
A computer vision-based approach for respiration rate monitoring of group 
housed pigs 

Meiqing Wang a,b, Xue Li a,c, Mona L.V. Larsen a,d, Dong Liu a, Jean-Loup Rault e, 
Tomas Norton a,* 

a Faculty of Bioscience Engineering, Katholieke Universiteit Leuven (KU LEUVEN), Kasteelpark Arenberg 30, 3001 Heverlee/Leuven, Belgium 
b Animal Nutrition, Institute of Agricultural Sciences, ETH Zürich, Universit ̈atstrasse 2, 8092 Zürich, Switzerland 
c Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China 
d Department of Animal Science, Aarhus University, Blichers Allé 20, DK-8830 Tjele, Denmark 
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A B S T R A C T

In recent years, respiration rate (RR) monitoring using video data has been explored by researchers with rela-
tively good success. However, the approaches used so far require the manual identification of the region of 
interest (ROI) in the image of the animal. When monitoring farm animals, typically housed in groups, such 
manual actions would entail an excessive time investment and increase the level of subjectivity in the application 
of the method. The aim of this study was to design a RR monitoring system targeted at group-housed animal 
applications. The developed system first selected video clips where pigs were in a resting status. Then an oriented 
object detector was used to detect each animal and select the ROI without manual intervention. Finally the RR is 
estimated by analyzing the time-varying features extracted from the ROI. Videos of group-housed pigs were 
collected to test the method, in which 5 pigs were included. Four pigs wore an ECG belt around the abdomen to 
collect the gold standard (GS) RR measures while a control pig did not wear a belt, with the GS for the control pig 
obtained through manually observation. The comparison between RR obtained by the computer vision (CV) 
method and the GS showed good agreement with a mean absolute error of 2.38 breath per minute (bpm) in the 4 
pigs wearing belts and 1.72 bpm in the control pig, a root mean square error of 3.46 bpm in the 4 pigs wearing 
belts and 2.26 bpm in the control pig, and a correlation coefficient of 0.92 in the 4 pigs wearing belts and 0.95 in 
the control pig.   

1. Introduction

Accurate measurement and monitoring of physiological parameters,
such as body temperature, heart rate and respiration rate (RR), can have 
a wide range of applications when assessing animals’ health and welfare 
(Sellier et al., 2014; von Borell et al., 2007). RR is of particular impor-
tance to identify early signs of heat stress and disease. For example, 
pleuropneumonia, a severe respiratory disease of pigs, can easily prop-
agate across pigs causing weight loss and even death in affected pigs, 
impair pigs’ health and increase the cost of production (Kerr et al., 
2003). The main sub-clinical symptom of this disease is an increased RR 
(Opriessnig et al., 2011). Another example of RR in relation to welfare is 
heat stress. As pigs possess only limited sweat glands, they have limited 

thermoregulatory abilities and therefore are more sensitive to heat stress 
than other farm animals (Huynh, 2005). When the environmental tem-
perature goes above the upper limit of their thermoneutral zone (around 
17 – 21.5 ℃ for grower pigs at an age of 10–12 weeks), pigs dissipate 
heat by panting and their RR will increase immediately, followed by 
other undesirable effects, e.g., impaired immunity (Liu et al., 2021). 
Therefore, measuring and monitoring RR could potentially assist 
farmers in the detection of signs of infection or thermal discomfort at an 
early stage (Huynh, 2005; Jorquera-Chavez et al., 2021). As a result of 
having real-time measures of an animals’ physiological state, farmers 
could take actions to safeguard the health or welfare problems of their 
animals with timely intervention or prevent the propagation of diseases. 

Conventional techniques for monitoring RR for pigs usually require 
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2. Materials and method

2.1. Animal experiment and data collection

The experiment was conducted in the animal experiment facilities 
(TRANSfarm) at KU Leuven during late February and early March of 
2022. Five pigs (TN70 * PIC 408), at the age of 66 days, were included in 
the experiment. The pigs were group housed in one pen with a size of 
2.90 m × 1.78 m (1.03 square meters per pig). A network camera (DH- 
SD1A203T-GN, Hangzhou, China) was located above the pen at the 
height of 2.5 m to capture the full pen area at a top-view angle (Fig. 1a). 
Video recordings of the animals were collected over day and night, with 
the infrared mode on during nighttime (from 1900 to 0800 h). The frame 
rate of the recordings was 25 fps. The only controlled factor in the 
experiment was temperature, which was simulated based on Belgium’s 
daily summer temperature profile. The lowest temperature was set to 
16 ◦C and the highest temperature was set to 25 ◦C. The temperature 
manipulation plan is illustrated in Fig. 1 (b). Humidity was not manip-
ulated in the experiment, being in the range 45–60% during the ex-
periments, which is suitable for growing pigs according to the 
Temperature and Humidity Index (THI) for growing pigs in the study of 
Lallo et al. (2018). A thermometer hygrometer was used to record the 
temperature and humidity during the experiment (Fig. 1a). 

In order to collect the Gold Standard (GS) for RR, four wearable belts 
(Zephyr BioHarness 3, Annapolis, Maryland, USA) containing ECG de-
vices were put around the pig abdomen 5 cm lower than the position of 
the heart. The belt measures RR based upon the principle of a strain 
gauge sensor embedded in the belt, which can capture the thoracic 
expansion and contraction causing size differentials that induce changes 
in capacitance because of resultant changes related to respiration (J.-H. 
Kim et al., 2013). The belt can record the RR of the animal every second 
with a range of 3 – 70 breaths per minute (bpm) and an accuracy of ± 1 
bpm. One pig without a belt was kept as a control animal in order to rule 
out the effect of wearing the belt on calculating the RR through com-
puter vision. In order to identify the animals, they were marked with 
numbers on the back using a livestock spray paint. 

The experiment protocol did not require formal ethical approval 
when judged by the Ethical Committee for Animal Experiment, KU 
Leuven., while it was approved as an activity (No. M016/2021). 

Forty video sequences (Mean duration ± Std: 2m24s ± 46 s) were 
selected from the video recordings, which included 4 cases: low tem-
perature during day (LD), low temperature during night (LN), high 
temperature during day (HD) and high temperature during night (HN), 
with 10 video sequences for each case. The criteria of selecting the 
videos was based on all pigs in a status of resting. Fig. 2 illustrates 4 
video frames representing each case. Note that each case was taken 
during a plateau of temperature. 

2.2. Respiration rate extraction 

To extract RR from the video automatically and exclude the effects 
from the belt, three steps were taken: (1) investigate the possibility of 
extracting RR from RGB video by manually selecting ROI, (2) extract RR 
in an automatic way by integrating a computer vision-based object 
detection method (Yi et al., 2021) with the RR extraction method in step 
1, and (3) verify the automatic approach by ruling out the effects of the 
belt by comparing with data from the control pig not wearing a belt. The 
computation details in each step was illustrated in Fig. 3. 

2.2.1. Step 1: Investigating the possibility of RR extraction from RGB video 
based on manually selected ROI 

The extraction of RR in this study was based on capturing the peri-
odic fluctuations around abdomen in continuous frames. Those fluctu-
ations essentially are the intensity changes in the red (R), green (G) and 
blue (B) channels. Thus, the intensity changes over time at the edge of 
abdomen can be used to detect respiratory patterns. In order to 

human observation of flank movement (Brown-Brandl et al., 1998), 
which is a time consuming process and can be subject to inter- and intra- 
observer variability. Although sensors (such as respiratory belt trans-
ducers, electrocardiogram monitor, and photoplethysmography 
morphology) can replace human observation, these need to be in 
continuous contact with the skin of the animal (Eigenberg et al., 2002) 
and can cause undesirable skin irritation and discomfort for animals. In 
addition, contact sensors can be destroyed by penmates, due to their 
highly explorative nature of pigs. Novel contactless monitoring ap-
proaches are increasingly gaining attention as they can overcome these 
limitations. Moreover, recent advancements in camera and computer 
vision technologies have made it possible to monitor RR from videos 
(Massaroni et al., 2018a), while only a limited number of studies so far 
have attempted to measure and monitor RR in animals using videos 
(Barbosa Pereira et al., 2019; Jorquera-Chavez et al., 2021; Stewart 
et al., 2017). Three of these studies used infrared thermal (IRT) cameras 
to extract RR from images/videos (Barbosa Pereira et al., 2019; 
Jorquera-Chavez et al., 2021; Stewart et al., 2017). Even though using 
an IRT camera is effective in RR monitoring, this equipment is expensive 
and can suffer from a low signal-to-noise ratio depending on the envi-
ronmental temperature. Compared to an IRT camera, RGB (Red Green 
Blue) cameras are more convenient as they are typically low-cost, easy 
to operate and have many other possible applications such as for 
analyzing animal behaviour (Chen et al., 2020; Liu et al., 2020), and 
heart rate monitoring (Wang et al., 2021). 

Several methods have been adopted to extract the RR from videos, 
depending on the camera technology and region of interest (ROI). For 
methods using IRT videos, respiratory patterns can be extracted by 
capturing the temperature changes between the animal and its envi-
ronment around the nostrils (Jorquera-Chavez et al., 2021; Stewart 
et al., 2017), and by analysing related pixel intensity changes around the 
chest based upon principle component analysis (PCA) (Barbosa Pereira 
et al., 2019). For methods using RGB videos, the extraction of RR is 
usually based on the imaging photoplethysmography (iPPG) principle, 
which assumes that changes in blood volume due to breath can cause 
different light absorptions on the skin surface, and the changes on the 
skin correspond to the changes in pixel intensity of the RGB channels 
(Sun & Thakor, 2015). Then, the respiratory patterns can be found by 
analysing the RGB signal from the ROI (Massaroni et al., 2018b; Nam 
et al., 2016). Even though RR has been successfully estimated by these 
methods, these studies all selected ROI manually, meaning that the 
monitoring system is not completely automatic. This cannot be conve-
niently applied to group-housed animals, as the ROI needs to be selected 
for each animal manually. This mainly results from the fact that the 
animal cannot be detected and localized accurately and automatically. 
To detect the animal in images of group-housed animals, recent studies 
have all used a rectangular frame-aligned bounding box to describe the 
location of the animal. Apart from the animal itself, this kind of 
bounding box contains a large amount of background pixels (mostly 
floor area), which are not useful to calculate to RR. Moreover, these 
studies only considered RR monitoring for a single pig instead of group- 
housed pigs, despite this being the most practically relevant housing 
environments for commercial pig production (Barbosa Pereira et al., 
2019; Jorquera-Chavez et al., 2021; Stewart et al., 2017). 

In this paper, we present an RGB video-based RR monitoring method 
for group housed pigs. The method used an oriented bounding box to 
localize the animal and capture the interface between the pig and the 
floor more accurately without including many irrelevant pixels. More 
specifically, the aim of this study was three-fold: (i) develop a measuring 
system capable of monitoring RR in real-time for group-housed pigs; (ii) 
integrate computer vision-based detection and signal analysis to extract 
RR with automated selection of ROI; (iii) explore the changes in auto-
matically extracted RR for different individual pigs when the environ-
mental temperature increases from 16 to 25 ◦C in 66–86 day-old pigs. 



investigate the possibility of RR extraction from RGB video for pigs, we 
first manually selected regions around the abdomen with clearly visible 
periodic movements as ROI. Four video sequences were tested for 
manual ROI selection, one for each of the 4 cases: LD, HD, LN, HN. Fig. 4 
illustrates the ROI selection in two frames for group-housed pigs. 

The pseudo-code of RR extraction is given in Algorithm 1. In the 
selected ROI, the R, G and B intensity of each pixel I(x, y, c, t) were first 

summed up in each frame, represented by spixel(x,y,t). Because each pixel 
in the ROI is a function of t, the extracted intensity of the pixel is a time 
series of values over a certain video segment. Then each spixel(x, y) was 
detrended by Z-score normalization (normalizing every value in a time 
series such that the mean of all of the values is 0 and the standard de-
viation is 1). After that, the standard deviation (std) of each spixel(x, y)
was computed, and the top 5% of pixel intensities with the highest std 

Fig. 1. (a) Illustration of the position of the camera (annotated by the top red circle) and the thermometer hygrometer (annotated by the bottom red circle); (b) plan 
of temperature schedule manipulation (in 21 days). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 2. Frame examples illustrating the four cases: (a) low temperature during day (LD); (b) high temperature during day (HD); (c) low temperature during night 
(LN); (d) high temperature during night (HN). 



were selected as candidates (defined as ROI in Algorithm 1) for 
analyzing RR given that the intensity variation is caused by respiration. 
The mean value of the selected candidates was then computed (defined 
as MROI in Algorithm 1). To remove the noise, a ten-point moving 
average filter and bandpass filter with frequency range 0.25–2 Hz were 
applied (defined as ROIfiltered). The frequency range was determined by 
the normal RR (25 to 40 bpm) of weaned pigs (Pereira et al., 2019). In 
order to compute the RR, the first derivative of the filtered signal was 
calculated (definedasROIder), then all zero-crossing points in the first 
derivative signal were found out (defined as ROIzero). The time between 
every two odd zero-crossing points was considered as the time for one 
inhale-exhale respiration cycle. The extracted RR was compared with GS 
by performing Pearson correlation and regression analysis. Considering 
the length of videos and the computation of RR timely, a sliding window 
(60 s) with a moving step (5 s) was adopted in the comparison, meaning 
that both the RR extracted from the video and the RR obtained from the 
belt were averaged over the time window.  

Algorithm 1: Computation details of RR extraction 
Assume: the intensity of the pixel at the position (x, y) in frame t is I(x, y, c, t)(c = R,G,

B), the summed intensity of pixel (x, y) in frame t is spixel(x,y, t), the time series of 
pixel (x, y) in the video is spixel(x,y), the normalized time series of pixel (x, y) in the 
video is N spixel(x,y), the selected pixel time series is ROI, the mean of selected pixel 
time series is MROI, the filtered MROI is ROIfiltered, the first derivative of ROIfiltered is 
ROIder, the detected zero-crossing points in ROIder is ROIzero, the respiration rate at 
detected zero-crossing points is RR. 

Input: Video v 

1: for t in v: 
2: for pixel (x, y) in fame t: 
3: spixel(x,y, t) =

∑
c=R,G,BI(x,y, c, t)

4: spixel(x,y) = append(spixel(x,y, t)) 
5: for time series of pixel spixel(x, y) in v: 
6: N spixel(x,y) = zscore(spixel(x,y)) 
7: ROI =sorttop5%(std(Nspixel))

8: MROI = mean(ROI) 
9: ROIfiltered = filter (MROI) 
10: ROIder = ROI’

filtered 

11: ROIzero = detect(ROIder)

12: for i in ROIzero : 

(continued on next column)  

(continued ) 

13: RR(i) = 60/(ROIzero(i+3) − ROIzero(i+1)) 
Output: Respiration rate RR.  

Note that append(⋅) represents appending the value to the series, and 
filter(⋅) includes moving average and bandpass filter. 

2.2.2. Step 2: Towards an automatic computer vision approach 
With the aim of automatically measuring RR over RGB videos in the 

second step, an object detection algorithm (Yi et al., 2021) and the RR 
calculation method in Step 1 were integrated. The object detection al-
gorithm was pre-trained to detect objects using an oriented bounding 
box for 40 epochs on the DOTA dataset (Xia et al., 2018) and 100 epochs 
on the HRSC2016 dataset (Liu et al., 2017). This pre-trained model was 
fine-tuned in this study using 123 frames from 40 video recordings, 
wherein every pig was labelled by an oriented bounding box via the 
labelImg labelling tool (https://github.com/chinakook/labelImg2). The 
training took about 30 min with 50 epochs and batch size of 4. The 
inference speed was 11.62 fps on frames with a size of 1920 * 1080 
pixels. The speed was measured on a single NVIDIA GeForce RTX 3090 
GPU. In addition, the computation speed to extract the RR in Step 1 
using manually selection of ROI was 283.88 fps. Following the common 
practice of object detection, the training accuracy was evaluated by 
mean Average Precision (mAP), which was defined based on the Inter-
section over Union (IoU) method. Ten IoU thresholds (0.5: 0.05: 0.95) 
were used to evaluate the model and the model achieved 0.99 in 
mAP@0.5 and 0.87 in mAP @[0.5:0.95]. The details of accuracy in 
different thresholds can be found in Table 1. The fine-tuned model was 
then adopted to infer the location of pigs over the video recording. Fig. 5 
(a) shows a frame example illustrating the detection of individual pigs.
To exclude large motion artefacts that usually appear around the head 
and tail, the middle third of the bounding box was further selected as 
ROI. Fig. 5 (b) illustrates the automatic selection of ROI. After that, the 
computation of RR was the same as described in Step 1. Finally, the 
results were compared with the GS by performing Pearson correlation 
and Bland Altman analysis. Forty video sequences were included in the 
test of the computer vision-based RR monitoring. 

Fig. 3. Flowchart illustrating the computation details in the 3 steps.  

Fig. 4. Frame examples illustrating manual ROI selection in the case of LD and HN.  

https://github.com/chinakook/labelImg2


2.2.3. Step 3: Verification on the control pig without a belt 
It was found that the time series of intensity values for the selected 

pixels were mostly around two regions: the interface between the 
abdomen and floor, and the edge of the belt. Fig. 6 shows the selected 
pixels with higher std for RR extraction. As introducing the belt was 
intended to collect the GS, it cannot be avoided that the movements 
related to RR were more clear around the belt due to the contrast dif-
ference between belt and skin. Therefore, to exclude the effect of the 
belt, a control pig without a belt was used to verify the extraction 
method. That also means that the GS could not be obtained from the belt 
for this individual. Nevertheless, as mentioned before, the respiration of 
pigs is visible around the abdomen. The RR was collected by observing 
the video and counting the fluctuations around the abdomen, a method 
already verified by Jorquera-Chavez et al. (2021). Thus, the GS for the 
pig without a belt was obtained by observing the video. A total of 40 
video sequences were tested in the verification. Note that the window 
size and moving step adopted in the observation were the same as the 

computation in the video. 
Table 2 shows the summary of video sequences that were used in 

each step. 

2.3. Comparison of individual RR changes at different room temperatures 

It is known that pigs behave differently during day and night, e.g., 
pigs are more active during day and increase lying time during night 
(Ekkel et al., 2003). In addition, pigs tend to have a higher RR in active 

Threshold 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

Accuracy  0.99  0.99  0.99  0.99  0.99  0.99  0.99  0.95  0.71  0.12  

Fig. 5. Frame examples of: (a) detection result represented by the green bounding boxes; (b) automatically ROI selection represented by the red bounding boxes. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Frame examples illustrating the selected pixels for RR extraction. The selected pixels for RR extraction were marked in red, and the ROI was marked using a 
blue bounding box. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Summary of the videos sequences used in each step.  

Step Number of videos Number of pigs Mean duration Std duration 

1 4 16 (4 × 4) 2m09s 24 s 
2 40 160 (4 × 40) 2m24s 46 s 
3 40 40 (1 × 40) 2m24s 46 s  

Table 1 
Accuracies of detection in different thresholds.  



3. Results and discussion

In the following text, the abbreviations CVm and CVa are used to
denote the results obtained by manually and automatically selecting 
ROI, respectively. GSm and GSa indicate that the GS was obtained by 
manually observation and the belt respectively. 

3.1. Results for manual ROI selection 

The mean (MROI) and filtered (ROIfiltered) signal of all selected pixels 
in ROI for the case of HD are shown in Fig. 7(a)(b) respectively. The 
respiratory patterns can already be seen in the MROI signal. We can see 
from Fig. 7(b) that the respiratory patterns are clearer in the filtered 
signal ROIfiltered. Fig. 7(c) shows the first derivative of ROIfiltered, where 
we can see an even clearer respiratory pattern. The comparison of the 
extracted RR and the GS can be found in Table 3. It shows a strong 
correlation between the GS and CV-obtained RR (r = 0.93). The low 
mean absolute error (MAE) and root mean square error (RMSE) also 
show the effectiveness of the extraction method, which proves that it is 
possible to extract RR from RGB videos for pigs. 

3.2. Results for automatic ROI selection 

Table 4 shows the comparison between RR extracted by CV versus 
GS. The value of MAE and RMSE show low estimating error, even better 
than when the ROI was selected manually. The correlation coefficient in 

Table 4 and regression result in Fig. 8(a) show a strong correlation with 
the GS. Besides, the Bland Altman plot (Fig. 8(b)) illustrates a good 
agreement between RR obtained from the CV and GS methods. For Fig. 8 
(a) and (b), although there are some RR extractions outside the 95%
confidence interval, the results still show very strong positive correla-
tion and agreement between the GS and CV-based methods, which
means the automatic ROI selection method can extract RR from RGB
video reliably.

3.3. Results from the control pig 

The automatic RR extraction method developed in Step 2 was further 
tested on the control pig to rule out the effect of wearing the belt on the 
measurement. The comparison of the GS and the CV-extracted RR are 
shown in Table 5, Fig. 9, where it can be seen that the automatic 
extraction also worked for the control pig, not depending on the belt. 

Fig. 7. Case HD: (a) the mean signal of all selected pixels in manually selected ROI, (b) the filtered signal of all selected pixels in manually selected ROI, (c) the first 
derivative of sfiltered(f). 

Table 3 
Comparison of respiration rate extracted by computer vision (CV) with the gold 
standard (GS) for which the ROI is selected manually (step 1).  

Method Range 
(bpm1) 

Mean MAE 
(bpm1) 

RMSE 
(bpm1) 

Correlation 
Coefficient (r) 

CVm (18.41, 
53.66)  

31.64 2.50 3.90 0.93*** 

GSa (17.70, 
57.15)  

32.69  

*** (p < 0.001). 
1 bpm: breaths per minute. 

Table 4 
Comparison of respiration rate extracted by computer vision (CV) versus the 
gold standard (GS) when the ROI is selected automatically (step 2).  

Method Range 
(bpm1) 

Mean MAE 
(bpm1) 

RMSE 
(bpm1) 

Correlation 
Coefficient (r) 

CVa (16.14, 
65.60)  

31.27 2.38 3.46 0.92*** 

GSa (13.60, 
65.68)  

31.38  

*** (p < 0.001). 
1 bpm: breaths per minute. 

than in resting status (Costa et al., 2013). Thus the RR is likely to be 
different during the day and night as well. Given that the ambient room 
temperature was the only manipulated factor in this study and pigs 
usually show increase in RR as temperature increases, we hypothesized 
that there would be some interaction between time (day/night) and 
room temperature on the RR of the pigs. To verify this, a statistical 
analysis based on a linear mixed model (Bates, 2005) was conducted 
with pig identity as random effect in the model. The statistical model 
included time (day/night), temperature (16/25 ◦C) and their interaction 
as fixed effects. Note that the analysis was based on the RR extracted by 
CV averaged per video (n = 40). The statistical analysis was conducted 
in the R software (R Core Team, 2022) using the packages ‘lme4′ (Bates 
et al., 2015) for model estimation and ‘emmeans’ (Lenth et al., 2022) for 
post hoc analysis. 



Note that the difference between Fig. 9 and Fig. 8 is the number of data 
points: this figure shows the results obtained from the control pig, while 
Fig. 8 shows the results of the 4 pigs wearing the belt, which has 4 times 
of data points compared to this figure. 

Similar to the present study, Jorquera-Chavez et al. (2021) investi-
gated the use of a CV method to extract RR in pigs, where IR images were 
recorded to identify the temperature changes around the nose and 
human observation was used as GS. Nevertheless, the reported agree-
ment between the GS and the CV-based extraction was not as good as in 
the present study (r = 0.61–0.66). Also similar to the study of Jorquera- 
Chavez et al. (2021), Pereira et al. (2019) also used IRT imagery to 
measure RR for anesthetised piglets, where the GS was obtained by an 
anesthesia machine and capnography. That study reported very good 
agreement (MAE averaged = 0.27 ± 0.48 bpm) between the GS and 
their IRT-based method. However, the animals in that study were 
anesthetized, meaning that the recordings did not involve large motion 
artefacts and the methodology proposed did not consider variable con-
ditions present in typical living environment. Stewart et al. (2017) used 
IRT images to extract the RR in cattle, and reported very good agreement 
between the GS and CV-based methods. However, the method for 
assessing RR was based on the observation of the recordings and manual 
counting of air movement from the nostrils, which cannot be considered 
automatic monitoring. 

3.4. Changes in individual RR with ambient room temperature 

A significant interaction was found between time (day/night) and 
temperature (16/25 ◦C) (P < 0.05; Fig. 10 (a)). It can be seen that the RR 
was numerically higher at 25◦than that at 16◦, which was in line with 
the findings from previous studies (Huynh et al., 2005; Kim et al., 2009). 
However, this difference was only significant during the night. Although 
the difference in low and high temperature during day and night has not 
been explored yet, it has been reported that pigs follow a circadian 
rhythm generally, including both physiology and behaviour changing 
periodically during 24 h (Ingram & Dauncey, 1985). Given that pigs are 
more active in the day than in the night (Ingram & Dauncey, 1984), it is 
counter-expected that the RR is higher at the high temperature during 
the night. A further analysis on individual level showing the RR differ-
ence for each pig between low and high temperature during night was 
conducted and the results can be seen in Fig. 10 (b). For pig 1, the 
estimated RR was 28.41 bpm higher in high than in low temperature 
during the night, implying that this pig was more affected by the heat 
during the night, which indicates that different pigs have different 
physiological responses to heat exposure. 

It is expected that animals have individual differences in behavioural 
and physiological responses towards environmental changes. For 
instance, the formation of social hierarchy in piglets was determined by 
individual differences in sibling competition (D’Eath, 2005), and cows 
have individual differences in heat tolerance (Bun et al., 2017). In the 
light of the development in Precision Livestock Farming, focus on ani-
mals’ health and welfare have been increasingly moved to individual 
instead of group level and the current results elucidate the importance of 
this move. Considering the observed differences in RR towards heat 
exposure for different pigs, the method in this study has great potential 
to identify pigs with high heat tolerance to cope with global climate 
change. 

3.5. Limitations and future working points 

The limitations of this study arise mainly from motion artefacts, 
which can corrupt the signal such that the time-varying features related 
to respiratory patterns is unrecoverable. The video where pigs were in 

Fig. 8. Four pigs with belts (Step2): (a) regression analysis of the relationship between respiration rate (RR) obtained from gold-standard (GSa) and computer vision 
(CVa)-based methods (95% CI: 95% confidence interval; bpm: breaths per minute); (b) Bland Altman plot showing the difference between respiration rate (RR) 
obtained from gold standard GSa and computer vision (CVa)-based methods. The three dash lines represent the 95% confidence intervals and the mean of the 
difference between GSa and CVa. 

Table 5 
Comparison of respiration rate (RR) extracted by computer vision (CV) with the 
gold standard (GS) for the control pig (without the belt) when ROI was selected 
automatically (step 3).  

Method Range 
(bpm1) 

Mean MAE 
(bpm1) 

RMSE 
(bpm1) 

Correlation 
Coefficient (r) 

CVa (16.38, 
44.61)  

31.27 1.72 2.26 0.95** 

GSm (13.87, 
45.83)  

26.86  

** (p < 0.001). 
1 bmp: breaths per minute. 



resting status and did not move were selected to extract RR, thus the 
method in this study is not applicable to cases where pigs move. 
Therefore, monitoring the RR for non-resting pigs could be an important 
working point in future. However, this could be very challenging 
considering the difficulties in finding out the respiratory patterns from 
motion artefacts. In addition, only the case where all the 5 pigs did not 
move were included in this study. Nevertheless, in most farm applica-
tions some pigs may be resting while others are moving. Therefore, 
future research could also focus on detecting which pigs are resting and 
then utilizing the developed method to monitor the RR. 

4. Conclusion

A computer vision-based method was developed that allows auto-
matic measurements of respiration rate for group-housed pigs. The 
method consisted of an oriented object detector to automatically select 
the region of interest, followed by analysis of the time-varying features 
to extract respiration rate from this region. The comparison between 
respiration rate obtained by computer vision and the gold standard 
method showed strong agreement: MAE, RMSE and correlation coeffi-
cient values of 2.38, 3.46 and 0.92, respectively, from four pigs wearing 

belts, and values of 1.72, 2.26 and 0.95, respectively from a control pig 
not wearing a belt, but in which the respiration rate was measured from 
manual observations. Besides, the statistical analysis for respiration rate 
revealed differences between high and low ambient room temperatures, 
and between day and night time, showing that pigs react differently to 
heat exposure. Based on the encouraging results from this study, future 
work can move forward to apply the automated respiration rate moni-
toring approach in applied settings to investigate the relation between 
respiration rate and animals’ health and welfare on an individual level 
in group-housed animals. 
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Fig. 10. (a) Model estimated respiration rate (RR) at different temperatures during day and night; (b) Averaged RR difference for each pig between low and high 
temperature during night (Pig 5 is the control pig not wearing the belt). 
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