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Abstract—As machine and deep learning models are increas-
ingly leveraged in predictive process monitoring, the focus has
shifted towards making these models explainable. The successful
adoption of a model is dependent on whether decision-makers
can trust the predictions and explanations made. However, recent
studies have shown that deep learning models are vulnerable
to adversarial attacks -small perturbations to the inputs- which
trick deep learning algorithms into making incorrect predictions.
An additional crucial property is that the explanations are robust
against these adversarial attacks when the model decision was not
affected. Therefore, this paper introduces a robustness assessment
framework by investigating the impact of adversarial attacks on
the robustness of predictive accuracy and explanations used in the
field of predictive process monitoring. First, adversarial examples
of cases in the independent test set are generated to examine the
robustness of the predictive model against intentionally manipu-
lated data. Next, the predictive models are compared with similar
models trained on data imputed with adversarial attacks. We
monitor the impact on predictive performance in terms of AUC
at different stages of the case execution. Finally, the robustness of
the explanations is calculated as the distance between the original
explanations and the explanations extracted from the model
trained on attacked data. We test multiple machine and deep
learning techniques, namely the transparent logistic regression,
random forests with Shapley values, and LSTM neural networks
with attention. Results show that especially neural networks
suffer from adversarial attacks, and the former two are mostly
robust in terms of both predictive accuracy and explanations.

Index Terms—Robustness, Adversarial Attacks, Explainability,
Outcome-Oriented Predictive Process Monitoring

I. INTRODUCTION

Predictive Process Monitoring (PPM) is a relatively new
research field that is concerned with providing insights about
the business processes of organizations. In this paper, the
focus is on Outcome-Oriented Predictive Process Monitoring
(OOPPM), which is concerned with predicting the future state
of ongoing cases of processes [1], [2]. Due to the large avail-
ability of data about business processes, many sophisticated
architectures such as ensemble methods [2] or deep learning
models [3], [4] have been introduced in order to improve the
predictive accuracy. Nonetheless, the inability to comprehend
the decision-making of these models prohibits a successful
adoption thereof. This has given rise to eXplainable AI (XAI)
into the field of OOPPM [5]–[7] which relies on either
inherently transparent models, or opaque models with post-hoc
explanation techniques such as SHapley Additive exPlanations
(SHAP) values [7]. A successful adoption of these models is
conditional upon the trust that the decision-makers have in the

predictions and the explanations, and whether they conform
to the process domain knowledge [8], [9]. This motivates
the need for predictions and explanations made by accurate
and trustworthy models. Despite XAI techniques’ efforts to
improve the explainability, it does not address the need for
trustworthiness. In the wider XAI literature, this is often
obtained through measuring robustness.

Adversarial Machine Learning (AML) is a field of research
that studies the robustness of algorithms against adversarial
attacks, i.e. intentionally manipulated data instances. Many
studies [10], [11] have already established that deep learning
models are sensitive to adversarial attacks and often lead to
misclassifications of perceptively indistinguishable instances.
For example, in image recognition, adversarial attacks are
composed of fine-grained pixel attacks where red-green-blue
(RGB) values are changed subtly, forcing algorithms to change
their predictive outcome while human interpreters would not
do so. Other works [12] extend the issue of robustness, arguing
that the explainability methods should be insensitive to a
hardly perceptible permutation when the prediction is unaf-
fected, meaning that similar instances with similar predictions
should not lead to drastically different explanations.

The research rationale of this study is that evaluating
the robustness of predictive models and their associated ex-
plainability methods against adversarial attacks contributes to
explainable, accurate and trustworthy solutions. Accordingly,
the key contribution of this paper is the introduction of a
robustness assessment framework for OOPPM methods and
their associated explainability techniques based on adversarial
attacks. Moreover, the framework allows answering the fol-
lowing research questions:

RQ1. How can you assess the robustness of predictive models
against adversarial attacks in the field of OOPPM?

RQ2. How robust are the explanation methods against adver-
sarial attacks in the field of OOPPM when the predictions
made by the predictive model are unaffected?

We engineered the adversarial attacks in the field OOPPM
as such that they solely indirectly attack the control-flow
attributes, by attacking the event payload data. A change in the
control flow, given an underlying process model, is typically
too apparent given process mining description often rely on
control flow models first, similar to changing an image’s main
composition where objects are put in different places from
the original. Many OOPPM prediction outcomes are directly
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related to the control flow as well. Hence, the focus is on
fine-grained attacks similar to changing RGB values in only
scarce locations, as payload data is also more hidden in the
background, e.g., by many categorical attributes which have a
high number of unique possible values.

The introduced framework assesses the vulnerability of the
predictive model against intentionally manipulated data by
attacking the independent test set (previously unseen dur-
ing training). Additionally, the robustness of the predictive
model is evaluated by comparing the performance of models
trained on the original data and similar models trained on the
adversarial attack imputed data. Both allow to measure the
robustness of the predictive models in two different ways.
Second, the robustness of the explanations is assessed with
the Euclidean distance between the original explanations and
the explanations extracted from the model trained on attacked
data.

In the following Section II, the related state-of-the-art work
about robustness and/or trustworthiness of predictive settings
is discussed. Next, Section III gives the preliminaries for the
field of OOPPM. The research methodology is given in Sec-
tion IV and describes the design of adversarial attacks and the
different application methods in the context of OOPPM. The
real-life event logs and benchmark models, the implementation
details and experimental results are given in Section V. Finally,
Section VI describes the usefulness and applicability of the
proposal, the limitations of the study and future work.

II. RELATED WORK

Deep neural networks are expressive algorithms that are
able to learn complex tasks, but the successful adoption is
often limited in high-stake decision-making processes due to
their lack of robustness. In the field of AML, a distinction is
often made between adversarial examples (i.e. adversarially
attacked test instances) and adversarial training (i.e. using
adversarial instances to train the predictive model). The former
is targeted at fooling the algorithm into making incorrect
predictions, while the latter measures the robustness of the
predictive method against adversarially imputed training data.

Adversarial training in time-series prediction has already
been investigated in [13], used to change the decision-making
of dynamic Bayesian forecasting models. Similarly, permuta-
tions are performed in [14] and [12] to obtain instances that
have the same label predicted, yet very different explanations.
A taxonomy of adversarial examples and a number of defence
mechanisms and countermeasures has been proposed in [15].

Recent works have already issued the lack of reliability
of deep learning models in the context of predictive process
monitoring [7], [16], [17]. In [16], the authors demonstrate
the inability of Long Short-Term Memory (LSTM) models to
generalize process model behaviour without careful measure-
ment and evaluation. In previous work [7], the faithfulness
of post-hoc explanations was shown to be compromised. The
authors of [17] introduced an approach to train robust and
generalizable predictive models that can handle spurious data
correlations. Other works focus on incremental adaptations

of the predictive models used in predictive process monitor-
ing [18], stating that the predictions for different stages of
the case execution for are not stable over time and should be
regularly updated. In [19], the authors fed existing prefixes
to a Generative Adversarial network (GAN), which generates
an adversarial trace. Nonetheless, it is not clear how such a
generated trace looks like. The results indicated an improved
robustness of accuracy scores over the prefix length. To our
knowledge, no other works have investigated the impact of ad-
versarial attacks in the field of predictive process monitoring.

III. BACKGROUND

An event log L is a collection of events grouped per
case in the form of process execution traces. An event e
from the event universe ξ is a tuple e = (c, a, t, d, s) with
c ∈ C the case ID, a ∈ A the activity (i.e. control-flow
attribute) and t ∈ R the timestamp. An event additionally
contains event-related attributes or payload attributes d =
(d1, d2, . . . , dmd

) that change during the course of the case,
i.e. dynamic attributes. Some attributes do not evolve during
the execution of a single case and are called case or static
attributes s = (s1, s2, . . . , sms

). Hence, a trace is a sequence
of events σc = [e1, e2, . . . , ei, . . . , en], with c the case ID and
i the index in the trace, and is sorted based on the timestamps
of the events. We denote an event ei in a case j of the event log
L as ei,j = (cj , ai,j , ti,j , sj , di,j). The outcome y of a trace
in the case of OOPPM is usually a binary attribute [20] and
depends on the needs and objectives of the process owner [2].

A prefix log L is extracted from the event log L and contains
all the prefixes from the complete traces σ, which can be used
to incrementally learn from different stages of the traces. An
example of a trace prefix of case c of length l is defined as
σc,l = [e1, e2, . . . , el], with l ≤ |σc|. Next, a sequence en-
coding mechanism is necessary when working with a varying
amount of attributes, since each trace can have a different
length. In the aggregation encoding [21] mechanism, both the
activity and categorical static attributes are one-hot encoded,
which means that each categorical static attribute results in a
number of transformed attributes. The numeric static attributes
remain unchanged. Second, the dynamic numeric attributes
are replaced by their summary statistics min, max, mean, sum
and std. Finally, frequency vectors for the dynamic categorical
attributes are extracted for each of the unique attribute values.
The corresponding values are the frequency of occurrence of
that attribute value in the (prefix) trace. By contrast, the use
of the encoding mechanism above in step-based models such
as recurrent neural networks becomes superfluous given their
sequential setup. To exploit this efficiently, the categorical
(dynamic and static) attributes are transformed to a vector of
continuous vectors through one-hot encoding.
In the following, the attributes (x1, x2, . . . , xp) are used to
denote the transformed attributes, following the steps above.
The transformed prefix log is used to create a predictive
model F , with the prediction for prefix (trace) i denoted as
ŷi = F (xi,1, . . . , xi,p). The explanations for the predictions
made by a transparent model F are obtained with the use of the



inherently estimated coefficients wF,1, ..., wF,p, and indicate
the importance of the different attributes xi on the dependent
variable. In the case of a black box model, the use of a (post-
hoc) explainability method X is necessary to approximate the
(unknown) attribute weights of the predictive model with the
attribute weights wX,1, ..., wX,p of the explainability model,
and the assumption is that wF,j = wX,j for j ∈ {1, . . . , p}.

IV. ADVERSARIAL ROBUSTNESS IN PREDICTIVE PROCESS
MONITORING

This section describes the methodology that is used to
answer the research questions. First, we elaborate on the pro-
posed adversarial attacks to generate indistinguishable prefix
traces. Then, we describe the methods of application adver-
sarial examples (IV-A) and adversarial training (IV-B). These
methods are used to answer the first research question: how
can you assess the robustness of the predictive models against
adversarial attacks in the field of OOPPM?. Next, IV-C
describes how adversarial explanations are generated. This
allows to answer the second research question: how robust
are the explanation methods against adversarial attacks in the
field of OOPPM when the predictions made by the predictive
model are unaffected?. An overview of the different attacks,
methods, and evaluation is given in the robustness assessment
framework in Figure 1.

The attacks were designed such that they attack the
dynamic attributes d = (di,1, di,2, . . . , di,j , . . . , dmi,d

) of
a trace by performing permutations as follows. Assume a
dynamic attribute di,j ∈ Dj , with Dj the set of values
that the dynamic attribute ultimately can have. We denoted
Dj,train ⊆ Dj the set of values observed during the training
of the model. A permutation of an attribute di,j was taken
at random from the set Dj,train. Given only values from the
training set are drawn, we avoided any data leakage into the
future.

The Last Event Attack (A1) consists of permuting the
dynamic attributes of the last state of an incoming, independent
trace. Assume a prefix trace σc,l = [e1, e2, . . . , ei, . . . , el]. The
attack A1 permutes the dynamic attributes of the last event
and generates a prefix trace σA1

c,l = [e1, e2, . . . , ei, . . . , e
A1
l ],

with eA1
i = (cj , aj , tj , sj , d

A1
j ). This is visualized in Figure 1,

the original dynamic attribute values are replaced with the
permuted values (indicated in orange).

The All Events Attack (A2) consists of permuting
all the dynamic attributes that related to each event in a
trace. Similar to A1 (see Figure 1), a prefix trace was
transformed into σA2

c,l = [eA2
1 , eA2

2 , . . . , eA2
i , . . . , eA2

l ], with
eA2
i = (cj , aj , tj , sj , d

A2
j ).

One of the assumptions of adversarial attacks that should be
carried over to OOPPM is that an indistinguishable instance,
in this context a trace, should have an equal outcome to the
original trace. This is analogous to the imperceptible changes
made to images in image recognition and object detection,

where only a few pixels are changed, which are often not
even visible to the human eye, e.g., by altering their red-
blue-green (RGB) values in the background. In the case of
OOPPM, the outcome of a trace is often dependent on the
order of activities within the trace, defined by an LTL rule (see
Section V-A). An example of such an LTL rule defines that a
certain activity must always be followed by another activity.
Therefore, the order of events within each case must remain
untouched, as changing the order is very likely to cause the
outcome of the trace to change given its direct impact on the
LTL rule. This means that permutations of activity labels are
not considered. Additionally, attacks on the static attributes
are not considered, as modifying on case level also does not
guarantee that the instances are indistinguishable, as case level
attributes often have a one-to-one impact on label outcome
[2]. To summarize, we focus on the imperceptible attack on
the fine-granular payload which, similar to exact RGB values
in images, are often not immediate apparent from process
models. In addition, they are often too numerous compared
to a single activity label to be immediately linked with a
particular label. This does not exclude the possibility of other
attacks, possibly utilizing case and/or control-flow attributes
(e.g., based on expert knowledge), but the proposed attacks
are, ceteris paribus, deemed the most logical (and intuitive)
for the field of OOPPM. In the following, a distinction is
made between constructing an adversarial example, adversarial
training and adversarial examples in the context of OOPPM.

A. Adversarial Examples

Adversarial examples allow evaluating the vulnerability of
the predictive model against intentionally manipulated ongo-
ing traces. More specifically, adversarial examples generated
with attack (A1) allow evaluating the influence of the last
event dynamic attributes of the prefixes on making a correct
prediction. Attack A2 indicates how important the dynamic
attributes (of all the events in the prefixes) are in order to
make correct predictions. We evaluate the performance by
comparing the predictions for the original traces and for the
adversarial examples (created with either attack A1 or attack
A2). This is visualized in Figure 1.

B. Adversarial Training

Adversarial training is used to measure the robustness of the
predictive method against adversarially imputed training data,
by using adversarial traces instead of the original instances
to train the predictive model. Assume the toy example in
Figure 1, with the complete trace defined as σc,3 = [e1, e2, e3].
Two prefixes can be extracted, σc,2 = [e1, e2] and σc,1 = [e1]
respectively. The transformed prefix log ξ∗ contains these
three (prefix) traces. After the first adversarial attack (A1),
the transformed prefix log ξ∗ now contains three (prefixes)
traces, i.e., σc,3A1 = [e1, e2, e

A1
3 ], σc,2 = [e1, e

A1
2 ] and

σc,3 = [eA1
1 ] and the original traces are dropped. The model

should still be able to learn the original behaviour, as the
original events such as e1 and e2 can still be found in the other
prefixes. The second attack (A2) permutes all the dynamic



Adversarial Attack Evaluation

Robustness Predictive 
Accuracy

AUC 
comparison

AUC 
comparison

Predictions

Predictions (A2)

Predictions (A1) 

Robustness Explanations

Euclidean 
Distance

Explanations

Explanations (A1)

Adversarial Examples
Test (A*)

Model

Predictions (A*)

Predictions

Test

Event Log

Train

AUC 
comparison

Event Log

Train (A*)

Adversarial Training

Train

Test

Model (A*) Predictions (A*)

Model Predictions Explanations

Explanations (A*)

AUC 
comparison

Euclidean 
Distance

All Events Attack (A2) 

A

B

D

Control-flow
Dynamic 

attributes

D3=8

D1=1

D2=3

D1=2

D2=9

D3=1

D1=2

D2=7

D3=0

D1=5

D2=4

D3=0

P1=5

D2=8

D3=5

Dynamic 
attributes (b)

D1=2

D2=7

D3=4

C1=1

C2=1

Case 
attributes

Method of Application

Last Event Attack (A1)

A

B

D

Control-flow
Dynamic 

attributes

D3=8

D1=1

D2=3

D1=2

D2=9

D3=1

D1=2

D2=7

D3=0

D1=5

D2=4

D3=0

Dynamic 
attributes (a)

C1=1

C2=1

Case 
attributes

D3=8

D1=1

D2=3

D1=2

D2=9

D3=1

Fig. 1. The robustness assessment framework that describes the different adversarial attacks, the method of application and how the evaluation is performed.
The notation A* indicates that both attack A1 and A2 can be used.

attributes of the prefix traces used for training the model. The
transformed prefix log ξ∗ contains three (prefixes) traces, i.e.
σc,3A1 = [eA1

1 , eA1
2 , eA1

3 ], σc,2 = [eA1
1 , eA1

2 ] and σc,3 = [eA1
1 ]

This consequently induces that the model is not able to learn
the actual behaviour.

As shown in Figure 1, a model is trained separately on
the original training data and the attacked training data. Both
attacks thus gives insight into how the attacked data distorts the
learning behaviour of the model by monitoring the predictive
performance. While attack A1 investigates whether the model
overfits on the last event dynamic attributes, attack A2 is useful
to obtain insights about the overall importance of the dynamic
attributes in the learning behaviour of the model. We evaluate
the performance (AUC) by comparing the predictions made
by the original model and for the adversarial attacked model.

C. Adversarial Explanations

In order to calculate the earlier mentioned robustness of
explanations, we use the same setup as in IV-B. Note that we
only compare the distance between explanations for test traces
where the original model and the model trained on attacked
data predict the same label, which is a requirement for post-
hoc interpretability techniques. This is similar to the setting
in related works [12], [14]. We only consider the explanation
distance for adversarial training attacked with attack (A1), as
the second attack (A2) permutes all the dynamic attributes,
which prohibits the model to learn the correct behaviour.
Additionally, this paper does not compare the explanations

between the original instances and the adversarial examples,
as the distance between the explanations is dependent on the
magnitude of the permutation used to create an adversarial
example [10]. A possible solution could be to quantify the
permutation size and incorporate this into a distance metric,
but is considered out of scope for this study.

In the case of global importance coefficients such as the lo-
gistic regression coefficients, the explanation vector is defined
as wa,j ∗xi,j , with wj the coefficient weights of the model and
xi,j the values of the instance i for the attributes xj . The length
of the explanations vectors are defined by the length of the
one-hot encoding categorical attributes (i.e. order of magnitude
of numerical columns is negligible). In the case of (post-hoc)
explanations such as SHAP or attention values, the vector
wa,j ∗xi,j is calculated locally for each instance i. Intuitively,
SHAP can be seen as the average marginal contribution of
an attribute considering all possible combinations. Attention
values, on the other hand, are calculated during runtime and
are seen as the importance weights of inputs towards the
output. The absolute score of these local explanations do not
have a meaning, and therefore can only be relatively compared.
Upon comparison between different models, it is required to
normalize the explanation vectors (i.e. all the vector points
of the explanation vectors are between 0 and 1). Finally, the
Euclidean distance is used as a distance metric, and calculates
the square root of the sum of the squared differences between
the two explanation vectors.



V. EXPERIMENTAL EVALUATION

In this section, the event logs used for empirical evaluation
and their specifications are described. This is followed by the
benchmark models used for the analysis and implementation
details. Finally, we discuss the results of the experimental
evaluation.

A. Event logs

The event logs are drawn from a set of widely-used datasets
for OOPPM. The first real-life event log BPIC2015 records the
building permit application process. A single LTL rule is ap-
plied on the event log and split for each of the municipalities.
The LTL rule defines that a certain activity send confirmation
receipt must always be followed by retrieve missing data. In
this paper, we use the third, fourth, and fifth municipality for
the high amount of traces (BPIC2015(3) and BPIC2015(5))
and (BPIC2015(4)) for the high amount of trace variants
relative to the number of traces.
The event log sepsis cases contains the discharge information
of patients with symptoms of sepsis in a Dutch hospital,
starting from the admission in the emergency room until the
discharge of the patient. Here, the labelling is performed based
on the different discharge possibilities of the patient instead
of LTL rules [2], namely (1) whether the patients (eventually)
admitted to intensive care (1), or (2) whether the patient is
discharged from the hospital on the basis of something other
than Release A (i.e. the most common release type). The last
event log Production comes from a manufacturing process that
contains information about the workers and machines involved
in the production of an item. The outcome label is based on
whether there are rejected work orders or not.

Due to the lack of domain knowledge, we assume that
all these attributes can be considered as perceptively indis-
tinguishable before and after permutation. Therefore, all the
dynamic attributes are used for the attacks. The event log
specifications are given in Table I.

TABLE I
EVENT LOG SPECIFICATIONS

Traces Events Length Variants Activities Stat./Cat.
Dyn. Attr.

BPIC2015(3) 1328 57488 40 1280 380 18/12
BPIC2015(4) 577 24234 40 576 319 15/12
BPIC2015(5) 1051 54562 40 1048 376 18/12

SEPSIS(1) 782 10924 13 656 15 24/13
SEPSIS(2) 782 12463 22 709 15 24/13

PROD. 220 2489 23 203 26 3/15

B. Benchmark Models

Three predictive models will be used to benchmark the find-
ings, covering three different approaches: statistical, machine
learning, and deep learning. The Logistic Regression (LR)
model is a predictive model that is often used for classification,
due to its inherent transparency. Next, the Random Forest (RF)
model is an ensemble model that is often used in literature due
to its fast convergence and predictive accuracy. However, being
an ensemble method consisting of a (often) large amounts of

decision trees, impedes its comprehensibility, and therefore a
post-hoc explainability technique is required. For this, we use
SHAP. Next, the attention-based bidirectional LSTM model
from [5] is used. For each of the dynamic attributes, an LSTM
model is trained separately, which allows obtaining attribute
attention. Next, a separate event attention vector is constructed
using each of these attribute attention vectors, to eventually
obtain an event level influence to the final prediction. A final
sigmoid layer allows obtaining binary predictions. Finally, the
explanations are extracted from the attribute attention layers
of the LSTM.

C. Implementation details

In order to prevent data leakage, a temporal split [2] on
an 80/20 ratio is applied for each event log. Next, trace
prefixes are extracted from the completed cases to be able
to learn, preferably incrementally, from the development of
the traces. Similarly to [2], trace cutting is performed before
the event where 90% of the minority class has finished or
before the event where the class label would be irreversibly
known. The aggregation encoding is used for the statistical and
machine learning models LR and RF, and the one-hot encoding
accordingly as described in III. In [5], no static attributes are
used in the model. Therefore, we take into account attribute
attention of the static attributes by using a dense layer with
tanh activation that is subsequently processed through a Time
Distributed layer. To reduce the parameter size and avoid
overfitting, the hyperparameter settings for the LSTM size for
the alpha and beta layer are set to either 8 or 16. Next, a
small learning rate of 0.0001 is chosen to avoid overfitting.
The hyper optimization is performed with the use of hyperopt.
For the LR and RF, this concerns the inverse of regularization
strength number and the considered features when looking for
the best split, respectively. For the LSTM, the batch size and
dropout. To allow for reproducibility of the results, the code
is made available on GitHub 1.

D. Experimental Results

In the next subsections, the experimental results for the
adversarial examples, adversarial training and explanations are
given. This is followed by an interpretation of the overall
results.

1) Adversarial Examples: From Table II, it is clear to see
that the AUC results are almost unaffected by adversarial
examples created by attack A1, meaning that the models are
not vulnerable to traces where the dynamic attributes of the
last event are intentionally manipulated. Furthermore, it stands
out that the LSTMs seem to be the least robust against the
intentionally manipulated instances created by attack A2, as
in five of the six event logs, the overall AUC has dropped
significantly. Remarkably, (almost) no loss in performance
is observed for sepsis cases (1). This might be explained
by the insights from [2], where they indicate that the short
prefixes are easy to predict, but the longer prefixes are very

1https://github.com/AlexanderPaulStevens/RobustnessInOOPPM
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Fig. 2. Performance (AUC) for the adversarial examples

challenging. Moreover, LSTMs are able to extract sequences of
activities that occur in many variants [3], which might explain
why it outperforms the less advanced models. Finally, the
three different models seem to be all vulnerable against the
adversarial examples (A2) performed on the Production log.
This is possibly caused due to the high ratio of dynamic versus
static attributes [2], explaining why the adversarial attacks
were successful. In Figure 2, the AUC over the different
prefix lengths is given for the adversarial examples, which
allows pinpointing the change in predictive performance over
developing cases. Especially for the BPIC2015 logs, the neural
networks are the most vulnerable against adversarial attack A2,
while from a certain prediction point onward most models have
an almost perfect AUC.

2) Adversarial Training: Next, Figure 3 and Table II show
the impact on the learning behaviour of the predictive model
when the model is trained on adversarially attacked data.
It is clear to see that the LSTMs have drastically suffered
through attack A2 for the BPIC2015 logs (AUC drop of more
than 20%), while the aggregation encoded models remain
relatively stable. There exists literature studying the impact
of the resource involved in the execution of a case [20],
[22] to the outcome of the case, meaning that permuting
this dynamic attribute can have a detrimental effect on the
learned behaviour (and performance) of the model. In [22],
the authors state that the scheduling of the resource (i.e.
which resource is assigned to the case) has an influence on
the predictive accuracy of the model. However, for the event
log BPIC2015, [20] states that the resource involved does not
have an impactful influence, as the LTL rule that determines
that outcome is rather naive. This is confirmed by the results
for LR and RF, who are both rather robust against attack A1

and A2. This tells us that the LSTM model overfits on these
intentionally manipulated attributes and tries to learn their
dynamic behaviour. Another interesting remark is that the LR
model reports an AUC of 50% for both the sepsis cases (1) and
production log. An AUC of 50% means that the model is not
able to outperform random guessing. Next, Table II indicates
that the LR model has suffered through attack A2 for the event
log BPIC2015(4), while the LR is robust against attack A2 for
the other BPIC2015 logs. A possible explanation is that the
model is not able to generalize over the lower amount of traces
in BPIC2015 (4) compared to the other BPIC2015 logs. This
might additionally explain the inability of any model to remain
robust against attack A2 for the Production log, together with
the fact the resource is an important attribute to determine the
number of rejected work orders.

3) Explanations: Explanation methods should be insensi-
tive to a hardly perceptible permutation when the prediction
is unaffected, meaning that similar instances with similar pre-
dictions should not lead to drastically different explanations. In
the context of this paper, this means that the Euclidean distance
between the explanations extracted from the original model
and the model trained on the attacked data should ideally
be zero, and is given in Figure 3. As mentioned above, we
take into only the distance (scaled with natural logarithm log)
between the original model and attack 1. From the results, it is
clear that the logistic regression model obtains the most robust
explanations for all the event logs. A possible explanation
exists in the fact that the coefficients of the logistic regression
are fixed coefficients for all the different instances (as these
are global importance coefficients), while the Shapley values
and attention values are generated locally. Nonetheless, the
explanation distances of the Shapley values are seemingly
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Fig. 3. The AUC over the length of the prefixes (a) and the Euclidean distance between the explanations created by the last event attack (b). Note that
the natural logarithm of the Euclidean distance values are used to improve visibility of the graphs (hence the negative values).

robust over the length of the prefixes, while we observe high
distances between the attention values of short prefixes, and
the distances seem to converge for longer prefixes (apart from
BPIC2015 (4)). Intuitively, this boils down to the fact that the
impact of the adversarial attack A1 is higher for short prefixes,
and the attention values generate more robust explanations for
longer prefixes.

E. Interpretation

From the results, it becomes apparent that LSTMs are
overfitting to some extent and that the aggregation encoding
is possibly already providing a countermeasure against trace-

wide attacks such as A2. Given the relatively strong robustness
to A1, it seems that most models generalize to some extent,
yet mostly LR and RF are capable of providing robust ex-
planations. The LR model seems to provide the most robust
explanations, but seems to drastically fail for two event logs
(sepsis cases (2) and production), meaning that the RF model
provides the best trade-off in terms of predictive accuracy
and explainability in light of robustness. This is in agreement
with the idea that the mechanism behind random forests,
i.e. bagging, by aggregating estimates of multiple predictors
increases accuracy and stability.



TABLE II
OVERALL AUC SCORES FOR THE ADVERSARIAL TRAINING

(ADVERSARIAL EXAMPLES) FOR THE ORIGINAL MODEL, LAST EVENT
ATTACK (A1) AND ALL EVENTS ATTACK (A2).

BPIC15(3) BPIC15(4) BPIC15(5) SEPSIS(1) SEPSIS(2) PROD.
LR 0.96(0.96) 0.94(0.94) 0.94(0.94) 0.87(0.87) 0.69(0.69) 0.63(0.63)

LR (A1) 0.96(0.96) 0.94(0.94) 0.94(0.94) 0.87(0.87) 0.69(0.69) 0.63(0.63)
LR (A2) 0.96(0.89) 0.79(0.94) 0.95(0.89) 0.50(0.87) 0.69(0.55) 0.50(0.54)

RF 0.96(0.96) 0.94(0.94) 0.95(0.95) 0.84(0.84) 0.75(0.75) 0.71(0.71)
RF (A1) 0.96(0.96) 0.94(0.94) 0.95(0.95) 0.83(0.84) 0.75(0.75) 0.70(0.71)
RF (A2) 0.96(0.92) 0.94(0.91) 0.95(0.90) 0.86(0.78) 0.73(0.56) 0.53(0.54)

LSTM 0.94(0.92) 0.90(0.90) 0.93(0.91) 0.86(0.87) 0.72(0.73) 0.75(0.75)
LSTM (A1) 0.93(0.92) 0.91(0.88) 0.93(0.92) 0.88(0.87) 0.70(0.69) 0.76(0.75)
LSTM (A2) 0.67(0.54) 0.71(0.63) 0.68(0.54) 0.88(0.88) 0.70(0.68) 0.56(0.52)

VI. CONCLUSION

The successful adoption of the current OOPPM methods
is dependent on whether the stakeholders can trust the pre-
dictions and explanations made. The goal of this paper is to
evaluate the robustness of OOPPM methods and their asso-
ciated explainability methods against adversarial attacks with
the use of the introduced robustness assessment framework.
This guides the practitioner towards obtaining models that
provide explainable, accurate and trustworthy solutions and
consequently ensures that the obtained insights are reliable for
the business user, highlighting the practical benefit associated
with this study.

Furthermore, by applying the framework to multiple real-
life event logs, some conclusions could be drawn. In certain
situations, the predictive models used for OOPPM purposes
seem to be vulnerable against rather naively engineered ad-
versarial attacks, questioning their reliability for high-stake
decision-making. Furthermore, the results show that especially
the associated attention mechanism for LSTM neural networks
are vulnerable against adversarial attacks performed on the
training data. Therefore, this framework consequently advices
the use of (accurate) machine learning models, where the use
of the aggregation encoding mechanism is possibly already
providing a countermeasure against trace-wide attacks such as
A2. Although the LR model has the most robust explanations,
the RF model provides the best trade-off in terms of predictive
accuracy and explainability in light of robustness.

Future work exists out of extending the experimental anal-
ysis with more algorithms and event logs. Next, we will focus
on improving the robustness of the model by creating defend
mechanisms against adversarial attacks (for both machine and
deep learning models). Furthermore, multiple types of adver-
sarial attacks might be introduced on top of the two naively
engineering attacks that are proposed in this work. Next, the
introduction of a more sophisticated distance metric that is
able to incorporate the permutation distance into Euclidean
space, which would allow measuring the distance between
explanations after adversarial attack A2. Finally, we should
compensate for log-size related biases during the learning of
the model, especially for small sized event logs.
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