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Abstract

Gaussian quadrature rules are a classical tool for the numerical approximation of integrals with
smooth integrands and positive weight functions. We derive and explicitly list asymptotic expressions
for the points and weights of Gaussian quadrature rules for three general classes of positive weight
functions: analytic functions on a bounded interval with algebraic singularities at the endpoints,
analytic weight functions on the halfline with exponential decay at infinity and an algebraic singularity
at the finite endpoint, and analytic functions on the real line with exponential decay in both directions
at infinity. The results include the Gaussian rules of classical orthogonal polynomials (Legendre,
Jacobi, Laguerre and Hermite) as special cases. Explicit expressions for these cases are included in
the appendix. We present experiments indicating the range of the number of points at which these
expressions achieve high precision. We provide an algorithm that can compute arbitrarily many terms
in these expansions for the classical cases, and many though not all terms for the generalized cases.
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1. Introduction

The topic of this paper is a methodology to obtain high-order asymptotic expansions of nodes
and weights of Gaussian quadrature rules. We derive results for generalizations of the classical
Jacobi and Laguerre weights. The resulting explicit expressions for the classical Gauss-rules are
listed in Appendix A, with more terms then appeared before in literature. The generalizations consist
of smooth perturbations of the weight functions and hence to different Gauss rules. The proposed
methodology is based on the asymptotic analysis of the corresponding orthogonal polynomials for
large degree. It results in explicit formulae for the nodes and weights which can simply be evaluated
one by one, leading to an efficient O(n) computational scheme for the construction of Gaussian
quadrature. In this paper we focus mainly on the essential principles. Detailed computations, which
are quite technical in nature, can be found in the PhD thesis of the first author [1].

Different expansions are presented for three distinct regions of the integration domain in which
the asymptotic behaviour is different: near the endpoints (called a hard edge in the literature on
asymptotic analysis), near infinity (soft edge) and in the interior of the domain (the bulk). An
algorithm is presented to obtain an arbitrary number of terms. It is made available in two ways. The
first version is written in symbolic software, in which parameters may be present (such as α and β)
that are taken into account analytically. This is a very general approach, but the computation of
very high order terms may become unwieldy. A second version is purely numerical and can be used
for specific numeric choices of the parameters and without a further need for symbolic computations.
This approach is more limited in scope but much more efficient. The implementation is accompanied
by heuristical approaches to choose the appropriate asymptotic expansion and number of terms.
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1.1. Overview of the paper
We give a brief motivation for our use of asymptotic expansions arising from Riemann–Hilbert

problems of orthogonal polynomials in § 2. In order to understand the structure and derivation of
the expansions, we recall the Riemann–Hilbert background of the orthogonal polynomials in § 3. We
outline the procedure to turn expansions of polynomials into expansions of the nodes and weights in
§ 4. The explicit expressions themselves are listed in § 5, § 6 and § 7, with the classical cases listed
in Appendix A. We illustrate the statements with numerical experiments throughout the paper.

2. Scope and motivation

The orthonormal polynomials associated with Gaussian quadrature satisfy the conditions∫ b

a

pn(x)pk(x)w(x)dx =

{
1, k = n,

0, k 6= n.

The nodes xk are the zeros of pn. The weights, sometimes referred to as Christoffel numbers, can be
expressed in various ways (see [2, p. 35], [3, p. 323], [4, §1]). One useful expression is

wk =
−γn+1

γnp′n(xk)pn+1(xk)
=

γn
γn−1p′n(xk)pn−1(xk)

> 0. (2.1)

Here, γn is the leading order coefficient of the orthonormal polynomial pn.

2.1. Computation of Gaussian quadrature
Historically, the main algorithm for the computation of Gaussian quadrature rules has been based

on the eigenvalue decomposition of a tridiagonal matrix (the Jacobi matrix), which involves the
coefficients of the three-term recurrence relation of the orthogonal polynomials [5]. The computation
can be performed in O(n2) operations using the Golub–Welsch algorithm [4]. Since then, algorithms
with lower computational complexity for large n have started to appear for a number of cases, starting
with the Glaser–Liu–Rokhlin algorithm [6] and including at least [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17].
These approaches are based on asymptotic analysis, solving Riemann–Hilbert problems, or rootfinding
methods for non-oscillatory differential equations. A brief history of fast algorithms for the special
case of Gauss–Legendre quadrature rules is described in [18].

2.2. Asymptotic expansions of orthogonal polynomials and numerical aspects
Asymptotic analysis of orthogonal polynomials has witnessed significant progress in the last two

decades. Large-degree asymptotic expansions can be obtained from integral representations, dif-
ferential equations satisfied by the polynomials (see [19] and references therein), or the associated
Riemann–Hilbert problem (see in particular [20, 21] for Jacobi and Laguerre polynomials).

From a computational point of view, asymptotic expansions of orthogonal polynomials present
two important advantages: they become increasingly accurate as the degree n increases, and their
evaluation time is independent of n.1 In this sense, they compare favourably to other methods
for computing orthogonal polynomials. On the other hand, the terms in the expansion become
increasingly involved with increasing order. Moreover, asymptotic expansions in general do not
converge for a fixed value of n by adding terms. A typical recommendation is to truncate the

1Strictly speaking, for this statement we assume that all functions involved can be evaluated in a time independent
of n, which in some cases may require lookup tables [22].
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expansion after the smallest term, after which the accuracy often deteriorates [2, p. 182-187]. Still,
arbitrary accuracy can not be achieved and the availability of error bounds is, unfortunately, lagging
behind the construction of the expansions themselves.

Gaussian quadrature rules can be computed from these expansions most simply by numerical
rootfinding [8, 12]. The classical quadrature rules with n points may be computed in O(n) cost.
However, asymptotic expansions can also be found directly for the nodes and weights themselves.
For the classical Gauss rules, this was achieved in [7, 10, 11, 16, 17] and the thesis [1]. These
expansions have O(n) cost as well, with a constant that is often (but not always) smaller than that
of the rootfinding class of methods. Care has to be taken in the efficient evaluation of certain special
functions and in various kinds of precomputations. Therefore, whether or not direct asymptotic
expansions are faster is not a priori guaranteed and still depends on several implementation aspects,
but they offer an appealing simplicity.

2.3. Riemann–Hilbert analysis
The asymptotic expansions in this paper are based on the Riemann–Hilbert (RH) problem of the

associated orthogonal polynomials [23, 14]. Riemann–Hilbert problems provide a uniform framework
in which to analyze orthogonal polynomials. Compared to alternative known approaches to asymp-
totic analysis, RH analysis is lengthy, but considerably more general. In particular the approach,
once established, works the same for perturbations such as the multiplication of a weight function
by an analytic function. Although the expansions derived in this paper have required considerable
effort, the final outcome is simple to use in any language or tool simply by copying the expressions,
and new expressions can be derived using the symbolic code, with little effort and without having
to be familiar with the underlying mathematics. The main focus of the paper is to sketch the effort
that remains, with sufficient technical detail to appreciate the scope and limitations of the approach.

2.4. Main results
We have previously described the numerical computation of arbitrary order asymptotic expansions

for orthogonal polynomials for Jacobi–type weights [24] and Laguerre-type weights [25]. This was
based on the asymptotic analysis of the associated RH problems by Kuijlaars, McLaughlin, Van
Assche and Vanlessen in [20] for the Jacobi case and by Vanlessen in [21] for the Laguerre case.
It resulted in high-order expansions in four different regions of the complex plane in which the
polynomials exhibit different asymptotic behaviour. These expansions form the starting points for
the expansions of the current paper of the associated Gaussian quadrature rules.

We consider integrals with weight functions for three canonical types of quadrature rules:

• The first are modified Jacobi–type weight functions of the form

w(x) = (1− x)α(1 + x)βh(x), x ∈ [−1, 1] (2.2)

where h is a strictly positive analytic function that represents the modification and [a, b] =
[−1, 1].

• The second are modified Laguerre-type weight functions of the form

w(x) = xαe−Q(x), x ∈ [0,∞), (2.3)

where [a, b) = [0,∞) and the standard Laguerre case corresponds to Q(x) = x. Here, unlike in
the Jacobi case, more general functions Q(x) are restricted as detailed further on. Our results
are most explicit for monomials Q(x) = xm.
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• Finally, we consider modified Hermite–type weight functions

w(x) = e−Q(x2), x ∈ (−∞,∞), (2.4)

where (a, b) = (−∞,∞) and where Q(x) = x corresponds to the classical Gauss–Hermite case.
The functions Q(x) we consider are those of the Laguerre case.

The Hermite–type rules in the form above can be obtained from the Laguerre–type rules by a change
of variables, hence we focus mostly on the first two cases. The substitution entails the specific values
α = ±1/2 which results in a simplification of the Laguerre expansions.

Numerical experiments indicate that the errors of the expansions decrease at the expected rate
for increasing n, although no error bounds are provided in this paper. The expansions in the current
paper hold in principle for any fixed value of α and β. However, when those parameters are large,
accuracy of the expansions may decrease and any beneficial effect may require very high n. This is a
known problem, and in that setting we recommend exploring different expansions, for example based
on asymptotics with a varying weight (varying with n) as studied in [26, 27, 28, 29, 30].

We have implemented an algorithm to compute asymptotic expansions for nodes and weights with
arbitrary many terms in the symbolic software package Sage. By making all steps of the algorithm
explicit, i.e. not requiring symbolic treatment, the algorithm can also be implemented in a more
efficient non-symbolic language. The resulting expressions themselves have to be computed only
once, and can be implemented in any language. The figures in this paper have been generated using
code in Julia.2 Some limitations are present in the case of modified Laguerre, as the expansions
involve several integrals that have to be evaluated numerically for specific numerical choices of the
parameters. This renders a generic listing of expansions rather difficult.

3. Preliminaries

We briefly recall the background of the asymptotic expansions for Jacobi–type and Laguerre–type
orthogonal polynomials as derived in [24, 25], see also [1]. In particular, we define the quantities
that arise from the modified weight functions (2.2)–(2.3) and that appear in the final expansions: the
constants ck and dk, the phase functions λn(z) and ζn(z) and, in case of Laguerre–type weights, the
constant βn. These quantities depend on the analytic modifier h(x) in (2.2) or on the function Q(x)
in (2.3) and (2.4).

3.1. Riemann-Hilbert analysis
The explicit expansions in [24, 25] are derived from the Deift-Zhou nonlinear steepest descent

analysis [32] of a Riemann–Hilbert problem associated with orthogonal polynomials [33, 23]. The
asymptotic analysis for Jacobi-type weight functions of the form (2.2) was carried out in [20], while
the description for Laguerre-type weight functions (2.3) is in [21].

The Riemann-Hilbert problem has a 2 × 2 complex matrix-valued solution. The main result in
[24, 25] has been the explicit asymptotic approximations to a matrix-valued function R(z), defined
in the complex plane. For large n, this matrix is the identity matrix plus an asymptotic series,

R(z) ∼ I +
∞∑
k=1

Rk(z)

nk
, n→∞.

2The implementation is available as a Julia package AsymptoticGaussianQuadrature.jl from the GitHub repos-
itory https://github.com/daanhb/AsymptoticGaussianQuadrature.jl. That repository also contains the Sage
symbolic notebooks. We note that several results of this paper have also been incorporated in the Julia package
FastGaussQuadrature.jl and in Chebfun [31].
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Figure 1: Regions of the complex plane in which the Jacobi-type polynomials have different asymptotic expansions:
the lens (I), the outer region (II) and the right and left disks (III and IV).

The expansions of the polynomials are formulated in terms of R(z) and, hence, additional terms
Rk(z) give rise to additional terms in the expansions of the polynomials. This happens via an explicit
and invertible sequence of transformations.

The asymptotic analysis is different in different regions of the complex plane. The regions are
illustrated for the case of Jacobi-type polynomials in Figure 1. There are four types of asymptotic
expansions of the orthogonal polynomials pn(z): (I) inner asymptotics for z in the so-called ‘lens’
around the interval, (II) outer asymptotics valid for z away from the lens and the disks around the
endpoints, (III) boundary asymptotics valid for z near the rightmost endpoint z = +1 and (IV)
boundary asymptotics near the left endpoint z = −1. The matrix-valued function R(z) has different
expressions in these regions, which we label Router(z) away from the disks, and Rright(z) and Rleft(z)
in the right and left disks respectively. Only the expansions in regions (I), (III) and (IV) contain zeros
of the polynomials and they give rise to expansions for the bulk of the zeros in (−1, 1), and for the
extreme zeros near ±1.

The figure with four regions is qualitatively similar for Laguerre-type and Hermite-type polyno-
mials, albeit with different endpoint regions. We elaborate on the differences further on.

Mathematically, the regions shown in Figure 1 are of arbitrary size. Depending on how they are
chosen, any given point z ∈ C can in principle belong to several regions. As a result, the expansions
for the different regions have overlapping regions in which they are valid. In terms of implementation,
the choice of the expansion is relevant as the accuracy can differ. We formulate heuristic choices of the
expansions in later sections of this paper. We experimentally observed that, when two expansions
apply at the same point, the differences in the corresponding relative errors for large n are fairly
modest, in most cases not exceeding a factor of 2. The exception is when one expansion approaches
the boundaries of its domain of validity: for example, the expansion for the outer region is not accurate
near the interval. Within a radius of about 0.2 around an endpoint, the asymptotic expansion for
that disk is orders of magnitude more accurate than the three other ones.
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3.2. Jacobi-type polynomials
The asymptotic expansion for the orthonormal Jacobi-type polynomials valid in region (I) in the

complex plane, as formulated in [24], is3

pn(z) =
2

1
2
−n γn√

w(z) (1− z2)1/4

(
1
0

)T
Router(z)

(
D∞ 0
0 − i

D∞

)(
cos
(
λn(z) + 1

2
arccos z

)
cos
(
λn(z)− 1

2
arccos z

)) . (3.1)

Here, γn is the leading order coefficient (with zn) of the polynomial and D∞ is a constant,

D∞ = 2−
α+β
2 exp

(
1

4πi

∮
log h(ζ)

(ζ2 − 1)1/2
dζ

)
,

where the contour encircles the interval [−1, 1] and h(z) is the additional function that appears in
the Jacobi-type weight function (2.2). The constant D∞ is the limit for z →∞ of the Szëgo function
D(z) of the orthogonal polynomial. Note that for the classical Jacobi case, where h(x) = 1, we have
D∞ = 2−

α+β
2 . The leading order term of (3.1) corresponds to substituting Router(z) by I, the 2 × 2

identity matrix.
The trigonometric behaviour of the polynomials in this region is determined by the phase function

λn(z) =

(
n+

α + β

2

)
arccos z − π

4
− απ

2
+

(1− z2)
1
2

4πi

∮
log h(ζ)

(ζ2 − 1)1/2

dζ

ζ − z
. (3.2)

The phase depends on the h(x) function via a contour integral as well, which in this case should
encircle the point z. This contour integral is a function of z and can be expanded around z = ±1, for
example using the power series

∑∞
n=0 cn(z − 1)n and

∑∞
n=0 dn(z + 1)n. These series have coefficients

given by

ck =
1

2πi

∮
γ

log h(ζ)

(ζ2 − 1)1/2

dζ

(ζ − 1)k+1
, (3.3)

dk =
1

2πi

∮
γ

log h(ζ)

(ζ2 − 1)1/2

dζ

(ζ + 1)k+1
,

for k ≥ 0. The coefficients enter the asymptotic expansions of the polynomials, and of the points and
weights in this paper. We refer to [24] for comments on their computation.

Around the endpoints the polynomials exhibit behaviour that relates to the Bessel function. Each
endpoint ±1 is independent of n and for this reason is sometimes referred to as a ‘hard edge’. In a
disk around the right endpoint z = 1 the expression given in [24] is

pn(z) = γn
2−n
√
nπ arccos z√

w(z) (1− z2)1/4

(
1
0

)T
Rright(z)

(
D∞ 0
0 − i

D∞

)
× (3.4)(

cos
(
ζ(z) + 1

2
arccos z

)
Jα(n arccos z) + sin

(
ζ(z) + 1

2
arccos z

)
J ′α(n arccos z)

cos
(
ζ(z)− 1

2
arccos z

)
Jα(n arccos z) + sin

(
ζ(z)− 1

2
arccos z

)
J ′α(n arccos z)

)
.

This expression may seem to be undefined near z = 1; however, the singularities cancel analytically
with other terms and the problem can be avoided using series expansions around the endpoints. Here,
the phase function ζ(z) is given by

ζ(z) =
α + β

2
arccos z +

(1− z2)1/2

4πi

∮
γ

log h(ζ)

(ζ2 − 1)1/2

dζ

ζ − z
,

3We note that the formulation in [24] is for the monic orthogonal polynomials, which differs from the formulation
here in the leading order coefficient γn. The latter can be expanded asymptotically too, see [24, (26)].
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where the contour integral is similar as before. The expansion for the left disk is entirely similar due
to the symmetry relation P

(α,β)
n (−x) = (−1)nP

(β,α)
n (x) [34, Tab. 18.6.1]. The endpoint expansions

remain structurally similar even when h(x) is not symmetric, but in that more general case the
symmetry involves substituting h(x) for h(−x).

Both expansions have the form of a prefactor consisting of a normalization factor and an envelope
function, multiplied by an oscillatory part consisting of R(z) and oscillatory factors. Note that the
function h appears in the phase of the oscillations, via a contour integral; in R(z), via ck and dk; and
in the prefactor, via the weight function w(z). The prefactor does not affect the points xk, but it
does affect the weights.

3.3. Laguerre-type polynomials
The structure of the expansions for Laguerre-type polynomials is very similar to that of Jacobi-

type polynomials. We do not repeat the expressions here, but refer to [25, 1]. We do recall the
context and the expressions that are necessary for understanding and implementing the expansions
of this paper.

Recall the generalised Laguerre weight function (2.3). We consider three cases for the function
Q(x):

• a monomial: Q(x) = qmx
m + q0,

• a general polynomial: Q(x) =
∑m

k=0 qkx
k,

• a general function Q(x) analytic on the integration interval.

The function Q(x) should be such that all moments
∫∞

0
xαxke−Q(x)dx are finite, which implies at

least that
lim
x→∞

Q(x) = +∞.

For polynomial Q, it is sufficient that the leading order coefficient qm is positive. Here, as we shall
see the expansions depend on certain contour integrals involving Q which have to be evaluated by
other means, and we present only limited results.

The left endpoint x = 0 of the Laguerre-type polynomials is very similar to the left endpoint of
Jacobi-type polynomials: it is a hard edge that gives rise to expansions in terms of the Bessel function
and its derivative.

The behaviour is quite different for x→∞, a so-called soft edge. The zeros of the Laguerre-type
polynomials accumulate on a finite interval (0, 1) after an n-dependent rescaling of the variable

x = βnz,

where βn is the Mhaskar-Rakhmanov-Saff (MRS) number (see [25, §3]). The local asymptotic be-
haviour near the soft edge is given in terms of the Airy function and its derivative. This leads to
higher order poles in the derivations and thus also to longer formulae for the Rk(z).

For classical Laguerre polynomials with α = 0, the MRS number is βn = 4n. Indeed, the largest
zero of the Laguerre polynomial of degree n scales approximately as 4n. For general monomial
functions Q(x) = qmx

m, we have

βn = n1/m

(
mqmAm

2

)− 1
m

,

with
Ak = 4−k

(
2k
k

)
. (3.5)
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In the more general polynomial case, βn itself has an expansion in powers of n−
1
m . For general Q, the

MRS number is such that

2πn =

∫ βn

0

Q′(x)

√
x

βn − x
dx. (3.6)

A full expansion of βn can not be derived at this level of generality. However, equation (3.6) can be
solved numerically, such that for each n a value of βn can be computed. These values appear in the
expansions. We refer to [25, §3] for more considerations on the computation and expansion of the
MRS numbers.

In the asymptotic expansions of Laguerre-type orthogonal polynomials, the generalisation of the
weight function Q(x) appears in the argument of the Airy and Bessel functions, but not in the
trigonometric functions that are multiplied by them, while it was the other way around in (3.4) for
the Jacobi case. This is due to choices made in the derivation of the Riemann-Hilbert analysis.

Finally, the modification Q(x) results in ck and dk coefficients that are analogous to (3.3). For
the Laguerre-type case, they are

ck =
βn

2πin

∮ √
yQ′(βny)
√
y − 1yk+1

dy, (3.7)

dk =
βn

2πin

∮ √
yQ′(βny)

√
y − 1(1− y)k+1

dy, (3.8)

where the contours should enclose the interval [0, 1]. These coefficients, too, appear in the asymptotic
expansions for the nodes and weights.

4. Methodology for the asymptotic expansions of xk and wk

The process of inverting an expansion in order to produce expansions for its zeros is, in principle,
well known. However, in practice, the computations involved are lengthy and laborious. Here, rather
than detailing all computations, we illustrate the general principles. This allows to describe the
structure of the expansions themselves, as well as the scope and limitations of our implementation.

We proceed formally. Consider an asymptotic expansion of the form

u(n, x) ∼
∞∑
k=0

uk(x;n)n−µk , (4.1)

where {µk}∞k=0 is a strictly increasing sequence. Though the functions uk may depend on n, it is
assumed they do not grow with n, such that the truncation of the right hand side in (4.1) after T
terms has an error that decays like O(n−µT+1).

4.1. Leading order term
To leading order, the roots of u(n, x) are determined by the roots of the first term u0(x;n) in

(4.1). This implies that we need to find all solutions to the equation

u0(x;n) = 0. (4.2)

We enumerate the roots as tk with k = 1, 2, . . ., such that tk < tk+1.
The nature of this equation, and the difficulty of finding its solution, depends on the asymptotic

expansion and on the special functions it contains. The leading order terms of the expansions in this
paper include trigonometric functions (for the bulk regions), Bessel functions (for a hard edge) or
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Airy functions (for a soft edge). That is the reason why the roots of the Bessel function, for example,
appear in the expansions for the nodes xk near the endpoints in the Jacobi-type case.

The more general modified weight functions also lead to more complicated leading order terms.
This is a factor that significantly contributes to the difficulty of providing explicit asymptotic ex-
pansions for these more general cases. Explicit expressions appearing further on in this paper that
specialize (4.2) include (4.4) for the bulk region in the case of Laguerre polynomials, and (6.1) and
(6.5) for the bulk region for Jacobi polynomials with and without the additional function h(x) in the
weight.

4.2. Subsequent terms
We formally consider a full expansion of the zeros xk of the form

xk ∼
∞∑
l=0

ak,l n
−νl , (4.3)

where {νl}∞l=0 is a (suitably chosen) strictly increasing sequence. One subsitutes (4.3) into (4.1) and
then proceeds by expanding all functions uk around xk. This results again in an asymptotic expansion
in inverse powers of n. Next, the terms of this expansion are equated to zero one by one.

Since the functions uk are known, the unknowns are the ak,l coefficients. These can be computed
one by one, starting with l = 0. Once the value of ak,l has been found, it can be substituted back
into the expansion. Equating the expression multiplying a higher power of n to zero yields a linear
equation for the next coefficient ak,l+1. In contrast to the first term to find tk, for which (4.2) has to
be solved, the computation of subsequent terms is a linear problem.

The above represents the general methodology. For Jacobi, in case of the lens, we use the notation

xk = tk +
∞∑
l=1

z1,l+1n
−l,

and we solve recursively for the values of z1,l+1. The expression is similar for Laguerre in the lens,

xk
βn

= tk +
∞∑
l=1

z1,l+1n
−l,

where βn is the MRS number. In case of the left boundary, we use

xk = −1 +
tk
n2

+
∞∑
l=1

z1,l+1n
−2−l

for Jacobi and
xk
βn

=
tk
n2

+
∞∑
l=1

z1,l+1n
−2−l

for Laguerre, where again βn is the MRS number.

4.3. The quadrature weights
The quadrature nodes are the roots of the orthogonal polynomials and are estimated asymptoti-

cally using the procedure described above. For the quadrature weights, we recall formula (2.1). There
are several alternative expressions for the weights, yet in the end they should all lead to the same
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expansion. One advantage of formula (2.1) is that it is generally applicable, whereas some other
known expressions may be shorter but specific to the classical polynomials.

The simplest approach is to explicitly evaluate the right hand side of (2.1) using the asymptotic
expansion of the orthogonal polynomials. The derivative p′n can be evaluated by differentiating an
expansion for pn term by term. The shifted polynomial pn−1 has an expansion in powers of (n − 1)
rather than n, but it can also readily be evaluated. Still, we have proceeded to derive explicit
expansions for the weights directly.

Thus, we substitute the previously computed expansion (4.3) of the node into (2.1) and re-expand
the entire formula. We take into account the following considerations:

• We obtain an asymptotic expansion of pn−1 by re-expanding (n− 1)−1 in inverse powers of n.

• An expansion for p′n is obtained by differentiating pn term by term. However, here, some
efficiency can be gained. The expansions typically have the form pn(x) ∼ En(x)ε(x), where
En(x) is a pre-factor without roots and ε(x) is the term that vanishes at the roots of pn. Using
the fact that xk is a root of pn, we find that

p′n(xk) = E ′n(xk)ε(xk) + En(xk)ε
′(xk) = En(xk)ε

′(x).

Thus, we can avoid having to compute the (expansions of the) derivatives of the prefactor En.

• The weight function evaluated at the node, w(xk), is a common factor in all terms and is
factored out once for the final expression.

4.4. Explicit expansions and explicit convolutions
The steps that lead to the expansions of the nodes and weights involve a great number of ex-

pansions and re-expansions. Many of these take the form of convolutions: this occurs each time
an expansion is applied to a variable that is itself an expansion, or whenever two expansions are
multiplied.

In principle, this process is greatly simplified with the aid of computer algebra software. However,
any use of such software prohibits an implementation of the derivations of the expansions in a non-
symbolic language, though of course the final result can be copied and implemented in any language.
Still, even then, the length of the expressions leads to a substantial practical limitation on the number
of terms that can be computed.

An alternative is to restrict ourselves to cases where computations can be done analytically. If
succesful, this has the advantage of leading to exact expressions in analytic form, for which possibly
arbitrary many terms can be generated on the fly. Yet, this strongly restricts the scope of the
methodology to cases where analytical derivations are feasible. This rules out any of the modifications
of the more general weight functions under consideration.

For these reasons, we have upheld the following two principles in our implementation:

• Each expansion of a special function (such as
√

1 + z around z = 0 or 1
n+1

in terms of n−k) is
derived analytically and the resulting formulas are implemented manually. (Hence, we do not
rely on the capability of the software to produce series expansions.)

• Each convolution is programmed explicitly. Here, too, we do not rely on the algebraic software
to recombine, e.g., products of power series into a single power series.

These principles make the implementation much more efficient, compared to relying on the symbolic
manipulations of a software package.
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Having said that, we do compute expansions that contain parameters such as, e.g., α and β
for the Jacobi-case, α for the Laguerre case, and the cn and dn coefficients given by (3.3) in the
case of modified weight functions. If these parameters do not have numeric values, we do currently
use the capabilities of a symbolic software package (Sage) to manipulate the resulting expressions.
When translated into an imperative programming language, all the parameters should have numerical
values.

4.5. Transcendental equation for the bulk in the Laguerre case
For the classical Laguerre case, or Laguerre-type case with Q(x) = x, equation (4.2) for the leading

order term of the nodes becomes the transcendental equation [35]

2 arccos(
√
t)− 2

√
t− t2 − πp = 0 (4.4)

with
p =

4n− 4k + 3

4n+ 2α + 2
. (4.5)

We use an iterative Newton procedure, with starting values

tk ≈
π2

16
(p− 1)2.

This approximation arises from the series expansion of the left hand side of (4.4) near t = 0, which
yields

pπ = π − 4
√
t+

2

3
t3/2 +O(t5/2).

Heuristically, we have observed that 6 iterations are sufficient for double precision accuracy for all k
in the bulk region.

The exact form of the transcendental equation results from choices in the Riemann-Hilbert anal-
ysis, and could appear differently by selecting another function for splitting the lens. However, the
rootfinding problem is numerically straightforward, as for each value of k there is a unique simple
root in (0, 1). This is shown in the following lemma.

Lemma 4.1. The left hand side of equation (4.4) has a single simple root in the interval (0, 1) for
each k.

Proof. We denote (4.4) as F (t) = 0. The derivative is

F ′(t) = −(t− t2)−1/2 − 1− 2t√
t− t2

= −2

√
1− t
t

,

which is strictly negative, so F (t) is monotonically decreasing on (0, 1). The limiting values of F at
the endpoints are the maximum

F (0) = 2 arccos(0)− 2
√

0− pπ = π (1− p) ,

with p as in (4.5), and the minimum

F (1) = −pπ =
4n− 4k + 3

4n+ 2α + 2
π.

Since k ∈ [1, n], the numerator 4n−4k+3 lies in [3, 4n−1]. Moreover, since α > −1 the denominator
4n+ 2α+ 2 is larger than 4n. As a result, the maximum is always strictly positive and the minimum
is strictly negative, hence there is a single simple zero for t ∈ (0, 1).

11



5. Gauss–Laguerre rules

5.1. Standard associated Gauss–Laguerre
The weight function in the standard case of associated Gauss–Laguerre is w(x) = xαe−x. We have

computed asymptotic expansions in terms of inverse powers of n. However, the formulae are shorter
in terms of inverse powers of (4n + 2α + 2) and for that reason they are presented that way in this
paper. Explicit expressions are listed in Appendix A.

The higher order terms of the expansions contain large integer coefficients with alternating signs,
which may form a possible source of cancellation errors. Still, all terms multiply an inverse power of
n where the exponent decreases as those integers increase, and therefore any cancellation error will
decay accordingly with increasing n. Note that this problem is not specific to asymptotic expansions
for Gauss–Laguerre quadrature, it is a rather general problem with expansions.

5.2. Heuristical choices
In existing implementations of our approach in [31, 36] we switch to asymptotics for n ≥ 128,

since that yields accurate results to machine precision in double precision floating point arithmetic.
For smaller values of n, we suggest to use the Golub-Welsch algorithm. If higher accuracy is required,
the lower bound for n should be increased and high-precision arithmetic may be necessary. We note
that small weights may be computed with some relative accuracy using asymptotic expansions or
iterative methods, but typically not using Golub-Welsch. Also, large values of α may lead to lower
accuracy. Accurate results are guaranteed only when α remains bounded as n increases.

The simplest heuristic procedure is to sum terms of the asymptotic expansion as long as they
decay, and to truncate the sum once the terms start to grow. Experiments indicate this works
well. However, in the absence of known error estimates to provide mathematical justification of the
truncation, we also embark on a more in depth discussion of truncation of the expansions in different
regimes.

First, we limit the number of nodes to compute based on the size of the weights, which may
underflow in floating point precision. Indeed, the weight wk behaves as w(xk) = xαke−Q(xk). From
(4.4) we find, after some calculations, that underflow at a threshold ε happens in the monomial case
Q(x) = qmx

m when

k <
1

4
− α

2
+

(2n+ α + 1)

π(2m− 1)

(
−mAm log ε

2n

) 1
2m

,

where Am is given by (3.5). We simplify this expression for ε = 10−308 to the heuristical choice

k ≤ min(n, exp[1.05e
1
m ]n1− 1

2m ).

This agrees with the O(
√
n) subsampling complexity employed in [37] for standard Hermite. In the

standard Laguerre case, our heuristic becomes

k ≤ min(n, 17
√
n).

A second heuristic concerns the number of terms T . Note that the leading order terms for the
hard edge and the bulk in § 5.1 only give approximately double precision for n > 108. One can
not simply use all available terms for all n, as the asymptotic expansion diverges for fixed n and
increasing T . Yet, since we adopt a minimal value of n, divergence is less of an issue for a certain
predetermined accuracy. On the other hand, T may actually decrease as n increases, because fewer
terms may be required to reach machine precision. More specifically, when n squares, the number

12
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Figure 2: Relative error of the nodes in the bulk (A.2) for n = 200 and w(x) = x0.7e−x on [0,∞). The accuracy of
the expression for the bulk deteriorates near the endpoints, hence the need for special boundary asymptotics.

of terms can halve. Thus, T depends inversely logarithmically on n. In order to obtain about 10−16

relative error at n = 128, we need eight terms. This leads us to our heuristical choice

T = d34/ log(n)e. (5.1)

A third heuristic involves the choice of the region, i.e., which expansion to use – recall the domains
shown in Figure 1. The sizes of the disks near the endpoints are flexible, as mentioned before. We
transition between expansions at the values kleft and kright. The optimal values of the transition
points depend on T , n, α and, more generally, on the weight function w(x). At least for the standard
associated Laguerre weight, the dependency on the parameters appears mild in comparison to the
dependency on n. Experiments suggest the following scaling:

kleft = d
√
ne, and kright = b0.9nc. (5.2)

This corresponds approximately to the points xkleft ≈ π2

4
and xkright ≈ 3.6n.

5.3. Accuracy
We validate the heuristics of § 5.2 by comparing to a reference solution computed using the

recurrence relation in high-precision arithmetic. In Figure 2, we show the relative error for the nodes
in the asymptotic expansion (A.2) for the bulk region. The relative error reaches machine precision
accuracy in the bulk when using four terms, which corresponds to O(n−8) error. The nodes quickly
become less accurate near the left and right endpoints, which is the reason why our heuristics in § 5.2
switch to another asymptotic expansion there.

In Figure 3, we show the error of the explicit expansions of the weights (A.1), (A.3) and (A.4) up
to relative order O(n−2), O(n−4), O(n−6) and O(n−8) combined with the heuristic (5.2) at n = 200.
As expected, increasing the number of terms in those expansions decreases the error.

The expansions of the weights match closely when we switch from the left disk to the bulk near
kleft = 15. A steep jump in the relative error is seen near kright = 180 when we switch to Airy
asymptotics. This is because the expansion of the weight in the latter region (A.4) is only accurate
up to O(n−2/3). However, the first weight in this regime has size w180 ≈ 9×10−222, hence the absolute
error is very small. It is an interesting property of asymptotic expansions that such a small weight
can still be computed with some relative accuracy. This property is seen also with some iterative
methods in which individual points and weights can be computed, but not with the Golub-Welsch
algorithm as the latter computes several points and weights at once – hence their relative difference
in size can not be too large.
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Figure 3: Relative error of the weights for n = 200 and w(x) = x0.7e−x on [0,∞). At k = 0.9n = 180 we switch
to Airy asymptotics with fewer terms and seemingly less accuracy (visible as the spike in the figure). Yet, because
w180 < 10−220 in this case, the absolute error is still extremely small.

5.4. Modified Gauss–Laguerre
We do not pursue all expansions in the full generality of the modification of the weight function

(2.3), i.e., for all possible analytic functions Q(x). In [25] we considered asymptotic expansions for
the polynomials when Q(x) is a monomial, a general polynomial of degree m, or a more general
analytic function on the positive halfline for which the orthogonal polynomials exist. In principle,
these expansions could be used to generate asymptotic expansions for the corresponding Gaussian
quadrature rules. However, the level of complexity of the computation increases.

We briefly elaborate on some of the issues. First, the procedure for general polynomial Q(x) yields
fractional powers of n, due to expanding the MRS number βn in fractional powers of n as shown in
[25, §3]. This increases the complexity of obtaining full asymptotic expansions quite substantially, as
the computation of not one but several terms is required to increase the order by 1/n.

Next, general functions Q(x) require the calculation of contour integrals. Recall that a weight
of the form w(x) = xαe−Q(x) leads to the coefficients cn and dn that were given by contour integrals
(3.7)–(3.8). These contour integrals have to be computed, either analytically or numerically, since
the coefficients appear in the expansions. One advantage of the monomial case Q(x) = xm is that
the contour integrals (3.7)–(3.8) can be evaluated analytically for all m. Other examples where these
contour integrals can be found analytically are given in [25, §3.4] and [1, (2.19)]. Similar contour
integrals also appear in the formula for the phase function in the leading order term of the expansion
of the orthogonal polynomial. Expressions are given in [25, §6], and they are the analogue of (3.2)
for the Jacobi case.

Finally, since we have to numerically solve for the roots of the leading order term, recall (4.2), with
the leading order term for general Q(x) itself involves requiring the evaluation of contour integrals,
producing expansions may be quite time-consuming.

For these reasons, the expansions for modified Laguerre that we list explicitly in this paper are
somewhat limited. Still, for a specific choice of weight function, the code may be used to produce
expansions.

Hard edge. The expansion of Laguerre-type nodes near the left endpoint is

xk =
16j2

α,kβn

d2
0(4n+ 2α + 2)

(
1 +

4[α + 1][d0 − 2]

d0(4n+ 2α + 2)
(5.3)

+
4

3c2
0d

3
0(4n+ 2α + 2)2

[
9(α2 + 2α + 1)c2

0d
3
0 + 2(22α2 + 36α + 17)c2

0d0 − (4α2 − 1)c2
0d1
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Figure 4: Relative error of the explicit expansions of the nodes (5.3) near the left endpoint (left panel) and (5.4) near
the soft edge (right panel) for the weight function w(x) = e−e

x

on [0,∞) and n = 100.

− 3(12[α2 + 2α + 1]c2
0 − 2[2α2 + 4α + 1]c0 + c1)d2

0 + 4(c2
0d0 − 2c2

0d1)j2
α,k

]
+

16

3c4
0d

4
0(4n+ 2α + 2)3

[
6(α3 + 3α2 + 3α + 1)c4

0d
4
0 − 3(28α3 + 60α2 + 45α + 13)c4

0d0

− 3
(
12{α3 + 3α2 + 3α + 1}c4

0 − 4(2α3 + 6α2 + 5α + 1)c3
0

+ 2(2α3 + 6α2 + 3α− 1)c2
0 − 6(α + 1)c2

1 + 5(α + 1)c0c2 + {2(α + 1)c2
0 + (4α3 + 12α2 + 5α− 3)c0}c1

)
d3

0

+
(
4[22α3 + 58α2 + 53α + 17]c4

0 − 3[16α3 + 40α2 + 29α + 5]c3
0 + 9[α + 1]c2

0c1

)
d2

0

+ 8
(
[α + 1]c4

0d
2
0 − 3(α + 1)c4

0d0 − [2(α + 1)c4
0d0 − 5(α + 1)c4

0]d1

)
j2
α,k

−
(
2[4α3 + 4α2 − α− 1]c4

0d0 − 5[4α3 + 4α2 − α− 1]c4
0

)
d1

]
+O(n−4).

Bulk. Based on the asymptotic expansions in [25, §3.4], equation (4.2) for the leading order specializes
to

π(4k − 4n− 3) + (α + 1)2 arccos(2t− 1) +
n

4i

∫ t

1

√
y − 1
√
y

[
1

2πi

∮
Γy

βn
√
xQ′(x)dx

n
√
x− 1(x− y)

]
dy = 0.

The contour Γy should enclose the interval [0, 1] and the point y.
Unfortunately, this expression does not simplify even in the monomial case.

Soft edge. We only provide the leading order term near the soft edge, as the corresponding weights
underflow even for moderate n. We have

xk ∼ βn

[
1 +

(
2

nc0

)2/3

an−k+1 + o(n−2/3)

]
(5.4)

and

w−1
k ∼ 2βn−1

n β1−n−α−1
n−1 exp [nln/2− (n− 1)ln−1/2]

(
βn − βn−1

βn−1

+

(
2

nc0

)2/3

an−k+1

)−1/4

exp[Q(xk)]Ai
′(an−k+1)2 (c0/2)3/2 n1/2a

1/4
n−k+1.
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Here, recall that am are the roots of the Airy function. The constant ln is given for general Laguerre-
type weight functions in [25, §3.2] and also involves an integral to be evaluated numerically.

In Figure 4, we can see that the expansions near the hard and the soft edge give good approxi-
mations. Moreover, increasing the number of terms T near the hard edge decreases the error, with
results shown using n = 100 for the nodes of a Gauss–Laguerre-type quadrature rule with respect to
the doubly-exponential weight function

w(x) = exp(−ex).

In that case we have
βn ∼ log(n)− log(log(8πn2))/2 + log(8π)/2.

6. Gauss–Jacobi rules

6.1. Standard Gauss–Jacobi
The polynomials exhibit Bessel-like behaviour near both hard edges at +1 and −1. Similar to

the Laguerre case, the expansions were computed in terms of inverse powers of n, but the results are
presented in shorter form using inverse powers of (2n + α + β + 1) (in part following the notation
of [38]). The expansion for the nodes xk near x = −1 are given in (A.5) up to O(n−12). The
corresponding weights wk are given up to relative order O(n−8), relative to the size of w(xk), in
(A.6). Near the right endpoint at x = +1, we can simply interchange α and β in these expressions,
and multiply xn+1−k by −1 for k = 1, . . . , n.

For the nodes and weights in the bulk, we first have to find the roots of the leading order term
of the polynomials. In the modified Jacobi case the generic equation (4.2) specializes to (6.5) further
on. In the current classical case, there is no contour integral and the roots are obtained with the
explicit expression

tk = cos

(
π

4n− 4k + 2α + 3

4n+ 2α + 2β + 2

)
. (6.1)

The expansion of the nodes up to O(n−10) and weights up to (relative order) O(n−8) are given in (A.7)
and (A.8) respectively.

Sometimes the change of variables x = cos θ is applied and expansions are obtained in terms of
θ [39]. This can also improve numerical accuracy near ±1 in other approaches [8]. We observed no
numerical issues near the endpoints in our code, but do not rule out that for very large values of n
the change of variables x = cos θ may indeed be beneficial.

6.2. Heuristical choices
We are faced with similar choices as in the Laguerre case in § 5.2, namely the choice of the number

of terms T in the expansion and the choice of the expansion to use. Due to the difference in nature
with Gauss-Laguerre and because we have fewer terms available in the current case, we adjust our
assumption for n: we suggest to use the recurrence relation up to about n ≤ 300 for double precision
accuracy. As in the case of Laguerre, accurate results can be guaranteed only if α and β remain
bounded as n increases. Since there is no underflow associated with the weights of Gauss–Jacobi at
moderate n, we compute all nodes and weights.

Based on our aim of achieving machine precision in double precision accuracy, we heuristically
choose

T = d50/ log(n)e.

This is slightly higher than the corresponding choice (5.1) in the Laguerre case.
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Figure 5: Maximal absolute and relative error of the points and weights of all Jacobi quadrature rules for n up to
400 for the weight function w(x) = (1− x)0.42(1 + x)−1/

√
5.

For the switch between the asymptotic regimes, we have settled on the choices

kleft = d
√
ne, and kright = n− d

√
ne. (6.2)

This corresponds to switching approximately at the points xkleft = π2

2n
− 1 and xkright = 1− π2

2n
.

6.3. Accuracy
In Figure 5, we show the maximal absolute or relative error over all nodes or weights at each integer

value of n between 1 and 400. The asymptotic expansions are compared to a computation of the
corresponding Gaussian quadrature rule using the recurrence relation in higher precision arithmetic.
This allows to assess the accuracy to all digits.

6.4. Modified Gauss–Jacobi
For the sake of brevity, we only give the first few terms and indicate how many were computed in

our implementation. Recall that these expressions are symbolic because they contain the parameters
α and β. When numeric values for α and β are supplied, more terms can be readily computed with
modest effort. In contrast to the case of modified Laguerre, the results here are quite complete.

Hard edge at x = −1. The expansions near the left endpoint x = −1 are

xk ∼ −1 +
2j2
β,k

(2n+ α + β + 1− d0)2
+

−2j2
β,k

3(2n+ α + β + 1− d0)4

[
j2
β,k − 3α2 − β2 + 1

]
(6.3)

+
−j2

β,k

6(2n+ α + β + 1− d0)5

[
16(d0 − 3d1)j4

β,k + 3(4α2 − 1)c0 + (12α2 + 8β2 − 5)d0 − 6(4β2 − 1)d1

]
+ . . .+O(n−9).

The corresponding weights are asymptotically

wk
w(xk)

∼ 8

J2
β−1(jβ,k)[2n+ α + β + 1− d0]2

(6.4)

+
8

3J2
β−1(jβ,k)[2n+ α + β + 1− d0]4

[
3α2 + β2 − 1− 2j2

β,k

]
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−
2
[
32(d0 − 3d1)j2

β,k + 3(4α2 − 1)c0 + (12α2 + 8β2 − 5)d0 − 6(4β2 − 1)d1

]
3J2

β−1(jβ,k)[2n+ α + β + 1− d0]5

+ . . .+O(n−8).

Hard edge at x = +1. Near the right endpoint at x = +1, we can simply interchange α and β in
the expressions above, and multiply xn+1−k by −1 for k = 1, . . . , n. This implies that one has to
substitute h(−x) for h(x) when recomputing the expansions coefficients cn and dn.

Bulk. For the expansions in the bulk, equation (4.2) for the parameter tk becomes

π
4k + 2α + 3

4n+ 2α + 2β + 2
= arccos(tk) +

√
1− t2k

2n+ α + β + 1

1

2πi

∮
γ

log h(ζ)dζ√
ζ2 − 1(ζ − tk)

. (6.5)

This corresponds to the expression in [38], with a minor modification of the denominator and the
addition of a contour integral for our generalised case.

One needs to compute the series expansion coefficients of the latter:

1

2πi

∮
γ

log h(ζ)dζ√
ζ2 − 1(ζ − z)

∼
∞∑
i=0

hi(z − tk)i.

In the absence of an analytical approach for the evaluation of these integrals, they have to be computed
numerically for each k. Examples of cases where they can be evaluated analytically are given in [24,
§6.1].

Still, in terms of the coefficients hi, the expansion for the nodes in the bulk region is, up to O(n−5):

xk ∼ tk +
2α2 − 2β2 + (2α2 + 2β2 − 1)tk

2[2n+ α + β + 1 + h0]2
− 1

4[2n+ α + β + 1 + h0]3

(
2(2α2 + 2β2 − 1)h1t

3
k (6.6)

+ 2
[
(2α2 + 2β2 − 1)h0 + 2(α2 − β2)h1

]
t2k + (4α2 − 1)c0 + (4β2 − 1)d0 + 8(α2 − β2)h0 − 4(α2 − β2)h1

+
[
(4α2 − 1)c0 − (4β2 − 1)d0 + 4(3α2 + β2 − 1)h0 − 2(2α2 + 2β2 − 1)h1

]
tk

)
+ . . .+O(n−5).

The corresponding weights are, up to O(n−4) relative error (relative to w(xk)):

wk
w(xk)

∼
π
√

1− t2k
2n+ α + β + 1

[
2− 2h1(1− t2k)− 2h0tk

2n+ α + β + 1
+

1

(2n+ α + β + 1)2

(
2h2

1t
4
k + 4h0h1t

3
k − 4h0h1tk

+ 2(h2
0 − 2h2

1)t2k + 2α2 + 2β2 + 2h2
1 − 1

)
+ . . .+O(n−4)

]
. (6.7)

We illustrate the accuracy of these expansions throughout the domain [−1, 1] in Figure 6 for
n = 200 for the weight function

w(x) = (1− x)1/
√

3(1 + x)−1/πex.

The results show that the expansions improve with T and that their accuracy is very high in the
regions where they are valid.
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Figure 6: Relative error of the explicit expansions of the nodes (6.3) and weights (6.4) near the left endpoint (top),
and the nodes (6.6) and weights (6.7) in the bulk (middle) for the weight function w(x) = (1 − x)1/

√
3(1 + x)−1/πex

at n = 200 for a varying number of terms T . The expressions for the left endpoint are reused for those near the right
endpoint (bottom) by interchanging α and β and computing cn and dn with h(x) = e−x.

7. Gauss–Hermite rules

The standard Gauss–Hermite polynomials are related to associated Gauss–Laguerre polynomials
with α = ∓1/2 [34, 18.7.19-20]. Written in terms of the orthonormal polynomials, we have the
relations

p
(H)
2n (x) = p

(L,− 1
2

)
n (x2), p

(H)
2n+1(x) = xp

(L, 1
2

)
n (x2).

This generalises to other functions Q(x) with α = ∓1/2 as was shown in [25, §7.2]. Using the change
of variables x = t2, we have∫ ∞

0

xj pn(x)x−
1
2 e−Q(x) dx = 2

∫ ∞
0

t2j pn(t2)e−Q(t2) dt =

∫ ∞
−∞

t2j pn(t2)e−Q(t2) dt = 0, j = 0, . . . , 2n−1.

(7.1)
Since the odd moments of pn(t2) vanish by symmetry, it follows that pn(t2) is the Hermite-type
polynomial of degree 2n with respect to the weight function e−Q(t2) on the real line.
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Similarly, for the odd-degree polynomials we have∫ ∞
0

xj pn(x)x
1
2 e−Q(x) dx =

∫ ∞
−∞

t2j+1 t pn(t2)e−Q(t2) dt = 0, j = 0, . . . , 2n− 1.

In this case, the even moments vanish due to the odd symmetry of pn(t2).
It remains to determine the connection between the corresponding Gaussian quadrature nodes

and weights.

Lemma 7.2. Let x(L,− 1
2

)

k and w(L,− 1
2

)

k , k = 1, . . . , n, be the nodes and weights for the modified Gauss–
Laguerre rule with weight function x−

1
2 e−Q(x). Then the nodes and weights of the modified Gauss–

Hermite rule with weight function e−Q(x2) on (−∞,∞) are, with k = 1, . . . , n,

x
(H)
n+k =

√
x

(L,− 1
2

)

k , w
(H)
n+k =

w
(L,− 1

2
)

k

2
, x

(H)
n+1−k = −

√
x

(L,− 1
2

)

k , w
(H)
n+1−k =

w
(L,− 1

2
)

k

2
.

Proof. The result for the nodes follows immediately from the change of variables in (7.1). The results
for the weights follow by applying the same change of variables to the moment conditions of the
Laguerre-type quadrature rule. Since∫ ∞

0

xjx−
1
2 e−Q(x) dx =

n∑
k=1

w
(L,− 1

2
)

k

(
x

(L,− 1
2

)

k

)j
, j = 0, . . . , 2n− 1,

we have∫ ∞
−∞

t2je−Q(t2) dt =
n∑
k=1

w
(L,− 1

2
)

k

(
x

(L,− 1
2

)

k

)j
=

2n∑
k=1

w
(H)
k

(
x

(H)
k

)2j

, j = 0, . . . , 2n− 1.

The moment conditions for the odd monomials t2j+1, j = 0, . . . , 2n−1, follow from the odd symmetry.

The result for Gauss–Hermite type rules with an odd number of points is similar, with some
complications only for the extra node at the origin.

Lemma 7.3. The nodes and weights of a 2n + 1 point modified Gauss–Hermite quadrature rule are
given in terms of the modified Gauss–Laguerre quadrature rule with α = +1

2
as, with k = 1, . . . , n,

x
(H)
n+1+k =

√
x

(L, 1
2

)

k , w
(H)
n+1+k =

w
(L, 1

2
)

k

2x
(L, 1

2
)

k

,

x
(H)
n+1 = 0, w

(H)
n+1 =

∫ ∞
−∞

e−Q(t2) dt−
n∑
k=1

[
w

(H)
n+1+k + w

(H)
n+1−k

]
,

x
(H)
n+1−k = −

√
x

(L,1/2)
k , w

(H)
n+1−k =

w
(L, 1

2
)

k

2x
(L, 1

2
)

k

.

Proof. The moment conditions for the modified Laguerre rule are∫ ∞
0

xjx
1
2 e−Q(x) dx =

∫ ∞
−∞

t2j+2 e−Q(t2) dt =
n∑
k=1

w
(L, 1

2
)

k

(
x

(L, 1
2

)

k

)j
, j = 0, . . . , 2n− 1.
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The modified Gauss–Hermite rule should satisfy∫ ∞
−∞

tm e−Q(t2) dt =
2n+1∑
k=1

w
(H)
k

(
x

(H)
k

)m
, m = 0, . . . , 4n+ 1.

The odd moments are satisfied by symmetry. The even moments are satisfied for m = 2j + 2 > 0

using the exactness conditions for Laguerre above, noting that
(
x

(H)
n+1

)m
= 0 since m > 0. The

moment condition for m = 0 is satisfied precisly by the weight formulated in the lemma.

There is no known general formula for the middle weight w(H)
n+1. However, in case of the standard

Gauss–Hermite rule once can find from [40, §3.5 & 18.6] that

w
(H)
n+1 =

πΓ(n+ 1)

(2n+ 1)Γ(n+ 1
2
)
.

For large n, the ratio of Gamma functions can be approximated much like in [12, §3.2.3] as

Γ(n+ 1)√
nΓ(n+ 1/2)

∼ 1 +
1

8n
+

1

128n2
− 5

1024n3
− 21

32768n4
+

399

262144n5
+

869

4194304n6

− 39325

33554432n7
− 334477

2147483648n8
+

28717403

17179869184n9
+

59697183

274877906944n10
, n→∞.

In order to construct the Gauss-Hermite rule, one simply computes the Gauss-Laguerre rules from
§ 5.1 with approximately half the number of points and then exploits these relations.

The connection to Laguerre-type polynomials seemingly obviates the need to repeat the asymp-
totic analysis for Hermite-type polynomials, at least for even symmetric weight functions of the form
e−Q(x2). It may still be worthwhile to repeat the analysis for symmetric weight functions, since the
Hermite-type polynomials do not have a hard edge at x = 0. Hence, the computation of their expan-
sion is simpler and it becomes more tractable to compute more terms. For example, for symmetric
weight functions and α = ±1/2 the U left

k,m matrices in [21, 25] are zero. The analysis may also be
useful for non-symmetric weight functions and for algebraic singularities near zero, i.e. α 6= ±1/2.
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Appendix A. Expansions for classical Gaussian quadrature rules

We include explicit expressions for the asymptotic expansions of nodes and weights of Gauss–
Laguerre and Gauss–Jacobi quadrature rules. Expressions for Gauss–Legendre can be found in [7].
Earlier results on the classical rules include, among others, [41, 42, 43, 44, 45, 35, 46, 47, 48, 11, 10].

The expressions listed here are also implemented in the Julia package available from GitHub
and called AsymptoticGaussianQuadrature.jl. The expressions are implemented in a manner that
makes them easy to copy elsewhere.
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Appendix A.1. Gauss–Laguerre
Asymptotic expansions for the nodes and weights of Gauss–Laguerre quadrature rules were de-

scribed concurrently in [10, 1]. Here, we recall the explicit expansions as they are derived and
presented in [1]. For brevity of notation we use the notation

ρ = 4n+ 2α + 2.

Following (5.2) we suggest to use the expressions for the hard edge up to k = d
√
ne and the expressions

for the bulk up to k = b0.9nc.

Hard edge. Denote by jα,k the k-th root of the Bessel function of order α. An explicit expansion for
the nodes near the hard edge at x = 0 is:

xk =
j2
α,k

ρ
+
j2
α,k

(
j2
α,k + 2α2 − 2

)
3ρ3

+
j2
α,k

(
11j4

α,k + 3j2
α,k(11α2 − 19) + 46α4 − 140α2 + 94

)
45ρ5

+
j2
α,k

3435ρ7

[
657j6

α,k + 36j4
α,k(73α2 − 181) + 2j2

α,k(2459α4 − 10750α2 + 14051)

+4(1493α6 − 9303α4 + 19887α2 − 12077)
]

+
j2
α,k

35527ρ9

[
10644j8

α,k + 60j6
α,k(887α2 − 2879)

+ j4
α,k(125671α4 − 729422α2 + 1456807)

+ 3j2
α,k(63299α6 − 507801α4 + 1678761α2 − 2201939)

+2(107959α8 − 1146220α6 + 5095482α4 − 10087180α2 + 6029959)
]

+O(n−11).

The inequality xk > j2
α,k(4n+2α+2)−1 [34, (18.16.10)] already provides an O(n−2) relative error and

shows that the remainder has to be positive. The first two terms are exactly those found by Tricomi
[45, (37)], where the error bound was reported to be O(n−4), while [46] reported a stricter O(n−5).

The corresponding expansion for the weights is

wk =
4xαk e−xk

ρJ2
α−1(jα,k)

(
1 +

2(α2 + j2
α,k − 1)

3ρ2
+

1

45ρ4

[
46α4 + 33j4

α,k + 6j2
α,k(11α2 − 19)− 140α2 + 94

]
+

4

3435ρ6

[
657j6

α,k + 27j4
α,k(73α2 − 181) + j2

α,k(2459α4 − 10750α2 + 14051) (A.1)

+1493α6 − 9303α4 + 19887α2 − 12077
]

+
1

35527ρ8

[
215918α8 − 2292440α6 + 10190964α4 − 20174360α2

+ 12059918 + 53220j8
α,k + 240j6

α,k(887α2 − 2879) + 3j4
α,k(125671α4 − 729422α2 + 1456807)

+6j2
α,k(63299α6 − 507801α4 + 1678761α2 − 2201939)

]
+O(n−10)

)
.

Note that the O(n−10) term is inside the parenthesis, i.e., the asymptotic order is relative to the size
of the leading order term.

Bulk. For the asymptotics in the bulk, one first has to determine the roots of the leading order term of
the asymptotic expansion of the polynomials as expressed by (4.2). For standard associated Laguerre
this results in having to solve (4.4) to obtain tk. A computational procedure is described in § 4.5.

The asymptotic expansion of the nodes in the bulk (region I in Figure 1) we arrive at is:

xk = ρtk −
1

12ρ

(
5

(1− tk)2
− 4

1− tk
+ 12α2 − 4

)
(A.2)
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+
1− tk

720tkρ3

(
1600

(1− tk)6
− 3815

(1− tk)5
+

2814

(1− tk)4
− 576

(1− tk)3

− 16

(1− tk)2
+ 16(15α4 − 30α2 + 7)

[
2− 3

1− tk

])
+
−(1− tk)2

263435t2kρ
5

[
−1727136

(1− tk)5
+

16131880

(1− tk)6
+
−48469876

(1− tk)7

+ 175

(
379569

(1− tk)8
+
−246416

(1− tk)9
+

61700

(1− tk)10

)
+ 4608

3 + 2tk
1− tk

(
31− 147α2 + 105α4 − 21α6

)
+

384

(1− tk)2

(
−1346 + 6405α2 − 4620α4 + 945α6

)
+

320

(1− tk)3

(
−43 + 126α2 − 63α4

)
+

80

(1− tk)4

(
−221− 630α2 + 315α4

)]
+

(1− tk)3

2835527t3kρ
7

[
43222750000

(1− tk)14
− 241928673000

(1− tk)13
+

566519158800

(1− tk)12

− 714465642135

(1− tk)11
+

518401904799

(1− tk)10
− 212307298152

(1− tk)9
+

672

(1− tk)8

(
12000α4 − 24000α2 + 64957561

)
− 192

(1− tk)7

(
103425α4 − 206850α2 + 15948182

)
+

3360

(1− tk)6

(
4521α4 − 9042α2 − 7823

)
− 1792

(1− tk)5

(
3375α6 − 13905α4 + 17685α2 − 1598

)
+

16128

(1− tk)4

(
450α6 − 2155α4 + 2960α2 − 641

)
− 768

(1− tk)3

(
70875α8 − 631260α6 + 2163630α4 − 2716980α2 + 555239

)
+

768

(1− tk)2

(
143325α8 − 1324260α6 + 4613070α4 − 5826660α2 + 1193053

)
− 5806080

1− tk
(
15α8 − 140α6 + 490α4 − 620α2 + 127

)
+ 24883200α8 − 232243200α6

+812851200α4 − 1028505600α2 + 210677760

]
+O(n−9).

The first two terms in (A.2) are exactly those found by Tricomi [35, (56)], where the error bound was
reported to be O(n−2), while [46] reported a stricter O(n−3).

The corresponding expansion for the weights is

wk = xαk e−xk2π

√
tk

1− tk

(
1− 1

6ρ2

[
5(1− tk)−3 − 2(1− tk)−2

]
(A.3)

+
(1− tk)2

720ρ4t2k

[
8000

(1− tk)8
− 24860

(1− tk)7
+

27517

(1− tk)6
− 12408

(1− tk)5
+

1712

(1− tk)4

+
32

(1− tk)3
+

16

(1− tk)2
(15α4 − 30α2 + 7)

]
− (1− tk)3

90720ρ6t3k

[
43190000

(1− tk)12
− 204917300

(1− tk)11
+

393326325

(1− tk)10
− 386872990

(1− tk)9

+
201908326

(1− tk)8
− 50986344

(1− tk)7
+

80

(1− tk)6

(
315α4 − 630α2 + 53752

)
− 320

(1− tk)5

(
189α4 − 378α2 − 89

)
+

480

(1− tk)4

(
63α4 − 126α2 + 43

)
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− 384

(1− tk)3

(
315α6 − 1470α4 + 1995α2 − 416

)
+

2304

(1− tk)2

(
21α6 − 105α4 + 147α2 − 31

)]
+O(n−8)

)
.

Soft edge. The soft edge for the standard associated Gauss–Laguerre rule is around x = 4n. The
weights rapidly decay in this regime and even underflow for moderate n. For that reason we restrict
the number of terms given here, but we note that more terms could be computed [1].

The expansion of the large nodes in region III is, where ak are the zeros of the Airy function,

xk = (4n+ 2α + 2) + 22/3an−k+1 (4n+ 2α + 2)1/3 +
24/3

5
a2
n−k+1 (4n+ 2α + 2)−1/3

+

(
11

35
− α2 − 12

175
a3
n−k+1

)
(4n+ 2α + 2)−1

+

(
16

1575
an−k+1 +

92

7875
a4
n−k+1

)
22/3 (4n+ 2α + 2)−5/3

−
(

15152

3031875
a5
n−k+1 +

1088

121275
a2
n−k+1

)
21/3 (4n+ 2α + 2)−7/3 +O(n−3).

This expression was adapted from [46, (4.9)], while we derived the following leading order term of
the weight:

wk = 41/3x
α+1/3
k exp(−xk) Ai′(an−k+1)−2

[
1 +O(n−2/3)

]
. (A.4)

Here, Ai′ represents the derivative of the Airy function. Like above, the O term is in the parentheses,
hence relative accuracy is obtained.

Appendix A.2. Gauss–Jacobi
We present the results using, for brevity of notation, the definition

ρ = n+
1

2
(α + β + 1) .

Following (6.2) we suggest to use the expressions for the hard edge at the left end up to k = d
√
ne

and at the right end starting from k = n− d
√
ne.

Hard edge at x = −1. Let jβ,k be the k-th zero of the Bessel function Jβ of order β. Then we have
the following terms, up to O(n−12):

xJ IV
k ∼ −1 +

2j2
β,k

4ρ2
+
−2j2

β,k

243ρ4

{
j2
β,k − 3α2 − β2 + 1

}
(A.5)

+
2j2
β,k

45ρ6

{
2j4
β,k − 3j2

β,k(5α
2 + 3β2 − 2) + 45α4 + 7β4 + 20(3α2 − 1)β2 − 60α2 + 13

}
+
−2j2

β,k

2835ρ8

{
9j6
β,k − 18(7α2 + 5β2 − 3)j4

β,k − 2835α6 − 247β6

+ (328β4 + [1512α2 − 575]β2 + 567α2 − 113)j2
β,k − 1407(3α2 − 1)β4 + 8505α4

−21(405α4 − 600α2 + 133)β2 − 8379α2 + 1633

}
+

4j2
β,k

21035527ρ10

{
6j8
β,k − 15(9α2 + 7β2 − 4)j6

β,k +
[
6615α4 + 769β4 + 2(1620α2 − 589)β2
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−12150α2 + 2668
]
j4
β,k + 3

[
9450α6 − 999β6 − 23(400α2 − 147)β4 − 40635α4

− (2835α4 + 1850α2 − 294)β2 + 50650α2 − 10236
]
j2
β,k

+ 42525α8 + 2327β8 + 22340(3α2 − 1)β6 − 226800α6 + 168(1530α4 − 2415α2 + 542)β4 + 517860α4

+20(11340α6 − 38745α4 + 42399α2 − 8488)β2 − 509280α2 + 98717

}
+O(n−12),

The corresponding weights are, up to O(n−8):

wJ IV
k

w(xJ IV
k )

∼ 2

J2
β−1(jβ,k)ρ2

[
1 +

3α2 + β2 − 1− 2j2
β,k

12ρ2
(A.6)

+
45α4 + 7β4 + 6j4

β,k + 20(3α2 − 1)β2 − 6(5α2 + 3β2 − 2)j2
β,k − 60α2 + 13

24325ρ4

+
1

263435ρ6

{
2835α6 + 247β6 − 36j6

β,k + 1407(3α2 − 1)β4

+ 54(7α2 + 5β2 − 3)j4
β,k − 8505α4 + 21(405α4 − 600α2 + 133)β2

− 2
[
328β4 + (1512α2 − 575)β2 + 567α2 − 113

]
j2
β,k + 8379α2 − 1633

}
+O(n−8)

]
.

The bulk. The leading order term of the roots tk is given by (6.1). The nodes in the interior of the
interval expand asymptotically up to O(n−10) as

xk ∼ tk +
2α2 − 2β2 + (2α2 + 2β2 − 1)tk

8ρ2
+

1

273ρ4(1− t2k)
(A.7)(

32α4 − 32β4 −
[
16α4 + 16β4 + 4(12α2 − 5)β2 − 20α2 + 5

]
t3k − 24(α2 − β2)t2k − 40α2 + 40β2

+3
[
16α4 + 16β4 + 4(4α2 − 7)β2 − 28α2 + 11

]
tk

)
+

1

21015ρ6(1− t2k)2

(
576α6 − 576β6

+
[
96α6 + 96β6 + 80(8α2 − 3)β4 − 240α4 + 2(320α4 − 440α2 + 101)β2 + 202α2 − 39

]
t5k

− 320(α2 − 6)β4 + 240(α2 − β2)t4k − 1920α4 + 16(20α4 − 127)β2

− 10
[
32(5α2 + 3)β4 + 96α4 + 2(80α4 − 152α2 − 97)β2 − 194α2 + 99

]
t3k

+ 160
[
6α6 − 6β6 + 2(α2 + 15)β4 − 30α4 − (2α4 + 41)β2 + 41α2

]
t2k + 2032α2

+15
[
96α6 + 96β6 + 16(4α2 − 23)β4 − 368α4 + 2(32α4 − 72α2 + 223)β2 + 446α2 − 173

]
tk

)
− 1

2153235ρ8(1− t2k)3

(
219648α8 − 219648β8 −

[
9728α8 + 9728β8

+ 896(138α2 − 49)β6 − 43904α6 + 224(1160α4 − 1720α2 + 389)β4

+ 87136α4 + 8(15456α6 − 48160α4 + 49364α2 − 9785)β2 − 78280α2 + 14921
]
t7k

− 10752(14α2 − 127)β6 − 40320(α2 − β2)t6k − 1365504α6

+ 21
[
2048α8 + 2048β8 + 128(146α2 − 123)β6 − 15744α6 + 32(1320α4 − 1760α2 + 2023)β4 + 64736α4

+ 8(2336α6 − 7040α4 + 3644α2 − 11275)β2 − 90200α2 + 37111
]
t5k + 75264(5α2 − 49)β4

+ 4480
[
44α8 − 44β8 + 8(3α2 + 55)β6 − 440α6 − 24(7α2 + 72)β4 + 1728α4
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− (24α6 − 168α4 − 2405)β2 − 2405α2
]
t4k

+ 3687936α4 + 105
[
6656α8 + 6656β8 − 128(50α2 + 443)β6 − 56704α6 − 32(296α4 − 696α2 − 6027)β4

+ 192864α4 − 8(800α6 − 2784α4 + 3580α2 + 30285)β2 − 242280α2 + 99933
]
t3k

+ 384(392α6 − 980α4 + 10527)β2 + 2688
[
424α8 − 424β8 + 4(4α2 + 783)β6

− 3132α6 + 4(35α2 − 2407)β4 + 9628α4 − (16α6 + 140α4 − 11429)β2 − 11429α2
]
t2k

− 4042368α2 + 35
[
23552α8 + 23552β8 + 128(90α2 − 1231)β6 − 157568α6 + 32(328α4 − 1376α2 + 14095)β4

+451040α4 + 8(1440α6 − 5504α4 + 9964α2 − 65439)β2 − 523512α2 + 206379
]
tk

)
+O(n−10).

Up to O(n−8) relative accuracy, relative to the value of the weight function w(xk) at the corre-
sponding node, the weights expand as

wk
w(xk)

∼
π
√

1− t2k
2ρ

[
2− 1− 2α2 − 2β2

4ρ2
(A.8)

+
1

263(t2k − 1)2ρ4

([
16α4 + 16β4 + 4(12α2 − 5)β2 − 20α2 + 5

]
t4k + 48α4 + 48β4

+ 12(4α2 − 7)β2 − 6
[
4(4α2 + 1)β2 + 4α2 − 3

]
t2k − 84α2 + 64

[
α4 − β4 − 2α2 + 2β2

]
tk + 33

)
+

1

2915(t2k − 1)3ρ6

([
96α6 + 96β6 + 80(8α2 − 3)β4 − 240α4

+ 2(320α4 − 440α2 + 101)β2 + 202α2 − 39
]
t6k − 1440α6 − 1440β6 − 240(4α2 − 23)β4

− 5
[
96α6 + 96β6 + 16(20α2 − 27)β4 − 432α4 + 2(160α4 − 136α2 + 295)β2 + 590α2 − 237

]
t4k

+ 5520α4 − 640
[
3α6 − 3β6 + (α2 + 15)β4 − 15α4 − (α4 + 22)β2 + 22α2

]
t3k

− 30(32α4 − 72α2 + 223)β2 − 15
[
288α6 + 288β6 − 16(8α2 + 81)β4 − 1296α4

− 2(64α4 − 88α2 − 863)β2 + 1726α2 − 717
]
t2k

− 6690α2 − 128
[
33α6 − 33β6 − 5(α2 − 27)β4 − 135α4 + (5α4 − 166)β2 + 166α2

]
tk + 2595

)
+O(n−8)

]
.
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