 is equal to

DF
$r+1,$1 =

∑

$2,...,$r

r∏

i=1
DFi
$i+1,$i

,

where the sum ranges over all intermediate pairs of characters and differences.

Following the notational conventions from Section 2.4.3, sequences ($1, . . . , $r+1)
of character-difference pairs $i = (χi, ai) are called quasidifferential trails and
their correlation is defined as

∏r
i=1D

Fi
$i+1,$i

.

To illustrate the difference between Corollary 4.2 and the traditional approach
to differential cryptanalysis, it is helpful to split the sum over trails into two
parts as follows:

DF
$r+1,$1 =

∑

$2,...,$r

χi=1 for all i

r∏

i=1
DFi
$i+1,$i

+
∑

$2,...,$r

χi 6=1 for some i

r∏

i=1
DFi
$i+1,$i

. (4.2)

where $i = (χi, ai) in each sum and for differentials, χ1 = 1 and χr+1 = 1.
Traditionally, only the first term in (4.2) is considered. Indeed, a quasidifferential
trail with χi = 1 for all i is just a sequence of intermediate differences or
‘differential trail’. The correlation of such quasidifferential trails is equal to the
product of the one-round probabilities for differences a1, . . . , ar+1. Hence,

∑

$2,...,$r

χi=1 for all i

r∏

i=1
DFi
$i+1,$i

=
∑

a2,...,ar

r∏

i=1
Pr [Fi(xi + ai) = Fi(xi) + ai+1] ,
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with x1, . . . ,xr uniform random. The right-hand side above is the standard
approximation for the probability of a differential. In fact, each term in the
sum is meant to approximate the true probability of a characteristic, i.e. the
probability that a particular sequence of intermediate differences is realized. The
second term in (4.2) is then a correction to the error made in this approximation.
Quasidifferential trails can also be used to compute the probability of differential
characteristics; this is discussed in Section 4.5.

In practice, Corollary 4.2 is used by truncating the sum to a subset of dominant
trails. This leads to Corollary 4.3, which is a special case of Corollary 2.1.

Corollary 4.3 (Dominant trail approximation cf. Corollary 2.1). Let F =
Fr ◦ · · · ◦ F2 ◦ F1. For all subsets Λ of the set Ω of all trails from $1 to $r+1,

∣∣∣∣∣D
F
$r+1,$1 −

∑

$∈Λ

r∏

i=1
DFi
$i+1,$i

∣∣∣∣∣ ≤

∣∣∣∣∣∣
∑

$∈Ω\Λ

r∏

i=1
DFi
$i+1,$i

∣∣∣∣∣∣
,

with $ = ($1, . . . , $r+1).

Since the standard approach to differential cryptanalysis can be interpreted as
an application of Corollary 4.3 that only considers trails with χi = 1, important
trails might be overlooked. This potentially results in incorrect conclusions.
As discussed in more detail below, for ciphers with uniform and independent
round keys, the additional quasidifferential trails do not affect the average
probability. However, as mentioned in Section 4.1, average probabilities are
generally insufficient to compute success probabilities and data-complexities
of differential attacks. In contrast, Corollary 4.3 allows one to estimate the
fixed-key probability of a differential.

If Fk = Rr ◦ · · · ◦ R1 is a key-dependent function with k in
⊕r

i=1Gi and round
functions Ri : Gi → Gi+1 defined by Ri(x) = Fi(x+ ki) for i = 1, . . . , r, then

DFk
$r+1,$1 =

∑

$2,...,$r

r∏

i=1
χi(ki)DFi

$i+1,$i
, (4.3)

with $i = (χi, ai). After averaging with respect to independent and uniform
random round keys, (4.3) agrees with the standard approach of adding the
products of one-round probabilities. This result can be generalized as follows.

Theorem 4.3. Let Fk = Rr◦· · ·◦R1 with Ri(x) = Fi(x)+ki. If k = (k1, . . . ,kr)
is a random variable such that (k2, . . . ,kr) is uniform random on a subset K
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of
⊕r

i=2Gi, then

Pr [Fk(x+ a) = Fk(x) + b] =
∑

χ2,...,χr
a2,...,ar

χ2···χr ∈K1

r∏

i=1
DFi

(χi+1,ai+1),(χi,ai) ,

where χ1 = 1, χr+1 = 1 and the probability is over a uniform random x and
over the keys k1, . . . ,kr. In particular, for K =

⊕r
i=2Gi, only quasidifferential

trails with χi = 1 contribute to the key-averaged probability of the differential.

Proof. The result follows by averaging (4.3) with respect to the round keys:

EkD
Fk
$r+1,$1 =

∑

$2,...,$r

(
Ek

∏r
i=1 χi(ki)

) r∏

i=1
DFi
$i+1,$i

,

with $i = (χi, ai). The factor Ek

∏r
i=1 χi(ki) is zero unless χ2 · · ·χr ∈ K1.

Finally, (4.3) allows computing the variance of the probability of a differential:

Ek

[
DFk
$r+1,$1

]2 + Vark

[
DFk
$r+1,$1

]
=

∑

$2,...,$r

r∏

i=1

(
DFi
$i+1,$i

)2
.

This result is analogous to (3.1) in Chapter 3, i.e. the well-known result of
Nyberg [224] about the variance of the correlation of linear approximations.

4.4 Computing quasidifferential transition matrices

The differential cryptanalysis of specific primitives using quasidifferential trails
requires calculating the quasidifferential transition matrix for each round
transformation. For affine functions, Theorem 4.2 (2) and (3) show how to
compute the quasidifferential transition matrix.

In general, calculating the quasidifferential transition matrix is nontrivial because
the dimensions of the matrix DF scales with the size of the domain and codomain
of F. In the following section, it is shown that this is not an issue for many
primitives: an efficient method to compute the quasidifferential transition matrix
for small (such as 4- or 8-bit) S-boxes is given, and larger functions often have
structure that makes it possible to compute individual coordinates of DF easily.
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4.4.1 Small functions

If F : G→ H is a function between groups G =
⊕n

i=1Gi and H =
⊕m

i=1Hi with
Gi and Hi small groups, then the matrix DF can be computed using a number
of operations roughly proportional to its number of elements. Specifically, the
matrix DF can be computed in O(|G|2|H|2∑n

i=1(|Gi|2 + |Hi|2)) time using a
method similar to the fast Fourier transform.

Specifically, the matrices QG and QH satisfy QG =
⊗n

i=1 QGi
and QH =⊗n

i=1 QHi
. It follows that there exists an efficient algorithm for multiplication

with QG and its inverse, analogous to the fast Fourier transform algorithm.
This algorithm is based on the decomposition

QG = (QG1⊗IG2⊗· · ·⊗IGn)(IG1⊗QG2⊗· · ·⊗IGn) · · · (IG1⊗IG2⊗· · ·⊗QGn) ,

with IGi the identity map on CGi⊕Gi . Up to constant factors, the cost of
computing n consecutive matrix-vector products with the matrices above is
equal to

n∑

i=1
|Gi|4

∏
j 6=i |Gi|2 = |G|2

n∑

i=1
|Gi|2 .

Hence, since DF = QH (T F ⊗ T F) Q−1
G by Definition 4.3, the matrix DF can be

computed by applying this divide-and-conquer multiplication algorithm to both
the rows and columns of T F ⊗ T F. A Sage implementation of this algorithm for
G = Fn2 and H = Fn2 can be found online1.

Every finite commutative group can be decomposed as a direct sum of cyclic
group of prime-power order. For large prime powers, it would be useful to have
a more efficient algorithm than direct matrix-multiplication. Such algorithms
exist for the Fourier transformation. This is left as future work.

4.4.2 Large functions with structure

For a typical nonlinear layer consisting of the parallel applications of several
small S-boxes, Corollary 4.1 (1) can be used to efficiently evaluate individual
coordinates of the quasidifferential transition matrix.

Modular additions (between values in Fn2 ) are another popular component in
many block ciphers. Since these additions usually operate on too many bits, the
method from Section 4.4.1 is not applicable. Nevertheless, modular additions are
sufficiently structured so that the coordinates of the quasidifferential transition
matrix can be computed using a relatively simple formula. This formula will be
derived in Section 8.2.2.

1https://github.com/TimBeyne/quasidifferential-trails

https://github.com/TimBeyne/quasidifferential-trails
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4.5 Differential characteristics

In Section 4.3.3, it was shown that the fixed-key probability of a differential is
equal to the sum of the correlations of its quasidifferential trails. However, it is
often convenient to decompose the probability of differentials as the sum of the
probabilities of its differential characteristics. Specifically, for F = Fr ◦ · · · ◦ F1,
the probability of a differential with input difference a1 and output difference
ar+1 equals

Pr[F(x1 + a1) = F(x1) + ar+1] =
∑

a2,...,ar

Pr [
∧r
i=1Fi(xi + ai) = Fi(xi) + ai+1] ,

with xi = Fi−1(xi−1) for i = 2, . . . , r and x1 uniform random.

In Section 4.5.1, it is shown how the fixed-key probability of a differential
characteristic can be computed using quasidifferential trails. Hence, the
decomposition into differential characteristics can be maintained when working
with quasidifferential trails. Section 4.5.2 analyzes the key-dependence of the
differential characteristic used by Biham and Shamir [58] in their attack on DES.
This serves as a first application of quasidifferential trails and is mainly intended
to illustrate how the technique works in practice. More advanced applications
are given in Chapter 8. Finally, some additional properties of quasidifferential
trails are discussed in Section 4.5.3.

4.5.1 Exact probabilities from quasidifferential trails

Corollary 4.2 implies that the sum of the correlations of all quasidifferential
trails with input and output character-difference pairs $1 = (1, a1) and
$r+1 = (1, ar+1) respectively, is equal to the exact probability of the differential
with input difference a1 and output difference ar+1. Theorem 4.4 shows
that quasidifferential trails can also be used to compute the probability of
a characteristic, likewise by summing their correlations.

Theorem 4.4. Let F = Fr ◦ . . . ◦ F1. The probability of a characteristic
(a1, . . . , ar+1) is equal to the sum of the correlations of all quasidifferential trails
with the same intermediate differences as the characteristic:

Pr [
∧r
i=1Fi(xi + ai) = Fi(xi) + ai+1] =

∑

χ2,...,χr

r∏

i=1
DFi

(χi+1,ai+1),(χi,ai) ,

where χ1 = 1, χr+1 = 1 and xi = Fi−1(xi−1) for i = 2, . . . , r with x1 uniform
random.
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Proof. Suppose that Fi : Gi → Gi+1. Substituting (4.1) in the right-hand side
above yields

r∏

i=1
DFi

(χi+1,ai+1),(χi,ai) = 1∏r
i=1 |Gi|

∑

x1,...,xr

F(xi+ai)=F(xi)+ai+1

r∏

i=1
χi+1(Fi(xi))χi(xi) .

Summing over χ2, . . . , χr then results in the equation

∑

χ2,...,χr

r∏

i=1
DFi

(χi+1,ai+1),(χi,ai)

= 1∏r
i=1 |Gi|

∑

x1,...,xr

F(xi+ai)=F(xi)+ai+1

r∏

i=1

∑

χi

χi(Fi(xi))χi(xi+1)

= 1
|G1|

∑

x1,...,xr

F(xi+ai)=F(xi)+ai+1

r∏

i=1
δxi+1(Fi(xi)) .

Writing the right-hand side in terms of probabilities gives desired the result.

Theorem 4.4 can also be obtained using the following intuitive argument,
illustrated in Figure 4.2. Let G = (F1,F2 ◦ F1, . . . ,Fr ◦ · · · ◦ F1). A differential
for G with input difference a1 and output difference (a2, . . . , ar+1) is equivalent
to a characteristic for F = Fr ◦ · · · ◦ F1 with intermediate differences a2, . . . , ar.
For the linear function L(x) = (x, x), Theorem 4.2 (3) yields DL

(χ,b),(ψ,a) =
δψ(χ1χ2) δb1(a)δb2(a) with χ(x, y) = χ1(x)χ2(y) and b = (b1, b2). Hence, all
trails through G with nonzero correlation are of the form shown in Figure 4.2
and the result follows from Corollary 4.2.

F1 F2 . . . Fr

a1

1

a2
χ2

a2
χ2

a3
χ3

a3
χ3

ar

χr

1

a2
1

a3

ar+1

1

Figure 4.2: Quasidifferential trail through the function G. Differences are
indicated in orange (above), masks in blue (below).
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4.5.2 Differential cryptanalysis of DES

As a first example of quasidifferential trails and Theorem 4.4, we consider the
effect of key-dependence on the differential cryptanalysis of DES by Biham and
Shamir [58, 60]. The example in this section is particularly simple, but more
advanced applications will be discussed in Chapter 8.

Recall from Example 1.2 that the differential cryptanalysis of DES is based on
an iterative characteristic of the form shown in Figure 4.3. There exist two
differences that achieve the same maximal average probability of approximately
2−7.87. For simplicity (the other case is similar), we will consider the difference
a = 0x19600000. The key-dependence of this characteristic was already noted
by Knudsen [180, §5], who explained it using an argument specific to DES.
Below, it will be shown that the general methodology of quasidifferential trails
automatically provides a simple explanation.

The round function Fk of DES consists of a linear expansion function E :
F32

2 → F48
2 , which duplicates certain bits, followed by the key addition and a

nonlinear layer S consisting of eight 6-bit to 4-bit S-boxes. Finally, the S-box
layer is followed by a bit-permutation P. The key-averaged probability of the
characteristic in Figure 4.3 is easily computed from the difference-distribution
tables of the first three S-boxes: 14/64× 8/64× 10/64 = 1120/643.

F

k1a 000

0 a

F

k2
a0

a 0

P S E0
1

0
1

E(a)
χ

E(a)
χ

a

1
k2

Figure 4.3: Iterative characteristic for two rounds of DES.

However, the structure of the round function of DES leads to one-round
quasidifferential trails, as shown on the right side of Figure 4.3. In particular,
since E is not surjective, there exist characters χ 6= 1F48

2
such that χ ◦ E = 1F32

2
.

For the difference a mentioned above, there exists one such quasidifferential
trail with χ(x) = (−1)uTx for u = 0x001400000000. The correlation of this
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trail can be computed from the quasidifferential transition matrices of the first
three S-boxes and equals χ(k2) 14/64 × −8/64 × 6/64 = −χ(k2) 672/643. It
follows that a full description of the probability of the characteristic over 2r
rounds is given by

r∏

i=1

(
1120
643 − (−1)k2i,12+k2i,14

672
643

)
.

Although for every two rounds only two trails are especially important, these
trails can be combined in many ways. In particular, the expression above is
equivalent to a sum over 2r quasidifferential trails. This is a typical way in
which a relatively small local effect can result in significant variations in the
overall probability of a characteristic.

Due to the above, the probability of the 13-round differential used in the
differential attack of Biham and Shamir [60] is roughly 17 times larger for one
in 64 keys and more than 244 times smaller than the average probability for an
equal number of keys, as previously observed by Knudsen [180].

It is natural to wonder if there exist other quasidifferential trails with large
absolute correlation. For example, a more general three-round effect can occur
when χ ◦ E 6= 1F32

2
. However, most quasidifferential trails activating four or

less additional S-boxes have correlation zero because the correlation of a linear
approximation with input mask 1 or 32 and output mask 1, 2, 4 or 8 is zero
for all S-boxes. This follows from the fact that the S-boxes are permutations
when the first and last input bits are fixed. It can be checked that the best
three-round quasidifferential trail of this type has absolute correlation at most
2−19.41.

4.5.3 Further properties of quasidifferential trails

As discussed in Section 4.3.2 and Example 4.1 in particular, the coordinates of
DF can be interpreted as the correlations of linear approximations between the
input and output values for the right pairs of a differential. Quasidifferential
trails provide a way to connect such approximations through a sequence of
functions.

Since |DF
(χ,b),(ψ,a)| never exceeds the probability of the differential (a, b), the

quasidifferential trails with the highest correlation tend to have nontrivial
characters in only a few rounds. We refer to these quasidifferential trails as
‘local’. In general, the best quasidifferential trails typically activate as few
S-boxes as possible. An S-box is active if either the output character or the
input difference is nontrivial.
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Quasidifferential trails with absolute correlation equal to the correlation of the
corresponding differential trail are of particular interest. They correspond to
deterministic linear relations on the intermediate values of right pairs. Perhaps
surprisingly, many ciphers admit such quasidifferential trails. One reason for this
is that the differentials of many popular S-boxes are planar [105]. That is, the
right values form an affine space (in general, a coset of a subgroup). Propagating
this affine space is the basis of the plateau characteristics approach [105], but
is difficult to do for more than two rounds. Theorem 4.5 is related to these
quasidifferential trails and will be useful in Chapter 8.

Theorem 4.5. For a function F = Fr ◦ · · · ◦F1 and a characteristic a1, . . . , ar+1
with correlation p (as quasidifferential trail), it holds that:

(1) If (χ1, a1), . . . , (χr+1, ar+1) is a quasidifferential trail with correlation λ p
where |λ| = 1, then for every quasidifferential trail (ψ1, a1), . . . , (ψr+1, ar+1)
with correlation c, the correlation of the quasidifferential trail (χ1ψ1, a1), . . . ,
(χr+1ψr+1, ar+1) is λ c.

(2) If the correlations of any number of quasidifferential trails with differences
a1, . . . , ar+1 and absolute correlation p sum to zero, then the probability
of the characteristic a1, . . . , ar+1 is zero.

Proof. By Theorem 4.4 the second property follows from the first one, since it
implies that the set of all quasidifferential trails can be partitioned into subsets
whose correlations sum to zero. For the first property, note that the correlation
of the quasidifferential trail (χ1, a1), . . . , (χr+1, ar+1) equals λp if and only if
DFi

(χi+1,ai+1),(χi,ai) = λiD
Fi

(1,ai+1),(1,ai) for i = 1, . . . , r and
∏r
i=1 λi = λ.

By (4.1), this implies that χi+1(Fi(x)) = λi χi(x) for all x such that Fi(x+ai) =
Fi(x) + ai+1. Hence, again by (4.1), the correlation of the ith transition of the
quasidifferential trail (χ1ψ1, a1), . . . , (χr+1ψr+1, ar+1) is multiplied by a factor
λi. The result then follows from λ =

∏r
i=1 λi.

As mentioned above, plateau characteristics are related to the special
quasidifferential trails considered in Theorem 4.5. The following example
works this out explicitly.

Example 4.3 (Plateau characteristics). Let (a, b, c) be a differential characteris-
tic for a function F : Fn2 → Fn2 such that F = F2 ◦Addk ◦F1 with Addk(x) = x+k
a key-addition function. If the sets A = F1({x ∈ Fn2 | F1(x+ a) = F1(x) + b})
and B = {x ∈ Fn2 | F2(x + b) = F2(x) + c} are affine spaces, then (a, b, c) is
called a plateau characteristic [105].
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Let A = pA + VA and B = pB + VB with VA and VB vector spaces. The
main result of plateau characteristics [105, Theorem 1] is that the fixed-key
probability of the characteristic (a, b, c) is equal to

{
2dim(VA∩VB)−n if k ∈ pA + pB + VA + VB ,

0 otherwise .

From the point of view of quasidifferential trails, the fact that A and B are
affine implies that

DF1
(χ,b),(1,a) = χ(pA)1V 1

A
(χ)/|V 1

A|

DF2
(1,c),(χ,b) = χ(pB)1V 1

B
(χ)/|V 1

B | .

Hence, there is a quasidifferential trail ((1, a), (χ, b), (1, c)) with nonzero
correlation for every character χ in V 1

A ∩ V 1
B. In fact, the absolute correlation

of these quasidifferential trails is equal to the key-averaged probability of the
characteristic. By Theorem 4.4, the probability of the differential equals

1
|V 1
A|

1
|V 1
B |

∑

χ∈V 1
A
∩V 1

B

χ(k + pA + pB) = 1VA+VB
(k + pA + pB)/|V 1

A + V 1
B | ,

since V 1
A∩V 1

B = (VA+VB)1. Furthermore, since |V 1
A+V 1

B | = 2n−dim(VA∩VB), the
result is the same as the probability obtained using the plateau characteristic
approach. Since every character corresponds to a particular linear combination,
quasidifferential trails correspond to the equations that are satisfied by the
right values whereas plateau characteristics are based on the values themselves.
If most S-boxes are inactive, then this is useful because a small number of
equations can characterize a large set of right values. .

Finally, we briefly consider how strong quasidifferential trails can exist for a large
number of rounds of a cipher. For every active S-box in a quasidifferential trail
that is not active in the corresponding characteristic, the correlation of the trail
contains a factor equal to the correlation of an ordinary linear approximation
over that S-box. These approximations never have absolute correlation one,
since the S-box is a nonlinear function. Hence, to avoid activating too many
differentially inactive S-boxes, the masks of the quasidifferential trail should
follow the differences as closely as possible. By Theorem 4.2 (3), one structural
property that makes this more likely in ciphers defined over Fn2 is if the linear
layer L satisfies L−1 = LT. Such ‘self-dual’ linear layers, including all bit-
permutations, are in common use. Insights such as these can be used by
designers to avoid strong key-dependency or, should they choose to do so, to
amplify key-dependent effects on purpose.
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5
Integral cryptanalysis

This chapter develops an extension of integral cryptanalysis by applying
Chapter 2 to cryptanalytic properties that are defined over an extension field of
the p-adic numbers. This leads to a one-dimensional theory that differs from
linear and differential cryptanalysis in two important ways. Specifically, the
p-adic metric is non-Archimidean as opposed to Archimidean and the preferred
basis is not specifically chosen to simplify the key-addition operation. The theory
relies on the assumption that the primitive is defined over a finite commutative
inverse monoid. For primitives defined over F2, reducing the one-dimensional
theory modulo two yields the contemporary description of integral cryptanalysis
based on division trails.

The results in this chapter have not yet been published. The modulo-two
reduction of the theory for Fn2 was worked out by Michiel Verbauwhede in
his master’s thesis [276], which was jointly supervised with Chaoyun Li. This
chapter does not go into the practial details of the modulo-two reduced case.
I thank Wouter Castryck for discussions about p-adic estimates of character
sums, which play a role in Section 5.4.

5.1 Introduction

The theory of integral cryptanalysis has come a long way since the introduction
of the Square attack by Daemen, Knudsen and Rijmen at FSE 1997 [102]. As
described by Knudsen and Wagner [184], the original approach was based on the
propagation of a set of plaintexts with some constant parts and some saturated
parts through a cipher, ultimately resulting in a set of ciphertexts with a part
that is saturated or sums to zero.

A different approach to obtain such ‘zero-sums’ was introduced by Knudsen [181]
a few years earlier. It is based on the algebraic observation that the dth-order
derivative of a function of degree d is constant. Higher-order derivatives were
first introduced by Lai [190], although he suggested to use them for statistical
attacks similar to differential cryptanalysis. Knudsen’s algebraic point of view
encouraged a large body of work on degree bounds [77,78,85].
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A partial consolidation of the two aforementioned approaches was realized by
Todo, with the introduction of the division property [264]. A multiset S ⊆ Fn2
has the division property of order k if all polynomials of degree strictly less than
k sum to zero on S. In particular, the division property of order two is equivalent
to the zero-sum property. The division property of order n expresses that every
value in S occurs an equal number of times modulo two. It corresponds to the
saturated property if and only if S is a nonempty set.

Refinements of the conventional division property were introduced by Todo and
Morii [268] (bit-based division property) and Boura and Canteaut [79] (parity
sets). The most precise formulation of the division property, the three-subset
division property without unknown subset [158], can be understood as a method
to compute the coefficients of monomials in the algebraic normal form of a
product of one or more coordinates of a vectorial Boolean function F. The
underlying assumption is that F is a composition of several simpler functions:
F = Fr ◦ · · ·F2 ◦ F1. The method can be reformulated in purely algebraic terms
using the concept of monomial trails [166].

This chapter starts from the observation that the theory of integral cryptanalysis
is incomplete. In particular, the division property and its refinements do not
encompass the saturation property completely because all counting is performed
modulo two. From a practical viewpoint, this means that the analysis may
lead to the conclusion that a bit just sums to zero, even if it actually satisfies
a stronger property such as being saturated. This is especially important for
key-recovery attacks because zero-sums allows for comparatively little filtering
of candidate keys. The same limitation is reflected theoretically: although
division and monomial trails already suggest the existence of a one-dimensional
theory along the lines of Chapter 2, the field F2 only admits the trivial absolute
value function. Hence, such a theory would appear to be less rich than either
linear or differential cryptanalysis.

To overcome these limitations, this chapter proposes a general one-dimensional
theory based on the action of a finite commutative inverse monoid. To obtain
a generalization of integral cryptanalysis, the monoid is instantiated as Fnq
with its coordinate-wise product. This can be motivated by the observation
that the multiplicative characters of Fnq are (lifted) monomials. For ordinary
integral cryptanalysis, q = 2. However, the characters of a monoid are not
orthogonal unless the monoid is a group. This leads to difficulties if the theory
is constructed over the complex numbers. In particular, it is not possible to
make the change-of-basis transformation length-preserving. It turns out that
these issues can be avoided by working over an algebraic extension of the p-adic
numbers for an appropriate choice of the prime number p.

In Section 5.3, a pair of dual bases diagonalizing the action of an arbitrary
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commutative inverse monoid is explicitly constructed. This is worked out over
the p-adic numbers, although most of the results generalize to other fields.
Representing the pushforward operator of a function relative to the new basis
yields a new transition matrix that is called the ultrametric transition matrix.
The corresponding trails are called ultrametric trails, and satisfy all of the usual
properties. However, the fact that the p-adic absolute value function satisfies
the ultrametric triangle inequality has important consequences for the dominant
trail approximation (Corollary 5.4).

Section 5.4 specializes the theory to multiplicative monoids of the form Fnq , with
q a power of p. The properties of ultrametric transition matrices are investigated.
Theorem 5.8 shows that the modulo-p reduction of their coordinates is related to
the algebraic normal form. Theorem 5.9 determines the ultrametric transition
matrix for addition by a constant, and Theorem 5.10 bounds the absolute
values of the coordinates of ultrametric transition matrices in terms of the
degree. Sections 5.4.3 and 5.4.4 explore approximations and trails, and show
that the theory reduces modulo two to ordinary integral cryptanalysis when
q = 2. This also leads to natural generalizations of notions such as parity sets
(Example 5.7) and the conventional division property (Definition 5.3). The case
q > 2 is increasingly relevant due the development of arithmetization-oriented
primitives, which are discussed in Chapter 10. Although it will be left as future
work, the techniques from this chapter could be used to improve some of the
attacks in Chapter 10.

As a proof of concept, Section 5.5 revisits the integral cryptanalysis of PRESENT.
Based on the analysis of ultrametric trails, it is shown that the integral
distinguishers exhibited by Boura and Canteaut [79] are stronger than previously
believed. This example also demonstrates that the analysis of ultrametric trails
can be automated using off-the-shelf SMT solvers.

5.2 Mathematical setting

Throughout this chapter, F : M → N is a function between finite commutative
inverse monoidsM andN . Section 5.2.1 reviews some results about the structure
of monoids that will be important in the remainder of this chapter.

Like for linear and differential cryptanalysis, the properties that are considered
in integral cryptanalysis only involve the integers or more generally the rational
numbers. However, unlike in Chapters 3 and 4, distances are measured using
the p-adic absolute value function. Furthermore, it is mathematically more
convenient to work over the metric completion of Q. As explained in Section 5.2.2
below, this completion is the field of p-adic numbers Qp. In fact, depending on
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the monoids M and N , it may be necessary to work over an algebraic extension
of Qp. For convenience, one can work in an algebraically closed extension Cp of
Qp, analogous to the complex numbers. The field Cp is defined in Section 5.2.2.

Since Cp is a field with an absolute value function (see Section 5.2.2), there is a
corresponding definition of norm on the vector spaces CMp and CNp . The choice
of norm is briefly discussed in Section 5.2.3. Finally, Section 5.2.4 introduces and
motivates the monoid action that will lead to a preferred basis in Section 5.3.

5.2.1 Monoids

Recall from Section 2.4.4 that a commutative monoid M is inverse if for every
x in M , there exists a y such that x2y = x. The typical way in which such
monoids come up is as the multiplicative structure of a finite commutative
algebra over a field, as in the following example. To emphasize this, all monoids
will be denoted multiplicatively.

Example 5.1. The vector space Fnq is an algebra with multiplication defined by
(x1, . . . , xn)(y1, . . . , yn) = (x1y1, . . . , xnyn). With this multiplication operation,
the set Fnq is a commutative inverse monoid. .

Let EM = {e ∈M | e2 = e} be the set of idempotents ofM . Every commutative
inverse monoid M is partially ordered with x ≤ y if and only if x ∈ yEM . The
inverse property ensures that ≤ is reflexive, see [256, Proposition 3.9].

Example 5.2. The set of idempotents of the multiplicative monoid Fnq is equal
to {0, 1}n. The partial order on {0, 1}n is equivalent to the inclusion order on
the subsets of an n-element set, i.e. it is a Boolean algebra. .

The partial order on M will be used in Section 5.3.1 to determine the inverse
of the change-of-basis transformation. Specifically, this result will rely on a
generalization of the inclusion-exclusion principle, known as Möbius inversion.
The systematic investigation of this combinatorial technique was initiated by
Rota [245]. Theorem 5.1 can be extended to infinite partially ordered sets as
long as each interval is finite. In particular, the term Möbius function comes
from the case where P is the ring of integers ordered by divisibility.

Theorem 5.1 (Möbius inversion [245]). Let P be a finite partially ordered set
and k a field. There exists a function µ : P × P → k such that if two functions
f : P → k and g : P → k satisfy

g(x) =
∑

y∈P
y≥x

f(y) ,
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then they also satisfy
f(x) =

∑

y∈P
y≥x

µ(x, y)g(y) .

The function µ is called the Möbius function of P and satisfies the recurrence
relation µ(x, y) = −∑x≤z<y µ(x, z) with µ(x, x) = 1.

For any x in M , there exists a positive integer n such that xn is idempotent.
This can be shown by elementary means, see for instance [256, Corollary 1.2].
The unique idempotent corresponding to x is denoted by xω. The following
lemma shows that the order of x and y is largely determined by the order of xω
and yω.

Lemma 5.1. Let M be a finite commutative inverse monoid. For all x and y
in M , it holds that x ≤ y if and only if xω ≤ yω and x = xωy.

Proof. If x ≤ y, then there exists an idempotent element e in EM such that
x = ey. Hence, xω = eyω or equivalently xω ≤ yω. Furthermore, x = ey =
eyωy = xωy. Conversely, let e = xω, then ey = xωy = x whence x ≤ y.

Lemma 5.1 implies that µ(x, y) = µ(xω, yω) δx(xωy). Indeed,

µ(x, y) = −δx(xωy)
∑

xω≤zω<yω

µ(xωy, zωy)

Since µ(x, x) = µ(xω, xω), the result follows by recursively applying this equality.

Example 5.3. Consider M = Fnq as in Examples 5.1 and 5.2. Since EM
is a Boolean algebra, µ(xω, yω) = (−1)wt(x)−wt(y) if xω ≤ yω with wt(x) the
Hamming weight of x [245]. Hence, if x ≤ y, then

µ(x, y) = (−1)wt(x)−wt(y) .

Otherwise, µ(x, y) = 0. .

For each idempotent element e, the set eM is a monoid with identity e and the
same operation as M . Below, (eM)× denotes the group of units of this monoid.
The following result shows that the structure of every finite commutative inverse
monoid is determined by the subgroups corresponding to its idempotent elements.
This will be useful to compute the characters of monoids.

Lemma 5.2. Let M be a finite commutative inverse monoid. Every x in M is
contained in precisely one group of the form (eM)× with e in EM , namely for
e = xω. Furthermore, ey ∈ (eM)× for all y in M such that yω ≥ e.
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Proof. Let n be a positive integer such that xn = e. This implies that xn−1x = e
and hence x ∈ (eM)×. Furthermore, if x ∈ (fM)×, then f = xω = e. Hence,
{(eM)× | e ∈ EM} is indeed a partition of M .

If e ≤ yω, then eyω = e because e and yω are idempotent elements. Hence, if z
is the inverse of y in (yωM)×, then (ey)(ez) = eyω = e. It follows that ey is an
element of (eM)×.

5.2.2 The field of p-adic numbers

Recall from Example 2.1 that the p-adic absolute value of x in Q is |x|p = p−e

for x = pe a/b with a and b indivisible by p. One approach to defining the
p-adic numbers has already been informally introduced above: it is the metric
completion of Q with respect to the absolute value function | · |p. For a detailed
exposition of this approach, the reader is referred to the first chapter of Koblitz’s
book on p-adic numbers [185].

Alternatively, the p-adic numbers can be defined in a more algebraic way. Define
the p-adic integers Zp as the set of all infinite sequences (x1, x2, . . .) with xi
in Z/piZ and xi ≡ xi+1 (mod pi). That is, Zp = lim←−Z/pnZ. If addition and
multiplication are defined component-wise, then the p-adic integers Zp form an
integral domain with a unique maximal ideal pZp. The field of fractions of Zp
is the field of p-adic numbers Qp.

The construction of the preferred basis in Section 5.3.1 requires roots of unity
in Qp. The following result shows that the (p− 1)th roots of unity exist in Qp.
The proof is based on lifting the solutions of xp−1 ≡ 1 (mod p) to Zp using
Hensel’s lemma.

Theorem 5.2 (p-adic roots of unity). The only roots of unity in Z2 are ±1.
For every odd prime p, the only roots of unity in Zp are the (p − 1)th roots
of unity. Furthermore, each root of unity is congruent to a unique integer in
{1, . . . , p− 1} modulo p.

Due to Theorem 5.2, one can define a multiplicative function τ : Fp → Qp such
that τ(x) is the unique solution of τ(x)p = τ(x) with τ(x) ≡ x (mod p). In
particular, if x 6= 0, then τ(x) is the (p − 1)th root of unity congruent to x.
The function τ is called the Teichmüller character at p and τ(x) is called the
Teichmüller representative of x.

If Qp does not contain enough roots of unity, it may be necessary to work in
a finite algebraic extension of Qp. For every such extension field k of degree
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d = [k : Qp], the p-adic absolute value function can be extended to k by

|x|p = |Nk/Qp
(x)|1/dp , (5.1)

with Nk/Qp
the field norm. Indeed, the field norm is multiplicative.

An algebraic extension k of Qp is called unramified if |x|p is an integer power of
p for every x in k. The only unramified extension of Qp of degree e is Qp(ζ),
with ζ a primitive (pe − 1)th root of unity. A proof can be found in [185, §3].
The ring of integers of Qp(ζ) is Zp[ζ] and Zp(ζ)/(p) is called the residue field
of Qp(ζ). It is the finite field Fp(ζ) of order pe. Hence, Teichmüller characters
can be extended to Fp(ζ). In particular, for x in Fp(ζ), let τ(x) be the unique
(pe − 1)th root of unity in Qp(ζ) such that τ(x) ≡ x (mod p).

To ensure that enough roots of unity are always available, it can be convenient
to work with the algebraic closure Qp of Qp. The absolute value function of x
in Qp can be defined as in (5.1) with k = Qp(x). The metric completion of the
algebraic closure is denoted by Cp and is itself algebraically closed. The field Cp
is analogous to the complex numbers. Technically, its elements are equivalence
classes of Cauchy sequences in Qp. The absolute value function of a Cauchy
sequence (x1, x2, . . .) is defined as limn→∞ |xn|p.

5.2.3 Motivation for the norm

The norm of a function u in CMp will be defined as

‖u‖M = max
x∈M

|u(x)|p .

This choice enables a proper comparison of cryptanalytic properties that involve
counting modulo powers of p.

Unlike the Euclidean norm that was used in Chapters 3 and 4, the maximum
norm does not come from an inner product on CMp . In fact, there is no suitable
notion of inner products over Cp. Hence, choosing an isomorphism between
the dual space (CMp )∨ and CMp would be arbitrary and will consequently be
avoided.

Nevertheless, the ‖·‖M -norm has a self-duality property similar to the Euclidean
norm. Specifically, the dual norm ‖ · ‖∨M satisfies

‖v‖∨M = max
x∈M

|v(δx)|p .
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5.2.4 Monoid action

The monoid action that will be considered is the multiplication x 7→ mx for m
in M . As in Chapters 3 and 4, this action extends to (CMp )∨ by

(
(Tm)∨ v

)
(u) = v(x 7→ u(mx)) ,

with v in (CMp )∨ and u in CMp . The corresponding action on CMp is given by
(
Tm u

)
(x) =

∑

y∈M
my=x

u(y) .

If m has an inverse, then (Tm u)(x) = u(m−1x). Hence, unlike for group actions,
the actions on CMp and (CMp )∨ are markedly different.

As usual, diagonalizing the action x 7→ mx is an attempt to minimize the
number of trails. However, unlike in Chapters 3 and 4, the monoid action does
not usually correspond to key-addition. This may seem to be problematic, as it
implies that the key-addition operation is likely to result in a large number of
key-dependent trails. Nevertheless, it will be shown in Section 5.3.3 that this
problem is partially avoided because the absolute value function is ultrametric.
Instead, there is a strong algebraic motivation for simplifying multiplications.
Every function on Fnq can be expressed as a multivariate polynomial over Fq. The
character basis leads to sparse representations when the number of monomials
is small.

5.3 One-dimensional theory

In this section, the one-dimensional theory from Chapter 2 is applied in the
setting that was introduced in Section 5.2 above. This leads to a theory of
trails that relies only on the combination of a p-adic extension field and the
action of a finite commutative inverse monoid. The monoid is specialized to Fnq
in Section 5.4, but the results in this section are more general. This leads to a
more complete understanding of the Fnq case, and makes it easier to discuss the
general consequences of the differences between group actions versus monoid
actions and Archimidean versus non-Archimidean absolute value functions.

5.3.1 Character basis

It was shown in Section 2.4.4 that the characters of a commutative inverse
monoid M themselves form a commutative inverse monoid M̂ . Throughout
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this chapter, the characters are constructed relative to the field Cp. It is worth
keeping in mind that several properties of group characters, including self-duality
and orthogonality (Theorem 3.4 (1) and (2)), do not hold for monoid characters.

For each character χ in the dual monoid M̂ , one can define a corresponding
linear functional bχ by bχ(δx) = χ(x). By Theorem 2.8, the vectors bχ form a
basis for CMp that simultaneously diagonalizes (Tm)∨ for all m in M .

The dual basis of {bχ | χ ∈ M̂} will be denoted by {bχ | χ ∈ M̂}, with
bχ(bψ) = δχ(ψ). This basis likewise consists of simultaneous eigenvectors for
Tm with m in M . Following Definition 2.10, the corresponding change-of-basis
transformation UM : CMp → CM̂p is defined by UM bχ = δχ. An alternative
definition, comparable to Definitions 3.5 and 4.2, is given below.

Definition 5.1. Let p be a prime and M a finite commutative inverse monoid.
The ultrametric change-of-basis transformation UM : CMp → CM̂p is defined by

(
UMf

)
(χ) =

∑

x∈M
χ(x)f(x) .

The corresponding dual change-of-basis transformation is U −∨M , and satisfies
U −∨M bχ = δχ. An explicit definition of U −∨M is more difficult, as it depends on
and implies a closed-form formula for bχ. An inverse formula for Definition 5.1
(and hence a closed-form expression for bχ) is derived below. The analysis is
based on Steinberg’s approach to the decomposition of representations of inverse
monoids [256, §9.3].

The following result constructs the characters of M from the characters of the
groups (eM)× with identity e in EM . It is a special case of the Clifford-Munn-
Ponizovskĭi correspondence for the representations of inverse monoids [256, §5.2].

Theorem 5.3 (Clifford-Munn-Ponizovskĭi for characters). Let M be a finite
commutative inverse monoid. Every character χ : M → Cp of M is an
extension of a group character ψ : (eM)× → Cp for some idempotent element e.
Specifically,

χ(x) =
{
ψ(ex) if e ≤ xω ,
0 otherwise .

Furthermore, the characters obtained for different choices of ψ are distinct.

Proof. The function χ is well-defined by Lemma 5.2, from which it also follows
that

∑
e∈EM

|(eM)×| = |M |. The multiplicativity of χ follows from the fact that
ψ is a homomorphism, and from the fact that e ≤ f1f2 is equivalent to e ≤ f1
and e ≤ f2 when e, f1 and f2 are idempotent. The distinctness property follows
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from the distinctness of group characters and the fact that group characters are
nonzero everywhere.

Theorem 5.3 can be used to obtain an inverse formula for Definition 5.1.

Theorem 5.4 (Inversion formula). Let p be a prime andM a finite commutative
inverse monoid with Möbius function µ. The inverse of UM : CMp → CM̂p from
Definition 5.1 satisfies

(
U −1
M f

)
(x) =

∑

y∈M
y≥x

µ(x, y) 1
|Gy|

∑

χ∈Ĝy

f(χ)/χ(y) ,

where Gy = (yωM)× is the maximal group with identity yω containing y.

Proof. By Definition 5.1, the function U −1
M f satisfies

f(χ) =
∑

x∈M
χ(x)

(
U −1
M f

)
(x) .

This relation can be inverted by combining the properties of group characters
with Möbius inversion. In particular, let y be an element of M and let e = yω.
Furthermore, let Gy = (eM)×. For every such y, one has

∑

χ∈Ĝy

f(χ)/χ(y) =
∑

x∈M

(
U −1
M f

)
(x)

∑

χ∈Ĝy

χ(x)/χ(y) .

The right-hand side can be worked out as follows:
∑

x∈M

(
U −1
M f

)
(x)

∑

χ∈Ĝy

χ(x)/χ(y) =
∑

x∈M
xω≥e

(
U −1
M f

)
(x)

∑

χ∈Ĝy

χ(exy−1) ,

with xω the smallest idempotent power of x and y−1 the inverse of y in Gy.
Since

∑
χ∈Ĝy

χ(z) = |Gy| δe(z) for any z in Gy, the right-hand side is equal to

|Gy|
∑

x∈M
xω≥e

(
U −1
M f

)
(x)δy(ex) = |Gy|

∑

x∈M
x≥y

(
U −1
M f

)
(x) .

The equality above follows from Lemma 5.1: one has y ≤ x if and only if e ≤ xω
and ex = ey. Dividing both sides by |Gy| yields

∑

x∈M
x≥y

(
U −1
M f

)
(x) = 1

|Gy|
∑

χ∈Ĝy

f(χ)/χ(y) .

The result then follows from the Möbius inversion formula (Theorem 5.1).
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Applying Theorem 5.4 to f = δχ yields a closed-form expression for bχ. In
particular, if χ extends a character of Ge = (eM)×, then

bχ(x) = 1
|Ge|

∑

y≥x
yω=e

µ(x, y)/χ(y) = µ(xω, e)
|Ge|

∑

y ∈Ge

xωy= x

1/χ(y) . (5.2)

The following corollary of Theorem 5.4 should be compared to the orthogonality
of the Fourier transformation on groups (Definition 3.5). Although there is no
inner product on CMp , the transformation UM is norm-preserving just like the
Fourier transformation.

Corollary 5.1. Let M be a finite commutative inverse monoid. If p is a prime
not dividing |(eM)×| for every idempotent e, then UM is an isometry. That is,
for all f in CMp , it holds that ‖UM f‖

M̂
= ‖f‖M .

Proof. Let χ be a character of M . By Theorem 5.3, χ(x) is either zero or a root
of unity, such that |χ(x)|p ≤ 1. Furthermore, it follows from Definition 2.20
and the ultrametric triangle inequality that |(UM f)(χ)|p ≤ ‖f‖M . Hence,
‖UM f‖

M̂
≤ ‖f‖M .

Conversely, by Theorem 5.4 and because the Möbius function is integer-valued,

|f(x)|p = |(U −1
M UMf)(x)|p ≤ ‖UMf‖M̂ max

e∈EM

|1/|(eM)×||p .

Since p does not divide |(eM)×|, it follows that ‖f‖M ≤ ‖UMf‖M̂ .

The analogue of Corollary 5.1 over the complex numbers and for the Euclidean
norm is only true if M is a group. If the prime p is appropriately chosen,
then working over the p-adic numbers bypasses this issue. Length-preservation
is useful in practice, since it implies that the principal correlations of an
approximation can be computed directly with respect to the ultrametric basis.

5.3.2 Ultrametric transition matrices

Let F : M → N be a function and p a prime satisfying the conditions in
Corollary 5.1. Following Definition 2.11, the pushforward operator T F can be
expressed relative to the basis from Section 5.3.1. The matrix representation of
the resulting operator will be called the ultrametric transition matrix of F.

Definition 5.2 (Ultrametric transition matrix). Let F : M → N be a function
between finite commutative inverse monoids M and N . Let AF : CMp → CNp
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be the pushforward operator of F relative to the ultrametric basis. That is,
AF = UN T

F U −1
M

The forward ultrametric transition matrix of F is the coordinate representation
of AF with respect to the standard bases of CM̂p and CN̂p . Likewise, the backward
ultrametric transition matrix of F is the coordinate representation of AF∨ with
respect to the standard bases of (CM̂p )∨ and (CN̂p )∨.

Ultrametric transition matrices satisfy the standard properties from Theorem 2.4.
For completeness, these properties are reproduced in the following corollary.
Corollary 5.2 (Properties of ultrametric transition matrices). The ultrametric
transition matrix AF of F : M → N has the following properties:

(1) If F(x1, . . . , xn) = (F1(x1), . . . ,Fn(xn)), then AF =
⊗n

i=1A
Fi .

(2) If F = Fr ◦ · · · ◦ F2 ◦ F1, then AF = AFr · · ·AF2AF1 .

The following result states some additional properties that are specific to
ultrametric transition matrices. These properties should be compared to
Theorems 3.5 and 4.2.
Theorem 5.5 (Properties of ultrametric transition matrices). The ultrametric
transition matrix AF of F : M → N has the following properties:

(1) If F is a bijection, then AF is an isometry.

(2) If F is a monoid homomorphism, then AF
χ,ψ = δχ◦F(ψ).

(3) If M = N and F(x) = mx for some constant m in M , then AF is a
diagonal matrix with AF

χ,χ = χ(m).

Proof. Property (1) follows from the fact that U −1
M , UN and T F (if F is a

permutation) are isometries and consequently so is their composition.

The proof of (2) and (3) is identical to the proof of the corresponding properties
in Theorem 3.5. Specifically, (2) follows from the fact that if F is a monoid
homomorphism and χ a character ofM , then χ◦F is a character of N . Property
(3) is due to the definition of UM . Indeed, T F = Tm.

5.3.3 Approximations and trails

The properties considered in this section are of the form (U, V ) with U =
Span{bχ} and V = Span{bψ} with χ in M̂ and ψ in N̂ . The cryptanalytic
significance of such properties will be discussed in Section 5.4.3.
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Following the template of Section 2.4.3, the composition property of ultrametric
transition matrices leads to a one-dimensional theory of trails. In particular,
one has the following result. A similar result can be given for backward trails.
One should keep in mind that backward propagation is not the same as forward
propagation through the inverse.

Corollary 5.3 (Sum of ultrametric trails, cf. Theorem 2.6). If F = Fr ◦ · · · ◦F1,
then the correlation AF

χr+1,χ1 is equal to

AF
χr+1,χ1 =

∑

χ2,...,χr

r∏

i=1
AFi
χi+1,χi

,

where the sum ranges over all intermediate monoid characters.

Although Corollary 5.3 is standard, the fact that AF is defined over a non-
Archimidean field has important implications. In particular, Corollary 5.4
shows that the ultrametric triangle inequality can be used to bound the error
term in the dominant trail approximation without relying on heuristics.

Corollary 5.4 (Dominant trail approximation cf. Corollary 2.1). Let F =
Fr ◦ · · · ◦ F2 ◦ F1. For all subsets Λ of the set Ω of all trails from χ1 to χr+1,
∣∣∣∣∣∣
AF
χr+1,χ1 −

∑

χ∈Λ

r∏

i=1
AFi
χi+1,χi

∣∣∣∣∣∣
p

≤

∣∣∣∣∣∣
∑

χ∈Ω\Λ

r∏

i=1
AFi
χi+1,χi

∣∣∣∣∣∣
p

≤ max
χ∈Ω\Λ

r∏

i=1
|AFi
χi+1,χi

|p ,

with χ = (χ1, . . . , χr+1).

An important difference with Chapters 3 and 4 is that the most common way
to use Corollary 5.4 is with Λ = ∅. To obtain a meaningful result, it is then
necessary to show that all trails have absolute correlation less than 1/p. This
can be interpreted as ‘approximate’ zero-correlation cryptanalysis. In contrast,
small correlations are hard to exploit over an Archimidean field because the
error term is generally difficult to bound. As Section 5.4 below explains, cube
attacks [121] can be considered to be an example with nonempty Λ.

5.4 Integral cryptanalysis on Fn
q

This section applies the one-dimensional theory from Section 5.3 to the
multiplicative monoid Fnq , with q a power of the prime number p. The resulting
theory is a strict generalization of ordinary integral cryptanalysis, in the sense
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that the reduction modulo two of the theory for Fn2 yields familiar concepts
such as parity sets and division trails. A similar reduction of the Fnq -theory
modulo p leads to natural generalizations of these concepts. The reduction is
equivalent to ignoring all trails with absolute correlation lower than 1/p.

5.4.1 Characters of Fn
q

The characters of Fnq can be obtained from Theorem 5.3. This leads to the
following result. Recall from Section 5.2.2 that τ : Fq → Cp denotes the
Teichmüller character.

Theorem 5.6. Every multiplicative character χ : Fnq → Cp is of the form

χ(x) = τ(xu) =
n∏

i=1
τ(xui

i ) ,

with u1, . . . , un in {0, 1, . . . , q − 1}.

Proof. Since the Teichmüller character τ is a multiplicative function, every
function x 7→ τ(xu) is a character of F×q . Choosing u in {1, 2, . . . , q − 1} yields
a complete set of characters for F×q . Furthermore, the only character of the
trivial group {0} is x 7→ 1 = τ(x0).

Recall from Example 5.2 that the set of idempotent elements of Fnq is {0, 1}n.
Hence, for every idempotent e, the group (eFnq )× is a direct product of n groups
of the form {0} or F×q . Hence, it follows from Theorem 5.3 that every character
of Fnq is of the form x 7→∏n

i=1 τ(xui
i ) with u1, . . . , un in {0, 1, . . . , q − 1}.

Theorem 5.6 immediately yields an explicit description of the dual basis functions
bχ. To obtain a similar characterization of the basis functions bχ, the inversion
formula from Theorem 5.4 can be used. The following additional notation
is introduced for convenience. For a character χ : x 7→ τ(xu) of Fq, let
χ+ : Fq → Cp be the function defined by

χ+(x) =
{
δ0(u) + (1− q) δq−1(u) if x = 0
1/χ(x) otherwise .

Furthermore, for a character χ = χ1⊗· · ·⊗χn of Fnq with χ1, . . . , χn characters
of Fq, let χ+ = χ+

1 ⊗ · · · ⊗ χ+
q . With this notation, the following result holds.
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Theorem 5.7. For every character χ : x 7→ τ(xu) of Fnq , the corresponding
basisfunction bχ satisfies (with wt(u) the Hamming weight of u)

bχ(x) =
{
χ+(x)/(q − 1)wt(u) if x ∈ uFnq
0 otherwise .

Proof. It suffices to prove the result for Fq, since the result for Fnq then follows
by taking tensor products. By Theorem 5.4 and (5.2) in particular, if χ extends
a character of F×q (that is, u 6= 0), then

bχ(x) = (−1)wt(x)−1

q − 1
∑

y∈ F×q
xωy= x

1/χ(y) .

If x 6= 0 then the sum reduces to 1/χ(x). If x = 0, then by the orthogonality
of group characters, the sum is equal to (q − 1)δq−1(u). Hence, bχ(x) =
χ+(x)/(q − 1).

If χ extends the character of the trivial group (that is, u = 0), then bχ(0) =
1 = χ+(0) and bχ(x) = 0 for all nonzero x.

5.4.2 Ultrametric transition matrices

Let F : Fnq → Fmq be a function, ψ : x 7→ τ(xu) a character of Fnq , and χ
a character of Fmq . By Theorem 5.7, the corresponding coordinate of the
ultrametric transition matrix AF satisfies

AF
χ,ψ = δχ

(
AFδψ

)
= bχ

(
T Fbψ

)
= 1

(q − 1)wt(u)

∑

x∈uFn
q

χ(F(x))ψ+(x) . (5.3)

This expression will be useful to prove several properties of AF.

Example 5.4 (Numerical normal form). Let q = 2, ψ(x) = τ(xu), and χ(x) =
τ(xv). Since ψ+(x) = (−1)wt(u)+wt(x) for x in uFn2 , expression (5.3) simplifies
to

AF
χ,ψ = (−1)wt(u)

∑

x∈uFn
2

(−1)wt(x) τ(Fv(x)) ,

where τ(Fv(x)) is simply the integer representation of Fv(x) in {0, 1}. Hence,
AF
χ,ψ is the coefficient corresponding to xu in the numerical normal form of the

Boolean function Fv. The numerical normal form expresses a Boolean function
as a multivariate integer polynomial. It was introduced in the Boolean functions
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literature by Carlet and Guillot [87]. The matrix AF can be considered to be
an extension of the numerical normal form to vectorial Boolean functions. It is
not necessary to consider 2-adic coefficients because 1 ∈ Q. For primes p > 3,
the (p− 1)th roots of unity exist in Qp but not in Q. .

By the Chinese remainder theorem, every function from Fnq to Fq can be
represented as a unique polynomial in Fq[x1, . . . , xn]/(xq1 − x1, . . . , x

q
n − xn).

For q = 2, this is called the algebraic normal form. Below, the same terminology
will be used for the general case.

Theorem 5.8 (Reduction to algebraic normal form). Let F : Fnq → Fmq be a
function. For all multiplicative characters ψ : x 7→ τ(xu) of Fnq and χ : x 7→
τ(xv) of Fmq , the coordinate AF

χ,ψ is congruent modulo p to the coefficient of xu
in the algebraic normal form of Fv.

Proof. By the definition of AF, the functional bχ ◦ T F can be decomposed as

bχ ◦ T F =
∑

ψ∈F̂n
q

AF
χ,ψ b

ψ .

Evaluating in δx and reducing modulo p yields

Fv(x) ≡
∑

u∈{0,...,q−1}n

AF
χ,ψu

xu (mod p) .

where ψu(x) = τ(xu). This is the algebraic normal form of Fv.

For q = 2, the modulo-two reduction of AF plays a central role in ordinary
integral cryptanalysis and for the bit-based division property in particular.
It was used by Boura and Canteaut [79] in the form of a table1 to describe
the propagation of parity sets. The point of view that this table is a matrix-
representation of the pushforward operator of F over the residue field F2 was
worked out by Michiel Verbauwhede in his master’s thesis [276].

There is an efficient algorithm to calculate AF when n is much larger than q.
Specifically, because UFn

q
= U ⊗nFq

, there is a fast algorithm to apply UFn
q
. For

q = 2, the modulo-2 reduction of this algorithm is well-known. For large q,
further improvements are likely possible using algorithms inspired by the fast
Fourier transform on F×q . This is left as future work.

A direct calculation of AF is often difficult, but can sometimes be avoided for
special functions such as translations and low-degree polynomials in general.

1Although their analysis uses another table that includes the effect of key-additions.
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When relying on the dominant trail approximation (Corollary 5.4), it is often
sufficient to know the p-adic absolute values of the coordinates of AF. Below,
upper bounds on these absolute values are derived.

In the following results, the p-weight of an integer x is the sum of its base-p
digits. It will be denoted by wtp(x). Similarly, the p-weight of an exponent u
in {0, 1, . . . , q − 1}n is defined as wtp(u) =

∑n
i=1 wtp(ui).

If F is a translation, then the sums in (5.3) are related to Jacobi sums. This leads
to the following theorem, which gives the exact absolute values of the coordinates
of AF. Extending this result to functions F : Fnq → Fnq is a straightforward
application of Corollary 5.2 (1).

Theorem 5.9 (Translation). Let F : Fq → Fq be defined by F(x) = x + t
with t a nonzero constant in Fq and let ψ : x 7→ τ(xu) and χ : x 7→ τ(xv) be
multiplicative characters of Fq. If v 6= 0 or u = 0, then

ordp
(
AF
χ,ψ

)
= wtp(w) + wtp(u)− wtp(v)

p− 1 ,

where w ∈ {0, . . . , q − 2} and w ≡ v − u (mod q − 1). Otherwise, AF
χ,ψ = 0.

Proof. If u = 0, then the result is trivial. For u 6= 0, (5.3) yields

AF
χ,ψ = −χ(t)δq−1(u) + 1

q − 1
∑

x∈F×q

χ(x+ t)/ψ(x) .

If u = q − 1 and v 6= 0, then AF
χ,ψ = −qχ(t)/(q − 1) + δq−1(v) by standard

properties of group characters. Since wtp(w) = wtp(v) and wtp(u) = e(p − 1)
for q = pe, the result follows. If u = q − 1 and v = 0, then AF

χ,ψ = 0. Hence, it
can be assumed that u 6= 0 and u 6= q − 1.

The absolute value of AF satisfies

∣∣AF
χ,ψ

∣∣
p

=
∣∣∣∣∣
∑

x∈F×q

χ(1− x)/ψ(x)
∣∣∣∣∣
p

.

The sum on the right-hand side is a Jacobi sum. Let ω be an additive character
of Fq and let G(ψ) =

∑
x∈F×q ω(x)/ψ(x) be the corresponding Gauss sum. Jacobi

and Gauss sums satisfy the following relation if χ 6= ψ [192, §1.1, GS3]:

∣∣AF
χ,ψ

∣∣
p

=
∣∣∣∣∣
G(1/χ)G(ψ)
G(ψ/χ)

∣∣∣∣∣
p

.
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Furthermore, if χ = ψ, then the p-adic absolute value of the Jacobi sum is
equal to one. Stickelberger’s theorem [192, §1.2, Theorem 2.1] implies that
ordpG(ψ) = wtp(u)/(p− 1). Similarly, ordpG(1/χ) = wtp(q − 1− v)/(p− 1) =
e−wtp(v)/(p− 1) and ordpG(ψ/χ) = e−wtp(v− u)/(p− 1). Hence, the result
follows from

ordp
(
AF
χ,ψ

)
= ordpG(1/χ) + ordpG(ψ)− ordpG(ψ/χ) .

Furthermore, if χ = ψ, then the result agrees with ordp
(
AF
χ,ψ) = 1.

Example 5.5 (Translation). For q = 2 and F(x) = x+t, the matrix AF satisfies

AF =
n⊗

i=1

[
1 0
ti (−1)ti

]
.

If ψ(x) = xu and χ(x) = xv, then Theorem 5.9 shows that |AF
χ,ψ|2 = 1 if uv = u

(equivalently, u ≤ v) and AF
χ,ψ = 0 otherwise. .

The following result (Theorem 5.10) upper bounds the p-adic absolute value of
the coordinates of AF in terms of the degree of F. More precisely, the p-degree
of a monomial xu is equal to wtp(u). The p-degree degp F of F is the maximum
p-degree of the monomials with nonzero coefficients in the algebraic normal
forms of its coordinates. It is not difficult to see that degp F is the degree of
any polynomial representation of F over Fp, which is independent of the choice
of basis for Fq over Fp.

Theorem 5.10. Let F : Fnq → Fmq be a function. Let ψ : x 7→ τ(xu) and
χ : x 7→ τ(xv) be multiplicative characters of Fnq and Fmq respectively. If
d ≥ degp F 6= 0, then

ordp
(
AF
χ,ψ

)
≥
⌈

wtp(u)− wtp(v)d
(p− 1) d

⌉
.

The proof of Theorem 5.10 is based on the following result of Wan [281].

Theorem 5.11 (Wan [281, Theorem 4.1]). Let χ1, . . . , χr : Fq → Cp be
multiplicative characters of Fq and let F1, . . . ,Fr : Fnq → Fq be functions. If
q = pe and χi(x) = τ(xui), then

ordp
∑

x∈Fn
q

∏r
i=1 χi

(
Fi(x)

)
≥
⌈
ne+ 1

p−1
∑r
i=1 wtp(ui)di

maxi di

⌉
,

where di = degp Fi for all i = 1, . . . , r.
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Proof of Theorem 5.10. By (5.3) and because |q − 1|p = 1, it holds that

∣∣AF
χ,ψ

∣∣
p

=

∣∣∣∣∣∣
∑

x∈uFn
q

χ(F(x))ψ+(x)

∣∣∣∣∣∣
p

.

Define ū by ūi = q − 1 − ui for i = 1, . . . , n and let I = {1 ≤ i ≤ n | ūi = 0}.
By the definition of ψ+, it holds that ψ+(x) = τ(xū)

∏
i∈I
(
1− q δ0(xi)

)
for x

in uFnq . Hence,

∣∣AF
χ,ψ

∣∣
p

=

∣∣∣∣∣∣
∑

J⊆I
q|J|

∑

x∈uFn
q

τ(Fv(x)xū)

∣∣∣∣∣∣
p

≤ max
J⊆I

q−|J|
∣∣∣∣∣
∑

x∈uFn
q

∀i∈ J: xi = 0

τ
(
Fv(x)xū

)
∣∣∣∣∣
p

.

The inequality above follows from the ultrametric triangle inequality. For any
set J , let GJ : Fwt(u)−|J|

q → Fmq be the function obtained from F by setting
all variables xi with i in J or ui = 0 equal to zero. There exists a w in
{0, 1, . . . , q − 1}wt(u) with wtp(w) = wtp(ū) such that

∣∣AF
χ,ψ

∣∣
p
≤ max

J⊆I
q−|J|

∣∣∣∣∣
∑

x∈Fl
q

l= wt(u)−|J|

τ
(
GvJ(x)xw

)
∣∣∣∣∣
p

.

By Theorem 5.11 the p-order of the sum on the right-hand side is at least
⌈
le(p− 1)− dwtp(v)− wtp(w)

(p− 1) d

⌉
=
⌈
−|J |e

d
+ wtp(u)− dwtp(v)

(p− 1) d

⌉
,

where q = pe. The equality follows from wtp(w) = e(p − 1) wt(u) − wtp(u).
Hence,

ordp
(
AF
χ,ψ

)
≥ min

J⊆I

(
|J |e+

⌈
−|J |e

d
+ wtp(u)− dwtp(v)

(p− 1) d

⌉)
.

The result follows because d ≥ 1.

It can be verified that there exist functions F for which Theorem 5.10 is tight.
Nevertheless, better bounds are often possible for specific functions. Theorem 5.9
is an example of such an improvement.

5.4.3 Approximations

As mentioned in Section 5.3.3, the one-dimensional cryptanalytic properties
(U, V ) corresponding to the basis functions are of the form U = Span{bψ}
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and V = Span{bχ}. If ψ(x) = τ(xu), then by Theorem 5.7 the function bψ
corresponds to a weighting of the input set uFnq . Specifically, a value x in uFnq
is weighted by ψ+(x)/(q − 1)wt(u). The linear functional bχ corresponds to the
evaluation of a monomial, followed by a lift of the result to Cp.

Example 5.6 (Zero-sum and cube attacks). The principal correlation of a
property (U, V ) as above is equal to AF

χ,ψ. Suppose that χ(x) = τ(xv) and
ψ(x) = τ(xu). By Theorem 5.8, the reduction of AF

χ,ψ modulo p is equal to the
coefficient of xu in the algebraic normal form of Fv.

Since χ(x) ≡ xv (mod p) and, for x in uFnq , ψ+(x)/(q − 1)wt(u) ≡ xū (mod p)
with ūi = q − 1− ui for i = 1, . . . , n, it holds that

∑

x∈uFn
q

Fv(x)xū ≡ AF
χ,ψ (mod p) .

Hence, given a theoretical estimate of AF
χ,ψ up to an absolute error not exceeding

1/p, evaluating the sum above results in a distinguisher or allows extracting
some key-information.

If q = 2, then xū = 1 for x in uFn2 and one obtains the cube attack of Dinur
and Shamir [121]. The same principle was used in the earlier algebraic IV
differential attack of Vielhaber [277]. This attack recovers the coefficient of xu
in the algebraic normal form of Fv by summing over uFn2 . If AF

χ,ψ ≡ 0 (mod p),
then (U, V ) is called a zero-sum property. .

Examples of cube attacks and zero-sum properties with an input set that is not
of the form uFn2 can be found throughout the literature. For instance, the input
set is often an arbitrary affine space of sufficiently large dimension. It is also
possible that q is so large that no sets of the form uFnq can be used directly, but
smaller subsets – such as submonoids of uFnq – may be useful.

Hence, one is often interested in cryptanalytic properties (U, V ) with U =
Span{1S} and V = Span{bχ}, where S is a subset of Fnq – not necessarily of
the form uFnq . Such properties can be analyzed by applying the change-of-basis
map UFn

q
to 1S . Before discussing this approach in detail, it is worthwhile to

work this out explicitly for q = 2.

Example 5.7 (Parity sets). If q = 2, then ψ(x) = xu. Hence 1̂S = UFn
2
1S

satisfies
1̂S(ψ) =

∑

x∈S
ψ(x) =

∑

x∈S
τ(xu) .
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Since the residue field is F2, the modulo-2 reduction of the function 1̂S is
completely determined by the exponents of the monomials in its support:

U(S) =
{
u ∈ Fn2

∣∣∣
∑

x∈S
xu = 1

}

The set U(S) was called the parity set of S by Boura and Canteaut [79]. The
set S satisfies the conventional division property of order k if all elements of
U(S) have Hamming weight at least k [79, Definition 3]. .

The following discussion generalizes to cases where the correlation of the property
(U, V ) is approximated by a nonzero value (‘cube-like’ properties), but for
simplicity only the ‘approximate zero-correlation’ case will be considered here.
In this case, the correlation bχ(T F1S) is estimated to be zero. The cryptanalyst
must determine a bound ε on the error of the estimation. If 1̂S = UFn

q
1S , then

such a bound takes the form
∣∣bχ
(
T F1S

)∣∣
p

=
∣∣∣∣∣
∑

ψ ∈ F̂n
q

AF
χ,ψ 1̂S(ψ)

∣∣∣∣∣
p

≤ ε . (5.4)

It is worth pointing out that ε upper bounds the principal correlation of the
approximation (U, V ), because ‖1S‖Fn

q
= 1 and ‖bχ‖∨Fm

q
= 1. For ε = 1/pl, the

property (U, V ) is equivalent to
∑

x∈S
τ(Fv(x)) ≡ 0 (mod pl) .

For l = 1, one recovers regular zero-sum properties because τ(x) ≡ x (mod p).
Example 5.8. It is worth emphasizing that q = 2 is a special case, because the
Teichmüller lift is trivial: τ(0) = 0 and τ(1) = 1. Hence, the property (U, V )
above is equivalent to |{x ∈ S | Fv(x) = 1}| ≡ 0 (mod 2l).

Note in particular that for S = uFn2 , this differs from the result obtained for
U = Span{δψ} with ψ(x) = τ(xu). In this case, a correlation below 1/2l implies

∑

x∈uFn
2

(−1)wt(x)τ(Fv(x)) ≡ 0 (mod 2l) ,

since ψ+(x) = (−1)wt(u)+wt(x) for x in uFn2 . .

Based on Example 5.7, it can be argued that 1̂S is a natural generalization
of the parity set of S. The following definition introduces an extension of the
conventional division property, which is related to 1̂S . Like for parity sets and
the conventional division property, one should think of Definition 5.3 as a more
compact but less precise characterization of S.
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Definition 5.3 (pl-division property). A multiset S with elements from Fnq
satisfies the pl-division property of order k if

∑

x∈S
τ(xu) ≡ 0 (mod pl) ,

for all u in {0, 1, . . . , q − 1}n with wtp(u) < k.

For p = 2 and l = 1, Definition 5.3 reduces to the definition of the conventional
division property as given by Todo [264, Definition 1]. By Definition 5.1,
an equivalent characterization of Definition 5.3 is that |1̂S(ψ)| < p−l for all
ψ : x 7→ τ(xu) with wtp(u) < k, with 1S(x) the number of occurrences of x in
the multiset S.

Note that, unlike the conventional division property, Definition 5.3 does include
the saturation property as a special case. The fact that Definition 5.3 depends
only on the p-weight of u interacts well with Theorem 5.10. This will be
illustrated in Section 5.4.4.

5.4.4 Trails

If F = Fr ◦ · · · ◦ F1, then AF
χ,ψ is equal to the sum of the correlations of all

ultrametric trails from ψ to χ (Corollary 5.3). In practice, the dominant trail
approximation (Corollary 5.4) is used to estimate AF

χ,ψ. For the approximate
zero-correlation case, the set of dominant trails is chosen to be empty (Λ = ∅).
The first inequality in Corollary 5.4 theoretically allows one to determine the
exact estimation error. However, this requires enumerating trails, which is often
infeasible. Alternatively, the second inequality in Corollary 5.4 can be used.
This yields an overestimate of the error, but is easier to compute. For ordinary
integral cryptanalysis, both approaches have been explored. For the proof of
concept in Section 5.5, only the second method will be used.

The remainder of this section shows how Corollary 5.4 specializes to existing
techniques from the literature. A more detailed exposition on the residue-field
can be found in the master’s thesis of Michiel Verbauwhede [276].

For q = 2, Corollary 5.3 shows that AF
χr+1,χ1 ≡

∑
χ∈Λ

∏r
i=1A

Fi
χi+1,χi

(mod 2) if
and only if

∣∣∣
{
χ ∈ Ω \ Λ |

∣∣∏r
i=1A

Fi
χi+1,χi

∣∣
p

= 1
}∣∣∣ ≡ 0 (mod 2) .

Counting the number of trails corresponds to the propagation of the bit-based
division property without unknown subset [158]. An equivalent algebraic
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formulation was proposed by Hu et al. [166] under the name monomial trails.
From the point of view of Corollaries 5.3 and 5.4, monomial trails correspond
to backward trails (Definition 2.18). Indeed, the dual basis functions bχ are
essentially monomials: bχ(δx) = xu if χ(x) = xu. The bit-based division
property without unknown subset (equivalently, monomial trails) has the benefit
of yielding exact bounds. However, it requires counting the number of trails
(modulo two), which is often infeasible.

The second inequality in Corollary 5.4 shows thatAF
χr+1,χ1 ≡

∑
χ∈Λ

∏r
i=1A

Fi
χi+1,χi

(mod 2) if all trails χ in Ω \ Λ satisfy
∏r
i=1A

Fi
χi+1,χi

≡ 0 (mod 2) .

That is, all trails in Ω \ Λ have a correlation lower than 1/2. This corresponds
to the propagation of parity sets. Indeed, the modulo-2 reduction of the basis
function bψ with ψ(x) = τ(xu) is the indicator function of the set uFn2 . It
follows from Example 5.7 that the parity set of uFn2 is {u}. The parity set
is a set, and so does not account for potential multiplicities of its elements.
Nevertheless, it is possible to define parity multisets to perform trail counting.

Finally, it is worth revisiting the common ancestor of the abovementioned
techniques: the conventional division property [264]. Let ψ : x 7→ τ(xu) and
χ : x 7→ τ(xv). Theorem 5.10 shows that |AF

ψ,χ|p ≤ 1/p whenever wtp(v) <
wtp(u)/ degp F. For S-box based ciphers, this suggests splitting the input space
Fnq as Fn1

q ⊕ · · · ⊕ Fnl
q and keeping track only of the p-weight of the exponents

on each part. A typical application is given in the following example.

Example 5.9 (Degree bounds). Let F : Fnq → Fnq with Fnq = Fmq ⊕ · · · ⊕ Fmq
with n = ml. Suppose that F = L ◦ S with S(x1, . . . , xl) = (S1(x1), . . . ,Sl(xl))
an S-box layer of p-degree d and L affine over Fp. If all correlation-one trails
(χu, χv, χw) satisfy wtp(u) ≤ t, then degp Fw ≤ t.
If (χv, χw) has correlation one, then by Theorem 5.10, wtp(v) ≤ wtp(w). If
wtp(w) ≤ me(p− 1) and (χu, χv) has correlation one then wtp(u) ≤ dwtp(v) ≤
dwtp(w). This yields the trivial bound degp Fw ≤ dwtp(w). However, if
wtp(w) ≥ me(p− 1) = c, then

wtp(u) ≤ d
l∑

i=1
wtp(vi) ≤ d

⌊
wtp(w)
c

⌋
c+ d

(
wtp(w)− c

⌊
wtp(w)
c

⌋)

This yields an improved upper bound on degp Fw and can result in a lower
overall p-degree when F is iterated several times. .

For more complex functions, one can automate the analysis in Example 5.9. The
conventional division property leads to a simplified analysis but a less accurate
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error upper bound in Corollary 5.4. Using Definition 5.3, this approach can be
generalized to take into account trails with correlation less than 1/p2.

5.5 Integral cryptanalysis of PRESENT

As a proof of concept, this chapter revisits several integral properties of reduced-
round PRESENT [71]. PRESENT is a prototypical substitution-permutation
network on F64

2 : its round function consists of a layer of 4-bit S-boxes, a bit-
permutation and a round key addition (see Figure 1.6). This allows for a simple
automated analysis of ultrametric trails.

It should emphasized that integral attacks on PRESENT cover a small number
of rounds compared to e.g. linear cryptanalysis, and this section does not
attempt to overcome this fact. Instead, the goal of this section is to revisit the
distinguishers of Boura and Canteaut [79] using the theory developed in the
preceding sections. The results demonstrate that they can be improved, and it
seems reasonable to expect similar improvements in other cases.

5.5.1 Modelling PRESENT

The linear layer P : F64
2 → F64

2 of PRESENT is a bit-permutation, and hence
a monoid homomorphism. Hence, by Theorem 5.5 (2), AP

χ,ψ = δχ◦P(ψ). The
ultrametric transition matrix of the 4-bit S-box S can be computed using the
algorithm from Section 5.4.2. This yields

AS =




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 −2 −1 2 1 −2 0 0 −2 4 2 −4
0 0 1 0 0 0 0 −1 1 0 −1 −1 −1 1 0 2
0 0 0 1 0 0 0 −1 1 −1 0 −1 −1 2 0 0
1 0 0 −1 −1 0 0 2 −1 1 1 −1 2 −1 −2 0
0 1 0 −1 0 −1 0 2 0 −1 1 0 0 2 −1 −2
0 0 1 −1 0 0 −1 1 0 1 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 −1 0 1 −1 0
1 −1 −1 2 0 0 1 −1 −1 2 2 −3 0 −1 −2 2
0 0 0 1 1 −1 −1 1 0 0 1 −2 −1 1 0 0
0 0 0 1 0 0 1 −2 0 1 1 −3 0 −1 −2 4
0 0 0 1 0 0 0 −1 0 0 1 −2 0 0 −1 2
1 −1 −1 1 −1 1 1 0 −1 2 2 −3 1 −2 −2 2
0 0 0 0 0 0 0 1 0 0 1 −1 0 0 −1 0
0 0 0 0 0 0 0 0 0 1 1 −2 0 −1 −1 2
0 0 0 0 0 0 0 0 0 0 1 −1 0 0 −1 1




.

By Theorem 5.8, the modulo-2 reduction of the above matrix is the transition
matrix for ordinary integral cryptanalysis. The propagation through the key-
addition step is described by Theorem 5.9 and Example 5.5 in particular.
Since only individual trails will be used for the analysis in this section, it is
possible to merge the key-addition with the S-box layer. In this case, one can
describe the worst-case propagation through the S-box layer with the table
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gcd(Ak1AS, . . . , Ak16AS) where k1, . . . , k16 are all possible values of a 4-bit key
and gcd denotes the entrywise greatest common divisor. This table can be
efficiently computed using an algorithm similar to the one used to compute AS.
It is analogous to the parity set propagation table introduced by Boura and
Canteaut [79].

The model was implemented as a Satisfiability Modulo Theories (SMT) problem
and solved using Boolector [222]. It is not strictly necessary to automate the
solving process: with some effort, the same results can be obtained by hand
using an ‘approximate’ variant of the miss-in-the-middle approach.

For given characters ψ and χ, one solves for trails between ψ and χ with
successively lower correlation. If |AF

χ,ψ|2 ≤ 1/2l, then by Example 5.8
∑

x∈uFn
2

(−1)wt(x)τ(Fv(x)) ≡ 0 (mod 2l) .

For direct comparison with the results of Boura and Canteaut, it is also
interesting to consider the unweighted input set uFn2 . As shown in Example 5.8,
this corresponds to

|{x ∈ uFn2 | Fv(x) = 1}| ≡ 0 (mod 2l).

As shown by (5.4) in Section 5.4.3, it suffices to verify that |AF
χ,ψ|2 ≤ 2−l+wt(ū∧w)

for all ψ : x 7→ τ(xw) to demonstrate this. Indeed, (UFn
2
1uFn

2
)(ψ) = 2wt(ū∧w).

Importantly, this approach is only an approximation and better results can
often be obtained by enumerating trails.

5.5.2 Results

The results for the first output bit (v = 0000000000000001) are listed in
Table 5.1. Similar results can be obtained for other choices of v. The results in
the table assume that the input state is bψ with ψ(x) = τ(xu). The exponents u
were chosen to match the input sets proposed by Boura and Canteaut [79, Table
3]. However, one should keep in mind that the properties in Table 5.1 rely on
weighted inputs.

Table 5.1 demonstrates that for more than four rounds, the output bits satisfy a
stronger property than a zero-sum. This results in distinguishers with a smaller
false-positive rate. Since the choices of u in Table 5.1 ensure that all output bits
have the zero-sum property, achieving a smaller false-positive rate may seem
unimportant. However, for traditional key-recovery attacks, it is important
to obtain a low false-positive rate given only a few bits of the output. With
2k candidate keys, the difference between four zero-sum bits (2k/24 remaining
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candidates) and four bits with divisibility by 16 (2k/164 remaining candidates)
is important.

Table 5.1: Theoretical (εthe) and experimental (εexp) estimates of AF
χ,ψ for

ψ : x 7→ τ(xu) and χ : x 7→ τ(xv) with v = 0000000000000001, where F is
r-round PRESENT.

r u log2(data) ord2(εthe) ord2(εexp)
4 000000000000000f 4 1 1
5 000000000000fff0 12 3 3
6 00000000ffffffff 32 4 4
7 fffffffffffff000 52 4 —
8 fffffffffffffffe 63 2 —

The last column of Table 5.1 shows experimental results for the cases where
this was feasible. These results represent the worst case over a random choice
of several independent round keys. It is important to mention this, since it was
observed that there exist large classes of weak keys with stronger properties. A
proper analysis of this phenomenon needs to take into account multiple trails.

A straightforward application of Section 5.5.1 to the unweighted input sets uFn2
results in the same theoretical bounds as in Table 5.1. Nevertheless, because
the set uFn2 can be propagated through (part of) the first and second S-box
layers with correlation one, the unweighted inputs sets should result in better
properties. However, the model from Section 5.5.1 only tracks the worst-case
correlation of individual trails and hence cannot account for this effect.

Table 5.2: Theoretical (εthe) and experimental (εexp) estimates of bχ(T F1uFn
2
)

for χ : x 7→ τ(xv) with v = 0000000000000001, where F is r-round PRESENT.

r u log2(data) ord2(εthe) ord2(εexp)
4 000000000000000f 4 2 3
5 000000000000fff0 12 4 5
6 00000000ffffffff 32 7 14
7 fffffffffffff000 52 7 —
8 fffffffffffffffe 63 3 —

Slightly better bounds are obtained (without enumerating trails) by modifying
the model to skip S-boxes in the first two rounds that are fully saturated, relying
only on the fact that S(F4

2) = F4
2. The results are shown in Table 5.2.
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The last column of Table 5.2 shows that there is still a significant gap between
the experimental results and the theoretical bounds obtained using the simplified
model that uses only individual trails. This gap can be closed by enumerating
all high-correlation trails. This is left as future work.
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6
Block cipher invariants

Theorem 2.12 shows that over an algebraically closed field of characteristic
zero, every forward invariant of a permutation is spanned by eigenvectors of
its pushforward operator. Hence, as discussed in Section 3.5.1, invariants are
spanned by eigenvectors of correlation matrices. Starting from this observation,
this chapter obtains nonlinear invariants for reduced-round Midori-64 and
MANTIS, and shows how these properties can be combined with integral
cryptanalysis to obtain distinguishers for a larger number of rounds.

This chapter is based on the paper “Block cipher invariants as eigenvectors
of correlation matrices” from Asiacrypt 2018 [37] and its extended version
that appeared in Journal of Cryptology [39]. At the time of publication, the
link between nonlinear invariants and eigenvectors of correlation matrices was
new. Since this result is a straightforward consequence of Theorem 2.12, the
applications to Midori-64 and MANTIS are the focus of this chapter instead.

6.1 Introduction

Block ciphers are an essential primitive for the construction of many
cryptosystems. This leads to a natural desire to optimize them with respect
to various application-dependent criteria. Examples include low-latency block
ciphers such as PRINCE [76] and MANTIS [29], and the low-power design
Midori [18]. Biryukov and Perrin [64] give a broad overview of such lightweight
primitives.

A common design decision that often helps to reduce latency, energy consumption
and other cost measures is the simplification of the key-schedule. This, along with
other aspects of lightweight designs, led to the development of new cryptanalytic
tools such as invariant subspaces [196] and nonlinear invariants [266]. These
attacks are the subject of this chapter.

At Crypto 2017, it was shown by Beierle, Canteaut, Leander and Rotella
that invariant attacks can often be averted by a careful choice of the round
constants [27]. Their work, as well as the earlier work by Todo, Leander and
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Sasaki on nonlinear invariants [266], invites several questions. This chapter is
concerned with three related problems that arise in this context.

1. In their future work sections, Todo et al. [266] and Beierle et al. [27] both
express the desire to generalize the nonlinear invariant attack. One can
argue that a deeper theoretical understanding of block cipher invariants
is helpful, if not essential, to achieve this goal.

2. One potential generalization is the existence of block cipher invariants
which are not invariants under all of the round transformations. It
is important to investigate this possibility, because such cases are not
covered by the techniques introduced by Beierle et al. for choosing the
round constants.

3. The previous problem leads to a third question: do such (generalized)
invariants only impact the security of the cipher for a specific choice of
the round constants? The results in this chapter suggest otherwise.

The first of the problems listed above was already addressed in Section 3.5.1:
both invariant subspaces and nonlinear invariants are special cases of
Definition 2.20. This immediately led to their characterization as eigenvectors
of correlation matrices. Indeed, Theorem 2.12 shows that over an algebraically
closed field of characteristic zero, every forward invariant is spanned by
eigenvectors of its pushforward operator. In Section 6.2, this result is briefly
reexamined for permutations on Fn2 and some additional detail is added.

The specifications of Midori-64 and MANTIS are reviewed in Section 6.3.
Section 6.4 takes a closer look at the invariants of Midori-64, leading up to an
example of an invariant of the type described in the second problem above. It
will be shown in Section 6.4.3 that, with minor changes to the round constants,
Midori-64 has an invariant which is not invariant under the round function. It
applies to 296 weak keys. Note that this is a significantly larger class of weak keys
compared to previous work, i.e. 232 for the invariant subspace attack of Guo et
al. and 264 for the nonlinear invariant attack of Todo et al. [266]. In fact, it will
be demonstrated that the invariant discussed in Section 6.4.3 corresponds to a
linear approximation with maximal correlation. This observation is an extreme
example of the constructive interference phenomenon that was described in
Section 3.6.2. It will be briefly discussed in Section 6.4.4. In Section 6.4.5, it is
shown that the invariant from Section 6.4.3 is valid for an additional class of 264

keys, leading to a total of 296 + 264 weak keys. This result is mainly interesting
because it provides an example of an invariant which holds for four rounds, but
not necessarily for fewer rounds. Hence, it serves as a further illustration of the
second problem above.
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Finally, Sections 6.5 and 6.6 address the third question listed above. That is,
two cryptanalytic results are given to demonstrate that block cipher invariants
may impact the security of a block cipher regardless of the choice of round
constants.

In Section 6.5, a practical attack on 10 rounds of Midori-64 – for any choice
of round constants – will be given. The attack applies to 296 weak keys and
requires roughly 1.25·221 chosen plaintexts. The computational cost is dominated
by 256 block cipher calls. Note that the data complexity and especially the
computational cost to determine whether a weak key is used, are significantly
lower. As discussed by Luykx, Mennink and Paterson [210] at Asiacrypt 2017,
this has a significant impact on the multi-key security of the block cipher. A
detailed analysis of the data complexity, supported by key-recovery experiments,
is provided in Section 6.5.4.

Section 6.6 shows that the full key of MANTIS-4 [29] can be recovered given 346
chosen plaintexts. This attack works for all keys provided that a weak tweak is
used. The number of weak tweaks is 232 (out of 264). The computational cost
of this attack is dominated by 256 block cipher calls. If 346 chosen ciphertexts
under a related tweak are additionally available, then the key can be recovered
with a computational cost of 218 block cipher calls. Section 6.6.3 supports the
data complexity estimate by means of key-recovery experiments.

6.2 Invariants as eigenvectors of correlation matrices

Let Ek : Fn2 → Fn2 be a block cipher with key k. Invariant sets and nonlinear
invariants were already defined for functions on arbitrary finite commutative
groups in Section 3.5.1, but it is worthwhile to review their original definitions.

Recall from Section 3.3.1, and Example 3.5 in particular, that the characters of
Fn2 are given by χu : x 7→ (−1)uTx with u in Fn2 . Throughout this chapter, the
dual group of Fn2 will be identified with Fn2 through the isomorphism u 7→ χu.
As discussed in Section 3.3.1 such an identification is arbitrary, and although it
is theoretically inconvenient, it is often useful for applications.

The invariant subspace attack was introduced by Leander, Abdelraheem,
AlKhzaimi and Zenner in the context of the PRINTcipher [196]. An invariant
subspace of Ek is an affine subspace A of Fn2 such that

Ek(A) = A . (6.1)

The keys k for which (6.1) holds, are called weak keys. As shown in Example 3.8,
this implies that the indicator function 1A of A is an eigenvector of T Ek with
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eigenvalue one. Equivalently, CEk 1̂A = 1̂A for the Fourier transformation 1̂A
of 1A. Up to the identification of Fn2 with its dual group, 1̂A : Fn2 → C satisfies

1̂A(u)/|V | = (−1)a
Tu 1V ⊥(u)

with V the vector space such that A = a+ V for a in A.

At Asiacrypt 2016, Todo et al. introduced the nonlinear invariant attack as an
extension of the invariant subspace attack [266]. A Boolean function f : Fn2 → F2
is called a nonlinear invariant for Ek if there exists a constant c in F2 such that
for all x in Fn2 ,

f(x) + f(Ek(x)) = c.

Importantly, the constant c may depend on the key k, but not on x. It was
shown in Example 3.9 that this implies that χ ◦ f is an eigenvector of T Ek

with eigenvalue χ(c), with χ a character of F2. Equivalently, the Fourier
transformation of χ ◦ f is an eigenvector of CEk . Concretely, for nontrivial χ,

(χ̂ ◦ f)(u) =
∑

x∈Fn
2

(−1)u
Tx+f(x) .

That is, the Walsh-Hadamard transformation of f is an eigenvector of CEk .

It was already explained that finding nonlinear invariants of an unstructured
function F : Fn2 → Fn2 is difficult. The method proposed by Todo et al. [266],
based on the algebraic normal form, requires O(23n) time. In light of Chapter 5,
it is interesting to note that this method can be interpreted as a direct calculation
of the invariant subspaces of the modulo-2 reduction of AF. The algorithm from
Section 3.5.1 requires O(n22n) time, but this is still too much for most realistic
block sizes. To obtain invariants, it is thus necessary to exploit structural
properties of the block cipher.

The main structural property that has been exploited in previous work such
as [154, 196, 266] is the existence of non-trivial simultaneous invariants for
the linear layer and the nonlinear layer of a block cipher. It was shown in
Theorem 3.7 that if a function is an eigenvector of Ck for several keys k, then
this leads to strong restrictions on its support. Due to the identification between
Fn2 and its dual, Theorem 3.7 can be reformulated as follows.

Corollary 6.1. If v is an eigenvector of Ck for all k in a subset K of Fn2 , then
supp v ⊆ a + K⊥ for some a in Fn2 . Furthermore, v is an eigenvector of Ck
with corresponding eigenvalue (−1)aTk for all k in the span of K.

Corollary 6.1 implies that the support of an invariant must be sparse if it is an
eigenvector for many round key additions, and this is exasperated by the fact
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that the support should be stable under the transpose of the linear layer. These
conditions tend to contradict the nonlinearity of the S-box layer. In fact, this
approach leads to the arguments of Beierle et al. [27] to rule out such invariants.

6.3 Midori-64 and MANTIS

A brief description of Midori-64 is given here. This information will be used
extensively in Sections 6.4 and 6.5. Midori-64 is an iterated block cipher with a
block size of 64 bits and a key length of 128 bits [18]. It operates on a 64-bit
state, which can be represented as a 4 × 4 array of 4-bit cells. The round
function consists of the operations SubCell (S), ShuffleCell (P), MixColumn (M)
and a key addition layer. The overall structure is shown in Figure 6.1.

k0 + k1

R1

k0

R2

k1

. . . R15

k0

S

k0 + k1

S P M

k1

γ2

Figure 6.1: The overall structure and round function of Midori-64.

The SubCell (S) mapping applies a 4-bit S-box S to each cell of the state. The
fact that the S-box is an involution will be used in Section 6.4. The algebraic
normal form of S(x) = (S1(x),S2(x),S3(x),S4(x)) is provided below. These
expressions will not be used explicitly, but they can be helpful to verify the
calculations in Sections 6.5 and 6.6.

S1(x1, x2, x3, x4) = x1x2x3 + x1x3x4 + x1x2 + x1x3 + x3x4 + 1

S2(x1, x2, x3, x4) = x1x2x3 + x1x3x4 + x2x3x4 + x1x4 + x1 + x4 + 1

S3(x1, x2, x3, x4) = x1x2 + x1x4 + x2x4 + x2 + x4

S4(x1, x2, x3, x4) = x1x2x3 + x1x3x4 + x2x3x4 + x1x4 + x2x4 + x3 .
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The permutation ShuffleCell (P) interchanges the cells of the state. It operates
on the state as follows:

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15

s4 s8 s12 s16

s1 s15 s10 s8

s11 s5 s4 s14

s6 s12 s13 s3

s16 s2 s7 s9

P

The MixColumn (M) transformation acts on each state column independently
by the following matrix over F24 :

M =




0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


 .

That is, each cell of a column of the state is replaced by the exclusive-or of the
other cells in the same column. Finally, the round key in round i is alternately
taken to be k0 + γi or k1 + γi, where γi is a round constant. Importantly, round
constants are only added to the least significant (rightmost) bit of each cell, i.e.
γi ∈ {0, 1}16.

The tweakable block cipher MANTIS [29] is quite similar to Midori-64, having
nearly the same round function. Figure 6.2 illustrates the overall structure
of MANTIS-4. Unlike in Midori, the round key k1 is the same in all rounds.
Additional whitening keys k0 and k′0 = (k0 ≫ 1) + (k0 � 63) are added before
the first round and after the last round. The round function is nearly identical
to the Midori-64 round function, the difference being that the round keys and
constants are added before rather than after the application of M. The ith

round constant of MANTIS is denoted by ci.

Structurally, MANTIS differs from Midori-64 in two major aspects: it takes
an additional tweak as an input, and it is a reflection cipher. The reflection
constant is denoted by α = 0x243f6a8885a308d3. In every round, the tweak is
permuted cellwise by a permutation σ. In all other aspects, the tweak is treated
in the same way as the round key k1.
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R1 R2 R3 R4 S

M

SR−1
4R−1

3R−1
2R−1

1

σ σ σσ
t

k1 k1 k1 k1

α+ k1α+ k1α+ k1α+ k1

k′0 + k1 + t+ α

k0 + k1 + t

Figure 6.2: Overview of MANTIS-4.

6.4 Invariants for Midori-64

In this section, the invariants of Midori-64 are discussed from the point of view
that they are eigenvectors of correlation matrices. As an example, Section 6.4.2
revisits the invariant subspace attack of Guo et al. [154] and the nonlinear
invariant from Todo et al. [266]. In Section 6.4.3, a more general invariant
will be obtained. This invariant will be used in Sections 6.5 and 6.6 to obtain
attacks on reduced-round Midori-64 and MANTIS.

6.4.1 State representation and round transformations

Up to the identification of Fn2 with its dual group, the Fourier-domain
representation of the Midori-64 state is a function v in RF64

2 . Recall from
Section 6.3 that it is convenient to represent the Midori-64 state as a 4× 4 array
of 4-bit cells. For this reason, coordinate u = (u1, . . . , u16) of v will be denoted
by v(u) = v(u1, . . . , u16). This notation reflects the fact that we can think of v
as a tensor of order 16, i.e. v ∈

(
RF4

2
)⊗16.

From Figure 6.1, the correlation matrix of the Midori-64 round function satisfies

CRi = Cli+γiCMCPCS,

where li = k0 when i is odd and li = k1 when i is even. Recall that
Cli+γi is a diagonal matrix. It follows from Corollary 3.1 (1) that CS =
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(
CS)⊗16 and CM =

(
CM)⊗4. The matrix CS is a symmetric orthogonal

matrix and CM is a symmetric permutation matrix. Specifically, we have
CM
u,v = δu(Mv) by Theorem 3.5 (2). Finally, CP is a permutation matrix

such that (CPv)(u1, . . . , u16) = v(uπ−1(1), . . . , uπ−1(16)) with π the ShuffleCell
permutation.

It is convenient to look only for invariants with independent cells, i.e. rank-one
invariants in the sense of Section 3.7.1. That is, it will be assumed that there
exist vectors v1, . . . , v16 such that

v(u1, . . . , u16) =
16∏

i=1
vi(ui). (6.2)

Equivalently, v =
⊗16

i=1 vi. Of course, this assumption imposes a serious
restriction. However, assuming (6.2) greatly simplifies the analysis and is
sufficiently general to recover the invariant attacks of Guo et al. [154] and
Todo et al. [266]. Furthermore, more general assumptions are not necessary to
obtain the invariant that will be presented in Section 6.4.3.

The invariants considered in Section 6.4.2 will be required to be invariant under
S, M and P. Consider the last requirement, i.e. v is an eigenvector of CP.
Recall that CP is a permutation matrix such that

CP
16⊗

i=1
vi =

16⊗

i=1
vπ−1(i).

If v is symmetric, that is, v1 = · · · = v16 = ṽ, then
⊗16

i=1 vi = ṽ⊗16 is clearly
invariant under CP. It turns out that for the purpose of this paper, it suffices to
consider only invariants v such that v = ṽ⊗16 for some ṽ in RF16

2 . Such tensors
v are called symmetric. Note that the symmetry assumption is less restrictive
than (6.2). Indeed, for any realistic choice of round constants, an asymmetric
invariant tends to lead to conflicting requirements on the key after a sufficient
number of rounds. Slightly more general invariants can be obtained by requiring
that i 7→ vi is constant on the cycles of π.

Computing an eigenvector basis for CS is not difficult. In the remainder of this
section, the symmetric rank-one eigenvectors of CM will be listed. In particular,
it is not necessary to compute these eigenvectors numerically. The analysis
starts from the straightforward result in Lemma 6.1. The main result is stated
in Theorem 6.1.

Lemma 6.1. If v⊗4 is a real eigenvector of CM, then there exists a scalar α
in R× such that all coordinates of v in the standard basis are equal to 0 or ±α.
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Proof. The condition that v⊗4 is an eigenvector of CM is equivalent to

v⊗4(u) = λv⊗4(Mu).

Hence, for all u1, . . . , u4 in F4
2, it holds that

4∏

i=1
v(ui) = λ

4∏

i=1
v(
∑
j 6=i uj). (6.3)

Note that no vector of the form v⊗4 can correspond to λ = −1, since it follows
from (6.3) that v(u)4 = λv(u)4 for all u in F4

2. Since at least one coordinate of
v is nonzero, there exists a u such that v(u) = α 6= 0. By (6.3), this implies
αv(u′)3 = α3v(u′) for any u′ in F4

2. Consequently, v(u′) ∈ {0,±α}.

Theorem 6.1. If v⊗4 is a real eigenvector of CM, then A = {u | v(u) 6= 0} is
an affine subspace of F4

2 and there exists a scalar α in R× such that v(u) = ±α
for all u in A. The converse is also true in the following cases:

– For dimA = 0, dimA = 1 and dimA = 2.

– For dimA = 3, provided that the number of negative coordinates of v is
even.

The condition for dimA = 3 is also necessary.

Proof. Suppose that v⊗4 is a real eigenvector of CM. Let a, u, u′ in F4
2 such that

v(a) 6= 0, v(a+ u) 6= 0 and v(a+ u′) 6= 0. By (6.3), it follows that

v(a+ u+ u′)2v(a+ u′)v(a+ u) = v(a)2 v(a+ u)v(a+ u′) 6= 0.

Hence, v(a+ u+ u′) 6= 0. This implies that A is an affine space. Lemma 6.1
completes the argument.

To show the converse, first consider the case with dimA ≤ 2. It suffices to
demonstrate that if u1, . . . , u4 ∈ A, then

∏4
i=1 v(ui) =

∏4
i=1 v(

∑
j 6=i uj). Note

that {u1, . . . , u4} and {
∑
i6=1 ui, . . . ,

∑
i 6=4 ui} generate the same affine space.

Since the dimension of this space is at most two, it contains at most four
elements. Hence, both products contain the same factors.

For dimA = 3, the previous argument no longer applies when u1, . . . , u4 are
linearly independent. In this case the left and right hand side of

∏4
i=1 v(ui) =∏4

i=1 v(
∑
j 6=i uj) involve different variables. Hence, since A contains eight

elements, it is necessary and sufficient that the product of these elements is
positive.
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The only symmetric rank-one invariants which are not covered by Theorem 6.1
are those having only nonzero coordinates. It would be possible to extend
the result to cover this case as well, but this would have little practical value
since such eigenvectors can never lead to a significant class of weak keys due to
Corollary 6.1.

The search tool from Section 3.7.2 provides an alternative to Theorem 6.1,
although it has the downside that it yields less insight. It was already shown in
Example 3.16 that this tool can be used to find rank-one eigenvectors of CM.
By adding appropriate constraints, the results in the following two sections
can be reproduced with little effort. Both approaches have their merits. The
presentation below follows the original paper from Asiacrypt 2018 [37] and
hence relies on Theorem 6.1.

6.4.2 Simultaneous eigenvectors

As discussed in Section 6.2, it is usually not possible to find the eigenvectors of
CEk directly and to subsequently identify those vectors that depend only on a
limited portion of the key. A more realistic approach is to find joint eigenvectors
for all of the transformations in the round function. This corresponds to the
strategy that was used in previous work, and it is the strategy that will be
applied in this section.

The problem considered in this section is thus to find vectors v in RF64
2 such that

CSv = λv and CMv = µv with λ and µ in {−1, 1}. Furthermore, v must be an
eigenvector of CP, but if v is symmetric, we need not separately consider this
requirement. For each of these vectors v, we additionally require that they are
eigenvectors of Cli+γi for i = 1, . . . , 16. In general, this is not possible without
making some assumptions on the keys li.

If {v1, . . . , v16} is a basis of eigenvectors of CS, then the set of all vectors of the
form

⊗16
i=1 vji with ji in {1, . . . , 16} is a basis of eigenvectors of CS =

(
CS)⊗16.

Suppose that E+1(CS) is the eigenspace of CS corresponding to eigenvalue
1, and E−1(CS) likewise for eigenvalue −1. Any useful invariant must be an
eigenvector of the diagonal matrices Cli+γi as well. In summary, the invariants
must be the fourth tensor power of an element of one of the vector spaces listed
in Table 6.1.

The vectors v⊗4 should additionally be eigenvectors of CM. A necessary
condition to this end is given by Theorem 6.1 (in fact, Lemma 6.1 is sufficient
here). Using this result, only four nontrivial invariants of the form v⊗16 remain.
These are listed in Table 6.2. The first of these invariants is the Walsh-Hadamard
transformation of a Boolean function. It corresponds to the nonlinear invariant
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Table 6.1: Bases for the intersection of the eigenspaces of CS and Cγi .

∩ Span{δ1, δ3, . . . , δf} Span{δ0, δ2, . . . , δ14}

E+1(CS) (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
(0, 0, 1, 0, 1, 0, 1, 0,−1, 0,−1, 0,−1, 0,−1, 0)

E−1(CS) (0, 1, 0, 0, 0, 1, 0, 0, 0,−1, 0, 0, 0,−1, 0,−2)
(0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,−1, 0, 0, 0, 1)

discovered by Todo, Leander and Sasaki [266]. The eigenvector in the second
row of Table 6.2 is the Fourier transformation of the indicator function of the
invariant subspace obtained by Guo et al. [154].

Table 6.2: Invariants for Midori-64 with weak key class K. Note that the last
invariant is simply the nonlinear invariant corresponding to the second invariant
(which is an invariant subspace).

Eigenvector (v for v⊗16) K |K|
(0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,−1, 0, 0, 0, 1) κ1 = κ2 = 0 264

(1, 0, 1, 0, 1, 0, 1, 0,−1, 0,−1, 0,−1, 0,−1, 0) κ1 = κ2 = κ3 = 0 232

(1, 0,−1, 0,−1, 0,−1, 0, 1, 0, 1, 0, 1, 0, 1, 0) κ1 = κ2 = κ3 = 0 232

(0, 1, 0, 1, 0, 1, 0, 1, 0,−1, 0,−1, 0,−1, 0,−1) κ1 = κ2 = κ3 = 0 232

Note that the weak key class corresponding to a given invariant (the second
column in Table 6.2) is readily determined from the vector v. For instance,
consider the vector Cκv, with κ = (κ1, . . . , κ4) in F4

2 a nibble of the round key:

v = (0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,−1, 0, 0, 0, 1),

Cκv = (−1)κ3+κ4(0, 0, 0, 1, 0, 0, 0, (−1)κ2 , 0, 0, 0, (−1)1+κ1 , 0, 0, 0, (−1)κ1+κ2).

Hence, v is invariant under Cκ provided that κ1 = κ2 = 0. Note that v is also
invariant under the addition of the round constants – which has the same effect
as modifying κ4.

An alternative approach to finding invariants starts from the eigenvectors of
CM. Theorem 6.1 makes this method efficient. This will be the starting point
to obtain more general invariants in Section 6.4.3.
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6.4.3 Nonlinear invariant for “almost Midori-64”

In the previous section, a few eigenvectors of CRi were obtained by intersecting
the eigenspaces of CM, CS and Cli+γi . In general the eigenvectors of CRi are
not eigenvectors of CM or CS. Furthermore, the eigenvectors of CEk need not
be eigenvectors of the round functions CRi . In order to find all invariants, then,
it would be necessary to solve the eigenvalue problem directly. As discussed
before, tackling this problem is out of the scope of this chapter, but a slightly
more general type of invariant for Midori-64 is presented below.

Figure 6.3 shows the general idea: it may be possible to find a vector u⊗16

which is mapped to a vector v⊗16 by CRi , such that CRi+1v⊗16 = u⊗16. Such a
vector u⊗16 would be an eigenvector of CRi+1CRi , but not of CRi .

M ◦ P ◦S M ◦ P ◦S M ◦ P ◦S . . .

k0 ⊕ k1 k0 ⊕ γ1 k1 ⊕ γ2 k0 ⊕ γ3

u⊗16 7→ v⊗16 7→ u⊗16

Figure 6.3: If u 6= v, this figure depicts an invariant for two rounds which is not
invariant under one round.

To find such an invariant, it suffices to obtain vectors u and v = CSu such
that CMu⊗4 = u⊗4 and CMv⊗4 = v⊗4. Theorem 6.1 provides a complete list of
possible choices for u and v. This approach is formalized in Algorithm 1. A
Sage-implementation is available online1. This algorithm requires a negligible
amount of time, as the inner loop is only executed 5216 times – once for each
symmetric rank one invariant of CM. Note that it also returns invariants of the
conventional type.

A list of invariants produced by Algorithm 1 is given in Table 6.3. The most
interesting pair of vectors u and v is given by

u = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

v = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1/2,−1/2, 0, 0, 1/2,−1/2).

Clearly, u is invariant under the addition of any constant. The vector v is an
eigenvector of Cκ provided that κ2 = κ4 = 0. For the usual choice of round

1http://tim.cryptanalysis.info/invariants/algorithm_1.html

http://tim.cryptanalysis.info/invariants/algorithm_1.html
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Algorithm 1 Symmetric rank-one invariants for two rounds of Midori-64.
1: for each affine subspace A ⊆ F4

2 with d := dimA ∈ {0, 1, 2, 3} do
2: S ← {1} × {1,−1}2d−2

3: if d = 3 then
4: S ← {(s1, . . . , s2d−1,

∏
i si) | (s1, . . . , s2d−1) ∈ S}

5: else
6: S ← S × {1,−1}
7: end if
8: for v in RF4

2 with v(Fn2 \ A) = 0 and (v(u))u∈A ∈ S do
9: w ← CSv

10: A′ ← {u ∈ F4
2 | w(u) 6= 0}

11: if A′ is affine and (dimA′ 6= 3 or
∏
u∈A′ w(u) = 1) then

12: yield v . v⊗16 is invariant for some choice of round constants
13: end if
14: end for
15: end for

constants of Midori-64, v is not invariant under the addition of the constants.
However, had the round constants been chosen from {0, 2, 8, A}16 rather than
{0, 1}16, the attack would apply. Moreover, such a restriction only applies
to half of the rounds – the round constants of other rounds may be chosen
arbitrarily.

The restriction κ2 = κ4 = 0 (which applies to k0 or k1, but not both) corresponds
to a class of 296 weak keys. One can verify that v⊗16 corresponds to the following
nonlinear invariant:

f(x1, . . . , x64) =
16∑

i=1
x4ix4i−2 + x4i + x4i−1 + x4i−3 . (6.4)

That is, there exists a constant c in F2 such that f(Ek(x)) + f(x) = c for all x
and for any even number of rounds. One can verify that u⊗16 corresponds to
the following “nonlinear” invariant:

g(x1, . . . , x64) =
16∑

i=1
x4i + x4i−2. (6.5)

Hence, for an even number of rounds, g(Ek(x))+g(x) is constant. If the number
of rounds is odd, the value f(Ek(x)) + g(x) is constant instead.
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Table 6.3: Invariants for two rounds of (modified) Midori-64, as obtained using
Algorithm 1. Only invariants with at least 264 weak keys are listed. Note that
these invariants are not valid for all choices of the round constants. Type I
refers to invariants with u = v, whereas type II indicates that u 6= v.

Invariant (v for v⊗16) Keys Type
(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 2128 Trivial
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0,−1, 1) 296 II
(0, 1, 0, 0, 1, 0, 0, 0,−1, 0, 0, 0, 0, 1, 0, 0) 280 II
(0, 0, 0, 1, 0, 0,−1, 0, 0, 0, 0,−1, 0, 0,−1, 0) 280 II
(1,−1, 0, 0, 0, 0, 0, 0,−1,−1, 0, 0, 0, 0, 0, 0) 264 II
(0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) 264 II
(0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0) 264 II
(0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0) 264 II
(1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0) 264 II
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,−1, 0, 0, 1, 1) 264 I
(0, 0, 0, 0, 0, 0, 1,−1, 0, 0, 0, 0, 0, 0, 1, 1) 264 I
(0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,−1, 0, 0, 0, 1) 264 I

6.4.4 Constructive interference in Midori-64

It is worthwhile to take a closer look at the invariant g given by (6.5)
in Section 6.4.3. Since g is a linear function, it corresponds to a linear
approximation with correlation ±1 (where the sign depends on the key).
Considering the fact that Midori-64 has been designed with resistance to linear
cryptanalysis in mind, this is remarkable.

Result 6.1. The correlation of any trail in “almost Midori-64” is (much) smaller
than 2−32, yet there is a linear approximation with correlation ±1 for 296 keys
when the number of rounds is even.

This result is an extreme example of the constructive interference phenomenon
that was discussed in Section 3.6.2. From the point of view of linear trails, the
linear approximation with correlation one contains 216r trails with correlation
±2−16r if the number of rounds is r. For 296 keys, the signs of the correlations
of all these trails agree and the correlation of the approximation becomes ±1.
This appears to be the first real-world observation of such behavior.
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6.4.5 More weak keys for the invariant from Section 6.4.3

This section shows that the invariant u from Section 6.4.3 is invariant under
264 additional weak keys, under the same modifications of the round constants.
Although 264 is small compared to 296, the result is interesting because it
provides an example of an invariant over four rounds which is not necessarily
invariant over two rounds.

Let u and v be as defined at the end of Section 6.4.3. For all κ in F4
2 with

κ2 = κ4 = 1, it holds that

Cκv = (−1)κ1+κ3/2 · (0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 1, 0, 0,−1,−1).

Let w = (−1)κ1+κ3Cκv. By Theorem 6.1, w⊗4 is an invariant of CM.
Furthermore, one can check that w is an eigenvector of CS.

Hence, there exist 232 keys k such that Ck v⊗16 = ±w⊗16 with w⊗16 invariant
under the round function. This observation can be used to show that u⊗16

defines an invariant for 296 +264 rather than 296 weak keys. Figure 6.4 illustrates
this. The top branch in Figure 6.4 corresponds to the discussion in Section 6.4.3
and holds assuming that k0,4i−2 = k0,4i = 1 for i = 1, . . . , 16. The bottom
branch corresponds to a different set of weak keys for which k0,4i−2 = k0,4i = 1
and k1,4i−2 = k1,4i = 0 for i = 1, . . . , 16. Hence, the 4-round invariant in
Figure 6.4 and its full-round extension hold for 296 + 264 weak keys.

u⊗16 u⊗16

v⊗16 u⊗16 v⊗16

w⊗16 w⊗16 v⊗16

u⊗16Ck0+k1

CR2 CR3

CR2 CR3

CR4

CR4

CR1

CR1

Figure 6.4: The invariant from Section 6.4.3 holds for 296 + 264 weak keys.
Dashed arrows indicate transitions for which an assumption on the round keys
is necessary.

6.5 Key-recovery attack on ten rounds of Midori-64

The purpose of this section is to demonstrate that the invariant for “almost
Midori-64” can be used even when the round constants are not modified. In
fact, the attack in this section is valid for any choice of round constants.
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Specifically, it will be shown that 10 rounds of Midori-64 are subject to a key-
recovery attack that requires 1.25·221 chosen plaintexts and has a computational
cost of 256 block cipher calls. The downside of this attack is that it is limited
to 296 out of 2128 keys. Note that Midori-64 has been analyzed in several prior
works. Lin and Wu [201] demonstrate meet-in-the-middle attacks on 10, 11
and 12 rounds of Midori-64. Chen and Wang [89] give a 10 round impossible
differential attacks. The downside of those attacks is that they cannot be
executed in practice. Table 6.4 provides an overview of attacks on Midori-64.

Table 6.4: Overview of key-recovery attacks on Midori-64. Time is measured by
the number of encryption operations. Memory is expressed in number of bytes.

Attack Rounds Time Memory Data Keys Ref.
Meet-in-the-middle 10 299.5 295.7 259.5 2128 [201]
Meet-in-the-middle 11 2122 292.2 253 2128 [201]
Meet-in-the-middle 12 2125.5 2109 255.5 2128 [201]
Impossible differential 10 280.8 268.1 262.4 2128 [89]
Invariant subspace 16 216 — 2 232 [154]
Nonlinear invariant∗ 16 215h — 33h 264 [266]
Integral/invariant 10 256 — 221.3 296 §6.5
∗ Attack on a mode of operation. It recovers 32h bits of h encrypted blocks.

The attack presented below is based on the observation that integral
properties [184] and invariants can often be combined. However, because
no assumptions on the round constants are made in this section, the invariant
can only be used once. In this regard the nonlinear invariant that was introduced
in Section 6.4.3 has an important advantage: with one assumption on the key,
it covers two rounds.

6.5.1 Nonlinear property for six rounds of Midori-64

This section shows that the two-round nonlinear invariant for Midori-64 can
be extended to a six round nonlinear property. When a key which does not
belong to the weak key class is added to the state, the vector corresponding to
a nonlinear invariant will be mapped to another vector which only depends (up
to a scale factor) on key bits that are already “known”, i.e. that had to be fixed
to obtain the invariant in the first place. This holds in both the forward and
backward direction, leading to a 6-round nonlinear property. This is illustrated
in Figure 6.5.
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R5 R6 R7 R8 R9 S

k0 ' γ7
g from (6.5)

f from (6.4)

h1

h2

Figure 6.5: Nonlinear property for six rounds of Midori-64. The notation “'” is
used to indicate equality in the second and fourth bits of every nibble of each
of its arguments.

The functions h1 and h2 in Figure 6.5 depend on the choice of the round
constants. Specifically, h1 depends on P−1(M(γ5 + γ7)) and h2 depends on
γ7 + γ9. For the purposes of this chapter, a detailed description of h1 is not
necessary. For h2, it holds that

h2(x1, . . . , x64) =
16∑

i=1
f(S(x4i−3, x4i−2, x4i−1, x4i) + γ7,i + γ9,i) .

In general, hj can be written in the form

hj(x1, . . . , x64) =
16∑

i=1
h(βj,2i,βj,2i+1)(x4i, x4i+1, x4i+2, x4i+3) , (6.6)

where βj is a constant in F32
2 depending on the round constants. In particular,

β2 consists of the second and fourth bits of every nibble of γ7 + γ9. For the
default choice of round constants of Midori-64, βj,2i = 0. Hence, only two
different Boolean functions can occur as terms in (6.6):

h(00)(x1, x2, x3, x4) = x2 + x4

h(01)(x1, x2, x3, x4) = x2x3x4 + x1x3x4 + x1x2x3 + x1x4 + x1 + x2 .

Since the functions h1 and h2 are balanced on every cell of the state, it holds
that

∑
x∈S hi(x) = 0 with S a set of state values such that every cell has the

saturated property. This makes it possible to combine integral cryptanalysis
with the 6-round nonlinear property described above.
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6.5.2 Integral property for four rounds of Midori-64

An integral attack on Midori-64 that is suitable for our purposes will now be
given. The following standard notation will be used: saturated cells (taking
all values an equal number of times) are denoted using the label “A”, constant
cells will be labeled by “C”. Subscripts are used to denote groups of values
which jointly satisfy the “A” property. Note that cells can be part of several
groups, e.g. a cell marked “Ai,j” is contained in groups i and j. The Midori-64
designers discuss the existence of a 3.5 round integral distinguisher. In fact,
one can see that a 4-round integral property2 exists. Note that the property is
nearly identical to the distinguisher discussed in Example 1.4, the difference
being that the property works better than expected for Midori-64. Potential
improvements using the division property or Chapter 5 are left as future work.

A0 C C C

C A0 C C

C C A0 C

C C C A0

A0 C C C

A0 C C C

A0 C C C

A0 C C C

R1 R2 · · ·
(Figure 6.7)

Figure 6.6: First two rounds of the integral property for four rounds of Midori.

The integral property is based on a set of chosen plaintexts such that the diagonal
cells take all possible values exactly once and all other cells are constant. After
one round, the same property then holds for the first column whereas all other
cells are constant. This is shown in Figure 6.6.

The effect of the remaining rounds is shown in Figure 6.7. Figure 6.7 shows that,
before the last application of M, any three distinct cells in a column jointly
satisfy the “A” property. This implies that all cells can be labeled “A” after
four rounds.

The derivation in Figure 6.7 starts by forming appropriate groups of cells which
are independent before the third round. Four (sometimes overlapping) groups
of such cells are indicated using “Ai”, i = 0, . . . , 3 in Figure 6.7. The maps S
and P preserve the groups. Furthermore, one can see that four new groups can
be obtained after the application of M. These groups can be chosen in such
a way that they are aligned in different columns of the state after P has been
applied. The four-round property then follows.

2If the zero-sum property can be used, this actually yields a 5-round property.



167 Block cipher invariants

C A1 A A2,3

A0 A2 C A1

A2,3 A0 A3 C

A1 C A A0

C A1 A1 A2

A2 A0 C A0

A3 A3 A2 C

A0 C A3 A1

C A2 A1 A2

A0 A1 C A0

A2 A3 A0 C

A1 C A3 A3

C A2 A3 A1

A0 A1 C A0

A2 A0 A2 C

A3 C A1 A3

C C C C

A3 A1 A1 A1

A2 A A2,3 A2,3

A0 A0 A0 A

C C C C

A2 A1 A0 A0

A0 A3 A2 A3

A1 A2 A3 A1

C C C C

A0 A2 A1 A0

A1 A3 A2 A2

A3 A0 A3 A1

C C C C

A2 A2 A3 A0

A1 A1 A1 A2

A3 A0 A0 A3

P ◦ S

A0 A1 A A2

A A0 A2 A3

A3 A A0 A1

A2 A3 A1 A

A0 A1 A3 A

A1 A A2 A3

A A2 A0 A1

A2 A3 A A0

A0 A A3 A2

A1 A0 A2 A

A3 A2 A A1

A A3 A1 A0

A A1 A3 A2

A1 A0 A A3

A3 A2 A0 A

A2 A A1 A0

M

A0 A1 A2 A3

A0 A1 A2 A3

A0 A1 A2 A3

A A A A

A0 A1 A2 A3

A0 A1 A2 A3

A A A A

A0 A1 A2 A3

A0 A1 A2 A3

A A A A

A0 A1 A2 A3

A0 A1 A2 A3

A A A A

A0 A1 A2 A3

A0 A1 A2 A3

A0 A1 A2 A3

P ◦ S

A A A A

A A A A

A A A A

A A A A

M

Figure 6.7: Last two rounds of the integral property for four rounds of Midori-64.
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6.5.3 Combination of the nonlinear and integral properties

The final attack can now be described. Figure 6.8 provides an overview. Let I
denote a set of plaintext/ciphertext pairs with the structure required by the
integral property from Figure 6.6. Then, due to the nonlinear property from
Figure 6.5, the following holds:
∑

(P,C)∈I
h2(C + k0 + k1) =

∑

(P,C)∈I
h1((R4 ◦ · · · ◦ R1)(P + k0 + k1)) = 0 . (6.7)

Hence, every set I defines a low-degree nonlinear polynomial equation in (part
of) k0 + k1. Given enough such equations, one observes that a Gröbner basis
for the ideal generated by these polynomials can be efficiently (within a second
on a regular computer) computed. Although computing Gröbner bases is hard
in general, it is easy in this case due to the fact that key bits from different
cells are never multiplied together.

Note that only those key bits which are involved in h2 in a nonconstant way
can be recovered by solving the system of polynomial equations. That is, the
number of key bits recovered is four times the number of nonlinear terms in (6.6).
For the default Midori-64 round constants, 40 key bits can be recovered. It was
observed that these bits are often uniquely determined given 40 equations. This
requires 40 · 216 = 1.25 · 221 chosen plaintexts. A more detailed analysis of the
data requirements is provided in Section 6.5.4.

The remaining 24 bits of k0 + k1 can be guessed, along with the 32 unknown
bits in k0. This requires 256 block cipher calls. Note that this additional work is
only necessary after it has been established that a weak key is used. Hence, an
attacker in the multi-key setting has a very efficient method to identify potential
targets.

R1 R2 R3 R4 R5 R6 R7 R8 R9 S

k0 ' γ7k0 + k1 k0 + k1

Integral property

Figure 6.8: Overview of the attack on 10 rounds of Midori-64.
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6.5.4 Detailed analysis of the data requirements

The data requirements of the attack are determined by the number of equations
that are necessary to recover the 40 bits of k0 + k1 that can occur as
indeterminates in (6.7). If the constant cells of each integral plaintext set
are selected independently and uniformly at random, then the probability that
the system of equations has a unique solution can be computed. Figure 6.9
provides an estimate of this probability based on a sample of 200 key-recovery
experiments.
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Figure 6.9: Probability that the system of equations for key-recovery has a
unique solution. The equations are constructed from (6.7) by selecting the
constant cells in the integral plaintext sets independently and uniformly at
random.

For 40 equations – i.e. 1.25 · 221 chosen plaintexts – Figure 6.9 shows that
the probability of recovering all 40 bits of the key is roughly 35%. With one
additional equation, a probability of nearly 60% is obtained.

Note that even if the system does not have a unique solution, typically only
a few additional bits of k0 + k1 will have to be guessed in the second phase
of the attack. In order to minimize the required number of chosen plaintexts,
additional equations may be constructed only when necessary.
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6.6 Key-recovery attack on MANTIS-4

This section presents an attack on the block cipher MANTIS [29], which is
closely related to Midori-64. Dobraunig, Eichlseder, Kales and Mendel give
a practical attack against MANTIS-5 in the chosen tweak setting [123]. This
attack has been extended to six rounds by Eichlseder and Kales [133]. The
attack presented in this section is limited to MANTIS-4, but the assumptions
about the capabilities of the attacker are different. The attacker is not allowed
to choose the tweak, but it is assumed that a weak tweak is used. It will be
shown that for every choice of the key, there are 232 (out of 264) weak tweaks.
When a weak tweak is used, the full key can be recovered from (on average)
346 chosen plaintexts and with a computational cost of approximately 256 block
cipher calls. If, in addition, 346 chosen ciphertexts for a single related tweak
are available, the computational cost reduces to roughly 218 block cipher calls.
Table 6.5 contains an overview of attacks on MANTIS.

Table 6.5: Overview of key-recovery attacks on MANTIS-r. Time is measured by
the number of encryption operations. ‘Tweaks’ is the number of weak tweaks.

Attack r Time Memory Data Tweaks Ref.
Truncated differential∗ 5 228 — 238 2128 [123]
Truncated differential∗ 6 253.5 — 253.5 2128 [133]
Zero-correlation/integral∗† 3/7 266.2 248.4 253.7 2128 [11]
Integral/invariant 4 256 — 346 296 §6.6.1
Integral/invariant∗ 4 218 — 692 296 §6.6.4

∗ These attacks rely on related tweaks.
† This attack applies to a version of MANTIS with an asymmetric number of rounds
in the inbound (3) and outbound (7) direction. Such attacks are not considered in
this thesis, but the techniques from this section could be used to obtain key-recovery
attacks for MANTIS-6/4.

Due to the similarity between the round functions of MANTIS and Midori-64,
the 2-round nonlinear invariant for Midori-64 also applies to MANTIS-4. In
fact, the reflection property enables extending the 6-round nonlinear property
of Midori-64 to eight rounds. Furthermore, the presence of a tweak allows
mounting a weak tweak rather than a weak key attack. This corresponds to a
significantly weaker adversarial model.
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6.6.1 Description of the attack

An overview of the attack is shown in Figure 6.10. As in the attack on Midori-64
from Section 6.5, a few initial rounds are covered by an integral property. Since
the nonlinear property extends over eight rounds for MANTIS, it suffices to use
a weaker integral property. Figure 6.11 shows the property that will be used. It
requires 16 chosen plaintexts.

R1 R2 R3 R4 S

M

SR−1
4R−1

3R−1
2R−1

1

σ σ σσ

g from (6.5)

f from (6.4)

h1

h2

t

k1 k1 k1 k1

α+ k1α+ k1α+ k1α+ k1

k′0 + k1 + t+ α

k0 + k1 + t

α+ k1 + σ3(t) ' c3

Integral property

Figure 6.10: Nonlinear property over eight rounds of MANTIS-4. The notation
“'” is used to indicate equality in the second and fourth bits of every nibble of
each of its arguments.
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Figure 6.11: Integral property for two rounds of MANTIS.
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The nonlinear property is similar to the property that was discussed in
Section 6.5, but slightly more complicated. Specifically, due to the tweak-
key schedule, the functions h1 and h2 can depend on the tweak. Like for
Midori-64, h1 and h2 can be written in the form

hj(x1, . . . , x64) =
16∑

i=1
h(βj,2i,βj,2i+1)(x4i, x4i+1, x4i+2, x4i+3) , (6.8)

where βj = (βj,1, . . . , βj,32) is a constant in F32
2 that possibly depends on the

tweak and the functions h(βj,2i,βj,2i+1) are given by

h(00)(x1, x2, x3, x4) = x2 + x4

h(11)(x1, x2, x3, x4) = x2x4 + x1 + x2 + x3

h(01)(x1, x2, x3, x4) = x2x3x4 + x1x3x4 + x1x2x3 + x1x4 + x1 + x2

h(10)(x1, x2, x3, x4) = x1x2x3 + x1x3x4 + x2x3x4 + x1x4 + x2x4 + x2 + x3 + x4 .

Note that all of these functions are balanced. The constant β1 consists of the
second and fourth bits of every nibble of α. For convenience, this will be denoted
by β1 ' α. For β2, we have β2 ' c1 + α+ k1 + σ(t). This implies that

β2 ' c1 + c3 + σ(t) + σ3(t) .

Let I denote a set of plaintext/ciphertext pairs such that the plaintexts have
the structure required by the integral property, then
∑

(P,C)∈I
h2(C + k′0 + k1 + t+ α) =

∑

(P,C)∈I
h1(R1(R2(P + k0 + k1 + t))) = 0 .

Hence, each set I corresponds to a low-degree polynomial equation in (part of)
the key. As in Section 6.5, a Gröbner basis for the ideal generated by these
polynomials can be efficiently computed.

As in the attack on Midori-64, only the key bits which are involved in h2 in a
nonconstant way can be recovered by solving the system of polynomial equations.
For simplicity, assume that the functions h(00), h(01), h(10) and h(11) all occur
as terms in (6.8) in the same proportion. In this case, the average number of
key bits that can be recovered by solving the system of polynomial equations is
equal to 40.3 It was observed that 40 equations are sufficient to extract 40 key
bits. This requires 24 · 40 = 640 chosen plaintexts.

3For some tweaks, many more key bits can be recovered, and for others only a small
number of key bits can be recovered. A detailed analysis is provided in Section 6.6.3.
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The remaining bits of the whitening key k′0 + k1 (24 bits on average) can then
be guessed, along with the 32 unknown bits of k1. For each such guess, it is
possible to compute k′0 (since k′0 + k1 is already known) and hence k0. No
additional plaintext/ciphertext pairs are necessary to carry out this process.
Hence, the work required for the entire key-recovery attack is then roughly 256

block cipher calls.

6.6.2 Reducing data requirements by overlapping integral sets

Figure 6.11 shows one possible integral property for two rounds of MANTIS,
but many alternatives exist. One example is shown in Figure 6.12. Since the
input sets for the integral properties in Figures 6.11 and 6.12 overlap for an
equal choice of the constant cells, the data requirements can be reduced.

For example, to obtain 40 distinct integral sets from only 316 chosen plaintexts,
one proceeds as follows. First, choose 28 plaintexts such that the first byte
of the state takes all possible values. This yields a total of 32 overlapping
integral sets of size 16: half of these correspond to the integral property in
Figure 6.11, the other half to that in Figure 6.12. For the eight remaining
integral sets, choose one of the already queried plaintexts and build the integral
set by letting the third cell take all possible values – this corresponds to yet
another integral property similar to that in Figures 6.11 and 6.12. Overall, this
requires 28 + 8 · 15 = 316 chosen plaintexts.

C A C C

C C C C

C C C C

C C C C

C A C C

C C C C

C A C C

C A C C

C A A C

C C A A

C A A A

C A C A

R1 R2

Figure 6.12: Alternative integral property for two rounds of MANTIS.

Note that the same technique can be applied to the attack on Midori-64 from
Section 6.5, but it only reduces the data requirements by 40 chosen plaintexts.
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6.6.3 Detailed analysis of the data requirements

As remarked in Section 6.6.1, the number of whitening key bits that can be
recovered depends on the value of the tweak. Specifically, it depends on the
value of β2 in (6.8). Recall that β2 consists of the second and forth bits of each
nibble of c1 + c3 + σ(t) + σ3(t). Indeed, every term of the form h(01) or h(10)

may contribute four unknowns to the system of equations in the key. A term
of the form h(11) contributes at most two unknown key bits, whereas h(00) is
linear and hence does not supply any key bits.

In Section 6.6.1, it was estimated that 40 bits of the key can be recovered.
This corresponds to the average value for a uniform random choice of round
constants. For a fixed choice of c1 and c3, the average number of recoverable
key bits can be computed as follows. Clearly, σ(t) + σ3(t) and t+ σ2(t) have
the same probability distribution when t is a uniformly distributed random
variable. Figure 6.13 illustrates the values of the nibbles of t+ σ2(t). The value
of two cells, corresponding to fixed points of σ2, is fixed whereas the other cells
are individually – but not jointly – uniformly distributed.

t1 t2 t3 t4

t5 t6 t7 t8

t9 t10 t11 t12

t13 t14 t15 t16

t3 t2 t11 t12

t7 t6 t15 t13

t4 t9 t10 t1

t8 t13 t14 t5

+ ∼

0

0

t σ2(t) t + σ2(t)

Figure 6.13: Illustration of the distribution of t + σ2(t) with t uniformly
distributed. The hatched cells are individually uniformly distributed, but their
joint distribution is not uniform.

Hence, the average number of recoverable key bits depends only on the part of
c1 + c3 corresponding to the two unhatched cells in the right part of Figure 6.13.
Specifically, since these cells contribute terms of the form h(01) and h(00), it
follows by linearity of expectation that the average number of key bits that can
be recovered equals 4 + 14 (2 + 1/2) = 39. Figure 6.14 shows a histogram of the
number of recovered key bits for 100000 tweaks sampled uniformly at random
(with replacement). Remark that the distribution is right-skewed. In particular,
while the mean number of recovered bits is 39, the median is in fact 40. The
probability that at least 40 key bits can be recovered is approximately 50.4%.
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Figure 6.14: Estimated probability distribution of the number of key bits that
can be recovered given a sufficiently large number of equations, for a randomly
chosen tweak.

Like for the attack on Midori-64, the data requirements of the attack depend
on the number of equations that are needed to uniquely recover the relevant
key bits. The analysis is similar to that in Section 6.5.4. Figure 6.15 shows
an estimate of the probability that the system of equations, when constructed
from uniform random (overlapping) integral sets, has a unique solution. If the
integral sets overlap, the probability of recovering all key bits is lower so that
an additional equation is typically necessary.

To recover all 40 bits of the key with a success probability greater than 50%, 42
equations suffice. This corresponds to 28 + 6 · 15 = 346 chosen plaintexts.

6.6.4 Improved attack using related tweak chosen ciphertexts

If a small number of additional chosen ciphertexts under a single related tweak
are available, then the computational cost of the attack can be significantly
reduced. Specifically, given 346 chosen ciphertexts, the key-recovery cost can be
reduced to 218 block cipher calls. The basic idea is to perform the attack from
Section 6.6.1 (without the brute-force phase) on the inverse cipher. An overview
of the inverse attack is shown in Figure 6.16. Remark that the condition on the
round key differs from that in Figure 6.10. Hence, in order to ensure that the
property works for the same key k1, a related tweak t′ must be used. The only
requirement on t′ is that

t′ ' t+ σ−3(α) ,



6.6 Key-recovery attack on MANTIS-4 176

40 41 42 43 44 450

25

50

75

100

Number of equations

Pr
ob

ab
ili

ty
of

un
iq

ue
so

lu
tio

n
[%

]

Without overlap
With overlap

Figure 6.15: Probability that the system of equations for key-recovery on
MANTIS-4 has a unique solution, estimated based on a sample of 200 key-
recovery experiments.

where the symbol “'” indicates equality in the second and fourth bits of every
nibble. Hence, there are 232 valid choices for the related tweak t′.

As in Section 6.6.1, an eight-round nonlinear approximation is combined with a
two round integral property. Each integral set I defines an equation

∑

(P,C)∈I
h′2(P + k0 + k1 + t′) = 0,

where h′2 is defined as in (6.8) but with a different constant β′2 ' β2 +α+σ−2(α).

Since the bits of β′2 corresponding to the unhatched cells in Figure 6.13 are zero,
the expected number of bits of k0 + k1 that can be recovered is the same as for
the forward attack. Remark that, in the forward attack, one recovers bits of
k′0 + k1 with k′0 = (k0 ≫ 1) + (k0 � 63) instead. One thus obtains a system of
linear equations in k0 and k1. By linearity of expectation, the average number
of equations is equal to 2 · 39 = 78. An estimate of the actual distribution of
the number of equations is given in Figure 6.17. Since k0 and k′0 are related by
an orthomorphism, the equations in the system are linearly independent.

In conclusion, given 346 chosen plaintexts and 346 chosen ciphertexts for a
related tweak, the full key can usually be recovered at a cost of 218 block cipher
calls. The cost of the Gröbner basis computations appears to be significantly
smaller than 218 encryption operations, but this may depend on the details of
the implementation.
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Figure 6.16: Attack on MANTIS-4 in the reverse direction. The notation “'” is
used to indicate equality in the second and fourth bits of every nibble of each
of its arguments.
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Figure 6.17: Estimated probability distribution of the number of key bits that
can be recovered given a sufficiently large number of equations, for a randomly
chosen tweak. Note that the distribution is more symmetric than the distribution
from Figure 6.14.
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7
Format-preserving encryption

This chapter develops distinguishing and message-recovery attacks on the format-
preserving encryption standards FEA (South-Korea) and FF3-1 (United States).
These attacks are based on multidimensional linear cryptanalysis – over Fn2 for
FEA and over a cyclic group Z/NZ for FF3-1. Their data- and time-complexities
are low enough to be a practical concern for some applications.

The results of this chapter were published at Crypto 2021 in the paper “Linear
cryptanalysis of FF3-1 and FEA” [41]. The text below is based on this paper, with
adaptations where this was necessary for consistency (Section 7.4 in particular).

7.1 Introduction

Format-preserving encryption enables the encryption of plaintext with a specific
format, while ensuring that the ciphertext has the same format. For example,
in some applications it is convenient to be able to encrypt nine-digit integers
(such as social security numbers) to nine-digit integers.

Several generic techniques such as cycle walking [32,67] can be used to transform
(tweakable) block ciphers into format-preserving ciphers. However, these
techniques are inefficient when there is a significant size difference between the
domain of the underlying block cipher and the target domain. Consequently,
a number of dedicated constructions based on small-domain tweakable Feistel
ciphers were introduced. The best known examples are the United States
standards FF1 and FF3-1 [129] (NIST SP800-38G rev. 1). The South-Korean
standards FEA-1 and FEA-2 [198] (TTAK.KO-12.0275) follow a similar design
but with lighter round functions.

Small-domain Feistel ciphers are known to be vulnerable to a number of generic
attacks. In a series of papers, Patarin [227–229] analyzed the security of r-
round Feistel ciphers with uniform random round functions. In particular,
Patarin [229, §8] describes a distinguisher with data and time complexity
Õ(Nr−4) for Feistel ciphers with domain size N2. At CCS 2016, Bellare, Hoang
and Tessaro [31] presented a message-recovery attack with a data complexity

179
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of Õ(Nr−2) or Õ(Nr−3) (to recover the left half of the message) queries.
Subsequent improvements were obtained by Hoang, Tessaro and Trieu [165].

The applicability of these attacks to FF3 in part motivated the US National
Institute of Standards and Technology (NIST) to revise the FF3 standard [129].
In particular, the revised standard FF3-1 includes the requirement that the
domain size must be at least one million, i.e. N ≥ 103. Furthermore, the
revision decreased the size of the tweak from 64 to 56 bits. This change was
introduced to prevent a powerful slide-type attack presented by Durak and
Vaudenay [127] at Crypto 2017 that was subsequently improved by Hoang et
al. [164] and Amon et al. [10]. These attacks were the consequence of a weakness
in the tweak-schedule of FF3 that is resolved by the changes in FF3-1.

This chapter develops new distinguishing and message-recovery attacks on small-
domain Feistel ciphers with alternating round tweaks. The attacks are based
on linear cryptanalysis, but go beyond standard methods in several ways. In
particular, the role of the tweak input is analyzed, properties of small uniform
random functions are exploited, and for FF3-1 linear cryptanalysis on the group
Z/NZ is used. Furthermore, the principle behind the message-recovery attacks
is novel.

If the round tweaks alternate between two values, as in FEA-1 and FF3-1, the
data and time complexity of these attacks is Õ(Nr/2−1.5). For FEA-2, which
has a different tweak schedule, distinguishing and message-recovery respectively
require Õ(Nr/3−1.5) and Õ(Nr/3−0.5) data and time. The new attacks are not
applicable to FF1. For many instances of FF3-1, FEA-1 and FEA-2, the data
and time complexity are well within the reach of real-world adversaries.

The proposed distinguishers only need weak access to the block cipher: it is
sufficient to have ciphertext-only access to encryptions of an arbitrary constant
message under many half-constant tweaks. In fact, access to the complete
ciphertext is not necessary. The message-recovery attacks follow the security
model introduced by Bellare et al. [31]. Specifically, given the encryption of
a secret message and a known message with the same right-hand side under
Õ(Nr/2−1.5) tweaks, the attack recovers the left half of the secret message.
With Õ(Nr/2−0.5) queries, full messages can also be recovered. For FEA-1, the
message-recovery attack can be used to set up a key-recovery attack. If q is the
concrete data cost of the left-half message-recovery attack, then the key-recovery
attack requires less than 16d8/ log2Ne q + 8q data and time equivalent to at
most 269/N + 16d8/ log2Ne q + 8q evaluations of FEA-1.

Table 7.1 summarizes the cost of the main attacks from the literature and
some of the new attacks proposed in this chapter. The advantage of a message-
recovery attack is defined as the maximum value of |PS − PF|, where PS is
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Table 7.1: Summary of attacks on FEA-1, FEA-2 and FF3-1. The costs in the top
half of the table are up to polylogarithmic factors in N (all of which are small
in practice). Time is expressed in encryption operations. Memory requirements
are small for all attacks. All of the message-recovery attacks listed in this table
recover the left half of a message.

Data Time Adv. Ref.

Generic

Distinguisher

Nr−4 Nr−3 Constant [126]
Nr−4 Nr−4 Constant [229]
Nr/2−1 Nr/2−1 Constant §7.3†

Nr/2−1.5 Nr/2−1.5 Constant §7.4†

Nr/3−1 Nr/3−1 Constant §7.3‡

Nr/3−1.5 Nr/3−1.5 Constant §7.4‡

Message recovery
Nr−3 Nr−3 Constant [31, 165]
Nr/2−1.5 Nr/2−1.5 Constant §7.5†

Nr/3−0.5 Nr/3−0.5 Constant §7.5‡

FEA-1
N = 16, r = 12

Distinguisher
222 222 0.1 §7.3
217 217 0.1 §7.4
222 222 0.6 §7.4

Message recovery 217 217 0.1 §7.5
224 224 0.6 §7.5

FEA-2
N = 16, r = 18

Distinguisher
220 220 0.1 §7.3
217 217 0.1 §7.4
221 221 0.6 §7.4

FF3-1
N = 103, r = 8

Distinguisher
229 229 0.1 §7.3
223 223 0.1 §7.4
226 226 0.6 §7.4

Message recovery 224 224 0.1 §7.5
227 227 0.6 §7.5

† For round tweaks that alternate between two values, as in FEA-1 and FF3-1.
‡ For round tweaks that alternate between three values, as in FEA-2.
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the probability that the target message is not discarded when the number of
candidates is narrowed down to a fraction PF of the total number [31,249].

The bottom part of the table reports concrete costs for the smallest instances
of FEA-1, FEA-2 (N = 16) and FF3-1 (N = 103). Detailed cost-estimates
for previous attacks on the same instances are not always available, but the
improvement is substantial. For example, the attacks on FF3-1 with N = 103

require data and time comparable to previous attacks for N = 25 [31, 165]
that led to the requirement N ≥ 103 . The numbers in Table 7.1 have been
experimentally verified by performing each attack many times. Source code to
reproduce this is available online1. Further experiments and cost calculations
are given in the indicated sections.

The basic idea behind the attacks is introduced in Section 7.3: it is shown that
there exists a linear trail through FEA-1 (and similarly for FEA-2) with high
correlation. The novelty of this trail is the fact that it requires considering the
tweak as a proper part of the input of the cipher. An analogous linear trail
is then obtained for FF3-1, but using linear cryptanalysis on the cyclic groups
Z/NZ instead of Fn2 .

Section 7.4 combines the linear approximations identified in Section 7.3 to obtain
multidimensional linear approximations. These approximations are subsequently
used to construct a χ2-distinguisher. The formalism of multidimensional linear
cryptanalysis is applied to justify the attack and to obtain initial estimates of
the data complexity. Finally, Section 7.5 shows how the χ2-distinguisher can
be turned into a message-recovery attack. Each attack comes with a detailed
analysis of the advantage and data complexity, and an experimental verification
of the theoretical analysis.

Response to the attacks. In December 2020 – several months prior to the
publication of the results in this chapter – both NIST (for FF3-1) and ETRI (for
FEA-1 and FEA-2) were notified about these attacks. Both parties acknowledged
the attacks and indicated their intention to revise their standards. Modifying
the tweak schedule seems to be the most promising approach to thwart the
attacks. In April 2021, I also submitted a comment to ISO SC27/WG2 as the
standardization of format-preserving encryption was being considered at that
time. This contributed to the decision to cancel this standardization project.

At the time of writing, NIST did not yet revise SP800-38G.
1http://tim.cryptanalysis.info/fpe

http://tim.cryptanalysis.info/fpe
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7.2 FEA and FF3-1

The attacks in this chapter are applicable to tweakable small-domain Feistel
ciphers with alternating round tweaks. The South-Korean format-preserving
encryption standards FEA-1 and FEA-2 [198] and the NIST standard FF3-1 [129]
all follow such a design.

Figure 7.1 depicts two rounds of the overall structure of FEA-1 and FF3-1. For
simplicity, it will be assumed that both branches have the same size. In both
designs, the tweak is divided into two equal halves, which will be denoted by
TL and TR for convenience. A crucial property that will be exploited by the
new attacks is that the round tweak alternates between TL and TR. The round
functions F1,F2, . . . can nevertheless be arbitrary.

As shown in Figure 7.1a, FEA-1 is a regular Feistel cipher over Fm2 ⊕ Fm2 with
m = log2N . For 128 bit keys, it has a total of 12 rounds. The tweaks TL
and TR consist of 64 −m bits. The round functions Fi are truncations of a
two-round SHARK-like construction (see Section 1.3.2), but can be considered
to be uniform random functions for all attacks discussed in this chapter except
for the key-recovery attack in Section 7.6. The necessary details of the round
function will be reproduced in Section 7.6.

F1

TL

F2

TR

(a) FEA-1.

F1

TL

F2

TR

(b) FF3-1.

Figure 7.1: Two rounds of a tweakable Feistel cipher with alternating round
tweaks.

The design of FEA-2 is very similar to that of FEA-1. The main difference is
that it uses three distinct round tweaks (repeating with period three), one of
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which is constant. In addition, for FEA-2, both tweaks have a length of 64 bits
and the number of rounds is 18 for 128 bit keys.

FF3-1 is an eight-round Feistel cipher over Z/NZ⊕Z/NZ. The round functions
F1,F2, . . . are defined as truncations of AES with the round tweak and a unique
round counter as the input; the details are not important for this work as these
functions will be modelled as uniform random. The tweaks TL and TR are
bitstrings of length 28.

7.3 Linear distinguishers

In this section, linear distinguishers for FEA-1, FEA-2 and FF3-1 are introduced.
Since the attacks on FEA-1 and FEA-2 are based on ordinary F2-linear
cryptanalysis, these are described first in Section 7.3.1. Section 7.3.2 then
transfers these results to Feistel ciphers defined over Z/NZ. In both cases, the
analysis only relies on the theory of one-dimensional trails that was described
in Section 3.3. Finally, the data complexity of the attacks is analyzed in detail
and verified experimentally in Section 7.3.3.

7.3.1 FEA-1 and FEA-2

At first sight, both FEA-1 and FEA-2 seem to be robust against linear
cryptanalysis, especially when their round functions F1,F2, . . . are replaced
by uniform random functions. The key observation behind the attacks in this
chapter is that this is not the case when (part of) the tweak is considered as a
proper part of the input.

Figure 7.2 shows linear trails over two rounds of FEA-1 and three rounds of
FEA-22. As in Chapter 6, the group Fn2 is identified with its dual so that trails
can be represented by sequences of masks rather than sequences of characters.
In Figure 7.2, the tweak TL is an arbitrary constant and TR is considered to
be a variable part of the input. Note that the tweak TR is not active, so it
need not be known to perform the attack. The idea behind these trails is
that the absolute correlation of a linear approximation over the round function
Fi (chosen uniformly at random) exceeds 1/

√
N = 2−m/2 with fairly high

probability. This becomes meaningful when the tweak is included in the input,
because the domain of the function which maps the tweak and the plaintext to
the ciphertext is large. Indeed, the correlation of linear approximations over a
random function with the same input size (including TR of length 64−m) as

2I thank Dongyoung Roh for bringing the trails with u 6= v to my attention.
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FEA-1 is centered around zero with a standard deviation of 2−32−m/2. More
specifically, we have the following result.

Theorem 7.1 (Daemen and Rijmen [106]). Let c denote the correlation of
a nontrivial linear approximation of a uniform random function Fn2 → Fm2 .
The random variable 2n−1(c+ 1) is binomially distributed with mean 2n−1 and
variance 2n−2. In particular3, as n→∞, the distribution of 2n/2c converges to
the standard normal distribution N (0, 1).

F1

TL
u 0

0u

0 u
F2

00
TR

u 0

(a) Two-round trail for FEA-1.

F1

0u 0
vu

v u
F2

TL

uv

0 v
F3

TR

00

v 0

(b) Three-round trail for FEA-2.

Figure 7.2: Linear trails for FEA-1 and FEA-2. The tweak TR is considered part
of the input and the value of TL should be fixed.

Let r ≥ 2 be an even integer. The correlation of the r-round trail from
Figure 7.2a is equal to c =

∏r/2
i=1 ci, where ci ∼ N (0, 1/N) holds asymptotically

due to Theorem 7.1. The random variables ci will be assumed to be independent,
which follows for instance from the strong assumption that the round functions
F1,F3 . . .Fr−1 are independent. One can verify that the other trails through
FEA-1 and FF3-1 have negligible correlation.

The data complexity of a constant-advantage linear distinguisher based on an
approximation with correlation c is Θ(1/c2). In this case, the correlation varies

3This result is a useful approximation even when n is small (for example, when n ≥ 8).
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strongly with the key so this result can not be applied directly to estimate the
data complexity. A commonly used heuristic estimate is given by 1/Ec2, where
Ec2 is the average squared trail correlation for a uniform random key. For FEA-1,
this yields 1/Ec2 = Nr/2. The data complexity is analyzed in considerably
more detail in Section 7.3.3.

For FEA-2 with r divisible by three, the expected squared correlation of each
trail is equal to N−2r/3. However, the number of trails for a given choice
of input and output masks is (N − 1)r/3−1. Recall that the correlation of a
linear approximation is equal to the sum of the correlations over all possible
trails. Hence, since the trails in Figure 7.2b are indeed dominant, the sum c
of the correlations of these trails is a good estimate for the correlation of the
corresponding approximation. Since the covariance between the correlations
of distinct trails is zero for independent uniform random round functions, it
follows that

1/Ec2 = N2r/3/(N − 1)r/3−1 ∼ Nr/3+1.

The fact that the covariance terms are zero is somewhat nontrivial, but it can be
easily deduced from the definition of correlation for a uniform random function.
Neglecting the covariance between the correlation of different trails is, in general,
inaccurate. Finally, note that any other trail through FEA-2 necessarily has a
much smaller average squared correlation.

Before continuing with the analysis of FF3-1, a simple but significant
improvement to the correlation of the aforementioned linear approximation
should be pointed out. If the right part of the plaintext is fixed to an arbitrary
constant, then after two rounds the left branch of the state is equal to the left
part of the plaintext up to addition by some constant. Consequently, the first
two rounds can be effectively skipped. This decreases the data complexity by a
factor N to Nr/2−1 for FEA-1. By fixing both halves of the plaintext, the first
three rounds of FEA-2 can similarly be avoided. In addition, since the input mask
is then no longer fixed, the number of trails within one approximation increases
to (N − 1)r/3. Hence, the resulting data complexity estimate becomes Nr/3−1.
A more detailed estimate of the data complexity is given in Section 7.3.3.

7.3.2 FF3-1

The analysis of FF3-1 proceeds analogously to that of FEA-1, but with linear
cryptanalysis over the additive group Z/NZ rather than Fm2 . An iterative
two-round trail is shown in Figure 7.3. In the figure, ψ denotes an arbitrary
nontrivial character of Z/NZ and 1 is the trivial character, i.e. 1(x) = 1 for all
x in Z/NZ.
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F1

TL
ψ 1

1ψ

1 ψ
F2

TR
11

ψ 1

Figure 7.3: Iterative two-round trail for FF3-1. The tweak TL is fixed.

In order to characterize the correlation of this trail, an analog of Theorem 7.1 is
required. This is provided by Theorem 7.2 below. Recall that a complex-valued
random variable z has a standard complex normal distribution CN (0, 1) if
its real part <{z} ∼ N (0, 1/2) and its imaginary part ={z} ∼ N (0, 1/2) are
independent random variables.
Theorem 7.2. Let G and H be finite commutative groups and let c denote the
correlation of a nontrivial linear approximation of a uniform random function
G → H corresponding to non-real characters. The correlation c has mean
zero and variance 1/|G|. Furthermore, as |G| → ∞, the distribution of

√
|G| c

converges to the standard complex normal distribution CN (0, 1).

Proof. Recall that a linear approximation corresponds to a pair of group
characters (ψ, χ). The random variable c can be written as

c = 1
|G|

|G|∑

i=1
ψ(xi)χ(yi) ,

where x1, . . . , x|G| are the elements of G and y1, . . . ,y|G| are independent
uniform random variables on H. The mean of c is zero, since Eχ(yi) = 0
by the orthogonality relations for group characters. In addition, it follows
from E|χ(yi)|2 = 1 that E|c|2 = 1/|G|. Finally, the convergence to a normal
distribution follows from the central limit theorem for the sum of independent
identically distributed random variables.

By Theorem 7.2, the average squared correlation of the r-round trail from
Figure 7.3 is equal to N−r/2. As in the case of FEA-1, the right part of the
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plaintext can be fixed in order to obtain a trail with average squared correlation
N1−r/2. This gives a corresponding data complexity estimate of Nr/2−1.

7.3.3 Cost analysis and experimental verification

As mentioned in Sections 7.3.1 and 7.3.2 above, the data complexity of a
distinguisher based on a linear approximation with correlation c is roughly
1/|c|2. By heuristically plugging in the average squared trail correlation,
the approximation 1/E|c|2 was obtained. This resulted in an estimated data
complexity of Nr/2−1 for FEA-1 and FF3-1 and Nr/3−1 for FEA-2. This section
analyzes the data complexity in more detail, along with the advantage achieved
by the distinguisher. Broadly speaking, the detailed analysis confirms the
heuristic estimates from Sections 7.3.1 and 7.3.2.

The distinguisher performs a hypothesis test, with null-hypothesis that the data
comes from an ideal tweakable block cipher and alternative hypothesis that
the data comes from the real cipher. If the absolute value of the estimated
correlation exceeds a predetermined threshold, then the null-hypothesis is
rejected. Like any hypothesis test, linear distinguishers allow for a trade-off
between success probability PS and false-positive rate PF. Both probabilities
are determined by the threshold parameter t. The distinguisher is successful
if the estimated correlation exceeds t√q when interacting with the true block
cipher after q queries. If the estimated correlation exceeds this threshold for an
ideal tweakable block cipher, then a false-positive occurs. Note that PS(t) and
PF(t) are key-averaged quantities.

Figure 7.4 depicts the estimates of the maximum advantage maxt |PS(t)−PF(t)|
which are derived below. Importantly, for large N , the curve is essentially
independent of N . This will be shown below. The red dots correspond to
experimental verifications of the estimates for full-round instances of FEA-1,
FEA-2 and FF3-1. Each point corresponds to 1024 (FEA-1 and FF3-1) or 512
(FEA-2) evaluations of the distinguisher. For FF3-1, the experiments were
performed for N = 100 < 1000 to limit the computational cost. The verification
of the more efficient χ2-distinguishers in Section 7.4 will be performed for
N = 1000.

The false-positive rate is easily computed. Assume the correlation is estimated
using q independent queries. If the input space is sufficiently large4, then
by Theorems 7.1 and 7.2 the variance of the ideal correlation is negligible.
Hence, if the number of queries q is moderately large, then the estimated
correlation ĉideal is approximately distributed as N (0, 1/q) for FEA-1 and FEA-2

4Relative compared to the required number of queries q.
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Figure 7.4: Theoretical and experimentally observed maximum advantage of
the linear distinguishers for full-round FEA-1, FEA-2 and FF3-1. The error bars
correspond to 95% Clopper-Pearson confidence intervals.
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or CN (0, 1/q) for FF3-1. The false-positive rate is then

PF(t) = Pr [|ĉideal| ≥ t/
√
q] ≈ 1− χν(

√
νt),

where χν is the cumulative distribution function of the χ-distribution with ν
degrees of freedom. For FEA-1 and FEA-2, ν = 1 since c is real. For FF3-1,
ν = 2.

The calculation of the success rate PS is more complicated, because the absolute
correlation |creal| is not as strongly concentrated around its mean. Let ĉreal
denote the estimated correlation for a particular choice of the key. If the
underlying correlation for this key is equal to creal, then ĉreal is approximately
distributed as N (creal, 1/q) for FEA-1 and FEA-2 or CN (creal, 1/q) for FF3-1
if q is large enough and c2real is much smaller than one. The average success
probability can be approximated as

PS(t) ≈ E
creal

Pr [|zν − creal
√
q| ≥ t] ,

where creal is the trail correlation assuming uniform random round functions
and zν a standard (complex if ν = 2) normal random variable. To compute
the average with respect to creal, a Monte-Carlo approach was used. The
implementation can be found online5. Importantly, the success probability
curve (and consequently the maximum advantage) has essentially the same
shape for all sufficiently large values of N . Indeed, by Theorems 7.1 and 7.2,
the distribution of the round correlations converges to a (complex) normal
distribution for large N . Hence, for q0 = 1/E|creal|2, the distribution of creal

√
q0

will be approximately the same for all large values of N . Consequently, the
success probability curves tend to a constant function of q/q0.

7.4 χ2-distinguishers

This section introduces additional distinguishers on FEA-1, FEA-2 and
FF3-1, based on Pearson’s χ2-test for goodness-of-fit between distributions.
Vaudenay [274] proposed χ2-distinguishers as a method for distinguishing non-
uniform distributions in cryptanalysis when precise knowledge about these
distributions is lacking.

The distinguishers in Section 7.3 are based on individual linear approximations.
A natural improvement to these attacks is to exploit all approximations
simultaneously. Multidimensional linear cryptanalysis provides a convenient
framework to describe such attacks.

5http://tim.cryptanalysis.info/fpe

http://tim.cryptanalysis.info/fpe
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As shown in Section 3.4.2 in general and in Section 7.4.2 below for FEA-1 and
FF3-1 in particular, the existence of a multidimensional linear approximation
implies that a particular probability distribution related to the ciphertext is
highly non-uniform. Pearson’s χ2-test can then be used to verify this property,
resulting in a distinguisher.

Sections 7.4.1 and 7.4.2 explain the distinguisher in detail. The data complexity
is estimated and experimentally verified in Section 7.4.3.

7.4.1 Multidimensional linear approximations

As discussed in Chapter 3 and Section 3.4.2 in particular, a multidimensional
linear approximation consists of a pair of vector spaces that are spanned by
subgroups of characters.

To obtain a uniform description of the attacks on FEA-1, FEA-2 and FF3-1,
denote the half-domain by D and the space of tweaks TR by T . The ciphertext
space is then H = D⊕D. The input space G is either D⊕T or T , depending on
whether or not the left half of the plaintext is kept fixed (the right half always
is). Let F : G → H be the mapping from the input space to the ciphertext
space corresponding to the cipher.

Any character ψ of H ⊕ G uniquely determines a linear approximation of
the cipher. Specifically, the restriction of ψ to H corresponds to the output
character of the approximation, and the restriction to G corresponds to the
complex conjugate of the input character. The need for complex conjugation is
due to technical reasons. Let Z1 be the set of all such characters ψ corresponding
to the linear approximations that were investigated in Section 7.3. This choice
of notation hints at the fact that Z1 is the annihilator (Definition 3.4) of a
subgroup Z of H ⊕G. This will be motivated in Section 7.4.2. Concretely, with
D̂ the group of characters of the domain, let

Z1 =





{
ψ : (yL, yR, xL, TR) 7→ χ(xL)χ(yL) | χ ∈ D̂

}
for FEA-1 and FF3-1,

{
ψ : (yL, yR, TR) 7→ χ(yL) | χ ∈ D̂

}
for FEA-2.

Note that for all three ciphers, Z1 is a group under pointwise multiplication
of functions. Hence, the Z1 spans the output space of a multidimensional
linear approximation of the function F̄ : x 7→ (F(x), x). Specifically, one has
the multidimensional linear approximation (U, V ) with U = Span{1} and
V = Span{Z1}. Finally, let c : Z1 → C be a function that assigns to a group
character ψ in Z1 the correlation c(ψ) of the corresponding linear approximation.
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As discussed in Examples 3.11 and 3.12, the data complexity of an optimal
distinguisher based on a multidimensional linear approximation is inversely
proportional to the capacity of the approximation, which is equal to

‖〈V,U〉F̄‖2fr − 1 =
∑

ψ 6=1
|c(ψ)|2,

where the sum is over all nontrivial characters in Z1. However, as pointed out
in Section 7.3, the correlations c(ψ) are heavily key-dependent and this will
affect the optimal data complexity. Nevertheless, by linearity of expectation, it
is easy to compute the key-averaged capacity:

E
∑

ψ 6=1
|c(ψ)|2 ≈

{
N2−r/2 for FEA-1 and FF3-1,
N2−r/3 for FEA-2.

The above calculation suggests a data complexity of Nr/2−2 for FEA-1 and
FF3-1 and Nr/3−2 for FEA-2. However, as will be shown below, this is too
optimistic because the result that relates the capacity to the data complexity of
an optimal distinguisher assumes that the correlations c(ψ) are known exactly.

The multidimensional linear approximation can be turned into a distinguisher
by directly estimating the capacity. It will be shown in Section 7.4.3 that
the data complexity of this approach can be heuristically estimated as√
N/
∑
ψ 6=1 E|c(ψ)|2. However, there exists an equivalent but more direct

distinguisher in terms of Pearson’s χ2-statistic.

7.4.2 Distinguisher based on Pearson’s χ2 statistic

Pearson’s χ2-statistic can be used as a measure of goodness-of-fit between an
estimated (empirical) probability distribution p̂ : X → [0, 1] and the uniform
distribution on X. In this case, the χ2-statistic with q samples satisfies

χ2/q =
∥∥∥∥∥p̂−

1

|X|

∥∥∥∥∥

2

X

,

where ‖ · ‖X is the Euclidean norm scaled by
√
|X| and 1 the indicator function

of X. The χ2-distinguisher succeeds in identifying the real cipher when the χ2-
statistic exceeds some threshold. Indeed, as q →∞, the estimated distribution p̂
tends to the true distribution p and χ2/q tends to ‖p−1/|X|‖2X . In particular, if
the tested distribution is uniform, then χ2/q tends to zero as q →∞. Statistical
aspects will be discussed in Section 7.4.3.
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The existence of a strong multidimensional approximation implies that a
probability distribution related to the plaintext and ciphertext is highly non-
uniform. Specifically, as in Example 3.10, it holds that

V = Span
{
Z1} = Span

{
1z | z ∈ (H ⊕G)/Z

}
.

Since 1z = δz ◦ PZ with PZ(x) = x + Z, the relevant distribution is that of
PZ((F(x),x)) = (F(x),x) mod Z with x uniform random on G. For FEA-1 and
FEA-2, Z can be taken as the orthogonal complement of the F2-vector space
consisting of the masks in the multidimensional linear approximation. For both
FEA-1 and FF3-1, the right half of the plaintext is fixed and reduction modulo
Z corresponds to taking the difference of the left half of the ciphertext and the
plaintext. More explicitly, if D is the half-domain of the cipher and T the space
of half-tweaks TR, then H = D ⊕D, G = D ⊕ T and

Z = {(yL, yR, xL, TR) ∈ D ⊕D ⊕D ⊕ T | yL − xL = 0}.
For FEA-2, the plaintext is completely fixed, so G = T . Consequently, reduction
modulo Z amounts to truncating the ciphertext to its left half.

In Section 7.4.1, the Frobenius norm of 〈V,U〉F̄ was computed in the Fourier
basis. Relative to the basis of functions 1z/|Z1| with z in (H⊕G)/Z, it is given
by the squared Euclidean imbalance of PZ((F(x),x)) with x uniform random
on G. This was worked out explicitly in Example 3.12. Combining both results
shows that if X = (H ⊕G)/Z and p(z) = Pr[(F(x),x) ≡ z mod Z], then

∥∥∥∥∥p−
1

|X|

∥∥∥∥∥

2

X

=
∑

ψ 6=1
|c(ψ)|2 , (7.1)

As the number of queries q increases, the empirical distribution approaches p
and the χ2/q statistic approaches the value

∑
ψ 6=1 |c(ψ)|2. This shows that the

χ2-statistic can be interpreted as an alternative method to estimate the sum
of the squared correlations |c(ψ)|2 for ψ 6= 1 in Z1. As discussed in the next
section, this result suggests that the data complexity of the χ2-distinguisher can
be heuristically estimated as

√
|X|/∑ψ 6=1 E|c(ψ)|2 with c(ψ) the correlation

for a uniform random key and |X| = N for the choices of Z discussed above.

Using the estimates of
∑
ψ 6=1 E|c(ψ)|2 from Section 7.4.1, the data complexity

of the χ2-distinguishers for r-round FEA-1 and FF3-1 can be estimated as
Nr/2−1.5. For FEA-2, the data complexity estimate becomes Nr/3−1.5. This is
a significant improvement over the linear attacks from Section 7.3. Furthermore,
by considering smaller choices of the group Z, it is still possible to set up
χ2-distinguishers even if only part of the ciphertext is available.

Finally, it is worthwhile making the link between p(z) and c(ψ) explicit. This
was not necessary for the above discussion, but it will be useful in Section 7.5.
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The following theorem generalizes a classical result for vector spaces G and H
over F2 [17,162]. Up to scaling, the left-hand side contains the coordinates of
〈V,U〉F̄ relative to the basis functions 1z with z in (H ⊕ G)/Z, whereas the
right-hand side contains the coordinates relative to the basis Z1.

Theorem 7.3. Let F : G→ H be a function between finite commutative groups
G and H. Let Z be a subgroup of the group H ⊕ G and let Z1 be the group
of characters of H ⊕ G with kernel containing Z. If x is a uniform random
variable on G, then

Pr [(F(x),x) ≡ z mod Z] = 1
|Z1|

∑

ψ∈Z1

CF
ψH ,ψG

ψ(z) ,

where ψH is the restriction of ψ to H and ψG similarly for G.

Proof. Note that ψ(z) is well-defined for every z in (H⊕G)/Z, because kerψ ⊇
Z. The relation between 1z and 1Z1 is given by the Fourier transformation:

1̂z(ψ) =
(
FH⊕G1z

)
(ψ) = |Z|ψ(z)1Z1(ψ) .

Let F̄(x) = (F(x), x). Since FH⊕G is unitary up to scaling and FG1 = |G|δ1,
∣∣{x ∈ G | F̄(x) ∈ z

}∣∣ =
〈
1z, T

F̄1
〉

= 1
|H|

〈
1̂z, C

F̄δ1
〉

= |Z||H|
∑

ψ∈Z1

ψ(z)C F̄
ψ,1 .

Dividing by |G| and using |Z1| = |H ⊕G|/|Z| yields

Pr [(F(x),x) ≡ z mod Z] = |Z|
|H ⊕G|

∑

ψ∈Z1

ψ(z)C F̄
ψ,1 = 1

|Z1|
∑

ψ∈Z1

ψ(z)CF
ψH ,ψG

,

The result follows from C F̄
ψ,1 = CF

ψH ,ψG

, which is due to ψ◦ F̄ = (ψH ◦F)ψG.

With the notation from above, Theorem 7.3 shows that

p(z) = 1
|Z1|

∑

ψ∈Z1

c(ψ)ψ(z) .

Equivalently, p is the inverse Fourier transform of c on the group (H ⊕G)/Z.

7.4.3 Cost analysis and experimental verification

As in Section 7.4.2, consider the χ2-statistic for the empirical probability
distribution of (F(x),x) modulo Z, where x is a uniform random input
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(consisting of the tweak TR and possibly the right half of the plaintext). Before
going into detailed calculations of the advantage of the distinguisher, the
heuristic estimate that was used in the previous section will be derived.

Let χ2
ideal be the χ2-statistic when the true distribution is uniform random.

This is a good model for the distribution that would be observed for an ideal
tweakable block cipher. Likewise, denote the χ2-statistic for the real cipher
by χ2

real. It is well known that χ2
ideal follows a χ2 distribution with N − 1

degrees of freedom when the number of queries q is sufficiently large. Hence,
Eχ2

ideal = N − 1. For χ2
real, the equality (7.1) yields

Eχ2
real = q

∑

ψ 6=1
E |ĉ(ψ)|2

where the average is taken with respect to a uniform random key and the
random empirical correlations ĉ(ψ) based on q samples. The expected value
of |ĉ(ψ)|2 for a fixed key is approximately equal to |c(ψ)|2 + 1/q when |c(ψ)|2
is negligible compared to one. For a uniform random key, the true correlation
c(ψ) is itself a random variable and hence

Eχ2
real ≈ N − 1 + q

∑

ψ 6=1
E |c(ψ)|2 ≈ Eχ2

ideal + q
∑

ψ 6=1
E |c(ψ)|2 .

By Theorem 1.1, to obtain a low false-positive rate, the decision threshold t
should be larger than the standard deviation of χ2

ideal. That is, t ≥
√

2(N − 1).
Hence, a constant advantage can be expected when Eχ2

real − Eχ2
ideal �

√
N .

Equivalently,
q �

√
N
/∑

ψ 6=1 E|c(ψ)|2 .
Since the main purpose of this section is to obtain accurate estimates of the
advantage for concrete values of N , the above heuristic reasoning will not be
formalized here.

It is relatively easy to estimate the average false-positive rate PF(t) of the
χ2-distinguisher. Indeed, as mentioned above, the statistic χ2

ideal follows a χ2

distribution with N − 1 degrees of freedom when the number of queries q is
sufficiently large. Consequently,

PF(t) = Pr [χ2
ideal ≥ t] ≈ 1− χ2

N−1(t).

The average success-probability PS(t) is significantly harder to compute. If χ2
real

denotes the χ2-statistic for a random sample and a random key, then

PS(t) = Pr [χ2
real ≥ t].
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To accurately estimate this probability, a Monte-Carlo approach was used to
sample from χ2

real. Sampling from the correlation distribution can be done
efficiently, provided that the dominant trail approximation is used. A detailed
exposition of the sampling strategy is beyond the goals of this chapter, but an
implementation is provided online6.

Figure 7.5 shows the estimated maximum achievable advantage for the χ2-
distinguishers for full-round FEA-1 and FEA-2 with N = 16 and FF3-1 with
N = 1000. The red dots correspond to experimental verifications of the
advantage by performing each attack 512 times. These figures confirm the rough
data complexity estimate of Nr/2−1.5.

7.5 Message recovery attacks

In this section, it is shown how the χ2-distinguishers from Section 7.4 can
be turned into message-recovery attacks. These attacks should be situated
in the message-recovery security model of Bellare et al. [31]. Informally, this
model assumes that the adversary is allowed to (non-adaptively) query the
encryption of many distinct tweak-message pairs related to a secret message.
The distinctness requirement is sufficient to ensure that a trivial guessing attack
cannot achieve a nontrivial advantage.

Section 7.5.1 shows how the left-half of a message encrypted using FEA-1 or
FF3-1 can be recovered. The assumptions of the attack are similar to previous
work: the attacker is given the encryption of a target message and a second
message with the same right half under many tweaks. Contrary to previous
work [31,165], it is not necessary that both messages are encrypted under exactly
the same set of tweaks. Instead, part of each tweak (TL) must be constant.
The data complexity of the attack is computed and experimentally verified in
Section 7.5.2.

With more data, it is also possible to recover the right half of messages. This is
discussed in Section 7.5.3. When combined with the left-half recovery attack,
this results in recovery of entire messages. The same idea is used to extend the
attacks to FEA-2.

7.5.1 Left-half recovery for FEA-1 and FF3-1

Consider FEA-1 or FF3-1 with a fixed plaintext input. In this scenario, the
χ2-distinguisher from Section 7.4.2 is still applicable by using only the left part

6http://tim.cryptanalysis.info/fpe

http://tim.cryptanalysis.info/fpe
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Figure 7.5: Theoretical and experimental maximum advantage of the χ2-
distinguishers for full-round FEA-1, FEA-2 and FF3-1. The error bars correspond
to 95% Clopper-Pearson confidence intervals.
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of the output. That is, Z = {(yL, yR, TR) ∈ D⊕D⊕T | yL = 0}. The capacity
of this multidimensional approximation is the same as before.

The idea behind the message-recovery attack is that a change in the plaintext
affects the distribution of the left half of the ciphertext (for uniform random
tweaks TR) in a predictable way. Let c1(ψ) denote the correlation of the linear
approximation corresponding to the character ψ when the plaintext is fixed
to (xL, xR). Similarly, denote the correlation for a second plaintext (x′L, xR)
by c2(ψ). Following the dominant trail approximation, c1(ψ) and c2(ψ) are
well-approximated by the correlations of the trails given in Section 7.3. The
two considered functions are the same up to the subtraction of a constant
∆ = xL − x′L in the first round of the trail (the third round of the cipher).
Hence,

c2(ψ) ≈ ψD(∆)c1(ψ)

with ψD the restriction of ψ to the half-domain D. This approximation is
accurate in practice, since the trails in Figures 7.2a and 7.3 are strongly dominant.
Denote the probability distribution of the left half of the ciphertext in the first
and second case by p1 and p2 respectively. Theorem 7.3 implies that

p2(yL) = 1
N

∑

ψ∈Z1

c2(ψ)ψ(yL) ≈ ψD(∆)
N

∑

ψ∈Z1

c1(ψ)ψ(yL) = p1(yL + ∆) .

In other words, the distributions p1 and p2 are (nearly) shifted over a distance ∆.
It should be emphasized that this is a property of the ciphertext distributions
and not of individual ciphertexts. As shown in Section 7.4.2, the distributions
p1 and p2 are highly non-uniform. This is what makes it possible to recover ∆.

The message-recovery attack begins by estimating the probability distribution
(for uniform random tweaks TR) of the left half of the ciphertext twice: once
for the secret plaintext (xL, xR) with fixed tweak TL, and once for an arbitrary
message (x′L, xR) with the same right half and for the same fixed tweak TL.
Next, for each candidate value ∆g for ∆, compute the statistic

r(∆g) = qN/4 ‖p̂1 − p̂g‖22,

where p̂g(yL) = p̂2(yL −∆g) with p̂1 and p̂2 the empirical estimates of p1 and
p2 based on q/2 samples each. The statistics r(∆g) with ∆g in D can then
be ranked in ascending order. If the number of samples used to obtain the
empirical distributions is large enough, the values of ∆g corresponding to the
top of the list are likely to be good candidates for ∆.
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7.5.2 Cost analysis and experimental verification

The data complexity of the message-recovery attack can be estimated using a
heuristic argument similar to the one that was used for the χ2-distinguisher in
Section 7.4.2. For a random sample, the statistic r(∆g) satisfies

r(∆g) = q

4
∑

ψ 6=1
|ĉ1(ψ)− ψD(∆g)ĉ2(ψ)|2,

where ĉ1(ψ) and ĉ2(ψ) are the empirical correlations and the sum is over all
nontrivial ψ in Z1. When the fixed-key correlation |ci(ψ)|2 is small, averaging
over the sample gives E|ĉi(ψ)|2 ≈ |ci(ψ)|2 + 2/q. Hence, the average of r(∆g)
over the sample and over a uniform random key is equal to

E r(∆g) = q

4
∑

ψ 6=1
E
(
|ĉ1(ψ)|2 + |ĉ2(ψ)|2 − 2<

{
ψD(∆g) ĉ1(ψ)ĉ2(ψ)

})

≈ q

4
∑

ψ 6=1

(
4
q

+ E|c1(ψ)|2 + E|c2(ψ)|2
)
− q

2 <
{∑

ψ 6=1
ψD(∆g) Ec1(ψ)c2(ψ)

}

≈ N − 1 + q

2
∑

ψ 6=1
E|c1(ψ)|2 − q

2
∑

ψ 6=1
<
{
ψD(∆−∆g)

}
E|c1(ψ)|2 .

where the third step follows from c2(ψ) ≈ ψD(∆)c1(ψ). In fact, E|c1(ψ)|2 is
nearly constant in ψ. If ∆g 6= ∆, then

∑
ψ 6=1 ψD(∆−∆g) = −1 and it follows

that
E r(∆g)− E r(∆) ≈ q

∑

ψ 6=1
E|c1(ψ)|2 .

In particular, if q �
√
N/
∑
ψ 6=1 E|c1(ψ)|2, then E r(∆g)−E r(∆)�

√
N . This

is sufficient to obtain a constant advantage since the standard deviation of
r(∆g) is of the order

√
N . This can be motivated by noting that, for a uniform

output distribution, the distribution of r(∆g) would be asymptotically χ2 with
N − 1 degrees of freedom. Hence, Õ(Nr/2−1.5) data should suffice to obtain a
constant message-recovery advantage.

No attempt will be made here to make the above argument rigorous. Instead,
accurate estimates of the message-recovery advantage for specific values of N
can be computed using a Monte-Carlo approach. The main ingredient is a
method to sample from the correlation distributions, which is identical to the
one used for the calculations in Section 7.4.3. Results for full-round FEA-1
with N = 16 and FF3-1 with N = 1000 are shown in Figure 7.6, along with
experimental estimates of the advantage.



7.5 Message recovery attacks 200

Observe that for FF3-1 with q = 4× b2N2.5e ≈ 228, the theoretical advantage
is an overestimate. This is due to the fact that only 228 data is available for
a fixed choice of the plaintext and tweak TL. Once the variations in the ideal
distribution (which was assumed to be uniform in the analysis) are of the same
order as the sampling error, the advantage begins to flatten off. However, this
does not imply that the advantage of the FF3-1 message-recovery attack cannot
be made close to one. Indeed, one can simply perform the attack for a different
choice of TL. Of course, for even larger N , the maximum advantage that can
be achieved using one choice of TL decreases and the attack eventually becomes
infeasible. Based on the estimated data complexity of the attack and Figure 7.6,
this is expected to occur for N > 212. The right-half recovery attack from
Section 7.5.3 avoids this problem and can be used for all N < 219, but it has a
higher overall data complexity.

7.5.3 Right-half recovery and application to FEA-2

The left-half recovery attack on FEA-1 and FF3-1 could also be applied for
two messages (xL, xR) and (x′L, x′R) with xR 6= x′R. However, the recovered
difference would then be ∆ = xL − x′L + F1(xR)− F1(x′R). If xL − x′L is known,
then the adversary can recover ∆ to obtain the difference F1(xR) − F1(x′R).
This is useful because it leads to a right-half recovery attack. In addition, the
output differences will be directly used in the key-recovery attack on FEA-1 that
is described in Section 7.6. It is also possible to apply the same attack with a
different choice of Z that includes the left half of the plaintext. In this case, the
recovered difference would simply be F1(xR)− F1(x′R) due to reduction modulo
Z. The main advantage of this approach is that it increases the amount of
available data per choice of the right half by a factor of N . This extends the
reach of the attack to N < 219, compared to N < 212 for left-half recovery.

The right-half can be recovered by guessing x′R until the recovered difference is
zero. This does not violate the distinctness requirement of the message-recovery
framework, since the tweaks TR and the left halves of the guessed messages can
be different from those of the secret message. The attack proceeds by computing
the statistics r(0) from Section 7.5.1 with p̂1 the empirical distribution for the
secret message and p̂2 the empirical distribution with right-half guess x′R. If
these statistics are ranked in ascending order, the values of x′R corresponding
to the top of the list are the most promising candidates for xR. By the
analysis in Section 7.5.2, this attack requires Õ(Nr/2−0.5) data. A simulation
of the maximum advantage is shown in the bottom of Figure 7.6, along with
experimental results. Note that the error bars are wider than for the left-half
recovery experiments because each data point was estimated using only 40 runs
of the attack (to limit the time complexity of the experiment).
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Figure 7.6: Theoretical and experimental maximum advantage of the message-
recovery attacks for full-round FEA-1 and FF3-1. The error bars correspond to
95% Clopper-Pearson confidence intervals. The dashed vertical line corresponds
to a data complexity of 2× 228.
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The same idea as above can be used to extend the message-recovery attack to
FEA-2. For example, consider left-half recovery. In this case, the adversary
queries the encryption of the secret message (xL, xR) under many tweaks with
constant TL. In addition, for each guess of x′L, similar queries are made for
(x′L, xR). The same process as above can be used to identify the values of xL
for which

F2(xL + F1(xR)) + xR = F2(x′L + F1(xR)) + xR .

However, there is an additional issue that must be addressed: since the
approximation shown in Figure 7.2b does not have equal input and output masks,
the effect of changing the plaintext input on the correlations is more complicated.
Nevertheless, one can still use the same approach (with roughly the same data
complexity) to check for equality between the two output distributions.

7.6 Key-recovery attack on FEA-1

This section shows how the left-half message-recovery attack on FEA-1 from
Section 7.5.1 can be used for key-recovery. Naturally, the attack heavily depends
on the internal details of the round function F1. For FF3-1, key-recovery is not
feasible since the round functions are truncations of the AES.

The FEA-1 round function is illustrated in Figure 7.7. It consists of two iterations
of a key-addition layer, an S-box layer and a linear layer with branch number
nine. Each of these layers acts on a state in a vector space F8

28 . The round
keys will be denoted by Ka and Kb. The round function F1 is defined as the
truncation of this structure to m bits.

The exact choice of the matrix representation M of the linear layer is not
important. The only property of M that will be used is the fact that it has
branch number nine (equivalently, is MDS). The S-box is based on inversion
in F28 , but the details are not important. However, it is important that for all
nonzero ∆1 and ∆2, the equation S(x+ ∆1) = S(x) + ∆2 has either no, two or
four solutions in x. For each ∆1 6= 0, the case with four solutions occurs for
exactly one choice of ∆2.

Recall from Section 7.5.3 that it is possible to recover output differences F1(P )+
F1(P ′) for an arbitrary choice of P and P ′. The idea behind the key-recovery
attack is to guess parts of the internal state of the round function and to check
the validity of these guesses using such output differences. After recovering the
relevant parts of the internal state, the round keys can be recovered.
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Figure 7.7: Round function of FEA-1 with round keys Ka and Kb.

Let x denote the first byte of the round function input P‖TL. Observe that
byte i of the internal state y (indicated in Figure 7.7) can be written as

yi = S(γi +Mi,1 S(Ka,1 + x)) ,

where γ1, . . . , γ8 in F28 are constants depending on the round keys Ka and Kb

(but not on the first byte Ka,1) and on the tweak TL. Importantly, γ1, . . . , γ8
do not depend on x. Specifically,

γi = Kb,i +
8∑

j=2
Mi,jS([P‖TL]j +Ka,j) .

In Section 7.6.1, it will be shown how Ka,1 and γi can be recovered using
a limited number of output differences. Section 7.6.2 then shows how the
entire round keys Ka and Kb can be extracted from these constants and a few
additional output differences.

7.6.1 Recovering Ka,1 and the internal constants γi

It is clear from Figure 7.7 that the output difference is a linear function of the
difference between the internal states y and y′ (corresponding to two inputs x
and x′). Furthermore, since M is an invertible matrix, this function is of rank
m. Hence, y + y′ can take 264−m = 264/N possible values. By computing an
echelon form for the linear function that maps y + y′ to the output difference,
these candidate solutions can easily be enumerated. For each guess of y + y′,
one obtains the values

yi + y′i = S(γi +Mi,1S(Ka,1 + x)) + S(γi +Mi,1S(Ka,1 + x′)) .
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For each i = 1, . . . , 8, one can determine the set of possible input differences
S(Ka,1 + x) + S(Ka,1 + x′) that can lead to the known difference yi + y′i 6= 0.
Due the properties of S, there are 127 possible input differences. Hence, each i
potentially reduces the number of candidate differences by a factor 127/255 <
1/2. Experimentally, it is found that the difference S(Ka,1 + x) + S(Ka,1 + x′)
can be uniquely determined for over 85% of the output differences y + y′. Since
the difference x+ x′ is known, two candidates for Ka,1 can be computed from
the difference equation. The case with four solutions is unlikely to occur and
does not significantly affect the overall time and data complexity of the attack.

Once Ka,1 has been determined (as one of two possible values), the constants
γi can also be obtained by solving a difference equation. In particular, since the
case with four solutions is rare, one usually ends up with two candidates for each
γi. To check the validity of these candidates, additional output differences will
be used. To save data, one of x or x′ can be reused. For each of the 29 candidate
values, the expected output difference should then be computed and compared
to the observed difference. This requires roughly 212 S-box evaluations. If the
candidate values are wrong, the output difference will match in roughly 1/N of
the cases. Hence, the computational cost is dominated by the calculation of the
expected output difference for the first pair.

The total number of candidates for the difference y + y′, the internal constants
and the first byte of Ka is 264+9/N = 273/N . Hence, d73/m − 1e pairs are
sufficient to obtain a unique solution. For m = 4, the number of available input
differences is too small to obtain a unique candidate. However, this is not a
major issue since the time complexity of the round key recovery procedure
described in Section 7.6.2 is small enough that it can be repeated several times.

The data complexity of the above process is (d73/m−1e+1)q/2 queries, where q
is the data complexity of the left-half message-recovery attack. This comes with
an equal computational cost, measured in FEA-1 evaluations. The remaining
computational cost is dominated by 264+12/N S-box evaluations. Since the
cipher contains 12× 16 S-boxes, one can conservatively estimate that this takes
less time than 268/N evaluations of full-round FEA-1.

7.6.2 Recovering the round keys

Once the constants γ1, . . . , γ8 have been recovered, obtaining the round keys
Ka and Kb is relatively easy. In particular, recall that

γi = Kb,i +
8∑

j=2
Mi,jS([P‖TL]j +Ka,j) .
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Suppose P‖TL and P ′‖T ′L differ only in byte j ∈ {2, . . . , 8} and let γ′i be the
new value of γi for input P ′‖T ′L. It is easy to see that

γi + γ′i = Mi,jS([P‖TL]j +Ka,j) +Mi,jS([P ′‖T ′L]j +Ka,j) .

Hence, after guessing Ka,j , one can compute the new constants γ′i and the
expected output differences for pairs with tweak T ′L. To obtain a unique (up
to a constant) candidate for Ka,j , a total of d8/me differences are sufficient.
Recovering all of the bytes of Ka thus requires 7× d8/me differences. Once Ka

is recovered, Kb can be computed directly.

To conclude, the data complexity of this step is 7q/2 × (d8/me + 1) with q
the data complexity of the left-half message-recovery attack. A few additional
pairs will be required to filter spurious candidates for Ka,j , or if no unique
solution for the constants γ1, . . . , γ8 was obtained in the first step of the attack
(m = 4). The time complexity, excluding the time required for message-recovery,
is negligible compared to that of the first step.

7.6.3 Recovering all round keys

By the results in Sections 7.6.1 and 7.6.2, the round keys Ka and Kb of the
first round function can be recovered using at most d73/m − 1e + 7d8/me ≤
16d8/me evaluations of the left-half message-recovery attack and additional
time equivalent to at most 268/N FEA-1 evaluations. If q is the amount of
data required for the left-half recovery attack, this amounts to a total of less
than 8d8/meq + 4q queries. However, the FEA-1 key-schedule is a Lai-Massey
structure that generates two round keys per iteration. Hence, the remaining
round keys can not be obtained by iterating the key-schedule without knowing
the round keys for the second round. To obtain these keys, it suffices to
perform the same key-recovery attack on F2. Hence, the total cost is less than
16d8/ log2Neq + 8q data for left-half recoveries and additional time equivalent
to less than 269/N evaluations of FEA-1.
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8
Reevaluation of differential attacks

Chapter 4 introduced quasidifferential trails and showed that they can be used
to estimate fixed-key probabilities of differential characteristics and differentials
using the dominant trail approximation. This chapter applies quasidifferential
trails to the analysis of differential attacks on the block ciphers Rectangle and
Speck, and the hash function KNOT. The analysis is automated and applicable
to other constructions. Several attacks are shown to be invalid, most others
turn out to work only for some keys but can be improved for weak keys.

Like Chapter 4, this chapter is based on the paper “Differential cryptanalysis in
the fixed-key model” [56] from Crypto 2022 (joint work with Vincent Rijmen).
However, unlike in Chapter 4, the focus is on applications rather than theory.

8.1 Introduction

The propagation of differences alone is not sufficient to analyze the probability of
differentials. To bypass this issue, Lai, Massey and Murphy [191] introduced the
hypothesis of stochastic equivalence. However, significant deviations from this
hypothesis were demonstrated early on by Knudsen [180] for the characteristics
used in the differential analysis of DES. Additional examples were given in the
introduction of Chapter 4. Experiments such as those of Ankele and Kölbl [12]
and Heys [163] further suggest that such deviations are the norm rather than
the exception.

Chapter 4 used the general principles from Chapter 2 to provide a complete
description of differential cryptanalysis in the form of quasidifferential trails.
The sum of the correlations of all quasidifferential trails corresponding to a
characteristic is equal to the probability of the characteristic. Quasidifferential
trails can also be used to show that a characteristic is impossible – for instance
using Theorem 4.5. Finally, it was shown that Knudsen’s observations on
the key-dependency of differential characteristics in DES can be explained
economically using quasidifferential trails.

The purpose of this chapter is to demonstrate the applicability of quasidifferential
trails as a practical tool. Section 8.2 shows how to automate the search for trails

207
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using Satisfiability Modulo Theories (SMT), but other popular methods such as
integer linear programming are also suitable. For the analysis of AndRX (such
as Simon) and ARX ciphers (such as Speck), the quasidifferential transition
matrices of bitwise-and and modular addition are determined explicitly.

Section 8.3 analyzes differential attacks on Rectangle [292]. The main conclusion
is that the best published key-recovery attack on round-reduced Rectangle does
not work, although it can be modified to obtain a valid weak key attack. In
addition, the probability of ‘optimal’ differentials is shown to depend strongly
on the key.

Several differential attacks on KNOT [293], a second-round candidate in the
NIST lightweight cryptography competition, are reevaluated in Section 8.4. It
is shown that the forgery and collision attacks of Zhang et al. [294] do not work,
because the characteristics they rely on have probability zero. At the same
time, it is shown that their probabilities are two orders of magnitude larger for
some choices of the round constants.

Section 8.5 reevaluates the best published attacks on Speck. Most of the
attacks that were analyzed only work for a subset of keys. However, for weak
keys, attacks with lower data complexity can be obtained. In addition, the
experimental results of Ankele and Kölbl are explained by taking into account
one additional quasidifferential trail.

8.2 Modelling quasidifferential trails

As in Chapter 6, the dual group of Fn2 will be identified with Fn2 in the usual way.
Hence, a quasidifferential trail is equivalent to a sequence of mask-difference
pairs (u1, a1), . . . , (ur, ar).

The SMT model1 for finding quasidifferential trails corresponding to a given
differential characteristic is similar to existing models for finding linear trails.
The model expresses the correlation of a trail by its negative base-2 logarithm
or weight. In fact, since the correlation of any quasidifferential trail is at
most as large as the key-averaged probability of the corresponding differential
characteristic, these weights are expressed relative to the weight of the
characteristic. To solve the SMT problem, Boolector [222] is used through
its Python interface ‘pyboolector’.

The following two sections discuss how S-boxes and modular additions can
be modelled in practice. Note that linear functions are easy to model using

1Source code is available https://github.com/TimBeyne/quasidifferential-trails

https://github.com/TimBeyne/quasidifferential-trails
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Theorem 4.2 (3). That is, differences propagate as in ordinary differential
cryptanalysis and masks propagate as in linear cryptanalysis.

8.2.1 S-boxes

The propagation over the S-box layer is modelled by conditions in disjunctive
normal form corresponding to the relative weights of the entries of the
quasidifferential transition matrix. The number of constraints can often be
reduced using minimization algorithms such as Quine-McCluskey, but this was
not used for the applications in this chapter.

For small (such as 4- or 8-bit) S-boxes, the quasidifferential transition matrix
can be computed using the algorithm from Section 4.4.1. In particular, the
quasidifferential change-of-basis transformation QFn

2
satisfies

QFn
2

= Q⊗nF2
=




1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0




⊗n

.

As explained in Section 4.4.1, for any such matrix, there exists an efficient
algorithm to compute the matrix-vector product.

8.2.2 Bitwise-and and modular addition

Several ciphers use bitwise-and or modular addition as their nonlinear
components. Although these functions potentially have many input and
output bits, they are highly structured. This makes it possible to express
the entries of their quasidifferential transition matrix using relatively simple
logical constraints.

In the following, the bitwise-and of x and y in Fn2 will be denoted by x ∧ y, the
bitwise-or by x∨ y, and and(x‖y) = x∧ y. The bitwise complement of x will be
written as x̄. The addition of the integers represented by x and y modulo 2n
will be denoted by add(x‖y). Finally, let ≤ denotes the monoid order on Fn2 .

The quasidifferential transition matrix of and : F2n
2 → Fn2 is easy to compute

because it acts on each pair of bits independently. Hence, Corollary 4.1 (1) can
be used. This results in the following theorem.

Theorem 8.1. Let a, b and c in Fn2 be differences and u, v and w in Fn2 masks.
It holds that Dand

(w,c), (u‖v,a‖b) 6= 0 if and only if c ≤ a ∨ b, u ∨ v ≤ a ∨ b ∨ w and
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a ∧ u+ b ∧ v = c ∧ w. Furthermore, if these conditions hold, then

Dand
(w,c), (u‖v,a‖b) = 2−wt(a∨b)−wt(w∧ā∧b̄) (−1)u

T(ā∧c)+vT(a∧c)+uT(a∧b) .

Proof. Let andn : F2n
2 → Fn2 denote the n-bit bitwise-and function defined by

andn(x1‖y1‖x2‖y2‖ · · · ‖xn‖yn) = (x1y1, x2y2, . . . , xnyn) .

By Corollary 4.1 (1), it holds that Dandn =
(
Dand1

)⊗n. By (4.1), it holds that

Dand1
(wi,ci),(ui‖vi,ai‖bi) = 1

4
∑

x,y ∈ F2
bix+aiy=aibi+ci

(−1)uix+viy+wixy .

The above sum can be computed case-by-case. For ai = bi = 0, the sum equals

Dand1
(wi,ci),(ui‖vi,0‖0) = δ0(ci)

(
1 + (−1)ui + (−1)vi + (−1)ui+vi+wi

)
/4

=
{

1/2wi if ci = 0 and ui ∨ vi ≤ wi ,
0 otherwise .

If ai = 1 and bi = 0, then

Dand1
(wi,ci),(ui‖vi,1‖0) = δ0(ci)

(
1 + (−1)ui

)
/4 + (−1)vi δ1(ci)

(
1 + (−1)ui+wi

)
/4

= (−1)vici/2 δci∧wi(ui) .

The remaining two cases are analogous and yield

Dand1
(wi,ci),(ui‖vi,0‖1) = (−1)uici/2 δci∧wi

(vi)

Dand1
(wi,ci),(ui‖vi,1‖1) = (−1)uic̄i/2 δci∧wi

(ui + vi) .

Combining the cases above, one obtains that Dand1
(wi,ci),(ui‖vi,ai‖bi) 6= 0 if and only

if ci ≤ ai ∨ bi, ui ∨ vi ≤ ai ∨ bi ∨wi and ai ∧ ui + bi ∧ vi = ci ∧wi. Furthermore,
under these conditions,

Dand1
(wi,ci),(ui‖vi,ai‖bi) = (−1)aicivi+biciui+aibic̄iui2−(ai∨bi)−(wi∧ā∧b̄) .

Finally, note that bici + aibic̄i = aibi + āici since ci ≤ ai ∨ bi.

The quasidifferential transition matrix of add : F2n
2 → Fn2 can be computed

using its CCZ-equivalence to a quadratic function [248] similar to bitwise-and.
This result is reproduced in Theorem 8.2 below. Two functions F : Fn2 → Fm2
and G : Fn2 → Fm2 are CCZ-equivalent if their graphs {(x,F(x)) | x ∈ Fn2} and
{(x,G(x)) | x ∈ Fn2} are related by an invertible F2-affine transformation [81].
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Theorem 8.2 (Schulte-Geers [248, Theorem 1]). Let M : Fn2 → Fn2 be the
linear map defined M(x)1 = 0 and M(x)i =

∑i−1
j=1 xj for i > 1 The function

Q : (x, y) 7→ M(x ∧ y) is CCZ-equivalent to modular addition with modulus 2n
under the linear map (x, y, z) 7→ (x+ z, y + z, x+ y + z).

In Theorem 8.3, M† is a near-inverse of M given by M†(x) = [x+ (x� 1)]� 1,
where � and � denote left and right shifts respectively.

Theorem 8.3. Let a, b and c in Fn2 be differences and u, v and w in Fn2 masks.
It holds that Dadd

(w,c),(u‖v,a‖b) 6= 0 if and only if

c′1 = 0

M†c′ ≤ a′ ∨ b′

u′ ∨ v′ ≤ a′ ∨ b′ ∨MTw′

a′ ∧ u′ + b′ ∧ v′ = c′ ∧MTw′

(a′n = b′n = 0) ∨ (a′nu′n + b′nv
′
n 6= w′n) ∨ (a′nv′n = ā′nu

′
n) ,

where (a′, b′, c′) = (b+c, a+c, a+b+c) and (u′, v′, w′) = (u+w, v+w, u+v+w).
Furthermore, if the above conditions hold, then

Dadd
(w,c), (u‖v,a‖b) = 2z−wt(a′∨b′)−wt(MTw′∧ā′∧b̄′) (−1)(ā′∧M†c′+a′∧b′)Tu′+(a′∧M†c′)Tv′ ,

where z = (a′n ∨ b′n) ∧ (a′nu′n + b′nv
′
n = w′n) ∧ (a′nv′n 6= ā′nu

′
n).

Proof. Let Q(x, y) = M(x ∧ y). By Corollary 4.1 (2) and Theorem 4.2 (3), the
quasidifferential transition matrix of Q satisfies

DQ
(w,c),(u‖v,a‖b) =

∑

d∈M−1(c)

Dand
(MTw,d),(u‖v,a‖b) ,

where the sum is over all preimages of c. If some d in Fn2 satisfies M(d) = c, then
c1 = 0 by the definition of M. Furthermore, one can check that di = ci + ci+1
for all i ≤ n− 1. The value of dn is arbitrary. Hence, if c1 = 0, we can write

DQ
(w,c),(u‖v,a‖b) = Dand

(MTw,M†c),(u‖v,a‖b) +Dand
(MTw,M†c+en),(u‖v,a‖b) ,

where en = (0, 0, . . . , 0, 1). Theorem 8.1 can now be applied to each of the
terms above. We now write the second term in terms of the first. Compared to
the first term, the conditions for the second term to be non-zero additionally
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include an ∨ bn = 1 and anun + ānvn = wn. In addition, the sign of both terms
(if nonzero) differs by a factor (−1)anvn+ānun . Hence,

DQ
(w,c),(u‖v,a‖b) = δ1(c1)

(
1 + (−1)anvn+ānunδ1(an ∨ bn)δwn(anun + bnvn)

)

×Dand
(MTw,M†c),(u‖v,a‖b) ,

In order to compute Dadd, a variant of Theorem 4.2 (3) is needed. Specifically,

Dadd
(w,c),(u‖v,a‖b) = DQ

(w′,c′),(u′‖v′,a′‖b′) ,

where w′ = u+ v + w, u′ = u+ w, v′ = v + w, c′ = a+ b+ c, a′ = b+ c and
b′ = a+ c. The result follows by using the expression for the coordinates of DQ

that was derived above.

8.3 Differential attacks on Rectangle

There are several reasons why Rectangle is an interesting target to illustrate the
use of quasidifferential trails. The linear layer is a bit-permutation and simpler
compared to similar ciphers such as PRESENT [71]. As discussed in Section 4.5.3,
the self-duality of bit-permutations potentially results in quasidifferential trails
with high absolute correlation relative to the probability of the corresponding
differential trail. In addition, differential cryptanalysis is the dominant attack for
Rectangle. The optimal differentials for Rectangle also have a limited differential
effect, i.e. they contain few high-probability characteristics. This simplifies the
analysis.

8.3.1 Specification of Rectangle

Rectangle [292] is a 64-bit substitution-permutation network, with a nonlinear
layer consisting of 4-bit S-boxes and a bit-permutation as the linear layer. The
state is typically represented by a 4 × 16 array of bits. The Rectangle round
function consists of three simple operations, as illustrated in Figure 8.1.

Round-key addition. The round key bits are added to the state bits. The
round keys are derived using a key-schedule based on a generalized Feistel
construction. The master key is either 80 or 128 bits long. The details of
this key-schedule will not be discussed here.

S-box layer. Each column of the state is transformed by a 4-bit permutation
S. The S-box S is given in Table 4.1. The absolute values of the entries of



213 Reevaluation of differential attacks

the matrix DS were already illustrated in Figure 4.1. The topmost bit of
each state column in Figure 8.1 corresponds to the least significant bit of
the S-box input- and output values.

Linear layer. The second row (from the top) is rotated by one position to the
left. The third row and the fourth row are rotated by 12 and 13 positions
to the left respectively.

Rectangle repeats these steps for a total of 25 rounds, followed by a final round
key addition.

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

Figure 8.1: The round function of Rectangle. From top to bottom: the round
key addition, the S-box layer and the linear layer consisting of a rotation of the
bottom three rows.

To perform the analysis in this section, an SMT model of the propagation of
quasidifferential trails in Rectangle was built as described in Section 8.2.

8.3.2 Differentials

Table 8.1 lists several differentials for Rectangle. Differential i is a 14-round
differential used in the best published key-recovery attack on Rectangle [292].
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Although its probability is suboptimal, its input and output differences are
better suited for key-recovery. The corresponding 18-round key-recovery attack
requires 264 data and enough memory to hold 272 counters. The time complexity
amounts to 278.67 (80-bit key) or 2126.66 (128-bit key) 18-round encryptions. A
success probability of 67% is claimed.

Differential ii has a dominant characteristic with average probability2 2−61.
Based on the analysis of the designers (which included differential effects), this
differential is believed to have a maximal average probability. Up to rotational
equivalence, there are a total of 32 such differentials. However, as discussed
below, these differentials all have similar behavior.

The average probability of differential iii is suboptimal, but the analysis in
Section 8.3.3 shows that its probability is much larger for some keys.

Table 8.1: Differentials (a, b) for 14 rounds of Rectangle. The column pavg gives
an estimate of the average differential probability for independent round keys.

a b pavg Comment №
0020000600000000 0004000000000020 2−63 + 2−66 Key-recovery i
0100007000000000 0861008400000010 2−61 + 2 · 2−64 ‘Optimal’ ii
00000000c0000600 0004000000000020 2 · 2−65 + 13 · 2−68 ‘Suboptimal’ iii

8.3.3 Analysis

For completeness, the dominant characteristics for differentials i to iii are listed
in Tables 8.2 to 8.4. In order to search for optimal quasidifferential trails, the
propagation of the masks for fixed differences is modelled as an SMT problem.

Differential i. The two dominant characteristics for this differential are
listed in Table 8.2. The first two columns of Table 8.5 list the number of
quasidifferential trails of each absolute correlation for these two characteristics.

Any characteristic has at least one quasidifferential trail with correlation equal
to its average probability pavg, namely the trail with all-zero masks. The fact
that the first characteristic has two quasidifferential trails with correlation ±pavg
and the second four, is special. Table 8.6 shows two of these trails (one for
each characteristic) with the same masks. Only rounds 9 to 12 are shown,
since the masks are zero in all other rounds. Hence, these two trails describe a

2Average probability for independent and uniform random round keys.
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Table 8.2: Characteristics in differential i.

pavg = 2−63 pavg = 2−66

..2....6........ ..2....6........

..6....2........ ..6....2........

.2....6......... .2....6.........

.6....2......... .6....2.........
2....6.......... 2....6..........
6....2.......... 6....2..........
....6..........2 ....6..........2
....2..........6 ....2..........6
...6..........2. ...6..........2.
...2..........6. ...2..........6.
..6..........2.. ..6..........2..
..2..........6.. ..2..........6..
.6..........2... .6..........2...
.2..........6... .2..........6...
6..........2.... 6..........2....
2..........6.... 2..........6....
..........2....6 ..........2....6
..........6....2 ..........6....2
.........2....6. .........2....6.
.........c....2. .........c....2.
............86.. ............86..
............12.. ............92..
............3... ............3..8
............8... ............8..1
...............8 ...............9
...............1 ...............1
...............1 ...............1
...............6 ...............6
...4..........2. ...4..........2.

Table 8.3: Characteristics in differential iii.

pavg = 2−65 pavg = 2−65

........c....6.. ........c....6..

........4....2.. ........4....2..

............6... ............6...

............2... ............2...

...........2.... ...........2....

...........8.... ...........8....

..............8. ..............8.

..............1. ..............1.

..............1. ..............1.

..............7. ..............7.

..4..........21. ..4..........21.

..3..........7e. ..3..........6e.

.e5.........23.. .e5.........22..

.38.........6c.. .38.........6c..
e5...8.....2.... e5...8.....2....
24...1.....6.... 24...1.....6....
.....5....2....6 .....5....2....6
.....4....6....2 .....4....6....2
.........6....6. .........6....6.
.........4....2. .........4....2.
.............6.. .............6..
.............2.. .............2..
............2... ............2...
............8... ............8...
...............8 ...............8
...............1 ...............1
...............1 ...............1
...............6 ...............6
...4..........2. ...4..........2.
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Table 8.4: Dominant characteristics in differential ii.

pavg = 2−61 pavg = 2−64 pavg = 2−64

.1....7......... .1....7......... .1....7.........

.6....2......... .e....2......... .6....2.........
2....6.......... 2...86.......... 2....6..........
6....2.......... 6...12.......... 6....2..........
....6..........2 ....7..........2 ....6..........2
....2..........6 ....2..........6 ....2..........6
...6..........2. ...6..........2. ...6..........2.
...2..........6. ...2..........6. ...2..........6.
..6..........2.. ..6..........2.. ..6..........2..
..2..........6.. ..2..........6.. ..2..........6..
.6..........2... .6..........2... .6..........2...
.2..........6... .2..........6... .2..........6...
6..........2.... 6..........2.... 6..........2....
2..........6.... 2..........6.... 2..........6....
..........2....6 ..........2....6 ..........2....6
..........6....2 ..........6....2 ..........6....2
.........2....6. .........2....6. .........2....6.
.........c....2. .........c....2. .........c....2.
............86.. ............86.. ............86..
............12.. ............12.. ............92..
............3... ............3... ............3..8
............8... ............8... ............8..1
...............8 ...............8 ...............9
...............1 ...............1 ...............1
...............1 ...............1 ...............1
...............6 ...............6 ...............6
...4..........2. ...4..........2. ...4..........2.
...f..........d. ...f..........d. ...f..........d.
.861..84......1. .861..84......1. .861..84......1.
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Table 8.5: Number of quasidifferential trails for 14 rounds of Rectangle.

|c|/pavg
Differential i Differential ii Differential iii
2−63 2−66 2−61 2−64 2−64 2−65 2−65

1 2 4 2 2 4 32 32
2−1 2 4 2 2 4 32 32
2−2 26 52 24 24 48 352 352
2−3 26 60 24 24 56 480 480
2−4 182 396 176 176 384 2656 2656

local, three-round effect. This is already an interesting outcome by itself, since
previous techniques such as plateau characteristics are not able to describe such
three-round effects.

Table 8.6: Differences and masks for two three-round quasidifferential trails
with absolute correlation 2−13 and 2−19. Both trails have the same masks.

Differences (ptrail = 2−63) Differences (ptrail = 2−66) Masks (both)
.........2....6. .........2....6. ................
.........c....2. .........c....2. .........c......
............86.. ............86.. ............84..
............12.. ............92.. ............12..
............3... ............3..8 ............3...
............8... ............8..1 ................

Note that the propagation of the masks closely follows that of the differences. As
discussed in Section 4.5.3, this is beneficial to obtain quasidifferential trails with
high correlation. The correlation for the quasidifferential trail corresponding to
the first characteristic in rounds 9 to 12 is equal to

(−1)κ1 ×DS
(c,c),(0,2)D

S
(0,2),(0,6) ×DS

(1,1),(8,8)D
S
(2,2),(4,6) ×DS

(0,8),(3,3)

= (−1)κ1 × −1
8 ×

1
4 ×

1
8 ×

1
4 ×

1
8 = (−1)1+κ1 2−13 ,

where κ1 = k10,10+k10,15+k11,12+k11,13. Similarly, for the second characteristic,
the correlation of the quasidifferential trail is equal to

(−1)κ1 ×DS
(c,c),(0,2)D

S
(0,2),(0,6) ×DS

(1,9),(8,8)D
S
(2,2),(4,6) ×DS

(0,8),(3,3)D
S
(0,1),(0,8)

= (−1)κ1 × −1
8 ×

1
4 ×
−1
8 ×

1
4 ×

1
8 ×

1
8 = (−1)κ1 2−19 .



8.3 Differential attacks on Rectangle 218

Note the sign difference compared to the first characteristic. As shown below, it
implies that the two characteristics are incompatible: for each key, one of them
must have probability zero. Taking into account the first four quasidifferential
trails, the probability of the first characteristic is

pi,1 ≈
(
1− (−1)κ1

)(
1 + (−1)λ/2

)
2−63 = δ1(κ1)

(
1 + (−1)λ/2

)
2−62 ,

where λ is a linear combination of round key bits. Although we did not include
all quasidifferential trails in the analysis, Theorem 4.5 (2) allows concluding
that the characteristic has probability zero when κ1 = 0. Furthermore, it can
be argued that lower-correlation trails are typically less significant. Although
it is possible that for example the 26 trails with correlation 2−65 contribute a
term of magnitude 2−63.3, this only happens for a small fraction of keys since
it requires the signs of all these trails to point in the same direction. For the
second characteristic, considering the first 8 trails results in

pi,2 ≈
(
1 + (−1)κ1 − (−1)κ2 − (−1)κ1+κ2

)(
1 + (−1)λ/2

)
2−66

= δ0(κ1)δ1(κ2)
(
1 + (−1)λ/2

)
2−64 .

Impact on the key-recovery attack. The time complexity of the 18-round
key-recovery attack based on differential i is determined by the number of
remaining pairs for the right key after filtering the data. For the maximum
number of input structures, the number of remaining unordered pairs will be
pi 263 on average.

If κ1 = 0, then the number of pairs is δ1(κ2)(2 + (−1)λ)/4 on average over
the other key bits. Since this is less than one for all values of κ2 and λ, the
key-recovery advantage will be too low to improve over brute-force.

For κ1 = 1, the average number of unordered pairs is 2+(−1)λ. Using a threshold
of one pair as in the original attack, this gives a time complexity of 277.65 (80-bit
key) or 2125.65 (128-bit key) assuming that the cost of evaluating the key-schedule
is negligible compared to the cost of evaluating the cipher. Assuming that the
number of right pairs follows a Poisson distribution within each key class, the
success probability is then approximately (1−e−1)/2+(1−e−3)/2 ≈ 79%. Hence,
the attack still marginally improves over exhaustive search. However, achieving
this improvement requires filtering for weak keys using the condition κ1 = 1
during the key-recovery phase. Otherwise, no improvement over exhaustive
search is obtained. These observations can be summarized as follows.

Result 8.1. The key-recovery attack on 18-round Rectangle from [292] using
differential i does not improve over exhaustive search. For keys with k10,10 +
k10,15 + k11,12 + k11,13 = 1, the attack can be modified to filter out candidate
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keys not satisfying this condition and then achieves a success probability of
approximately 79% with a time complexity of 277.65 (80-bit key) or 2125.65 (128-
bit key) 18-round encryptions. The attack requires 264 data and enough memory
to store 272 counters.

By Result 8.1, there is a rectified 18-round key-recovery attack on Rectangle
with average success probability 39.5% and (marginally) better time complexity
than exhaustive search.

Differential ii. The analysis of differential ii is similar to that of i. The three
dominant characteristics are given in Tables 8.2 to 8.4. Based on the first four
trails for the first two characteristics and the first eight trails for the third, the
characteristic probabilities are

pii,1 ≈ δ1(κ1)
(
1 + (−1)λ/2

)
2−60

pii,2 ≈ δ1(κ1)
(
1 + (−1)λ/2

)
2−63

pii,3 ≈ δ0(κ1)δ0(κ2)
(
1 + (−1)λ/2

)
2−62 .

That is, for half of the keys, the dominant characteristic actually has no right
pairs. For the other keys, its probability is roughly twice as large. The second
characteristic shows similar behavior. Also note that the third characteristic is
not compatible with the first two.

A similar analysis was performed for all other (up to rotational equivalence)
14-round differentials with a dominant characteristic of average probability 2−61.
The results were essentially the same.

Differential iii. Both characteristics with probability 2−65 are given in
Table 8.3. Based on the 32 quasidifferential trails with correlation 2−65, we
find that the first characteristic has a nonzero probability if and only if 5
linearly independent equations in the round keys hold. The average probability
over the keys satisfying these conditions is 2−60. For the second characteristic,
we find a similar effect with slightly different conditions on the round keys.
Like for the first characteristic, the average probability over the weak keys is
2−60. Furthermore, the conditions for the two characteristics to have nonzero
probability are incompatible. Hence, the sum of the probabilities of the first
two characteristics is 2−60 for 1/16 keys and zero for all other keys.

In addition, there are 13 characteristics with an average probability of 2−68.
Each of these characteristics has nonzero probability zero for only 1/64 or 1/128
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keys. The conditions for this to happen may partially overlap or be inconsistent
with the conditions for the first two characteristics.

8.4 Forgery and collision attacks on KNOT

In order to illustrate the relevance of quasidifferential trails to the analysis
of permutations, this section analyzes several differential attacks on the
KNOT family of permutations and their authenticated-encryption and hashing
modes [293].

8.4.1 Specification of KNOT

KNOT is a large-state variant of Rectangle and was a second-round candidate
in the NIST lightweight cryptography project. This chapter only considers the
primary variant, which is a 256-bit permutation. The state is represented by a
4× 64 rectangular array. The round function operations are similar to those
of Rectangle, but a different S-box is used and the third and fourth row of the
state are rotated by 8 and 25 positions respectively. The S-box of KNOT is
given in Table 8.7.

Table 8.7: The S-box of KNOT.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
S(x) 4 0 a 7 b e 1 c 9 f 6 8 5 2 c 3

8.4.2 Differentials

At the 2020 NIST lightweight cryptography workshop, Zhang et al. [294]
presented several differential attacks on round-reduced KNOT authenticated
encryption and hashing modes. The differentials used in these attacks are
listed in Table 8.8, along with their estimated probabilities (without taking
into account quasidifferential trails). In this section, it will be shown that these
attacks do not work because the probability of the differentials in Table 8.8 is
zero. Furthermore, it will be shown that there exist round constants for which
their probabilities are two orders of magnitude larger.
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Table 8.8: Differentials for r rounds of KNOT-256. The column pavg gives
an estimate of the ‘average’ differential probability (for independent uniform
random round constants). The differences are given in Table 8.9.

r pavg Application №
10 5× 2−56 Hash collision and AEAD forgery. i
12 10× 2−66 Hash collision and AEAD forgery. ii

Table 8.9: Input and output differences (a, b) for the differentials from Table 8.8.

i a 0000000000000000000000000000000010000000000000000100000000000000
b 0000000000000000000000000000000000000001000000000000000000000001

ii a 0100000000000000001000000000000000000000000000000000000000000000
b 0000000100000000000000000000000100000000000000000000000000000000

8.4.3 Analysis

The analysis of the differentials in Table 8.8 is similar to the analysis for
Rectangle. The SMT-model for Rectangle can easily be modified to search for
quasidifferential trails in KNOT.

Differential i. Based on the quasidifferential trails with correlation 2−56 for
each of the five characteristics with pavg = 2−56, one concludes that all of
these characteristics have probability zero for the standard round constants of
KNOT-256. Hence, the differential probability is much lower than what might
be expected from the ‘average’. Even if there exist other characteristics with
unexpectedly large probability (a scenario considered below), this is a significant
issue for the collision attack on the KNOT hash function. Indeed, the collision
search consists of finding a right pair for one of the best few characteristics,
since this is significantly easier than finding a right pair for the differential by
random search.

Despite the observations above, it is possible that there exists a characteristic
with a low ‘average’ probability but an unexpectedly high probability for
the default round constants. The differential contains four characteristics
with ‘average’ probability 2−60. However, by analyzing the corresponding
quasidifferential trails, we find that they too have probability zero. Next, there
are 17 characteristics with ‘average’ probability 2−62. Again, we find that
all of them have probability zero. We also considered 24 characteristics with
‘average’ probabilities 2−63 and 2−65 and found that they have probability zero.
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Although we did not analyze all characteristics with probability 2−66 or lower,
they can only have a high nonzero probability for a very small fraction of round
constants. Given the number of such characteristics, it is unlikely that a high
probability characteristic exists.

On the flip side, there exist round constants for which one or more of the
five characteristics have probability 2−50. This is due to the existence of 64
quasidifferential trails with absolute correlation 2−56. A careful inspection of the
conditions on the round constants shows that there exist variants of KNOT with
modified constants for which the probability of differential i is approximately
5 · 2−50 = 2−47.7. Further improvements are possible by taking into account
additional characteristics and quasidifferential trails.

Differential ii. The analysis of the 12-round differential is similar to the 10-
round differential, and leads to similar conclusions. This is not surprising given
that both characteristics follow a similar pattern up to rotational symmetry.
Each of the 10 dominant characteristics has probability zero for the default
round constants. In addition, we did not find any characteristics with ‘average’
probability 2−70 or higher with a nonzero probability. Hence, it is unlikely
that the 12-round forgery and collision attacks presented by Zhang et al. are
valid. Finally, there exist round constants for which one or more of the 10
characteristics have a probability of 2−59.

8.5 Key-recovery attacks on Speck

This section investigates the key-dependency of several differentials for Speck
from the literature. The bitvector constraints for modular addition from
Theorem 8.3 are the main ingredient of the SMT-model. The same approach
can be applied to any ARX block cipher or permutation.

Section 8.5.1 briefly reviews Speck. In Section 8.5.2, a simple explanation (using
a single quasidifferential trail) for an experimental observation of Ankele and
Kölbl [12] on Speck-64 is given. Sections 8.5.3 and 8.5.4 analyze the differentials
used in the best published attacks on all variants of Speck.

8.5.1 Specification of Speck

Recall that Speck is a family of lightweight block ciphers designed at and
endorsed by the United States NSA. The round function is shown in Figure 8.2.
The block size is either 32, 64, 96 or 128 bits. For Speck-32, the rotation offsets
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are given by α = 7 and β = 2. For larger block sizes, α = 8 and β = 3. The
key-schedule follows a similar structure as the round function, with round keys
replaced by round counters. Speck supports multiple key lengths m. These
variants are denoted by Speck-n/m.

≫ α

≪ βki

Figure 8.2: One round of Speck with round key ki.

8.5.2 Explaining observations of Ankele and Kölbl on Speck-64

Ankele and Kölbl [12] experimentally estimated the probability of a 7-round
differential for Speck-64 for 10000 random keys and found that the distribution of
the number of right pairs is bimodal. Their results are reproduced in Figure 8.3,
but colored to indicate two key classes that follow from the analysis below.
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k1,28 = k1,29
k1,28 6= k1,29

Figure 8.3: Number of right pairs for the Speck-64 differential from [12], for a
total of 10000 keys. For each key, 230 pairs were sampled uniformly at random.



8.5 Key-recovery attacks on Speck 224

The fact that the histogram in Figure 8.3 is bimodal already suggests the
presence of an important quasidifferential trail with nonzero masks. Automatic
search reveals that the best such quasidifferential trail has correlation 2−23.
The dominant characteristic (with probability 2−21) and the masks of the
quasidifferential trail with correlation 2−23 are shown in Table 8.10.

Differences Masks
4...4.92 1.42..4. ........ ........
82.2.... ..12.2.. 18...... ........
..9..... ....1... ........ ........
....8... ........ ........ ........
......8. ......8. ........ ........
8.....8. 8....48. ........ ........
..8..48. ..8.2.84 ........ ........
8.8.a.8. 8481a4a. ........ ........

Table 8.10: Differential characteristic
with key-averaged probability 2−21 for
7 rounds of Speck-64, and the masks
of a corresponding quasidifferential trail
with correlation 2−23.

≪ 3

10420040
00000000

92400040
00000000

82020000
18000000

10420040
00000000

82100200
00000000

82020000
18000000

k1

≫ 8

82020000
18000000

00120200
00000000

00820200
00180000

00120200
00000000

00900000
00000000

Figure 8.4: Two-round quasidifferen-
tial trail with correlation 2−5 ·2−6 =
2−11, with differences in orange and
masks in blue.

8.5.3 Analysis of differential attacks on Speck-32

The best published attacks on reduced-round Speck are differential attacks
using the enumeration key-recovery strategy proposed by Dinur [119]. Given an
r-round differential, an r+ 3 round attack is obtained by prepending one round
(for free) and appending two rounds. For variants with longer key lengths, one
performs the same attack for each guess of the last few round keys.

This section analyzes the best published attacks on Speck-32 reduced to 11-14
rounds. These attacks rely on the 6-9 round differentials shown in Table 8.11.
Lee et al. [197] report on a 10-round differential with average probability
2−30.39, but it does not lead to a 15-round key-recovery attack because the time
complexity would be 231.39 for a success probability of 1− 1/e ≈ 63%.
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Table 8.11: Differentials (a, b) for r-round Speck-32.

r a b pavg Ref. №
6 0211 0a04 850a 9520 2−13 [2] i
7 0a60 4205 850a 9520 2−18 [2] ii
8 1488 1008 850a 9520 2−24 + 2−27 [2] iii
9 8054 a900 0040 0542 2−30 + 2 · 2−33† [65, 255] iv

† 3060307 · 2−47 ≈ 2−29.45 with characteristics of average probability ≤ 2−49

Differentials i and ii. The six-round differential i is dominated by a
characteristic with average probability 2−13, given in Table 8.12. The next-best
characteristic has average probability 2−23 and will be ignored in the analysis.

Table 8.12: Dominant characteristics for differentials i and ii.

pavg = 2−13 pavg = 2−18

.a6. 42.5
.211 .a.4 .211 .a.4
28.. ..1. 28.. ..1.
..4. .... ..4. ....
8... 8... 8... 8...
81.. 81.2 81.. 81.2
8... 84.a 8... 84.a
85.a 952. 85.a 952.

There are two quasidifferential trails with correlation ±2−15 and two with
correlation ±2−17. There also exist trails with absolute correlation 2−19 and
lower, but their effect on the probability is limited except for a small fraction of
keys. Grouping these trails appropriately, the following estimate is obtained:

pi ≈ (1 + (−1)0003Tk5/4)(1 + (−1)0180Tk5/4)2−13 ,

where, for simplicity, only one trail of correlation ±2−17 is included.

The analysis of the seven-round differential is similar. The dominant differential
trail has average probability 2−18 and is the same as the six round trail with
one additional round at the beginning. Hence,

pii ≈ (1 + (−1)0003Tk6/4)(1 + (−1)0180Tk6/4)2−18 .

Differential iii. The differential is dominated by two characteristics, shown
in Table 8.13. The first has average probability 2−24. Since the last part of these
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characteristics is the same as for the dominant characteristics of differentials i
and ii, some of the same quasidifferential trails are obtained. However, there
also exist quasidifferential trails with correlation equal to the probability of the
trail. This implies that there exists keys for which these characteristics have
probability zero. Specifically, for the first characteristic, we find that

piii,1 ≈ δ0(0600Tk2)δ0(1800Tk3) (1 + (−1)0003Tk7/4)(1 + (−1)0180Tk7/4) 2−22 .

That is, its probability is zero for 3/4 keys, but four times larger for the other
keys. For the second characteristic, we have

piii,2 ≈ δ0(0600Tk2)δ0(1800Tk3)δ0(0a00Tk2)

× (1 + (−1)0003Tk7/4)(1 + (−1)0180Tk7/4) 2−24 .

Hence, the second characteristic has nonzero probability only when the first
probability is nonzero and 0a00Tk2 = 0.

Table 8.13: Two dominant characteristic for differential iii.

pavg = 2−24 pavg = 2−27

1488 1..8 1488 1..8
..21 4..1 ..21 4..1
.6.1 .6.4 .e.1 .e.4
18.. ..1. 38.. ..1.
..4. .... ..4. ....
8... 8... 8... 8...
81.. 81.2 81.. 81.2
8... 84.a 8... 84.a
85.a 952. 85.a 952.

Differential iv. The probability is dominated by three characteristics (listed
in Table 8.14). Additional characteristics only increase the overall probability,
but more detailed analysis reveals that many additional characteristics have
probability zero for most keys, and high probability for a relatively small fraction
of keys.

The first characteristic has average probability 2−30. Based on all quasidifferen-
tial trails with absolute correlation ≥ 2−32, one obtains

piv,1 ≈ δ0(000cTk5) (1− (−1)0180Tk1/4) 2−29 .
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For the second characteristic (with average probability 2−33), the quasidifferen-
tial trails with absolute correlation ≥ 2−34 yield

piv,2 ≈ δ1(6000Tk2) (1 + (−1)000cTk5/2 + (−1)0300Tk4+000cTk5/2) 2−32 .

Note that one of the two quasidifferential trails with absolute correlation 2−34

involves three modular additions. By Theorem 4.5, the condition 6000Tk2 = 1 is
necessary to obtain a nonzero probability. However, the conditions 0300Tk4 = 0
and 000cTk5 = 1 only imply a small but possibly nonzero correlation. For
the third characteristic, we consider all quasidifferential trails with absolute
correlation ≥ 2−35 and obtain

piv,3 ≈ δ1(0c00Tk2)δ0(000cTk5) (1− (−1)0180Tk1/2) 2−31 .

Note that the condition 000cTk5 = 0 is shared with the first characteristic.
Since the probability of the second characteristic is too low, this implies that
previous key-recovery attacks on 14 rounds of Speck-32 work for only half of
the keys.

Table 8.14: Three dominant characteristics for differential iv.

pavg = 2−30 pavg = 2−33 pavg = 2−33

8.54 a9.. 8.54 a9.. 8.54 a9..
.... a4.2 .... a4.2 .... a4.2
a4.2 34.8 e4.2 74.8 ac.2 3c.8
5.c. 8.e. 5.4. 8.61 7.c. 8.e.
.181 .2.3 .381 .2.7 .181 .2.3
...c .8.. ..1c .8.. ...c .8..
2... .... 2... .... 2... ....
..4. ..4. ..4. ..4. ..4. ..4.
8.4. 814. 8.4. 814. 8.4. 814.
..4. .542 ..4. .542 ..4. .542

Impact on key-recovery attacks. The above analysis allows us to
reevaluate the best published attacks on reduced-round Speck-32. The attack
on 13 rounds only works for one in four keys. Likewise, the attack on 14 rounds
works only for half of the keys. Another way to formulate this is that the
(key-averaged) success probability of these attacks is much lower than expected.
For eleven and twelve rounds, the success probability is also slightly lower, but
less so. Unfortunately, restoring the previous success-probability is not possible
except by using alternative differentials.
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However, if the results of the above analysis are taken into account, weak
key attacks with lower data requirements are obtained. These attacks can be
optimized either with respect to the number of weak keys, or with respect to
the data complexity. To minimize the data complexity, we make assumptions
on the key to maximize the probability of the differential. To maximize the
number of keys for which the attack works, only conditions to ensure nonzero
probabilities are imposed. Assuming that the adversary stops requesting data
once the key has been found3, these attacks require less data than what would
be expected based on the average-case analysis.

Table 8.15: Rectified attacks on r-round Speck-32.

r
Time Data Weak-keys Optimizedencryptions plaintexts density

11 245.36 213.36 2−2 Data
245.88 213.88 1 Number of keys

12 250.36 218.36 2−2 Data
250.88 218.88 1 Number of keys

13 254.03 222.03 2−5 Data
256.20 224.20 2−2 Number of keys

14 261.84 229.84 2−1 Number of keys

The results are shown in Table 8.15. For example, the 6-round differential (11
round attack) has a probability at most (1 + 1/4)2 2−13 ≈ 2−12.36. With early
stopping, the average number of pairs required is 213(1/(1 − 1/4)2 + 2/(1 −
1/42) + 1/(1 + 1/4)2)/4 ≈ 212.88. For 14 rounds, we omit the attack optimizing
the data complexity, since it requires more time than exhaustive search over a
key space of size 264−1 for a similar success probability.

8.5.4 Analysis of differential attacks on larger variants of Speck

The techniques from Section 8.5.3 to analyze Speck-32 carry over to the larger
variants of Speck. This section reevaluates the best published attacks on these
variants. They rely on the key-recovery technique of Dinur [119] and are based
on the differentials shown in Table 8.16 below. For 16 rounds of Speck-96,
Song et al. [255] also propose a differential with average probability 2−94.94.
However, we do not include it as its probability is too low to improve over
exhaustive search.

3This is possible due to the way the key-recovery attack works.
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Table 8.16: Differentials for r-round Speck-n. Differences are given in Table 8.17.
The average differential probability is pavg, the average probability of the
analyzed characteristics is pchar. The values pmin and pmax are the minimum and
maximum value of the probability of the analyzed characteristics.

n r pavg pchar pmin pmax Ref. №
48 11 2−44.31 2−46 + 2−47 0 2−43 [255] i
64 15 2−60.56 2−62 0 2−59 [255] ii
96 15 2−81.00 2−81 0 2−73.68 [255] iii
128 20 2−124.35 4 · 2−128 0 2−120.36 [255] iv

Table 8.17: Input and output differences (a, b) for the differentials in Table 8.16.

a b

i 504200 004240 202001 202000
ii 04092400 20040104 808080a0 a08481a4
iii 082020000000 000120200000 800400008124 842004008801
iv 0124000400000000 0801042004000000 8004000080000124 8420040080000801

Most of the differentials in Table 8.16 rely on a significant differential effect.
Nevertheless, the analysis below will be limited to a few characteristics in each
case. This is done only to simplify the analysis, since each characteristic has its
own key-dependent behaviour that is not independent of other characteristics.
Note that including additional characteristics can only increase the probability
of the differential. In addition, it will be shown that key-dependence is much
more significant than the differential effect for all differentials in Table 8.16. A
detailed case-by-case analysis of the differentials in Table 8.16 now follows.

Differential i. For the 15-round Speck-48 differential, we consider two
characteristics: the first has average probability 2−46, the second 2−47. These
characteristics are shown in Table 8.18.

For the first characteristic, eight quasidifferential trails with correlation ±2−46

are obtained. From these trails, it follows that the characteristic has nonzero
probability if and only if 600000Tk7 = 0, 000c00Tk7 = 0 and 000003Tk8 = 1.
In this case, the probability is 2−43. There were no trails with correlation ±2−47

for the same characteristic, and for simplicity we will neglect smaller trails.

The second characteristic has eight trails with correlation ±2−47 and the same
masks as for the first characteristic. However, the conditions for nonzero
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Table 8.18: Dominant characteristics for differential i.

pavg = 2−46 pavg = 2−47

5.42.. ..424. 5.42.. ..424.
..12.2 .2...2 ..12.2 .2...2
....1. 1..... ....1. 1.....
...... 8..... ...... 8.....
8..... 8....4 8..... 8....4
8.8..4 8.8.2. 8.8..4 8.8.2.
84..a. 8..1a4 84..a. 8..1a4
6.8da4 6.8.8. e.8da4 e.8.8.
.42..3 ..24.. .42..7 ..24..
.12.2. ....2. .12.2. ....2.
2..1.. 2..... 2..1.. 2.....
2.2..1 2.2... 2.2..1 2.2...

probability are 600000Tk7 = 1, 000c00Tk7 = 1 and 000003Tk8 = 0. Hence,
the characteristics are incompatible. If these conditions are met, then the
probability is 2−44.

It follows from the discussion above that for 1/8 keys, the probability is 2−43

up to the contributions of smaller quasidifferential trails. For 1/4 keys one
characteristic has nonzero probability and the average reciprocal probability,
which determines the data complexity of the attack, is (243 + 244)/2 = 243.58.

Differential ii. We consider a characteristic with average probability 2−62,
shown in Table 8.19. For this characteristic, there are 8 quasidifferential trails
with correlation ±2−62. Hence, the probability is zero for 7/8 keys and 2−59

otherwise.

Differential iii. The 15-round differential on Speck-96 is dominated by a
single characteristic with probability 2−81 (see Table 8.20). However, the
analysis reveals that this characteristic has nonzero probability only for 1/64
keys. Specifically, there exist 26 quasidifferential trails with absolute correlation
2−81. This also implies that the probability of the characteristic is 2−75 for 1/64
weak keys.

In addition, we find 192 = 3 · 26 quasidifferential trails with absolute correlation
2−82. The signs of the correlation of these trails are determined by independent
key bits, such that for 1/29 keys the probability of the characteristic becomes
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Table 8.19: Characteristics for ii.

pavg = 2−62

.4.924.. 2..4.1.4
2....82. 2.2....1
.......9 .1......
.8...... ........
...8.... ...8....
...8.8.. ..48.8..
..48...8 .2.84..8
.6.8.8.8 164a.848
f24...4. 4.1.42..
..82.2.. ....12.2
....9... ......1.
......8. ........
8....... 8.......
8.8..... 8.8....4
8...8..4 84..8.2.
8.8.8.a. a.8481a4

Table 8.20: Characteristics for iii.

pavg = 2−81

.82.2....... ...12.2.....

...9........ .....1......

.....8...... ............

.......8.... .......8....

.......8.8.. ......48.8..
......48...8 .....2.84..8
.8..fe.8.8.8 .8..ee4a.848
...7724...4. 4.....1.42..
......82.2.. ........12.2
........9... ..........1.
..........8. ............
8........... 8...........
8.8......... 8.8........4
8...8......4 84..8.....2.
8.8.8.8...2. a.848.8..124
8..4....8124 842..4..88.1

(1 + 3/2) · 2−75 = 2−73.68. Based on this analysis, the average reciprocal
probability is 64/27 · 275 ≈ 276.25 for the weak key class of density 2−6.

Differential iv. The differential includes four characteristics with average
probability 2−128, amounting to a total average probability of 2−126. These
characteristics are listed in Table 8.22.

For one of these characteristics, we find 128 quasidifferential trails with absolute
correlation 2−128. Hence, the probability of the characteristic is actually 2−121

for one in 128 keys and zero otherwise.

Two characteristics each have 32 quasidifferential trails with absolute correlation
2−128, implying that their probability is close to 2−123 for one in 64 keys and zero
otherwise. The conditions to obtain a nonzero probability are a subset of those
for the first characteristic. Furthermore, the conditions for both characteristics
overlap in three linearly independent equations.

The remaining characteristic has eight quasidifferential trails with absolute
correlation 2−128. The conditions for obtaining a nonzero probability are a
subset of the conditions required for each of the first three characteristics. Hence,
if any of the previously discussed characteristics has a nonzero probability, then
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the same is true for this characteristic.

From the above discussion, the probability is 2−121 +2 ·2−123 +2−125 ≈ 2−120.36

for one in 128 keys. In addition, for one in eight keys, the average reciprocal
probability is 2125 × 9/16 + 2122.68 × 6/16 + 2120.36 × 1/16 ≈ 2124.36.

Impact on key-recovery attacks. The analysis above directly impacts
the key-recovery attacks based on the differentials from Table 8.16. Like for
Speck-32, all of these attacks have lower success probability than previously
believed. Nevertheless, the analysis also leads to weak key attacks with lower
data complexity. The results are summarized in Table 8.21.

For Speck-128, the analysis shows that the key-recovery attacks probably do
not improve over exhaustive search over the reduced key-space. Improvements
may be possible if checking the weak key conditions can be made comparatively
cheap, provided that checking candidate keys dominates the cost. Since a
detailed analysis of the time complexity is outside of the scope of this chapter,
Table 8.21 only lists a distinguisher for this case. Although our analysis did
not include all characteristics, these would only increase the average differential
probability by 2−124.9. Further analysis shows that the probabilities of these
characteristics are strongly key-dependent. Hence, the key-recovery attacks on
Speck-128 from [255] most likely do not improve over exhaustive search.

Table 8.21: Rectified attacks on r-round Speck.

Variant r
Time Data Weak-keys Optimizedencryptions plaintexts density

48/72 15 268 244 2−3 Data
268.58 244.58 2−2 Number of keys

48/96 16 292 244 2−3 Data
292.58 244.58 2−2 Number of keys

64/96 19 292 260 2−3 ——
64/128 20 2124 260 2−3 ——

96/96 18 274.68 274.68 2−9 Data
277.25 277.25 2−6 Number of keys

96/144 19 2122.68 274.68 2−9 Data
2125.25 277.25 2−6 Number of keys

128/m 20 2121.36 2121.36 2−7 Data†

2125.36 2125.36 2−3 Number of keys†

† Distinguisher only.
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Table 8.22: Dominant characteristics for differential iv.

pavg = 2−128 pavg = 2−128

.124...4........ .8.1.42..4...... .124...4........ .8.1.42..4......

.8..2.2......... 48.8.12.2....... .8..2.2......... 48.8.12.2.......
48...1.......... .84..8.1.......2 48...1.......... .84..8.1.......2
.8.8.8.........6 4a.848.8......16 .8.8.8.........6 4a.848.8......16
4...4.........32 1.42..4.......8. 4...4.........32 1.42..4.......8.
.2.2..........8. 8.12.2.......48. .2.2..........8. 8.12.2.......48.
..1..........48. ..8.1.......2.84 ..1..........48. ..8.1.......2.84
8.8.........2.8. 848.8......124a. 8.8.........6.8. 848.8......164a.
.4.........1244. 2..4.......8.144 .4.........324.. 2..4.......8.1.4
2..........8.22. 2.2.......48.8.1 2..........8..2. 2.2.......48.8.1
..........48...1 .1.......2.84..8 ..........48...1 .1.......2.84..8
.........e.8.8.8 .8......1e4a.848 .........e.8.8.8 .8......1e4a.848
........f24...4. 4.........1.42.. ........f24...4. 4.........1.42..
..........82.2.. ............12.2 ..........82.2.. ............12.2
............9... ..............1. ............9... ..............1.
..............8. ................ ..............8. ................
8............... 8............... 8............... 8...............
8.8............. 8.8............4 8.8............. 8.8............4
8...8..........4 84..8.........2. 8...8..........4 84..8.........2.
8.8.8.8.......2. a.848.8......124 8.8.8.8.......2. a.848.8......124
8..4....8....124 842..4..8....8.1 8..4....8....124 842..4..8....8.1

pavg = 2−128 pavg = 2−128

.124...4........ .8.1.42..4...... .124...4........ .8.1.42..4......

.8..2.2......... 48.8.12.2....... .8..2.2......... 48.8.12.2.......
48...1.......... .84..8.1.......2 48...1.......... .84..8.1.......2
.8.8.8.........2 4a.848.8......12 .8.8.8.........2 4a.848.8......12
44..4.........12 1442..4.......8. 44..4.........12 1442..4.......8.
22.2..........8. 8.12.2.......48. 22.2..........8. 8.12.2.......48.
..1..........48. ..8.1.......2.84 ..1..........48. ..8.1.......2.84
8.8.........6.8. 848.8......164a. 8.8.........2.8. 848.8......124a.
.4.........324.. 2..4.......8.1.4 .4.........1244. 2..4.......8.144
2..........8..2. 2.2.......48.8.1 2..........8.22. 2.2.......48.8.1
..........48...1 .1.......2.84..8 ..........48...1 .1.......2.84..8
.........e.8.8.8 .8......1e4a.848 .........e.8.8.8 .8......1e4a.848
........f24...4. 4.........1.42.. ........f24...4. 4.........1.42..
..........82.2.. ............12.2 ..........82.2.. ............12.2
............9... ..............1. ............9... ..............1.
..............8. ................ ..............8. ................
8............... 8............... 8............... 8...............
8.8............. 8.8............4 8.8............. 8.8............4
8...8..........4 84..8.........2. 8...8..........4 84..8.........2.
8.8.8.8.......2. a.848.8......124 8.8.8.8.......2. a.848.8......124
8..4....8....124 842..4..8....8.1 8..4....8....124 842..4..8....8.1
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9
Generalized Feistel ciphers

This chapter presents truncated differential attacks on expanding and contracting
Feistel ciphers. The attacks are generic, but lead to concrete results on GMiMC
and SM4. The main focus is on the contracting case, of which the Chinese
standard SM4 is the most important example. The implications for GMiMC will
be discussed in Chapter 10.

The contents of this chapter are based on the paper “Truncated differential
attacks on contracting Feistel ciphers” [55] from ToSC 2022 (joint work with
Yunwen Liu). The analysis of the expanding case is due to Gaëtan Leurent and
appeared in our paper “Out of oddity: new cryptanalytic techniques against
symmetric primitives optimized for integrity proof systems” [43] from Crypto
2020. For completeness, it is included in this chapter in slightly generalized
form. My own results from [43] are presented in Chapter 10.

9.1 Introduction

Following its invention by Horst Feistel in the 1970s, the Feistel structure
has become one of the most prominent architectures in modern block cipher
design. One of its most eminent applications is the former American block
cipher standard DES. Hence, it is not unexpected that the design and analysis
of variants of the Feistel structure has become a significant research topic with
valuable applications.

Following the widespread use of Feistel ciphers, many variations on the original
structure were proposed. One of the main directions of this research has
been the exploration of Feistel-like structures with more than two branches.
Examples include generalized Feistel ciphers [225, 297] and the unbalanced
Feistel ciphers discussed by Schneier and Kelsey [247]. The family of unbalanced
Feistel structures can be further subdivided into expanding and contracting
constructions. Figure 9.1 shows a single Feistel round of an expanding Feistel
cipher and a contracting Feistel cipher with t = 4 branches.

The algebraic cipher GMiMC-erf [6] is an example of an expanding Feistel cipher.
Examples of contracting Feistel ciphers include the algebraic cipher GMiMC-

235
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Fi

(a) Contracting Feistel cipher.

Fi

(b) Expanding Feistel cipher.

Figure 9.1: One round of a contracting or expanding Feistel cipher with t = 4
branches. The function Fi is potentially key-dependent.

crf [6] and the general-purpose block cipher SM4 [118]. The latter example is
particularly important, as SM4 is the Chinese commercial block cipher standard
(GB/T 32907-2016). In addition, it has been standardized by ISO/IEC under
the reference number 18033-3:2010.

Given their widespread application, it is not surprising that the security analysis
of Feistel ciphers has been an industrious area of research. Luby and Rackoff [208]
proved the indistinguishability of three-round Feistel ciphers with uniform
random round functions. Yun, Park and Lee [289] proved the birthday-bound
security of t-branch1 contracting Feistel ciphers with 2t− 1 rounds. However,
from a practical point of view, optimal security is expected and desired if
the number of rounds is large enough. Hence, several works have proposed
generic attacks – thereby lower bounding the number of rounds necessary for
security. In particular, Guo et al. [155] describe meet-in-the-middle attacks on
contracting Feistel ciphers. Patarin, Nachef and Berbain [230] analyze a more
general contracting structure.

Differential cryptanalysis has proven to be one of the most successful tools in the
security analysis of both concrete and generic Feistel structures. For example,
the generic attacks of Patarin [229] on ordinary Feistel ciphers are based on
differential cryptanalysis. The differential attack itself has also been extended
and generalized in several ways. At FSE 1994, Knudsen [181] introduced an
important extension known as truncated differential cryptanalysis.

In this chapter, the security of generic expanding and contracting Feistel ciphers
is analyzed using truncated differentials. The motivation for doing so is twofold.
On the one hand, from the viewpoint of block cipher design, it is important to
know the baseline number of rounds required for security. On the other hand,
new generic attacks can impact the security of concrete ciphers such as GMiMC

1The characteristic of the domain should not divide t− 1 to avoid a trivial distinguisher.
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and SM4. SM4 in particular has received a significant amount of dedicated
cryptanalysis and given its status as both a domestic and international standard,
further advances in its analysis would be of interest.

The starting point for the analysis are two iterated truncated differentials. For
the expanding case, the differential was first proposed for GMiMC-erf by Gaëtan
Leurent as a part of our paper at Crypto 2020 [43]. This result is presented
in Section 9.3 together with a similar truncated differential for the contracting
case. In both cases, the resulting distinguisher covers t2 − t− 2 rounds given
O(N t−2) data for a Feistel cipher with t branches and a domain of size N t. In
the contracting case, considering truncated differential trails whose probability
ptrail is lower than their ideal probability pideal improves this to t2 − 1 rounds
with O(N t−1) data.

In Section 9.4 and Section 9.4.1 in particular, improved truncated differential
distinguishers are constructed. Only the contracting case is considered, since
it is the most relevant for applications. The final t2- and (t2 + t − 2)-round
distinguishers are based on a different iterated truncated differential that relies
on several additional improvements. In particular, it takes advantage of relations
between input and output differences, and optimizes the trade-off between the
size of input structures and other parameters such as ptrail and pideal. The
t2-round distinguisher requires O(N t−2) data, for t2 + t − 2 rounds O(N t−1)
data is sufficient to achieve a constant advantage. The 16-round trail for t = 4 is
shown to be optimal using SMT models in Section 9.4.2, and the distinguishers
are verified experimentally in Section 9.4.3.

The t2-round distinguisher is turned into a key-recovery attack in Section 9.5,
resulting in a (t2 + 1)-round attack requiring O(N t−2) data and O(N t−1) time.
This is a significant improvement over the results of Guo et al. [155]. In
particular, the key-recovery attacks of Guo et al. cover at most 5t− 4 rounds
(assuming the key length is equal to the block length).

As an immediate consequence of these results, an 18-round distinguisher and
a 17-round key-recovery attack for SM4 are obtained. The data and time
complexity of the 18-round distinguisher are approximately 296. The 17-round
key-recovery attack uses 270 chosen plaintexts and 299 encryption operations.
Although dedicated attacks on SM4 reach up to 23 rounds, their data- and time
complexity is extremely large. As will be argued in Section 9.6, the new key-
recovery attack is the best published attack for 17 rounds. This is remarkable
given the fact that it does not use any details about the round function of SM4.
The attacks also have implications for GMiMC, but these will be discussed in
Chapter 10.
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9.2 Preliminaries

Throughout this chapter, let U be a finite-dimensional vector space over a finite
field. Furthermore, let N = |U | denote the cardinality of the set U . That is,
N = qn with q a prime power and n a positive integer.

9.2.1 Expanding and contracting Feistel ciphers

As illustrated in Figure 9.1 for t = 4, a Feistel round of a contracting Feistel
cipher R : U t → U t with t branches is defined by R : (x1, x2, . . . , xt) 7→
(y1, y2, . . . , yt), with

yi =
{
x1 + F(x2 + x3 + . . .+ xt) if i = t ,

xi+1 else .

Similarly, for an expanding Feistel cipher R : U t → U t, it holds that

yi =
{
x1 if i = t ,

xi+1 + F(x1) else .

The function F is called the round function of the expanding or contracting
Feistel cipher and is often key-dependent. The round function F can take
various forms. For instance, the round function of SM4 has a SHARK-like
structure consisting of an S-box layer followed by a multiplication with an MDS
matrix [118]. For GMiMC-erf and GMiMC-crf [6], F(x) = (x+ c)3, assuming U
is a finite field and c is a constant or key. Since the attacks in this paper are
generic and do not exploit the inner structure of the round function and key
schedule, further details are omitted.

9.2.2 Truncated differentials

An important extension of differential cryptanalysis is the so-called truncated
differential attack, first proposed by Knudsen [181]. Let A and B be subsets of
U t. The probability of the truncated differential (A,B) for F : U t → U t with
input set A and output set B is defined by

Pr[A E−→ B] = Pr[F(x)− F(y) ∈ B | x− y ∈ A] ,

where x and y are independent uniform random variables on U t. Equivalently,

Pr[A F−→ B] = 1
|A|

∑

a∈A
Pr[F(x+ a)− F(x) ∈ B] .
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A truncated differential with A = B is called iterative or iterated.

The approach to truncated differentials in this chapter will be classical. In
particular, it will be assumed that probabilities in a truncated differential trail
can be multiplied as if they correspond to independent events. However, since
the analysis is generic, this will not lead to serious issues here. The results
in Chapters 3 and 4 imply that there is an average-case2 equivalence between
multidimensional linear and truncated differential properties. Hence, the results
of this chapter could also have been presented from the point of view of linear
cryptanalysis. In retrospect, this might have clarified some of the heuristic
assumptions that are made throughout the analysis.

When dealing with truncated differentials, it is sometimes convenient to use
dependencies between input and output differences. A simple example is the
property that any input difference from a set A results in the same output
difference, rather than just any difference in the set A.

A convenient way to describe such properties without leaving the usual
framework for truncated differentials from above, is to consider the input-
extended cipher F : U t → U t × U t defined by x 7→ (x,F(x)). Indeed, if A ⊆ U t
and B ⊆ U t × U t, then

Pr [A F−→ B] = Pr[(x− y,F(x)− F(y)) ∈ B | x− y ∈ A] ,

with x and y uniform random on U t. The right-hand side above is indeed the
desired probability. Ordinary truncated differentials correspond to the case
B = A× C for some output difference set C.

9.3 Basic truncated differential distinguishers

In Section 9.3.1, iterated t-round truncated differentials for generic expanding
and contracting Feistel ciphers are presented, and it is shown that they lead to
interesting distinguishers.

When iterated too many times, the probability of the aforementioned truncated
differential trails drops below the probability of the truncated differential
for uniform random permutations. However, it is still possible to obtain a
distinguisher as long as enough pairs are available. This observation is used in
Section 9.3.2 to show that the distinguisher for contracting Feistel ciphers from
Section 9.3.1 can be extended to more rounds.

2Average with respect to independent and uniform random round keys.
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9.3.1 Iterated truncated differential trails

Figures 9.2a and 9.2b show iterated truncated differentials A → A for an
expanding and a contracting Feistel cipher with t = 4 branches. For contracting
Feistel ciphers, A = {(a,−a, 0, 0) | a ∈ U \ {0}} and A = {(0, 0,−a, a) | a ∈
U \{0}} for the expanding case. The input difference is represented symbolically
on each branch. For instance, the label a corresponds to an arbitrary nonzero
input difference. The trail for the expanding case is due to Gaëtan Leurent,
except that it is generalized to arbitrary expanding Feistel ciphers in Figure 9.2a.

Consider the contracting case. In the first round, the probability is one since
the output difference b of Fi is arbitrary. The probability for the second round
is 1/(N − 1) ∼ 1/N on average, assuming that Fi+1 is a uniform random
permutation. Finally, the truncated differences in the third and fourth rounds
propagate with probability one since a + b − a − b = 0. The analysis of the
expanding case is similar. The probability in the first three rounds is one. In
the last round, the probability is 1/(N − 1) ∼ 1/N on average.

Similar trails exists for any number of branches t ≥ 4. In particular, one can
simply set the rightmost t− 2 branches to zero for the contracting case and the
leftmost t− 2 branches for the expanding case. Since the trails in Figures 9.2a
and 9.2b have the same input and output sets, they can be iterated. For r
divisible by t, an r round trail with probability ptrail = 1/(N − 1)r/t ∼ 1/Nr/t

is obtained.

For a random permutation, however, the probability of A → A is pideal =
(N − 1)/(N t − 1) ∼ 1/N t−1. Hence, if pideal = o(ptrail), one obtains an r-round
distinguisher using approximately 1/ptrail = Nr/t data. It follows that a t-branch
expanding or contracting Feistel cipher must have r > t2 − 2t rounds to be
secure. Furthermore, the attack on t2 − 2t rounds requires N t−2 data.

In fact, the above can be improved by prepending t−2 rounds to the trail in the
contracting case as shown in Figure 9.3 for t = 4, and similarly by appending
t − 2 rounds to the trail in the expanding case. Since this modification does
not affect preal or pideal in either case, one obtains a distinguisher on t2 − t− 2
rounds with N t−2 data.

A further extension by appending at most t− 2 rounds to the trail is possible
in the contracting case. However, appending s rounds increases pideal to (N −
1)/(N t−s−1) ∼ 1/N t−s−1. Hence, appending rounds does not lead to an attack
on more rounds. Nevertheless, for a smaller number of rounds, appending t− 2
rounds may lead to a lower data complexity. Optimizing for the number of
rounds, we obtain the following result.
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Fi

a 9a 0 0

Fi+1

9a 0 0 a + b

Fi+2

0 0 a + b 9a 9 b

Fi+3

0 a + b 9a 9 b 0

a + b 9a 9 b 0 0

(a) Contracting case.

Fi

0 0 9a a

Fi+1

0 9a a 0

Fi+2

9a a 0 0

Fi+3

a + b b b 9a

0 0 9a 9 b a + b

(b) Expanding case.

Figure 9.2: Truncated differential for expanding and contracting generalized
Feistel ciphers with t = 4 branches. The probability of both trails is 1/N . In
characteristic two, the minus signs may be dropped.



9.3 Basic truncated differential distinguishers 242

Fi

0 0 a −a

Fi+1

0 a −a 0

a −a 0 0...
...

...
...

Figure 9.3: Prepending t−2 rounds to the trail from Figure 9.2a with probability
one. In characteristic two, the minus signs may be dropped.

Result 9.1. A generic expanding or contracting Feistel cipher with t branches
and t2 − t− 2 rounds can be distinguished from a uniform random permutation
with advantage Θ(1) using N t−2 data.

Result 9.1 implies that the number of rounds of an expanding or contracting
Feistel cipher must scale quadratically with the number of branches. For a large
enough number of branches, this is a significant improvement over the attacks
by Patarin et al. [230] and Guo et al. [155], who showed that the number of
rounds must scale linearly with the number of branches. However, note that for
the most interesting applications small values of t are of particular importance.
Hence, a more detailed comparison is necessary.

The distinguishers of Patarin et al. [230] consider a more general form of
contracting Feistel ciphers, but cover at most 2t− 1 rounds. Hence, Result 9.1
improves over this for all t ≥ 4. Guo et al. [155] describe key-recovery attacks
up to 5t− 4 rounds when the key length is t log2N bits. By guessing the last
round key, the distinguisher above is easily adapted to a key-recovery attack on
t2 − t− 1 rounds with time complexity Õ(N t−1). Hence, Result 9.1 improves
over the attacks of Guo et al. [155] for t ≥ 6.

Nevertheless, Result 9.1 leaves significant room for improvements. Importantly,
even extensions by a number of rounds linear in t are relevant, since important
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examples such as SM4 have a small number of branches. A first improvement
is the use of input structures. An affine space of dimension d over U contains
Nd(Nd − 1)/2 pairs. This allows reducing the amount of data. For example,
for the truncated differential used in Result 9.1, one could reduce the data
complexity to 2N t−3 in this manner. However, the number of rounds that
can be distinguished does not increase as this is determined by the condition
pideal = o(ptrail).

In the remainder of this chapter, several improvements to the basic truncated
differential from Section 9.3.1 will be introduced. This includes the extension of
the distinguisher to the setting with ptrail ≤ pideal in Section 9.3.2. In Section 9.4
further improvements will be made, including taking more advantage of input
structures and using dependencies between input and output differences. Such
improvements can be useful for both expanding and contracting Feistel ciphers.
However, due to the lack of applications beyond GMiMC-erf, only contracting
Feistel ciphers are considered in the remainder of this chapter.

9.3.2 Extended distinguisher with ptrail ≤ pideal

Even when the probability of a truncated differential trail is much lower than
the ideal probability of the corresponding truncated differential, it is sometimes
possible to obtain a distinguisher. Heuristically, the idea is that wrong pairs for
a truncated differential trail behave as if they were encrypted under a uniform
random permutation. Hence, one can argue that the true probability preal of
the truncated differential satisfies the folklore approximation

preal ≈ ptrail + pideal(1− ptrail) = pideal + ptrail(1− pideal) ≈ pideal + ptrail . (9.1)

That is, one expects slightly more right pairs for the cipher than for a random
permutation.

We now consider the data complexity of a distinguisher with ptrail � pideal, and
derive a distinguisher for more than t2− t− 2 rounds based on exactly the same
iterated truncated differential as in Section 9.3.1. This is possible because, as
was just argued, this truncated differential has

preal − pideal ≈ ptrail ∼ 1/Nr/t . (9.2)

Suppose one encrypts D plaintext pairs with differences in the input set of the
truncated differential. After encrypting these pairs under the cipher, we expect
to obtain an average number of Dpreal pairs with a difference in the output set of
the truncated differential. For a random permutation, the expected number of
pairs is instead Dpideal. Moreover, the distribution of the number of right pairs
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under a random permutation is binomial with variance pideal(1−pideal)D ∼ pidealD
since pideal � 1. By Theorem 1.1, to obtain a distinguisher with advantage
Θ(1), we require that the difference between the means of the real and ideal
distribution of the number of valid pairs exceeds the standard deviation of the
ideal distribution:

D (preal − pideal)�
√
Dpideal .

Rewriting the above, one obtains the estimate

D � pideal/(preal − pideal)2 . (9.3)

For a more detailed derivation of this result including a proof that this is optimal,
see for instance Blondeau and Gérard [68].

By (9.2) and (9.3), we get D � pideal N2r/t with pideal ∼ 1/N t−1. Hence, if
the trail is iterated t − 1 times (once more than in Section 9.3.1), we must
have D = N t−1 pairs. After prepending t − 2 rounds with probability one,
a distinguisher on t(t − 1) + t − 2 = t2 − 2 rounds is obtained. In fact, it
is possible to improve upon this by appending one round at the end. This
increases the ideal probability to approximately 1/N t−2, so that t2 − 1 rounds
can be distinguished using N t pairs. Using an input structure of size N , these
pairs can be obtained from roughly 2N t−1 plaintexts. Note that iterating the
truncated differential t times or appending one more round at the end of the
trail is not worthwhile, since that would lead to a data complexity of N t.

Result 9.2. A generic contracting Feistel cipher with t branches and t2 − 1
rounds can be distinguished from a uniform random permutation with advantage
Θ(1) using N t−1 data.

Compared to Result 9.1, the distinguisher with ptrail � pideal covers t+ 1 more
rounds. Unlike in Section 9.3.1, the limiting factor in further improvements is
now the number of pairs that can be obtained from the input space. Indeed,
provided that one has a sufficiently large input structure, it would be possible
to use more than N t pairs. However, the trail from Section 9.3.1 has an input
structure of size only N . In Section 9.4.1, truncated differentials that allow for
bigger input structures will be introduced.

Finally, note that for t = 4 (as for SM4), we now obtain a 15 round distinguisher
with a data complexity of N3. This may be compared with the 16 round
key-recovery attack of Guo et al. [155] with a similar data complexity. The
distinguisher from Result 9.1 can also be extended to a 16 round key-recovery
attack, but it requires N4 partial decryption operations and hence offers only
marginal advantage over exhaustive search.
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9.4 Improved truncated differential distinguishers

This section develops improved truncated differential attacks on generic
contracting Feistel ciphers. In Section 9.4.1, improvements to the distinguisher
from Section 9.3 are obtained by taking into account input structures and by
allowing for dependencies between the input and output differences. As a result,
distinguishers for t− 1 additional rounds with the same-data complexity are
obtained (Result 9.3). In Section 9.4.2, an SMT model is developed to show
that (for t = 4), these distinguishers are indeed optimal. Section 9.4.3 reports
on the experimental verification of these results.

9.4.1 Input structures and input-output dependencies

As discussed at the end of Section 9.3.2, the number of rounds that can be
distinguished using the truncated differential from Section 9.3 is primarily
limited by the dimension of the input space. Indeed, if the dimension d of the
input structure is large enough, then the number of pairs used in the attack can
exceed N t while keeping the data and time complexity below N t. In particular,
one can obtain up to Nd(Nd− 1)/2 ∼ N2d/2 pairs for each structure of size Nd.
A larger dimension d leads to a distinguisher for more rounds, ceteris paribus.
In principle d can be up to t− 1, but the trade-off with the probability ptrail of
the trail as well as the ideal probability pideal should be kept in mind. Note that
when using structures, the time complexity of the distinguisher is still equal
to the data complexity. Indeed, one can count the number of occurrences of
the relevant parts of the output and store them in a table. After sorting, the
number of valid pairs can be determined by iterating through the table once.

Iterative truncated differential with larger d. In Figure 9.4, an iterative
truncated differential for t = 4 is shown. Whereas the truncated differential from
Section 9.3 had input structures of dimension one, the truncated differential in
Figure 9.4 has d = 2. Importantly, this is achieved by allowing dependencies
between the input and output differences. Recall from Section 9.2, page 239,
that this can be described formally by considering the input-extended cipher.
The probability of the four-round trail in Figure 9.4 is ptrail ∼ 1/N , and the
ideal probability is pideal ∼ 1/N3.

The trail from Figure 9.4 can be generalized to t branches by considering the
following input difference structure:

(a1, a2, . . . , at−2, b, b) such that
t−2∑

i=1
ai = −b ,
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Fi

a −a − b b b

Fi+1

−a − b b b c

Fi+2

b b c −b − c

Fi+3

b c −b − c b

c −b − c b b

Figure 9.4: Truncated differential for a contracting generalized Feistel cipher
with t = 4 branches. The probability of this trail is 1/N . In characteristic two,
the minus signs may be dropped.
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with a1, . . . , at−2, b in U not all zero. Like the trail from Section 9.3, this iterated
trail covers r rounds with ptrail ∼ 1/Nr/t for r a multiple of t. Furthermore, the
input structure has dimension d = t− 2 and pideal ∼ 1/N3.

There are several ways to extend the iterative trail from above by additional
rounds, such as prepending two rounds or appending t− 2 rounds. However,
extending the number of rounds is not necessarily optimal as it may lead to a
smaller d or a higher ideal probability pideal. The next paragraph analyzes the
available trade-offs in detail.

Trade-off analysis. Suppose we iterate the trail from Figure 9.4 m times,
covering mt rounds. Further assume that when the trail is deterministically
extended by s rounds, the input structure dimension is d and let i be an integer
such that pideal ∼ 1/N i. As discussed in Section 9.3.2 on page 244, the number
of pairs D required for the attack is then

D ∼ pideal/(preal − pideal)2 = N2m−i ,

since preal − pideal ∼ 1/Nm. Since the maximum number of pairs that can be
obtained is N t−dNd(Nd − 1)/2 ∼ N t+d/2, we must have D � N t+d. Hence,
2m− i ≤ t+ d or equivalently m ≤ b(t+ d+ i)/2c. It follows that the number
of rounds r that can be distinguished satisfies

r ≤ t
⌊
t+ d+ i

2

⌋
+ s . (9.4)

This bound is tight. If 2m ≥ 2d+ i, then the corresponding data complexity
is NdN2m−i−2d = N2m−d−i. Otherwise, the data complexity is approximately
Nm−i/2.

We now consider the possible trade-offs for the iterative trail introduced above.
Note that it is always possible to prepend two rounds to the trail, without
affecting the trail probability or pideal. If no further rounds are appended, then
i = 3 as discussed above. It then follows from (9.4) with s = 2 and d = t− 2
that r = tbt+ 1/2c+ 2 = t2 + 2 rounds can be distinguished using N t−1 data.
If instead an additional t − 2 rounds are appended, then i = 2 and s = t.
Hence, (9.4) yields a distinguisher on r = t2 + t rounds with N t data. This data
complexity is only marginally acceptable. If we choose m = t − 1 instead of
m = t, then a distinguisher for t2 rounds with N t−2 data is obtained. It is also
possible to append t− 1 rounds, but this yields i = 1 and is not worthwhile.

Alternatively, it is possible to use a slightly larger input structure. Indeed,
consider input differences of the following form:

(a1, a2, . . . , at−2, b, b) ,
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with a1, . . . , at−2, b in U not all zero. This is an input structure of dimension
d = t− 1. Importantly, this can be connected to the iterative trail from above
with probability ∼ 1/N . With the input structure above, it is not possible
to prepend rounds without decreasing d. If no rounds are appended, then
i = 3 and s = 0. Hence, by (9.4), there is a distinguisher on tbt+ 1c = t2 + t
rounds with N t data. Again, the data complexity of this distinguisher is only
marginally acceptable. Choosing m = t instead, a t2-round distinguisher with
lower data complexity is obtained. However, since 2t < 2(t− 1) + 3, the data
complexity is N t−1.5 – higher than for the t2-round distinguisher from above.
Finally, suppose we append t − 2 rounds such that i = 2 and s = t − 2. By
(9.4), one can then distinguish up to tbt+ 1/2c+ t− 2 = t2 + t− 2 rounds with
N t−1 data.

Overview of the best distinguishers. Summarizing the results from the
trade-off analysis yields Result 9.3. Note that these distinguishers cover more
rounds than those mentioned in Results 9.1 and 9.2. More importantly, they
improve over previous generic attacks on contracting Feistel ciphers for any
number of branches.

Result 9.3. For a generic contracting Feistel cipher with t branches, we have
the following distinguishers from a uniform random permutation:

• t2 + t− 2 rounds using N t−1 data,

• t2 rounds using N t−2 data.

Each of these distinguishers achieves an advantage of Θ(1).

The case t = 4 is of particular relevance, since the corresponding results yield a
distinguisher on 16 rounds of SM4 with 264 data and time and on 18 rounds with
296 data and time. In Section 9.5, it will be discussed how the distinguishers
in Result 9.3 can be turned into key-recovery attacks on slightly more rounds.
It will be demonstrated in Section 9.6 that this leads to the best-known key-
recovery attack on 17-round SM4.

9.4.2 Modelling truncated differentials using SMT

In this section, the propagation of truncated differentials through a generic
contracting Feistel cipher is modelled as an SMT problem. For simplicity, the
model is restricted to the case with base field F2. An important feature of the
model is that it can be used to find distinguishers with ptrail � pideal. In addition,
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relations between the input and output variables are accounted for. This is
important to verify the distinguishers from Section 9.4.1. The implementation
is based on Boolector [222] and is available online.3 To automate the process of
finding truncated differentials by SMT solving, we need to model the truncated
differences and the corresponding transition rules by properly defined variables
and constraints.

Variables. For each nonzero truncated difference in the model, it is either a
new variable or a linear combination of previous variables. In order to simplify
checking linear (in)dependence, a bitvector variable is used to represent the
truncated difference on each branch. The zero bitvector represents the zero
difference. However, nonzero bitvectors do not correspond to a specific difference
and should be thought of as symbolic variables.

Specifically, a bitvector with Hamming weight one represents a free variable, i.e.
one that is not a linear combination of other variables. Linearly independent
truncated differences are represented by distinct bitvectors. Truncated
differences that are linear combinations of other differences (with coefficients
zero or one, as we work over F2) can then be represented by a bitvector with
Hamming weight two or higher.

The length of the bitvectors is determined by the maximum number of free
variables. Specifically, the truncated differences for an r-round t-branch
contracting Feistel structure contain at most r + t independent variables,
including the input differences and the output differences of the round functions
Fi with i = 1, . . . , r. Hence, bitvectors of length r + t are sufficient.

Finally, the model keeps track of the probabilities ptrail and pideal and represents
them by their integer weights wt(ptrail) and wt(pideal) such that ptrail ∼ 1/Nwt(ptrail)

and pideal ∼ 1/Nwt(pideal). In addition, the probability pi of the truncated
differential in round i of the trail has weight wt(pi). If a probability is zero, we
formally denote its weight by ∞. Within the SMT model, infinite weights are
excluded by appropriate constraints.

Constraints. The average trail probability satisfies ptrail =
∏r
i=1 pi. Equiva-

lently, the weights must satisfy the constraint

wt(ptrail) =
r∑

i=1
wt(pi) .

Based on the above, additional constraints for wt(ptrail) 6= ∞ are relatively
easy to deduce. To ensure that ptrail 6= 0, the first t − 1 branches of each

3http://tim.cryptanalysis.info/contracting-feistels.zip

http://tim.cryptanalysis.info/contracting-feistels.zip
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output difference must equal the last t− 1 branches of the output difference.
Furthermore, since the round function is a permutation, the output difference of
the round function is zero if and only if the input difference, i.e. the exclusive
or of the bitvectors representing the rightmost t−1 input branches, is zero. The
weight wt(ptrail) is then equal to the number of round function output differences
that are zero or have Hamming weight at least two (a linear combination of
other variables).

If ptrail ≤ pideal, additional constraints are necessary to avoid trivially invalid
trails. In particular, at least one branch of the differences in each round must
be a linear combination of the differences in preceding branch differences in
that round or the input-branch differences. Linear dependence is modelled
recursively.

Finally, suitable constraints for wt(pideal) are added by recursively determining
the number of output variables that are independent of the input variables and
previous output variables.

Proving optimality using SMT. Using the SMT model introduced above,
one can verify the correctness of the differential distinguishers from Section 9.4.1.
To this end, we place a constraint on the trail weight for fixed values of the
input structure dimension and the ideal weight and iteratively increase its value
until the problem is found to be satisfiable. Alternatively, it is possible to
optimize the overall weight directly, by modelling the data complexity formula
from Section 9.4.1 within the SMT problem.

For t = 4 and r = 16, the best possible truncated differential distinguishers (in
terms of data complexity) for all possible values of the input structure size d
in {1, 2, 3} and ideal weight i in {1, 2, 3} are obtained within 100 minutes on
a standard personal computer. The distinguisher from Result 9.3 was one of
several solutions with data complexity N2. No distinguishers with a lower data
complexity were found.

9.4.3 Experimental verification

In this section the generic distinguishers from Result 9.3 are verified
experimentally for t = 4 and N = 28. Let λ = pidealD when the distinguisher
(implicitly) generates D pairs. Let x be a random variable counting the number
of right pairs when the distinguisher is evaluated on a random permutation. If
the distinguisher uses a threshold value τ

√
λ, then the false-positive rate is

PF = Pr [x ≥ λ+ τ
√
λ] = Pr [x ≥ (1 + τ/

√
λ)λ] .
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Since PF is the sum ofD independent Bernoulli random variables with probability
of success pideal, it follows from the multiplicative Chernoff bound that for
τ ≤
√
λ,

PF ≤ e−τ
2/3 . (9.5)

Choosing τ = 2, the false-positive rate satisfies PF ≤ 0.26. For τ = 3/2, one has
PF ≤ 0.47.
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Figure 9.5: Estimates of the success probability of the distinguishers from
Result 9.3 with t = 4 and τ = 2 (r = 16) or τ = 3/2 (r = 18) as a function of
the data complexity (number of structures). The error bars correspond to 95%
confidence intervals computed using the Clopper-Pearson method.

Figure 9.5 shows the results of the experiments for t = 4 and N = 28. Source
code to reproduce this figure is available online.4 The estimated success
probabilities are shown for τ = 2 (for r = 16) or τ = 3/2 (for r = 18),
i.e. a false-positive rate which is at most 26% or 47%. For r = 16, each
datapoint is based on 1000 evaluations of the attack on a contracting Feistel
cipher with uniform random round functions. For r = 18, each estimate is based
on 100 experiments.

As expected, the success probability gradually increases when more structures
are used. The experiments show that achieving a high success probability
requires slightly more than N2 (for r = 16) or N3 (for r = 18) data. Note
that the success probabilities shown in Figure 9.5 do not represent the maximal
advantage that can be achieved using these distinguishers, since the trade-off
between PF and the success probability was not optimized for these experiments.

4http://tim.cryptanalysis.info/contracting-feistels.zip

http://tim.cryptanalysis.info/contracting-feistels.zip
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9.5 Key-recovery attacks

If the rounds functions F1, . . . ,Fr of a contracting Feistel cipher are keyed
permutations rather than random permutations, then it is of interest to consider
key-recovery attacks in addition to distinguishers. For simplicity, assume that
the last round key can take N possible values and the total key length is equal to
the block size. This is the case for both SM4 and several instances of GMiMC-crf.
The time complexity of any key-recovery attack can then be at most around
N t encryption operations.

The distinguisher on t2 + t − 2 rounds from Result 9.3 could in theory be
extended to a key-recovery attack on t2 + t− 1 rounds with data complexity
slightly larger (to ensure PF is low enough) than N t−1 by guessing the last
round key. However, the time complexity of this attack would be slightly above
N t partial encryptions, which is only a marginal improvement over brute-force
in the most optimistic case.

More realistically, the t2-round distinguisher from Result 9.3 can be extended
to a key-recovery attack on t2 + 1 rounds with data complexity close to N t−2

and time complexity close to N t−1. Again, the attack is based on guessing the
last round key and partially decrypting the set of N t−2 ciphertexts. Suppose
that we wish to reduce the number of candidates for the last round key by a
fraction 1/N1−δ. By (9.5) in Section 9.4.3, this can be achieved by choosing
the distinguisher’s threshold τ such that exp(−τ2/3) ≤ 1/N1−δ. Equivalently,

τ ≥
√

3(1− δ) logN ,

where log denotes the natural logarithm.

By a similar reasoning as in the derivation of (9.3), the number of required
pairs D must satisfy D(preal − pideal) ≥ τ

√
Dpideal. Since pideal ∼ 1/N2 and

preal − pideal ∼ 1/N t−1, it follows that

D ≥ τ2pideal/(preal − pideal)2 ≈ τ2N2t−4 .

Since the input structures have dimension t− 2, the data complexity becomes
τ2N t−2 = 3(1− δ) (logN)N t−2. The overall time complexity T of the attack
is then

T ≈ N t−1+δ + 3ε(1− δ)(logN)N t−1 ,

assuming partial decryption takes ε times the time of encryption. The first
term is the remaining guessing cost and the second term is due to the partial
decryption of the data. To minimize the time complexity, the parameter δ in
[0, 1) should be chosen to balance the terms. For instance, if N = 232 and t = 4
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(the case of SM4), then with δ = 0.06140 one has

T ≈ 297.96 + 297.96 = 298.96 .

This estimate assumes ε = 1/16. The corresponding data complexity is 269.96.

Alternatively, one could guess more than one round key and rely on a
distinguisher for a smaller number of rounds with a lower data complexity.
However, when optimizing for the number of rounds covered by the attack,
this is typically not worthwhile because guessing one round key increases the
time complexity by an equal amount as increasing the length of the truncated
differential by t rounds. Nevertheless, this approach could be interesting in the
low-data setting. Optimal trails for a smaller number of rounds can be obtained
using the SMT model from Section 9.4.2, but a detailed analysis of such attacks
is left as future work.

9.6 Application to SM4

From Result 9.3, truncated differential distinguishers on 16- and 18-round SM4
can be obtained using 264 and 296 data respectively. As discussed in Section 9.5,
the generic 16-round distinguisher can be converted into a 17-round key recovery
attack with 269.96 data and 298.96 time by guessing the last round key. The
attacks on SM4 from this chapter are summarized and compared to the main
attacks from the literature in Table 9.1.

In terms of the number of rounds covered, the best attacks are differential and
linear type and cover up to 24-round SM4. However, those attacks require a
large amount of data and time. For instance, the 24-round linear attack requires
2127 data and 2127 time (as measured in arithmetic operations), which is close
to the full codebook and the cost of a brute-force key search. Previous attacks
on SM4 aiming at lower data and time complexity were presented by Guo et
al. [155], who give a 16-round key-recovery attack with data and time complexity
of 299 using a generic meet-in-the-middle approach. The 16-round truncated
differential distinguisher proposed in this chapter only requires 264 data, which
significantly improves over their attack. The 17-round key-recovery attack from
this chapter has a similar time complexity, but a much lower data complexity.

There appears to be no direct analysis of differential or linear attacks on 16-
or 17-round SM4. To make a reasonable comparison, we consider previous
differential and linear attacks with a reduced number of rounds. This leads to
the conclusion that the 17-round key-recovery attack from Section 9.5 improves
over reduced-round variants of previous work, for the same or similar data
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Table 9.1: An overview of attacks on the SM4 block cipher. Attacks marked by
† are distinguishers, the others are key-recovery attacks.

Attack Type Rounds Data Time Ref.

Differential

12 267 267 [257]†
21 2118 2127 [290]
22 2117 2112 [295]
23 2118 2127 [257]

Multiple differential 21 2104 2114 [254]
23 2114 2127 [296]

Linear 22 2117 2112 [134]
23 2120 2122 [204]
24 2127 2127 [204]

Multiple linear 22 2112 2124 [206]
23 2127 2127 [91]

Multidimensional linear 23 2123 2123 [203]
Boomerang 18 2120 2117 [179]

Rectangle
16 2125 2116 [291]
18 2124 2113 [179]
18 2127 2104 [188]

Impossible differential

16 2105 2107 [207]
16 2117 2132 [270]
17 2117 2132 [282]
18 2117 2132 [252]

Meet-in-the-middle 16 299 299 [155]

Truncated differential
16 264 264 §9.4.1†

17 270 299 §9.5
18 296 296 §9.4.1†

complexity. This claim is motivated by the analysis below. For brevity, it will
be assumed that the reader is familiar with previous attacks on SM4.

The differential attack from Zhao et al. [296] is similar to that of Su et al. [257], so
the latter will be used for reference below. Both attacks are based on multiple 19-
round differentials with the same output difference. The key-recovery appends
four rounds. If the 19-round differentials are restricted to 12 rounds, they
have probabilities between 2−84 and 2−82. As each structure of 233 plaintexts
contains 246 pairs, the resulting data complexity would be around 270. However,
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following [257, §5.1], appending five rounds for the key-recovery attack would
have a time complexity larger than 299, in particular because there are few
conditions that can be used to filter pairs in the last round.

More generally, we cannot use any known 13-round differentials because their
probability is too low. There exist other 12-round characteristics with higher
probability (optimally 2−67, according to [257]), but the key-recovery heavily
depends on the structure of the output differences so the analysis from [257,296]
is then not directly applicable. In any case, a five-round extension by key-
recovery with a time complexity below 299 is unlikely.

The other attacks in Table 9.1 covering more than 18 rounds are linear attacks.
Liu et al. [204] propose to use a three-round iterative approximation with
absolute correlation 2−3r for r rounds. For 19 rounds this gives an absolute
correlation of 2−57, and key-recovery extends this by four rounds. To set up a
round-reduced variant of this attack with ≤ 270 data, the approximation can
be extended to at most 11 rounds (absolute correlation 2−33). However, the
key-recovery should then cover 6 rounds, which is not realistic since 80 bits
already have to be guessed for just four rounds.

The work by Liu et al. [203] is a multidimensional linear attack, but it only uses
25 linear approximations (extended to 64 in order to apply a multidimensional
analysis) and their absolute correlations are lower than those from [204]. The
key-recovery appends four rounds and extending this would drive up the time
complexity even more.

Cho and Nyberg [91] rely on the 5-round iterative approximations from [134].
These have absolute correlation 2−18.4 in the last two rounds. Hence, for 13
rounds, the absolute correlation would be 2−36.8. This gives a data complexity
of around 273.6. Using multiple approximations as in [91], a rough estimate
suggests a data complexity similar to that of our 17-round key-recovery attack.
However, this improvement will only be achieved if some internal round key
bits are guessed (signs of the correlations must be guessed). Due to this, the
key-recovery strategy of [91] only covers three rounds. In particular, they guess
88 key bits from the initial and final rounds as well as 34 internal round key
bits. Hence, only a 16 round key-recovery attack is obtained and with a time
complexity above 299.
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10
Arithmetization-oriented primitives

The first part of this chapter is based on the paper “Out of oddity: new
cryptanalytic techniques against symmetric primitives optimized for integrity
proof systems” [43] from Crypto 2020. This paper is joint work with Anne
Canteaut, Itai Dinur, Maria Eichlseder, Gregor Leander, Gaëtan Leurent, María
Naya-Plasencia, Léo Perrin, Yu Sasaki, Yusoke Todo and Friedrich Wiemer. It
is the result of the efforts of the StarkWare hash function evaluation committee1

to analyze the security of the arithmetization-oriented primitives GMiMC and
HadesMiMC. This paper covers a wide range of topics, but only some of these
– mainly my own contributions – are discussed in this chapter. Some new
observations on GMiMC are included as well. I am grateful to Nathan Keller for
pointing out an error in an earlier version of the cost analysis of the preimage
attack in Section 10.3.4.

The second part of this chapter presents attacks on the Legendre PRF and
its variants, which led to the solution of several challenges organized by the
Ethereum foundation2. These attacks were published in ToSC 2020 under the
title “Cryptanalysis of the Legendre PRF and generalizations” [36] and are joint
work with Ward Beullens, Aleksei Udovenko and Giuseppe Vitto. All authors
contributed equally.

10.1 Introduction

The emergence of cryptographic protocols with advanced functionalities, such
as fully homomorphic encryption, multi-party computation and new types of
proof systems, has led to a demand for new symmetric primitives offering good
performance in these specific applications. However, the standard criteria which
govern the design of symmetric primitives are usually not appropriate in this
context. For example, the cost of the homomorphic evaluation of a symmetric
primitive is mainly determined by its multiplicative size and depth [8]. Similarly,
the area of integrity proof systems, such as SNARKs, STARKs and Bulletproofs,
is asking for symmetric primitives optimized for yet another cost metric.

1https://starkware.co/hash-challenge/
2https://legendreprf.org/
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Therefore, several new ciphers and hash functions have been proposed for use in
these advanced protocols. They include FHE-friendly encryption schemes such
as LowMC [8], Flip [216], Kreyvium [82] and Rasta [122], MPC-friendly primitives
such as MiMC [7], GMiMC [6] and the Legendre PRF [153], and some primitives
dedicated to proof systems such as the functions from the Marvellous family,
including Jarvis, Friday [14], Vision and Rescue [9]. In general, the security of
most of these primitives is still poorly understood. For example, LowMC was
broken a few weeks after its publication [120,124,238] and a practical attack
against Jarvis was discovered not long after it was published [5].

In this chapter, the security of a few of the above-mentioned primitives is
analyzed. Sections 10.2 and 10.3 are concerned with GMiMC-erf, GMiMC-crf,
and HadesMiMC. Although these primitives are unusual in the sense that they are
naturally defined over a large field, they are nevertheless iterative constructions.
Section 10.4, on the contrary, presents attacks on the Legendre PRF. The
latter is not constructed as a composition of ‘simple’ functions. Hence, it is not
surprising that the methods used in Section 10.4 are considerably different from
those used elsewhere in this thesis.

10.1.1 GMiMC and HadesMiMC

The first part of this chapter analyzes the security of GMiMC [6] and
HadesMiMC [152]. As mentioned in Chapter 9, GMiMC is a family of generalized
Feistel ciphers with both an expanding (GMiMC-erf) and a contracting variant
(GMiMC-crf). HadesMiMC is inspired by SHARK [243], but introduces a partial
S-box layer in the middle rounds. Both GMiMC and HadesMiMC can be used
as block ciphers, or as cryptographic permutations in a sponge-based hash
function. The analysis in this chapter has a slightly different flavor from that
in the version published at Crypto 2021 [43], since the focus is less on specific
instances of these primitives and more on their general security. Nevertheless,
the implications for the concrete instances that were specified in the context of
a public competition launched by the company StarkWare3 will be discussed
whenever they are relevant.

The results from Chapter 9 yield truncated differential attacks on GMiMC-
erf and GMiMC-crf. In fact, even the unoptimized attacks from Section 9.3.1
result in full-round distinguishers and key-recovery attacks for some instances.
However, the practical relevance of these attacks may be limited because most
applications of GMiMC use a relatively small number of branches but a large
field size. In such cases, algebraic attacks become the dominant threat vector.
These results are described in detail in Section 10.2.2. Although the truncated

3https://starkware.co/hash-challenge/

https://starkware.co/hash-challenge/
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differential attacks are not directly applicable in the hash function setting, it is
possible to combine them with algebraic techniques to obtain reduced-round
collision attacks for the concrete parameters proposed by StarkWare. This
application will not be discussed in this thesis; details can be found in the
Crypto paper [43].

Section 10.3 presents integral distinguishers and preimage attacks on HadesMiMC.
They exploit a weakness resulting from the use of partial S-box layers, especially
when these are combined with a linear layer that satisfies certain conditions.
This observation is described in Section 10.3.2. It is shown that some of
the MDS matrices proposed by the authors of HadesMiMC [151] meet the
conditions. Section 10.3.3 sets up improved integral distinguishers on reduced-
round HadesMiMC. For most concrete parameters sets, the distinguishers cover
all but the first four rounds. In addition, zero-sum partitions for all but the
first two rounds are presented. With some assumptions on the linear layer, the
integral property extends over an arbitrary number of partial rounds. In this
case, preimage attacks on several full-round instances are also obtained.

10.1.2 Legendre PRF

The Legendre symbol is the multiplicative character of F×p that maps quadratic
residues to one and non-residues to minus one. At Crypto 1988, Damgård [108]
proposed a pseudorandom generator based on the Legendre symbol. In 2016,
Grassi et al. [153] proposed a modification of Damgård’s construction as a
candidate pseudorandom function and showed that it is efficient in the multiparty
computation setting. Their proposal is called the Legendre PRF.

Damgård additionally considered several generalizations of his pseudorandom
generator that could be more efficient and/or more secure. One of these
proposals is to use Jacobi symbols modulo a composite number n. Calculating
Jacobi symbols is generally easier because computing them reduces to computing
Legendre symbols modulo each of the smaller prime factors of n. Furthermore,
Damgård argues that Jacobi symbols lead to a more secure pseudorandom
generator. A second generalization proposed by Damgård is the use of higher
power residue symbols. This potentially increases the throughput of the PRF,
as higher residue symbols yield more than one bit of output per evaluation.

The Legendre PRF was proposed to be used in the Ethereum 2.0 proof-of-custody
mechanism [141]. In this context, several cryptanalysis bounties were announced
by the Ethereum foundation during the Crypto 2019 rump session [140]. The
challenges include concrete instances of the Legendre PRF with expected security
levels ranging from 44 to 128 bits of security. For each instance, 220 sequential
output bits are given and the goal is to recover the secret key.
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Despite the longevity of Damgård’s pseudorandomness conjecture, relatively few
cryptanalytic results are available. Given quantum query access to the Legendre
PRF, the key k can be recovered with a single query and in quantum polynomial
time [271]. However, no subexponential attacks are known in the setting where
the adversary can only query the PRF classically. The best cryptanalytic results
in the classical setting are due to Khovratovich [178], who gives a memoryless
birthday-bound attack. His attack recovers the key with a computational cost
of O(√p log p) Legendre symbol evaluations when given √p log p queries to
Lk. Khovratovich also considers a higher-degree variant of the Legendre PRF.
Similar to the Jacobi symbol generalization, the higher-degree Legendre PRF
potentially offers security and efficiency benefits.

Section 10.4 advances the state-of-the-art in the cryptanalysis of the Legendre
PRF by improving upon Khovratovich’s attacks on the one hand, and by
providing the first security analysis of the Jacobi and power residue symbol
generalizations on the other hand. Table 10.1 provides a summary of the main
results. The main improvement stems from the fact that, unlike earlier work, the
new attacks exploit the multiplicativity of the Legendre symbol. The practical
relevance of the attacks is demonstrated by solving the first two Legendre PRF
challenges proposed by the Ethereum foundation [141]. These were expected to
correspond to a security level of 44 and 54 bits, but the new attacks imply that
the actual security levels for these challenges are significantly lower.

Table 10.1: Data, time and memory requirements of attacks on the Legendre
PRF. The time and memory values are asymptotic (O-notation) and assume
a machine with word size Θ(log p), ` and s denote the time complexity of
computing a Legendre and power residue symbol respectively.

Ref. Data Time Memory

Legendre PRF

[178] log p `p log p log p
[178] √

p log p `√p log p log p
§10.4.3 M M + `p log p/M M log p
§10.4.4 M M2 + `p log2 p/M2 M2

§10.4.4 M M2 + p log2 p/M2 M2/ log p

degree d ≥ 2
Legendre PRF

[178] log p `pd d log p d log p
[178] p `pd−1d log p d log p

§10.4.5 M M2 + `pdd2 log2 p/M2 M2

§10.4.5 d log p pdd/2ed log p pbd/2cd log p

rth power-
residue PRF

§10.4.8 M M2 + sp log2 p/(M2 log2 r) M2 log r
§10.4.8 M M + sp log2 p/(Mr log2 r) M log r
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Section 10.4.4 shows how Khovratovich’s attack can be improved in the low-
data setting. In particular, for M ≤ 4

√
p queries, the key can be recovered

with a time complexity of O(p log2 p/M2) Legendre symbol evaluations using
O(M2) memory. This attack is generalized to the higher-degree case in
Section 10.4.5. Furthermore, a large class of weak keys for the higher-degree
Legendre PRF is exhibited. For keys in this class, key-recovery requires roughly
O(pdd/2ed log p) operations with only ddlog pe queries to the PRF. This attack
requires O(pbd/2cd log p) bits of memory, but trade-offs are available using Van
Oorschot-Wiener golden collision search. A reduction to the unique k-XOR
problem is also given, resulting in further time-memory trade-offs.

The first of Damgård’s generalizations is discussed in Section 10.4.7. Specifically,
it is shown that the Jacobi PRF can be broken with cost proportional to
the cost of breaking the Legendre PRF for each of the prime factors of the
modulus separately. The power residue symbol generalization is analyzed in
Section 10.4.8. Besides a straightforward generalization of the attack from
Section 10.4.4 to the rth power residue symbol PRF, a more efficient attack for
the case with large r is obtained.

Concurrent work. Days after the results in Section 10.4 appeared on ePrint,
Kaluđerović et al. [174] solved the next Legendre PRF challenge. Their attack is
similar, but with an improved complexity of O(M2/ log p+ p log p log log p/M2)
operations on a machine with word size Θ(log p).

10.2 Cryptanalysis of GMiMC

After introducing GMiMC in Section 10.2.1, Section 10.2.2 revisits the truncated
differential attacks from Chapter 9 in the special case of GMiMC. This leads to
full-round attacks on several block cipher instances. For the hash function case,
only reduced-round distinguishers on the underlying permutation are obtained.
Although these can be converted into reduced-round collision attacks, this result
will not be discussed here. Section 10.2.3 contains a brief overview of the other
attacks on GMiMC from the paper [43] that are not included in this section.

10.2.1 Specification of GMiMC

GMiMC is a family of block ciphers designed by Albrecht et al. in 2019 [6],
based on different types of generalized Feistel networks with round function
x 7→ (x+ ki + ci)3 over a finite field. The round constants c1, . . . , cr are chosen
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at random and the round keys k1, . . . , kr can be fixed to zero to obtain a
cryptographic permutation. For the block cipher case, several possible key-
schedules are discussed below.

Only the expanding and contracting variants, GMiMC-erf and GMiMC-crf
respectively, are analyzed in this section. As in Chapter 9, the branches
are numbered from 1 to t starting from the leftmost branch in Figure 9.1. The
designers’ security claims assume that the primitive is instantiated over a field
of prime order p. They mention that “even if GMiMC can be instantiated over
F2n , [they] do not provide the number of rounds to guarantee security in this
scenario”.

For use as a block cipher, two key-schedules with different security claims are
supported. The first type sets k1 = k2 = . . . = kr and aims for log2 p-bit
security. However, this choice is flawed because it leads to a slide attack as
pointed out by Bonnetain [74]. The second type is linear and derives the round
keys from a master key in Ftp. This construction aims at t log2 p-bit security.
Since the first key-schedule is flawed, only the second option is analyzed in this
section. However, the attacks below are also applicable to the first type and
would be the best-known attacks if the key-schedule is modified to thwart the
attack from [74].

If t is large compared to log3 p, then the authors of GMiMC argue that the best
attack is a truncated differential key-recovery attack4 and deduce the following
choice for the number of rounds of GMiMC-erf and GMiMC-crf:

⌈
t(t+ 1) log2 p

2(log2 p− 1)

⌉
+ t+ 1 .

However, if t is small compared to log3 p, then interpolation attacks become
dominant and the number of rounds is chosen as 2dlog3 pe+5t−4 for GMiMC-crf
and 2dlog3 pe+ 3t− 2 for GMiMC-erf.

For the hash function case, the number of rounds can be determined either as
above or by attempting to match the generic security of the sponge construction.
The latter approach was used for the concrete parameter sets proposed by
StarkWare.

Finally, it is worth noting that t − 1 should not be divisible by p. This
requirement is not mentioned in the specification of GMiMC [6]. Nevertheless,
it is particularly important in the block cipher setting to avoid trivial invariants.
In the case of GMiMC-erf, the sum of all branches is preserved under an arbitrary
number of rounds if p divides t− 1. In the case of GMiMC-crf, every coset of

4Needless to say, not the same truncated differential attack as in Section 10.2.2 below.
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the vector space of states with all branches equal is mapped to another coset of
that same vector space.

10.2.2 Truncated differential attacks on GMiMC

Result 9.1 from Chapter 9 yields full-round attacks on some block cipher
instances of GMiMC. Indeed, as mentioned above, GMiMC-erf and GMiMC-crf
have roughly t(t+ 3)/2 + 1 rounds when t is large compared to log3 p. However,
Result 9.1 covers t2− t− 2 rounds with pt−2 data. This is greater than or equal
to t(t+ 3)/2 + 1 for all t ≥ 6. Moreover, when the number of branches t is large
enough, Result 9.1 shows that the number of rounds must be approximately
doubled to achieve the desired security level.

As discussed in Chapter 9, Result 9.1 can be improved in several ways. A
key-recovery attack on t2 − t− 1 rounds with time complexity pt−1 is readily
obtained. Furthermore, for GMiMC-crf, Result 9.3 yields a t2 + t − 2 round
distinguisher using pt−1 data. This is greater than or equal to t(t+ 3)/2 + 1 for
all t ≥ 3. It seems likely that similar improvements are possible for GMiMC-erf.
However, GMiMC is typically instantiated with t � log3 p, so that algebraic
attacks are dominant. For these instances, no full-round attacks are obtained in
any case. Since the techniques from Chapter 9 mostly aim at maximizing the
number of rounds, extending them to the expanding case is left as future work.

In the hash function case, the data complexity of the distinguishers above
exceeds the cost of generic attacks on the sponge construction. Hence, there is
no direct impact on the security of the hash function. Nevertheless, as shown in
the following example, it is possible to obtain distinguishers on the underlying
permutation. The significance of such distinguishers has been discussed in
Chapter 1. In the Crypto paper [43], reduced-round collision attacks are
obtained by combining these results with algebraic techniques.

Example 10.1. The most efficient instance of GMiMC-erf proposed by
StarkWare is of the expanding type with p = 261 + 20 · 232 + 1, t = 12 branches
and r = 101 rounds. Repeating the basic iterative truncated differential for
expanding Feistel ciphers from Section 9.3.1 eight times covers 8 × 12 = 96
rounds with probability approximately 1/p8. Appending five rounds yields a
full-round truncated differential with the same probability. Using 2p6 input
structures of size p, the data complexity becomes 2p7 ≈ 2428.

This can be improved by using the iterative t-round truncated differential with
difference set A = {(0, . . . , 0, a, b, c) | a, b, c ∈ Fp}, which admits larger input
structures. The probability over the first 96 rounds is still 1/p8, and appending
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five rounds does not decrease the probability. Since ptrail = pideal = 1/p8, only
2p2 structures of size p3 are necessary and the data complexity is 2p5 ≈ 2306.

It is possible that further improvements can be obtained using the more advanced
techniques from Chapter 9. .

10.2.3 Other attacks on GMiMC

In addition to the truncated differential attacks described above, the Crypto
paper [43] presents impossible differential and integral attacks on GMiMC-erf.
The impossible differential attack is not a full-round attack, but nevertheless
disproves the claims of the designers [6, page 46]. The integral attacks result in
full-round zero-sum partitions for the GMiMC-erf permutation, but this does
not affect the security of the hash function.

10.3 Cryptanalysis of HadesMiMC

In Sections 10.3.3 and 10.3.4, two attacks against HadesMiMC are described.
The first attack is an integral distinguisher covering all rounds except the first
two for most sets of parameters. The second one is a full-round preimage attack
that requires some assumptions on the MDS matrix defining the linear layer.

Both attacks are based on a weakness of the partial S-box layer used in
HadesMiMC, which is described in Section 10.3.2. For some choices of the linear
layer, this weakness extends over an arbitrary number of rounds. Although the
designers of HadesMiMC do not mention any requirements on the MDS matrix,
they provide several suggestions. It turns out that the classes of matrices
suggested by the authors contain several weak instances.

10.3.1 Specification of HadesMiMC

HadesMiMC is a family of permutations described by Grassi et al. [152], following
a new design strategy for block ciphers called HADES. The HADES construction
aims to decrease the number of S-boxes relative to traditional AES-like designs.
Reducing the number of S-boxes is important for many applications and has
often been achieved using a partial S-box layer, i.e., an S-box layer which does
not operate on the whole internal state.

However, several attacks [20,120,124,238] on constructions with a partial S-box
layer have shown that the security level of such designs can be difficult to
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estimate. The basic principle of HADES is to combine both aspects: the inner
rounds of the cipher use a partial S-box layer to increase the resistance against
algebraic attacks at a reduced implementation cost, whereas the outer rounds
use a full S-box layer. The resistance against statistical attacks is analyzed by
removing the inner rounds, whereas the resistance against algebraic attacks
depends on the inner rounds.
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Figure 10.1: The HadesMiMC construction with t = 7.

HadesMiMC [152, Section 3] is a block cipher following the HADES construction
dedicated to MPC applications or to STARK proof systems, where the S-box is
defined by the cube mapping over a finite field and the linear layer L is given
by multiplication with a t× t MDS matrix.

Two specialized instances of HadesMiMC are proposed by Grassi et al. in [150]:
Starkad is defined over a field of even characteristic and odd absolute degree5,
whereas Poseidon is defined over a field of odd prime order p with p 6≡ 1 (mod 3).
In both cases the partial rounds consist of a single S-box operating on the last
coordinate of the state. The S-box is given by the cube function x 7→ x3. For
the parameters proposed by StarkWare, the number of full rounds is equal to 8
and the number of partial rounds varies between 40 and 88.

10.3.2 Property of partial rounds

It is not surprising that there exists an affine subspace of Ftp that is mapped
to another affine subspace under one or a few partial rounds of HadesMiMC.
However, it turns out that such subspaces can exist for an arbitrary number
of rounds if the linear layer has a low-degree minimal polynomial. This
is consequence of Theorem 10.1 below. For the following results, let δt =
(0, 0, . . . , 0, 1) in Ftp.

5The field degree must be odd to ensure that x 7→ x3 is a bijection.



10.3 Cryptanalysis of HadesMiMC 266

Theorem 10.1. Let F : Ftq → Ftq denote a permutation obtained from r ≥ 1
partial HadesMiMC rounds instantiated with linear layer L : x 7→MTx, where M
is a t×t matrix. For all x in Ftq, the subspace V = Span{δt,Mδt, . . . ,M

r−1δt}⊥
of Ftq satisfies F(x+V ) ⊆ F(x)+Lr(V ). Furthermore, if the minimal polynomial
of M has degree h, then dimV ≥ t−min{h, r}.

Proof. Clearly, dimV satisfies the lower bound if Mhx =
∑h
i=1 αiM

i−1x for
some coefficients α1, . . . , αh in Fq. Let F = Rr ◦ · · · ◦ R1, where Ri denotes the
ith partial round of HadesMiMC. Since the last coordinate of any v in V is
zero, i.e. v ⊥ δt, the image of x + V by the partial S-box layer is a coset of
V . It follows that R1(x+ v) = R1(x) + L(v). Similarly, for round i = 2, . . . , r,
it holds that Ri(xi + Li−1(v)) = Ri(xi) + Li(v) if Li−1(v) ⊥ δt or equivalently
v ⊥M i−1δt.

Theorem 10.1 will be used in Section 10.3.3 to derive better integral properties
over the partial rounds of HadesMiMC. After submitting the paper [43] to
Crypto, but before its publication, Keller and Rosemarin independently obtained
Theorem 10.1. They do not deduce attacks on HadesMiMC using this observation,
but instead focus on lower bounding the dimension of V for various choices of
M . Their work was published at Eurocrypt 2021 [176]. In Section 10.3.4, the
following dual variant of Theorem 10.1 will be used to obtain preimage attacks.

Theorem 10.2. Let F : Ftq → Ftq denote a permutation obtained from r ≥ 1
partial HadesMiMC rounds instantiated with round constants c1, . . . , cr and
linear layer L : x 7→Mx, where M is a t× t matrix. If v is an element of the
subspace V = Span{Mδt,M

2δt, . . . ,M
rδt}⊥ of Ftq, then every x in Ftq satisfies

vTF(x) = vTMrx+
∑r
i=1 v

TMr+1−ici. Furthermore, if the minimal polynomial
of M has degree h, then dimV ≥ t−min{h, r}.

Proof. As in Theorem 10.1, it is easy to see that dimV ≥ t −min{h, r}. Let
Fr = Rr ◦ · · · ◦R1, with Ri the ith partial round of HadesMiMC. If v is orthogonal
to Mδt, then the last coordinate of vTM is zero because vTMδt = 0. Hence,

vTRi(x) = vTM(x+ ci) = vTMx+ vTMci .

Taking i = 1 establishes the result for r = 1. For r > 1, the result follows by
induction. Indeed, if v is orthogonal to Mδt then

vT(Rr ◦ · · · ◦ R1)(x) = vTM(Rr−1 ◦ · · · ◦ R1)(x) + vTMcr

= vTMrx+ vTMcr +
r−1∑

i=1
vTMr+1−ici ,
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where the second equality follows from the induction hypothesis using the
assumption that MTv belongs to Span{Mδt, . . . ,M

r−1δt}⊥.

The linear layers of Starkad and Poseidon are chosen such that Li,j = 1/(xi +
xj + a) where a and x1, . . . , xt are distinct elements of Fq [149]. These matrices
are known as Cauchy matrices. The following result shows that, for Starkad
instances with t a power of two, there exist weak choices of x1, . . . , xt that
enable the preimage attack from Section 10.3.4.

Theorem 10.3. Let G = {x1, . . . , xt} be an additive subgroup of F2n of order t
and let a in F2n \G. The t×t Cauchy matrix M defined by Mi,j = 1/(xi+xj+a)
satisfies M2 = b2I with b =

∑t
i=1 1/(xi + a).

Proof. The coordinates of M2 satisfy

M2
i,j =

t∑

k=1

1
xi + xk + a

× 1
xj + xk + a

=
∑

x∈a+G

1
x(x+ xi + xj)

.

For i = j, the result follows immediately. Hence, it suffices to prove that
M2
i,j = 0 for i 6= j. Since xi 6= xj for i 6= j, it holds that g = xi + xj ∈ G \ {0}.

Finally, the result follows from

M2
i,j =

∑

x∈a+G

1
x(x+ g) = 1

g

∑

x∈a+G

(
1
x

+ 1
x+ g

)
= 0.

The last equality follows from
∑
x∈a+G 1/x =

∑
x∈a+G 1/(x+ g).

A special case of Theorem 10.3 is discussed by Youssef et al. [288, §3.2]. For
an extension F2(ζ) of degree n, they show that the choice xi =

∑log2 t
j=1 dj ζ

j−1

with d1, . . . , dlog2 t the binary digits of i− 1 results in a Cauchy matrix M such
that M2 = b2I.

Alternatively, the HadesMiMC authors propose [151, Appendix B] the use of
a matrix of the form AB−1 where both A and B are Vandermonde matrices
with generating elements ai and bi. In this case, if ai = bi + r for some r in Fq,
then the resulting MDS matrix will be an involution if Fq has characteristic
two [246]. In odd characteristic, one obtains an involution whenever ai = −bi.

10.3.3 Integral distinguishers

In HadesMiMC, the number of rounds has been chosen such that the algebraic
degree of each output coordinate is close to t(q− 1), similar to the behaviour of
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most permutations. Since the degree is upper bounded by 3r after r rounds, at
least dlog3(t(q − 1))e rounds are necessary to reach total degree t(q − 1). For
example, if t = 12 and q = 261 + 20 · 232 + 1 (a Poseidon instance proposed by
StarkWare), then at least 41 rounds out of 48 in total are necessary. For t = 12
and q = 263 (a Starkad instance proposed by StarkWare), 43 rounds out of 51
in total are necessary.

It is worth pointing out that the theory from Chapter 5 implies that 3r cannot
be a tight bound on the degree of an iterated partial layer, except for the first
few iterations (when the degree is below log3(q − 1)). More accurate bounds,
which yield full-round distinguishers on some instances, can be obtained using a
variant of the reasoning in Example 5.9. However, this chapter uses a different
approach based on Theorem 10.1 that is more useful when the data complexity
is low. Improving this using the results from Chapter 5 is left as future work.

The basic idea is to improve upon the trivial bound by choosing a specific
subspace of inputs. The following distinguisher applies to all partial rounds
and the last four full rounds. It is meaningful in both the block-cipher setting
and the permutation setting. By Theorem 10.1, there exists a one-dimensional
subspace V of Ftq such that V is mapped to a coset γ+W of W = Lt−1(V ) after
t− 1 partial rounds. The spaces V and γ +W are indicated in Figure 10.2. For
x in V , let f(x) be the ith coordinate of the output of HadesMiMC as shown in
Figure 10.2. If W = Span{w}, then
∑

x∈V
f(x) =

∑

x∈γ+W
(Rr ◦ · · · ◦ R1)(x)i =

∑

z∈Fq

(Rr ◦ · · · ◦ R1)(γ + zw)i = 0 ,

where R1, . . . ,Rr are r ≤ blog3(q − 2)c full or partial HadesMiMC rounds. The
last equality is due to the fact that Rr ◦ · · · ◦ R1 is a function of degree at most
q − 2.

The above yields a distinguisher on blog3(q−2)c+t−1 rounds, starting after the
initial full rounds. For most sets of concrete parameters, this actually exceeds
the recommended number of rounds (except the first rf/2 full rounds) for both
Poseidon and Starkad. Furthermore, if the degree of the minimal polynomial
of the linear layer L is less than t− 1, then by Theorem 10.1 the distinguisher
covers an arbitrary number of partial rounds.

By extending the above approach in the backward direction, a zero-sum partition
for a (slightly) larger number of rounds can be obtained – although zero-sum
partitions are only meaningful in the known-key or permutation setting. The
problem is that contrary to GMiMC, the inverse round function of HadesMiMC
has a much higher degree than the round function itself. Indeed, the inverse
of the cube function over Fq is given by x 7→ x(2q−1)/3. Using classical degree
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Figure 10.2: Integral and zero-sum partition distinguishers against HadesMiMC.

bounds, a degree lower than (q − 2) can not be guaranteed for more than a
single inverse round.

However, because L−1(V ) is one-dimensional, an additional S-box layer can be
overcome. Specifically, there exists a vector v = (v1, . . . , vt) such that

L−1(V ) =
{

(xv1, xv2, . . . , xvt) | x ∈ Fq
}
.

The image of L−1(V ) under the inverse of the full S-box layer is then equal to

U =
{

(x1/3v
1/3
1 , x1/3v

1/3
2 , . . . , x1/3v

1/3
t ) | x ∈ Fq

}

Hence, this image is again a one-dimensional vector space. That is, U = Span{u}
with ui = v

1/3
i for i = 1, . . . , t. This particular property does not extend to

more rounds because of the addition of a round constant. Prepending one more
round yields a zero-sum partition, since the degree of the inverse S-box layer
does not exceed q − 2.

Table 10.2 summarizes the implications of the results above for the instances
of Poseidon and Starkad proposed by StarkWare. For many parameter choices,
there is an integral distinguisher with data complexity q on all except the initial
four rounds. In the known-key or permutation setting, there is a zero-sum
partition that additionally covers two of the initial four rounds. It is worth
reiterating that for instances of HadesMiMC with a linear layer with minimal
polynomial of degree less than t−1, these results can be extended to an arbitrary
number of partial rounds.
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Table 10.2: Number of full and partial rounds (rf and rp) of HadesMiMC
covered by the distinguishers in this section. The initial two full rounds are
only included for the zero-sum partitions.

Poseidon Starkad
Security

t dlog2 qc
Proposed Covered dlog2 qc

Proposed Covered
level rf , rp rf , rp rf , rp rf , rp

128
bit

12 61 8, 40 2+4, 45 63 8, 43 2+4, 46
4 125 8, 81 2+4, 77 125 8, 85 2+4, 77
12 125 8, 83 2+4, 85 125 8, 86 2+4, 85
3 253 8, 83 2+4, 157 255 8, 85 2+4, 158
12 253 8, 85 2+4, 165 255 8, 88 2+4, 166

256
bit

8 125 8, 82 2+4, 81 125 8, 86 2+4, 81
14 125 8, 83 2+4, 87 125 8, 83 2+4, 87

10.3.4 Preimage attacks

Theorem 10.2 shows that there are linear relations between the inputs and
outputs of an arbitrary number of partial rounds of HadesMiMC when the
degree of the minimal polynomial of the linear layer is lower than t− 1. This
can be used to setup a simplified system of equations for finding preimages,
leading to a full-round preimage attack for some choices of the rate and capacity
parameters of the sponge construction.

Suppose that L is such that the vector space V from Theorem 10.2 is of dimension
d. In the worst case, d = t − 2. By Theorem 10.2, there exists a matrix U1
in Fd×tq such that U1F(x) = U1(Lr(x) + a) for a known constant a and F the
composition of the partial rounds. Indeed, let the rows of U1 be a basis for V .
Furthermore, let U2 in F(t−d)×t

q be a matrix with row space complementary to
the row space of U1. Given a value y for the output of the partial rounds, one
has the following equations in the input x:

U1y = U1(Lr(x) +
∑r
i=1 Lr+1−i(ci))

U2y = U2F(x) .
(10.1)

Consider a HadesMiMC permutation in a sponge construction with rate k and
capacity c = t−k. Computing preimages of a one-block digest (h1, . . . , hk) in Fkq
then corresponds to solving the system of equations [HadesMiMC(m‖iv)]i = hi
for i = 1, . . . , k in the unknowns m1, . . . ,mk.
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The idea of the attack is simple: for each guess of U2F(x) in Ft−dq , replace the
equations for the partial rounds by the linear equations (10.1) and solve the
resulting system of equations by computing a Gröbner basis.

Below, it is shown that the time complexity of the attack is approximately

2γ (2π)−ω/2 k2−ω/2 eωk 3(ωk+1)(rf−1) qt−d , (10.2)

with ω and γ such that the cost of computing the row-reduced echelon form
of an n× n matrix is γnω. The analysis below focuses on the case where the
number of output elements is equal to the rate. This is the most challenging
setting. Indeed, if the output size is smaller than the rate – as in some of the
StarkWare challenges – then the preimage problem typically has many solutions.
This allows the attacker to partially or completely avoid the guessing phase. If
further degrees of freedom remain after fixing U2F(x) completely, then one or
more input elements can be fixed to an arbitrary value.

For example, for a linear layer with quadratic minimal polynomial, rf = 8 and
rp arbitrary, Figure 10.3a shows for which choices of q and t an improvement
over the generic security of the sponge construction is obtained. The insecure
instances are shaded in grey. This area assumes conservative values for the
cost of row-reduction, i.e. ω = 3 and γ = 3/2. The cost itself is shown in
Figure 10.3b. One should keep in mind that these figures correspond to the
most challenging case, i.e. assuming that the hash output is of length k and no
shorter.

For the concrete parameters proposed by StarkWare, better-than-generic attacks
on some variants are obtained assuming that the hash output has length c ≤ k.
Indeed, if c ≤ d/2 = t/2− 1, then a sufficiently large number of preimages is
likely to exist so that it is no longer necessary to guess U2F(x). In addition, input
variables may be fixed until only c+t−d = c+2 free variables remain. This leads
to a computational cost of 2γ (2π)−ω/2 (c+2)2−ω/2 eω(c+2) 3(ω(c+2)+1)(rf−1). An
overview of the concrete results is given in Table 10.3.

Table 10.3: Computational cost (Fq-operations) of preimage attacks on different
instances of HadesMiMC with digest length c, assuming a weak linear layer.

Security Variant dlog2 qc t c
Computational cost

level ω ≈ 2.8 ω = 3

128 bit Poseidon 253 11 1 2115 2122

Starkad 255 11 1 2115 2122

256 bit Poseidon 125 14 4 2221 2236

Starkad 125 14 4 2221 2236
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Figure 10.3: Cost analysis of the preimage attack on HadesMiMC with a weak
linear layer and rf = 8. The shaded areas correspond to parameters for which
the attack improves over the qmin{k,c/2} security level.

To conclude this section, the estimate (10.2) will be derived. The cost of solving
a system of equations using Gröbner bases is dominated by two steps:

1. Computing a Gröbner basis with respect to a total degree term order
such as the degree reverse lexicographic (degrevlex) order. For standard
reduction algorithms such as Faugère’s F4 and F5, the time required for
this step can be upper bounded by [21]

Tgb = Õ
((

D + k

D

)ω)
,

for k variables, D the maximum degree of the Gröbner basis elements and
ω the matrix-multiplication exponent.

2. Converting the degrevlex Gröbner basis to a Gröbner basis with respect
to a lexicographic order. For the FGLM algorithm, the cost of this step
can be estimated as [135]

Tfglm = Õ(k dim(Fq[m1, . . . ,mk]/I)ω),

where I is the ideal generated by the polynomials that define the system.

The time required to factor the univariate polynomials in the lexicographic
Gröbner basis can be assumed to be negligible. Hence, the time complexity of
the attack is dominated by qt−d (Tgb + Tfglm).
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To set up a system of preimage equations for HadesMiMC, two diametrical
approaches can be considered. In the first strategy, one attempts to minimize
the number of variables by setting up a system of high-degree polynomials
relating the input and output of the permutation. In the second approach,
intermediate variables are introduced at every round, leading to a system of
many low-degree equations. The latter strategy is usually preferred, as it leads
to a lower degree D. However, a routine calculation shows that reducing the
number of variables is more important for the proposed attack. Hence, the
former approach is used below.

Clearly, the S-box layer of the first round may be ignored in the analysis.
Furthermore, since the HadesMiMC specification states that the last linear layer
can be omitted, the last round could also be ignored. Nevertheless, this is not
the case for Starkad and Poseidon, so this will not be taken into account in the
analysis.

For each guess of U2F(x), the digest coordinates h1, . . . , hk can be expressed as
polynomials in the input (after the first S-box layer) of degree 3rf−1. In general,
bounding D is highly nontrivial. However, for regular systems, Macaulay’s
bound [21,212] yieldsD ≤ (3rf−1−1)k+1. Furthermore, small-scale experiments
suggest that this bound is tight for this particular system of equations. It is
hard to obtain theoretical estimates of dim(Fq[m1, . . . ,mk]/I), but small-scale
experiments suggest that it scales as 3k(rf−1), which is consistent with results
obtained by Faugère and Perret [137]. Since the FGLM algorithm is able to
exploit sparse linear algebra methods [136], it is reasonable to assume that Tgb
is dominant compared to Tfglm.

Suppose that 3rf−1 is much larger than k. Following [21, §1.3], it holds that

Tgb ≤ γ k (D − 3rf−1 + 1)
(
k +D − 1

D

)ω
/ γ k2 3rf−1

(
k +D − 1

D

)ω
.

In the above, the parameters γ and ω are such that the computational cost
of computing the row-reduced echelon form of an n × n matrix is γnω. By
Stirling’s approximation,

log
(
k +D − 1

D

)
= log

(
k3rf−1

k

)
≈ k + k(rf − 1) log 3− log

√
2πk.

If computing the reduced row-echelon form of an n× n matrix takes time γnω,
then it follows that

Tgb / γ (2π)−ω/2 k2−ω/2 eωk 3(ωk+1)(rf−1) .

Multiplying by qt−d yields (10.2).
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10.4 Cryptanalysis of the Legendre PRF

This section presents attacks on the Legendre PRF and its generalizations. The
Legendre PRF and its higher-order variant are introduced in Section 10.4.1.
Section 10.4.2 briefly discusses Khovratovich’s attack, and a table-based variant
of this attack is presented in Section 10.4.3. This variant is more suitable for
the concrete challenges that were proposed by the Ethereum foundation, as
only limited data (220 consecutive outputs) are provided.

The new attack is presented in Section 10.4.4. Section 10.4.5 generalizes the
attack to the degree-d Legendre PRF, and Section 10.4.6 exhibits weak keys
for this extension. Attacks on the Jacobi and power residue PRF are given
in Section 10.4.7 and Section 10.4.8 respectively. Some final comments on the
solution to the concrete challenges are given in Section 10.4.9.

10.4.1 Specification of the Legendre PRF

For an odd prime p, the Legendre symbol of an element a of Fp is defined as

(
a

p

)
=





1 if a = b2 for some b in F×p ,

0 if a = 0 ,
−1 otherwise .

The distribution of Legendre symbols has been a subject of study for number
theorists at least since the early 1900s [3,109,110,168,278]. The Weil bound [285]
implies that the number of occurrences of a fixed pattern of l nonzero Legendre
symbols among the integers 1, 2, . . . , p− 1 modulo p is p/2l +O(√p) as p→∞.
In 1988, Damgård [108] conjectured pseudorandom properties of the sequence

(
k

p

)
,

(
k + 1
p

)
,

(
k + 2
p

)
, . . . ,

where k has been sampled from Fp uniformly at random. He proposed to use
this construction as a pseudorandom number generator. In 2016, Grassi et
al. [153] proposed the same construction as a candidate pseudorandom function
and showed that it can be evaluated efficiently in the multiparty computation
setting. Concretely, the Legendre pseudorandom function Lk(x) is defined by
mapping the Legendre symbol with a secret shift k to {0, 1}:

Lk(x) =
⌊

1
2

(
1−

(
k + x

p

))⌋
, (10.3)

where p is a public prime number. The following definition will be convenient
when dealing with expressions such as (10.3).
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Definition 10.1 (Legendre function). For an odd prime p, the Legendre
function l : Fp → F2 is defined as

l(x) =
⌊

1
2

(
1−

(
x

p

))⌋
.

It maps quadratic residues to 0 in F2 and quadratic non-residues to 1 in F2.

Khovratovich considers the following extension of the Legendre PRF.

Definition 10.2 (Degree-d Legendre PRF). Let p be an odd prime and d a
positive integer. The degree d-Legendre PRF over Fp is a family of functions
Lk : Fp → F2 such that for each k in Fdp,

Lk(x) = l
(
xd +

∑d−1
i=0 ki+1 x

i
)
.

For d = 1, this reduces to (10.3) and Lk is called the Legendre PRF over Fp.

Remark 10.1. The Legendre symbol is multiplicative, i.e. for all a and b in Fp,
(
ab

p

)
=
(
a

p

)(
b

p

)
.

In terms of the Legendre function l, one has l(ab) = l(a) + l(b) if ab 6= 0. .

The analysis below often considers sequential evaluations of Lk starting from a
point a with an additive step b. This leads to Definition 10.3.

Definition 10.3 (L-sequences). Let p be an odd prime, m a positive integer
and a, b elements of Fp. An arithmetic L-sequence of length m with starting
point a and stride b is an Fm2 -vector

Lk(a+ b [m]) = (Lk(a), Lk(a+ b), . . . , Lk(a+ (m− 1)b)) .

To justify the correctness of the attacks, the following assumption will be used.

Assumption 10.1. Let p be an odd prime and d a positive integer. Let
m = ddlog pe. For all k in Fdp, then as p→∞, there exist at most O(1) keys k′
in Fdp such that Lk′([m]) = Lk([m]).

Legendre symbols, and hence the Legendre function, can be efficiently computed
using the law of quadratic reciprocity. That is, for distinct odd primes p and q,

(
p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 .
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This leads to an algorithm requiring O(log p) arithmetic operations, or
O(log2 p log log p) bit operations. Brent and Zimmerman [80] give an
asymptotically better algorithm with complexity O(log p log2 log p). In the
remainder of this section, the cost of an attacks will often be expressed in terms
of the number of Legendre symbol computations.

10.4.2 Previous attacks

Khovratovich [178] describes a chosen plaintext attack on the Legendre PRF
Lk that recovers k with O(√p log p) queries to Lk. It is based on a memoryless
collision search between two functions and can be summarized as follows.

Letm = dlog pe and consider the functions x 7→ Lk(x+[m]) and x 7→ L0(x+[m]).
The L-sequence Lk(x+[m]) is available by querying the Legendre PRF, whereas
L0(x + [m]) does not depend on k. By Assumption 10.1, a collision between
x 7→ Lk(x+ [m]) and x 7→ L0(x+ [m]) yields k with high probability. Indeed,
let a and b in Fp such that Lk(a+ [m]) = L0(b+ [m]). Equivalently,

L0(a+ k + [m]) = L0(b+ [m]) .

By Assumption 10.1, the number of keys k satisfying the above equality is O(1).

Collisions between x 7→ Lk(x+ [m]) and x 7→ L0(x+ [m]) can be found with a
generic memoryless collision search method [220,272] in O(√p) evaluations of
both functions. Since computing each L-sequence requires m = O(log p) calls
to Lk, the overall complexity sums up to O(√p log p) queries to Lk and L0.

Note that Khovratovich’s original attack builds sequences of length m using
arbitrary evaluations of the Legendre function Lk rather than consecutive ones.
This difference does not affect the overall attack complexity, but by using
L-sequences it will be possible to reduce the data complexity in Section 10.4.4.

Khovratovich [178] also presents a generalization of the above attack to the
quadratic case and, ultimately, to arbitrary degrees. It recovers the key using
O(pd−1d log p) Legendre symbol evaluations, given O(p) queries to Lk.

10.4.3 Table-based collision search

Before introducing the new attack in Section 10.4.4, Khovratovich’s attack will
be converted into a table-based collision attack. This makes it possible to trade
off the data- and the time complexity of the attack.

LetM be the allowed number of queries to the oracle Lk, where log p�M <
√
p.

Let m = dlog pe and let M ′ = M −m+ 1. The attack proceeds as follows:



277 Arithmetization-oriented primitives

1. Store in a table T the pairs (Lk(a+ [m]), a) for all a in {0, . . . ,M ′ − 1}.
2. Sample b uniformly at random from Fp until (L0(b + [m]), a) ∈ T for

some a in {0, . . . ,M ′ − 1}. For each a corresponding to such a collision,
a candidate key k′ is recovered as k′ = b− a. By Assumption 10.1, the
number of candidate keys is at most O(1). Candidate keys k′ can be
tested by comparing one or more entries of T with the corresponding
arithmetic L-sequences with starting point k′.

The first step requires M queries to Lk, from which one obtains M ′ arithmetic
L-sequences that are stored using O(M log p) memory. The second step requires
O(p log p/M) evaluations of the Legendre symbol and no additional memory is
needed. Hence, the overall computational cost of the attack is O(M+p log p/M).

Note that this variant of the attack reduces the query and time complexities by
a log p factor compared to the memoryless collision search, although a significant
amount of memory is employed.
Remark 10.2. The above attack can be made deterministic by choosing b in
{0, . . . , bp/M ′c} and considering the sequences v = L0(bM ′+ [m]) in the second
step of the attack. Indeed, for every k in Fp, the arithmetic L-sequence at offset
M ′dk/M ′e will be computed in both steps of the attack and the correct key is
guaranteed to be recovered after at most O(M + p log p/M) Legendre symbol
evaluations. .

10.4.4 Improved attack on the Legendre PRF

This section shows how Khovratovich’s attack (Section 10.4.2) on the Legendre
PRF can be improved when the total number of available queries is less than√
p. Although, in its simplest form, the improved method requires additional

memory, several techniques to reduce memory requirements while keeping the
same overall time complexity will be discussed.

The attack is based on expanding the table T from Section 10.4.3 without
increasing the number of queriesM . The key idea is to exploit the multiplicative
property of the Legendre symbol.
Lemma 10.1. Let m be a positive integer and k in Fp. For all a in Fp and b
in F×p , it holds that

Lk/b(a/b+ [m]) = (l(b), . . . , l(b)) + Lk(a+ b[m]) ,

if none of the involved Legendre symbols evaluate to zero.

Proof. Immediate by the multiplicative property of the Legendre symbol.
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Theorem 10.4. Let k be an element of Fp and m ≤ M positive integers.
From the arithmetic L-sequence Lk([M ]), one can efficiently extract ∼M2/m
arithmetic L-sequences of the form Lk/b(a/b+[m]) for distinct (a, b) in Fp×F×p .

Proof. Let b a positive integer such that b ≤ bM/mc. By Lemma 10.1, we get

Lk(a+ b[m]) = (l(b), . . . , l(b)) + Lk/b(a/b+ [m])

for any non-negative a < M−bm+1. Hence, each b yields a total ofM−bm+1
L-sequences of length m. Moreover, since Lk(a− b[m]) is equal to the sequence
Lk(a−b(m−1)+b[m]) = Lk(a′+b[m]) written in reverse order, we can consider
negative values for b too, thus doubling the total number of sequences. Hence,
the total number of arithmetic L-sequences of length m that can be extracted
from Lk([M ]) equals

2
bM/mc∑

b=1
(M − bm+ 1) ∼ 2M2

m
−m

M/m∑

b=1
b ∼ 2M2

m
− M2

m
= M2

m
.

Theorem 10.4 can be used to improve the table-based collision search from
Section 10.4.3 as follows. As before, let M be the allowed number of queries,
where log p�M <

√
p. Let m = dlog pe. The attack proceeds as follows:

1. Query the sequence Lk([M ]) and extract ∼M2/m sequences of the form
Lk/b(a/b + [m]) from it. This is possible by Theorem 10.4. Store all of
the triples (Lk/b(a/b+ [m]), a, b) in a table T .

2. Sample c uniformly at random from Fp until (L0(c + [m]), a, b) ∈ T for
some a and b. For each pair (a, b) corresponding to such a collision, a
candidate key k′ is recovered as k′ = bc − a. By Assumption 10.1, the
number of candidate keys is at most O(1). As before, the correctness of
candidate keys k′ can easily be verified.

The first step of the attack requires M queries to Lk and ∼ M/m Legendre
symbol evaluations. Storing the table T requires O(M2) memory. In the second
phase, an average of ∼ mp/M2 samples must be tested before a collision is
found. Hence, the computational cost of this step is dominated by O(pm2/M2)
Legendre symbol evaluations.

It follows that the overall cost of the attack is dominated by the extraction
of O(M2/m) sequences, the evaluation of O(M/m + p log2 p/M2) Legendre
symbols and a memory requirement of O(M2). For M <

√
p, this is always an

improvement over the attack from Section 10.4.3 – possibly after discarding
some of the data.
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The following paragraphs describe three optimizations that further reduce both
the time and the memory complexity of the attack by a factor Ω(log p).

Using consecutive values of c. The second step of the attack from
Section 10.4.4 can be optimized by choosing consecutive values of c rather than
uniform random samples. This approach allows reusing most of the Legendre
symbol computations since, for example, L0(c+[m]) and L0(c+1+[m]) overlap
almost completely.

A priori, this allows reducing the number of Legendre symbol computations by
a factor of Ω(m). However, there is an important caveat: since the guesses for c
are not independent, the expected number of iterations of the second step is no
longer pm/M2. To see why this is the case, recall that for any c, the algorithm
will output the correct key k if there exists (·, a, b) ∈ T such that k = bc − a.
Since the table contains an entry (·, a, b) for all sufficiently small values of a
and b, it is clear that if the table contains (·, a, b) such that k = bc− a then it
is also likely to contain (·, a+ b, b) since k = b(c+ 1)− (a+ b). Therefore, if c
is a good guess, then c+ 1 is also likely to be a good guess. Since the “good”
values of c are clustered together in groups of size O(m), the required number
of iterations will be O(pm2/M2), which means that the factor Ω(m) that was
saved by using consecutive guesses for c is lost again.

However, this idea can still be used to reduce the memory complexity of the
algorithm by only storing one entry (·, a, b) for each cluster of good c’s. By
storing only the triples (·, a, b) such that |a| < |b|, the size of the table can
be reduced by a factor of Ω(m) without impacting the time complexity of the
attack.

Expanding the number of L-sequences in the second step. Theo-
rem 10.4 can be used to create new L-sequences from those computed during the
second step of the attack. Indeed, after computing a large number of w = Ω(m)
consecutive Legendre symbols L0(c+ [w]), it is possible to extract Ω(w2/m2)
arithmetic subsequences of the form L0(c+ c′ + d[m]) such that |c′| < |d|, with
no need to compute additional Legendre symbols. Using the property that

L0(c+ c′ + d[m]) = L0((c+ c′)/d+ [m]) + L0(d) ,

we can then do Ω(w2/m2) table lookups. Asymptotically, this allows to amortize
away the cost of computing Legendre symbols. That is, the time complexity is
dominated by the extraction of O(pm2/M2) subsequences rather than by the
computation of O(pm2/M2) Legendre symbols.
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Not storing reverse sequences. Since the sequence a + b[m] is just the
reverse of the sequence a+b(m−1)−b[m], there is some redundancy in the table
T . Indeed, for every entry (s, a, b) in T , the reverse sequence corresponding to
the entry (s′, a+ b(m− 1),−b) is also stored.

If, instead, only the lexicographically smallest sequence is stored, then the
memory requirements are reduced by a factor of two without affecting the
overall time complexity just by looking up either the sequence L0(c+ [m]) or
its reverse in T , depending which comes first lexicographically.

10.4.5 Improved attack on the degree-d Legendre PRF

This section generalizes the attack from Section 10.4.4 to the degree-d
Legendre PRF. The attack proceeds in essentially the same way as described
in Section 10.4.4 for the linear case. The main difficulty is in extending
Theorem 10.4 to the higher-degree case.

Lemma 10.2. Let m be a positive integer and k in Fp. For all a in Fp and b
in F×p , there exists an invertible affine transformation Ta,b : Fdp → Fdp such that
for all k in Fdp,

LTa,b(k)([m]) = (l(bd), . . . , l(bd)) + Lk(a+ b[m]) ,

if none of the involved Legendre symbols evaluate to zero. Moreover, for any
choice of (a, b) in Fp × F×p , the transformation Ta,b can be efficiently computed.

Proof. Let f be the monic degree d polynomial with coefficient vector k, and
let Ta,b(k) be the coefficient vector of the monic polynomial f(a+ bx)/bd. It
follows from the multiplicative property of the Legendre symbol that

LTa,b(k)([m]) = (l(bd), . . . , l(bd)) + Lk(a+ b[m]).

Furthermore, it is not hard to see that Ta,b is invertible, affine and that it can
be computed efficiently.

Theorem 10.5. Let k be an element of Fdp and m ≤ M positive integers.
From the arithmetic L-sequence Lk([M ]), one can efficiently extract ∼M2/m
arithmetic L-sequences of the form LTa,b(k)([m]) with Ta,b as defined in
Lemma 10.2 for distinct pairs (a, b) in Fp × F×p .

Proof. The proof is analogous to that of Theorem 10.4.
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The table-based collision search can be modified as follows. Let M be the
allowed number of consecutive queries to the oracle Lk and m = ddlog pe. The
attack comprises the following steps:

1. Query the sequence Lk([M ]) and extract ∼M2/m sequences of the form
LTa,b(k)([m]) from it. This is possible by Theorem 10.5. Store all of the
triples (LTa,b(k)([m]), a, b) in a table T .

2. Sample k̃ uniformly at random from Fdp until (Lk̃([m]), a, b) ∈ T for some a
and b. For each pair (a, b) corresponding to such a collision, one recovers a
candidate key k′ = T−1

a,b (k̃). By Assumption 10.1, the number of candidate
keys is at most O(1). As before, the correctness of candidate keys can
easily be verified.

The computational cost of the first step is dominated by the extraction of
O(M2/m) sequences. For the second step, at most O(pdm2/M2) Legendre
symbols are expected to be evaluated. Hence, the total computational cost of
the attack consists of O(M2/m) sequence extractions and O(pd d2 log2 p/M2)
Legendre symbol evaluations. The attack requires O(M2) memory.

For d ≥ 3, the time complexity is minimized for M = p. The time complexity
is then O(pd−2d2 log2 p) Legendre symbol computations. Hence, this method
improves a factor of p in time over the attacks by Khovratovich [178].

10.4.6 Weak keys of the degree-d Legendre PRF

In this section, a large class of weak keys for the higher-degree Legendre PRF
is exhibited. The attacks are based on the observation that for some keys, the
corresponding monic polynomial factors as a product of polynomials of lower
degree.

Consider the Legendre PRF of degree d ≥ 2 over Fp. Recall that the key k in
Fdp of the PRF corresponds to the monic polynomial f(x) = xd +

∑d−1
i=0 ki+1x

i.
The attack in this section is based on the observation that, with high probability,
the polynomial f has a factor of degree t = bd/2c. In this case, there exist two
monic polynomials g and h with deg g = t and deg h = d− t such that f = gh.

Suppose that the outputs for m = ddlog pe arbitrary inputs are given, for
example the sequence Lk([m]). By the multiplicativity of the Legendre symbol6,

Lk([m]) = l(g([m])) + l(h([m])) .

Hence, finding the secret key k reduces to a simple collision search:
6For convenience, let l(g([m])) = (l(g(0)), . . . , l(g(m− 1))) similar to Definition 10.3.
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1. Query the sequence Lk([m]) from the PRF. For each monic polynomial g
of degree t, store the pair (Lk([m]) + l(g([m])), g) in a table T .

2. Sample monic polynomials h of degree d− t until (l(h([m])), g) ∈ T for
some monic polynomial g of degree t. For each such g, recover a candidate
key from the coefficients of gh. By Assumption 10.1, the number of
candidate keys will be at most O(1).

For t = bd/2c, this attack requires O(pbd/2cd log p) bits of memory and its
time complexity is dominated by O(pdd/2ed log p) operations. These estimates
use the fact that all Legendre symbols modulo p can be precomputed in O(p)
operations. The attack requires only m = O(d log p) queries to the PRF.

Using Van Oorschot-Wiener golden collision search [272], an improved time-
memory trade-off can be obtained: given M bits of memory, the key can be
recovered with a time complexity of O(d log p

√
p3d/2/M) Legendre symbol

evaluations.

Even if the polynomial f does not have a factor of degree exactly bd/2c, it
might still have a factor of large degree t < bd/2c. In this case, the same
strategy results in an attack with time complexity O(pd−td log p) and memory
complexity O(ptd log p). This gives a trade-off between more efficient attacks
on a smaller fraction of keys (when t is large) or less efficient attacks on a larger
fraction of the keys (when t is small). This trade-off is illustrated in Figure 10.4.
The figure shows the time complexity of the attack for a desired fraction of
weak keys.

The construction of Figure 10.4 is based on the following fact [260]: the fraction of
monic degree-d polynomials whose factorization has exactly ci monic irreducible
factors of degree i is 1/

∏d
i=1 ci! ici as p→∞. By summing these probabilities

over all integer partitions of d that allow a (t, d − t) split, one obtains the
probability that a uniformly random key is weak.

It follows from the above that if the key is chosen uniformly at random, then
the higher-degree Legendre PRF has security only up to the birthday bound.
To completely prevent this class of attacks, one can choose the key k such that
the corresponding polynomial f is irreducible.

Reduction to the unique n-XOR problem. More generally, the secret
polynomial could factor into n polynomials of degree roughly d/n. For example,
if d is divisible by n and f =

∏n
i=1 fi with deg fi = d/n, then

Lk([m]) =
n∑

i=1
l(fi([m])).
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Figure 10.4: The complexity of the attack, measured as a power of p, as a
function of the degree of f and the desired fraction of keys we want to attack.

That is, it suffices to find a solution to a variant of the n-XOR problem.
Specifically, since each list has length pd/n, a unique solution is expected. This
makes Wagner’s approach [279] inapplicable, but some improvements over the
attack above are nevertheless possible.

In particular, for k = 4, the algorithm of Chose, Joux and Mitton [92] leads
to a time complexity Õ(pd/2) with only Õ(pd/4) memory. Corresponding time-
memory trade-offs can also be obtained.

There exist asymptotically better quantum algorithms. Bernstein et al. [33]
give an Õ(p0.3d) algorithm requiring Õ(p0.2n) quantum-accessible quantum
memory for k = 4. For any k ≥ 3, Naya-Plasencia and Schrottenloher [221] give
algorithms running in time Õ(pβkd) where βk = (k+ dk/5e)/(4k) using Õ(p0.2n)
quantum-accessible quantum memory. For k = 3, there is an algorithm using
Õ(pd/3) time and Õ(pd/3) quantum-accessible classical memory.

10.4.7 Cryptanalysis of the Jacobi PRF

The Jacobi pseudorandom generator was proposed by Damgård [108] as a
variation on the Legendre PRG. In this case, the public modulus is taken to
be a product n =

∏l
i=1 pi of odd primes. Recall that the Jacobi symbol of an

integer a is defined as
(a
n

)
=

l∏

i=1

( a
pi

)
.

As discussed by Damgård [108, §5], the Jacobi PRG is potentially more efficient
because it can be computed as the exclusive-or of several Legendre PRGs
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with a relatively small modulus. In addition, Damgård showed that if the
Legendre generator is weakly unpredictable, then the Jacobi generator is strongly
unpredictable. A generator is defined to be weakly unpredictable if, for all
polynomials f , there exist only finitely many integers m ≥ 0 such that the next
output bit in a sequence of length m can be predicted with probability greater
than 1− 1/f(m). Similarly, the generator is said to be strongly unpredictable
if the probability of successful prediction exceeds 1/2 + 1/f(m) for only finitely
many m. For a more formal definition, see [108, §3] and references therein.

This section investigates the security of the Jacobi PRF in the chosen-plaintext
setting. Whereas the unpredictability result of Damgård could be regarded as a
positive result related to the security of the Jacobi PRF, it remains inconclusive
concerning its concrete security. Indeed, strong unpredictability is a weaker
property than PRF-security and, in addition, it is only an asymptotic notion of
security.

The cost of a key-recovery attack on the Jacobi PRF is at least the cost of
attacking a Legendre PRF corresponding to a prime factor of the modulus. The
following chosen-plaintext key-recovery attack on the Jacobi PRF below nearly
attains this lower bound. Hence, for most purposes, the Jacobi PRF offers little
benefit over the Legendre PRF.

Let n =
∏m
i=1 pi with p1, . . . , pm distinct odd primes – it can be assumed that

the prime factors of n are distinct because
(
x+ k

n

)
=
(

x+ k∏m
i=1 p

ei
i

)
=

m∏

i=1
ei odd

(
x+ k

pi

)
.

Let λj =
∏m
i=1
i6=j

pi and let λ′j in Z such that λjλ′j ≡ 1 (mod pj). Then

(
λj x+ k

n

)
=

m∏

i=1

(
λj x+ k

pi

)
=
(
λj
pj

)(
k

n/pj

)(
x+ λ′j k

pj

)
.

Hence, in the chosen-plaintext setting, the key-recovery attack on the Legendre
PRF from Section 10.4.4 can be used to recover the key modulo pj . The
Legendre symbol of k modulo n/pj is not known to the attacker, but it is
constant so the cost of the attack is increased by a factor of at most two. Given
the value of the key modulo each prime factor of n, the Chinese remainder
theorem yields the value of the key modulo n. Hence, key recovery for the
Jacobi symbol costs at most O(mM2 +

∑m
i=1 pi log2 pi/M

2) Legendre symbol
evaluations. The same strategy is applicable to the higher-degree case and can
be combined with the attacks in Section 10.4.8 below.
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10.4.8 Cryptanalysis of the power residue PRF

The MPC protocol of Grassi et al. [153] for computing the Legendre PRF
requires only three rounds of communication, which makes the Legendre PRF
superior among the PRF constructions investigated by Grassi et al. in terms of
latency. However, since the Legendre PRF only produces one bit of output, it
does not compare favorably in terms of throughput to e.g. MiMC, GMiMC or
HadesMiMC.

To mitigate this limitation of the Legendre PRF one can, as proposed by
Damgård [108], consider higher power residue symbols rather than quadratic
residue symbols. If r divides p− 1, then the rth power residue symbol of x is

(
x

p

)

r

= x(p−1)/r .

Computing rth power residue symbols in the MPC setting can be done at
essentially the same cost as computing Legendre symbols with the advantage
that log r bit outputs are produced instead. Therefore, this modification has
the potential to significantly increase the throughput of the Legendre PRF
at essentially no cost – keeping in mind that r should not be too large, since
the corresponding power residue PRF might lose its security. Generalizing the
Legendre function and the Legendre PRF to higher power residue symbols, one
obtains the following definitions.

Definition 10.4 (rth power residue function). Let p be a prime congruent
to one modulo r and g a generator of F×p . The rth power residue function
l(r) : Fp → Z/rZ is defined as

l(r)(a) =
{
k if a 6= 0 and a/gk is an rth power modulo p ,

0 if a = 0 .

Definition 10.5 (rth power residue PRF). Let p be a prime congruent to
one modulo r. The rth power residue PRF over Fp is a family of functions
L

(r)
k : Fp → Z/rZ such that for each k in Fp,

L
(r)
k (x) = l(r)(k + x) .

This section provides the first security analysis of the power residue PRF.
The attacks described in Section 10.4.4 and Section 10.4.5 do not use any
properties of the Legendre symbol other than its multiplicativity. Therefore,
they generalize to any multiplicative function with a hidden shift, including the
rth power residue function. The resulting attack requires O(p log2 p/(M2 log2 r))
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power residue symbol evaluations and O(M2 log r) memory, because it suffices
to consider L-sequences of length Θ(log p/ log r). However, for large values of r,
a better attack is explained below.

The attack is similar to the table-based collision search from Section 10.4.3. A
speed-up by a factor r is obtained by querying the PRF at more carefully chosen
arithmetic L-sequences. Let G be the subgroup of F×p containing all (p− 1)/rth

roots of unity. If g is a generator of F×p , then the group G is generated by gr.

If L(r)
k (0) = s, then k/gs is an rth power modulo p. That is, k ∈ gsG. This

leads to the following procedure, with m = dlog p/ log re and M < p/r:

1. For M/m distinct a in G, store each pair (L(r)
k (a[m]), a) in a table T .

2. Sample x uniformly at random from gsG until (L(r)
0 (x+ [m]), a) ∈ T for

some a. For each such collision, a candidate key is obtained as k′ = xa.
By a variant of Assumption 10.1, the number of candidates is O(1).

The first step of the above attack uses M = m (M/m) queries to L(r)
k and

uses O(M log r) memory to store the table T . On average, |G|/(M/m) =
O(pm/(Mr)) iterations of the second step are sufficient to find a candidate key.
Since each iteration requires m power residue symbol computations to evaluate
L

(r)
0 (x+ [m]), it follows that the total time complexity of the attack consists of
O(M) storage operations and O(pm2/(Mr)) = O(p log2 p/(Mr log2 r)) power
residue symbol evaluations.

10.4.9 Implementation results

Using the attack from Section 10.4.4, three out of the six challenges proposed
by the Ethereum foundation [141] were solved – including the test instance
with a 40-bit prime. The implementation of the attack is available online7. A
summary of the challenge parameters and the time and memory requirements
of the attack is given in Table 10.4.

The implementation is written in C++ and was compiled with Clang 6.0.0. The
attacks were executed on a Dell C6420 server with two Intel Xeon Gold 6132
CPUs clocked at 2.6 GHz (28 cores) and 128 GB of RAM. The optimizations
described in Section 10.4.4 allow to significantly reduce the required memory
and the number of evaluations of the Legendre symbol. As a result, the table
lookups are the bottleneck in the implementation. Further details about the
implementation can be found in the ToSC paper [36].

7https://github.com/cryptolu/LegendrePRF

https://github.com/cryptolu/LegendrePRF
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Table 10.4: Parameters of the concrete challenges [141]. For all instances, the
first M = 220 consecutive PRF outputs are given.

p
Security‡ Time Memory Keybits core-hours GB/thread

240 − 87 20 < 0.001 < 1 4e2dea1f3c
264 − 59 44 1.5 3 90644c931a3fba5
274 − 35 54 1500 3 384f17db02976dcf63d
284 − 35 64 221† 3
2100 − 15 80 237† 3
2148 − 167 128 265† 3

† Estimate, see the ToSC paper [36] for more details.
‡ Expected security level (conservative estimate) prior to this work.
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11
Side-channel countermeasures

Masking is one of the most common countermeasures against side-channel
attacks. This chapter shows that linear cryptanalysis can be used to evaluate
the security of masked cryptographic primitives. The new techniques make it
possible to obtain concrete security bounds in a variant of the probing model
that allows the adversary to make only a bounded, but possibly large, number
of measurements.

The contents of this chapter are based on the paper “Cryptanalysis of masked
ciphers: a not so random idea” [53] from Asiacrypt 2020 (joint work with Siemen
Dhooghe and Zhenda Zhang). Siemen Dhooghe and myself contributed equally
to this work. The results of this paper were subsequently used to design several
masked implementations in the papers “A low-randomness second-order masked
AES” [52] from SAC 2021 (joint work with Siemen Dhooghe, Adrián Ranea and
Danilo Šijačić) and “Cryptanalysis of efficient masked ciphers: applications to
low latency” [51] from TCHES 2022 (joint work with Siemen Dhooghe, Amir
Moradi and Aein Rezaei Shahmirzadi).

11.1 Introduction

Side-channel attacks such as differential power analysis [187] are an important
concern for the security of implementations of cryptographic primitives in
hardware and software. Accordingly, several adversarial models and side-channel
countermeasures have been developed during the past two decades. Many of
these countermeasures attempt to achieve security in the probing model of Ishai,
Sahai and Wagner [167], or slight variants thereof.

A common theme among different countermeasures is that they rely on splitting
all secret variables in the circuit into d + 1 or more random shares. As
demonstrated by Ishai et al. [167], this approach can be used to achieve probing
security against adversaries who can observe the values of up to d wires in
the circuit. However, the probing security model is not quite sufficient for
hardware-oriented countermeasures. Indeed, glitches may allow the adversary
to obtain more than one wire value from a single probe. To counter this,
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Nikova, Rechberger, and Rijmen [223] introduced the threshold implementation
approach. From a formal point of view, the security of hardware-oriented
countermeasures should be analyzed in a glitch-extended or robust probing
model as formalized by Faust et al. [138] and it can be shown that threshold
implementations achieve such first-order robust probing security [116].

Unsurprisingly, achieving probing security often comes at a cost with respect to
area usage, latency, energy consumption, and so on. This chapter is primarily
concerned with another important cost factor, namely the reliance of many
countermeasures on the availability of a large number of random bits. Creating
these bits can be quite expensive, especially since their generation should also be
gray-box secure. In this regard, first-order threshold implementations provide
an efficient countermeasure. In particular, if one ensures that each circuit layer
satisfies the so-called uniformity property, glitch-extended first-order probing
security can be achieved without using any randomness beyond what is necessary
to share the state. If instead good randomness is readily available, threshold
implementations allow trading this off for reduced area [62]. At Asiacrypt 2014,
Bilgin et al. [61] proposed a higher-order variant of threshold implementations.
However, Reparaz [239] later demonstrated that it succumbs to multivariate
attacks. In further work at Crypto 2015, Reparaz et al. [240] propose to use
remasking with fresh randomness to address this issue. However, as pointed out
by Moos et al. [218], this and other schemes still lack a formal security analysis
in the robust probing model.

As proposed by Faust et al. [138], an alternative approach is to design maskings
based on a robust variant of the strong non-interference framework of Barthe et
al. [23]. This has the benefit of allowing formal security proofs, which rely on
establishing the composability of different gadgets in the shared circuit. However,
ensuring composability unfortunately comes at an inherent randomness cost.
Amortizing this cost is possible to some extent, but remains nontrivial – see for
instance the work of Faust, Paglialonga, and Schneider [139] in the context of
software-oriented masking. In addition, as for example pointed out by De Meyer,
Wegener, and Moradi [113], it is often desirable to mask Boolean functions
directly as opposed to falling back to a gate-level approach. Although verifying
larger gadgets directly is possible within the strong non-interference framework,
it requires nontrivial tools such as maskVerif due to Barthe et al. [22]. Of course,
this does not directly address how to design efficient sharings. Also, one might
hope to quantify to what extent verification fails; in the words of Barthe et al.:
“It would be interesting to extend our work beyond purely qualitative security
definitions, and to consider quantitative definitions that upper bound how much
leakage reveals about secrets – using total variation distance or more recent
metrics that directly or indirectly relate to noisy leakage security” [22, §7].

This chapter overcomes the composability problem for second-order threshold



291 Side-channel countermeasures

implementations without relying on fresh randomness. As a result, second-order
probing secure masked ciphers that require no or almost no randomness beyond
what is necessary to share the input are obtained. In order to achieve these
results, a variant of the probing model in which the adversary can make only a
bounded number of queries is introduced. The approach in this chapter is based
on a completely formal reduction from this model to the security of the masked
cipher against linear cryptanalysis and leads to concrete upper bounds on the
advantage (i.e. total variation distance) of such bounded-query adversaries.

From a practical point of view, the proposed methods provide a means to
reason about and to correct potential flaws in the higher-order threshold
implementations of Bilgin et al. [61]. Importantly, the additional requirements
imposed by the analysis are relatively easy to satisfy when the underlying
cipher has been designed with linear cryptanalysis in mind. As a result, one can
benefit from the desirable properties of first-order threshold implementations – in
particular their low randomness requirements – while simultaneously maintaining
demonstrable security in the second-order probing model with glitches.

From a theoretical point of view, this chapter introduces a radically different
approach to the security-evaluation of masked ciphers. Rather than attempting
to show perfect probing security against adversaries making an arbitrary number
of queries, a limited amount of leakage is allowed but it is show that it can
not be exploited unless the adversary makes an infeasibly large number of
measurements. In this approach, the concrete security bound of a masked
cipher directly depends on the maximum absolute correlation of certain linear
approximations over parts of the design. To estimate correlation upper bounds,
standard techniques from linear cryptanalysis can be used. In particular, one
can use the dominant trail approximation. Although the latter is only a
heuristic, it is an integral part of the security argument of essentially all modern
symmetric-key primitives and results in meaningful estimates if properly used.
In a sense, the dominant trail approximation acts as a substitute for the strong
composability requirements that are typically imposed. An important advantage
of this approach is that it provides additional insight into the design of masked
ciphers, and allows for a quantifiable trade-off between performance and security.
In addition, one can benefit from the literature on linear cryptanalysis.

After introducing a number of preliminaries in Section 11.2, a bounded-query
variant of the glitch-extended probing model is formalized in Section 11.3.
A noisy extension of this model, developed jointly with Siemen Dhooghe,
Amir Moradi and Aein Rezaei Shahmirzadi in the TCHES paper [51], is
also briefly discussed. The reduction to linear cryptanalysis is spread over
Sections 11.4 and 11.5. To limit the scope, only second-order probing adversaries
are considered.
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Section 11.6 presents a high-level overview of the properties the masked cipher
needs to satisfy and the cryptanalytic process that should be followed to obtain
concrete security bounds. Roughly speaking, for probes that are separated by a
small number of rounds of the cipher, zero-correlation linear approximations
can be exploited. If the adversary places its probes further apart, the analysis
relies on upper bounds for the absolute correlation of linear approximations.

In Section 11.7, the framework developed in Sections 11.4 to 11.6 is illustrated by
the design and analysis of a second-order masking of the block cipher LED [156].
The implementation requires a total 664 bits of randomness, i.e. 24 bits more
than what is needed to share the plaintext and key, but no serious attempt
was made to optimize this number. The choice for LED is mainly motivated
by didactical reasons: LED is a classical wide-trail design with 4-bit S-boxes,
which results in a very transparent security analysis. The same technique is
used in [52] to build a low-randomness masked implementation of AES and
in [51] to construct low-latency implementations of LED, Midori [18], Skinny [29]
and PRINCE [76]. These results are not included in this thesis, but the main
outcomes are briefly discussed in Section 11.8.

11.2 Masking and threshold implementations

This section introduces the masking countermeasure. In a masked implementa-
tion of a cryptographic primitive, every secret variable is split into two or more
randomized shares. This is conceptually the same idea as secret sharing, but
the connection to this area is limited in practice because the main difficulty
is not the sharing scheme itself but the modification of the implementation to
operate on shares in a correct and secure manner.

Section 11.2.1 describes Boolean masking, which is the most commonly
used sharing scheme and the one that will be used throughout this chapter.
Section 11.2.2 introduces threshold implementations, which are a popular
method to transform a given circuit into one that operates on shares.

11.2.1 Boolean masking

Boolean masking was independently introduced by Goubin and Patarin [147]
and Chari et al. [88]. It serves as a sound and widely-deployed countermeasure
against side-channel attacks. The technique is based on splitting each secret
variable x in the circuit into shares x̄ = (x1, x2, . . . , xsx) such that x =

∑sx

i=1 x
i

over a finite field k. If k = F2, then this masking approach is referred to as
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Boolean masking. A random Boolean masking of a fixed secret is called uniform
if all sharings of that secret are equally likely.

11.2.2 Threshold implementations

There are many ways to modify a given circuit in order to ensure that it
operates on shared inputs and intermediates. For example, this can be done
at the level of individual gates, or at a higher level involving generic Boolean
functions. However, care must be taken to ensure that the sharing of the
circuit is not only correct but also secure. This is especially challenging in
hardware implementations due to the presence of glitches. Nikova et al. [223]
introduced threshold implementations as a particular approach to share circuits.
This approach achieves first-order glitch-extended probing security in the sense
defined in Section 11.3 below. Later Bilgin et al. [61] generalized the threshold
implementation approach in order to achieve higher-order univariate security.
In the following, the main properties of threshold implementations are reviewed.

A threshold implementation consists of several layers of Boolean functions,
as shown in Figure 11.1. Like for every masked implementation, a black-box
encoder function generates a uniform random sharing of the input before it
enters the shared circuit and the output shares are recombined by a decoder
function. At the end of each layer, synchronization is ensured by means of
registers.
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Figure 11.1: Schematic illustration of a threshold implementation with an equal
number of input and output shares.

Let F̄ be a layer in the threshold implementation corresponding to a part of
the circuit F : Fn2 → Fm2 . For example, F might be the linear layer of a block
cipher. The function F̄ : Fnsx

2 → Fmsy

2 , where we assume sx shares per input
bit and sy shares per output bit, is called a sharing of F. Sharings can have a
number of properties that are relevant in the security argument for a threshold
implementation; these properties are summarized in Definition 11.1.
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Definition 11.1 (Properties of sharings [61, 223]). Let F : Fn2 → Fm2 be a
function and F̄ : Fnsx

2 → Fmsy

2 a sharing of F. The sharing F̄ is said to be

1. correct if
∑sy

i=1 Fi(x1, . . . , xsx) = F(x) for all x in Fn2 and for all shares
x1, . . . , xsx in Fn2 such that

∑sx

i=1 x
i = x,

2. dth-order non-complete if any function in d or fewer component functions
F̄i depends on at most sx − 1 input shares,

3. uniform if F̄ maps the uniform random sharing of every x in Fn2 to a
uniform random sharing of F(x).

The correctness property from Definition 11.1 is an absolute minimum
requirement to obtain a meaningful implementation. Furthermore, if all layers
of a threshold implementation are first-order non-complete and uniform, then
the resulting shared circuit can be proven secure in the first-order probing model
considering glitches [116].

In the higher-order setting, the situation is more complicated. Using higher-order
non-completeness and uniformity, one can secure a threshold implementation
against higher-order univariate attacks. Univariate attacks do not combine
information from multiple layers of a threshold implementation, contrary
to multivariate attacks. However, perfect multivariate security can not
be guaranteed using uniform sharings alone [239]. Instead, the threshold
implementation approach was generalized to use fresh randomness [240].
However, even this last work has been shown to exhibit flaws against higher-order
attacks [218].

In Section 11.3, a variant of the probing model – which will be called the bounded-
query probing model – is introduced. In the main body of this chapter, it will then
be shown that the issues surrounding higher-order threshold implementations
can be overcome if the bounded-query probing model is adopted.

11.3 Bounded-query probing model

Section 11.3.1 introduces a variant of the threshold probing model of Ishai et
al. [167] in which the adversary can make only a bounded number of queries.
In addition, Section 11.3.2 discusses a further extension of this model in order
to account for the effect of glitches. An extension that takes into account
measurement noise is introduced in Section 11.3.3.
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11.3.1 Threshold probing

Let ` ≥ t be positive integers. A t-threshold-probing adversary on F`2 is an
algorithm A that interacts as follows with an oracle that holds an arbitrary
sequence (x1, . . . , x`) in F`2:

1. A specifies a set I = {i1, . . . , i|I|} ⊂ {1, . . . , `} of cardinality at most t,

2. A then receives (xi1 , . . . , xi|I|).

Note in particular that the adversary A is computationally unbounded, and
must specify the location of the probes before querying the oracle. However,
the adversary can change the location of the probes over multiple queries.

Ishai et al. [167] define a randomized stateless circuit C to be t-probing secure
if it can be simulated from scratch such that no t-threshold probing adversary
can distinguish Dec ◦C ◦ Enc from the simulation. Importantly, the adversary’s
interaction with the circuit or simulator is mediated through the encoder and
decoder algorithms Enc and Dec, neither of which can be probed.

In this chapter, the security of a circuit C with input k against a t-threshold-
probing adversary will be quantified by means of a left-or-right security game as
depicted in Figure 11.2. The challenger picks a random bit b and provides the
oracle Ob, to which adversary A is given query access. The adversary queries
the oracle by choosing up to t wires to probe, denoted by P in Figure 11.2, and
sends it to the oracle along with the inputs k0 and k1. Note that the input
of the circuit consists of both the plaintext and the key. The oracle responds
by giving back the probed wire values of C(kb). After a total of q queries, the
adversary responds to the challenger with a guess for b. Denote the result of
the adversary after interacting with the oracle Ob using q queries by AOb . For
left-or-right security, the advantage of the adversary A is then

Advt-thr(A) =
∣∣Pr[AO0

= 1]− Pr[AO1
= 1]

∣∣ .

This security notion will be referred to as the bounded-query probing model.

If an arbitrary number of queries is allowed, the above security definition is
equivalent to the simulation-based definition of Ishai et al. [167] for stateless
circuits. Indeed, if the simulator simply evaluates the circuit for an arbitrary
choice of the secret inputs, then no adversary can distinguish the simulation
from the real circuit with advantage higher than Advt-thr(A). The left-or-right
formulation leads to a slightly more direct proof of Theorem 11.1 in Section 11.4.
However, note that there exist stronger notions of security such as the strong
non-interference model of Barthe et al. [23]. In the latter model, the adversary
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Figure 11.2: The privacy model for t-threshold-probing security consisting of a
challenger C, an adversary A, a left-right oracle Ob, two inputs k0, k1, a set of
probes P, and a set of probed wire values (vb1, ..., vbt ) of the circuit C(kb).

controls not only the unshared input of the circuit but also some of its shares.
This is useful since probing security does not necessarily allow composition, as
illustrated by Coron et al. [98]. As the approach developed in Sections 11.4
and 11.5 considers the circuit in its entirety, security under composition need not
be considered. In fact, since the results in this chapter lead to secure sharings
that do not use any randomness beyond what is necessary to encode the circuit
input, it is clear that arbitrary composability cannot be achieved.

11.3.2 Glitches

It has been shown that hardware glitches can result in significant leakage that
is not accounted for by the probing model, see for example the attacks of
Mangard et al. on several masked AES implementations [213]. Consequently,
it is necessary to extend the capabilities of threshold probing adversaries in
order to capture the physical effect of glitches on a hardware platform. This
chapter takes a conservative approach to the modeling of glitches by bundling
groups of wires over which a glitch could carry information from one wire to
another. Whereas one of the adversary’s probes normally results in the value of
a single wire, a glitch-extended probe allows obtaining the values of all wires in
a bundle. This extension of the probing model has been discussed in the work
of Reparaz et al. [240] and formalized by Faust et al. [138]. The formulation of
the latter work is as follows: “For any ε-input circuit gadget G, combinatorial
recombinations (aka glitches) can be modeled with specifically ε-extended probes
so that probing any output of the function allows the adversary to observe all
its ε inputs.”

In the setting of threshold implementations, the above extension can be
simplified. Recall that each layer of a threshold implementation consists of
Boolean functions F̄i, for which the synchronization of the inputs is ensured by
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means of registers. Thus, a glitch-extended probe placed in the circuit for F̄i
yields at most all of the input bits on which F̄i depends – but no more, since
the layers of a threshold implementation are separated by registers.

Note that, apart from the glitch extension of the probing model, other effects
such as transition leakage can be considered. More information on other leakage
effects can be found in the work of Faust et al. [138]. The scope of this chapter is
limited to the modeling of the effects that are traditionally taken into account in
threshold implementations, thus only hardware implementations in the presence
of glitches are considered.

11.3.3 Measurement noise

In the TCHES paper [51] (joint work with Siemen Dhooghe, Amir Moradi and
Aein Rezaei Shahmirzadi), an extension of the bounded-query threshold probing
model from Section 11.3.1 is introduced. In the modified model, the adversary
can probe the circuit but it obtains noisy rather than exact results. This model
will not be used for the analysis in this chapter, but a brief summary of the
main differences is given below.

The noisy probing model resembles the noisy leakage model first introduced by
Chari et al. [88] and extended by Prouff and Rivain [236]. The main difference
between the two models is in the information given to the adversary. In the
noisy leakage model, the adversary is given a noisy function of all wire values
in the circuit. In the noisy probing model, as in the (glitch-extended) probing
model, an adversary can only probe the circuit locally. However, unlike in the
probing model, the adversaries’ probes reveal only a noisy leakage function
of the wire values. That makes the model similar to that of Dziembowski
et al. [131]. However, the models differ in the way noisy leakage functions
are defined. In addition, as opposed to the model of Dziembowski et al., the
proposed model is purely information-theoretic, non-asymptotic, and limits the
number of queries that can be made by the adversary.

Formally, the threshold probing model is adapted by changing the oracle. More
specifically, the notion of a probe is extended to a noisy probe. Instead of giving
back the exact values on the wire/or bundle, the noisy probe returns a noisy
leakage function of the values. The formal definition of noisy leakage functions
is somewhat technical, and the reader is referred to [51, §3.2] for details. The
noisy probing model is depicted in Figure 11.3.

In practice, the noisy probing model relates to an attacker performing a tth-
order attack on traces. A trace is a time series of the power consumption of an
implementation. The attacker only has a limited number of traces which relates



11.4 Bound on the advantage 298

AC

Ob

Ob

b

k0, k1,P

f(vb
1, . . . , vb

t )

b
$← {0, 1}

q
queries

Figure 11.3: The privacy model for glitch-extended t-threshold-probing security
consisting of a challenger C, an adversary A, a left-right oracle Ob, two inputs
k0, k1, a set of probes P, and a noisy leakage function f(vb1, . . . , vbt ) of the
probed wire values vb1, . . . , vbt in the circuit C(kb).

to a limited number of queries. The adversary can pick two secret values for
the masked circuit which resembles a so-called fixed vs. fixed test.

11.4 Bound on the advantage

This section connects the bounded-query probing model from Section 11.3 to
the cryptanalytic approach that will be developed in Sections 11.5 and 11.6.
The link is established by means of Theorem 11.1 below, which provides an
upper bound on the advantage of threshold probing adversaries in terms of
the nontrivial Fourier coefficients of certain probability distributions associated
with probed wire values. As a first step towards this result, the following lemma
gives an upper bound on the entropy of a probability distribution in terms of its
Fourier transformation. As in Chapters 6 to 8, the dual group of Fn2 is identified
with Fn2 .

Lemma 11.1. Let x be a random variable on Fm2 with probability distribution
px with Fourier transform p̂x. It holds that

m− H(x) ≤ ‖p̂x − δ0‖22/ log 2 ,

with H(x) the Shannon entropy of x with respect to the binary logarithm.

Proof. By definition, the binary Shannon entropy of x is the quantity

H(x) = −E log2 px(x) ≤ m.

The goal is to upper bound the quantity m− H(x) in terms of the coordinates
of the Fourier transformation of px. By Jensen’s inequality, it holds that

H(x) ≥ − log2 E px(x) = − log2 ‖px‖22 ,
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The right-hand side is equal to the Rényi entropy of x. If p̂x is the Fourier
transformation of px, then

H(x) ≥ m− log2 ‖p̂x‖22.

Remark that p̂x(0) = 1, since px is a probability mass function. Isolating this
coefficient, one obtains

m− H(x) ≤ log2
(
1 + ‖p̂x − δ0‖22

)
≤ ‖p̂x − δ0‖22/ log 2 .

Note that the inequality in Lemma 11.1 is rather sharp since ‖p̂x − δ0‖22 is
small for the applications in this chapter. Furthermore, p̂x typically has a small
support, thereby enabling the use of Fourier-analytic methods.

Before turning to the proof of Theorem 11.1, it is useful to briefly consider the
content of its statement. The theorem essentially shows that for a bounded-
query probing secure circuit, all probed wire values either closely resemble
uniform randomness or reveal nothing about the secret input. The usefulness
of the result comes from the fact that it allows ‘bad’ probe values. These are
values that might leak information about the secret, but which nevertheless
cannot be distinguished from uniform random values unless a very large number
of probing queries is made. In practice, the ‘bad’ values will be shares of the
state resulting from probes placed far apart (i.e. separated by many rounds).
The ‘good’ values then correspond to probes that are placed in nearby locations,
such as within an S-box. As will be clarified in Sections 11.6 and 11.7, the
‘good’ values can also play an important role in the analysis of the key-schedule
of a masked cipher.

Theorem 11.1. Let A be a t-threshold-probing adversary for a circuit C.
Assume that for every query made by A on the oracle Ob, there exists a
partitioning (depending only on the probe positions) of the resulting wire values
into two random variables x (‘good’) and y (‘bad’) such that

1. The conditional probability distribution py|x satisfies Ex‖p̂y|x − δ0‖22 ≤ ε,

2. Any t-threshold-probing adversary for the same circuit C and making the
same oracle queries as A, but which only receives the ‘good’ wire values
( i.e. corresponding to x) for each query, has advantage zero.

The advantage of A can be upper bounded as

Advt-thr(A) ≤
√

2q ε ,

where q is the number of queries to the oracle Ob.
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Proof. The first part of the proof consists of a standard game-hopping argument.
Consider the following two additional games:

1. Game ‘t-thr-good’ is a modification of the t-threshold probing game in
which the oracle Ob replaces the ‘bad’ values in each query by uniform
random values. In this game, A only receives information about ‘good’
wire values.

2. In the game ‘∆-bad’, the adversary chooses a secret input k and is given
access to an oracle with the same t-threshold-probing interface as Ob.
This oracle is either a t-threshold-probing oracle for the real circuit with
input k, or a modification thereof in which the ‘bad’ values in each query
are replaced by uniform random bits. The goal is to distinguish between
these two cases.

We construct an adversary B for the game ‘∆-bad’ by running A. Specifically,
B picks a uniform random bit b and forwards the corresponding secret kb chosen
by A to its challenger. Adversary B reports the oracle as real if and only if A
correctly recovers b. Hence,

Advt-thr(A) ≤ Advt-thr-good(A) + 2Adv∆-bad(B).

The factor two in front of Adv∆-bad(B) is due to our definition of ‘advantage’,
i.e. the absolute difference between the winning and failure probabilities of B.
It is given that Advt-thr-good(A) = 0, so it suffices to upper bound Adv∆-bad(B).

Since B makes exactly the same queries to its oracle as A, the result of query i
made by B can also be partitioned into ‘good’ and ‘bad’ wire values. Denote
these values by xi and yi respectively when B is interacting with the real
threshold probing oracle, and by x′i and y′i when B interacts with the (partially)
randomized oracle.

Let δTV(·, ·) denote the total variation distance and
⊗

the tensor product. The
distinguishing advantage of the adversary B is then upper bounded by

Adv∆-bad(B) ≤ δTV
(⊗q

i=1 pxi,yi
,
⊗q

i=1 px′
i
,y′

i

)

≤
√

1
2 DKL

(⊗q
i=1 pxi,yi

‖ ⊗q
i=1 px′

i
,y′

i

)

≤
√
q

2 max
1≤i≤q

DKL
(
pxi,yi

‖ px′
i
,y′

i

)
,

where DKL denotes the Kullback-Leibler divergence and the second inequality is
due to Pinsker. By definition of ‘∆-bad’, the random variables xi and x′i have
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the same probability distribution. Consequently,

DKL
(
pxi,yi

‖ px′
i
,y′

i

)
= Et DKL

(
pyi|xi=t‖ py′

i
|x′

i
=t

)
.

Finally, note that y′i is uniformly distributed and independent of xi. If the
number of bits of yi is denoted by mi, then

DKL
(
pyi|xi=t‖ py′

i
|x′

i
=t
)

= (mi − H(yi|xi)) log 2 ≤ ‖p̂yi|xi
− δ0‖22 .

The inequality above follows from Lemma 11.1. Since it is given that, for all i,
Exi‖p̂yi|xi

− δ0‖22 ≤ ε, it follows that

Adv∆-bad(B) ≤
√
q ε

2 .

Hence, one can conclude that

Advt-thr(A) ≤ 2Adv∆-bad(B) ≤
√

2q ε .

Theorem 11.1 can be extended to the noisy probing model with a similar but
more technical proof. This result can be found in [51, Theorem 1].

11.5 Linear cryptanalysis of masked primitives

Theorem 11.1 provides an upper bound on the advantage of t-threshold probing
adversaries in terms of the Fourier coefficients of the probability distribution of
observed wire values. This section clarifies why it is beneficial to express the
advantage upper bound in this particular form. Specifically, it will be shown
that this reveals a strong link with the linear cryptanalysis of shared functions.

11.5.1 Restrictions of shared functions

Remark that all probability distributions referred to in Theorem 11.1 are with
respect to a fixed value of the secret inputs. Consequently, it is clear that
the relevant Fourier coefficients can not be directly related to the correlation
matrix of the shared function itself. Instead, the relevant properties are those
of restrictions of the shared function to sets of all valid sharings of a specific
secret. Below, it is argued that these restrictions are indeed well-defined and
that they come with a natural notion of linear cryptanalysis.

Recall from Section 11.2 that Boolean masking and threshold implementations
are based on linear secret sharing. In general, any F2-linear secret sharing
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scheme can be thought of as an algorithm that maps a secret x in Fn2 to a
random element of a corresponding coset of a vector space V ⊂ F`2. The vector
space V consists of all possible sharings of 0 in Fn2 . Let ρ : Fn2 → F`2 be a map
that sends secrets to their corresponding coset representative.
Example 11.1. In Boolean masking, a secret x in F2 is shared as (x1, . . . , x`)
where x1, . . . , x`−1 are sampled uniformly at random and x` = x+

∑`−1
i=1 x

i. In
this case, V corresponds to the parity bit code

V =
{

(x1, . . . , x`) ∈ F`2 |
∑`
i=1 x

i = 0
}
.

Furthermore, one possible choice of ρ is ρ(x) = (x, 0, . . . , 0). .

Let F : Fn2 → Fn2 be any function. Recall from Definition 11.1 that a function
F̄ : F`2 → F`2 is said to be a correct sharing of F if, for all x in Fn2 ,

F̄(ρ(x) + V) ⊆ ρ(F(x)) + V. (11.1)

If F̄ is a uniform sharing, then the above inclusion is in fact an equality. For
convenience, let Va = a + V. Due to (11.1), the restriction of F̄ to Va is a
well-defined function Va → Vb whenever a = ρ(x) and b = ρ(F(x)) for some x
in Fn2 . By slight abuse of notation, the same notation will be used for F̄ and for
its restrictions.

Every random variable x on Va has a corresponding probability mass function
px : Va → [0, 1]. Since V is a group, the Fourier transformation p̂a+x of pa+x

is well-defined (see Definition 3.5). The characters of V are the functions
x 7→ (−1)uTx, for u in Fn2/V⊥. Throughout this chapter, V̂ will be identified
with Fn2/V⊥. Explicitly, the Fourier transformation of pa+x at u in Fn2/V⊥ is

p̂a+x(u) =
∑

x∈V
(−1)u

Txpx(a+ x) .

In addition, for any restriction F̄ : Va → Vb, the correlation matrix of x 7→
F̄(a+ x) + b is well defined by Definition 3.6. For convenience, we introduce the
following definition. Note that it does not depend on the choice of the coset
representatives a and b.
Definition 11.2. For V ⊆ F`2, let F̄ : Va → Vb be a well-defined restriction of
a shared function. Let F̄′(x) = F̄(x + a) + b. The correlation matrix of F̄ is
defined as the correlation matrix of F̄′.

11.5.2 Correlations between probed values

As shown in Section 11.4, the advantage of a probing adversary can be upper
bounded in terms of ‖p̂z − δ0‖2 where pz is the probability distribution of any
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measured set of ‘bad’ wire values, possibly conditioned on several ‘good’ wire
values. Note that the conditioning on ‘good’ values simply corresponds to fixing
some variables in the circuit to constants before applying the results below.
This section provides the link between p̂z and the linear cryptanalysis of the
shared circuit that will make it possible to upper bound the quantity ‖p̂z − δ0‖2
for a concrete masked cipher in Section 11.7.

For simplicity, from this point on, only second-order probing adversaries are
considered. To obtain the desired link with linear cryptanalysis, it will be
shown that the coordinates of p̂z are entries of the correlation matrix of the
state-transformation between the specified probe locations. This is illustrated
in Figure 11.4.

· · · F · · ·x y

xI yJ

I J

Figure 11.4: Two probes giving the observation z = (xI ,yJ).

The main result is stated in Theorem 11.2. To obtain it, the following property
of correlation matrices will be used.
Lemma 11.2. Let V ⊂ F`2 be a vector space and L : V→ Fm2 a linear map. If
x is a random variable on V with probability distribution px, then it holds that

p̂L(x)(u) = p̂x(LT(u)) ,

where LT(u) = LT(u) + V⊥ for notational convenience.

Proof. The result follows from p̂L(x) = CLp̂x and Theorem 3.5 (2).

For an index set I = {i1, . . . , im}, the restriction of x in V to I is denoted by
xI = (xi1 , . . . , xim), which is in F|I|2 . Note that x 7→ xI is a linear map.
Theorem 11.2. Let F : Va → Vb be a function with V ⊂ F`2 and I, J ⊂
{1, . . . , `} sets. For x uniform random on Va and y = F(x), let z = (xI ,yJ).
The Fourier transformation of the probability mass function of z then satisfies

∣∣p̂z(u, v)
∣∣ =

∣∣CF
ṽ, ũ

∣∣ ,

where ũ and ṽ in F`2/V⊥ are such that ũI = u, ũ[`]\I = 0, ṽJ = v and ṽ[`]\J = 0.
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Proof. Note that (a + x, b + y) is a well-defined random variable on V2. Let
z′ = (aI , bJ) + z, then p̂z(u, v) = (−1)uTaI+vTbJ p̂z′(u, v). Due to Lemma 11.2,
the distribution of z′ satisfies

p̂z′(u, v) = p̂(a+x,b+y)(ũ, ṽ).

The probability distribution of (a+ x, b+ y) satisfies

p(a+x,b+y) =
(
I ⊗ T F′)p(a+x,a+x),

where F′(x) = F(x+ a) + b. Taking the Fourier transformation, one obtains

p̂(a+x,b+y) =
(
I ⊗ CF′)p̂(a+x,a+x).

By the definition of CF, it holds that CF
ṽ,ũ = CF′

ṽ,ũ. Hence,

∣∣p̂z(u, v)
∣∣ =

∣∣∣∣∣∣
∑

u′,v′ ∈ F`
2/V⊥

δũ,u′ C
F
ṽ,v′ p̂(a+x,a+x)(u′, v′)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑

v′ ∈ F`
2/V⊥

CF
ṽ,v′ p̂(a+x,a+x)(ũ, v′)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑

v′ ∈ F`
2/V⊥

CF
ṽ,v′ p̂a+x(ũ+ v′)

∣∣∣∣∣∣
.

Since pa+x is the uniform distribution on V, it holds that p̂a+x = δ0. It follows
that all terms except v′ = ũ in the sum vanish, whence |p̂z(u, v)| = |CF

ṽ,ũ|.

Theorem 11.2 relates the linear approximations of F to p̂z(u) and hence provides
a method to upper bound ‖p̂z − δ0‖2 based on linear cryptanalysis. However, it
should be noted that the result relates to linear cryptanalysis with respect to V
rather than F`2. The differences are mostly minor, but there is a subtle difference
in relation to the important notion of ‘activity’. In standard linear cryptanalysis,
an S-box is said to be active if its output mask is nonzero. The same definition
applies for linear cryptanalysis with respect to V, but one must take into account
that the mask is now an element of the quotient space F`2/V⊥. In particular, if
the mask corresponding to the shares of a particular bit can be represented by
an all-one vector (1, 1, . . . , 1), it may be equivalently represented by the zero
vector. It is still true that a valid linear approximation of a permutation must
have either both input masks equivalent to zero or neither equivalent to zero.
More generally, this condition is ensured by any uniform sharing.
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Finally, note that Theorem 11.2 assumes that all intermediate states of the
shared implementation are uniformly distributed on a coset of V. This condition
is guaranteed by the uniformity property of threshold implementations. In fact,
it corresponds to the fact that the approximation with – up to equivalence –
an all-zero input mask, must also have an all-zero output mask in order to
have nonzero correlation. In particular, this is achieved if all shared functions
are permutations. Accounting for a non-uniform distribution would require
similar modifications to Theorem 11.2 as would be necessary to achieve higher
than second-order security. In addition, if non-uniform sharings are used, the
wide-trail argument [104] that will be used in later sections breaks down. For
these reasons, the masking of LED in Section 11.7 relies on uniform sharings. A
complete assessment of the consequences of non-uniformity on first and second
order security is left as future work. Regarding this, it is worth noting that an
analysis of the security degradation for non-uniform mappings has been made
by Daemen [100] and has been tested in practice by Wegener et al. [284].

11.6 Cryptanalysis of masked ciphers

Theorems 11.1 and 11.2 provide the basic tools by which the security analysis
of a masked cipher can be reduced to its linear cryptanalysis. This section
provides a high-level overview of the analytic process. In addition, for each
component of a typical masked cipher, the cryptanalytical properties that play
a prominent role in the security analysis are discussed. This discussion can be
useful not only to determine an appropriate masking of a cipher, but also as a
factor in the design strategy of the cipher itself.

Our analysis of a masked cipher begins by partitioning the set of possible probe
positions into three parts. This is closely related to the labeling of wire values
as ‘good’ or ‘bad’ as required by Theorem 11.1. Each part corresponds to a
different level of ‘locality’ and is analyzed by different methods. Specifically,
the following cases can be distinguished:

S-box level. If both probes are placed within an S-box, perfect probing security
is ensured so that such wire values can be labeled ‘good’ in the proof.
Hence, the S-box must be shared such that it is higher-order probing
secure. Based on this, one can verify the probing security of one round.

Nearby rounds. If the probes are separated by a small number of rounds, we
rely on zero-correlation linear cryptanalysis. If the probe positions lead
to zero-correlation approximations, then the probed values are uniformly
distributed. In this case, from the point of view of Theorem 11.1, it does
not matter if the values are marked as ‘good’ or ‘bad’. Indeed, since the
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Ḡ Ḡ Ḡ Ḡ
Ḡ Ḡ Ḡ Ḡ
Ḡ Ḡ Ḡ Ḡ

Figure 11.5: Addition of static randomness with S-box decomposition S̄ = Ḡ◦ F̄.

distribution of the values is perfectly uniform in this case, one also has
perfect probing security. This part of the analysis heavily depends on the
linear layer of the cipher.

Distant rounds. When the probes are separated by many rounds, we rely
on Theorem 11.2 and upper bound the absolute correlations of linear
approximations. This is done using traditional techniques from linear
cryptanalysis, in particular the dominant trail approximation. As
discussed in more detail in Section 11.7.5, this is where the analysis
leaves the realm of information-theoretical arguments and enters the
domain of statistical cryptanalysis. Needless to say, all such wire values
must be labeled as ‘bad’ from the point of view of Theorem 11.1.

For the key-schedule, the situation is slightly more complicated. If the key-
schedule is sufficiently simple, as in the case of LED, one can label all key bits
as ‘good’. It then suffices – but is not necessary – to perform the analysis above
for a fixed key. Several reasons for using this simplified approach are mentioned
below. For more complicated key-schedules, a similar analysis as above for the
key-schedule may be necessary.

A detailed example of the design of a secure sharing and its complete security
evaluation is given in Section 11.7 for the block cipher LED. The remainder of
this section briefly discusses how the analysis above translates to each of the
components of a masked cipher.

S-box sharing and ‘static’ randomness. The S-box should be shared
following the threshold implementation approach. For efficiency reasons, the
S-box is often decomposed into several lower degree functions. The sharing of
these functions should satisfy the uniformity property without using randomness,
and be second-order non-complete. If the S-box is decomposed, the security
of the composition must also be ensured. A simple way to achieve this is to
add randomness between the decomposed functions. This randomness can be
re-used in every S-box. This will be called static randomness as it is generated
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by the black-box encoder and reused throughout the masked cipher. This is
illustrated in Figure 11.5.

As discussed in Section 11.5.2, due to the uniformity of the shared S-box, the
wide-trail strategy can be applied. In order to lower the potential advantage
of the adversary, the sharing of the S-box is required to have strong nonlinear
properties.

Linear layer. The linear layer of the cipher affects the security of the masked
cipher for two reasons. The first is the diffusion between shares, resulting in
zero-correlation trails. The second is that the layer ensures a minimum number
of active S-boxes when probing distant rounds, resulting in correlation upper
bounds.

Key schedule. Section 11.7 opts for simplicity by analyzing the key-schedule
and state-transformation separately. This comes at a potential loss in the
upper bounds, since many linear approximations will have correlation zero when
averaged over some of the unknown key bits. Nevertheless, there are several
good reasons for making such a simplification:

– It allows sticking as close as possible to the basic wide-trail approach.
Indeed, conventional linear cryptanalysis of block ciphers does not usually
consider the combined effect of the key-schedule and state-transformation.

– Although many trails have average correlation zero for a random sharing
of the key, this can be quite difficult to analyze as it depends not only
on which key bits the adversary can measure but also on the details of
the key-schedule (the key-dependence of the sign of trail correlations can
cancel out).

– No additional arguments are required for cryptographic permutations. In
particular, the masked cipher can be used with a fixed key in order to
obtain a secure implementation of a cryptographically strong permutation
provided that the cipher allows for such usage.

11.7 Application to LED

This section applies the techniques developed in Sections 11.4 and 11.5 to the
block cipher LED. This results in a masking requiring less than 700 bits of
randomness while attaining second-order probing security.
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11.7.1 Description of LED

LED is a 64-bit block cipher designed by Guo et al. [156]. The cipher’s state is
divided into 16 four-bit cells. The variant considered here has a 128-bit master
key, from which subkeys are derived using a nibble-wise permutation. The
cipher consists of 12 steps, each comprising four rounds. The step function is
shown in Figure 11.6. Further details can be found in [156].
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Figure 11.6: The step function of LED.

11.7.2 Sharing second-order LED

Following the principles outlined in Section 11.6, this section constructs a
sharing of the LED cipher. Figure 11.7 gives an overview of the shared round
function.

Masking state and key. The sharing of LED uses classical Boolean masking.
The 64-bit state is shared using seven shares per bit, requiring 384 random bits.
The 128-bit key is shared using three shares, which costs 256 random bits.

Sharing affine components. The masking of LED’s linear components such
as ShiftRows, MixColumns, and the key schedule are simply done share-wise.
Constants are added to the first share of the concerning variable. The key
addition is done by adding the key shares to the first three shares of the state.

Sharing the S-box. LED uses the PRESENT S-box. Following the
decomposition given by Kutzner et al. [189], this S-box can be decomposed into
two quadratic maps S1 = G◦C and S2 = B◦G where B and C are affine. Further
details on this decomposition can be found in the Asiacrypt paper [53, Appendix
A.1]. The sharing of the S-box is constructed from the sharing of G and has
been verified to be uniform and second-order non-complete, the details can be



309 Side-channel countermeasures

AddConstants

⊕ ⊕ ⊕ ⊕
⊕ ⊕ ⊕ ⊕
⊕ ⊕ ⊕ ⊕
⊕ ⊕ ⊕ ⊕

S̄1 S̄1 S̄1 S̄1

S̄1 S̄1 S̄1 S̄1

S̄1 S̄1 S̄1 S̄1

S̄1 S̄1 S̄1 S̄1

SubCells

S̄2 S̄2 S̄2 S̄2

S̄2 S̄2 S̄2 S̄2

S̄2 S̄2 S̄2 S̄2

S̄2 S̄2 S̄2 S̄2

ShiftRows MixColumns AddRoundKey

⊕ ⊕ ⊕ ⊕
⊕ ⊕ ⊕ ⊕
⊕ ⊕ ⊕ ⊕
⊕ ⊕ ⊕ ⊕

a b

Figure 11.7: One round of masked LED. The locations of the registers are
indicated by dashed lines. The round key addition is depicted in gray to show
that it only happens every four rounds.

found in [53, Appendix A.2]. In between the two G functions, a layer of static
randomness consisting of uniform zero sharings is added. This randomness is
re-used in every S-box call and consists of 24 bits.

Before settling on the above choice, several other choices of the S-box sharing
were considered. The randomness could be avoided altogether by using a second-
order sharing of the entire S-box. However, as this would increase the number
of shares, this option was not pursued. Alternatively, the S-box could be shared
using fewer shares. For example, the work of Moradi et al. [219] constructs a
uniform sharing using five input shares. Additionally, a uniform three-sharing is
presented in [53, Appendix A.3]. However, both sharings achieve second-order
probing security by first expanding their inputs and then re-compressing the
cross products. Due to this expansion phase, there is an intermediate layer
which is not uniform. As discussed in Section 11.5.2, the use of non-uniform
functions would require more analysis.

The sharing of the S-box can also be adapted to improve its nonlinearity, leading
to better security bounds. One such option based on composing with a nontrivial
sharing of the identity function, is explored in [53, Appendix A.4].

Security. In Sections 11.7.3 to 11.7.6 below, the following concrete security
claim will be established.

Security claim 11.1. For the masked LED described in this section, the
following bound on the advantage of the adversary (assuming piling-up) in the
probing model is claimed:

Adv2-thr(A) ≤
√

q

2121 .
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11.7.3 Probing security of one round

This section establishes the second-order probing security of one round of
masked LED, such that all wire values corresponding to such probing queries
can be labeled as ‘good’. Recall that, since each layer of the masked cipher is
uniformly shared, the input distribution to the round is uniform. To establish
the probing-security claim, it suffices to consider all possible probe positions. If
both probes are placed in the same layer, the claim follows directly from the
second-order non-completeness of each function.

When both probes are placed in part a in Figure 11.7, the only nontrivial
new case corresponds to placing one probe in S̄1 and one in S̄2. Due to the
refreshing layer, the input to S̄2 is uniformly random even if S̄1 is probed. Since
S̄2 is second-order non-complete, placing the second probe in S̄2 then reveals
no information about the secret.

If one probe is placed in part a and another in part b , then the second probe
reveals at most a single share (the same) of each variable by the linearity of part
b . Due to a consistent choice of the covering scheme used for non-completeness,
the previous arguments are not limited to the bit-level. Consequently, the
analysis is the same as for the case with two probes in part a .

Every four rounds, a round key is also added to the state. The effect of the
key-schedule and key addition is discussed in Section 11.7.6.

11.7.4 Nearby rounds: zero correlation

This section shows that the distribution of any pair of measurements from probes
which are at most three rounds apart almost always conforms to one of two
cases: either the observations are uniformly distributed, or they do not reveal
anything about the secret. To prove the uniformity claim, the analysis relies
on techniques from zero-correlation linear cryptanalysis. The latter case, i.e.
independence of the secret for possibly non-uniform observations, was discussed
in the previous section. For these cases, the advantage of the adversary is zero as
required by Theorem 11.1. All other cases will be considered in Section 11.7.5.

The argument consists of an analysis of all possible probe placements. As noted
above, the analysis in this section is restricted to probes that are at most three
rounds apart. This results in the following cases:

Rounds i and i+ 1. If the adversary probes in part a of round i, then the
MDS matrix ensures that a full column of the state will be active at the
input of round i+1. A measurement in part a of round i+1 can activate
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shares from at most one cell of the state such that the corresponding
approximations have correlation zero. Similarly, due to the ShiftRows
operation, by probing in part b of round i+ 1, the adversary can never
activate all cells of a single column at the input of round i + 1. Hence,
approximations with nonzero correlation can only be obtained by probing
in part b of round i. However, in this case only a single share of each
bit is learned, such that a second probe in part a or b of round i+ 1
reveals nothing about the secret by the same argument for the case where
both probes are placed in round i.

Rounds i and i+ 2. If either part a or b of round i are probed, this results
(up to symmetry) in one of the four activity patterns shown in Figure 11.8
for rounds i+1 and on. By probing anywhere in round i+2, the adversary
can clearly activate at most four cells at the input of this round. In cases
1 – 3 in Figure 11.8, at least eight S-boxes are active at the input of
round i+ 2 such that the correlation of such approximations is zero. In
the remaining case, i.e. activity pattern 4 , only a single column of the
state is active at the input of round i+ 2. However, by probing in part
a of round i + 2, only a single cell can be activated. Probing part b
allows activating four cells but never from the same column due to the
shift rows step.

Rounds i and i+ 3. It is easy to see that activity patterns 2 - 4 in
Figure 11.8 lead to correlation zero since at least eight S-boxes are then
active at the input of round i+ 3. Indeed, if the second probe is placed
anywhere in round i+ 3, at most four cells of the state can be activated.
For pattern 1 in Figure 11.8, the correlation may be nonzero and will be
bounded in Section 11.7.5.

The above case analysis shows that, when the probes are placed in nearby rounds,
perfect security is obtained. The only remaining cases are probes in rounds i
and i+ r for r > 4 and the activity pattern 1 in Figure 11.8 when probes are
placed in rounds i and i+ 3. These cases are analyzed in Section 11.7.5.

11.7.5 Five rounds or more: low correlation

As discussed in Section 11.7.4, if the probes are placed in rounds that are far
apart, the observed values are usually not uniformly distributed. Nevertheless, it
is possible to show that they will be nearly uniform in the sense that all nontrivial
coordinates of the Fourier transformation of their probability distribution are
small. To show this, the correlation of all linear trails whose activity pattern is
compatible with the probe positions will be upper bounded.
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Figure 11.8: Activity patterns for masked LED, corresponding (up to symmetry)
to the four possible patterns created by a probe placed in round i. SR is short
for ShiftRows and MC for MixColumns. White cells are inactive, cells in gray
are active, and hatched cells correspond to an example trail with a minimum
number of active cells.

Remark 11.1. The analysis in this section relies on the piling-up principle, i.e.
upper bounds on the correlations of the best individual trails will be used
instead of upper bounds on the correlations of linear approximations. This is
a arguably a reasonable starting point, given that every adversary that can
distinguish the probed wire values from uniform randomness gives rise to a
linear distinguisher. In fact, the security arguments for most symmetric-key
primitives do not go further than such an analysis – although they should. As
explained in Section 11.7.6, the correlation upper bounds need not hold for
all key and refreshing variables but only in the average over the unobserved
variables. Consequently, it is likely that the true values of the correlations are
much lower than the estimates presented below. .

To upper bound absolute trail correlations, we rely on the standard wide-trail
argument [104]. Specifically, the fact that any linear trail over four rounds of
(shared) LED activates at least 25 S-boxes will be used. Additionally, an upper
bound on the correlation of the best linear approximations over the shared
S-box from Section 11.7.2 is required. Since the shared S-box is quite large, a
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direct calculation of its nonlinearity is nontrivial. Instead, the following lemma
for quadratic Boolean functions can be used. A slight restatement of this result
can be found in the book by Carlet [86, Chapter 6].
Lemma 11.3 (Proposition 16 [86]). Let f : Fn2 → F2 be a quadratic Boolean
function. Denote the rank of its symplectic form by r. That is, r = rank(S)
where S in Fn×n2 is the symmetric matrix such that yTS x = f(x+y)+f(x)+f(y).
Then

1
2n

∣∣∣∣∣∣
∑

x∈Fn
2

(−1)f(x)

∣∣∣∣∣∣
≤ 2−r/2.

Lemma 11.4. Let Ḡ : Va → Vb be any restriction of the sharing of G defined
in Section 11.7.2. Denote its correlation matrix by CḠ. For any u and v in
F`2/V⊥ such that uji 6= 0 for some i 6= 3, it holds that

∣∣CḠ
u,v

∣∣ ≤ 2−3.

Proof. Since Ḡ is a function of 28 variables, bounding all of its correlations is
nontrivial. However, one can use the fact that Ḡ is a quadratic function. Indeed,
if B in F`×d2 is a basis matrix for V, then

∣∣CḠ
u,v

∣∣ ≤ max
w∈F`

2/V⊥
1
|V|
∣∣∣
∑

x∈V
(−1)u

TḠ(x+a)+wTx
∣∣∣

≤ max
w∈F`

2/V⊥
1
2d
∣∣∣
∑

x∈Fd
2

(−1)u
TḠ(Bx+a)+wTBx

∣∣∣ .

Since uTḠ(Bx + a) + wTBx is a quadratic Boolean function, Lemma 11.3 is
applicable. Let Si,j denote the symplectic form matrix of Gji (Bx+ a). Since
S3,j = 0 for j = 1, . . . , 7, we must require that uji is nonzero for some i 6= 3 to
obtain a nonzero minimum rank. Specifically, it suffices to verify that for all
nonzero u in F`2/V⊥ with uj3 = 0 for j = 1, . . . , 7,

rank
( 4∑

i=1

7∑

j=1
uji Si,j

)
≥ 6.

Lower bounding the left-hand side above reduces to the MinRank problem. For
our purposes, a brute force search over all representative choices of u is feasible.
The verification code can be found online1.

Theorem 11.3. Let S̄ = S̄2 ◦ S̄1 : Va1 → Va3 be the sharing of S = S2 ◦ S1
defined in Section 11.7.2. Denote the correlation matrix of S̄i : Vai

→ Vai+1 by
C S̄i . For any u and v in F`2/V⊥ not both equal to zero and for all w in F`2/V⊥,
it holds that

∣∣C S̄2
u,wC

S̄1
w,v

∣∣ ≤ 2−3.
1https://gitlab.esat.kuleuven.be/Zhenda.Zhang/LED_SHARING

https://gitlab.esat.kuleuven.be/Zhenda.Zhang/LED_SHARING
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Proof. Since S̄ is affine equivalent to Ḡ ◦ Ḡ, it suffices to analyze the latter
function. By Lemma 11.4, it holds that |CḠ

u,w| ≤ 2−3 unless uji = 0 for
j = 1, . . . , 7 and for all i 6= 3. However, for such u, |CḠ

u,w| = 0 whenever w also
satisfies wji = 0 for j = 1, . . . , 7 and for all i 6= 3. Indeed, the ith-share of the
third bit Gi3 does not depend on any shares from the third input variable. It
follows that |CḠ

u,wC
Ḡ
w,v| ≤ 2−3.

Remark 11.2. Experimentally, the piling-up approximation was found to give
the correct upper bound 2−3 for the maximum absolute correlation of the
shared S-box. Due to resource constraints, the experiment was limited to the
verification for one choice of static randomness. .

For probes placed in rounds i and i + r with r ≥ 4, the relevant linear trails
all have at least 25 active S-boxes. This is a consequence of the wide-trail
design strategy and can be derived in exactly the same way as for the AES [104].
Hence, by Theorem 11.3, the correlations of these trails are bounded by 2−75.
By Theorem 11.2, it then follows that the 2-norm of the nontrivial Fourier
coefficients of the observed bits z can be upper bounded as

‖p̂z − δ0‖22 ≤ |supp p̂z| ‖p̂z − δ0‖2∞ ≤ 222 2−150 = 2−128 ,

where the second step uses the inequality |supp p̂z| ≤ 222, which follows from the
fact that the observed value z consists of at most 22 bits in the glitch-extended
probing model: if an output coordinate of Ḡ is read, at most 10 shares are
learned; if an output of the shared linear layer is probed, at most 11 shares
are observed. The latter number of shares is due to the fact that LED’s MDS
matrix has at least five zeros per row when represented over F2. Note that, in
practice, the upper bound above is not likely to be tight, because it is unlikely
that a glitch will reveal the exact value of all 11 bits in a single measurement.

The only remaining case is when the adversary probes in rounds i and i+ 3,
assuming the activity pattern in case 1 from Figure 11.8. In this case, only 24
S-boxes are active. Furthermore, we again have |supp p̂z| ≤ 222. Hence,

‖p̂z − δ0‖22 ≤ 222 2−144 = 2−122 .

A more careful analysis would result in slightly improved bounds. Nevertheless,
since the bound is sufficiently small for all practical purposes, we avoid such an
analysis and opt for simplicity instead.

11.7.6 Influence of the key-schedule

The arguments in Sections 11.7.4 and 11.7.5 establish the security of the
proposed masked LED design against an adversary which does not look at shares
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of the key or the bits which are added in the refreshing layer. Indeed, for such
an adversary, all wire values for queries with probe positions considered in
Section 11.7.4 are marked as ‘good’ and all others (considered in Section 11.7.5)
as ‘bad’. Theorem 11.1 then provides the desired security bound. However,
showing security when all wires in the circuit can be probed requires a slightly
more careful choice of ‘good’ and ‘bad’ wire values.

Fortunately, the LED key-schedule consists only of bit-permutations. Hence, its
sharing is perfectly secure against second-order threshold-probing adversaries.
The same holds for the random bits used in the refreshing layer. Hence,
Theorem 11.1 can be applied with the following labeling of wire values:

Probes discussed in § 11.7.3–11.7.4. For all these probe positions, all wire
values can be considered as ‘good’. This includes any key bits (and
additional randomness in the refreshing layer) that might be observed by
the adversary. Indeed, even with glitch-extended probes, the adversary
can observe at most two shares of each key bit.

Probes discussed in § 11.7.5. For these probe positions, all wire values
corresponding to state shares should be marked as ‘bad’; shares of the key
(or additional randomness used in the refreshing layer) are labeled ‘good’.
The arguments in Section 11.7.5 then apply directly.

At least one probe in the key-schedule. In this case, all wire values may
be considered ‘good’. Indeed, recall that any non-complete subset of
state bits at a particular layer is uniformly distributed and the adversary
observes at most two shares of each key bit.

For the upper bound ε, the values derived in Section 11.7.5 may be used directly
because the analysis of the trails there is valid for every choice of the key. Note
that the latter assumption is stronger than necessary; it suffices to assume that
the bounds derived in Section 11.7.5 are valid in the average over all unobserved
randomness and key variables.

11.8 Application to other primitives

As discussed above, the security analysis and masking choice of LED can be
adapted to several other primitives. In general, the same approach is often
directly applicable to primitives following the wide-trail design strategy.

However, the LED masking presented in this chapter uses seven shares and a
large number of register stages. This unfortunately leads to high latency and
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large area, making it not competitive compared to the state of the art despite
requiring almost no randomness beyond what is necessary to share the inputs.
Nevertheless, it is possible to design more efficient maskings using the strategy
outlined in this chapter.

In the SAC paper [52], a second-order secure masking of the AES is designed.
It uses a total of 1800 random bits (900 when amortized over multiple calls),
about an order of magnitude less than previous implementations at the time.
The analysis is more complicated and relies on automated tools. However, its
area-requirements are not yet competitive with previous work. This was joint
work with Siemen Dhooghe, Adrán Ranea and Danilo Šijačić.

The TCHES paper [51] presents low-latency implementations of the block
ciphers LED-128, Midori-64, Skinny-64 and PRINCE that do not require any fresh
randomness. These implementations are competitive with the state-of-the-art in
terms of area, latency and throughput. To achieve this, their security analysis
is based on the noisy probing model that was briefly discussed in Section 11.3.3.
This was joint work with Siemen Dhooghe, Amir Moradi and Aein Rezaei
Shahmirzadi.



12
Backdoored ciphers

This chapter is concerned with block ciphers that have an intentional but
hidden weakness or backdoor. An attack on the backdoored cipher LowMC-M
is given, and its design strategy (the MALICIOUS framework) is analyzed. It
is shown that ‘trivial’ instances of MALICIOUS can be constructed from any
tweakable block cipher. In addition, a nontrivial backdoored variant of the AES
is constructed. Finally, the backdoored block cipher Boomslang is introduced.

The contents of this chapter are based on the note “Cryptanalysis of
the MALICIOUS framework” [54] (joint work with Chaoyun Li) and the
paper “Constructing and deconstructing intentional weaknesses in symmetric
ciphers” [25] from Crypto 2022 (joint work with Christof Beierle, Patrick
Felke and Gregor Leander). From the latter work, only the results related to
MALICIOUS are included in this chapter. I was the principal author of [54]. The
authors of [25] contributed equally, with Malicious AES mainly due to Christof
Beierle and Gregor Leander, and Boomslang mainly due to myself.

12.1 Introduction

The design of deliberate and often hidden weaknesses in cryptographic primitives
has a long history. Among the most famous examples are the block cipher
DES [237], for which the key length was deliberately reduced to 56 bits [170, page
232], and the pseudorandom generator Dual EC DRBG, which was equipped with
a backdoor [35,232]. More recently, it was discovered that the security of the
widely deployed cipher GEA-1 was secretly weakened to 40 bits in order to fulfill
European export restrictions [28]. The construction of the GEA-1 backdoor
was reverse-engineered in the Crypto 2022 paper [25], but this analysis is not
included in this chapter.

In the academic world, backdoored ciphers based on hiding strongly biased
linear approximations have been proposed [235,244]. Another approach is based
on partitioning cryptanalysis [160], where the backdoor consists of a partition of
the plaintext space that is preserved under the encryption function [19,143,231].
The latter approach is related to invariant subspace attacks [196] and nonlinear
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invariant attacks [266]. In the case of hash functions, it was shown how to
design malicious variants of SHA-1 with built-in collisions [4]. For all of these
constructions, the designers either do not claim security of the backdoor in the
sense that it cannot be recovered even if its general form is known, or there is
an attack which recovers the backdoor from the specification of the cipher (see
for example [286]).

At Crypto 2020, Peyrin and Wang [234] introduced the MALICIOUS framework
to construct backdoored tweakable block ciphers. One of the interesting features
of this framework is that the difficulty of recovering the backdoor relies on well-
understood cryptographic principles. The basic idea is to construct a tweakable
block cipher such that for a particular malicious tweak pair (t, t′), the cipher
exhibits a differential with high probability that leads to a practical key-recovery
attack. The tweak pair (t, t′) is secured by being a pair of preimages for outputs
of an extendable-output function H such as SHAKE [128]. The backdoor is
undiscoverable in the sense that finding the hidden tweak pair requires finding
a collision for H.

Concretely, Peyrin and Wang propose the tweakable block cipher LowMC-M
by instantiating the MALICIOUS framework with the cipher LowMC [8]. One
drawback of this construction is that the round function is based on a rather
complex (randomly sampled) linear layer and a partial S-box layer. As suggested
for future work in [234], it would be interesting to find similar constructions that
are based on other cryptanalytic attacks rather than differential cryptanalysis,
as this might lead to more natural instances.

Section 12.2 of this chapter shows that, although the embedded malicious tweak
pair itself is hard to recover, it is feasible to find other weak tweak pairs that can
be used to mount key-recovery attacks. This results in full-round key-recovery
attacks on most instances of LowMC-M. Although the time complexity of these
attacks is large for most cases, the attacks require only a small amount of data.
Despite these findings, the MALICIOUS framework itself is not flawed and can
be used to create backdoored variants of LowMC if the parameters are modified.

In Section 12.3, it is shown that any tweakable block cipher can be modified in
a simple way to conform to the MALICIOUS framework. In a nutshell, the idea
of constructing such an instance is to check if the tweak hashes to a certain
constant and if so, return the key instead of the ciphertext. If the hash does not
match, the cipher is executed unchanged. Although this example shows that the
initial goals of the MALICIOUS framework can be achieved in a trivial way, it is
an artificial construction and does not give further insight on how to construct
hidden weaknesses. A malicious designer would rather aim to construct a
‘natural’ instance that follows modern symmetric-key design principles and for
which a sound design rationale can be formulated.
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Towards achieving this goal, two new instances of the MALICIOUS framework
are proposed in Sections 12.4 and 12.5. Whereas LowMC-M relies on a hidden
high-probability differential, the new constructions are based on invariants. It
is argued that this allows for more natural instances. In particular, Section 12.4
shows how the round function of the AES can be used together with a modified
key-schedule in order to embed a backdoor based on an invariant subspace
over the round function. More precisely, the backdoor exploits an invariant
subspace that was already known since 2004 [194]. In Section 12.5, a dedicated
construction called Boomslang is proposed. It embeds a backdoor based on a
nonlinear invariant over two consecutive round functions.

The new constructions constitute the first backdoored ciphers that follow modern
design principles for general-purpose block ciphers, and are expected to achieve
competitive performance. Compared to previous constructions not based on
the MALICIOUS framework, in particular those of Paterson [231] and Posteuca
and Ashur [235], the new proposals also directly improve upon the usability of
the backdoor as they enable significantly more practical key-recovery attacks.
Nevertheless, the constructions presented in this chapter and the MALICIOUS
framework in general still have important limitations. These are discussed in
Section 12.6.

12.2 Cryptanalysis of LowMC-M

The attack on LowMC-M is based on the observation that, apart from the
malicious tweak pair, it is possible to find other pairs of tweaks that lead to
differentials with probability one over a large number of rounds of the cipher.
After a suitable weak tweak pair has been obtained, there are several ways to
set up a key-recovery attack using the probability-one differential.

LowMC-M is specified in Section 12.2.1. Section 12.2.2 presents the main
observation that leads to the attack. Finally, an example of a possible key-
recovery procedure is given in Section 12.2.3.

12.2.1 Specification of LowMC-M

An overview of LowMC-M is shown in Figure 12.1. Throughout this chapter, n
denotes the block size in bits, k is the number of key bits and r is the number
of rounds. The round function of LowMC-M consists of three operations. In
the first step, the round key, round constants and round tweak ti are added to
the state. The key-schedule is linear, but the details are not important for the
analysis in this chapter. The round tweaks are derived using the extendable
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output function H as (t1, t2, . . . , tr) = H(t). The next step consists of a partial
S-box layer. The details of the S-box are not important, but LowMC-M uses
the same 3-bit S-box as LowMC. The total number of bits operated on by the
S-boxes will be denoted by s. Finally, an essentially random invertible linear
map Li : Fn2 → Fn2 is applied to the state.

S

⊕

t1

L1

S

⊕

t2

L2

S

⊕

t3

L3

S

⊕

t4

L4

S

⊕

t5

L5

Figure 12.1: Five rounds of LowMC-M with n = 18 and s = 3.

To create a backdoored instance of LowMC-M with malicious tweak pair (t, t′),
the linear layers L1, . . . , Lr are chosen in a way that depends on H(t) + H(t′).
Specifically, the designer chooses a secret input difference a1 whose first s bits
agree with b1 = t1 + t′1. As a result, the difference propagates through the first
partial S-box layer with probability one. The liner layer L1 is then chosen such
that the first s bits of a2 = L1(a1 + b1) agree with b2 = t2 + t′2. This process
can be repeated an arbitrary number of times.

Peyrin and Wang [234] argue that, since the malicious round tweak difference
is unique with overwhelming probability, finding a malicious tweak pair costs
roughly 2(n+(r−1)s)/2 evaluations of H – assuming that H is collision-resistant
and the tweak is long enough. As noted by the authors, this reasoning does
not take into account the existence of tweak pairs which might be a backdoor
for a different input difference. The next section shows that it is easier to find
alternative weak tweak pairs that result in a probability-one differential over all
r rounds than it is to find the malicious tweak pair.

12.2.2 Weak tweak pairs

As described in Section 12.2.1, the specification of LowMC-M requires the
designer to choose the secret input difference a1 at random from Fn2 . The
authors argue that an attacker who tries to find the weak tweak pair has to
match all n bits of a1, in addition to (r − 1)s bits of the intermediate round
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tweak differences. However, the analysis below shows that finding a collision on
rs− n < n+ (r − 1)s (for s < 2n) bits is actually sufficient. This is due to the
fact that the input difference provides n additional degrees of freedom.

In the discussion below, a round tweak difference H(t) + H(t′) = (b1, b2, . . . , br)
will be called weak if there exists a differential characteristic (a1, . . . , ar1) with
probability one for the first r1 rounds of LowMC-M. If the difference in the first
i ≥ 1 rounds propagates deterministically, then ai+1 = Li(ai + bi). Hence,

ai = (Li−1 ◦ · · · ◦ L1)(a1) +
i−1∑

j=1
(Li−1 ◦ · · · ◦ Lj)(bj).

Let bxcs denote the first s coordinates of x in Fn2 . The probability in the first
r1 rounds is equal to one if baics = bbics or equivalently

i∑

j=1

⌊
(Li−1 ◦ · · · ◦ Lj)(bj)

⌋
s

=
⌊
(Li−1 ◦ · · · ◦ L1)(a1)

⌋
s
, (12.1)

for all i in {1, . . . , r1}. The term j = i should be interpreted as bi.

For any fixed choice of b1, . . . , br1 , (12.1) results in a system of sr1 linear
equations in n unknowns over F2. For random linear layers, and assuming
sr1 � n, such a system will be inconsistent with high probability. More
precisely, the probability that a uniform random choice of the first r1 round
tweaks results in a right-hand side that makes the system consistent, is 2n−sr1 .
Indeed, the column space of the coefficient matrix of the linear system is of
dimension n in an ambient space of dimension sr1 [234, p. 21-22].

A tweak pair such that the round-tweak differences (b1, . . . , br1) result in a
consistent linear system can be found by using collision search methods at the
cost of roughly 2(sr1−n)/2 evaluations of H. The amount of memory required
depends on the input size of H. For all applications in this chapter, the length
of the tweak exceeds (sr1 − n)/2.

The collision search proceeds as follows. Let A in Fsr1×(sr1−n)
2 be a matrix

with column space the orthogonal complement of the column space of the
coefficient matrix of the system of equations (12.1). Let B in Fsr1×nr

2 be the
matrix mapping the round tweaks to the right-hand side of the equations.
The goal is to find a collision for the function f : F`2 → Fsr1−n

2 defined by
f(t) = ATB H(t). Since t is sufficiently long, a parallel collision search using
Van Oorschot-Wiener collision search costs roughly 2(sr1−n)/2 evaluations of f
with little memory [273]. A small constant factor is neglected here, but this is
justified because the evaluation of f likely takes significantly less time than a
single LowMC-M evaluation.
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The analysis above shows that a full-round weak tweak pair can be found with a
computational cost of approximately 2(rs−n)/2 evaluations of f . Although this
is a much lower cost than the cost of finding the backdoor itself, it unfortunately
does not allow the attacker to find a full-round weak tweak pair in less time than
the security level of 2k for any of the LowMC-M instances because rs− n > 2k.
Nevertheless, if the adversary is capable of 2c ≤ 2k evaluations of f , then
it can find a weak tweak pair with a probability one differential for the first
r1 = b(2c+ n)/sc rounds of LowMC-M. It will be shown in Section 12.2.3 that
this is sufficient to set up full-round key-recovery attacks on LowMC-M.

12.2.3 Key-recovery attacks

A key-recovery attack that uses a small amount of data can be obtained by
slightly modifying the difference-enumeration attacks of Rechberger, Soleimany
and Tiessen [238]. These attacks enumerate all possible state differences in the
forward and backward direction, searching for a match in the middle. Once a
match is found, the corresponding characteristic can be determined, which can
in turn be used to recover the key. For simplicity, it will be assumed that k = n.

The attack covers the first r1 rounds of the cipher using a deterministic difference.
In LowMC without a tweak, the largest possible1 choice of r1 is bn/sc. In LowMC-
M, however, this number of rounds can be significantly increased by choosing
a good weak tweak pair. Due to the results in Section 12.2.2, the number of
rounds r1 can be increased to

r1 =
⌊

2c+ n

s

⌋
,

at the cost of 2c evaluations of f .

Let δ denote the average number of possible output differences over the S-
box layer for a uniform random input difference. For LowMC, it holds that
δ = (29/8)s/3 [238, §3.1.3]. In the next r2 rounds, all δr2 possible differences in
the forward direction are enumerated. In the final r3 rounds, the differences
are enumerated in the backward direction. The differences are matched in the
middle, which means that δr2+r3 < 2n should hold in order to avoid random
collisions. That is, r2 + r3 < n/ log2 δ must hold. The complexity of this
distinguisher is dominated by the list creation, which amounts to max{δr2 , δr3}
memory accesses.

For key-recovery, one also has to compute the characteristic followed by the
inputs. This can be done in roughly δr2 + δr3 time for each input pair using

1A few more rounds may be possible if s does not divide n.
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a meet-in-the-middle approach. Due to the fact that the LowMC S-box is
differentially 2-uniform, the key-recovery step requires only two plaintext pairs.
In fact, as noted by Rechberger et al. [238, §4.2.1], it is optimistic to assume
that two pairs are sufficient and slightly more data are probably necessary in
practice. Sticking with the estimate of two pairs, the time complexity of the
entire attack is dominated by 2(δr2 + δr3) storage operations. The storage
requirements are n(δr2 + δr3) bits. To optimize the time complexity, one should
choose r2 ≈ r3. Specifically,

r2 =
⌊
r − r1

2

⌋
and r3 =

⌈
r − r1

2

⌉
.

Some sample complexities for full-round LowMC-M are given in Table 12.1. For
all instances specified by Peyrin and Wang [234, Table 1] except those with the
largest value of s (for n = 128, s = 90 and for n = 256, s = 120), the attack
improves over brute-force.

Some improvements to the costs reported in Table 12.1 could be obtained by
optimizing the trade-off between the precomputation Toff and Ton. However,
since the optimal trade-off depends on the context, this will not be discussed.

It is worth noting that Liu, Isobe and Meier have proposed an improvement
of the difference enumeration attack at Crypto 2021 [202]. By combining the
observations from Section 12.2.3 with their own attacks, they obtain improved
results on LowMC-M.

12.3 Simple instance of MALICIOUS

This section presents a trivial modification of any tweakable block cipher that
introduces a backdoor satisfying the goals of the MALICIOUS framework. More
specifically, the backdoor must be practical, in the sense that it leads to efficient
key-recovery. In addition, it should be undetectable even if the mechanism of
the backdoor is known.

Let H : FN
2 → Fτ2 be a cryptographic hash function and let E : Fκ2×Fτ2×Fn2 → Fn2

be a tweakable block cipher with block length n, tweak length τ and key length
κ = n. The malicious designer chooses a secret tweak t? in Fτ2 and computes
s = H(t?). The chosen tweak t? will serve as the secret backdoor. The designer
then defines the tweakable block cipher Ẽ : Fκ2 × Fτ2 × Fn2 → Fn2 as

Ẽ(k, t, x) =
{

E(k, t, x) if H(t) 6= s

x+ k if H(t) = s .
(12.2)
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Table 12.1: Cost of several difference-enumeration attacks on LowMC-M
instances with n = k. Memory requirements are denoted by Mon and listed in
bits. Precomputation time is denoted by Toff = 2c and expressed in evaluations
of f . Online time is denoted by Ton and expressed in storage operations.

n dlog2 Toffc s r r1 r2 r3 dlog2 Tonc dlog2Monc

128

128

3 208 128 40 40 76 82
6 104 64 20 20 76 82
9 70 42 14 14 80 86

30 23 12 5 6 112 118

96
3 208 106 51 51 97 103
6 104 53 25 26 98 104
9 70 35 17 18 101 107

64
3 208 85 61 62 117 123
6 104 42 31 31 117 123
9 70 28 21 21 119 125

256

256
3 384 256 64 64 121 128
9 129 85 22 22 125 132

60 21 12 4 5 187 194

196
3 384 213 85 86 161 168
9 129 71 29 29 164 171

60 21 10 5 6 224 231

128 3 384 170 107 107 201 208
9 129 56 36 37 207 214

In other words, if the backdoor t? is used as the tweak, the tweakable block cipher
Ẽ simply applies the permutation x 7→ x+k, which allows the malicious designer
to recover the key k with one known plaintext/ciphertext pair. Due to this simple
key-recovery attack, the backdoor fulfills the notion of practicability [234, §2.2]. If
the hash function H is preimage resistant, then a user cannot feasibly recover the
backdoor t?. Therefore, the backdoor fulfills the notion of undiscoverability [234,
§2.2]. More generally, under the same assumption on H, a user cannot even prove
the existence of a secret backdoor. The reason is that the user cannot distinguish
between whether the tweakable block cipher defined by (12.2) was designed by
a malicious designer who knows t? and generated s = H(t?) accordingly or by
an honest designer who simply chose a random s in Fm2 . In other words, the
backdoor fulfills the notion of undetectability [234, §2.2].
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Hence, (12.2) fulfills the same security notions as the backdoor in the original
MALICIOUS framework. However, similar to the original MALICIOUS framework,
the backdoor in Ẽ does not fulfill the notion of untraceability: once Ẽ is queried
with the tweak t?, the full backdoor is revealed. Note that untraceability implies
public-key cryptography.

12.4 Malicious AES

This section shows how to construct a tweakable variant of the AES with a
modified key-schedule to obtain a more natural backdoored cipher based on the
MALICIOUS framework. Instead of constructing a probability-one differential
over the cipher for a secret pair of tweak values as in the original MALICIOUS
framework, Malicious AES has an invariant subspace for a secret tweak value.

12.4.1 Specification of Malicious AES

Recall from Chapter 1 that the unkeyed AES round function R is of the form

R = MixColumns ◦ ShiftRows ◦ SubBytes .

For a detailed description of MixColumns, ShiftRows and SubBytes, see Chapter 1
or the Rijndael book [107]. One round of the AES consists of the composition
of R and a round key addition.

The round function of Malicious AES is identical to that of the AES, but its key
schedule is different and it supports an arbitrary-length tweak. Note that, for
other reasons, changing the AES key-schedule has been discussed previously, e.g.
in [177] and [115] to increase the resistance of AES against dedicated attacks.

Let k in Fκ2 be a κ-bit master key. The partial (64-bit) round keys k1, . . . , k11
in F64

2 are derived from the master key using a key-scheduling function. The
details of this function are left open. For reasons discussed in Section 12.4.2, it
is required that there is an efficient algorithm to uniquely determine 64 bits of
k given the value of k11. The actual round keys are equal to k′1, . . . , k′11, where
the ith round key k′i is defined by

k′i =




ki,1 ki,5 ki,1 ki,5
ki,2 ki,6 ki,2 ki,6
ki,3 ki,7 ki,3 ki,7
ki,4 ki,8 ki,4 ki,8


 for i = 1, . . . , 10 and k′11 =




k11,1 k11,5 0 0
k11,2 k11,6 0 0
k11,3 k11,7 0 0
k11,4 k11,8 0 0


 ,

with ki,1, . . . , ki,8 the bytes of ki.
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In order to support arbitrary-length tweaks, the 64-bit partial round tweaks
t1, . . . , t10 are derived from the master tweak t using an extendable output
function H, i.e., (t1, . . . , t10) = H(t). The round tweaks are then t′1, . . . , t

′
10,

with t′i defined by

t′i =




ci,1 ci,5 ti,1 ti,5
ci,2 ci,6 ti,2 ti,6
ci,3 ci,7 ti,3 ti,7
ci,4 ci,8 ti,4 ti,8


 ,

where ti,1, . . . , ti,8 are the bytes of ti and ci,1, . . . , ci,8 are the bytes of ci. The
choice of the round constants c1, . . . , c10 is discussed below.

Let Addy : x 7→ x+y. The ith round function is defined by Ri = Addk′
i+1+t′

i+1
◦R

with R the unkeyed AES round function. The tweakable block cipher Malicious
AES can then be described as

Malicious AESk,t = Addk′11
◦ ShiftRows ◦ SubBytes ◦ R9 ◦ · · · ◦ R1 ◦ Addk′1+t′1 ,

where k′1, . . . , k′11 and t′1, . . . , t′10 are as defined above. This is identical to the
definition of the AES up to the choice of the round keys.

To set up a backdoored instance of Malicious AES, the attacker chooses a secret
tweak t? and computes the values (t?1, . . . , t?10) = H(t?). The round constants
c1, . . . , c10 are then chosen as ci = t?i for i = 1, . . . , 10.
Remark 12.1. This chapter only defines a simple malicious variant of AES,
which uses 64-bit round keys derived from a master key of length κ bits. This
approach is especially suitable when the master key is short, such as κ = 64.
There are several straightforward methods to construct instances with longer
keys. For instance, one can build a similar construction based on Rijndael-192 or
Rijndael-256 [107]. Depending on the details, this might make the key-recovery
mechanism of the backdoor more complicated, but there are no significant
difficulties. .

12.4.2 Description of the backdoor

The backdoor in Malicious AES is based on an invariant subspace for the unkeyed
round function R of the AES. For the secret backdoor tweak t?, this subspace
is preserved up to the penultimate round of the cipher. Below, the invariant
subspace for R, its extension to Malicious AES and the key-recovery procedure
are discussed.
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Let I ⊆ F4×4
28 be the subspace of states with equal first and third columns, and

equal second and fourth columns:

I =








a1,1 a1,2 a1,1 a1,2
a2,1 a2,2 a2,1 a2,2
a3,1 a3,2 a3,1 a3,2
a4,1 a4,2 a4,1 a4,2




∣∣∣∣∣ ∀i ∈ {1, 2, 3, 4}, j ∈ {0, 1} : ai,j ∈ F28




.

It is well known (see for example [194, Proposition 5]) that I is an invariant
subspace for the unkeyed AES round function R, i.e., R(I) = I. Indeed,
I is invariant under each of the three operations SubBytes, ShiftRows, and
MixColumns. However, since I is in general not invariant under addition with a
round key, it cannot be used as an invariant subspace over multiple AES rounds
interleaved with round key additions.

When the cipher is evaluated with the malicious tweak value t?, each round
tweak t′i is contained in I. Hence, I is an invariant subspace for Addk′

i
+t′

i
and

more generally for every tweaked and keyed round function Ri. The propagation
of the invariant subspace is depicted in Figure 12.2. Iterating this property
yields

(Addk′11
◦Malicious AESk,t?)(I) = I .

Under the assumption that for a tweak t 6= t?, each value ti of (t1, . . . , t10) = H(t)
is sampled from a uniform distribution over F64

2 , the probability that, for fixed
j, the round tweak t′j is contained in I is equal to (2−8)8 = 2−64. Therefore,
for a tweak t 6= t?, the invariant subspace property is likely already broken after
the first round of Malicious AES. Hence, if H is cryptographically secure, then
the backdoor fulfills the notions of undiscoverability and undetectability.

Given t?, the last round key k′11 can be recovered using a chosen plaintext
attack with a single plaintext/ciphertext pair. Specifically, for x in I and
y = Malicious AESk,t?(x), it holds that

k11,i = yi,1 + yi,3 ,

k11,4+i = yi,2 + yi,4 ,

with yi,j the byte in row 1 ≤ i ≤ 4 and column 1 ≤ j ≤ 4 of the ciphertext y.
Hence, the 64-bit partial round key k11 can be recovered directly. From k11, the
master key k can be recovered by guessing the remaining κ− 64 bits. Therefore,
if κ is sufficiently small, Malicious AES fulfills the notion of practicability.
Remark 12.2. An explicit security analysis of Malicious AES will not be provided
in this chapter, because (i) most of the security arguments for AES are equally
valid for Malicious AES and (ii) increasing the number of rounds of Malicious
AES does not invalidate the backdoor but should invalidate most potential
non-backdoor based attacks. .
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SB SR MC

k′i

t′ici

Figure 12.2: An invariant subspace for one round of Malicious AES with tweak
t?. ‘SB’ is short for SubBytes, ‘SR’ for ShiftRows and ‘MC’ for MixColumns.
Empty cells are zero.

12.5 Boomslang cipher

This section proposes the dedicated tweakable block cipher Boomslang. Similar
to Malicious AES, the proposed cipher relies on the MALICIOUS framework
to achieve undiscoverability. However, the backdoor is based on a nonlinear
invariant rather than an invariant subspace. In fact, the backdoor implies the
existence of an iterative perfect linear approximation over two rounds of the
cipher. Hence, it can also be compared to the recently proposed block cipher

DooR [235], which contains a backdoor based on linear cryptanalysis. However,
the design rationale of DooR is weaker and it does not offer undiscoverability,
so it has only limited practicability.

12.5.1 Specification of Boomslang

The cipher operates on 128-bit blocks and the state is represented by a 4× 8
array of 4-bit cells. The key k is a 128-bit value, and the tweak t can be any
bitstring of arbitrary (bounded) length.
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The overall structure of the round function closely follows that of the AES and
is shown in Figure 12.3. Specifically, the unkeyed round function of Boomslang
can be written as

R = MixColumns ◦ ShiftRows ◦ SubBytes .

Below, each of the functions on the right-hand side will be briefly discussed.

S S S S S S S S
S S S S S S S S
S S S S S S S S
S S S S S S S S

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

Figure 12.3: Overview of the round function: SubCells, ShiftRows, MixColumns
and the addition of constants.

SubBytes consists of the parallel application of an S-box S to the 4-bit cells
of the state. The S-box is the nonlinear function S : F4

2 → F4
2 defined by

Table 12.2.

ShiftRows is similar to the AES ShiftRows step. If the rows are numbered from
zero to three with zero corresponding to the top row, then ShiftRows
rotates the ith row of the state over 4 · i bits to the left.

MixColumns consists of a columnwise multiplication with a lightweight matrix
from the family of quasi-MDS matrices that was proposed for Qarma [15].
Denote the cells within one column of the state by (x0, . . . , x3), where
xi ∈ F4

2. MixColumns maps each column (x0, . . . , x3) to a new column
(y0, . . . , y3) defined by

yi = xi+1 + (xi+2 ≪ 1) + (xi+3 ≪ 2) ,

for i = 0, . . . , 3 and where the addition of the indices is regarded modulo
four. The inverse mapping is given by

xi = yi+3 + (yi+1 ≪ 2) + (yi+2 ≪ 3) ,
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Table 12.2: The 4-bit S-box S for Boomslang.

0 1 2 3 4 5 6 7 8 9 a b c d e f
8 2 4 a 5 f 7 6 0 c b 9 e d 1 3

for i = 0, . . . , 3. In software, MixColumns can be implemented using
bitslicing.

The (2i+ 1)th round function is then defined as

R2i+1 = Addki+1 ◦ Addc2i+1 ◦ R ,

where ci are round constants and ki round keys. The round keys ki can be
derived using an arbitrary key schedule. Since we do not aim for related key
security, we let ki = k for simplicity. The 2ith round function is defined as

R2i = Addti ◦ Addc2i
◦ R .

The ith round tweak ti is derived from the master tweak t using a strong tweak-
scheduling function. Specifically, (t1, t2, . . .) = H(t) where H is an extendable
output function. Some specific conditions on the round constants ci, all of
which are likely to be satisfied for a uniform random choice, are discussed in
Section 12.5.2.

The overall cipher is constructed as the composition of the round functions
R1,R2, . . .. The number of rounds, denoted by r, is required to be even, so that
the last round function always performs a round-tweak addition. Based on the
analysis in Section 12.5.2, r = 32 is a reasonable choice. The key k is also added
to the plaintext and σ(k) is added to the state after the last round, with σ a
linear orthomorphism, i.e., both k 7→ σ(k) and k 7→ σ(k) + k are permutations.
Specifically, let σ(k) = (k ≫ 1) + (k � 63) as in PRINCE [76]. In summary,
the overall cipher is defined by

Boomslang = Addσ(k) ◦ Rr ◦ · · · ◦ R2 ◦ R1 ◦ Addk .

To set up a backdoored instance of Boomslang, the designer chooses a secret
tweak t? and computes the corresponding round tweaks (t?1, t?2, . . .) = H(t?). The
round constants c2i should then be chosen as c2i = t?i for i = 1, . . . , r/2. Given
a few hundred known plaintext/ciphertext pairs encrypted under the tweak t?,
it will then be possible to efficiently recover the full key. The mechanism for
doing so will be explained in Section 12.5.3.
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12.5.2 Design rationale

In this section, it is argued that the design of Boomslang follows standard
modern design principles. The security analysis focuses on differential and
linear cryptanalysis, and invariants. The latter two are of particular relevance
with respect to the backdoor that will be revealed in Section 12.5.3.

The design follows the wide-trail strategy [107, Chapter 9] with some changes
to obtain a more lightweight cipher. Whenever possible, the design was kept as
simple as possible and close to that of the AES.

In general, the proposed cipher is geared towards hardware. This is the
motivation for relying on 4-bit S-boxes rather than 8-bit S-boxes as in the
AES. In software, the 4× 8 state allows storing the rows as 32-bit words. The
S-box and linear layer can then be implemented using bitslicing.

The key schedule is chosen as the identity function, although other key schedules
could also be used. Since related key security was not a design goal, we decided to
choose the simplest option. In addition, having a linear key schedule sometimes
enables more straightforward security arguments. For example, the arguments
from [27] related to the choice of round constants to prevent invariants are only
applicable to linear key schedules.

Finally, the choice of the tweak schedule can be motivated by the goal of
supporting arbitrary-length tweaks. Since related tweak security is important,
it seems necessary to use a cryptographically strong hash function or extendable
output function to derive round tweaks from the master tweak.

All of the basic components used in the cipher are individually acceptable
choices from the point of view of the current state of the art.

SubCells. The S-box has a maximum absolute correlation of 1/2 for nonzero
masks and a maximum differential probability of 1/4 for nonzero
differences. The S-box is chosen such that it is not an involution.

ShiftRows. The cell permutation is chosen such that the cells of each column
end up in different columns of the state. Shifting rows is a natural choice
because it allows for an efficient software implementation, and it is the
same as for the AES.

MixColumns. The MixColumns map is inspired by the linear layer of Qarma [15].
Specifically, the transformation of each column is defined by a circulant
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matrix M of the form

M =




0 Xa Xb Xc

Xc 0 Xa Xb

Xb Xc 0 Xa

Xa Xb Xc 0


 ,

over the F2-vector space F2[X]/(X4 + 1). The input bitvector can be
considered as an element of this space by the isomorphism δi 7→ Xi−1,
where δi is the ith standard basis vector of F4

2.
The matrix M is invertible with circulant inverse of the same form if
and only if a ≡ c (mod 4) or a ≡ c + 2 (mod 4). All of these matrices
have branch number four, which is the maximum possible for this type of
matrix. Furthermore, the following criteria are imposed:

• Unlike in Qarma, we require thatM is not an involution. Equivalently,
2b 6≡ 0 (mod 4). The motivation for this requirement is that
involutions more easily lead to 2-round invariants, as demonstrated
in the case of Midori-64 (see Chapter 6).

• M should not be orthogonal or nearly orthogonal, i.e. M−1 6= αMT

for any α in F2[X]/(X4 + 1). This requirement is motivated by the
fact that any quadratic form

∑m
i=1 x

T
iQxi is a nonlinear invariant

for an m×m orthogonal matrix [267]. More generally, for a nearly
orthogonal matrix, any such quadratic function which is also invariant
under multiplication by α is a nonlinear invariant.

The second criterion leads to the requirement that Xa+b 6= Xb+c

or equivalently a 6≡ c (mod 4). From the viewpoint of software
implementations, it makes sense to choose one of a, b or c equal to
zero. Choosing a = 0 and b = 1 then gives c = 2.

The wide-trail strategy directly gives upper bounds on the absolute correlation of
linear trails and on the probability of differential characteristics. In particular,
since M has a branch number of four, the number of active S-boxes over
four rounds is at least 16 [107, Theorem 9.4.1]. Hence, after 16 rounds the
average probability of any differential characteristic is lower than 2−128 and
the absolute correlation of any linear trail is at most 2−64. The suggested
choice of 32 rounds was obtained by taking twice as many rounds – taking
into account potential improvements and key-recovery attacks. In fact, it is
to some extent possible to extend the aforementioned upper bounds to linear
approximations and differentials. In particular, for independent uniform random
constants, [226, Corollary 1 & 2] imply that the average probability of any
4-round differential and the average squared correlation of any 4-round linear
approximation is at most (2−2·(4−1))4 = 2−24.
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Several lightweight ciphers have been found vulnerable to invariant sub-
space [196] and nonlinear invariant attacks [267]. Hence, it is natural to
attempt to rule out the existence of invariants in Boomslang. The argument
from [27] can be used to rule out joint invariants over all the affine layers
(i.e., linear layers together with the constant additions) for a large number of
rounds using only the properties of the linear layer and the round constants.
Specifically, the security argument depends on the dimension of the smallest
subspace invariant under the linear layer and containing the differences of the
constants. For the linear layer L = MixColumns ◦ ShiftRows of Boomslang and
constants c1, . . . , cr, denote this space by WL(c1 + c2, c1 + c3, . . . , c1 + cr). If
WL(c1 + c2, c1 + c3, . . . , c1 + cr) = F128

2 , then joint invariants for the affine layers
can be ruled out with high probability. The linear map L has 16 invariant
factors and its minimal polynomial is (X + 1)8. Hence, by [27, Proposition 11],

Pr
c1,...,c24

[dimWL(c1 + c2, c1 + c3, . . . , c1 + c24) = 128] =
15∏

i=0

(
1− 1

223−i

)
≥ 0.99 ,

for uniformly chosen random constants c1, . . . , c24. Hence, 24 rounds are
sufficient to rule out with high probability the existence of such invariants.
Note that this argument does not yet rule out invariants over a small number
of rounds and also does not rule out invariants that are not invariant for every
round as in Chapter 6.

Most invariants considered in previous attacks are of rank-one type, as discussed
in Chapter 6. Indeed, this leads to an easier analysis of the SubCells and
ShiftRows steps. To investigate this in more detail, the tool from Section 3.7.2
was used to obtain the rank-one invariants of the linear layer M . Although M
has some rank-one invariants, they do not correspond to Boolean functions or
sets, and there are no shared invariants between M and the S-box layer.

12.5.3 Description of the backdoor

The backdoor is a two-round invariant, which is not invariant for one round.
This is similar to the invariant for two rounds of Midori-64 that was described
in Section 6.4.3, but unlike in that case the property is not invariant under the
linear layer. Indeed, as discussed above, that would not be possible due to the
choice of the linear layer. Importantly, the invariant only exists for the secret
weak tweak for which the round constants in even rounds cancel out.
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Let f : F4
2 → F2 and g : F4

2 → F2 be the Boolean functions defined by

f(z1, z2, z3, z4) = (z1 + z3)(z2 + z4) + z1 + z3 + z4 + 1

g(z1, z2, z3, z4) = (z1 + z3)(z2 + z4) + z3 .

The functions f and g can be used to form a perfect nonlinear approximation
of M . This is due to the fact that the term (z1 + z3)(z2 + z4) is invariant under
rotations of z1, . . . , z4. Hence, if y = MixColumns(x), then

32∑

i=1
g(y4i−3, y4i−2, y4i−1, y4i) =

32∑

i=1
f(x4i−3, x4i−2, x4i−1, x4i) .

Furthermore, it is easy to see that
32∑

i=1
aT(y4i−3, y4i−2, y4i−1, y4i) =

32∑

i=1
5T(x4i−3, x4i−2, x4i−1, x4i) .

The S-box S defined in Table 12.2 also satisfies

5TS(z1, z2, z3, z4) = g(z1, z2, z3, z4)

f(S(z1, z2, z3, z4)) = aT(z1, z2, z3, z4) .

Since linear functions are invariant under the addition of any constant, and
because the constants are cancelled out by the tweak in even rounds, one obtains
the following two-round invariant:

32∑

i=1
g(y4i−3, y4i−2, y4i−1, y4i) = γ +

32∑

i=1
g(x4i−3, x4i−2, x4i−1, x4i) ,

where y = (R2i◦R2i−1)(x) and γ is a key-dependent constant. The full nonlinear
trail is illustrated in Figure 12.4. Note that the last step only works for one in
264 constants, but the constants are chosen such that there exists a tweak so
that the constants are weak in all odd-numbered rounds.

Alternatively, the nonlinear invariant discussed above can be described as in
Chapter 6. Let

w = (0,−1, 0, 0, 1, 0, 0, 0, 0, 0, 0,−1, 0, 0,−1, 0)/2

v = (0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,−1, 0, 0)/2 .

In the above, w and v are the Walsh-Hadamard transform of f and g respectively.
It holds that CMw⊗4 = v⊗4, with CM the correlation matrix of the linear layer.
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Figure 12.4: Two-round invariant for Boomslang.

Furthermore, the S-box satisfies CSv = δ5 and CSδa = w when F16
2 is identified

with its dual. The vector v is invariant under one in four constants.

The addition of whitening keys k and σ(k) leads to an efficient key-recovery
attack. Specifically, one can use the fact that there exists a mask ` in F128

2 and
a constant b in F2 such that for every plaintext/ciphertext pair (x, y) encrypted
under the backdoored tweak,

32∑

i=1
g(xi + ki) +

32∑

i=1
g(yi + σ(k)i) = `Tk + b ,

with x1, . . . x32, y1, . . . , y32 and k1, . . . , k32 the nibbles of x, y and k, respectively.
Since σ is an orthomorphism, the 64 bits of k that are nonlinearly mixed with
x are linearly independent from the bits of k that are nonlinearly mixed with
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y. Hence, given q messages, one can on average recover q bits of the key even
when q ≥ 64.

Solving the system of equations is easy because of the low number of quadratic
terms. One can either use Gröbner basis methods, exploiting the low degree
of regularity of the system, or one can directly rely on linearization. Since
g contains only a single quadratic term, each equation contains at most 64
quadratic terms. Hence, given 192 known plaintext/ciphertext pairs, the full
key can be recovered using less than 1923 ≤ 223 bit operations.
Remark 12.3 (Construction of the backdoor). The construction of the backdoor
primarily relies on the choice of the S-box. The tool from Section 3.7.2 was
used to find symmetric nonlinear rank-one approximations of the linear layer.
This resulted in the choice of the vectors w and v listed above. One can then
easily generate S-boxes such that the conditions CSv = δ5 and CSδa = w are
satisfied. There are still significant degrees of freedom left in the choice of the
S-box. These could be used to satisfy additional design criteria, or to argue
that the S-box was generated based on certain magic constants. .

12.6 Limitations

The ciphers presented in this chapter do not hide the general mechanism of
their backdoor. Hence, using the malicious tweak once potentially spoils the
backdoor. Using the terminology introduced by the authors of the MALICIOUS
framework, none of the backdoors presented in the symmetric-key literature is
untraceable. In fact, this limitation is precisely the gap between symmetric-key
and asymmetric-key cryptography.

Nevertheless, achieving untraceability may not be necessary for a successful
backdoor in practice. It is sufficient that the mechanism of the backdoor
is difficult to uncover using state-of-the-art – or perhaps just ‘well-known’ –
techniques. The examples in this chapter follow standard design principles
and, although this cannot be proven, it seems likely that a cryptanalyst with
limited knowledge about nonlinear invariants would not have had much success
in uncovering the mechanism of the Boomslang backdoor. Furthermore, even if
the mechanism is found, the designer still has a strong counterargument as long
as the malicious tweak is not revealed. For example, as shown in Chapter 6,
the designers of Midori-64 introduced a similar two-round invariant by accident.

Finally, it should be noted that Boomslang’s backdoor is designed to be simple.
If this requirement is dropped, then a variety of methods could have been used
to make it more difficult to uncover its mechanism.
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Conclusion

The following two sections summarize the main contributions of this thesis and
suggest some directions for future work. Section 13.1 presents the conclusions
of Part I on the theory of cryptanalysis. Section 13.2 concludes Part II of this
thesis, on the applications of cryptanalysis.

13.1 Theory

As mentioned in Chapter 1, the main goal of Part I of this thesis was the
development of a general approach to symmetric-key cryptanalysis. Such a
theory was proposed in Chapter 2. It describes cryptanalytic properties as
pairs of subspaces of the free k-vector space on a set, and its dual space. There
should be an absolute value function defined on the field k, giving the approach
a geometric flavor. Propagation is described by pushforward and pullback
operators. For properties defined by one-dimensional subspaces, expressing
these operators as matrices relative to a basis yields a general notion of trails.
The basis can be chosen to diagonalize a group or monoid action. Using the
dominant trail approximation, trails make it possible to evaluate the properties
of iterated functions. For the case of higher-dimensional subspaces, basis-free
generalizations of these concepts were developed.

It was shown in Chapter 3 that choosing a basis that diagonalizes the action of a
commutative group yields the theory of ordinary linear cryptanalysis, and more
specifically its description using correlation matrices. The higher-dimensional
case of the theory was used to describe extensions of linear cryptanalysis,
and sheds light on the connections between them. Consequences include a
characterization of invariant subspaces and nonlinear invariants as eigenvectors
of correlations matrices, an intuitive link between zero-correlation and perfect
approximations, and additional insight into the relation between invariants
and linear approximations. Linear cryptanalysis takes place over the complex
numbers, giving additional geometric structure in form of an inner product.
This leads to the principal correlations of an approximation, which were shown
to determine the data complexity of known-plaintext distinguishers. Finally,
rank-one approximations were introduced.

337
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Applying the one-dimensional geometric approach to differential cryptanalysis
shows that its standard description is incomplete. This led to the introduction
of quasidifferential trails in Chapter 4. The quasidifferential basis diagonalizes
the action of a commutative group on pairs of elements, while including the
indicator functions of sets of pairs with a constant difference as basis functions.
Expressing the pushforward operator in this basis leads to quasidifferential
transition matrices. The properties of these matrices were discussed, and
it was shown how they can be computed. Together with the dominant trail
approximation, quasidifferential trails provide a practical solution to the problem
of independence heuristics. They can be used to calculate the probability of
differential characteristics without the need to rely on the hypothesis of stochastic
equivalence and the independence of round keys.

Chapter 5 introduced a generalization of integral cryptanalysis by applying
the geometric approach over an extension field of the p-adic numbers. The
one-dimensional theory of ultrametric trails was constructed by choosing a basis
that diagonalizes the action of a commutative inverse monoid. Specializing
this theory to Fnq (for q a power of p) with its coordinate-wise product yields
a rich extension of integral cryptanalysis. Ordinary integral cryptanalysis is
obtained by reducing the theory for q = 2 to the residue field. It was shown how
the ultrametric triangle inequality makes it possible to use the dominant trail
approximation to deduce ‘approximate zero-correlation’ properties. The relation
between the ultrametric transition matrix of a function and its algebraic normal
form was investigated. The theory suggests natural extensions of parity sets and
the conventional division property, with divisibility by powers of p leading to a
spectrum of properties between zero-sums and saturation. As a proof of concept,
it was shown that several zero-sum properties of reduced-round PRESENT are
in fact stronger properties of divisibility by a higher power of two.

That it is at all possible to combine all three techniques (linear, differential
and integral cryptanalysis) into a single framework, is perhaps one of the
great advantages of symmetric-key cryptanalysis compared to other areas of
cryptography. The author of this thesis hopes, but also expects, that the
proposed geometric approach will lead to further developments. On the one
hand, the multidimensional theories of differential and integral cryptanalysis
have not yet been investigated. On the other hand, especially in the differential
case, several other bases are worth examining for the one-dimensional theory.
Ultrametric trails also warrant further research. Another major area will be
the extension to properties based on triplets and beyond. This direction has
received little attention, but looks especially promising.
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13.2 Applications

Applications of the geometric approach were given in Chapters 6 to 8. In
Chapter 6, the characterization of block cipher invariants as eigenvectors of
correlation matrices was used to obtain reduced-round attacks on the block
ciphers Midori-64 and MANTIS. These attacks only work for weak keys, but
their data complexity is low compared to previous work. The South-Korean and
American format-preserving encryption standards FEA and FF3-1 were broken in
Chapter 3, with data- and time-complexities that are low enough to be a practical
concern in some applications. The analysis of FF3-1 relies on multidimensional
linear cryptanalysis over Z/NZ. Chapter 8 reevaluated differential attacks on
Rectangle, KNOT and Speck using the theory of quasidifferential trails. Some
attacks were shown to be invalid, others only work for weak keys.

Chapters 9 and 10 discussed other cryptanalytic attacks. In Chapter 9, a generic
truncated differential attack on contracting Feistel ciphers was used to attack
the Chinese commercial encryption standard SM4 with a reduced number of
rounds. The simplest variant of the same generic attack, and a similar one for
expanding Feistel ciphers, gives full-round attacks on some instances of GMiMC-
erf and GMiMC-crf in Chapter 10. This chapter also included cryptanalytic
results on other arithmetization-oriented primitives. In particular, it was shown
how the partial linear layer of HadesMiMC can be exploited to set up integral
distinguishers and, for some choices of the MDS matrix, preimage attacks.
Finally, improved attacks on the Legendre PRF and its variants were presented.

Chapters 11 and 12 took up unconventional applications of cryptanalysis. An
application of linear cryptanalysis to the design of side-channel countermeasures
was presented in Chapter 11. The bounded-query probing model was introduced
to capture adversaries that can make only a bounded number of probing queries,
and it was shown that the advantage of such adversaries can be bounded in terms
of the correlations of linear approximations over the masked primitive. This
approach makes it possible to achieve second-order probing security without
using any randomness beyond what is necessary to share the state. In Chapter 12,
the MALICIOUS framework for constructing backdoored tweakable block ciphers
was reconsidered. An attack on LowMC-M was given, and a trivial instance
of the framework was pointed out. In addition, the tweakable block ciphers
Malicious AES and Boomslang were proposed. They follow standard design
principles, yet embed a MALICIOUS-style backdoor based on invariants.

Due to the chronology of this thesis, not all of the theoretical results from Part I
have found their way to applications. Some ideas from Chapter 3, such as rank-
one approximations, have not yet been pursued with sufficient force. Although
Chapter 8 demonstrated that quasidifferential trails are useful to correct errors
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in previous analyses, they did not yet serve as the basis for new attacks. For
this, the direction of collision attacks on hash functions seems promising. In
retrospect, the theory of integral cryptanalysis from Chapter 5 would have been
useful for the cryptanalysis of arithmetization-oriented primitives in Chapter 10.

As a result of the attacks on FEA and FF3-1 from Chapter 7, South-Korea
and the United States will have to revise their format-preserving encryption
standards and look for alternatives. The cryptanalysis of arithmetization-
oriented primitives in Chapter 10 contributed to StarkWare’s hash-function
choice. Future designs, especially those based on generalized Feistel networks or
using partial S-box layers, should also take into account these attacks. Likewise,
if Ethereum wants to use the Legendre PRF in its protocols, then the analysis
in Chapter 10 will have to be taken into account.

Although Chapter 11 showed how the randomness requirements of masked
ciphers can be reduced, side-channel cryptanalysis and countermeasures have a
long way to go. The analytic techniques used in most attacks are unsophisticated,
in part due the difficultly of making precise security claims. Countermeasures
do not take into account the way randomness is generated, and addressing this
issue would require moving away from information-theoretical security notions.

Finally, although the ciphers Malicious AES and Boomslang achieve the goals
of the MALICIOUS framework, the backdoor is potentially revealed as soon as
it is used. The construction of ciphers with truly hidden backdoors is of great
interest, because it implies public-key cryptography.
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