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A B S T R A C T   

It is commonly asserted that MRI-derived lesion masks outperform CT-derived lesion masks in lesion-mapping 
analysis. However, no quantitative analysis has been conducted to support or refute this claim. This study re
ports an objective comparison of lesion-mapping analyses based on CT- and MRI-derived lesion masks to clarify 
how input imaging type may ultimately impact analysis results. 

Routine CT and MRI data were collected from 85 acute stroke survivors. These data were employed to create 
binarized lesion masks and conduct lesion-mapping analyses on simulated behavioral data. Following standard 
lesion-mapping analysis methodology, each voxel or region of interest (ROI) were considered as the underlying 
“target” within CT and MRI data independently. The resulting thresholded z-maps were compared between 
matched CT- and MRI-based analyses. Paired MRI- and CT-derived lesion masks were found to exhibit significant 
variance in location, overlap, and size. In ROI-level simulations, both CT and MRI-derived analyses yielded low 
Dice similarity coefficients, but CT analyses yielded a significantly higher proportion of results which overlapped 
with target ROIs. In single-voxel simulations, MRI-based lesion mapping was able to include more voxels than 
CT-based analyses, but CT-based analysis results were closer to the underlying target voxel. Simulated lesion- 
symptom mapping results yielded by paired CT and MRI lesion-symptom mapping analyses demonstrated 
moderate agreement in terms of Dice coefficient when systematic differences in cluster size and lesion overlay 
are considered. 

Overall, these results suggest that CT and MR-derived lesion-symptom mapping results do not reliably differ in 
accuracy. This finding is critically important as it suggests that future studies can employ CT-derived lesion 
masks if these scans are available within the appropriate time-window.   

1. Introduction 

Lesion-symptom mapping (LSM) is a powerful, and frequently 
employed method for establishing brain-behavior relationships (Bates 
et al., 2003; de Haan and Karnath, 2018). Despite this popularity, little is 
known about how methodological choices made when designing LSM 
studies may ultimately bias results. Specifically, it is unclear to what 
extent the imaging modality employed might impact each in
vestigation’s ability to localize neural correlates. It is critically 

important to establish how imaging type may impact analysis results, as 
this information will help guide future studies towards producing reli
able and generalizable results. 

Traditional LSM is a mass univariate statistical approach in which 
patients are grouped according to whether they have damage at a spe
cific voxel, then behavioral scores are compared across groups (Bates 
et al., 2003; de Haan and Karnath, 2018; Moore, 2022). This analysis is 
repeated for each voxel meeting inclusion criteria, yielding a 3D sta
tistical map highlighting voxels at which damage is significantly 
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associated with the behavioral score. However, before conducting a LSM 
investigation, researchers must create lesion masks denoting the brain 
voxels that are damaged (Bates et al., 2003). These lesion masks are 
usually made by manually tracing the boundaries of stroke damage onto 
native space CT or MR brain scans. In general, MR scans are considered 
to be the preferred modality for quantifying lesion boundaries, as these 
scans are comparatively high-quality and clearly visualize boundaries 
between damaged and intact tissue (Bryan et al., 1991; Kertesz et al., 
1987; Mullins et al., 2002). However, MR is not without limitations. In 
most countries, MR scans are not routinely conducted during acute 
hospitalization, meaning that many studies using MR data must use 
scans collected at a later (often chronic) timepoint (Mair and Wardlaw, 
2014; Vert et al., 2017). This delay allows for structural reorganization, 
introducing potentially confounding variation into LSM analyses (de 
Haan and Karnath, 2018). 

Additionally, a substantial portion of the stroke population exhibit 
contraindications to MR (Singer et al., 2004). Singer et al. (2004) found 
that 19.9% of acute stroke patients are ineligible for MR due to con
traindications (such as metallic implants), diminished consciousness, 
vomiting, agitation, and hemodynamic compromise. This reduces re
sults generalizability as analyses include a limited, non-random sample. 
Adding MR scanning to research protocols can further limit the number 
and representativeness of patients willing to participate, as some may 
opt to avoid the expected discomfort associated with MR. Finally, MR 
scanning is an expensive and time-consuming process which often 
strictly limits study sample size. This issue is critically important, as MR 
analyses with low lesion overlap have poor statistical power and are 
therefore highly likely to yield uninformative, false negative results 
(Cohen, 1992; de Haan and Karnath, 2018). 

Alternatively, CT can be used for LSM. While CT has comparably 
worse resolution and worse tissue contrast than MR, these scans are 
generally more widely available (Mair and Wardlaw, 2014). CT can be 
used in a larger portion of the stroke population, is more time- and 
cost-efficient, and can be reliably employed to delineate lesions (de 
Haan and Karnath, 2018; Mair and Wardlaw, 2014; Moore and 
Demeyere, 2022; Mullins et al., 2002; Vert et al., 2017). Large-scale 
studies have demonstrated that CT can identify established neural cor
relates of common post-stroke impairments (Gillebert et al., 2014; 
Moore et al., 2021; Moore and Demeyere, 2022). Despite these advan
tages, CT data have some key weaknesses. Mainly, hyperacute CTs have 
low sensitivity to ischemic infarcts compared to MR. Urbach et al. 
(2000) found that CT was 55% sensitive to ischemic stroke whilst 
diffusion weighted imaging was 100% sensitive within 6 hours of stroke. 
This issue decreases the proportion of CT scans that can be used for LSM 
but does not necessarily degrade the quality of data that can be collected 
from CT scans which do show visible lesions (de Haan and Karnath, 
2018). Additionally, CT is thought to often fail to visualize the full extent 
of damage compared to MR (Bryan et al., 1991). Overall, it is commonly 
asserted that CT is inferior to MR within LSM. However, no quantitative 
analysis has been conducted to test this claim. 

There are several key reasons why lesion-visualization differences 
between CT and MR scans may not significantly influence LSM results. 
First, hyper-acute CT scans may not visualize the full lesions extent, but 
stroke damage is generally clearly visible on later CT scans (Bryan et al., 
1991). Bryan et al. (1991) found that lesions were visible on 58% of CT 
scans taken within 24 hours of stroke, but were visible in 88% of the 
same patients when CT scans were taken 7–10 days later. These later 
scans are generally used for LSM as they allow more confident seg
mentations (Moore, 2022). It is unclear whether these later CT scans 
yield lesion masks which differ significantly from MR-delineated lesions. 
Second, LSM generally employs non-linear transformations to warp 
native-space lesion masks into standard space templates (Brett et al., 
2001; de Haan and Karnath, 2018; Rorden et al., 2012). This generally 
results in a significant loss of detail in original lesion maps, which could 
potentially negate differences present between native space MR and CT 
lesion masks (Brett et al., 2001). Finally, LSM results are subject to 

spatial mislocation due to non-random spatial variation patterns caused 
by the brain’s vasculature structure and the inherent network structure 
of many behaviors of interest (Mah et al., 2014). These sources of bias 
are present within all LSM samples, regardless of imaging modality (Mah 
et al., 2014). Overall, it is unclear whether any variation due to input 
imaging modality is significant compared to these other common 
non-random sources. 

The purpose of the present study is to conduct a quantitative com
parison of the performance of CT- and MR-delineated lesions within 
LSM. First, this investigation aims to quantify agreement between lesion 
masks derived from CT and MR collected from the same patient. Next, 
these scan pairs are employed to evaluate the comparative performance 
of simulated LSM analyses employing exclusively CT or MR data. 
Finally, the results of these simulations are employed to identify factors 
underlying systematic differences in cluster displacement and overlap 
agreement. Overall, the findings of this study provide novel insight into 
the relationship between input modality and LSM reliability. This in turn 
will help guide future LSM studies towards producing reliable and 
generalizable results. 

2. Methods and materials 

2.1. Neuroimaging data 

This study employs routine clinical neuroimaging data from patients 
recruited from the Oxford Cognitive Screen Program (NHS REC refer
ence 14/LO/0648, 18/SC/0550, and 12/WM/00335) (Demeyere et al., 
2015, 2019) and from patients recruited in Belgium (Ethics Committee 
Research UZ/KU Leuven S60062). All patients provided informed con
sent in line with the Declaration of Helsinki. Participants were consid
ered for inclusion if they had available CT and MR (T2 MRI) data 
collected within the acute phase post-stroke which demonstrated visible, 
stroke-related lesions. Patients with clear evidence of multiple, tempo
rally distinct strokes were excluded. All MR scans were T2 MRIs which 
are referred to as MR for brevity. Notably, although diffusion weighted 
imaging (DWI) is highly effective for identifying lesioned tissue (Urbach 
et al., 2000), DWI data were not available as it is not routinely collected 
in many clinical settings. 

UK patients were selected from a database of routine clinical imaging 
containing 3034 scans collected from 1517 stroke patients. This data
base contains 847 patients with at least one useable CT scan and 147 
patients with at least one useable MR scan. Of these patients, 110 first- 
time stroke patients had available CT and MR imaging collected within 
the acute stage (<31 days post-stroke). Within this sample, 19.1% (21) 
had no visible lesions on CT or MR scans, 17.3% had visible lesions on 
MR but not CT scans, and 2.7% had lesions visible on CT but not on MR. 
Four of the 67 patients with visible lesions on both CT and MR were 
excluded as their MR imaging was unable to be normalized. Overall, 
data from 85 patients (63/22 from UK/Belgium; average age = 67.4 [SD 
= 14.9, range = 26–89]; 44.7% female) were included. Scans were ac
quired a mean of 2 days following infarct (SD = 2.96, range = 0–21) 
with a mean time between CT/MR scans of 2.43 days (SD = 3.00, range 
= 0–21). CT scans were collected prior to MR in 72.3% of cases. 35 
patients had left hemisphere lesions, 46 patients had right hemisphere 
lesions, and 4 lesions crossed the midline. Overall, 76 patients exhibited 
ischemic infarcts while 9 had hemorrhagic strokes. Notably, this study’s 
sample size is large compared to the size of many LSM investigations. 
For example, a recent systematic review of 34 LSM studies found that the 
average sample size was 60 (range = 25–573) with 22/34 studies 
including less than 85 patients (Moore et al., 2023). In studies restricted 
to a single hemisphere, the average sample size was 75 (range =
25–203) with 8/25 studies including less than the 46 right hemisphere 
patients reported here (Moore et al., 2023). Notably, most (20/34) 
previous studies employed a combination of CT and MR (Moore et al., 
2023). 

Two binarized lesion masks were created for each patient, one using 
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CT and one using MR. Lesions were manually delineated on the axial 
plane of native space, whole-brain scans using MRIcron (used on tablet 
or computer screens) (McCausland Centre for Brain Imaging, Columbia, 
SC, USA) by trained investigators (MJM, n = 63; HH, n = 22) blind to 
other modalities. Slice thickness varied between 0.625 and 5 mm. Lesion 
mask accuracy was confirmed by the most experienced rater (MJM) and 
by a trained radiologist. All lesion masks were smoothed at 5 mm full 
width at half maximum in the z-direction and binarized using a 0.5 
threshold (Moore, 2022). This is a low level of spatial smoothing 
compared to many previous studies which employ 8–12 mm smoothed 
lesions (Stamatakis and Tyler, 2005). This smoothing level was selected 
in line with the standard pre-processing pipeline reported by Moore 
(2022). Lesion masks were then reoriented to the anterior commissure 
and warped into 1 × 1 × 1 mm stereotaxic space using Statistical 
Parametric Mapping 12 and Clinical Toolbox functions (Ashburner 
et al., 2016; Rorden et al., 2012) which use age-specific CT and MRI 
normalization templates (Rorden et al., 2012). All normalized lesions 
were visually inspected by trained investigators (MM, HH) for quality. 

Importantly, this study uses routine clinical data to best represent the 
data that would be included in real-world LSM analyses (Bates et al., 
2003; de Haan and Karnath, 2018). This approach improves generaliz
ability, but introduces some variability. For example, CT and MR im
aging were collected at different time points. This means that perfect 
lesion overlap cannot be expected to occur across modalities as these 
scans cannot be expected to visualize biologically identical lesions. 
Similarly, CT and MR imaging require different normalization proced
ures using different templates (Rorden et al., 2012). Given this inherent 
variability, it is important to emphasize that paired CT and MR images 
are not assumed to show the same lesions. Importantly, the aim of this 
project is not to evaluate whether CT and MR imaging produces similar 
lesion maps, but is instead to determine whether LSM analyses derived 
from these masks differ in accuracy. 

3. LSM simulation 

To quantitatively evaluate LSM result accuracy, ground-truth cor
relates must be known. This presents an issue for real-world LSM, as the 
exact correlates underlying a deficit are ultimately unknown. LSM 
simulations present a solution to this problem. In these analyses, 
behavioral scores are simulated from lesion data by defining a “critical 
lesion site” (Mah et al., 2014). If this critical site is a cluster of voxels (e. 
g., a ROI), behavioral scores can be represented by the percentage of this 
target cluster overlapping each lesion. When single voxels are used as 
critical sites (e.g., Mah et al., 2014), each patient whose lesion overlaps 
with the critical voxel is classed as “impaired” while all other patients 
are “unimpaired”. LSM analysis is then conducted using this simulated 
behavior, allowing for the agreement between LSM results and under
lying ground-truth to be quantified (Mah et al., 2014). This approach has 
been used to investigate how spatial variation may bias lesion-mapping 
results (Mah et al., 2014), but has not been applied to investigating 
differences between scan modalities. 

This simulation analysis was first performed on an ROI scale. 
Behavioural scores were simulated by comparing lesions to the 96 
cortical ROIs defined by the Harvard-Oxford Cortical Atlas (https://fsl. 
fmrib.ox.ac.uk/fsl/fslwiki/Atlases). This atlas was used as it is a com
mon reference in LSM studies (Moore et al., 2023; Moore and Demeyere, 
2022) and balances parcellation complexity and ease of anatomical 
interpretation. For each considered ROI, behaviour was simulated by 
calculating the percent of ROI voxels impacted by each lesion. For 
example, a lesion overlapping with 60% of the angular gyrus would be 
assigned a score of 60 for an analysis that considered this region as the 
“target ROI”. Behavioural data was simulated for CT and MR indepen
dently and 96 theory-blind, voxel-wise lesion-mapping analyses were 
run within each data set. These analyses employed identical inclusion 
and control parameters (e.g., control for lesion volume, minimum 
overlap inclusion threshold) and used one-tailed pooled-variance t-tests 

to evaluate voxel significance. To evaluate the impact of different sta
tistical corrections, both Bonferroni and family-wise error rate permu
tation (2000 permutations) corrections were employed. Bonferroni 
corrections are commonly used in LSM but have been previously re
ported to be extremely conservative (Mirman et al., 2018). Past research 
has suggested that permutation corrections optimally balance false 
positive and false negative rates (Mirman et al., 2018). Significant voxels 
surviving each approach are reported and compared to determine 
whether simulation performance is comparable. 

Next, voxel-level simulation was conducted. This approach is not 
clearly representative of real-world LSM as deficits would not be ex
pected to be linked to damage to single voxels. However, this approach 
offers a powerful method for precisely quantifying results displacement 
(Mah et al., 2014). All voxels impacted in at least 8 patients were 
considered as “critical voxels”. This process was applied to CT and MR 
data, completely independently, and the results compared across mo
dalities. LSM analysis was run on a theory-blind voxel-wise basis using a 
modified version of NiiStat (https://github.com/neurolabusc/NiiStat). 
The Liebermeister measure was used to evaluate significance. These 
voxel simulations employed Bonferroni corrections and controlled for 
lesion volume (Mirman et al., 2018). 

4. Statistical analyses 

First, descriptive analyses were conducted to compare lesion masks 
derived from MR and CT. The agreement between each pair of 
normalized scans was evaluated in terms of lesion volume and Dice 
coefficient. Dice similarity coefficient is a metric for evaluating the 
similarity between image segmentation maps that is commonly used to 
evaluate the agreement between brain tissue segmentations. The Dice 
coefficient is calculated by dividing the number of voxels in the overlap 
between binarized masks by the average of the number of voxels 
included in each mask. Importantly, this experiment does not employ 
standard thresholds for determining goodness of agreement (e.g. Landis 
and Koch, 1977), as these inherently arbitrary thresholds are not clearly 
applicable to cases where the maximum theoretically achievable score is 
well below 1.00 (as in this experiment). Additionally, degree of agree
ment between CT and MR lesion masks in this study should not be 
interpreted in the same way as (and compared to) inter-rater lesion 
delineation agreement or performance of automated lesion segmenta
tion methods. This is because these methods make comparisons across 
the same lesion quantified using the same scan, while this study com
pares across two lesions illustrated by different scans at different time
points. Therefore, it is important to emphasize that neither the CT nor 
MR mask/results can be considered to represent a “ground truth” and 
therefore variation between these masks is expected to occur. This 
voxel-wise similarity coefficient is a very strict measure of agreement 
and low voxel-wise similarity values do not necessarily imply low 
replicability of LSM results in more realistic scenarios. 

Next, descriptive analyses were conducted to summarize the results 
of ROI-level simulations employing CT and MR data. In ROI simulations, 
“hits” were defined as cases in which the significant voxels yielded by a 
simulation analysis overlapped with the target ROI. Accuracy relative to 
the target ROI was evaluated by calculating the Dice coefficient of re
sults versus the target. As many LSM analyses report results in terms of 
the location of the highest results z-score (peak voxels), we also report 
the degree of overlap between the peak voxels and target. The agree
ment between CT and MR results employing the same target ROI (e.g. CT 
and MR analyses with the angular gyrus as a target) was also evaluated 
using Dice coefficients. 

Analogous metrics are reported to evaluate the performance of voxel- 
level simulation analyses. Specifically, the proportion of target hits 
(results clusters containing the target voxel) and distance between peak 
voxel clusters and the target voxel are reported for each analysis. 
Importantly, the distance between peak voxel location and underlying 
target voxels could be expected to vary as a function of the size of the 
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peak voxel cluster. This is because as the size of results clusters in
creases, the average distance between each peak voxel may be displaced 
towards the center of this cluster rather than the underlying target voxel. 
To address this potential issue, additional analyses are conducted which 
control for cluster size by weighting displacement measures (e.g. dis
tance from target) by the number of voxels in each cluster (Zhang et al., 
2014). This approach standardizes displacement metrics by considering 
distance relative to cluster size rather than raw displacement as an ac
curacy measure. These control analyses are included alongside all 
comparisons evaluating the distance between peak voxel clusters. Each 
of these metrics are calculated and statistically compared for all simu
lated CT and MR analyses. To facilitate direct comparisons across these 
modalities, performance metrics were then compared across paired MR 
and CT analyses considering the same underlying target voxel. 

Finally, each simulated single-voxel analysis CT z-map was then 
evaluated relative to the paired MR z-map by calculating Dice co
efficients across a range of significance thresholds. This analysis was 
conducted because Bonferroni-corrected significance thresholds are 
determined by the number of voxels analyzed, meaning that CT and MR 
analyses employ different z-score significance thresholds (4.5919 vs 
4.7869 respectively) due Bonferroni correction threshold’s dependence 
on the number of voxels tested (22,358 CT vs 58,998 MR voxels 
analyzed). To assess whether comparable spatial information was pre
sent in CT-based LSM outputs compared with the MR-based outputs, 
despite these simple Bonferroni-based thresholds, a series of different z- 
score thresholds were applied to facilitate comparisons that were then 
independent of mild-moderate differences in statistical power. For these 
analyses, the significance threshold for the MR maps was held constant 
at the Bonferroni-corrected z-score threshold whilst the paired CT 
threshold was varied across 50 evenly spaced values between 3 and the 
MR-based Bonferroni threshold. These data were used to identify the CT 
significance threshold that yielded the highest Dice coefficient. Impor
tantly, perfect results overlap (Dice coefficient = 1) cannot reasonably 
be expected to occur for these results maps since neither the CT or MR 
results map can be expected to represent the “ground truth” of 1 sig
nificant voxel (Mah et al., 2014). This is largely because the compared 
scans are not collected at the same time point, so the displayed lesion 
will not be biologically identical across scans. This difference will result 
in variation across all conducted analyses. Additionally, systematic 
differences in results cluster size will constrain the maximum achievable 
agreement between CT and MR scans. For example, if a MR analysis 
yield twice as many significant voxels as the paired CT analysis, the 
maximum achievable Dice will be 0.66. For this reason, all reported Dice 
scores are interpreted relative to the maximum achievable overlap 
rather than to the perfect, unattainable Dice score of 1 (Landis and Koch, 
1977). 

5. Results 

5.1. CT/MR lesion comparison analyses 

First, lesion masks drawn from MR and CT data were compared 
(Fig. 1). The volume of MR lesions was larger than that of CT lesions, but 
this difference was not significant in a (paired t-test) (42.5 cm3 (median 

= 22.16, range = 0.14–239.14) versus 34.8 cm3 (median = 13.47, range 
= 0.11–241.15) respectively (paired Wilcoxon Sign-Ranked Test, V =
2086, p = 0.2583, 95% CI: − 1.287–5.449). A Pearson Correlation 
revealed that volume for CT- and MR lesions was strongly correlated 
(correlation coefficient = 0.778, t(83) = 11.291, p < 0.001, CI: 
0.678–0.850) (Fig. 2). 

These lesion pairs, however, often substantially differed in terms of 
overlap. This difference is at least in part due to the biological differ
ences in lesions displayed on CT vs MR due to differences in scan 
collection times. Despite this inherent difference, the areas delineated 
on paired MR and CT scans had an average overlap of 30.4% (SD =
22.5%, range = 0–70.6%), with 29.9% (SD = 23.5%, range = 0.3%– 
95.6%) of all voxels marked as impaired in either CT or MR scans being 
marked as impaired only on CT scans and 39.6% (SD = 28.2%, range =
0.09–97.5%) being marked as impaired on only MR scans. This overlap 
yielded an average Dice coefficient of 0.420 (SD = 0.275, range =
0–0.828). 

The largest difference in lesions reported by CT and MR was in a case 
where false negative delineation errors had been made on both MR and 
CT (Fig. 2, Case 1). Specifically, this patient exhibited two lesions, one of 
which was successfully delineated on the CT scan and the other of which 
was delineated on the MR. This is an important case to highlight as it 
demonstrates that both CT and MR scans can produce false negatives. 
This data was included in LSM simulations to accurately represent noise 
that would be present in real-world LSM investigations with access to 
only one imaging modality. Days between scans and days between 
stroke and scan collection were not found to act as significant predictors 
of similarity between the lesions displayed on CT versus MR quantified 
in terms of volume difference (F(2,71) = 1.247, adjusted R2 = 0.006, p 
= 0.294) or Dice coefficient (F(2,71) = 0.039 adjusted R2 = − 0.027, p =
0.961). 

6. ROI-level LSM simulation analyses 

Within the ROI analyses, 62/96 ROIs met inclusion criteria within CT 
data and 93/96 ROIs met analysis inclusion criteria within MR data. 
Within these included ROIs, only voxels which were impacted in at least 
8 patients were analyzed. In CT analyses, this criterion allowed only a 
mean of 19.7% (SD = 30.2, 0.01–100) of ROI voxels whilst MR could test 
59.8% (SD = 32.3, Range = 0.15–100) of ROI voxels. ROI statistics are 
available in supplementary materials. 

In Bonferroni-corrected ROI simulations, significant voxels yielded 
by CT analyses overlapped with the target ROI in 22/62 analyses while 
MR-analyses overlapped with the target ROI in 17/93 analyses, with a 
significantly higher portion (X2 = 5.843, p = 0.156) of CT analyses 
identifying the target (Fig. 7). When compared to the underlying target 
ROI, CT results had a mean Dice coefficient of 0.013 (SD = 0.04, range 
= 0–0.21) whilst MR results had a mean Dice of 0.024 (SD = 0.07, range 
= 0–0.40), (t(153.98) = − 1.17, p = 0.245, 95% CI: − 0.027 – 0.007) 
(Fig. 7). This very low overlap between analyses and targets is partially 
due to the low lesion coverage of target ROIs. In cases where CT and MR 
analyses considered the same underlying target ROI, the average Dice 
coefficient of CT results versus MR results was found to be 0.038 (SD =
0.07, range = 0–0.26). In the 48 CT analyses yielding significant results, 

Fig. 1. Comparative Lesion Overlays 
Comparative lesion overlays for the CT and MR data employed in this investigation. Voxel color denotes number of affected patients with voxels damaged in at least 8 
patients being included in the reported simulation analyses. 
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19.1% of the peak z-score voxels overlapped with the target ROI. In the 
31 MR analyses yielding significant results, 38.6% of peak voxels 
overlapped with the target. 

Significant voxel clusters in both CT and MR analyses were signifi
cantly smaller than the target ROIs (CT: t(95) = − 9.39, p < 0.001, CI: 
− 162.0 -105.4 (cm3)) (MR: t(95) = − 7.915, p < 0.001, CI: − 154.2 to 
− 92.4 (cm3)), and CT analyses yielded significantly fewer significant 
voxels than MR analyses (t(95) = − 2.44, p = 0.016, CI = − 18.9–1.94 
(cm3)). The percentage of each ROI meeting testing inclusion criteria (e. 
g. impacted in at least 8 lesions) in LSM analysis did not significantly 
predict Dice coefficients within both the CT (F(1,94) = 0.065, p = 0.799, 
Adjusted R2 = − 0.09) and MR (F(1,94) = 0.677, p = 0.413, Adjusted R2 
= − 0.003). Similarly, target ROI size did not predict Dice coefficients 
(CT: F(1,94) = 0.009, p = 0.350, Adjusted R2 = − 0.001) (MR: F(1,94) =
0.589, p = 0.453, Adjusted R2 = − 0.005). 

When permutation-based statistical corrections were applied, CT and 
MR results overlapped with the target ROIs in 22/96 and 14/96 simu
lated analyses respectively. CT and MR analyses did not significantly 
differ in overlap with the target ROI (CT mean = 0.006, MR mean =
0.006, t(185.1) = − 0.04, p = 0.9644, CI: − 0.006 – 0.006). Peak voxels 
yielded by CT analyses had a higher overlap with target ROI than MR 
analyses (CT mean = 9.89% overlap, MR mean = 0.00% overlap, t(91) 

= 3.83, p < 0.001, CI: 0.05–0.151). 
No significant difference was present in Dice coefficient between 

results and the target ROIs across Bonferroni and permutation correc
tions in CT analyses (t(134.2) = − 1.54, p = 0.124, CI: − 0.2–0.002). 
However, the Dice coefficient of MR analyses was significantly lower in 
permutation versus Bonferroni corrected analyses (t(113.3) = − 2.234, 
p = 0.027, CI: − 0.03 to − 0.002). Similarly, the degree of overlap be
tween peak voxels and target ROIs did not differ across Bonferroni and 

Fig. 2. Agreement between CT- and MR-derived 
Lesion Masks 
A visualization of the relationship between the vol
ume of paired lesion masks delineated on CT and MR 
images. Two outlier points (labeled 1 and 2) are 
illustrated in detail. In these charts, blue circles 
denote regions that were successfully delineated 
while red circles highlight areas that were missed. 
Case 1 represents a patient with two distinct lesions in 
which the CT and MR delineations each yielded a 
false negative and a true positive result, resulting in a 
large difference in lesion centers. In Case 2, an earlier 
MR scan failed to visualize the full extent/expansion 
of impacted tissue volume that was clearly visible on 
a later CT scan. Importantly, data were still included 
in other analyses to accurately represent errors/vari
ation occurring in real-world LSM analyses.   

Fig. 3. Target distance for CT and MR analyses.  

Fig. 4. Relationship between number of lesions per voxel and distance from 
target 
A visualization of the relationship between the number of lesions that overlap 
with each considered target voxel and the distance between the peak cluster 
and this target. The horizontal line denotes the mean distance from target. 
Critically, this figure illustrates that clusters are closer to the target when more 
lesions impact the target voxel. Voxels impacted by a minimum of 8 lesions are 
included in this figure, as voxels overlapping with fewer lesions were not 
included in analysis. 
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permutation-corrected results in CT analyses (t(77.43) = − 1.72, p =
0.089, CI: − 0.20 – 0.01), but was significantly higher in Bonferroni 
versus permutation corrections in MR analyses (t(30) = -4.655, p <
0.001, CI: 0.56 to − 0.22). 

7. Single-voxel level LSM simulation analyses 

Next, voxel-level LSM simulation analyses were conducted. Within 

MR data, 58,998 voxels were lesioned in at least 8 patients, yielding 
58,998 simulated LSM analyses with a Bonferroni-corrected z-score 
threshold of 4.7869. These analyses yielded an average of 12,214.6 (SD 
= 7021, range = 35–26,716) significant voxels. MR analyses yielded a 
mean of 196 peak z-score voxels per analysis (range = 1–1818, SD =
270.3) which were a mean distance of 1.39 cm (SD = 1.43) from the 
target voxel. 

Within CT, 22,358 simulated LSM analyses were conducted (Bon
ferroni-corrected z-score significance threshold = 4.5919). These ana
lyses yielded an average of 3688.8 (SD = 1635.2, range = 73–7826) 
significant voxels. The average distance between the center of mass of 
the significant voxel and the target voxel was 0.76 cm (SD = 0.38, range 
= 0–8.89 cm) (Fig. 3). CT analyses yielded a mean of 211 peak z-score 
voxels per analysis (range = 1–1438, SD = 350.5) which were a mean 
distance of 0.440 cm (SD = 2.96) from the relevant target voxel. 

CT analyses yielded results clusters which were significantly closer to 
the underlying target voxel than MR analyses when this distance was 
quantified in terms of distance between peak voxels and target (t 
(60,810) = − 141.4, p < 0.001, CI = − 9.45 to − 9.19). This difference is 
unlikely to be fully accounted for by differences in the size of results 
clusters as this result remained significant when results cluster size was 
controlled for (t(58,829) = − 49.75, p < 0.001, CI: − 0.96 to − 0.89). 

A visualization of the distance between the peak voxel cluster and the 
corresponding target voxel for all simulated LSM analyses. Each 
considered target voxel is color coded according to its distance (cm) to 
the corresponding results cluster. Notably, MR-based LSM analyses were 
able to test substantially more voxels, but were not necessarily closer to 
the target voxel than CT-based LSM analyses. 

There were 14,135 voxels analyzed within both the CT and MR 
simulations. Within these voxels, There was no significant difference in 
the average distance between peak voxels and the target voxel between 
CT (mean distance = 0.457 cm (SD = 0.27) and MR (mean distance =
0.452 (SD = 0.29)) analyses (t(14,135) = 1.80, p = 0.072, CI: − 0.005 – 
0.110). When differences in results/peak voxel clusters were controlled 
for, CT analyses yielded results which were closer to the target voxel in 
terms of peak voxel distance (t(13,578) = − 10.3, p < 0.001, CI: − 0.07 – 
0.05). Distance between each peak cluster and the underlying target was 
significantly associated with the number of lesions that overlapped with 
each location (F(81,354, 1) = 10.69, p = 0.001, Adjusted R2 = 0.001) 
(Fig. 4). The average distance between peak voxels and target voxels was 
higher (less accurate) when higher numbers of peak voxels were yielded 
by analyses (F(1, 27,156) = 1102, p < 0.001, adjusted R2 = 0.288. 

8. Comparison of MR/CT single-voxel level LSM Z-maps 

Next, the degree of agreement between the 14,135 paired CT and MR 
z-maps was evaluated across a range of significance cutoffs. In this 
analysis, the MR z-map was binarized according to the Bonferroni- 
corrected z-score cutoff whilst the CT z-map was binarized according 
to 50 evenly spaced z-score cutoffs (range = 3–4.7869). Across all 

Fig. 5. Dice coefficients for each analyzed target 
voxel 
A visualization of Dice coefficient of CT- and MR- 
derived results maps across different target voxel lo
cations. All optimally-thresholded Dice coefficients 
within three standard deviations of the mean (0.340) 
are included in this visualization. The distribution of 
these Dice coefficients is represented to the right of 
the color scale, with the mean value marked in white.   

Fig. 6. Example CT- and MR-derived Results Overlay 
Examples of the overlap between optimally thresholded results clusters yielded 
by paired MR/CT LSM analyses. The top row visualizes the three highest, non- 
outlier Dice coefficients, the middle row contains examples of the median Dice 
coefficient, and the lower row presents the three lowest non-outlier Dice co
efficient examples. Each image presents the axial slice containing the target 
voxel, the Dice coefficient, and the MNI coordinates of the target voxel. In each 
example, the target voxel is located within the area of overlap between the CT 
and MR results maps (highlighted in red in the lower row). 
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considered thresholds, the average Dice coefficient between CT and MR 
was found to be 0.335 (SD = 0.103, range = 0–0.559). The maximum 
average Dice coefficient of 0.340 was achieved when the CT z-score 
significance threshold was set to 3.693. The average Dice coefficient was 
not heavily influenced by the choice of threshold (Dice range across all 
considered significance thresholds = 0.322–0.340, SD = 0.005). The 
Dice coefficient at this optimal z-cut threshold was found to be signifi
cantly higher than the Dice coefficient at the original, Bonferroni- 
corrected z-cutoff (t(27,081) = 14.942, p < 0.001, CI: 0.016–0.021), 
although this effect was small (Cohen’s d = 0.18). Fig. 5 provides a 
visualization of how the Dice coefficient was found to vary with the 
location of the underlying target voxel. Fig. 6 provides an illustration of 
the overlap between CT and MR results maps at different Dice coefficient 
values. 

Notably, a perfect Dice coefficient of 1 can only be achieved when 
both compared segmentation masks are exactly the same, and thus are 
the same size. As MR analyses were able to test approximately twice as 
many voxels as CT analyses, the resulting voxel clusters would not be 
expected to be comparable in size. In line with this, MR comparisons 
were found to yield significantly and substantially larger results clusters 
than CT analyses (t(15,713) = − 94.06, p < 0.001, CI: − 593.98 to 
− 5710.88, Cohen’s d = 1.14). For this reason, if the optimally thresh
olded LSM results clusters were maximally overlapping, the maximum 
achievable average Dice coefficient is 0.72 (SD = 0.17, range =
0.016–1). This value is derived from comparing the volume of results 
clusters across each matched CT and MR analysis, and determining what 
the maximum achievable Dice would be if these clusters exhibited the 
best possible degree of overlap. The actual achieved Dice coefficient 
value (0.34) must be evaluated in the context of this value to be effec
tively interpreted. 

9. Discussion 

The results of this study suggest CT and MR-derived lesion masks do 
not reliably differ in accuracy within LSM analyses. Although there are 
differences in the results maps yielded by CT and MR analyses, both CT 
and MR-derived analyses yielded largely overlapping results which both 
identified the underlying neural target with a similar degree of accuracy 
(Fig. 6). Importantly, both CT and MR analyses varied in accuracy as a 
function of lesion overlap, preforming poorly in cases where target areas 
had low statistical power. Given these mixed results, this study did not 
identify strong evidence that MR and CT imaging preform differently in 
LSM analyses (in terms of accuracy). Critically, this project does not aim 
to assert that one imaging modality is superior to another in LSM. The 
best imaging modality for real-world LSM studies depends on additional 
factors including scan availability, time of imaging, and imaging quality. 

However, the findings of this study suggest that both CT and MR imaging 
can potentially be used in LSM. 

Both CT and MR analyses performed comparatively poorly (mean 
dice <0.25) in the ROI-level analyses, but CT was found to significantly 
outperform MR in terms of proportion of results overlapping with target 
ROIs. The number of lesions overlapping with each target voxel was 
found to be a key predictor of displacement magnitude, with higher 
lesion overlays producing results that were closer to the underlying 
target. The results yielded by paired voxel-level CT and MR LSM ana
lyses were not systematically different in terms of Dice coefficients when 
systematic differences in cluster size and lesion overlay are considered. 

10. The relationship between MR- and CT-delineated lesion 
masks 

No significant systematic difference in lesion size between paired CT 
and MR scans was detected, and the volume of the lesion masks was 
highly correlated. Cases in which the located lesions differed greatly 
were explained by false negative delineations on both CT and MR masks. 
Paired CT- and MR-delineated lesions were found to have an average 
Dice coefficient of 0.42. This Dice coefficient may initially seem to be 
low, but there are several sources of unavoidable variation in this data 
set, which account for this difference. 

The reasons for the low Dice coefficient include the fact that CT and 
MR scans were collected at different time points. Whilst these scans were 
generally collected within 2 days of stroke, temporal evolution of lesions 
occurs within hours (Urbach et al., 2000). This temporal variation can 
impact the lesion boundaries that are able to be delineated on both CT 
and MR scans, leading to disagreement between the delineated lesions. 
Additionally, the individual cases highlighted in this investigation also 
illustrate that neither CT nor MR delineated lesions should necessarily 
be considered as ground-truth measurements, as both CT and MR scans 
yielded false negative results and were susceptible to underestimating 
the full extent of lesion damage (see Fig. 2). Next, all lesion masks un
derwent non-linear spatial normalization to facilitate direct compari
sons. Spatial normalization is an essential pre-processing step, but 
non-linear transformations result in some degree of distortion (e.g. 
interpolation-based distortion due to differences in slice thickness), 
which can be different between CT and MR (Brett et al., 2001; Rorden 
et al., 2012). Finally, previous research has demonstrated that Dice co
efficients are reduced due to voxel-wise disagreements near the borders 
of small lesions, with larger lesions yielding higher Dice coefficients (De 
Haan et al., 2015; Trutti et al., 2021). For these reasons, perfect overlap 
should not be expected between the lesion pairs employed in this study. 

Fig. 7. Visualization of the Dice coefficient of simulated CT and MR ROI-level analyses (Bonferroni corrected). ROI color represents Dice coefficient of the relevant 
analysis results versus the underlying target voxel. Only ROIs that were successfully identified by the relevant analyses are included in this visualization. Overall, no 
significant differences in CT-versus MR-derived analyses were identified. 
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11. LSM simulations 

Within ROI analyses, both CT and MR analyses yielded very low Dice 
coefficients (<0.03). CT analyses yielded a significantly higher propor
tion of results which overlapped with the true target cluster than 
matched MR analyses. Specifically, 35.5% of CT analyses overlapped 
with the target versus 18.3% of MR analyses. There are several factors 
that may account for this generally poor performance. First, not all 
voxels within each target ROI have sufficient lesion coverage. For this 
reason, power varies within each included ROI and many voxel-wise 
false negatives may have resulted from insufficient lesion overlap. 
LSM is unable to disambiguate between the role of damage to ROIs that 
are commonly damaged together (Mah et al., 2014). For example, as 
MCA strokes generally damage both the insular cortex and the neigh
boring opercular cortices, the results of analyses considering either of 
these ROIs as targets would be expected to be erroneously enlarged to 
include these neighboring areas (Mah et al., 2014). This effect will result 
in reduced dice coefficients as these “false positive” areas will not be 
consistent in location and extent across CT and MR results. Importantly, 
these issues are inherent in all LSM analyses, regardless of imaging 
modality. Although CT analyses were found to outperform MR analyses 
in terms of proportion of results overlapping with the target ROI, CT and 
MR analyses exhibited no difference in Dice coefficient versus the un
derlying target. This lack of difference may potentially be attributed to 
floor effects, as both imaging modalities yielded very low Dice co
efficients relative to the target ROI. Overall, the results of the ROI-level 
LSM analyses highlight established shortcomings in traditional univar
iate LSM methodology, but also suggest that both CT and MR analyses 
are similarly impacted by these issues. 

Within voxel simulations, MR peak voxels were an average of 1.39 
cm from the target voxel whilst CT peaks were a mean of 0.44 cm from 
the target. Previous research has suggested that LSM clusters are 
generally displaced by approximately 1.5 cm due to inherent, non- 
random spatial lesion distributions (Mah et al., 2014). Compared to 
this value, the analyses in this study generally performed well in terms of 
cluster location relative to the underlying target. In this study MR-based 
analyses were able to test more voxels than CT-based analyses. However, 
in real-world analyses, CT data is generally more widely available than 
MR data. For example, our database of routinely collected stroke neu
roimaging includes scans from 1517 patients with 847 (55.8%) having 
CT and 147 (9.7%) having MR scans which can be used for LSM. This 
high proportion of unusable scans is not only due to lesions not being 
visible as patients with multiple stroke events (estimated 17% of pop
ulation (Baird et al., 2000), 19% within our own database), severe at
rophy (which precludes spatial normalization), and poor scan quality (e. 
g. movement artifacts) must also be excluded from LSM analyses. As the 
number of testable voxels generally increases as the number of patients 
included rises, this difference in comparative availability implies that 
real-world studies using CT data would likely be able to test more voxels 
than analyses that only include MR. Taken together, the results of this 
study suggest that CT-delineated lesion masks yield results of similar 
accuracy to those produced by MR-based lesion masks. Specifically, MR 
and CT results produced results clusters which varied in size and degree 
of overlap, but exhibited clear qualitative agreement in terms of accu
racy relative to the underlying target (illustrated in Fig. 6). There are 
several potential explanations for this result. 

MR analyses yielded larger significant voxel clusters than CT ana
lyses. There was a significant relationship between cluster size and 
displacement in the simulation results, with smaller clusters having 
peaks that are nearer to the underlying target voxel compared to larger 
clusters. This effect likely underlies a portion of the systematic differ
ence in displacement distance identified between CT-based and MR- 
based analyses. However, this difference cannot be fully accounted for 
by differences in the volume of peak voxel clusters yielded by MR and CT 
analyses, as displacement differences remained significant when the 
volume of peak clusters was included as a covariate. Additionally, CT 

analyses yielded more peak voxels than MR analyses, but these CT peaks 
were closer to the underlying target than those yielded by MR. Impor
tantly, the identified relationship between cluster size and peak 
displacement is likely to be specific to the simulation methodology and 
would not necessarily be expected to impact the results of real-world 
analyses. However, this effect somewhat complicates the interpreta
tion of cluster displacement relative to target voxels as a metric for 
comparing the performance of CT- and MR-based LSM analyses. Future 
research is needed to examine whether the documented differences 
between CT and MR-based lesion mapping analyses are maintained 
when the number and location of included voxels is more similar across 
modality groups. More informative conclusions can be drawn by eval
uating the overlap between the clusters derived from CT and MR ana
lyses that employed the same underlying target voxel, as these matched 
comparisons quantify how imaging modality influences the results of 
analyses considering identical targets. 

There was a moderate degree of agreement between the clusters 
produced by CT and MR analyses employing the same target. The ach
ieved agreement between paired MR and CT results would not have been 
possible if the CT results maps did not contain similar information to MR 
masks. Given the size difference between MR and CT LSM results clus
ters, the highest possible achievable average Dice coefficient was 0.72 
(derived by calculating the maximum possible overlap of each paired 
MR/CT results cluster). Considering this alongside the expected varia
tion due to different lesion inputs, different lesion overlays, and differ
ences in LSM cluster sizes, the actual achieved Dice coefficient of 0.34 
can be considered to be indicative of moderate agreement. This 
conclusion is supported by the qualitative overlap between CT and MR 
results (illustrated in Fig. 6), which demonstrate that despite the 
apparently low Dice coefficient, these results clusters are reporting the 
same underlying neural region. This illustrates that despite differences 
in exact overlap, MR- and CT-derived lesion masks will likely lead to 
similar anatomical conclusions in real-world LSM analyses. 

Importantly, the number of lesions overlapping with each target 
voxel was found to predict analysis accuracy. In both the CT and MR 
voxel-level simulations, the higher the lesion overlap was with the target 
voxel, the closer the cluster center was to the target. This effect is likely 
driven by the fact that lower overlaps will occur more at the edge of a 
common territory and the increase in statistical power, with the asso
ciated reduction in false negatives, when the tested voxel is damaged in 
more patients. This effect was present despite the large number of le
sions included in these studies and the comparatively high lesion over
lap inclusion threshold (minimum n = 8 compared to the commonly 
used minimum n = 4 (Mah et al., 2014)) Real-world LSM analyses 
generally test voxels damaged in at least 5–10% of the included sample, 
but many LSM analyses employ small samples (n < 25) (de Haan and 
Karnath, 2018; Moore et al., 2021). The present study suggests that this 
may lead to decreased precision and generalizability of results. Notably, 
degree of lesion overlap is not only related to the number of patients in 
the study but is primarily determined by the spatial distribution of le
sions. For this reason, it is critically important for future LSM analyses to 
include not only a high number of patients but also a diverse range of 
lesions to facilitate reliable and generalizable inferences. 

Importantly, there are additional that future investigations should 
consider before deciding on LSM imaging modality. It generally requires 
a higher level of expertise to delineate acute stroke lesions on CT versus 
MR scans (Bryan et al., 1991; Urbach et al., 2000). It is also important to 
consider the time interval between stroke, scan collection, and behav
ioral assessment. For example, if CT scans are collected in the very early 
stages post-stroke (e.g. <6 hours) a smaller proportion will be useable 
for LSM. Alternatively, research MR scans collected well after the stroke 
event or behavioral testing (e.g. >3 months) are also not suitable for 
many LSM analyses (de Haan and Karnath, 2018; Karnath and Rennig, 
2017). LSM studies should aim to include behavioral and neuroimaging 
data collected at similar timepoints (e.g. within one week) as soon as 
possible following stroke (e.g. < 1 month) (de Haan and Karnath, 2018; 
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Karnath and Rennig, 2017). Overall, the best imaging choice for any 
given study is dependent on imaging quality, timing, and availability 
within the target sample. 

Considered cumulatively, the results of this study demonstrate that 
CT and MR-derived lesion masks do not reliably differ in accuracy across 
scan modalities Although there are differences present in the results 
maps yielded by CT and MR analyses, both CT and MR-derived analyses 
yielded overlapping results which both identified the underlying neural 
target (Fig. 6). 

These findings support de Haan and Karnath’s (2018) assertion that 
LSM can use CT-derived lesion masks. Hyper-acute CT scans do have a 
high lesion false-negative compared to MR, but this does not necessarily 
mean the quality of data that can be collected from later CT scans is 
reduced, as these do show visible lesions. CT scans are generally more 
available than MR scans (Mair and Wardlaw, 2014; Singer et al., 2004), 
meaning that studies employing CT data will allow larger and more 
representative samples to be included in LSM analyses. Therefore, LSM 
analyses can aim to utilize CT scans, as excluding patients without MR 
scans risks introducing severe sampling biases (de Haan and Karnath, 
2018; Singer et al., 2004). Previous work has concluded that in
vestigations can also include a combination of CT and MR data to 
improve the size and representativeness of their patient samples (de 
Haan and Karnath, 2018). This increased sample size will, in turn, in
crease the number of lesions overlapping with each tested voxel, which 
was demonstrated to decrease the displacement between LSM clusters 
and the underlying location of interest. 

12. Limitations 

This investigation employed simulated behavior to facilitate quan
titative measurements of the spatial maps associated with a single target. 
In real-world LSM, underlying regions causing deficit(s) can either be a 
spatially contiguous voxel cluster or a diffuse network of connected, but 
equally necessary components (Bartolomeo et al., 2007; Thiebaut de 
Schotten et al., 2011). This study’s simulates behavior based using im
aging units produced by scanners (voxels) which do not correspond to 
any real-world functional units. These simulations are “perfect” and do 
not include behavioral noise which would be encountered in real ana
lyses. These analyses are not meant to replicate real-world LSM but 
instead aim to identify factors that bias results in an artificial, idealized 
scenario. 

Moreover, as this is a retrospective study, CT and MR scans were not 
matched on all potentially relevant features (e.g., time of imaging). 
Similarly, smoothing may have a differential impact on MR and CT- 
derived lesions. As only patients with both image modalities were 
included the sample may not be fully representative of the stroke pop
ulation (e.g., relatively few hemorrhagic strokes). Importantly, univar
iate LSM is an imperfect methodology. Recent research has suggested 
that multivariate or disconnection-based LSM may outperform tradi
tional univariate approaches (Foulon et al., 2018; Mah et al., 2014; 
Zhang et al., 2014). However, univariate LSM is still commonly 
employed so it remains important to identify how neuroimaging mo
dality may impact results. 

13. Conclusions 

Overall, the results of this study suggest that LSM analyses based on 
CT and MR input data produce results do not reliably differ in accuracy, 
even though numerous differences exist in the statistical maps. This 
finding is critically important in the context of real-world LSM analyses 
as it none of the results contradicted previous assertions that lesion- 
mapping analyses can employ CT-derived lesion masks if these scans 
are available within the appropriate time-window (de Haan and Kar
nath, 2018). The results of this study also highlight the importance for 
future LSM analyses to aim to capture a wide variety of patients so that 
there is a high degree of overlap (e.g. >8 patients per voxel), as LSM 

results were found to be closer to the underlying target as the number of 
patients with lesions overlapping each target voxel increased. This 
overlap will increase as sample size increases, highlighting the impor
tance of using large samples in LSM analyses. These practices, in turn, 
will help improve the quality of LSM analyses, as they will greatly in
crease the size and representativeness of samples included in LSM ana
lyses. Taken together, the results of this study provide novel insight into 
the relationship between input modality and LSM performance and help 
guide researchers towards designing high-quality, informative LSM 
analyses. 
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