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Abstract—The performance of most array signal processing
tasks relies on the presence of correlation between sensor signals.
In a wireless sensor network, where sensor nodes are spread out
over a relatively large area, it is useful to identify nodes observing
similar sensor signals and hence common phenomenons, for
example to partition the network according to the observed latent
signals and corresponding correlation structure. This can be
achieved via the so-called MAXVAR formulation of generalized
canonical correlation analysis, which finds a low-dimensional sub-
space that highlights correlated signal components between mul-
tiple nodes’ observed signal subspaces. The classical procedure
for computing the solutions of MAXVAR consists in performing
a generalized eigenvalue decomposition after collecting all the
sensors’ signals at a fusion center. However, this typically incurs
high communication and computational costs. In this paper, we
describe a low communication and computational cost distributed
algorithm that computes the solutions of MAXVAR without
aggregating the nodes’ observations at a central location. We
show how a subset of those solutions can be used locally by
each node to estimate the global correlation structure across all
nodes in the network, thereby allowing any node to evaluate the
presence of correlated signals at any other node, even if no direct
link is shared. We prove the convergence of the algorithm and
validate our method for estimating the correlation structure via
simulations.

Index Terms—Wireless sensor networks, distributed array
processing, generalized canonical correlation analysis, MAXVAR,
network pruning.

I. INTRODUCTION

AWireless Sensor Network (WSN) consists of a collection
of nodes that are equipped with one or more sensors,

wireless communication capabilities, and a processing unit.
The sensor observations collected in a WSN can either be
forwarded to a “fusion center” (FC) where all the data is
collected and centrally processed, or the data processing task
can be collaboratively performed in a decentralized fashion by
the sensing nodes themselves [2]. Centralized computation has
the advantage of allowing the use of off-the-shelf algorithms
and techniques, but comes at the cost of greater bandwidth
requirements, since all nodes have to send their raw data to

This project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 802895) and from the Flemish Government
under the ”Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen”
programme. A conference precursor of this manuscript has been published in
[1].

the FC, as well as a large computational cost at the FC, which
scales poorly with respect to the number of sensor nodes. The
aforementioned increase in bandwidth is even more severe in
the case of networks relying on multi-hop routing towards
the FC, where some nodes act as data relays for other nodes.
Furthermore, the FC constitutes a single point of failure which
compromises the robustness of the network. In comparison,
distributed processing only requires each node to solve a local
low-complexity task to collaboratively complete a global task
of higher complexity.

Array signal processing tasks such as signal estimation,
filtering, or subspace estimation, generally boil down to the ex-
traction of specific signal components, often split across many
sensor signals. Due to the presence of sensing noise and the
spatial distribution of the underlying signal sources, different
nodes typically observe different but correlated signals, some
sharing common components and others not. It is therefore of
great importance to identify which node pairs share a common
latent signal subspace and which do not, as this knowledge can
be used to prune the network or cluster the nodes according
to the similarity between their signal subspaces, resulting in
further bandwidth and computational complexity reduction at
each node [3], [4].

In this paper, we leverage the fact that the so-called principal
angles derived from the solutions of the canonical correlation
analysis (CCA) problem can be used to quantify the similarity
between two nodes’ sensor signal subspaces [5], [6]. Indeed,
CCA can be used to estimate the signal components that
are maximally correlated between two different nodes. It is
closely related to principal component analysis (PCA) [7] and
the Karhunen–Loève transform (KLT) [8], which extracts the
highest power components, yet not necessarily observed by
both nodes. As CCA is only applicable to identify the most
correlated signal components within the signal subspaces of
two nodes, applying it to a network of more than two nodes
would result in a combinatorial complexity scaling. In this
paper, we show that one of its multi-set generalizations, the so-
called “Maximum Variance” (MAXVAR) generalization [9]–
[11], can be used to approximate the solutions of the pairwise
CCA problems and therefore the complete correlation structure
of the network with a complexity that scales linearly with the
network’s size. MAXVAR has indeed been shown to provide
a description of the intersection between multiple subspaces
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[12], which fits with the general purpose of finding “shared”
signals subspaces across multiple nodes of a WSN.

There exist multiple multi-set generalizations of CCA, each
characterized by a specific objective function and set of con-
straints. The MAXVAR formulation historically refers to the
objective function introduced by Horst [9]. Carroll [10] later
introduced a new set of constraints for this objective which
turns the formulation into an easily interpretable subspace
decomposition and on which we focus in this paper.

As using MAXVAR in a centralized fashion would hinder
our progress towards bandwidth and complexity reduction, we
present a distributed algorithm for obtaining the solutions of
MAXVAR, relying on the exchange of compressed signals
between the nodes. We describe variants of this distributed
MAXVAR (D-MAXVAR) algorithm for fully connected, star-
topology and tree-topology networks, and describe how it can
be extended to arbitrary topologies. We then explain how
its solution can be used to evaluate the pair-wise correlation
between any pair of nodes in the network, even if they are not
connected via a direct link.

Previous works have investigated similar distributed sub-
space decompositions, targeting the union of the nodes’ sub-
spaces by extracting the components of greatest power [13],
[14], maximal SNR [15], [16] or maximizing correlation
between two sets of signals [17], [18]. In this work, we focus
on finding the components that most adequately describe the
inter-node correlation coefficient, also known as Pearson’s
correlation coefficient. Distributed algorithms already exist for
the so-called SUMCORR generalization of CCA [19] but, to
our knowledge, no distributed algorithm has been developed
for MAXVAR, which, contrarily to SUMCORR, admits an
analytical solution. In addition, the focus of [19] was on
computational efficiency, rather than on bandwidth scaling, as
is the case of the present work. In our previous work [1], we
presented a condensed description of the algorithm for star-
and tree-topology networks. In this paper, we provide a proof
of convergence and explain how the algorithm’s outputs can be
used to estimate the network’s correlation structure. We also
provide numerical simulations to demonstrate the algorithm’s
effectiveness and its convergence properties.

The paper is organized as follows. In Section II, we cover
the preliminaries and algebraic concepts related to MAXVAR
and explain how it can be used in the context of WSNs. In
Section III, we describe a distributed MAXVAR algorithm
for fully connected networks and discuss its convergence
properties. The algorithm is extended to abritrary topologies
in Section IV. Section V discusses how the solutions of
MAXVAR can be used by each node to estimate the inter-node
correlation structure, and in particular evaluate the degree to
which each node’s signals correlate with any other node, even
several hops away. In Section VI, we assess the algorithm’s
performance through various simulations. We conclude by a
brief discussion in Section VII.

II. PRELIMINARIES

A. WSN Setting and Notation

We consider a WSN consisting of K nodes in which each node
k ∈ K = {1, . . . ,K} collects discrete observations of a real-

valued Mk-channel sensor signal xk = [xk,1, . . . , xk,Mk
]T .

We model xk ∈ RMk as a stochastic process and denote xk[t]
its value at time t. We assume that xk is zero-mean, ergodic
and short-time stationary, allowing us to estimate the slowly
varying covariance matrices from sample averages over finite
segments of data:

E
{
xk[t]x

T
l [t]

}
= Rxkxl

≈ 1

T
Xk[t]X

T
l [t] (1)

where E {·} denotes the expectation operator and Xk[t] de-
notes the Mk×T observation matrix containing T consecutive
observations of xk centered around t in its columns. Finally,
we define the network-wide observation vector as the M -
channel vector x obtained by stacking the xk’s and where
M =

∑
k Mk.

B. Canonical Correlation Analysis (CCA)

We wish to characterize the intensity of correlations between
the signals of any two nodes. The so-called canonical cor-
relation coefficients provide such a characterization, which
can be found by means of canonical correlation analysis [20].
Considering two multi-channel signals xk and xl associated
with two nodes k, l ∈ K, CCA computes spatial filters wk and
wl that maximize the correlation coefficient ρkl between their
output signals zk = wT

k xk and zl = wT
l xl. The output signals

zl and zk are referred to as the first canonical directions,
and ρkl is referred to as the first canonical correlation co-
efficient. Additional canonical directions and coefficients can
be found by computing additional pairs of spatial filters that
maximize the correlation between their outputs while having
their outputs remain uncorrelated (orthogonal) to the previous
canonical directions. Formally, the i-th canonical correlation
coefficient ρkli and canonical directions zk,i, zl,i are defined
as

ρkli = E {zk,izl,i} = max
wk,wl

E
{
wT

k xkx
T
l wl

}
(2a)

s.t. zk = wT
k xk, zl = wT

l xl (2b)

E
{
z2k
}
= E

{
z2l
}
= 1 (2c)

E {zk[zk,1, . . . , zk,i−1]} = 0 (2d)
E {zl[zl,1, . . . , zl,i−1]} = 0 (2e)

The three last conditions require the canonical directions to
have unit-variance and be orthogonal with respect to each
other. Note that ρkli = 1 implies that the pairs (zk,i, zl,i) span
the exact intersection between the sensor signal subspaces of
nodes k and l.

If we now express the set of canonical directions of node k
with respect to node l as

zkl = [zkl,1, . . . , zkl,Mkl
]T = W T

klxk (3)

with Mkl = min(Mk,Ml) and Wkl ∈ RMk×Mkl , it can
be shown [21] that the canonical directions and coefficients
between two nodes k and l are the solutions of the following
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generalized eigenvalue problem: 0 Rxkxl

Rxlxk
0

Wkl

Wlk

 =

Rxk
0

0 Rxl

Wkl

Wlk

Λkl

(4a)[
W T

kl W T
lk

]Rxk
0

0 Rxl

Wkl

Wlk

 = I (4b)

where Rxk
is a shorthand notation for Rxkxk

and Λkl is
a diagonal matrix whose diagonal entries are non-negative
and correspond to the canonical correlation coefficients. As
a result, the optimal solution of (2) is given by the gener-
alized eigenvectors corresponding to the largest generalized
eigenvalues. By expressing the canonical directions via the
parametrization introduced by (3), CCA can indeed be seen
as the problem of finding two sets of spatial filters whose
corresponding outputs have maximal correlation.
Remark II.1. Although we have thus far assumed real sig-
nals, the developments in this paper can be straighforwardly
extended to the complex case by replacing transposes by con-
jugate transposes where appropriate. This would turn problem
(2) into a maximization of the real part of E {zk,izl,i} (which
would enforce the phases of the two signals zk,i and zl,i to be
perfectly aligned). Note that, as the pencil in (4) is symmetric,
ρkli , i.e. the i-th largest diagonal element of Λkl, is guaranteed
to have no imaginary part in the complex or real case [22].

C. Total Squared Correlation

From the definition of canonical correlation coefficients, we
can define the total squared correlation (TSC)

Θkl ≜
Mkl∑
i=1

(ρkli )2 = Tr
(
Λ2

kl

)
(5)

which can be interpreted as a generalization of correlation
between random variables to correlation between sets of
random variables. Indeed, if we denote Xk = Spanxk, i.e.
the signal subspace spanned by the channels of xk, we have:

Θkl = 0 ⇔ Xk ⊥ Xl (6)
Θkl = Mkl ⇔ Xk ⊆ Xl (7)

assuming dim(Xk) ≤ dim(Xl). Note that in the one-
dimensional case (Mk = Ml = 1), the TSC reduces to the
usual squared correlation coefficient. Contrarily to correlation,
the TSC is not concerned with the direction of the relationship
(i.e. positively or negatively correlated), only the absolute
magnitude of the relationship is captured. The TSC is positive
and symmetric but does not satisfy the triangle inequality and
is therefore not a distance [23]. Still, in the case where the
channels of xk and xl are linearly independent (which is in
practice always true in noisy settings), it can easily be turned
into one by defining

dkl =
√
max{Mk,Ml} −Θkl (8)

which satisfies the triangle equality [24] and corresponds to
the so-called Chordal distance in the particular case where
Mk = Ml [25]. Considering these above properties, the TSC
is an adequate metric for characterizing the degree to which
the signals of two nodes correlate, which is the main goal

of this paper. In a WSN context, the TSC could for example
be used as the key ingredient to an adaptive network where
links between low-TSC node pairs are pruned, while more
bandwidth is allocated to links between high-TSC node pairs.
Similarly, the TSC could be used to define a weighted graph
describing the correlation structure of the network, and on
which spectral clustering techniques could be applied [26].

D. MAXVAR: Extension to more than two Subspaces

Problem (2) can be generalized to more than two nodes or
subspaces in various fashions. As it admits a closed form
solution1, we consider here the so-called Maximum-Variance
(MAXVAR) generalization of the CCA problem, as described
by Carroll [10] and defined as follows for K signal subspaces:

min
{Wk}

min
s

K∑
k=1

E
{
∥s− zk∥2

}
(9a)

s.t. zk = W T
k xk (9b)

E
{
ssT

}
= IQ (9c)

where Q is the number of desired components. From the
parametrization introduced by constraint (9b), the problem be-
comes equivalent to finding a Q-outputs filter Wk ∈ CMk×Q

per node such that the filtered observations zk, which we
refer to as the per-node MAXVAR directions, are as close
as possible to some common network-wide Q-dimensional
signal s, and hence as close as possible to each other. From
(9), it is clear that the per-node MAXVAR directions are the
orthogonal projections of s onto the nodes’ signal subspaces
Span(xk). Hence, Span(s) is the Q-dimensional subspace
whose signals have minimal average projection error onto the
nodes’ individual signal subspaces.

In [27], it is shown that the solution of (9) satisfies

s =
1

K

∑
k

zk = W Tx (10)

where W ≜ [W T
1 · · · W T

K ]T is the matrix obtained by
stacking the Wk’s. Substituting (10) in (9a), the objective can
be reformulated as

min
{Wk}

K∑
k,l=1

E
{∥∥W T

l xl −W T
k xk

∥∥2} . (11)

The problem therefore consists in finding finding the set of
node-specific filters whose outputs are as close to each other
as possible in a minimum squared error sense. Furthermore,
it is also shown in [27] that the Wk’s are solutions to the
following eigenvalue problem:

RDW = RxxWΛ (12a)

W TRxxW = IQ (12b)

where RD ≜ Blkdiag(Rx1 , . . . ,RxK
) is the block diagonal

matrix containing the node-specific covariance matrices and
Λ is a diagonal matrix. Solving problem (9) is therefore
equivalent to computing the generalized eigenvalue decompo-
sition (GEVD) of the matrix pencil (RD,Rxx), keeping only
the generalized eigenvectors (GEVC) corresponding to the Q
smallest generalized eigenvalues (GEVL).

1Which is not the case for SUMCORR, discussed in Section I.
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E. Problem Statement

For each pair of nodes, we wish to assess how “close”
their observed signal subspaces are to each other. This can
be achieved by computing the TSC as described by (5).
However, this approach has two major drawbacks. Firstly, it
requires the computation of Rxkxl

which is only possible if
the full observations xk and xl are co-located at a single
node (or an FC), therefore incurring high communication cost.
Secondly, a CCA solution needs to be computed for each
of the K(K − 1)/2 pairs of nodes, further increasing the
communication and computational cost of the procedure. As
an efficient alternative, we propose to jointly approximate the
TSCs between all node pairs using a distributed MAXVAR
procedure. Indeed, we will show in Section V that solving
the MAXVAR problem produces a joint approximation of the
TSC of each node pair. In order to find the solution of (12), all
nodes would typically need to share their observations to an
FC where the full covariance matrix could be estimated. This
requires a large communication bandwidth between the nodes
and the FC, in particular if all nodes are not directly connected
to the FC, which increases the stress on the communication
links of the nodes that are close to the fusion center. In
addition, such a centralized processing does not leverage the
fact that the signal subspace in which inter-node correlation
is present typically manifests a low dimension, and that its
signals can therefore be efficiently described by only a few
components.

In Section III, we present a distributed algorithm for solving
(12) in a distributed fashion and relying on the transmission
of low-dimensional compressed views of the data between
neighboring nodes, thus lifting the need to transfer the raw
Mk-channel sensor observations of all nodes to an FC through
a possibly multi-hop network. Instead, the signal observations
are directly fused with other observations within the network,
and such that each node eventually has access to an estimate
of (5) (which is established in Section V), thereby avoiding
the need for a fusion center altogether.

III. DISTRIBUTED MAXVAR IN FULLY-CONNECTED
NETWORKS

In this section, we derive a distributed iterative algorithm
for computing the Q first per-node MAXVAR directions
associated with each node, and which is such that each node
k eventually has access to the network-wide estimate of s
and its own per-node MAXVAR direction zk as defined in
(9b). In Section V, we explain how the TSC between any
node pair can be approximated based on only those quantities
(even for those nodes that do not share a direct communi-
cation link). Relying on our interest in the first components
only (which is motivated in Section V) and the particular
problem structure, we show that neighboring nodes only need
to share Q-dimensional compressed views of their observed
signal subspaces at each iteration, which eventually converge
to their first Q per-node MAXVAR directions zk. In order
to facilitate the reader’s understanding and intuition in the
algorithm development, we first derive the algorithm for the
simpler case of fully-connected networks and later extend it
to more general topologies.

A. Algorithm Derivation

In a fully-connected network, any node can communicate
with any other node via a single hop. By denoting the set
of neighbors of node k as Nk, we have for such networks
Nk = K ∖ {k}.

Considering the GEVD formulation (12), the problem of
finding the Q first per-node MAXVAR directions is equivalent
to finding the Q GEVCs of the matrix pencil (RD,Rxx)
associated with its smallest GEVLs and corresponding to the
columns of W . The algorithm iteratively updates the Mk×Q
matrices W i

k (where the superscript i denotes the iteration
index), which act as the local estimates of Wk and, as will be
shown, as a node-specific compressor of the nodes’ signals. It
can be shown [28] that the GEVCs (corresponding to columns
of W ) associated with the Q smallest GEVLs from the GEVD
in (12) and hence the MAXVAR solutions of (9) coincide with
the solution of the following trace minimization problem

min
W∈RM×Q

Tr
(
W TRDW

)
(13a)

s.t. W TRxxW = IQ (13b)
where Tr (·) denotes the trace operator. The core idea of
the algorithm is to have the nodes solve a local version of
(13) in turns, and expressed in terms of the node’s own raw
observations and the other nodes’ compressed observations
zi
k = W iH

k xk (W iH
k denotes the compression matrix associ-

ated with the signals of node k at iteration i of the algorithm).
The notation zi

k,W
iH
k for the compressed observations and

compression matrices is chosen deliberately, as they also
correspond to node k’s local estimate of its part of the solution
of (9). We indeed expect that eventually

lim
i→∞

W i
k = Wk and lim

i→∞
zi
k = zk. (14)

The algorithm in fully connected networks is as follows.
At the beginning of each iteration, an updating node q is
selected. Every other node transmits a batch of its compressed
observations zi

k ∀k ∈ Nq to the updating node, such that it
can locally solve the following problem:

min
W

Tr
(
W

H
Ri

Dq
W

)
(15a)

s.t. W
H
Ri

xqxq
W = IQ (15b)

where Ri
xqxq

is the covariance matrix of

xi
q ≜

[
xT
q zi

1
T · · · zi

q−1
T

zi
q+1

T · · · zi
K

T
]T

(16)

and

Ri
Dq

≜ Blkdiag(Rxq ,R
i
z1
, . . . ,

Ri
zq−1

,Ri
zq+1

, . . . ,Ri
zK

) (17)

is a block diagonal matrix with Ri
zk

= E
{
zi
kz

i
k
T
}

. Note that
the solution of (15) can again be found from a GEVD, this
time applied to the pencil (Ri

Dq
,Ri

xq
). An update rule for

the network-wide W i+1 emerges naturally by noticing that
solving the local problem (15) is equivalent to solving the
original centralized problem (13) with additional constraints:

min
W

Tr
(
WHRDW

)
(18a)

s.t. WHRxxW = IQ (18b)

C(Wk) ⊆ C(W i
k) ∀k ̸= q (18c)
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where the operator C(·) denotes the column space of its
argument. These range constraints make (18) different from
a traditional nonlinear Gauss-Seidel approach where all Wk

would be fixed to W i
k for k ̸= q, in which case (18) can not

be solved as a GEVD anymore.
The range constraints in (18c) result in the following

parametrization of W in (13):

W = [(Wq)
T (W i

1G1)
T · · · (W i

q−1Gq−1)
T

(W i
q+1Gq+1)

T · · · (W i
KGK)

T
]T (19)

where the multiplication with Gk ∈ RQ×Q allows to select
a new Wk within the column space of W i

k. The elements
of this parametrization are therefore related to the solution of
(15) through the partitioning

W =
[
Wq

T G1
T · · · Gq−1

T Gq+1
T · · · GK

T
]T

(20)
The parametrization also defines the update rule for the local
estimate of Wk at each node:

W i+1
k =

{
Wq ifk = q

W i
kGk ifk ̸= q

(21)

where Wq and Gk are extracted from the solution of (15)
based on the partitioning (20).

Concretely, the procedure at each iteration can be divided
into three steps (the detailed procedure is formally described
in Algorithm 1):

1) Aggregation: Each node k ∈ Nq sends a new batch of T
observations of the locally compressed signals zi

k to the
updating node q.

2) Local solution: The updating node q solves problem
(15), expressed exclusively in terms of locally available
data. From the solution, it extracts the update of its own
local estimate of the solution Wq as well as the update
matrices Gk corresponding to each other node, as defined
by the partitioning (20). Due to the sign ambiguities of
the GEVCs and a potential collapse of the eigenspace
in case of GEVLs with multiplicity larger than 1, the
solution of (15) is not unique. Therefore, in order to
ensure convergence, we select the solution resulting in
the smallest difference

∥∥W i+1
q −W i

q

∥∥
F

.
3) Update: Node q sends the update matrices {Gk}k ̸=q

to each node, which update their local estimates W i
k

according to (21). Note that the transmission cost of
these Q × Q update matrices is negligible compared to
the transmission costs in the aggregation step (assuming
T ≫ Q2). The role of the updating node is finally passed
on to node (q mod K) + 1.

If required, the common components s can be estimated at
any iteration by performing an in-network summation:

si =
1

K

∑
k

zi
k (22)

It is noted that the updating node q has access to all the data
required to compute (22), such that no additional bandwidth
is required to compute s at node q.
Remark III.1. The batch of T (compressed) samples that is
transmitted by each node during the aggregation step would
typically consist of different samples than the ones used in the

previous iteration, in order to avoid retransmitting the same
data multiple times which would substantially increase the
bandwidth. Therefore, the time index t corresponding to the
first sample of a batch is typically updated as t+ iT ′ at each
iteration (with T ′ possibly smaller than T ). This implies that
the iterations are spread out over time, and that the algorithm
behaves as an adaptive filter tracking the signal statistics over
time. In order for the algorithm to converge, we therefore have
to assume that the signal statistics change sufficiently slowly
compared to the convergence dynamics of the algorithm. To
make the convergence analysis mathematically tractable, all
convergence proofs in the remaining of this paper implicitly
assume that the signal statistics remain stationary during
convergence of the algorithm.

Algorithm 1: D-MAXVAR algorithm in a fully connected
network.

begin
i← 0
q ← 1
Randomly initialize W 0

loop
for k ∈ K ∖ {q} do

At node k
Send a new batch of T samples
zi
k[t] = W iT

k xk[t] to node q

At node q
Compute Ri

xq
and Ri

Dq
based on the received

samples and according to (16) and (17)
Compute the Q GEVCs corresponding to the Q

smallest GEVLs of the matrix pencil
(Ri

Dq
,Ri

xq
), scaled to satisfy constraint (15b)

and minimizing
∥∥W i+1

q −W i
q

∥∥
F

Put the Q resulting GEVCs in the columns of
W q

W i+1
q ←

[
IMq0

]
W q

for k ∈ K ∖ {q} do
Select Gk as the block of W q (see (20))

corresponding to node k and send to node
k

At node k
W i+1

k ←W i
kGk

i← i+ 1
q ← (q mod K) + 1

B. Convergence and Optimality

In this subsection, we provide some insight in the convergence
and optimality properties of the D-MAXVAR algorithm, and
establish formal convergence proofs.

A first important observation is that the solution of (18) at
iteration i is by definition in the constraint set of the problem at
iteration i+1 (corresponding to selecting Gk = IQ). As a re-
sult, the objective function (18a) decreases monotonically and
must therefore converge, as the objective function is bounded
in the constraint set. However, the convergence of the sequence
of optimization variables (W i)i∈N is less straighforward.
Indeed, monotonic convergence of the objective function does
not imply convergence of its arguments, nor that the global
minimum is eventually attained. Nonetheless, by making an
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assumption which is always satisfied in practice, we can show
several interesting properties about the convergence behavior
and limit points of the algorithm.
Assumption III.1. The accumulation points of the sequence
of local pencils (Ri

Dq
,Ri

xq
)i∈N are non singular and have

distinct Q-th and (Q+ 1)-th smallest GEVLs.
Due to the presence of uncorrelated sensor noise, the non-
singularity assumption is always verified. The assumption
about distinct eigenvalues is merely technical, as we can show
that such points corresponding to degenerate local problems
would be unstable in practice, unless they correspond to
the global solution of (13) (see Theorem III.3 below), and
the algorithm would therefore enventually diverge from such
points.

In what follows, a fixed point W ∗ is defined as a point
which is invariant under the updates of Algorithm 1, i.e.,
(W i)i∈N = (W ∗)i∈N if W 0 = W ∗. The following theorem
gives an important characterization of the algorithm’s fixed
points:
Theorem III.1. The columns of matrices which are fixed
points of Algorithm 1 are stationnary points of problem (13)
and therefore GEVCs of the pencil (RD,Rxx).

Proof. See Appendix A.

Assumption III.1 guarantees that the local problems have
well-defined solutions at accumulation points of the algorithm,
allowing us to state our main convergence result:
Theorem III.2 (Convergence). If Assumption III.1 holds,
(W i)i∈N converges to a fixed point, and hence stationary
point, of problem (13).

Proof. See Appendix B.

Finally, we show that the global minimizers of (13) are
the only stable fixed points. In other words, all convergence
trajectories to limit cycles or stationary points where (13) is
not minimized are unstable in the sense that the algorithm
can be kicked out of such trajectories by infintesimally small
perturbations. This is formalized in the following theorem:
Theorem III.3 (Unstable Accumulation Points). Let W ∗ be
an accumulation point of Algorithm 1. Then W ∗ is an unstable
accumulation point if and only if it is not a global minimizer
of problem (13).

Proof. See Appendix C.

Therefore, in the presence of numerical noise, we expect the
algorithm to converge to a global minimizer of problem (13),
as demonstrated by the simulations performed in Section VI.

IV. DISTRIBUTED MAXVAR IN GENERAL NETWORK
TOPOLOGIES

Before describing the D-MAXVAR algorithm for more general
topologies, we first explain how it can be established in a star
topology, thereby introducing some important insights towards
further extensions.
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Fig. 1: D-MAXVAR data flow in a star-topology network with K = 5

A. Star-Topology Networks

In a star-topology network, we can distinguish two kinds of
nodes: the central node kc, which shares a link with all other
nodes in the network, and the leaf nodes k ∈ L = K ∖ {kc},
which are exclusively connected to the central node. Therefore,

Nkc = L (23)
Nk = {kc} ∀k ∈ L. (24)

A naive strategy to apply the algorithm presented above for
fully connected networks to a star-topology network would be
to let the central node act as a relay between the leaf nodes. We
discard this solution for two reasons: Firstly, the bandwidth re-
quired at the central node would grow linearly with the number
of nodes in the case of a broadcast communication protocol
or quadratically in the case of one-to-one communication. The
maximum network size would therefore largely depend on
the bandwidth available at the central node. Secondly, further
bandwidth savings can be achieved by allowing the central
node to compress and fuse the signals it receives from the
leaf nodes.

We will apply a separate treatment to the iterations where
the updating node is the central node and those where it is a
leaf node, of which we give a brief overview hereafter:

a) The updating node is the central node (q = kc)
As all nodes share a link with the updating node, the

network proceeds as in the fully-connected case. All nodes
send their compressed observations zi

k to the central node
which then solves (15). The leaf nodes update their local
estimates of the solution as in the fully-connected case.

b) The updating node is a leaf node (q ̸= kc)
As only the central node shares a link with the updating

node, it collects the compressed observations of the other leaf
nodes. It fuses (i.e. adds) them together with its own observa-
tions and sends them to the updating node. The updating node
now acts as if the data received from the central node were
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the compressed observations of a single node and proceeds
to compute its local solution estimate and the single update
matrix Gkc for the central node accordingly. The central node
then relays the update matrix Gkc

to the other leaf nodes,
which then all update their local estimate with this single
update matrix. The data flow for star-topology networks is
illustrated in Figure 1. Note that the computation of the local
solution at node q also requires aggregating and fusing the
second order signal statistics through the network similarly to
the signal observations, as will be explained below.

Formally, for a star-topology network, when the updating
node is a leaf node q ∈ L, node q receives the following from
the central node:

zi
kcq = zi

kc
+

∑
k∈Nkc∖q

zi
k (25)

Ri
Σkcq = Ri

zkc
+

∑
k∈Nkc∖q

Ri
zk

(26)

It then constructs

xi
q ≜

[
xT
q zi

kcq
T
]T

(27)

Ri
Dq

≜ Blkdiag(Rxq ,R
i
Σkcq) (28)

as it did in the fully-connected case according to (16)-(17), and
solves problem (15). With those new definitions, we can show
that solving the local problem (15) is equivalent to solving

min
W

Tr
(
WHRDW

)
(29a)

s.t. WHRxxW = IQ (29b)

C(W−q) ⊆ C(W i
−q) if q ∈ L (29c)

C(Wk) ⊆ C(W i
k) ∀k ∈ L if q /∈ L (29d)

where W−q is the matrix obtained by removing the rows of
W corresponding to Wq . Note that when the updating node
is the central node (i.e. q /∈ L), problem (29) reduces to the
fully connected case problem (18). When q ∈ L, constraint
(29c) results in the equivalent parametrization

W =
[
Wq

T (W i
−qGkc

)
T
]T

(30)

where Gkc
∈ RQ×Q.

Remark IV.1. Note that the number of degrees of freedom
is lower for iterations where the updating node q is a leaf
node (constraint (29c) is active) than for iterations where the
updating node q is the center node (constraint (29d) is active).
We therefore generally expect a lower decrease of the objective
function (on average) for iterations in which a leaf node is the
updating node.

B. Tree-Topology Networks

A tree-topology network has an acyclic graph, which implies
that there is a unique path between any two nodes. The nodes
with a single neighbor are also referred to as leaf nodes and
constitute the end points of the branches in the tree. As we did
for star-topology networks, we denote the set of leaf nodes L.

The procedure in tree-topology networks is conceptually
similar to the star-topology case, where the updating node
behaves as if it were the center node of a star-topology
network, as described in Section IV-A. Consider the two
isolated subtrees obtained by disconnecting the updating node

Algorithm 2: Recursive procedure for aggregating obser-
vations in the branch Bkp to obtain zkp

procedure aggregate(k, p)
for l ∈ Nk ∖ {p} do

aggregate(l, k)

At node k
if k /∈ L then

Compute zkp[t] = zk[t] +
∑

l∈Nk∖p zlk[t] from
a new batch of T samples zi

k[t] = W iT
k xk[t]

RΣkp = Ryk +
∑

l∈Nk∖p RΣlk

Send (zkp,RΣkp) to node p
else

Send zkp = zk to node p

q from one of its neighbors k ∈ Nq . We denote Bkq the set
of nodes in the subtree containing k (see Figure 2). At each
iteration, each of the neighboring nodes k ∈ Nq of node q
recursively collect and sum the compressed observations and
related covariance matrices of their respective subtree Bkq and
sends them to node q. The updating node q therefore receives

zi
kq ≜

∑
l∈Bkq

zi
l = zi

k +
∑

l∈Nk∖q

zi
lk ∀ k ∈ Nq (31)

Ri
Σkq

≜
∑
l∈Bkq

Ri
zl

= Ri
zk

+
∑

l∈Nk∖q

Ri
Σlk

∀ k ∈ Nq (32)

Note that these definitions are recursive and that those values
can be efficiently computed by performing an in-network
summation in a recursive fashion. This recursive aggregation
procedure is described by Algorithm 2 and illustrated in Figure
3. Note that even in nodes where Q > Mk (e.g. in case of
single-channel sensor nodes) this aggregation process realizes
an overall bandwidth reduction due to the in-network fusion of
data (as opposed to straightforwardly relaying the raw data).
Similarly to the other topologies, we define

W q ≜
[
W T

q | GT
k1

| · · · | GT
knq

]T
(33)

xi
q ≜

[
xT
q | ziT

k1q | · · · | ziT
knq q

]T
(34)

Ri
Dq

≜ Blkdiag(Rxq
,Ri

Σk1
q, . . . ,R

i
Σknq q

) (35)

with nq = |Nq| and {k1, . . . , knq} = Nq . This allows us
to solve the local problem (15) which is again equivalent to
the global problem (13) equipped with additional range con-
straints, this time for each subtree B(·). A complete description
of the procedure is given by Algorithm 3.

Finally, note that similarly to (22), the common components
in s can be estimated as

si =
1

K

∑
k

zi
kq. (36)

k2

q

k1

k3

Bk3q Bk1q

Bk2q

Fig. 2: In this example tree, the subtree Bk1q is highlighted in orange,
Bk2q in blue and Bk3q in green. Leaf nodes are colored red.
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Fig. 3: In-network summing and aggregation at the updating node.
Covariance matrices and compressed observations are recursively
propagated from the leafs towards the updating node.

Algorithm 3: D-MAXVAR algorithm in a tree-topology
network.

begin
i← 0
Initialize updating node as q ← 1
Randomly initialize the the W 0

k ’s
loop

for k ∈ Nq do
aggregate(k, q) (see Algorithm 2)

At node q
Compute the Q GEVCs corresponding to the Q

smallest GEVLs of the matrix pencil
(Ri

Dq
,Ri

xq
), scaled to satisfy constraint (15b)

and minimizing
∥∥W i+1

q −W i
q

∥∥
F

Put the Q resulting GEVCs in the columns of
W q

W i+1
q ←

[
IMq0

]
W q

for k ∈ Nq do
Select Gi+1

k as the block of W q (see (33))
corresponding to node k and disseminate
within subtree Bkq

for l ∈ Bkq do
At node l

W i+1
l ←W i

l Gk

i← i+ 1
q ← (q mod K) + 1

C. Arbitrary Networks

It is in tree-topology networks that our algorithm offers the
greatest benefits in terms of complexity and communication
costs. Even though tree-topology networks are quite specific,
the D-MAXVAR algorithm can be generalized to networks
with arbitrary topologies by pruning the network to a (possibly
different) tree in each iteration. Ideally, the tree at iteration
i should preserve all the neighbors of the updating node q.
Indeed, cutting off neighbors would reduce the number of
update matrices G in (33), which would reduce the degrees
of freedom in the minimization of (15), using the definitions
in (33)-(35).

A similar convergence statement as for fully-connected
networks can be made for arbitrary networks, and the as-
sociated proof can be relatively straightforwardly adapted to
these cases, although the notation and definitions becomes
substantially more convoluted.

D. Complexity and Communication Cost

Table I summarizes the communication cost and complexity
of our algorithm. The major benefit of the arbitrary-topology
variant is that it scales well, i.e. the per-node communication
cost and transmission cost is independent of the network size
(as opposed to a naive multi-hop relay procedure, which would
grow with the depth of the tree). This is because the sensor
observations of the different nodes are fused along the way
when the data travels through the network, as described in the
aggregation step of Algorithm 2.

Fully-connected Arbitrary Topology

Transmission cost per node ∝ Q ∝ Q

Complexity at updating node q ∝ (Mq +Q(K − 1))3 ∝ (Mq +Q|Nq |)3

TABLE I: Communication cost and complexity of the D-MAXVAR
algorithm

The above figures assume the transmission cost of the update
matrices G to be negligible compared to a batch of T samples.

V. CORRELATION STRUCTURE ESTIMATION

After convergence of the D-MAXVAR algorithm, each node
has access to estimates of its own per-node MAXVAR di-
rection zk, of its own spatial filter Wk, and of the common
components s. In this section, we describe how these variables
can be used to efficiently approximate the TSC of all node
pairs, even for a pair of nodes that do not directly exchange
signals with each other. We first describe how the TSC relates
to a low-rank approximation of a particular block-whitened
correlation matrix (defined below). We then show how this
low-rank approximation can be computed from the per-node
MAXVAR directions. Finally, we describe a practical solution
for selecting an adequate value for Q, the number of computed
directions.

A. MAXVAR as a low-rank approximation

The covariance matrix between node k and l of the (per-node)
whitened signals is

Pxkxl
≜ R

− 1
2

xk Rxkxl
R

− 1
2

xl . (37)
The TSC between nodes k and l can be shown to be equal

Θkl = ∥Pxkxl
∥2F (38)

where ∥·∥F denotes the Frobenius norm. See supplementary
materials for a proof.

We now show how W , i.e. the MAXVAR solution of
(9), relates to the eigenvalue decomposition of Pxx =

R
− 1

2

D RxxR
− 1

2

D , the network-wide covariance matrix of the
(per-node) whitened signals. Note that Pxx is a block matrix
such that

[Pxx]kl = Pxkxl
(39)

where [·]kl denotes the Mk×Ml block corresponding to node
k and l, and where in particular the diagonal blocks [Pxx]kk =
I . We stated earlier that the spatial filters W were solutions of
the GEVD (12). If we assume that Λ only contains non-zero
GEVLs (which is always the case in practice), we can define

U ≜ R
1
2

DWΛ− 1
2 , (40)
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allowing us to write (12) as
U = PxxUΛ (41)

UHPxxU = Λ−1 (42)
which can be reorganized as

PxxU = UΛ−1 (43a)

UHU = IQ. (43b)
The columns of U are therefore orthogonal eigenvectors of
Pxx and Λ−1 contains the corresponding eigenvalues. As a
result, the Q-dimensional filters computed by MAXVAR relate
to the eigenvectors corresponding to the Q largest eigenvalues
of Pxx (i.e. the smallest diagonal elements of Λ) via (40). If
we denote the Q-rank approximation of Pxx as P̂xx, we have

P̂xx = argmin
A

∑
k,l∈K

∥Pxkxl
− [A]kl∥2F (44)

s.t. Rank(A) = Q (45)

P̂xx can therefore be interpreted as a joint low-rank approxi-
mation of the matrices Pxkxl

.

B. TSC Approximation

We now propose to approximate the TSC by using P̂xkxl
≜

[P̂xx]kl instead of Pxx in (38). We define the approximate
TSC as

Θ̂kl ≜
∥∥∥P̂xkxl

∥∥∥2
F
=

∥∥∥UQ
k (ΛQ)−1UQH

l

∥∥∥2
F

(46)

where Uk = R
1
2
xkWkΛ

− 1
2 (from the definition of U in

(40)), and the superscript Q indicates that we only consider
the columns of U and elements of Λ corresponding to the
Q largest eigenvalues of Pxx. From the definition of the
Frobenius norm, we have∥∥∥UQ

k (ΛQ)−1UQH
l

∥∥∥2
F

= Tr
(
UQ

k (ΛQ)−1UQH
l UQ

l (ΛQ)−1UQH
k

)
(47)

and from the cyclic property of the trace∥∥∥UQ
k (ΛQ)−1UQH

l

∥∥∥2
F

= Tr
(
UQH

k UQ
k (ΛQ)−1UQH

l UQ
l (ΛQ)−1

)
(48)

From (40), we find that

UQH
k UQ

k = (ΛQ)−
1
2WQH

k R
1
2
xkR

1
2
xkW

Q
k (ΛQ)−

1
2 (49)

= (ΛQ)−
1
2Rzk

(ΛQ)−
1
2 (50)

such that we finally obtain
Θ̂kl = Tr

(
Rzk

(ΛQ)−2Rzl
(ΛQ)−2

)
(51)

The TSC approximations can therefore be computed from
D-MAXVAR’s compressed observations’ covariance matrices
Rzk

, which can locally computed at node k and be shared
with negligible communication cost compared to the com-
pressed signal observations themselves. Indeed, instead of
sharing MkT samples (T being the window length considered)
samples, the nodes only need to share Q×Q matrices, which
is cheap even for nodes several hops away.

We can show that the approximation error in each off-
diagonal block of Pxx constitutes an upper bound to the TSC
approximation error, as stated in the following theorem:

Theorem V.1. Let P̂Q
xkxl

denote the block of the best Q-rank
approximation of Pxx corresponding to nodes k and l. We
have(√

Θ̂Q
kl −

√
Θkl

)2

≤
∥∥∥P̂Q

xkxl
− Pxkxl

∥∥∥2
F

∀Q, k, l (52)

Proof. See supplementary materials.

Note that we are indeed only interested in the off-diagonal
blocks, as the diagonal blocks (i.e. k = l) are always equal to
the identity matrix and do not carry any useful information
regarding the network’s correlation structure. Theorem V.1
implies that if the network-wide covariance matrix Rxx has
rank Q, the TSC can be perfectly recovered. This occurs
when Span s = Spanx, i.e. x is in the Q-dimensional
subspace spanned by s. Furthermore, note that any com-
ponent in x which is observed by a single node does not
contribute to the off-diagonal blocks of Pxx. Therefore, if
Spanxk = Span s ⊕ Spannk, where nk are node specific
signals (which are considered noise for our purposes), we ex-
pect dim(Span s) < dim(Spanx) and the off-diagonal blocks
of Pxx can be described by only dim(Span s) components,
even if Rxx has full rank.

C. A Heuristic for Selecting Q

Note that the TSC estimator defined by (46) relies on the
blocks of the low-rank approximation of the full matrix Pxx

and not on the low-rank approximation of the blocks them-
selves2. What we are effectively minimizing is the total error
for all blocks as defined by the joint low-rank approximations
(44). From Eckart-Young Theorem [29], we know that this
error decreases with increasing Q, but this unfortunately also
includes the approximation error of the diagonal blocks, in
which we have no interest (as they are always equal to the
identity matrix). A pragmatic strategy could be to increase
Q as long as the total compound error of the off-diagonal
block decreases. The question that then arises is whether one
can easily check whether adding a component will result in
a decrease of the low-rank approximation error of the off-
diagonal blocks. This is stated in the following theorem:
Theorem V.2. The average approximation error of the off-
diagonal blocks of the (Q + 1)-rank approximation of Pxx

is smaller than the average approximation error of the off-
diagonal blocks of the Q-rank approximation, i.e.∑
k,l ̸=k

∥∥∥P̂Q+1
xkxl

− Pxkxl

∥∥∥2
F
<

∑
k,l ̸=k

∥∥∥P̂Q
xkxl

− Pxkxl

∥∥∥2
F
, (53)

if and only if∑
k

(
Θ̂Q+1

kk − Θ̂Q
kk

)
> 2λQ+1 − λ2

Q+1 (54)

where λQ denotes the Q largest eigenvalue of Pxx
3.

Proof. See supplementary materials.

Q should therefore be incremented as long as (54) holds and as
long as the available bandwidth permits it. Note that this does

2We remind the reader that this follows from the fact that we wished to
avoid the combinatorial complexity scaling which would have resulted from
solving all pair-wise CCA problems (each yielding a low-rank approximation
of the blocks of Pxx).

3i.e. the diagonal elements of Λ−1.
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not guarantee that the TSC approximation error will decrease
in each (k, l) pair, only that the total upper bound derived
from Theorem V.1 on the total approximation error of TSC will
decrease. The advantage of this heuristic is that each node can
locally evaluate Θ̂Q

kk using (51) and the nodes can therefore
efficiently verify wether (54) holds.

VI. SIMULATION RESULTS

In this section, we validate the TSC approximation and heuris-
tic described in Section V and demonstrate the convergence
properties of the D-MAXVAR algorithm in tree-topology
networks.

A. Simulation Settings

In the context of WSNs, it is appropriate to model the ob-
served signals as noisy observations of a mixture of uniformly
spatially distributed latent sources, i.e.

xk = Aks+ αnk (55)
where nk is Mk-dimensional spatially white sensing noise at
node k and uncorrelated with the noise at other nodes, s is a d-
dimensional spatially white latent signal and Ak is the mixing
matrix associated with node k. Finally, α is a network-wide
parameter allowing us to modulate the signal-to-noise ratio
(SNR). Let Ak = [a1

k, . . . ,a
d
k], where aj

k denote the steering
vector at node k associated with source sj . We model it as

aj
k =

gj
k

max{0.1, ∥mk − lj∥2}
(56)

where gj
k is an Mk-dimensional vector of random variables

drawn uniformly from [0.95, 1.05], modelling the slight dis-
crepancies in the channel gains, and mk and lj are the random
coordinates of node k and source j, uniformly drawn from a
10 by 10 square. With this model the sources can be seen as
point sources radiating energy uniformly in all directions. The
associated covariance matrice can be computed as

R = AAH + α2I (57)
where A is the matrix obtained by stacking the Ak’s. The
total power of the latent sources picked up by the nodes is
Ps = ∥A∥2 and the total noise power is α2M . We set α2 =
Ps(M SNR)−1 to obtain the desired SNR.

For each simulated scenario, we perfomed 1000 Montecarlo
runs where the covariance matrices were directly computed via
(57). Additionally, we set Mk = 8 and d = 3.

B. TSC Approximation

Using the above model and settings with K = 10, we obtained
the results depicted by Figure 4 with the average absolute error
E defined as

E ≜
1

K(K − 1)

∑
k,l ̸=k

|Θ̂kl −Θkl| (58)

In low SNR regimes the latent subspace is completely shad-
owed by noise. The average TSC is close to zero and correctly
approximated as such. In medium SNR regimes, the latent
subspace is observed by most nodes, but in a noisy fashion,
such that the subspace in which correlation occurs has a
possibly large dimension. Indeed, both the latent subspace and
per-node noise components are needed to correctly evaluate
the degree of correlation between two nodes. The error is

10−3

10−2

10−1

E

0.0

1.5

3.0

A
v
.

T
S

C

10−1 101 103 105 107

SNR

1

2

3

S
el

ec
te

d
Q

Fig. 4: Montecarlo simulations of the TSC approximation error and
selected Q according to the method described in Section V-C for
varying SNR values. Blue curves depict the median values. Red
shaded areas depict the 5-95% percentile regions. The top plot
depicts the average pairwise absolute TSC approximation error E.
The middle plot depicts the average pairwise TSC in the network.
The bottom plot depicts the number of components Q as selected by
the heuristic described in Section V-C.

TSC Matrix Approximate TSC Matrix

Fig. 5: Example TSC matrices obtained with K = 20, Mk = 8, 3
latent sources and SNR = 1. Each pixel represents the (approximate)
TSC of a pair of node. Only the lower triangular half is shown.

therefore largest in this region, but stays reasonable when
compared to the true average TSC with a relative error of
approximately 3%. In high SNR regimes, the latent subspace
is perfectly observed and dominates the noise, which results
in an almost perfect approximation of the TSC with a relative
error of approximately 1% and decreasing towards 0% with
increasing SNR. As expected, the number of components used
(Q) increases with the SNR and never over-estimates the
dimension of the latent subspace (dimSpan s = d). Thanks
to this last fact, the algorithm can adaptively set its overall
bandwidth to match the SNR. Figure 5 depicts an example
matrix of pairwise TSCs for a unit SNR. In this example,
we see that nodes sharing common components are correctly
identified.

C. Convergence

Figure 6 shows the convergence of the D-MAXVAR algorithm
to the global solution. The metric used is

ei = 1− f∗

f(W i)
(59)
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Fig. 6: Montecarlo simulations of the convergence of the D-
MAXVAR algorithm in tree-topology networks. Solid curves depict
the mean values. Shaded areas depict the 5-95% percentile regions.
The top plot was generated with K = 13. The bottom plots were
generated with K = 4, 13, 40.

where f(W ) = WHRDW is the objective function of (13)
and f∗ is its value at a global minimizer. In the top plot, we
see that convergence is indeed faster with a larger number of
components Q. In the bottom plot, we see the impact of the
tree depth: the deeper the tree, the higher the compression
(due to the recursive summing resulting from Algorithm 2).
We see that, in practice, convergence to a global minima is
always achieved due to the instability of other fixed points
(see Theorem III.3).

VII. CONCLUSION AND DISCUSSION

In this paper, we have presented an algorithm which computes
the solution of the so-called MAXVAR problem in a dis-
tributed setting. Our algorithm displays significant savings in
computational and communication requirements compared to a
centralized procedure where signal observations are collected
at a single location. In particular, in abritrary-topology net-
works, the communication cost is independent of the network
size and only depends on the degree of each node and the
chosen compression factor Q. We have proven the convergence
properties of the algorithm, and shown via simulations that the
condition for global convergence hold in practice.

We have also shown how the networks’ correlation structure
can be efficiently estimated from the algorithm’s outputs and
for negligible additional cost, via an approximation of the
total squared cosine. However, this TSC approximation suffers
from one drawback: we cannot guarantee that the signal
components used for its computation result in the lowest
possible approximation error, only that they correspond to the
minimum of an upper-bound on the error. Nevertheless, we
have demonstrated that the approximation is quite accurate
and allows significant computational savings compared to the
exact computation of all pair-wise TSCs. Finally, we note
that, in most cases, there will be no interest in perfectly
estimating the TSC. Indeed, for most applications, the TSC
will be thresholded in order to determine whether the link

between two nodes should be kept alive, or simply used as a
distance input to some clustering algorithm.

APPENDIX

A. Proof of Theorem III.1

Proof. Let us assume that W ∗ is a fixed point of Algorithm 1.
Then W ∗ is a solution of problem (18) when W i = W ∗ for
any q ∈ K. The Lagrangian of this problem can be expressed
as

Lq(W ,Λq,Γk) = Tr
(
W TRDW

)
− Tr

(
Λq(W TRxxW − IQ)

)
−

∑
k ̸=q

Tr
(
ΓkW

T
k Nk

)
(60)

where Λq and Γk ∀k ̸= q are matrices of proper dimensions
containing the Lagrange multipliers and Nk is an Mk×(Mk−
Q) whose columns span the left null space of W ∗

k . As W ∗

is a solution of (18), it must satisfy
∂

∂W
Lq = 0 = 2RDW ∗ − 2RxxW

∗Λq −N qΓq (61)

where Γq is the matrix obtained by vertically stacking all the
rows of Γk and N q is the block diagonal matrix whose blocks
are Nk, and where the entries of the blocks corresponding to
q are set to zero for both matrices. Left-multiplying by W ∗T

and using constraint (18b), we obtain

W ∗TRDW ∗ = Λq − 1

2
W ∗TN q︸ ︷︷ ︸

0

Γq ∀q. (62)

Since the left-hand side is independent of q, we can conclude
that Λq = Λ is the same for every choice of q. From this and
(61), we have

∂

∂Wq
Lq = 0 = 2RxqW

∗
q −2RxqxW

∗Λ−NqΓq︸ ︷︷ ︸
0

∀q (63)

Combining those equations for q ∈ K yields RDW ∗ =
RxxW

∗Λ. As W ∗ is computed via the GEVD of the local
pencil (Ri

Dq
,Ri

xq
) corresponding to W i = W ∗, it must be

such that the local W in (15) diagonalizes Ri
Dq

at every
updating node q. As a consequence, and considering that the
update matrices Gk are identity matrices due to the fact that
W ∗ is a fixed point,

W
T
Ri

Dq
W = W ∗TRDW ∗ = Λ (64)

is a diagonal matrix and the columns of W ∗ are therefore
GEVCs of the pencil (RD,Rxx).

B. Proof of Theorem III.2

In order to prove Theorem III.2, we first prove two interme-
diate results. In the following, let f : RM → R denote the
objective function (13a) and let the constraint set (13b) be

D = {W ∈ RM | W TRxxW = IQ}. (65)

Furthermore, let the constraint set of the local problems (18)
be

Dq(V ) = {W ∈ D | C(Wk) ⊆ C(Vk) ∀k ̸= q} (66)
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where V = W i in (18). For convenience, we define the
following equivalent procedure to an update of Algorithm 1:

W i+1 = argmin
W∈Mi

∥∥Wqi −W i
qi

∥∥
F

(67a)

Mi = argmin
W∈Dqi

(W i)

f(W ) (67b)

where qi = i mod K. We denote Fq the mapping producing a
new iterate W i+1 from W i at the updating node q at iteration
i. For simplicity, we assume that (67a) is uniquely defined. If
this is not the case, we select the matrix W i+1 associated
with the update matrices Gk closest to identity matrices with
respect to the Frobenius norm.
Lemma B.1. Let mq : RM×Q → R be such that {mq(W )} =
f(Fq(W )), i.e. mapping W i to f(W i+1) in procedure (67).
Then mq is a continuous function for any q at points where
the blocks Wk ̸=q have full column rank.

Proof. The constraint set of the local problem (15) can be
expressed as

Dq(W ) = {P q
WV | V ∈ RM} ∩ D (68)

where P q
W denotes the orthogonal projection matrix on the

linear subspace (66). mq(W ) therefore corresponds to the
sum of the Q smallest GEVLs of (P q

WRDP qT
W , P q

WRxxP
qT
W )

(which is found by substituting the optimization variable in
(15) by P q

WV ). As the GEVLs of a pencil vary continuously
with the entries of its constituent matrices [30], and as P q

W

varies continuously with W at points where its blocks Wk ̸=q

have linearly independent columns [31] (which is true under
the assumption that the local problems are non-singular), mq

is a continuous function at points where the blocks Wk ̸=q have
full column rank.

Let (W i)i∈N be any sequence of iterates satisfying the
mapping defined by Algorithm 1 and therefore procedure (67).
We now show that if (W i)i∈N is a convergent sequence, then
its limit limi→∞ W i = W ∗, is a fixed point of Algorithm 1
and therefore a stationary points of problem (13).
Lemma B.2. If (W i)i∈N is a convergent sequence, it con-
verges to a fixed point of Algorithm 1.

Proof. Let W ∗ be the unique limit of (W i)i∈N. From the
continuity of mq (see Lemma B.1), and under the assumption
of non-singular local pencils, we have:

lim
W→W ∗

mk(W ) = mk(W
∗) ∀k ∈ K. (69)

As (f(W i))i∈N is bounded and decreases monotonically, it
converges to some f∗ and therefore, from the continuity of f ,
f(W ∗) = f∗. By definition of mq we have

mqi(W
i) = f(W i+1) (70)

with qi = i mod K. Therefore,
lim
i→∞

mqi(W
i) = f∗ (71)

and, in particular, every subsequence such that qi = k for
some node k converges to f∗ and

mk(W
∗) = f∗ = f(W ∗) ∀k ∈ K. (72)

As, by definition (66), W ∗ is in Dk(W
∗), and by the

definition of mq , the minimum value of f in Dk(W
∗) is

mk(W
∗) = f∗, W ∗ must be in M (as defined in (67b)).

In virtue of (67a), it must be that Fk(W
∗) = W ∗ and W ∗

is therefore a fixed point of Fk for any node k.

We can now finally prove Theorem III.2.
As, by hypothesis, the Q-th and (Q + 1)-th smallest GEVLs
of the local pencils (Ri

Dk
,Ri

xk
) are distinct at the accumu-

lations points of (W i)i∈N, a small pertubartion of the pencil
around an accumulation point results in a small perturbation
of the generalized eigenspace [6], [30]4. As a consequence,
the convergence of some subsequence (W i)i∈N to W ∗

(which is a stationnary point) implies the convergence of
(Mi)i∈N to some M∗, which from (67) corresponds to the
sequence of sets of generalized eigenvectors of the local
pencils (Ri

xq
,Ri

Dq
), where the convergence of (Mi)i∈N must

be understood in terms of the Haussdorf distance between sets
5.

As the sublevel sets of f in D are compact and f decreases
monotonically, there indeed exists a convergent subsequence
(W i)i∈N converging to some W ∗, which defines a corre-
sponding M∗ according to (67b). As mk(W

∗) = f∗ ∀k ∈ K,
it must be that W ∗ ∈ M∗. Therefore, there exists some con-
vergent sequence {V i+1}i∈N with V i+1 ∈ Mi converging
to W ∗ (As the convergence of (Mi)i∈N to M∗ implies that
for any point W in M∗ we can find a set Mi ∈ (Mi)i∈N
containing a point arbitrarily close to W ). As both sequences
converge to the same point,

lim
i→∞,i∈N

∥∥W i − V i+1
∥∥
F
= 0, (73)

and as V i+1 ∈ Mi, we have from (67a) that∥∥V i+1
qi −W i

qi

∥∥
F
≥

min
W∈Mi

∥∥Wqi −W i
qi

∥∥
F
=

∥∥W i+1
qi −W i

qi

∥∥
F
. (74)

(73) in combination with the squeeze theorem therefore im-
plies that

lim
i→∞,i∈N

∥∥W i+1
qi −W i

qi

∥∥
F
= 0. (75)

Without loss of generality, we could have chosen N such
that (qi)i∈N = (k)i∈N for any abritrary node k. Indeed,
because the sublevel sets of f in D are compact any sequence
(W i)i is guaranteed to have a convergent subsequence, and in
particular sequences such that (qi)i∈N is a constant sequence.
As a consequence of this and (75), for every node k, there
exists some set of indices Nk such that (W i

k)i∈Nk
converges

to some W ∗
k and

lim
i→∞,i∈Nk

∥∥W i+1
k −W i

k

∥∥
F
= 0. (76)

The convergence of (W i
k)i∈Nk

to W ∗
k therefore implies the

convergence of (W i+1
k )i∈Nk

to the same point. By induc-
tion, it must be that (W i+l

k )i∈Nk
converges to W ∗

k for any
offset l and (W i

k)i∈N is therefore a convergent sequence (as
∪l∈N{N + l} = N). As this is true for every node k, every
block of the solution converges and (W i)i∈N is a convergent

4The result is established for non-generalized eigenspaces, but it can be
straightforwardly extended to generalized eigenspaces by performing a change
of variables similar to (40) in order to turn the GEVD into an equivalent
eigenvalue decomposition.

5The Haussdorf distance dH(V,W) between two sets V and W is de-
fined as max{supX∈V infY ∈W ∥X − Y ∥ , supY ∈V infX∈W ∥X − Y ∥}.
dH(V,W) = ε implies that for any point in V we can find a point in W at
a distance at most ε and vice-versa.
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sequence which, from Lemma B.2, converges to a fixed point,
and hence to a stationary point (see Theorem III.1).

C. Proof of Theorem III.3

Since W ∗ is not a global minimizer and since (13) has no local
minima6, every neighborhood V ⊆ D around W ∗ contains a
continuum of points U ∈ V for which f(U) < f(W ∗). Now
take any point U in U . Since (f(W i))i∈N is monotonically
decreasing, setting W 0 = U will result in a sequence
(W i)i∈N that remains at a finite distance from W ∗. Therefore,
W ∗ cannot be a stable accumulation point.
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