
SUPPORTING DATA-AWARE PROCESSES WITH
MERODE

Monique Snoeck1[0000-0002-3824-3214], Charlotte Verbruggen1[0000-0003-0418-2633], Johannes De Smedt1[0000-0003-0389-0275],
and Jochen De Weerdt1[0000-0001-6151-0504]

{monique.snoeck, charlotte.verbruggen, johannes.desmedt, jochen.deweerdt}@kuleuven.be

1Research Center for Information Systems Engineering (LIRIS); KU Leuven, Belgium

PREPRINT: This paper has been accepted for the SoSym Journal

Please cite as follows:
Snoeck, M., Verbruggen, C., De Smedt, J. et al. Supporting data-aware processes with MERODE. Softw Syst
Model (2023). https://doi.org/10.1007/s10270-023-01095-4

Supporting Data-Aware Processes with MERODE

Monique Snoeck1[0000-0002-3824-3214], Charlotte Verbruggen1[0000-0003-0418-2633], Johannes De
Smedt1[0000-0003-0389-0275], and Jochen De Weerdt1[0000-0001-6151-0504]

1 KU Leuven, Belgium
{monique.snoeck, charlotte.verbruggen, johannes.desmedt,

jochen.deweerdt}@kuleuven.be

Abstract. Most data-aware process modelling approaches have been developed from a process perspective and
lack a full-fledged data modelling approach. In addition, the evaluation of data-centric process approaches
reveals that, even though their value is acknowledged, their usability is a point of concern. This paper presents
a data-aware process modelling approach combining full-fledged domain modelling based on UML class dia-
grams and state charts with BPMN and DMN. The approach is illustrated by means of an elaborated example
with multiple business processes on top of a joint domain model. A proof-of-concept has been implemented
using the MERODE code generator, linking the resulting prototype application to a Camunda BPM engine,
making use of RESTful web-services. The proposed approach is evaluated against 20 requirements for data-
aware processes and demonstrates that the majority of these are already satisfied by the out-of-the-box combi-
nation of the Camunda BPM engine with the prototype generated from a MERODE domain model.

Keywords: Conceptual Modelling, Process modelling, Data-Aware Processes, Model-Driven Engineering.

1 Introduction & motivation

Addressing multiple concerns, multiple viewpoints and creating multiple models is an essential
characteristic of software development [1]. However, for many years, and to name just three
viewpoints, data modelling, process modelling, and decision modelling have evolved as largely
separate worlds, focusing on the respective modelling languages and methods, having different
communities, conferences, and publication outlets [2]. While this "separation of concerns" al-
lows focusing on the particularities of each domain, such silo-based approach comes with draw-
backs as well. Data, decisions and processes are concerns that underlie different architectural
viewpoints of a same system and integration is thus required to ensure consistency and correct-
ness [1]. Architectural descriptions should come with defined correspondences and ensuing
correspondence rules to express, record, enforce and analyse consistency between models and
views [1], [2]. From an enterprise engineering perspective, defining the essential business con-
cepts and their relationships through domain modelling and defining how the business operates
through process modelling, should go hand in hand. In a true multi-modelling approach, all
perspectives should be aware of and integrated with the other perspectives. While the need for
multi-modelling is widely acknowledged, there remain significant gaps to address. To set a step
towards a multi-modelling approach that is sufficiently concrete to use the models in a model-
driven engineering approach while keeping the scope manageable, this paper focuses primarily
on data and process modelling.

In recent years the importance of data aspects has been acknowledged by the process model-
ling community, and several approaches have been proposed, see [3–5] for overviews. Most of
this research was initiated by experts from the process modelling domain, focusing on how to
make processes data-aware, e.g. through case-based approaches [6], artefact-centric approaches
[7, 8], object-centric approaches [9], developing connections to a database [10], or focusing on
developing support for verifying process properties such as safety, liveness, etc., see for exam-
ple [11], [12].

While research on data-aware processes provides progress towards an integrated approach,
how data is addressed largely varies between approaches [3]. A full-fledged domain modelling

2

approach focuses on defining business objects and their associations so as to provide an enter-
prise-wide definition of business concepts, as a common language shared by all business do-
mains, and hence all business processes. In addition, object-oriented domain modelling allows
defining additional business logic by defining operations (next to attributes) and object lifecy-
cles. A global perspective on the relationship between process modelling and domain modelling
is still missing (e.g. in terms of an integrated meta-model), as well as a practical approach for
modelers on how to tackle the balance between process modelling and domain modelling: what
should come first, how are the models related to each other, and how do modelling decisions in
one of the views affect the other view.

The goal of this paper is to propose a data-aware process modelling approach that assumes
the existence or joint development of a full-fledged object-oriented domain model and to eval-
uate it along the criteria for data-aware process modelling formulated in [4]. In particular, the
MERODE modelling method provides an approach to domain modelling [13] based on the
Unified Modelling Language (UML), formally grounded in process algebra [14] when it comes
to defining object behaviour. While the MERODE-approach captures behavioural aspects
through object lifecycle modelling and object interactions, it nevertheless also suggests the use
of a business process layer to handle user and work-related aspects. Combining MERODE with
process modelling results in data-aware process modelling, but -as opposed to most current
approaches- the domain modelling is considered in its own right, rather than in function of
process modelling. The current paper presents the further elaboration of the approach of which
a first draft was presented and evaluated in BPMDS 2021 [15]. In particular, the approach is
further refined and more thoroughly evaluated, and it is extended with use of decision tables,
modelled with DMN, and the corresponding use of Business Rules tasks. This paper contributes
to the current state of the art by 1) providing a data-aware process modelling approach that
relies on full-fledged domain modelling, 2) providing a concrete proof of concept for this sug-
gested combination and 3) evaluating the resulting approach against the criteria presented in
[4].

The remainder of this paper is structured as follows. Section 2 presents the state of the art on
research that combines the process and data perspective. Section 3 presents a high-level archi-
tectural overview of combined domain modelling and process modelling. Section 4 then pre-
sents the process and domain co-modelling approach based on BPMN and MERODE and fo-
cuses in particular on how to express the relation between the process elements and domain
model elements. Section 5 presents a detailed evaluation of the approach along the criteria de-
fined in [4]. Section 6 presents a discussion and Section 7 concludes the paper.

2 Related work

Multi-modelling has been addressed in several domains of research. In the following para-
graphs, we review how the combination of data and process modelling has been addressed in
enterprise modelling, in model-driven engineering, and in single-viewpoint approaches aug-
mented with an additional viewpoint: data-aware process modelling and process-aware domain
modelling.

Enterprise Modelling
Enterprise Modelling approaches typically address several viewpoints of a domain of interest

by proposing different types of models, called model kinds according to [1], and where each
model kind captures a specific viewpoint of the architecture [1]. Enterprise Architecture Frame-
works typically distinguish three architectural layers (the Business Architecture, the

3

Information System Architecture and the Technology Architecture) and may propose a set of
model kinds for each of these layers [16]. While the Zachman [17] and TOGAF [18] frame-
works remain vague in terms of the modelling languages to use, ArchiMate [19] provides a very
concrete multi-view modelling language. In ArchiMate [19] both Business Processes and Busi-
ness Objects are part of the Business Architecture Layer. However, the structure of the domain
model and of the business processes are not drawn as part of the Business Architecture Layer.
UML class diagrams are positioned in the Information Architecture Layer, and the Business
Architecture Layer only lists the business processes without defining the business process mod-
els. For the detailing of a process in a process model, ArchiMate refers to the use of a business
process modelling language, e.g. BPMN. Business objects may represent an information asset
relevant from a business point of view and should then be realized by data objects. For repre-
senting relationships between these passive structure elements, the notation for aggregation,
composition, association, and specialisation is borrowed from the UML [20], today's industry
and research standard for software modelling. The meta-model of ArchiMate defines access
relationships that document which business objects are accessed by which business processes,
but operational-level details are not within ArchiMate's scope. Object lifecycles or state transi-
tion diagrams are not part of ArchiMate's set of proposed model kinds. Thus, for a detailed
modelling of data-aware processes, the modeler is referred to using BPMN and UML class
diagrams, without further support for the practical integration of process models and data mod-
els. Amongst the different model kinds in 4EM [21], we find the concepts model and the busi-
ness process model. 4EM does not define the use of object lifecycles as a model kind, although
permissible state transitions could be modelled as part of the business rule model. In 4EM the
business process model has a 'use and create' relationship to the business concepts model. For
each activity in a process model, a diagram allows detailing how the activity consumes input
and produces output in terms of information and/or material. The contents of these information
or material flows are detailed by referencing their definitions in the concepts model. Given that
the process model and concepts model use proprietary notations, the integration remains at a
high level and the gap to operational data-aware processes is significant. In MERODE, the
domain modelling part of the method is very clearly established, and BPMN is suggested as
process modelling language. While [13] already outlines some basic ideas for connecting the
process layer to the domain layer, a clear explanation on how the modeler expresses the relation
between the process in BPMN and the MERODE domain is missing, as well as how such rela-
tionship could be made operational. MEMO [22] also proposes a multi-modelling approach.
According to its meta-model, business processes are located in the Organisation part of the
meta-model, and classes in the Information System part. Processes are connected to classes via
the invocation of class operations. Here too, object lifecycles seem not to be one of the sug-
gested model kinds. All-in-all, while enterprise modelling approaches do propose the combina-
tion of full-fledged domain modelling with process modelling, they lack details on how exactly
to operationalize the connection between a process model and a domain model. In addition, the
combination of lifecycles of business objects with business process modelling seems lacking in
these methods.

Model-driven Engineering
Besides the more abstract enterprise modelling approaches, more concrete model-driven en-

gineering approaches can be considered as well. A notable example is OO-Method [23], which
combines domain modelling with state-charts, a functional model and a presentation model,
thus covering all is needed for application development. However, business process models are
not covered in [23]. Investigating model-based and model-driven approaches to User Interface

4

Design [24], shows that most of these approaches start from task models, which can be consid-
ered very close to business process models. However, the study also shows that integration with
the data aspects is lacking in these approaches. Generally speaking, the field of model-driven
engineering has recognized the lack of integrated modelling of different perspectives as a sig-
nificant gap to address in future research. The MMQEF [25] provides a framework to assess
the quality of a set of modelling languages used in combination for model-driven engineering,
yet for now, there is no suggested best combination of modelling languages. Finally, the ap-
proach also has a lot in common with Domain-Driven Design [26]. This approach favours
model-driven engineering and couples the domain model with well-chosen patterns at the heart
of systems design. While the domain model (defined as a class diagram) has a prominent place
in this approach, business process modelling is not part of the approach. The focus rather lies
on connecting the user interface layer in a proper way to the domain layer.

Data-aware process modelling and process-aware domain modelling
Finally, specific and detailed data-aware process modelling approaches have been suggested

as well. In 2019, a systematic literature review on data-aware process modelling covering the
period up till 2016 was published [3]. This review identified 17 different approaches to data-
centric process modelling, described in 38 primary studies. While 13 papers relate to the Arte-
fact-Centric approach proposed in [7], many other approaches have been developed as well.
The results of this literature review also show that nearly each of the identified approaches have
defined their own particular data representation construct. While some could be unified under
the denominator of "Object" or "Entity", there still remains quite a large variation, and chosen
constructs may not map to standard conceptual data modelling practices such as entity-relation-
ship modelling or conceptual UML class diagrams. For example, certain approaches work on
unstructured data like documents [27], others use Petri Nets to represent data [28]. As the au-
thors state "a general understanding of the inherent relationships that exist between processes
and data is still missing" [3].

Running the same query again in Web of Science and Scopus for the period 2017-2022
yielded 13 unique papers, 5 of them addressing an aspect of the artefact-centric approach (e.g.
[29], [30]) or a specific subtopic of data and process integration like consistency, instance mi-
gration, the impact of data changes on a process [31], or the use of ontologies or process adap-
tation (e.g. [32]). No fundamentally new approach has been proposed.

A major drawback of some data-aware process modelling approaches is that data is often
considered on a per-process basis (e.g. by only modelling the data relevant for the process at
hand, see language requirement 3 in [33], or [32]). In some approaches a global domain model
is considered as a given, and data-awareness mainly resides in bridging the process model to
an existing data model, e.g. by developing a data querying and manipulation language to allow
for data-aware process execution such as DAPHNE [10]. In [34] the notion of Artefact acts as
a collection of process variables to be associated to a process instance, and serves as interface
between the process model and the classes in a pre-defined data model. While providing a prac-
tical solution to process execution, this does not constitute a fully data-aware process modelling
approach, where process models are inherently aware of the enterprise-wide conceptual data
model of the domain in which they operate [35].

Process-aware domain modelling on the other hand, seems a largely unexplored topic. In
object-oriented (OO) conceptual modelling (as e.g. in OO-Method [23] and MERODE [13])
business objects can have a state chart imposing sequences on the invocation of an object's low-
level methods that manipulate its data. Business process modelling is absent or not fully elab-
orated. Artefact-centric modelling (e.g. [7], [9], [36]) equips business artefacts with a lifecycle,

5

and considers that the business processes result from the composition of services, which are
associated to the business artefacts and their lifecycles through associations. Both in the OO
approach and in artefact-centric approaches, object lifecycles capture behavioural aspects on a
per-object/artefact basis, but are not meant to address the user perspective and defining work
organisation as business processes, which was one of the motivations behind the PHILharmon-
icFlows approach [9].

In terms of integrating the process and data perspective, a significant amount of research has
been performed in consistency verification, e.g. [37], [38], [12]. While formal verification may
provide useful support for modellers to verify their work, most of the approaches are formal,
not intuitive nor practical from a business point of view [12]. Even the most practical approach
does not come with a priori guidelines providing modellers intuitive insights in the relationship
between constraints embodied by the conceptual data model and those included in the process
model. The survey published in [5] reveals that even though the value of data-centric ap-
proaches is acknowledged, their usability remains a point of concern. Moreover, as previous
research has demonstrated UML class diagrams and BPMN to be practitioners' favourite lan-
guages [39], it makes sense to look for a solution based on UML and BPMN.

In summary, we find that enterprise modelling approaches lack detail, model-driven engi-

neering approaches are incomplete, and that when considering both data-aware process model-
ling and artefact-centric modelling for a more detailed approach, none of the proposed ap-
proaches combines all possible views and model kinds in a single approach. Either the focus
lays on the business process layer that is made data-aware by means of a connection to a data-
base (e.g. [10]), yet without considering an enterprise-wide domain model or object lifecycles,
or the business process aspects are only captured by means of state charts per business artefact
(e.g. BALSA [7] and BAUML [34]), and the business process modelling is the missing view-
point. The only approach that combines the viewpoints of domain model, object lifecycles and
business processes is MERODE, thus having the potential to cover a larger number of the 20
requirements formulated by Künzle et al. [4]. The remaining gap is nevertheless that the con-
nection between the business process model and the domain model needs to be detailed further,
which is addressed in the next sections.

3 Integrating Process and Domain modelling

Before presenting the details of a process and data co-modelling approach in section 4, this
section first provides an overview of the research method that was followed to develop the
approach. Section 3.2 presents a high-level architectural overview of combined domain model-
ling and process modelling. In particular, we review the notions of architectural layers and how
these are typically stacked. Section 3.3 then reviews how these principles are instantiated in
MERODE.

3.1 Research Methodology

The research presented in this paper follows a design science approach constituting of suc-
cessive iterations of a design-evaluate cycle, and making use of a diverse set of evaluation
methods as advocated by [40]. Four major cycles can be identified. The first main cycle devel-
oped MERODE as an "object-oriented analysis" method and was evaluated against criteria re-
lating to syntax, semantics, and coverage of concepts of object oriented analysis [41] (Analyti-
cal/Static Analysis + Optimization), usability by practitioners [42] (Observational/Field Study).

6

A second iteration considered the addition of Business Process Modelling, used an Analytical
(Static Analysis + optimization) evaluation to demonstrate the approach's ability to support for-
mal verification [43]. The third iteration focused on the understanding of domain modelling and
lifecycle modelling. The 'build' step resulted in the development of model simulation capabili-
ties through the application of model-driven engineering concepts [44–47]. This cycle included
a large series of experimental validations [48–50].

The current and fourth iteration expands this model understanding to the combination of do-

main modelling and business process modelling. To ensure the relevance of the approach, re-
quirements by practitioners [51] as well as difficulties learners experience with multi-modelling
[52] have been investigated. To ensure the rigor of the approach, existing approaches have been
considered (see related research section) as well as criteria against which the approach should
be evaluated. A first conceptual evaluation of the feasibility of the model-driven engineering of
a prototype for a combined domain and process model was presented in [15]. The current paper
presents the further elaboration of the approach based on the results of the evaluation. In par-
ticular, it further details how to express the relation between the process in BPMN and the
MERODE models, extends the approach with use of decision tables, modelled with DMN, and
the corresponding use of Business Rules tasks.

The evaluation in this fourth cycle constitutes of an analytical evaluation and makes use of

the criteria established in [4], while the running example and elaborated case study provide a
descriptive evaluation of the "Scenario" type as well as an Analytical evaluation of type "Dy-
namic Analysis" through the implementation of the example and the ability to test the resulting
implementation.

3.2 Architectural Layers

Combining data and process modelling boils down to a multi-modelling approach. Typical
viewpoints that can be distilled from the different works reviewed in section 2 follows :

• VP1 - the data or business objects viewpoint, addressing the information that a business cre-
ates and maintains. This viewpoint corresponds to the use of data models.

• VP2 - the business object behaviour viewpoint, addressing the relevant states in the life of a
business object, from its creation to its final disposition and archiving. This viewpoint corre-
sponds to the use of state charts to describe object lifecycles.

• VP3 - the shared services viewpoint, describing how a service may provide access to infor-
mation or perform changes to one or more business objects. This viewpoint corresponds to
defining micro-services to build modular (service-oriented) applications.

• VP4 - business process behaviour viewpoint addressing units of work and how these are
combined to coarser-grained processes and governed by constraints such as task precedence.
This viewpoint is typically captured by means of a process model or −in the case of model-
driven UI design− by task models.

• VP5 - business actor viewpoint, addressing the distribution of work across actors. This view-
point can be part of a business process model, or − e.g. in the case of model-driven UI-
design− may be captured by separate user models.

7

A good practice from a software architecture per-
spective, is to organize software into layers. Typi-
cally, layers address specific viewpoints, and layers
implementing stable aspects of a system are posi-
tioned in the kernel of the software architecture,
whereas elements with higher needs for flexible adap-
tation should be implemented in upper layers [53].
Business processes are typical examples of elements
with a higher need for flexible adaptability, whereas
the data layer tends to be more stable. Above-men-
tioned viewpoints would typically be arranged as shown in Fig. 1. Current data-aware process
approaches do not address all these viewpoints explicitly. And while it may be useful to allow
bypassing layers (e.g. for performance), it is a good practice to avoid direct access to a database
and instead install intermediate services layers (VP3) to isolate the business process layer from
the persistence layer [53]. Many current data-aware process approaches, however, let business
process activities directly access the data layer, thus skipping the shared service layer (VP3).
Artefact-centric approaches do not have a separate process layer. In BALSA [7], the Business
Artefacts address VP1 through their definition of data-related aspects and to a certain extent
also VP2 in so far their operations also embody business logic. The Lifecycles address VP2.
VP4 is addressed by the Services that define units of work, and the Associations that may define
constraints governing the services' access to artefacts thus defining (among others) precedence
relationships between services. VP3 and VP5 are not addressed in BALSA. In BAUML [34],
the class diagram and state charts address VP1 and VP2. Activity Diagrams address the associ-
ations and OCL is used to define contracts for services. This allows addressing aspects of VP4.
VP3 and VP5 are not addressed. In approaches that combine process modelling with access to
data (e.g. [10]), the process model addresses VP4 and VP5 and the data model captures the data
viewpoint (VP1). Artefact behaviour (VP2) is not captured. PHILharmonicFlows [9] combines
a data model (VP1) with Object Life Cycles (VP2) that define micro-processes, and defines
macro processes too (VP4). Authorisations address VP5. VP3 is not addressed.

While none of the reviewed approaches combines object lifecycles and business processes to
describe behavioural aspects, these two model kinds do however constitute different views on
behaviour, and both are needed to define the behavioural aspects of a sociotechnical system
well. As explained in [54] "the interplay between data and processes can be very subtle, it is
not sufficient to only study information and process models in isolation.". In [29] this is illus-
trated by means of a tax payment process in the Hungarian administration: focusing on a process
approach hampers the development of a one-stop-shop administration, whereas starting from
the artefacts lifecycle and using the final state as the goal to reach, fosters a broader analysis
and results in a more efficient administration. In line with Enterprise Architecture Frameworks
such as Zachman [17] and TOGAF [18], we consider both the business process model and the
domain model (including business object lifecycles) to belong to the "Business Architecture".
The business process view captures behaviour from the perspective of work organisation but
will typically only address a part of an artefact's lifecycle. A business object may be affected
by several business processes, and the lifecycle will provide a global and unifying perspective
on all processes that affect its state. For example, an order will be created by the ordering pro-
cess, but its further lifecycle will be affected by shipping, invoicing, payment, return, and refund
processes. The business process and object lifecycle (OLC) perspectives thus provide orthogo-
nal and complementary views on a same reality: the business process view groups elements of
behaviour according to work organisation, whereas an OLC groups behaviour on a per-object

Fig. 1. Software Layers

Business Processes: VP4 + VP5

Shared Services: VP3

Data (Persistence): VP1

Business Logic: VP2

8

basis. Both perspectives interact by the fact that business process activities may affect object
states. The different perspectives must be considered and designed jointly to capture all relevant
aspects and ensure the proper functioning of an organization and its supporting information
system. Having only the business process perspective or the OLC perspective poses a limitation
to the correct and complete modelling of a business's operations. Moreover, a multi-modelling
approach also needs to clarify how the different models are related and should be organized in
a global architecture that strives for a minimisation of ripple effects when some aspect of the
business changes.

3.3 Layers in the MERODE Approach

The MERODE method follows the princi-
ples of layers and identifies three major layers:
the Enterprise layer (EL) is the bottom layer,
the Business Process layer (BPL) is the top
layer and in between sits an Information Sys-
tem Services layer (ISL). The Enterprise layer
(EL) itself contains two sublayers. Business
Objects are stored in the domain layer (DL).
Additional logic is defined in the OLCs. Tran-
sitions in OLCs are triggered by events, in
MERODE called "Business Events". An
Event-Handling Layer (EHL) offers an inter-
face to invoke events and routes these to the
relevant Business Objects that will handle the
event by means of a corresponding operation effecting the required state changes. In between
the EL and BPL sits the Information System Services layer (ISL) offering shared input and
output services to access the EL. Output services allow querying the attributes and states of
business objects. Input services capture input data but do not directly invoke operations on
business objects. Rather, they achieve the requested operations by triggering one or several
business events via the EHL. The business events and their handling through an EHL allows
combining the advantages of an event-driven architecture with the advantages of the layered
architecture, while also managing the transitioning to consistent states [55].

The use of Business Events and an intermediate Event Handling layer is an important dis-
tinctive characteristic of the MERODE approach. Whereas usually a business process task's
operational logic is defined in terms of direct access to a class' operations [56] and SQL opera-
tions [10], or micro-processes defining read and write accesses to objects' attributes [9] (Fig. 3
left), in MERODE, the connection between the business process layer and the domain layer (or
database layer) happens through the intermediary of input and output services and business
events (Fig. 3, right). Input services can be kept simple or can incorporate logic that is reusable
across different variants of similar tasks. Where to put what logic in view of balancing flexibil-
ity against business logic enforcement is discussed superficially in [13], chapter 10.

Fig. 3. Connecting the BPL to Data Objects: current approaches (left) vs. MERODE (right)

CLASS
Operation 1
Operation 2

CLASS
Operation 1
Operation 2

CLASS
Operation 1
Operation 2

CLASS
Operation 1
Operation 2

TASK2

Input
Service

Output
Services

CLASS
Operation 1
Operation 2

CLASS
Operation 1
Operation 2

CLASS
Operation 1
Operation 2

CLASS
Operation 1
Operation 2

EventTASK1

SQL
(Read)

SQL
(Read)

TASK1

Fig. 2. MERODE layers: BPL (green), ISL (yellow), EL

(blue) with two sublayers: EHL and DL.

EL

EHL: Business Event
Handling (VP3)

ISL: Input Services (VP3)

BPL: Business Processes (VP4 + VP5)

DL: Business Objects
Data (VP1) + Lifecycles (VP2)

ISL:
Output
Services

(VP3)

9

It should be noted that the layers in Fig. 2 are conceptual layers. In line with model-driven
engineering, platform choices will dictate the transformation to an implementation architecture,
and will entail choices related to, e.g., the centralised or distributed character of the imple-
mented system.

4 Co-modelling Domain and Business Process Layer

Given the need of jointly addressing the business process modelling and domain modelling, this
section explains how to combine a domain modelling focus with a process focus. We illustrate
the proposed approach by means of an expanded version of the recruitment process from [4].
The example describes a process of people applying for a PhD position, requiring reviews of
their application forms before deciding to hire the candidate or not. The example is expanded
with additional processes to better illustrate the co-modelling of the domain and business pro-
cesses. The following paragraphs first describe the general steps of a domain and BP co-mod-
elling process (Section 4.1). Subsequently, section 4.2 describe the MERODE domain model
that can be used to generate the EL and ISL. Section 4.3 focuses on the modelling of the busi-
ness processes, and how the concepts in the business process models are connected to the con-
cepts of the EL.

4.1 General Steps

The layers discussed above are a software organisation instrument, and the order of the layers
is independent from how the requirements gathering and engineering is organized. Current
software development practices mostly organize the requirements gathering step along the con-
cept of "User Stories" (Agile Software Development) or "Use Cases" (UML). As software or-
ganisation is none of their concern, when users formulate system requirements during require-
ments elicitation, they usually tend to mix domain knowledge specifications with information
system service requirements and business process requirements. The requirements cycle thus
requires additional steps besides requirements gathering. A first step deals with classifying the
different requirements according to the different layers, meaning that we will separate require-
ments that describe objects in the problem domain, information system service requirements
and business process requirements, and classify all these requirements in the appropriate layer.
Next, the models can be developed, starting with the stable layers first, and proceeding to the
upper layers. Finally, the requirements validation step will verify the mutual consistency of all
models, and validate the models with the user, e.g. by means of prototyping.

Fig. 4 illustrates the four steps of the requirements cycle: starting with requirements gathering
and classifying the requirements according to the layers, followed by the bottom-up creation of
the domain model, Information System Services and (re)designing the business processes, and
finally validating with the users, e.g. through prototyping. The whole process is highly iterative,
including micro-iterations within and between steps, and ends when a stable solution is ob-
tained.

For the example on hiring PhDs, each of the steps can be illustrated as follows
a) During the requirements gathering, a user may utter a statement like: "When I'm re-

quested to perform a review of an application, I'd like to be able to refuse. In case I
accepted, to facilitate the review process, I'd like to be able to see the text of the
vacancy next to the applicant's file. It's also important that I can download the whole
application as one pdf file so that I can easily read it on my tablet. When I have

10

finalized and submitted my review, I'd like to receive a copy of my review in my mail-
box.".

b) In the classification step, the statements of users need to be decorticated and separated
to atomic requirements. The elementary requirements related to the process (e.g. the
possibility to refuse a review request), to information system services (required ser-
vice for downloading an application as a single pdf), and elements of the domain
model (required information on business objects APPLICATION, VACANCY and
REVIEW) are isolated into the right layer.

c) In the model building step, the business object REVIEW can be added to the domain
layer, as well as the status 'submitted' in the corresponding OLC. A message event
refuse review request may lead to a backward loop in the process model to find an-
other reviewer.

d) The (updated) models can then be validated, making use of prototyping. The
MERODE approach supports the fast prototyping of the domain model with default
information system services and manual execution of the business processes. It is also
possible to generate REST service interfaces to this application to connect Business
Processes for simulation of processes in the Camunda BP Engine.

Fig. 4. Requirements gathering versus requirements engineering with MERODE

The following paragraphs further detail the creation of different models and a set of tables
specifying the links between the models. Fig. 5. provides an overview of the created models
and their links. At the bottom, the three MERODE-models are shown: on the right a class dia-
gram (1) defining the conceptual data model for the domain; on the left one state chart per
object type in this class diagram (3), and in the middle the object event table (2), linking the
object types in the class diagram to the state charts. This is further explained in section 4.2. At
the top-right, a collection of business process models (6) defines how work is performed. Busi-
ness Rules tasks will link to a decision model defined using DMN (7). Activities may also
require information from the domain model, or to register some changes to information (5). The
former is realized by means of an output service, while the latter is realized by means of input
services (4). This is further explained in section 4.3.

Interview users about
their business processes,

their User Stories/Use
Cases

and discover Business
Objects and Business
Rules on the way

Define the (new) ways of working
through business process modelling

Define the services that can be
offered based on this domain model

Create the domain model to
establish agreement on business
objects, their relation-ships and
business rules

Requirements Engineering Requirements gathering

Business Process
Layer

Information System
Services Layer

Enterprise or
Business Objects

Layer

Requirements Validation

Requirements Classification

A

B

C

D

11

Fig. 5. Overview of the combined BPMN + DMN + MERODE approach

4.2 The MERODE Domain Model (EDG, OET and FSMs).

To illustrate the construction of a MERODE domain model, we use the small example from
[9] and start from the list of requirements for hiring PhD Students1. The classification into layers
is performed implicitly during the elaboration of the example. In the EL, the domain model
defines the business object types and their associations by means of a UML class diagram in
which all associations express existence dependency, therefore also called ‘Existence Depend-
ency Graph’ (EDG). It is obtained by means of systematic association reification for all associ-
ations that do not express existence dependency, thus identifying important ‘relators’ [57] as
explicit business concepts. For the given case, information about the vacancy, the applications,
the reviews of the application and notes from the interview are identified as business objects
(VACANCY, APPLICATION, REVIEW, INTERVIEW). The class diagram is shown in Fig. 6. Note
that while attributes are not visible in the class diagram, they can be defined and explored for

1 The document with the full description of the case and the resulting models is provided in the Appendix. In addition, a more

elaborated version of the same example is provided as well.

12

each class using the inspector tool of MERLIN. The same tool can be used to document a class's
definition, preconditions and postconditions, to visualize the class's operations and associations,
and to define constraints.

Fig. 6. UML class diagram (EDG)

Each class in the class diagram is also equipped with a State Chart (Finite State Machine,

FSM) to capture the relevant state of a business object. For example, a VACANCY may be in
draft mode, published, or closed. An APPLICATION can be in draft, submitted, reviewed, evalu-
ated, etc. MERODE defines business events as phenomena shared between the real-world and
the information system [58], and operationalises these as 'call events' (in UML these are a sub-
category of message events) that may trigger state changes in several business objects. The
mapping of business events to business object types is captured through the Object-Event Table
(OET), where each cell indicates the type of state change that may be caused by the business
event: C (creation), M (modification), or E (ending). A marked cell thus means that the class of
the corresponding column needs an operation to handle the event of the corresponding row.

By default, MERODE assumes at least two business events per business object: one for the
start of its life, and one for the end of its life, thus leading to default events such as EVcrVa-
cancy, EVcrApplication, EVendVacancy, etc. The elicitation of additional business events hap-
pens through the analysis of the business processes. The process of opening the vacancy makes
clear that additional events are needed for triggering a state change due to submitting it for
approval (EVsubmitVacancy), the outcome of the verification process, EVapprove, EVdisap-
prove), and publishing it (EVpublish). The next big step is receiving and evaluating applica-
tions, leading to the discovery of business events triggering state changes in the APPLICATION
business object type.

Each of these events constitutes a row in the OET, and the involvement of a business object
in an event gives rise to the definition of an operation in the corresponding class. Hence, the
VACANCY business object will be equipped with a MEsubmit operation to handle the occurrence
of the EVsubmit event, a MEapprove operation triggered by the EVapprove event, etc. The
propagation rule defines a correspondence (consistency rule) between the EDG and the OET: a
master object will always be affected (at least indirectly) by the events affecting its dependents.
This indirect participation is labelled 'A' (from Acquired), whereas the most dependent object
affected by a business event is labelled as 'Owner' (O) of a business event. For example, EVde-
cideToHire is owned by APPLICATION, but will indirectly also affect the related VACANCY as
indicated in Fig. 5. Both APPLICATION and VACANCY are thus each equipped with an MEde-
cideToHire operation that will affect their state when this event happens:
APPLICATION.MEdecideToHire will move the APPLICATION to a state 'CandidateToHire' and
the VACANCY.MEdecideToHire will move the VACANCY to a state 'CandidateHired'.

13

Fig. 7. OET

Object behaviour is defined by means of FSMs showing how the events will cause state tran-
sitions. Each object type has a default lifecycle consisting of creating an object (triggered by
any of the */C business events), having an arbitrary number of modifications in a random order
(triggered by its */M events). Transitions triggered by a */E business event bring the object to
the final state. A more specific FSM can be defined when needed. Fig. 8 shows the FSMs for
REVIEW, APPLICATION and VACANCY. INTERVIEW has a default lifecycle. Because of the fact
that a same business event may be reacted upon by several business objects, objects will syn-
chronise and interact by means of joint participation to business events (according to the se-
mantics defined in the CSP process algebra [59]). The propagation rule allows a master to adjust
its state upon activities and/or to restrict activities of its dependent object types. For example,
the lifecycle of APPLICATION shows how events relating to reviews can only happen after an
application has been considered eligible, and new reviews cannot be initiated once a final deci-
sion to hire or not has been taken. In the lifecycle of VACANCY, the decision to hire a candidate
will cause a state change for the vacancy to the state CandidateHired ensuring that other candi-
dates can no longer be hired.

14

Fig. 8. Lifecycles of Application, Vacancy Review, and Interview

At this stage, it is already possible to simulate the domain model. Thereto, default input and
output services and a default user interface can be generated. Fig. 9 shows the interface of the
prototype application for this domain model.

15

Fig. 9. Interface of the prototype application, with the pop-up resulting from triggering the Event EVcrVacancy.

4.3 The Business Process Layer: Business Process Models

While the EL captures behaviour on a per business object type basis, the BPL will capture
other aspects of behaviour relating to users, task attribution and permissions. Fig. 10 shows the
top-level process for hiring a PhD student, and Fig. 11 shows the expanded subprocess for
opening a vacancy. To obtain an executable process model, 'Open Vacancy' and 'Evaluate Ap-
plication' are modelled as Call Activities so that the subprocess can be invoked from the global
process (as required by Camunda).

Fig. 10. Top-level process for PhD Hiring.

16

Fig. 11. Open Vacancy subprocess.

Activities in the business processes may invoke input and output services to obtain infor-
mation from the data layer and update information. The distinction between input and output
services follows the command-query separation principle advocated in domain-driven design
[26]. In particular, input services are commands that trigger one or several events. Output ser-
vices query the domain objects, and must be free of side effects. In the requirements engineering
and modelling phase, we temporarily skip the detailed definition of information system ser-
vices, and establish the correspondence between the process model and the domain layer di-
rectly. We do this by setting the correspondences with the business object types and their at-
tributes and with the business event types. On the one hand, information needs per task will
identify which business objects and attributes are needed as input, and on the other hand a
task/business event mapping can be performed. We choose not to represent the data artefacts in
the business process model, but rather to document the mapping using tables in a similar way
as in [60]. Table 1 shows this mapping for the 'Open Vacancy' subprocess and the top-level
process. For each process, all simple tasks are listed, and per task their information needs in
terms of required domain objects and their attributes are identified as well as the business events
needed to register the creation of new information or the update or deletion of existing infor-
mation. As such, these tasks allow identifying the required attributes for a vacancy. In addition
to the business events already explained above, the 'Edit Vacancy Details' task requires defining
an EVmodVacancy business event. In the top-level business process, the tasks 'Republish Va-
cancy' and 'Close Vacancy' trigger a state change in the VACANCY object using the correspond-
ing business events EVpublish and EVclose. Finally, some tasks do not need specific elements
in the domain layer, as their execution is performed by a service not interacting with data (e.g.
it is assumed that the content of the 'Request Adjustments message' is not stored in the domain
model). It should be noted that in its current form, Table 1 is used as a requirements engineering
tool, and cannot yet be used for automated code generation. As explained in section 4.4, further
detailing of information system services is required.

17

Table 1 Task-Domain Model mapping for the Open Vacancy subprocess

Process / DT Task Invoked Business
Event

Information Needs

Open Vacancy
(Supervisor)

Create Vacancy EVcrVacancy Vacancy.*
Edit Vacancy Details EVmodVacancy Vacancy.*
Cancel Vacancy EVendVacancy Vacancy.*

Open Vacancy
(HR)

Verify Vacancy Details EVmodVacancy Vacancy: details, description, availa-
ble budget, DescriptionQuality

DecideOnApproval EVapprove, EVdis-
approve

Vacancy.*

Publish Vacancy EVpublish Vacancy.*
Request Adjustments -- --

Top-level Process Close Vacancy EVclose Vacancy
Republish Vacancy EVpublish Vacancy.*

Approve Vacancy Approve EVapprove Vacancy.*
Disapprove EVdisapprove Vacancy.*

The decision on approval could be modelled as a business rule (BR) task. However, Camunda

assumes that BR tasks are executed automatically. Therefore, we precede the (automated) de-
cision task with a human check task 'Verify Vacancy Details', where a human actor sets the
values of all decision parameters: are details complete, is the description quality OK, and is
there sufficient budget? The subsequent decision task can be executed based on the decision
table shown in Table 2.

Table 2 Decision Table for Approving a Vacancy

As shown in the last two rows of Table 1, the DT's output corresponds to the invocation of

the corresponding business events (EVapprove, EVdisapprove) via an information system ser-
vice. All required input data can be mapped to attributes of the VACANCY business object.

The process for evaluating an application is depicted in Fig. 12. The Faculty's HR consultant
will start the process when the deadline for application has been reached. The task 'Check Eli-
gibility' is a BR task that will use output services to inspect the application file and then use an
input service to trigger either the EVsetEligible or the EVsetIneligible business event for this
application. The next task of the HR Consultant is to ask for reviews from three professors, to
be looped until three professors have accepted. Each professor may accept or refuse the request.
In order for the data-based gateway to decide which path to follow, the outcome of the decision
needs to be passed on from the 'Decide on Review Request' task to the gateway. In the simpli-
fied version we choose not to treat the request as a business object, but to keep the information
about issuing the request, its acceptance or refusal as events in the business process layer. These

18

events can be logged for process monitoring purposes, but the consequence is that for a refused
request no object is created in the domain layer but it is only kept as data object in the process.
In the more elaborated solution in the appendix, an alternative is given where a domain object
is created as result of the request for a review2.

The 'Write Review' task may include updates if a professor decides to take time to think it
over, and will be concluded by submitting the review. Thus, the task 'Write Review', will trigger
the business event EVcrReview when started, possibly trigger a number of EVmodReview events
during its execution, and finally end by triggering an EVsubmit business event.

Working with a business process layer allows adding or changing business processes, and
such addition or change may not always require modification of the domain layer. It could e.g.
be decided that a review by the international office is needed in case of international candidates.
The process model in Fig. 12 can easily be adjusted to reflect this new requirement, without
needing to change the domain model. This aspect relates to work organisation, and the criteria
to request a review by international office may change over time. the criteria for routing an
application through the international office can be modelled at the level of a gateway in this
process. By managing these criteria in the BPL, maximal flexibility for adjusting the criteria
for performing this task is ensured.

The invocation of the events through the event-handling layer will trigger the necessary
changes in the data layer while being subject to the constraints defined by the associations,
multiplicities and FSMs in the EL. Connecting the BPL to the EL by means of a table suffices
for simple one-to-one mappings. A more complex mapping would require integration with
MERODE's extension for UI Design [61].

Fig. 12. Business Process for evaluating an application.

2 The data objects are not included in Figs. 10-12 to keep them more legible. In the appendix, the data objects have been added

to Fig. 12.

19

4.4 Proof of Concept of Model Integration

MERODE allows generating Java applications as prototypes of the EL with default IS services
in an ISL. Assume the steps of reviewing an application and taking a decision. Fig. 13 on the
left shows the layered structure of such application. The generated Java Swing interface allows
to "View" the details of an Application () and from there to navigate to the details of its
Reviews (). The User Interface (UI) accesses the objects making use of SQL. When a decision
is taken to hire a candidate, a corresponding button will trigger the EVdecideToHire event ().
The event-handler will check the permissibility of hiring the candidate against the status of that
application (). If allowed, the state changes are performed by invoking the corresponding
class's operation (). The result (error or success) is notified to the UI ().

To add a BPL layer, we used the Camunda BPM platform and the Camunda Modeler. Ca-
munda3 was chosen for being open source Java-based and providing a free demo account. In
the Camunda BPM platform, Task lists manage users' interactions with their tasks; The Ca-
munda Cockpit web application presents the users facilities to monitor the implemented process
and its operations; Camunda Admin is used to manage the users and their access to the system.
For example, groups can be created and different authorizations can be managed for distinct
participants. In addition, Camunda supports the integration of DMN: decision tables such as
Table 2 can be handled in a fully automated way.

As Table 1 is at this point in time still an informal requirements engineering instrument, some
additional work is required to connect the MERODE application to the Camunda BPM plat-
form. Most importantly, the process models need to be made executable by defining the proper
process variables, and linking tasks to application services. To obtain the services needed by
the process engine, input and output services need to be defined. The Proof of Concept makes
use of the default input and output services obtained from the domain model: the EL and the
EHL are wrapped and exposed as REST web-services by using the corresponding code-gener-
ator's option [62]. The Java user interface is then replaced by Camunda Task Forms and Service
Tasks. The forms take the structure of an HTML document and manipulate business objects
through the generated default RESTful web services [63]. For now, the forms are created man-
ually, but they could be generated from UI models [61]. A demo of the implemented example
can be found online4, as well as the description of a more elaborated example in the appendix.
Fig. 12, right shows the corresponding layered structure. The EHL ensures that sequence con-
straints as specified in the lifecycles are respected. The MERODE checking algorithms ensure
that these lifecycles together define deadlock-free system behaviour [14].

3 https://camunda.com/
4 http://merode.econ.kuleuven.ac.be/MERODExBPMN.html

20

Fig. 13. Layered architecture of a generated Java prototype (left) and after integration with a BP Engine (Right).

5 Evaluation

To evaluate to what extent the combination of MERODE and BPMN may support data-aware
process modelling, different evaluation methods, in line with [40] can be considered. To per-
form an analytical evaluation, different sets of evaluation criteria can be considered. The most
elaborated set of functional evaluation criteria are the 20 requirements formulated by Künzle et
al. [4]. The DALEC framework [3] also provides a large set of criteria. However, the functional
and modelling perspectives are covered in less detail compared to the requirements of [4], while
on the other hand more criteria can be found addressing process deployment, execution and
evolution. As the present paper focuses on the modelling aspects, an analytical evaluation is
performed according to the 20 requirements in [4], based on the experiences with implementing
the prototype (both for the smaller and the larger case study) resulting from combining a gen-
erated MERODE-application interacting with a Camunda BPM engine through REST inter-
faces. Künzle's requirements are developed around four sets of important properties for object-
aware processes. First, section 5.1 elaborates on these four properties. Then, the different re-
quirements are evaluated one by one in section 5.2. An extensive comparative evaluation of
other approaches can be found in [4] for approaches until 2011, and in [3] for approaches until
2016. Both comparative evaluations show that existing approaches are still failing to meet a
substantial set of criteria. The PHILharmonicFlows approach aims to fill these gaps. Section
5.3 therefore compares the MERODE+BPMN approach to PHILharmonicFlows as this is likely
the most complete approach today. Finally, the running example and elaborated case study pro-
vide a descriptive evaluation of the "Scenario" type as well as an Analytical evaluation of type
"Dynamic Analysis" through the implementation of the example and the ability to test the re-
sulting implementation.

5.1 General Properties

Properties relating to data. Data should be managed based on object types (including at-
tributes) which are related to each other. The EDG-part of the MERODE model addresses these

21

requirements. Furthermore, [4] identifies a hierarchy between objects, whereby an object that
references another object is considered a "lower level" object and the referred to object the
"higher-level" object, e.g. a job application being the higher-level object instance of a set of
associated reviews. This corresponds exactly with the notions of master and dependent as spec-
ified in the MERODE method, where the Vacancy object type would be the master of the Ap-
plication object type, which in turn is the master of Review and Interview object types.

Properties relating to activities. The different types of activities that are identified in [4]
can be addressed. Per default the triggering of a single business event, and therefore input tasks
relating to a single instance, are supported, as well as viewing the details of individual objects
or lists of objects and navigating to related objects. While not provided per default in the pro-
totype, more complex queries and transactions triggering multiple events can be programmed
(cfr. chapter 9, [13]).

Properties relating to processes. The modelling and execution of processes is based on two
levels of granularity: object behaviour and object interactions, a requirement that is satisfied
by the MERODE method. In addition, the ISL and BPL allow for defining coarser-grained
levels of behaviour (complex transactions and processes).

Properties relating to users. The notion of a user is not part of a default prototype
MERODE-application: per default any user has access to any operation. But the Camunda Ad-
min can be used to manage the users and their access to the system.

Monitoring. The overall state of the process is made transparent by means of default output
services allowing to view the state of individual objects. If needed, specific queries can be run
on the database to provide for more specific reports. The Camunda Cockpit provides additional
information.

5.2 Individual Requirements

In what follows, we go over the different categories in more depth and clarify the twenty
different requirements for the evaluation of the prototype. A requirement is labelled  when
already fully satisfied by the proposed approach;  when minor extensions or adjustments
would be needed,  when complex adjustments or extensions would be required the basic ideas
of which have already been described, and with a '' if not supported.

Data
R1 (Data integration, ) describes the need for data objects that should comprise attributes

and have connections to other objects [4]. This requirement is met by the MERODE EDG which
presents the connected structure of the business object types.

R2 (Access to data, ) pertains to authorisations. While the Camunda Admin allows man-
aging this partly, data-based authorisation management would require setting an authorisation
system in place. Full satisfaction of this requirement is possible, but it is not yet satisfied by the
out-of-the-box approach.

R3 (Cardinalities, ) requires the possibility to set cardinalities on relationships. The
MERODE-approach allows setting a minimum constraint of 1, but for maximal constraints
higher than 1, it uses the UML default of many (denoted as "*"). Setting a specific maximum
number larger than one is possible but would require (straightforward) application specific cod-
ing. This requirement is thus largely satisfied.

R4 (Mandatory information, ) requires the ability to distinguish between optional and man-
datory attributes and to forbid proceeding further when mandatory attributes are missing. Per
default, the generated code considers all attributes mandatory and will refuse the entering of

22

incomplete data. Allowing for optional attributes is straightforward when hand coding or with
minor adaptations of the code generator.

Activities
R5 (Form-based activities, ) defines form-based activities as "comprising a set of atomic

actions. Each of them corresponds to either an input field for writing or a data field for reading
the value of an object attribute". Making use of the REST interfaces and custom UIs, any type
of form can be developed, or even generated automatically at runtime. Thus, R5 is satisfied
through custom development.

R6 (Black-box activities, ) activities enable complex computations or integration of ad-
vanced functionalities (e.g., sending e-mails or invoking web services). This requirement can
be satisfied through custom coding and using the REST interfaces.

R7 (Variable granularity, ) requires the ability to distinguish between instance-specific,
context-sensitive and batch activities so that users can to choose the most suitable action. The
EL and ISL layers allow for providing these services, but to allow users choosing at run-time,
CMMN should be used for the BPL rather than BPMN.

R8 (Mandatory and optional activities, ). Both at the level of FSMs, and at the level of
the Business Processes, mandatory and optional events/activities can be defined. E.g. asking a
review by International Office, may or may not be requested.

R9 (Control-flow within user forms, ) refers to adjusting the mandatory or optional char-
acter of an attribute on-the-fly while a user fills a form. Task Forms in Camunda allow for
making certain attributes mandatory for the execution of an activity. The on-the-fly aspect of
the requirement requires some custom-made logic.

Processes
R10 (Object behaviour, ) requires object type behaviour to be defined in terms of states

and transitions. This requirement is obviously satisfied. Driving process execution based on
states needs to be implemented at the business process layer, e.g. by means of rule-based events
that react to conditions becoming true.

R11 (Object interactions, ) requires the possibility to process object instances concur-
rently while synchronising them when needed. In MERODE, creation dependencies are natu-
rally enforced through the rules on existence dependency. A master object also has access to all
information of its (direct and indirect) dependents, thus satisfying the need for aggregative in-
formation. Execution dependencies, e.g. when switching an object instance to a certain state
depends on the state of another object instance, can be enforced by a master object managing
execution sequences across all its dependents. Some execution dependencies may need to be
managed by defining transactions that group events, or by defining a process that implements
the required logic. For example, initiating a re-order when a product is out of stock would be
implemented in the BPL, while the hiring of a candidate resulting in the automatic rejection of
other candidates can be implemented as a transaction in the ISL.

R12 (Process-oriented view, ). Refers to the possibility of distinguishing between optional
and mandatory activities in a process. In CMMN, this can be captured by distinguishing be-
tween mandatory and discretionary items. Until CMMN is integrated in the approach, in BPMN
a gateway can be used to allow skipping an optional activity.

R13 (Flexible process execution, ). When using BPMN to define the processes, flexibility
of processes as described by Künzle et al. will not be possible. A possible solution could be
using a case-based approach (e;g. CMMN) instead of BPMN.

R14 (Re-execution of activities, ) states that the re-execution of activities should be al-
lowed, even if mandatory attributes are already set. The example that a person may change

23

his/her application arbitrarily often until s/he explicitly agrees to submit it, is modelled by the
self-loop 'EVmodApplication' in the Application FSM.

R15 (Explicit user decisions, ) requires allowing users to choose between execution
paths. This boils down to having gateways relying on user decisions rather than domain data to
choose the next activity. As shown in the above examples, this requires the outcome of the user-
based decisions to be captured as a data element. In the case of the Vacancy Approval process,
the user reviews the vacancy and adds judgements to the vacancy object (e.g. set Description-
Quality to OK), upon which a Business Rule task can be used to execute and register the deci-
sion. The new object's state can be read by the gateway to route the process accordingly. In the
case of the Review process, the user decision is registered as process variable that is then used
by the gateway. This illustrates the different ways of combining BPMN with DMN [64] or
having simple user-based routing.

User Integration
R16-R19 () deal with different forms of authorisations. Camunda offers a number of func-

tionalities relating to the authorisations. A full-fledged authorisation system, combining the no-
tions of user roles, their tasks and access to the required data is beyond the scope of the current
proof-of-concept. The general design of such authorisation system has been described in [13].
A practical implementation has been elaborated in the context of B-MERODE [65]: in the EDG
relevant business objects are included and labelled as participants. A participant-event table
determines what participant is allowed to trigger what event. Furthermore, constraints can be
added to manage the "vertical" authorisation: e.g. ensuring that reviewers can only update their
own reviews. Considering the separate requirements, R16 (Data permissions) can likely be
addressed following the B-MERODE approach. R17 (Process authorization) should be handled
in the Camunda Cockpit. R18 (Differentiating authorization and user assignment) cannot be
addressed easily, whereas R19 (Vertical authorization and user assignment) can be addressed
using the B-MERODE approach. How exactly to combine the B-MERODE approach with the
authorisations provided by Camunda requires however further research. These requirements are
therefore considered as not yet satisfied.

Monitoring
R20 (Aggregated view, ) states that process monitoring should provide an aggregated

view of all object instances involved in a process as well as their interdependencies. The data-
base in the MERODE-application provides information about the objects, their dependencies
and their states. In the prototype application, the database can be directly queried by using the
database interface (HSQL database manager). The Camunda Cockpit provides information on
tasks and users. Event logging is another source of information that may provide useful insights.
Per default, the prototype application logs all actions in a log file, with the purpose of providing
the business analyst information on test coverage [66].

In summary, most requirements are satisfied immediately or easily by the out-of-the-box ap-
proach, though custom coding may be needed in addition to the default code generation. The
addition of an authorisation layer (R2, R16-19) and support for different forms of flexibility
(R7, R13) would require further elaboration of the approach.

5.3 MERODE versus PHILharmonicFlows

To compare MERODE with the PHILharmonicFlows framework (PF for short), we considered
the papers listed on the PHILharmonicFlows project page [67] and selected the publications

24

that, according to their title or abstract, describe the PF framework or tools. The following
sources were consulted: [9], [68–70].We will not provide a detailed explanation of the PF
framework in this paper, but direct the reader to the mentioned sources for the substantiation of
the comparison below.

Both approaches show important similarities:

1. Both approaches combine a data model with lifecycles per object type.
2. Both approaches have split levels of process definition: micro and macro processes in PF

versus FSMs and BP models in MERODE.
3. Both approaches are supported by a modelling tool that provides model verification .

There are nevertheless some important differences as well. The discussion of these differences
can be structured according to the properties listed in section 5.1
Differences related to data

1. PF has a semi-hierarchical relational data model (data levels and unidirectional relations)
that still allows self-references and cyclic relations, while in MERODE the EDG has
stronger semantics for ED relationships that have been formalized by means of process
algebra, and, based on this formalization, forbids self-references and cyclic relationship
[14, 71].

2. PF has a "creation context" that ensures the cardinality constraints from the data model
are maintained at runtime. MERODE automatically ensures the observation of maximum
one multiplicities, issues warnings for the non-observation of minimum one cardinalities,
enforces referential integrity constraints resulting from the existence dependency associ-
ations, and allows the modeller to define path constraints in the modelling tool. Other
types of constraints are formally defined in the specification of the approach, but are not
(yet) included in the implementation of the modelling tool (e.g. uniqueness constraints).

Differences related to activities
3. In PF, activity forms are generated based on the states of micro processes. In MERODE,

activities are part of the business process layer.
Differences related to processes

4. A major difference is that PF is data-driven while MERODE is event-driven, resulting in
a different definition of the lifecycles. In PF, micro process types can be described as
lifecycles of object types in which each state corresponds to an activity of one or more
users and specifies the attributes for which a value can be set at that point in the lifecycle
of an object type. Because FP is data-driven, the enabled state of an object can be deter-
mined based on its available attribute values. The interactions between states of different
object types have to be modelled in separate macro process types. In case more than two
objects need to interact, this can be achieved by the use of parallel paths in the macro
process. In MERODE, lifecycles are defined as simple FSMs where the label of a transi-
tion represents all events that can trigger the transition. The states represent the progres-
sion of a single object instance through its lifecycle, rather than being defined in terms of
the values of its attributes. Consequently, object types will typically have less attributes
in MERODE than in PF, given that some attributes become obsolete (e.g.: the Boolean
attribute "ended" can be discarded as the final "ended" state of the FSM captures all rel-
evant information). Given that the OET defines which object types participate in shared
events, the FSMs inherently defines object interaction in an event-driven way. Im-
portantly, this interaction is a multi-party interaction: more than two objects can react to
the same event, thus providing very compact modelling compared to how this is

25

addressed in macro process types in PF. The order of entering/modifying attribute values
is not defined and user roles are not allocated to given process tasks.

Differences related to users

5. PF defines data object types and user types separately, while MERODE makes no dis-
tinction: user types are to be included in the EDG as data object types. In PF, User types
have attributes describing the user role, and authorization is implemented with constraints
on these attributes (e.g. course coordinator and professors must have the same value for
the attribute "faculty"). Relation between users and user roles is defined at runtime. Alt-
hough MERODE does not explicitly define user roles, in many cases, the existence de-
pendency allows modelers to easily embed the required constraints as path constraints.
The generated application allows to create new instances of the data object types repre-
senting the user and the user roles, and managing them as defined in the models.

6. PF includes information flow modelling regulating the authorization of the users and the
generation of forms that allow the authorized users to complete their tasks. This is not
included in MERODE.

Differences related to monitoring
7. Both approaches provide suitable monitoring at runtime.

It is important to observe that the PHILharmonicFlows framework was developed with the main
goal of meeting the requirements listed in section 5.2 [72], while MERODE was developed
independently. Therefore, the symbiosis between PF and the requirements is much larger than
between MERODE and the requirements. In order to counteract this bias, we list some addi-
tional differences between MERODE and PF below:

8. PF is a proprietary modelling language, given that the business process has to be modelled
as micro and macro process types as defined by the framework. A major issue for practi-
tioners is the high effort required in learning how to apply new model-based software
engineering approaches and how to use the corresponding tools [51]. MERODE mitigates
this problem by using a set of industry standards as modelling languages for the enterprise
layer. The business process layer allows the modeller to use their process modelling lan-
guage of choice for specifying the processes platform independent. Because of its com-
bination of several independent modelling language, MERODE truly is a multi-model-
ling approach.

9. In PF, the micro and macro process types only capture the to-be-implemented business
process. In MERODE, the FSMs are a complete representation of all possible paths
through the lifecycle of an object type irrespective of a specifically considered to-be-
implemented business process, whereas the to-be-implemented business process is mod-
elled in the business process layer. The sequence in which events are invoked in the busi-
ness process must always comply with all FSMs. This allows the modeller to separate the
allowed object behaviour (FSMs) from the actual workflow (BP layer) which is more
likely to change over time. The models in PF are more intertwined with each other given
that the interaction of micro processes is explicitly modelled in a macro process (see also
bullet point 4). Therefore, the layered architecture of MERODE provides a separation of
concerns, allows the modeller a certain level of flexibility when it comes modelling the
business process. The cost of this flexibility is the lack of formal integration between the
BP layer and the other layers. This paper has addressed that challenge by integrating the

26

MERODE approach and BPMN, but it would equally be possible to define a formal in-
tegration with other process modelling languages, e.g. CMMN.

10. The PF modelling tool and runtime environment do not seem to be publicly available (at
least not through the PF website), whereas MERODE provides a dedicated website5 with
a publicly available modelling tool and code generator. Additionally, the website contains
supplementary materials such as an FAQ for the tool installation, course slides and a
database of cases.

6 Discussion

Ideally, process modelling should be "data-aware" in the sense that an existing domain model
is presumed to exist or to be developed jointly. Possibly process modelling may require revis-
iting the domain model. Similarly, domain modelling should be conscious of the business pro-
cesses that need to be supported. As constraints set by a domain model will impact processes,
the conceptual domain modeller should be aware of which processes are hindered or made pos-
sible in order to make the right decisions during his/her data modelling.

While the modelling part has been already extensively applied, the main limitation of this
research is that the operational validation of the transition from model to code is limited to an
out-of-the-box implementation using the default application generated by the MERODE-code
generator and linking it to simple Camunda service and form tasks by means of the default
REST web-services generated by the code generator. Nevertheless, this basic proof-of-concept
combining MERODE with BPMN and DMN to realize a running process and data-aware ap-
plication is able to satisfy a majority of the 20 requirements defined in [4]. This comes as no
surprise given that the MERODE approach contains the main ingredients defined in the BALSA
framework [7]. Providing integration of MERODE with a case-based approach next to BPMN,
could help to achieve the for now unsatisfied requirements on process flexibility. Investigating
Camunda Admin's possibilities more deeply and implementing a data-based authorisation sys-
tem along the proposal of B-MERODE requires further investigation and would be key to sat-
isfy the authorisation-related requirements.

A review of data-centric approaches in [5] reveals that their usability is a source of concern.
On the other hand, research also shows that UML-class diagrams and UML state charts are
amongst the most-used modelling languages [39]. Combining these "modelling favourites" with
BPMN could meet the usability concerns and stimulate the uptake of data-centric process man-
agement. While the above evaluation shows that the combination of MERODE, BPMN and
DMN does not yet address all the requirements set forward in [4], the fact that the approach
proposed in this paper is based on industry standards and publicly available tools can be con-
sidered as important advantages that may contribute to the uptake of data-ware process model-
ling approaches. An in-depth evaluation of the approach for its usability and effectiveness could
be based on the Method Evaluation Model [73], possibly enriched with dimensions of other
models on technology acceptance to e.g. evaluate the impact of facilitating conditions, habit,
price, etc [74]. Preliminary insights were already gained from the method’s use so far. Teaching
the MERODE + BPMN approach to students for more than 10 years has provided insights into
what makes the approach easy to use or not, as a result of which teaching material and the
approach itself have been systematically clarified. The approach has also been taught to Enter-
prise Architects for more than 5 years, thus allowing for an evaluation by approximately 100
professionals. The course evaluation questions gauging for the relevance, utility and

5 http://merode.econ.kuleuven.be/Tools.html

27

interestingness of the approach systematically obtain scores above 6 out of 7. In their (informal)
comments, the Enterprise Architects in particular value the innate data-centric process aspects
embedded in the MERODE approach.

The whole process of generating and starting the web services, setting up the connection with
Camunda, etc. requires several steps [63], but could ideally be done with less hassle. The ulti-
mate goal would be to achieve this through code generation as well, to allow for process vali-
dation through the integrated prototyping of a collection of processes and the supporting infor-
mation system with just a few clicks. To proceed beyond prototyping and avoid the costly man-
ual coding of forms, a full-fledged low-code or even no-code approach should be aimed for.
This would be require expanding the current set of models with presentation models and func-
tional models as in [23, 75].

Finally, process verification has not been addressed in this paper. The process algebra for-
malisation of MERODE provides extensive consistency checking [76], but checking the con-
sistency of the combined state charts against a business process model needs further investiga-
tion. An initial study has been published in [43], but requires further extension to achieve sup-
port for process verification as a complement to the above-mentioned validation through inte-
grated prototyping. The same holds for verifying the consistency of the data flows (including
e.g. read activities against the domain model. An in-depth analysis of the level to which data-
flow anomalies [60] are catered for by the consistency checks in the MERODE domain model
remains to be done, as well as specifying modelling guidelines similar to those ensuring a cor-
rect combination of decision modelling and process modelling [2, 64].

7 Conclusion

Combining MERODE with BPMN and DMN allows addressing more perspectives than cur-
rently possible with Enterprise Modelling approaches, MDE approaches or data-aware ap-
proaches. The crux of combining model kinds resides in the operationalisation of the interrela-
tionships between the different model kinds, both in terms of how to express this as a modeler
as in terms of how to transform these models to a working application. MERODE already pro-
vides a no-code prototyping approach for artefact-centric modelling, while Camunda offers the
integration of BPMN and DMN. Combining both approaches yields a process, data and deci-
sion-aware modelling approach with a demonstrated operationalisation to an executable process
and decision-aware information system. The proof-of-concept of MERODE and Camunda pre-
sented in this paper provides interesting opportunities to elaborate its functionalities. Consider-
ing other process implementation platforms and augmenting the proposed approach with
CMMN can provide additional pathways for future research. The addition of a presentation
model and elaborating a meta-model for task/domain model mappings will allow generating
forms instead of hand-coding them. On the other hand, addressing the authorisation issues could
prove a challenge. Besides addressing the unfulfilled requirements, development of a proof of
concept with more complex models including completing the generated code by hand and using
more elaborate BPMN models would allow to gain deeper insights into the merits of this com-
bination. A formal evaluation of the approach could shed light on remaining issues, and how to
make data-centric process management easier to use.

References

1. ISO: ISO/IEC/IEEE 42010:2011 Systems and software engineering — Architecture
description, https://www.iso.org/standard/50508.html, last accessed 2021/12/10.

28

2. Hasić, F., De Smedt, J., Vanthienen, J.: Augmenting processes with decision

intelligence: Principles for integrated modelling. Decis. Support Syst. 107, 1–12 (2018).
https://doi.org/https://doi.org/10.1016/j.dss.2017.12.008.

3. Steinau, S., Marrella, A., Andrews, K., Leotta, F., Mecella, M., Reichert, M.: DALEC:
a framework for the systematic evaluation of data-centric approaches to process
management software. Softw. Syst. Model. 18, 2679–2716 (2019).
https://doi.org/10.1007/s10270-018-0695-0.

4. Künzle, V., Weber, B., Reichert, M.: Object-aware business processes: Fundamental
requirements and their support in existing approaches. In: Krogstie, J. (ed.) Frameworks
for Developing Efficient Information Systems: Models, Theory, and Practice. pp. 1–29.
IGI Global, Hershey, PA (2013). https://doi.org/http://doi:10.4018/978-1-4666-4161-
7.ch001.

5. Reijers, H.A., Vanderfeesten, I., Plomp, M.G.A., Van Gorp, P., Fahland, D., van der
Crommert, W.L.M., Garcia, H.D.D.: Evaluating data-centric process approaches: Does
the human factor factor in? Softw. Syst. Model. 16, 649–662 (2017).
https://doi.org/10.1007/s10270-015-0491-z.

6. Haarmann, S., Holfter, A., Pufahl, L., Weske, M.: Formal Framework for Checking
Compliance of Data-Driven Case Management. J. Data Semant. (2021).
https://doi.org/10.1007/s13740-021-00120-3.

7. Hull, R.: Artifact-Centric Business Process Models: Brief Survey of Research Results
and Challenges. In: Meersman, R. and Tari, Z. (eds.) On the Move to Meaningful Internet
Systems: OTM 2008. pp. 1152–1163. Springer Berlin Heidelberg, Berlin, Heidelberg
(2008).

8. Calvanese, D., Montali, M., Estañol, M., Teniente, E.: Verifiable UML Artifact-Centric
Business Process Models. In: Proceedings of the 23rd ACM International Conference on
Conference on Information and Knowledge Management. pp. 1289–1298. Association
for Computing Machinery, New York, NY, USA (2014).
https://doi.org/10.1145/2661829.2662050.

9. Künzle, V., Reichert, M.: PHILharmonicFlows: Towards a Framework for Objectaware
Process Management. J. Softw. Maint. Evol. Res. Pract. 23, 205–244 (2011).

10. Calvanese, D., Montali, M., Patrizi, F., Rivkin, A.: Modeling and In-Database
Management of Relational, Data-Aware Processes. Lect. Notes Comput. Sci. (including
Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). 11483 LNCS, 328–345
(2019). https://doi.org/10.1007/978-3-030-21290-2_21.

11. Artale, A., Calvanese, D., Montali, M., van der Aalst, W.M.P.: Enriching Data Models
with Behavioral Constraints. Ontol. Makes Sense. 316, 257–277 (2019).
https://doi.org/10.3233/978-1-61499-955-3-257.

12. Estañol, M., Sancho, M.R., Teniente, E.: Ensuring the semantic correctness of a BAUML
artifact-centric BPM. Inf. Softw. Technol. 93, 147–162 (2018).
https://doi.org/10.1016/j.infsof.2017.09.003.

13. Snoeck, M.: Enterprise Information Systems Engineering. (2014).
https://doi.org/10.1007/978-3-319-10145-3.

14. Snoeck, M., Dedene, G.: Existence dependency: The key to semantic integrity between
structural and behavioral aspects of object types. IEEE Trans. Softw. Eng. 24, 233–251
(1998). https://doi.org/10.1109/32.677182.

15. Snoeck, M., De Smedt, J., De Weerdt, J.: Supporting Data-Aware Processes with
MERODE. In: Augusto, A., Gill, A., Nurcan, S., Reinhartz-Berger, I., Schmidt, R., and
Zdravkovic, J. (eds.) Enterprise, Business-Process and Information Systems Modeling.

29

pp. 131–146. Springer International Publishing, Cham (2021).
16. Bernaert, M., Poels, G., Snoeck, M., De Backer, M.: CHOOSE: Towards a metamodel

for enterprise architecture in small and medium-sized enterprises. Inf. Syst. Front. 18,
781–818 (2016). https://doi.org/10.1007/s10796-015-9559-0.

17. Zachman, J.A.: The zachman framework for enterprise architecture. Prim. Enterp. Eng.
Manuf. Zachman Int. (2003).

18. The Open Group: The TOGAF® Standard, Version 9.2,
https://www.opengroup.org/togaf, last accessed 2022/02/26.

19. The Open Group: Archimate, https://www.opengroup.org/archimate-home, last accessed
2022/02/02.

20. OMG: Unified Modeling Language, https://www.omg.org/spec/UML/2.5.1/About-
UML/, last accessed 2022/02/26.

21. Sandkuhl, K., Stirna, J., Persson, A., Wißotzki, M.: Enteprise Modeling: Tackling
Business Challenges with the 4EM Method. Springer-Verlag Berlin Heidelberg (2014).
https://doi.org/10.1007/978-3-662-43725-4.

22. Frank, U.: Multi-perspective enterprise modeling: foundational concepts, prospects and
future research challenges. Softw. Syst. Model. 13, 941–962 (2014).
https://doi.org/10.1007/s10270-012-0273-9.

23. Pastor, O., Molina, J.C.: Model-driven architecture in practice: A software production
environment based on conceptual modeling. Springer Berlin Heidelberg (2007).
https://doi.org/10.1007/978-3-540-71868-0.

24. Ruiz, J., Serral, E., Snoeck, M.: Evaluating user interface generation approaches: model-
based versus model-driven development. Softw. Syst. Model. 18, 2753–2776 (2019).
https://doi.org/10.1007/s10270-018-0698-x.

25. Giraldo, F.D., España, S., Giraldo, W.J., Pastor, Ó.: Evaluating the quality of a set of
modelling languages used in combination: A method and a tool. Inf. Syst. 77, 48–70
(2018). https://doi.org/https://doi.org/10.1016/j.is.2018.06.002.

26. Evans, E.: Domain-Driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley (2004).

27. Neumann, C.P., Lenz, R.: α− Flow: A Document-Based Approach to Inter-institutional
Process Support in Healthcare BT - Business Process Management Workshops.
Presented at the (2010).

28. van der Aalst, W.M.P., Stahl, C., Westergaard, M.: Strategies for Modeling Complex
Processes Using Colored Petri Nets BT - Transactions on Petri Nets and Other Models
of Concurrency VII. Presented at the (2013).

29. Kiss, P.J., Klimkó, G.: A Reverse Data-Centric Process Design Methodology for Public
Administration Processes. In: K\Ho, A., Francesconi, E., Anderst-Kotsis, G., Tjoa, A.M.,
and Khalil, I. (eds.) Electronic Government and the Information Systems Perspective.
pp. 85–99. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-
3-030-27523-5_7.

30. Ouali, N.H., Tmar, M., Haddar, N., Tmar, M.: Models and Run-Time Systems for Data
Intensive Workflow Applications. In: 2017 18th International Conference on Parallel
and Distributed Computing, Applications and Technologies (PDCAT). pp. 429–436
(2017). https://doi.org/10.1109/PDCAT.2017.00075.

31. Tsoury, A., Soffer, P., Reinhartz-Berger, I.: Data Impact Analysis in Business Processes.
Bus. Inf. Syst. Eng. 62, 41–60 (2020). https://doi.org/10.1007/s12599-019-00611-5.

32. Rietzke, E., Bergmann, R., Kuhn, N.: ODD-BP - an Ontology- and Data-Driven Business
Process Model. CEUR Workshop Proc. 2454, 409–415 (2019).

30

https://doi.org/10.1007/978-3-319-77525-8_107.
33. Mertens, S., Gailly, F., Poels, G.: A Generic Framework for Flexible and Data-Aware

Business Process Engines. In: Proper, H.A. and Stirna, J. (eds.) Advanced Information
Systems Engineering Workshops. pp. 201–213. Springer International Publishing, Cham
(2019).

34. De Giacomo, G., Oriol, X., Estañol, M., Teniente, E.: Linking Data and BPMN Processes
to Achieve Executable Models BT - Advanced Information Systems Engineering.
Presented at the (2017).

35. Hasić, F., Smedt, J. De, Broucke, S. Vanden, Asensio, E.S.: Decision as a Service
(DaaS): A Service-Oriented Architecture Approach for Decisions in Processes. IEEE
Trans. Serv. Comput. 1 (2020). https://doi.org/10.1109/TSC.2020.2965516.

36. Estañol, M., Munoz-Gama, J., Carmona, J., Teniente, E.: Conformance checking in
UML artifact-centric business process models. Softw. Syst. Model. 18, 2531–2555
(2019). https://doi.org/10.1007/s10270-018-0681-6.

37. Deutsch, A., Hull, R.: Automatic Verification of Database-Centric Systems. 43, 1–13
(2014).

38. Calvanese, D., Ghilardi, S., Gianola, A., Montali, M., Rivkin, A.: SMT-based
verification of data-aware processes: a model-theoretic approach. Math. Struct. Comput.
Sci. 30, 271–313 (2020). https://doi.org/10.1017/S0960129520000067.

39. van der Linden, D., Hadar, I., Zamansky, A.: What practitioners really want:
requirements for visual notations in conceptual modeling. Softw. Syst. Model. 18, 1813–
1831 (2019). https://doi.org/10.1007/s10270-018-0667-4.

40. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems
research. MIS Q. 28, 75–105 (2004). https://doi.org/10.2307/25148625.

41. Dedene, G., Snoeck, M.: M.E.R.O.DE.: A Model-Driven Entity-Relationship Object-
Oriented Development Method. SIGSOFT Softw. Eng. Notes. 19, 51–61 (1994).
https://doi.org/10.1145/182824.182838.

42. Dedene, G., Snoeck, M.: Experience from M.E.R.O.D.E. Cases: on object-oriented
model-driven approach. In: O’Callaghan, A. and Thornes, S. (eds.) Practical experiences
of object technology. pp. 1–17 (1996).

43. De Backer, M., Snoeck, M., Monsieur, G., Lemahieu, W., Dedene, G.: A scenario-based
verification technique to assess the compatibility of collaborative business processes.
Data Knowl. Eng. 68, 531–551 (2009). https://doi.org/10.1016/j.datak.2008.12.002.

44. Sedrakyan, G., Snoeck, M., Poelmans, S.: Assessing the effectiveness of feedback
enabled simulation in teaching conceptual modeling. Comput. Educ. 78, 367–382
(2014). https://doi.org/10.1016/j.compedu.2014.06.014.

45. Snoeck, M., Haesen, R., Buelens, H., De Backer, M., Monsieur, G.: Computer aided
modelling exercises. Informatics Educ. (2007).

46. Sedrakyan, G., Snoeck, M., Weerdt, J. De: Computers in Human Behavior Process
mining analysis of conceptual modeling behavior of novices – empirical study using
JMermaid modeling and experimental logging environment. Comput. Human Behav. 41,
486–503 (2014). https://doi.org/10.1016/j.chb.2014.09.054.

47. Weerdt, D.: Process - mining enabled feedback : “ tell me what I did wrong ” vs . “ tell
me how to do it right .” (2016).

48. Sedrakyan, G., Snoeck, M.: Feedback-enabled MDA-prototyping effects on modeling
knowledge. (2013). https://doi.org/10.1007/978-3-642-38484-4_29.

49. Sedrakyan, G., Poelmans, S., Snoeck, M.: Assessing the influence of feedback-inclusive
rapid prototyping on understanding the semantics of parallel UML statecharts by novice

31

modellers. Inf. Softw. Technol. 82, (2017). https://doi.org/10.1016/j.infsof.2016.11.001.
50. Sedrakyan, G., Snoeck, M.: Effects of simulation on Novices’ understanding of the

concept of inheritance in conceptual modeling. Lect. Notes Comput. Sci. (including
Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). 9382, 327–336 (2015).
https://doi.org/10.1007/978-3-319-25747-1_32.

51. Verbruggen, C., Snoeck, M.: Practitioners’ experiences with model-driven engineering:
a meta-review. Softw. Syst. Model. (2022). https://doi.org/10.1007/s10270-022-01020-
1.

52. Verbruggen, C., Snoeck, M.: Exploratory Study on Students’ Understanding of Multi-
perspective Modelling. In: Augusto, A., Gill, A., Bork, D., Nurcan, S., Reinhartz-Berger,
I., and Schmidt, R. (eds.) Enterprise, Business-Process and Information Systems
Modeling. pp. 321–335. Springer International Publishing, Cham (2022).

53. Richards, M.: Software Architecture Patterns,
https://www.oreilly.com/content/software-architecture-patterns/, last accessed
2021/03/13.

54. van der Werf, J.M.E.M., Polyvyanyy, A.: The Information Systems Modeling Suite:
Modeling the Interplay Between Information and Processes. In: Janicki, R., Sidorova,
N., and Chatain, T. (eds.) Application and Theory of Petri Nets and Concurrency. pp.
414–425. Springer International Publishing, Cham (2020).

55. Snoeck, M., Lemahieu, W., Goethals, F., Dedene, G., Vandenbulcke, J.: Events as
atomic contracts for component integration. Data Knowl. Eng. 51, 81–107 (2004).
https://doi.org/http://dx.doi.org/10.1016/j.datak.2004.03.007.

56. Frank, U.: Multi-perspective enterprise modeling: Foundational concepts, prospects and
future research challenges. Softw. Syst. Model. 13, 941–962 (2014).
https://doi.org/10.1007/s10270-012-0273-9.

57. Guizzardi, G.: Ontological Foundations for Structural Conceptual Models,
http://www.loa.istc.cnr.it/Guizzardi/SELMAS-CR.pdf, (2005).

58. Jackson, M.: The World and the Machine. In: Proceedings of the 17th International
Conference on Software Engineering. pp. 283–292. Association for Computing
Machinery, New York, NY, USA (1995). https://doi.org/10.1145/225014.225041.

59. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall International (2004).
60. Sun, S.X., Zhao, J.L., Nunamaker, J.F., Sheng, O.R.L.: Formulating the Data-Flow

Perspective for Business Process Management. Inf. Syst. Res. 17, 374–391 (2006).
https://doi.org/10.1287/isre.1060.0105.

61. Ruiz, J., Sedrakyan, G., Snoeck, M.: Generating user interface from conceptual,
presentation and user models with JMermaid in a learning approach. ACM Int. Conf.
Proceeding Ser. 07-09-Sept, 25–32 (2015). https://doi.org/10.1145/2829875.2829893.

62. Scheynen, N.: Construction of web services using the MERODE approach, (2016).
63. Mohout, I., Leyse, T.: Enriching Business Process Simulation by integration with

MERODE prototype applications, (2020).
64. Hasić, F., Serral, E., Snoeck, M.: Comparing BPMN to BPMN + DMN for IoT Process

Modelling: A Case-Based Inquiry. In: Proceedings of the 35th Annual ACM Symposium
on Applied Computing. pp. 53–60. Association for Computing Machinery, New York,
NY, USA (2020). https://doi.org/10.1145/3341105.3373881.

65. Amaral de Sousa, V., Burnay, C., Snoeck, M.: B-MERODE: A Model-Driven
Engineering and Artifact-Centric Approach to Generate Blockchain-Based Information
Systems. Springer International Publishing (2020). https://doi.org/10.1007/978-3-030-
49435-3_8.

32

66. Marín, B., Alarcón, S., Giachetti, G., Snoeck, M.: TesCaV: An Approach for Learning

Model-Based Testing and Coverage in Practice BT - Research Challenges in
Information Science. Presented at the (2020).

67. PHILharmonic Flows - Process, Humans and Information Linkage for harmonic
Business Flows, https://www.uni-ulm.de/in/iui-dbis/forschung/laufende-
projekte/philharmonic-flows/, last accessed 2022/10/15.

68. Chiao, C.M., Künzle, V., Reichert, M.: Integrated modeling of process-and data-centric
software systems with PHILharmonicFlows. In: 2013 IEEE 1st International Workshop
on Communicating Business Process and Software Models Quality, Understandability,
and Maintainability (CPSM). pp. 1–10. IEEE (2013).

69. Chiao, C.M., Künzle, V., Andrews, K., Reichert, M.: A tool for supporting object-aware
processes. In: 2014 IEEE 18th International Enterprise Distributed Object Computing
Conference Workshops and Demonstrations. pp. 410–413. IEEE (2014).

70. Steinau, S., Andrews, K., Reichert, M.: A modeling tool for PHILharmonicFlows objects
and lifecycle processes. (2017).

71. Dedene, G., Snoeck, M.: Formal deadlock elimination in an object oriented conceptual
schema. Data Knowl. Eng. 15, 1–30 (1995). https://doi.org/10.1016/0169-
023X(94)00031-9.

72. Künzle, V., Reichert, M.: Philharmonicflows: Research and design methodology.
(2012).

73. Moody, D.L.: The Method Evaluation Model : A Theoretical Model for Validating
Information Systems Design Methods The Method Evaluation Model : A Theoretical
Model for Validating Information Systems Design Methods. 9–12 (2003).

74. Tamilmani, K., Rana, N.P., Wamba, S.F., Dwivedi, R.: The extended Unified Theory of
Acceptance and Use of Technology (UTAUT2): A systematic literature review and
theory evaluation. Int. J. Inf. Manage. 57, 102269 (2021).
https://doi.org/https://doi.org/10.1016/j.ijinfomgt.2020.102269.

75. Sánchez-González, L., García, F., Ruiz, F., Piattini, M.: A case study about the
improvement of business process models driven by indicators. Softw. Syst. Model.
(2015). https://doi.org/10.1007/s10270-015-0482-0.

76. Snoeck, M., Michiels, C., Dedene, G.: Consistency by construction: The case of
MERODE. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect.
Notes Bioinformatics). 2814, 105–117 (2003). https://doi.org/10.1007/978-3-540-
39597-3_11.

Appendix: Hiring PhD students at KU Leuven

Case Description

To hire a PhD, first a vacancy must be opened. A deadline will be specified, and until that deadline,
applications can be submitted. After the deadline, each application is evaluated. After the
evaluation, a decision is taken whether or not to hire a candidate and the vacancy is closed. In case
no good candidate was found, in collaboration with the HR department, the supervisor can decide to
republish the vacancy. Otherwise, the process ends.

Opening a vacancy is subject to verification by the HR department. The supervisor will create the
vacancy in the ERP system, and provide a number of details. The supervisor will then submit the
vacancy proposal to HR, where the vacancy details will be verified for the completeness and quality
of the information provided as well as the availability of a sufficient budget to pay the future PhD's
salary for at least 4 years. The vacancy can either be approved, upon which it will be published
online, or it can be rejected, with a clarification of the requested adjustments to obtain approval.
The supervisor can then edit the vacancy and resubmit it, or decide to abandon the vacancy, and
cancel it.

Once published, applicants can submit their application. They can do this in several steps, creating
first a draft, editing it, and finally submitting it. After submission, the application cannot be
modified any more. Once the application deadline has passed, the HR department initiates the
evaluation process. It first performs a sanity check on the submitted applications, by verifying a
number of eligibility criteria: the applicant must have the right academic degree, the issuing
university must be of sufficient quality, and the applicant must provide proofs of decent mastery of
the English language, as well as supply a GMAT or GRE score of sufficient level. If the applicant is
deemed eligible, three colleagues of the supervisor are asked for a review of the applicant's file. The
supervisor is notified when the three reviews are in, and will then proceed to review the applicant's
file. The supervisor may decide to have an interview with the candidate. This interview can be done
online or in person, which will require different organization processes. Interview notes are also
registered in the system. Finally, for each candidate, the hiring decision for this candidate is
registered. As soon as one candidate is marked as to be hired, the vacancy moves to a 'Candidate
Hired' state to avoid hiring a second person on the same vacancy (something that is not allowed by
government's regulations).

People are assigned to departments. Such assignment has a certain percentage, and together these
percentages for a same person amount to maximum 100%.
The supervisor is considered the “owner” of a vacancy, and cannot be modified. Next to the
supervisor, a number of people can be assigned as HR administrator to the vacancy.
When assigning reviewers, independent opinions are sought for. Thus, the supervisor cannot act as
reviewer.

Modelling process
Below we present the models created during the requirements analysis and engineering process. It
should be noted that the models were created iteratively, requiring approximately four iterations to
stabilize. For example, initial process models were not executable, and had to be refined until
conforming Camunda's requirements for executable models. We illustrate the difference between

the initial process model and the final process model for the global process only. Al the other
processes underwent a same type of refinement.
As we evolved from a smaller version of the model to this larger version, some models had to be
expanded. In the following, the difference between the expanded example and the smaller running
case used in the paper are described in “Model evolution notes”.
While analyzing a process, ingredients for the domain model were registered in a table, and the
domain model was created in parallel using the Merlin modelling tool. The model was checked
using the Merlin Prototyper. Once a sufficiently stable version of the domain model was reached,
the refinement of the process models in Camunda and the refinement of the domain model was
further performed in parallel.
Below we first provide the process models, decision models and their mapping to domain model
elements, and we conclude with the domain model.
The zipped archive containing the model as Merlin file and the application generated from this
model can be downloaded here.

Global Process

The initial draft model of the global process was as follows:

Fig. 1. Draft model for the Global Process

While this model still has several flaws (element names need to be added or improved, and the
process needs to be made executable), it suffices for a first analysis of required ingredients for the
domain model. A first set of domain model elements can be identified as follows.

Table 1. Process/Tasks mapped to invoked Business Event Types and required Business Object Types for the Global Process

(Sub)Process Task Invoked Business
Event Type

Required Business Object Type

Open Vacancy

 Business Object: Vacancy

Evaluate
Application

 Business Object: Application

Top-level Process Close Vacancy EVclose Vacancy
Republish Vacancy EVpublish Vacancy

The tasks 'Republish Vacancy' and 'Close Vacancy' will use an IS Service to trigger a state change
in the VACANCY object using the corresponding business events EVpublish and EVclose. For now,

https://merlin-academic.com/
https://merode.econ.kuleuven.be/CodeGeneration.html
https://merode.econ.kuleuven.be/OnlineSources/RecruitmentProcessModelAndPrototype.zip

we assume that the generated default REST services suffice for such implementation. More
complex services can be developed manually if needed.

In the above diagram, the VACANCY data store represents the 'master' data object from the data
model part that contains the data relevant for this process. It was eventually decided not to include
the data stores in the process models as this would lead to cluttered diagrams. In addition, data
stores are not required to obtain executable processes in Camunda. On the other hand, to obtain an
executable process model, 'Open Vacancy' and 'Evaluate Application' are modelled as Call
Activities such that the subprocess can be invoked from the global process (required by Camunda).
Furthermore, the decision to republish the vacancy was modelled as an exception to the task of
closing the vacancy: in Camunda, an Input Form has a "submit" button that triggers the normal
outgoing flow. Another "exit" can be modelled as an exception to this task, invoking other services.
Thus, in the form for 'Close Vacancy' the "submit" button will close the vacancy, and the alternative
exit will lead to the republication of the vacancy. The final model for the global process is shown in
Fig. 2.

Fig. 2. Final model for the Global Process

Open Vacancy Process

Fig. 3 depicts the executable model for the Open Vacancy Process and Table 2 defines its mapping
to business object types and business event types.

Fig. 3. Open Vacancy Process

Table 2. Process/Tasks mapped to invoked Business Event Types and required Business Object Types for the Open Vacancy Process

Process Input Task Invoked Business Event Type Required Business Object
Type

Open
Vacancy
(Supervisor)

Create Vacancy EVcrVacancy Vacancy
Edit Vacancy Details EVmodVacancy,

EVcrHRAdministratorDuty,
EVendHRAdministratorDuty

Vacancy

Cancel Vacancy EVendVacancy Vacancy
Open
Vacancy
(HR Dept.)

Verify Vacancy
Details

EVmodVacancy Vacancy

Decide on Approval EVapprove
EVdisapprove

Vacancy

Request Adjustments -- --
Publish Vacancy EVpublish Vacancy

Model evolution note: The initial data model did not contain data about people and the departments
they are member of. We added the object type HRADMINISTRATIONDUTY to indicate who has
access to a vacancy in order to manage authorisations. This access can be set and modified during
the ‘Edit Vacancy Details’ task.

The rules to decide on approval of the vacancy can be modelled by means of a Decision Table,
shown in Fig. 4. Camunda assumes that BR tasks are executed automatically, but in this case, some
of the rules need a human verification. We therefore decided -for the sake if the illustration- to
precede the automated decision task with a human verification task where a human actor sets the
values of all decision parameters, possibly using the decision table as a guide. By setting all the
parameters (e.g. a Boolean Complete), the BR task can then automatically take the decision
according to the following decision table:

Fig. 4. Decision Table for approving a vacancy

The DT's output corresponds to the invocation of the corresponding business events (EVapprove,
EVdisapprove) via an information system service as indicated in the table below. All required input
data can be mapped to attributes of the VACANCY business object.

Evaluate Application
Fig. 5 depicts the executable model for the Open Vacancy Process and Table 3 defines its mapping
to business object types and business event types. Here we included the data objects to illustrate
how.

Fig. 5. Evaluate Application Process

Model evolution note: In the expanded example, review requests are also stored in the database.
This mostly impacted this process: the ‘Assign Reviewer’ task will create the review request, the
service task ‘Cancel Review Request’ was added to register the cancellation, and the ‘Decide on
Review Request’ will trigger the acceptance or refusal of the review request.
Furthermore, the organization of the interview is expanded to a complex process, distinguishing
between an online interview and an in-person interview.

Table 3. Process/Tasks mapped to invoked Business Event Types and required Business Object Types for the Evaluate Application
Process

Process / DT Task Invoked Business
Event

Information Needs

Evaluate
Application
(HR)

Check Eligibility EVsetEligible
EVsetIneligible

Vacancy.*

Assign Reviewer EVcrReview Application, Person
CancelReviewRequest EVcancelRequest Review

Evaluate
Application
(Professor)

Decide on Review
Request

EVacceptToReview
EVrefuseToReview

Review

Write Review EVcrReview
EVmodReview
EVsubmitReview

Vacancy: details, description
Application detailsReview

Evaluate
Application
(Supervisor)

Review Applicant File Application, Reviews
Interview Candidate EVcrInterview Interview
Register Decision EVdecideToHire,

EVdecideNotToHire
Application

The 'Write Review' and 'Review Applicant File' task will use output services to consult the data
about the applicant. 'Interview Candidate' is a subprocess to set up and conduct the interview. It is
not further specified, but will result in creating the INTERVIEW object with basic data such as date of
the interview, location and notes.

'Check Eligibility' is a Business Rules task. It is associated to the DMN model consisting of a DRD
depicted in Fig. 6 and four Decision Tables (Fig. 7, Fig. 8, Fig. 9, Fig. 10).
Decisions are taken using attributes of the APPLICATION object. The outcome of the top-level
decision is recorded by triggering either the EVsetEligible or the EVsetIneligible business event
according to the results.

Fig. 6. DRD for deciding on the eligibility of an applicant

Fig. 7. Decision Table for deciding on the eligibility of an applicant

Fig. 8. Decision Table for deciding on the applicant's mastery of the English language

Fig. 9. Decision Table for deciding on the quality of the applicant's degree

Fig. 10. Decision Table for deciding on the sufficient level of the applicant's GRE or GMAT score

Organize Interview
Fig. 11. Shows the diagram for the Organize Interview Process Process and Table 4 defines its
mapping to business object types and business event types.

Fig. 11. Organize Interview Process

Table 4. Process/Tasks mapped to invoked Business Event Types and required Business Object Types for the Organize Interview

Process

Process / DT Task Invoked Business
Event

Information Needs

Organize
Interview

Decide on Format
Create Teams Meeting in
Outlook

Register Online Interview EVcrOnlineInterview Application
Book Room
Create Meeting in
Outlook

Register in Person
Interview

EVcrInPersonInterview Application

Update Meeting Notes EVupdateInterview Interview

Data ̶ Domain model
In order to ensure integration from a data perspective, classes and attributes need to be defined as
needed per process. Fig. 12 represents the class diagram.
Model evolution note: In the expanded version, the object types DEPARTMENT, PERSON,
DEPARTMENTMEMBERSHIP and HRADMINISTRATORDUTY have been added to cater for
authorisations. Moreover, the INTERVIEW has been further specialized into ONLINEINTERVIEW and
INPERSONINTERVIEW to demonstrate the use of inheritance.

In this diagram, whenever a person is linked to an object (e.g. as owner of a vacancy or as
reviewer), this is done by choosing a person’s role as member of a department, rather than linking
to a person directly. This facilitates checking authorizations. For example, in this way, the model
enforces automatically that one can only take a HR Admininistrator Duty if one is member of the
HR department (an HRAdministratorDuty can only be created for a (living)
DepartmentMembership object).

Fig. 12. Domain model (EDG)

MERLIN does not visualize attributes in the class diagram. They can however be inspected, added,
modified, and deleted using the object type inspector (see Fig. 13). If no attributes have been
defined, the code generator will add per default a “name” attribute to make simulation of the model
possible. In addition, unique IDs and attributes that implement associations and states are generated
as well. These need not to be defined manually.

Fig. 13. Inspecting the attributes of DEPARTMENTMEMBERSHIP.

Behaviour ̶ OET
The object-event table in Fig. 14 lists all business events identified during the business process
analysis, and maps them to the business object types:

Fig. 14. Object-Event Table

Behaviour ̶ Lifecycles

The lifecycle of VACANCY (Fig. 15) reflects the states according to the global process. The states
'exists', 'submitted', 'approved' and 'published' will be passed during the execution of the subprocess
'Open Vacancy'. The subprocess 'Evaluate Applications' starts while a vacancy is in the state
'published', and may result in a transition to the state 'CandidateHired'. This demonstrates how an
object lifecycle unifies object behaviour across the collection of BPs.

An additional intermediate state could be considered to ensure that applicants cannot submit a new
application past the application deadline. However, this would make the system quite inflexible. For
ensuring flexibility to receive applications even beyond the deadline, it is advised to manage such
rules at the level of the business process layer.

Fig. 15. State Chart representing the lifecycle of the business object type VACANCY

The lifecycle of an APPLICATION (Fig. 16) starts when a candidate submits a draft application. After
submission, deciding on eligibility will route the application either to a final state or to the 'eligible'
state where the review process can take place. Eventually the decision whether or not to hire the
candidate will lead to a corresponding state. The lifecycle of the review object type (Fig. 17) has
three intermediate states allowing to distinguish a requested, accepted, and submitted review. Three
different end states allow distinguishing a cancelled request (due to non-response of the reviewer), a
refused request, and one that has been accepted and submitted. All other object types have a default
lifecycle.

Fig. 16. State Chart representing the lifecycle of the business object type APPLICATION

Model evolution note: the lifecycle of the REVIEW was adjusted to create the review from the
moment of the request rather than when the review is accepted. This leads to the extra states
‘waitingForDecision’, ‘Cancelled’ and ‘Refused’.

Fig. 17. State Chart representing the lifecycle of the business object type REVIEW

Constraints

Model evolution note: in the expanded version, we included a constraint to illustrate how this can
be used.

The tool allows capturing path constraints for which code can be generated. As an example, we add
a constraint that the person who is requested to write a review, should be different than the person
who owns the vacancy (see Fig. 18).
Other constraints, such as the requirement that for a same person, all percentages of ongoing
DepartmentMemberships should not surpass 100%, can be documented in the General Tab of the
Inspector of an object type (see Fig. 19). Such constraints can be formulated e.g. in OCL, but as
they are not (yet) considered by the code generator, any other format will do.

Fig. 18. Path constraint on a review, demanding that the person who is requested to do the review (red path), is different that the

person who is owner of the vacancy (green path).

Fig. 19. Documenting additional constraints via the General Tab in the Inspector of an object type.

	1 Introduction & motivation
	2 Related work
	Enterprise Modelling
	Model-driven Engineering
	Data-aware process modelling and process-aware domain modelling

	3 Integrating Process and Domain modelling
	3.1 Research Methodology
	3.2 Architectural Layers
	3.3 Layers in the MERODE Approach

	4 Co-modelling Domain and Business Process Layer
	4.1 General Steps
	4.2 The MERODE Domain Model (EDG, OET and FSMs).
	4.3 The Business Process Layer: Business Process Models
	4.4 Proof of Concept of Model Integration

	5 Evaluation
	5.1 General Properties
	5.2 Individual Requirements
	Data
	Activities
	Processes
	User Integration
	Monitoring

	5.3 MERODE versus PHILharmonicFlows

	6 Discussion
	7 Conclusion
	References
	R2_Appendix_RunningCase.pdf
	Appendix: Hiring PhD students at KU Leuven
	Case Description
	Modelling process
	Global Process
	Open Vacancy Process
	Evaluate Application
	Organize Interview
	Data ̶ Domain model
	Behaviour ̶ OET
	Behaviour ̶ Lifecycles
	Constraints

