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Abstract—This paper presents a decision-making algorithm
based on a modified version of the Bellman Equation to deal with
Electromagnetic Interference errors in a communication channel
inside a harsh electromagnetic reverberant environment.

The Bellman equation is a fundamental concept in decision-
making problems such as Markov Decision Processes. Such pro-
cesses model decision-making in situations where the outcomes
are partly random and partly controlled by an agent (decision-
maker).

Recent studies have implemented Markov Decision Processes
as a tool for risk assessment in areas such as robotics or aviation.
However, so far, no research has been reported that uses the
Bellman Equation or Markov Decision Processes to deal with
risks related to electromagnetic disturbances.

In our study, a wired communication channel that uses Non-
Return-to-Zero-Level data encoding and Hamming code for error
detection and correction is disturbed. First, the packet error
rate is calculated and compared with and without the proposed
algorithm for different electromagnetic disturbance frequencies
and bit rates. The gain is compared at different packet error rates
when the algorithm’s parameters (called rewards) are optimized
and when these are set as random. Last, the influence of the
rewards and the maximum number of resends on the algorithm’s
performance is also studied.

Index Terms—Decision-making, Communication, Electromag-
netic Interference (EMI), reverberant environment, PER, Bell-
man Equation.

I. INTRODUCTION

Nowadays, Electrical, Electronic, and Programmable Elec-
tronic (E/E/PE) devices are omnipresent in our daily lives.
Moreover, they are increasingly performing safety-critical
tasks in which a device failure might severely harm people or
the environment. For an increasing number of these devices,
reliable and robust communication is crucial. However, the
communication medium will occasionally be disturbed by
Electromagnetic Interference (EMI), resulting in the corruption
of the transmitted data. Whether the disruptions occur by
accident (unintentional EMI) or maliciously (intentional EMI),
limiting the influence of these disturbances is essential.

Several Error Detection Codes (EDCs) and Error Correction
Codes (ECCs) have been suggested to improve communication

This project has received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie Skłodowska-
Curie grant agreement No 955816. This publication reflects only the author’s
view exempting the European Union from any liability. Project website:
https://eternity-project.eu/

reliability [1] [2]. However, non of these codes are perfect. For
example, there are still reported cases in which corrupted data
is considered valid at the receiver (false negatives). In these
cases, the system does not know the data was corrupted, mean-
ing that EDCs and ECCs could not take any countermeasures.
Therefore, these kinds of failures are the most dangerous ones
in terms of safety.

One of the areas that is gaining attention is the use of Arti-
ficial intelligence (AI) techniques to predict/classify EMI [3],
[4], or to address problems in electromagnetic compatibility
(EMC) [5]. These techniques include using neural networks
to model EMI and predict its impact on electronic systems
[6], or using genetic algorithms to optimize electronic device
design to improve EMC performance [7].

One of the recent focus areas in EMC is the implementation
of reinforcement learning to develop control algorithms that
can adapt to changing electromagnetic environments in real-
time [8], [9]. Reinforcement learning algorithms can learn
to make decisions based on feedback from the environment
and can adjust the control parameters of electronic devices to
improve their EMC performance.

Markov decision processes (MDPs) [10] are fundamen-
tal in reinforcement learning. They provide a mathematical
framework for sequential decision-making problems for a
fully observable, stochastic environment with a Markovian
transition model and additive rewards. MDPs have been used
in the context of safety assessment to find an optimal policy
that minimizes a cost function that penalizes the risk of some
specific conditions on the system [11], [12]. Several studies
have applied MDP for decision-making in industrial applica-
tions [13]–[15], communications [16], [17], cyber security [18]
or robotics [19], [20].

However, to the author’s knowledge, no literature studies
exist that employ Markov Decision Processes (MDPs) to deal
with EMI-induced errors in a communication channel.

This paper aims to develop a decision-making algorithm
based on the Bellman Equation (a key element in MDPs) that
increases the certainty that the received data is correct and
ensures the system’s dependability when it is affected by EMI.
Furthermore, this algorithm predicts the most optimal action
using the available information from the electromagnetic en-
vironment, continuously leading the system to a minimal risk
condition.
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The remainder of this paper is organized as follows. Section
II presents the generic simulation setup and the system under
study. Section III presents the error detection and correction
technique (Hamming code) and the EM condition assessment.
Section IV explains the theoretical foundations of the Bellman
Equation and instantiates the modified model for the presented
experimental setup. Section V provides experimental evalua-
tions. Last, Section VI concludes the work.

II. SIMULATION SETUP

Fig. 1: Simulation Framework Outline

This paper relies on an in-house developed simulation
framework that combines the paper of Hill [21], Magdowski
et al. [22], and Vanhee et al. [23]. Different studies, as per-
formed by [24], [25], use and extensively describe this frame-
work. This section will shortly recapitulate this framework,
which performs a Monte-Carlo simulation of single or multi-
frequency continuous wave disturbances, which are incident
to a device-under-test (DUT), in this case a Printed Circuit
Board (PCB). The simulator extensively considers different
randomized angles for the incident disturbance:

• Polar angle θ: arccos (U(−1, 1))
• Azimuth angle φ: U (0, 2π)
• Polarization angle ψ: U (0, π)
• Phase shift angle α: U (0, 2π)
Where U() denotes the uniform distribution. Randomization

leads to the ability for a global assessment approach. The inci-
dent disturbance is superimposed on the sent voltages. We ran
16000 simulations for a specific Signal-to-Interference-Ratio
(SIR), which represents the changing nature of a reverberation
environment. The superimposed induced voltages result in the
bit errors introduced within the PCB traces.

Fig. 1 depicts the communication between a sender and a
receiver, simulated using a single PCB trace with matched
source and load impedances. The sender encodes the data (4
bits) into codewords of 7 bits using a Hamming code (7, 4).
Those codewords are sent to the receiver using a particular
voltage encoding. The received voltages are converted back
into bits/symbols at the receiver side. The entire communica-
tion subsystem is subjected to an EMI disturbance, represented
schematically in Fig. 2 by Einc. Possible errors are detected
and corrected using the Hamming code, which can detect up to
two bit-flips and correct one bit-flip. A warning signal is raised
if an error has been detected. A conceptual overview of the

considered signal over time can be seen in Fig. 3. The decision
algorithm then determines the most optimal action/decision
using the following inputs:

Fig. 2: Simulated Trace as Communication Channel

Fig. 3: The received disturbed signal in time domain. The blue
line represents the undisturbed received signal. The orange line
is the received signal plus the disturbance.

• Warning signal from the detector
• Fault probabilities of the received data
With this information, plus the comparison between the data

received for the first time and the data received after a resend,
the possible decisions are:

• Use the data received at a specific time
• Ask to resend the data
• Go to a minimum risk state
The full-wave simulations carried out in this article were

performed using the Finite Difference Time Domain (FDTD)
solver inside PathWave from Keysight Technologies [26].
All post-processing analysis is done using the in-house built
simulation framework coded in Python in which the geometry,
encoding and decoding scheme, bit pattern, bit frequency, EM
environment, and error correction mechanism can be freely
selected.

A. Geometry Under Study

The PCB includes an FR4 substrate of dimensions 10 cm
by 16 cm and a thickness of 1.6 mm. The trace is 3 mm wide,
corresponding to a characteristic impedance of 50 Ω, and has
a length of 5 cm. A full ground plane covers the bottom of
the PCB [24].

Since the output port consists of matched load, the maxi-
mum output voltage is half of the applied input signal.
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B. Encoding Scheme

A random stream of Nb = 112 is first encoded into
voltages (see Fig. 1) using a Non-Return-to-Zero-Level (NRZ-
L) encoding scheme. A “0” bit is encoded as 0 V while a “1”
is encoded as 1 V.

C. Calculation of Induced Voltages

This paper focuses on a reverberation environment. First,
the geometry is exposed to reverberant disturbances while
transmitting the encoded bit stream over the trace. Then,
based on the superposition and the reciprocity theorem, the
EMI-induced voltages are added to the encoded bit stream
[23]. Similar to the real world, a reverberation environment
consists of multiple reflections. These conditions are created
using the plane wave integral representation for reverberation
chambers as presented in [21], which states that a reverberation
environment is represented by a superposition of randomly
chosen plane waves (according to the correct statistical distri-
butions). The final disturbances are a set of N = 200 plane
waves, each one with random properties for the polar angle θ,
azimuth angle φ, polarization angle ψ, and phase angle α. To
represent the continuously changing nature of a reverberating
environment, M = 1000 different sets are considered in this
paper.

III. HAMMING CODE

The Hamming code is a linear, single-error correction
code capable of detecting up to two-bit errors and correcting
single-bit errors [27]. This section considers the encoding and
decoding scheme Hamming (7,4).

A. Hamming Encoding and Decoding

Hamming (7, 4) encodes four bits into seven bits by adding
three parity bits, ensuring that the minimum Hamming distance
between any two correct codewords is three. If the distance
between the received word and the transmitted codeword is
at least one, the Hamming code decodes it to the most likely
data word. Hamming code is formed in the following way, as
explained in [28].

Due to the linearity of Hamming codes, they can be
computed in linear algebra terms through matrices. In the
correction and decoding process, these matrices are needed:
the parity check matrix H(r × n), the code generator matrix
G(k × n), as shown in (1) and (2), and the syndrome vector
s.

H =

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 (1)

G =


1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 1 0 1 0 1 0
1 1 0 1 0 0 1

 (2)

The transmitted codeword r (7 bits) is determined by taking
the product of G and the dataword (sequence of 4 bits) p:

TABLE I: Overview of considered categories

Warning Final codeword Category
same as transmitted?

0 Yes True Positive (TP)
0 No Channel False Negative (CFN)
1 Yes False Positive (FP)
1 No Channel True Negative (CTN)
2 - Data True Negative (DTN)

r = GT p. Multiplying H with the received codeword yields
the syndrome s: s = Hr.

When a correct codeword is received, s is all zero. If there is
an incorrect codeword, the syndrome indicates the bit position
of that error. However, it is also possible for an incorrect
codeword to yield an all-zero s, for example, when a codeword
is transformed into another valid codeword. In the case of
two or more errors in the codeword, a non-zero syndrome is
obtained, but only a one-bit error is corrected. These cases
will be explained in Section III-B. The correction is done by
performing a bit-inversion in the position determined by the
syndrome. After the correction, the codeword is decoded by
multiplying it with G.

B. EM Condition Assessment

The condition assessment (i.e., the assessment of the detec-
tor on the measured channel condition) used so far for EM
risk analysis and proposed by [29] is shown in Table I. These
categories are determined based on the syndrome calculated
for the received data word. Thus, if the syndrome equals 0, we
consider the warning equal to 0, and the corrected codeword is
the same as the received. On the other hand, if the syndrome
is non-zero, we consider the warning equal to 1 and try to
correct the data. For example, if Hamming detects exactly two
bit-errors, it cannot correct it, and the warning is equal to 2.

• True Positive (TP): The received output is correct, and
the detector (the syndrome determined by the Hamming
code) is also correct. In this case, the syndrome is zero,
which indicates that the codeword has not been affected
by any disturbance. This is the best scenario.

• Channel False Negative (CFN): The received output is
incorrect. The channel is getting saturated, and EMI is
deciding the outcome. This is the worst case since EMI
enforces a wrong output, but no warnings are raised
because the syndrome equals to zero. These cases are
the most detrimental to overall performance and safety.

• False Positive (FP): The syndrome is non-zero, which
indicates that the codeword has been affected by EMI.
After the correction, the corrected codeword is the same
as the transmitted. Thus the corrected codeword is valid.

• Channel True Negative (CTN): The channel is in control,
and EMI decides the outcome. The system receives a
warning (the syndrome is non-zero), and a correction is
attempted. However, the corrected codeword is not the
same as the transmitted.

• Data True Negative (DTN): The syndrome is non-zero,
and the Hamming code detects two-bit errors in the
received codeword, meaning it cannot correct the data.
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Fig. 4: Fault probabilities with fEMI = 500 MHz and fBIT =
350 MHz.

Therefore, the warning raised in this scenario differs from
the one raised in the case of FP or CTN.

Figure 4 shows the response of the number of faults as a
function of the SIR for a reverberation wave of fEMI = 500
MHz and fBIT = 350 MHz. The algorithm for computation
of SIR is explained in [25]. To calculate these probabilities,
a large number of codewords are sent through the simulation
framework, and the Hamming code is applied to the received
codewords. Depending on the final output, the codeword falls
into one of the categories explained in Section III-B, obtaining
the results above.

IV. THE BELLMAN EQUATION

The following section describes the mathematical founda-
tion of the Bellman Equation and how it is used in Markov
Decision Processes.

Before explaining the Bellman Equation, we will introduce
the key elements of Markov Decision Processes.

MDP is a discrete-time stochastic control process that mod-
els decision-making in situations where outcomes are partially
random and partially under the control of a decision-maker. A
MDP is a tuple ⟨S,A,P,R, γ⟩ where

• S is a finite set of states.
• A is a finite set of actions.
• P is a state transition probability matrix, with Pa

ss′ =
P [St+1 = s′|St = s,At = a].

• R(s, a) is the reward for being in the state s and
performing action a.

• γ is a discount factor γ ∈ [0, 1].

It thus consists of a set of states and actions, a transition
model, and a reward function. Like a Markov chain, the action
outcomes only depend on the current state. At each step during
this iterative process, the decision-maker (agent) may choose
to take an available action in the current state, resulting in the
model moving to the next step and offering the agent a reward.

A solution to an MDP is called a policy π(s). It specifies
an action a for each state s. In an MDP, we aim to find the
optimal policy that yields the highest expected utility. Value
iteration is an algorithm to find an optimal policy for an MDP.

It calculates each state’s utility U(s), defined as the expected
sum of discounted rewards from that state onward, using the
Bellman equation [30].

U(s) = max
a

(R(s, a) + γU(s′)) (3)

It expresses a recursive relationship between the values of
the states. That is, the value of being in state s is equal to the
expected immediate rewards from being in this state plus the
value of being in the state we transition into. This relationship
is helpful to approximate the state-action value function of the
MDP.

Then, using the states’ utilities, an optimal action is selected
for each state.

π∗(s) = argmax
a∈A(s)

∑
s′

P (s′|s, a)U(s′) (4)

A. Decision algorithm based on the Bellman Equation

In the proposed decision algorithm, we implemented a
modified version of the Bellman Equation to calculate the
utility value of each state. Hence, we do not perform value
iteration as described in MDP. This is because our goal is not
to learn a policy but to decide the best action in each state
based on the calculated utility value.

The decision algorithm is visually represented in Fig. 5.
As described in Section III, different fault probabilities

define each state in the process, depending on the warnings re-
ceived and the comparison between the first received data and
the data received after the resend. The following parameters
characterize the decision algorithm:

• Central states. S = {s1, s2, s3}.
– State 1: Warning received at tn−1 = 0
– State 2: Warning received at tn−1 = 1
– State 3: Warning received at tn−1 = 2

Where n indicates the number of resends that have been
done. n = 2, 3, ..., nmax.

• Sub-states. Sb = {sb11, sb12, sb13, sb14, sb21, sb22, sb23,
sb24}.
There are three central states in the model (S). Those
states are defined by the warning from the first received
data. As seen from Fig.5, if the first received warning
equals 0, the model is in state s1. If the warning equals
1, it is in state s2. And if the warning equals 2, it is in
state s3, which is not represented in Fig. 5 because the
decision is always “resend data”. Each of these central
states is composed of two sub-states (Sb), from which the
different transitions take place depending on the warning
received after the resend and the comparison between the
data received at different times (see Table II).

• A = {Resend data, Use data received at tn, Go to
minimum risk state}.

• Number of possible codewords c = 16.
• Discount factor γ = 0.8.
• Penalty resend pr = 0.4.
• Initial reward function for each of the categories men-

tioned above R = {1,−1, 0.5,−0.25,−0.35}.
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Fig. 5: Algorithm overview

A high value for the discount factor (close to 1) captures
the effective long-term reward, while taking a discount factor
closer to 0 makes our agent consider only immediate reward.
Therefore, we have chosen a discount factor higher than 0.5
and closer to 1 to capture the effect of the utility in the
following states instead of only considering the immediate
reward (see Eq. 3).

Penalty resend is the value subtracted from the original
reward function to reduce future rewards when the algorithm
resends the data. In those cases, resending the data increases
the system’s latency, which may lead to an unsafe scenario.

We assign a different reward in the range [−1, 1] depending
on the probability of the categories received at each state. If
the category received is a TP, R = 1. If it is a CFN, R = −1,
R = 0.5 for a FP, R = −0.25 for a CTN, and R = −0.35
if it is a DTN. However, in Section V-D, we show how to
learn/optimize these rewards.

Table II illustrates the different transitions depending on the
warnings received and the data comparison.

At t0, we check if the probability of the first received data
being correct (TP or FP) is higher than a predefined threshold
(for this paper, set as 96%). If so, we decide to directly use
the data received at t0 (see Fig. 5). If not, we request to resend
the data and move to the next time step (t1). This threshold
is related to the certainty that the received data is correct.
Thus, increasing this threshold means that the algorithm must
request more resends to increase that certainty. We chose a
value between 95 - 99% to achieve a trade-off between latency
and availability.

Then, depending on the warning received after the resend

and the comparison between data, we transit to a different
state, for which we calculate its utility, following these
equations:

- Sub-state 1 (sb1) : Warning received at tn−1 equals 0
(Wtn−1

= 0). In this state, we can either receive a TP or a
CFN.

The utility at s1 is:

Us1 =
P (TPs1)RTP + P (CFNs1)RCFN

P (TPs1) + P (CFNs1)
(5)

Where P (TPs1) and P (CFNs1) are the probabilities of
receiving a TP or a CFN at state s1, respectively. RTP and
RCFN are the rewards for receiving a TP or a CFN at state s1.

- Sub-state 11 (sb11) : Wtn = 0 and data(tn) = data(tn−1).
The data received after resending (at tn) is the same as the
previously received data (at tn−1). The transition probabilities
in state s11 are the following:


P1 = PTPs1TPs11

= P (TPs11 ∩ TPs1) = P (TPs11)P (TPs1)

P2 = PCFNs1CFNs11
= P (CFNs11 ∩ CFNs1)

= P (CFNs11)P (CFNs1)
1

c− 1
(6)
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TABLE II: Possible transitions in each state of the decision
algorithm

Warnings Transitions

Same data Different data
Wtn−1 = 0 TP-TP TP-CFN

(PTPs1TPsb11
) (PTPs1CFNsb12

)
Wtn = 0 CFN-CFN CFN-TP

(PCFNs1CFNsb11
) (PCFNs1TPsb12

)
CFN-CFN

(PCFNs1CFNsb12
)

Sub-state: sb11 sb12
Wtn−1 = 0 TP-FP TP-CTN

(PTPs1FPsb13
) (PTPs1CTNsb14

)
Wtn = 1 CFN-CTN CFN-FP

(PCFNs1CTNsb13
) (PCFNs1FPsb14

)
CFN-CTN

(PCFNs1CTNsb14
)

Sub-state: sb13 sb14
Wtn−1 = 1 FP-TP FP-CFN

(PFPs2TPsb21
) (PFPs2CFNsb22

)
Wtn = 0 CTN-CFN CTN-TP

(PCTNs2CFNsb21
) (PCTNs2TPs2 )

Sub-state: sb21 sb22
Wtn−1 = 1 FP-FP FP-CTN

(PFPs2FPsb23
) (PFPs2CTNsb24

)
Wtn = 1 CTN-CTN CTN-FP

(PCTNs2CTNsb23
) (PCTNs2FPsb24

)
CTN-CTN

(PCTNs2CTNsb24
)

Sub-state: sb23 sb24

Where P (TPs11 ∩ TPs1) and P (CFNs11 ∩ CFNs1) are the
joint probabilities of receiving twice a TP or twice a CFN at
states s1 and s11. Then, we calculate the utility in state s11

Usb11 = Us1 + γ
P1(RTP − pr) + P2(RCFN − pr)

P1 + P2
(7)

Once the utility of states s1 and sb11 is calculated, we use
the threshold to determine the decision at tn :

{
if Usb11 − Us1 > 0.01, Resend data
else, Go to minimum risk state

If the algorithm decides to resend at tn, the decision
at tn+1 is based on the transition probabilities PTPTP and
PCFNCFN. That is, if the algorithm decides not to resend and
the probability of receiving a TP at tn−1 is greater than
the predefined threshold, then the decision at tn+1 is to use
the data received at tn−1. If not, the decision is ”Go to a
minimum risk state”. On the other hand, if the algorithm
decides to resend and the probability of receiving a TP at

tn−1 and another TP at tn is greater than the predefined
threshold, then the decision at tn+1 is to use the data received
after the resend (at tn). If not, the decision is to resend again
and we use the algorithm to determine the decision at tn+2.

- Sub-state 12 (sb12) : Wtn = 0 and data(tn) ̸= data(tn−1).
That is, the data received after resending (at tn) is not the
same as the previously received data (at tn−1). The transition
probabilities in state s12 are the following:


P1 = PTPs1CFNsb12

= P (TPsb12 ∩ CFNs1)

P2 = PCFNs1TPsb12
= P (CFNsb12 ∩ TPs1)

P3 = PCFNs1CFNsb12
= P (CFNsb12 ∩ CFNs1)

(8)

Then, we calculate the utility in state sb11

Usb12 = Us1

+γ
P1(RCFN − pr) + P2(RTP − pr) + P3(RCFN − pr)

P1 + P2 + P3
(9){

if Usb12 − Us1 > 0.01, Resend data
else, Go to minimum risk state

(10)

As in the previous case, if the algorithm decides not to
resend and the probability of receiving a TP at tn−1 is
greater than the predefined threshold, the decision at tn+1

is to use the data received at tn−1. If not, the decision
is ”Go to minimum risk state”. If the algorithm decides
to resend and the probability of receiving a CFN at tn−1

and a TP at tn is greater than the predefined threshold. In
that case, the decision at tn+1 is to use the data received
after the resend (at tn). If not, the decision is to resend it again.

- Sub-state 13 (sb13) : Wtn = 1 and data(tn) = data(tn−1).
In this state, we can receive a FP or a CTN. The transition
probabilities in state sb13 are the following:

{
P1 = PTPs1FPsb13

= P (TPs1 ∩ FPsb13)

P2 = PCFNs1CTNsb13
= P (CFNs1 ∩ CTNsb13)

(11)

We calculate the utility in state sb13

Usb13 = Us1 + γ
P1(RFP − pr) + P2(RCTN − pr)

P1 + P2
(12)

In this case, if the algorithm decides not to resend and
the probability of receiving a FP at tn−1 is greater than the
predefined threshold, the decision at tn+1 is to use the data
received at tn−1 because in that case, the data received is
assumed to be correct. If the decision is to resend and the
probability of receiving a TP at tn−1 and a FP at tn is greater
than the predefined threshold, the decision at tn+1 is to use
the data received after the resend (at tn). If not, the decision
is to resend it again.
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- Sub-state 14 (sb14) : Wtn = 1 and data(tn) ̸= data(tn−1).
P1 = PTPs1CTNsb14

= P (TPs1 ∩ CTNsb14)

P2 = PCFNs1FPsb14
= P (CFNs1 ∩ FPsb14)

P3 = PCFNs1CTNsb14
= P (CFNs1 ∩ CTNsb14)

(13)

We calculate the utility in state sb14
Usb14 = Us1

+ γ
P1(RCTN − pr) + P2(RFP − pr) + P3(RCTN − pr)

P1 + P2 + P3
(14)

In any case, the warning received equals 2, meaning the
received data cannot be trusted, and should be sent again.

- State 2 (s2) : Warning received at tn−1 equals 1 (Wtn−1
=

1). In this state, we can either receive a FP or a CTN.
The utility at s2 is:

Us2 =
P (FPs2)RFP + P (CTNs2)RCTN

P (FPs2) + P (CTNs2)
(15)

- Sub-state 21 (sb21) : Wtn = 0 and data(tn) = data(tn−1).{
P1 = PFPs2TPsb21

= P (FPs2 ∩ TPsb21)

P2 = PCTNs2CFNsb21
= P (CTNs2 ∩ CFNsb21)

(16)

Usb21 = Us2+

γ
P1(RTP − pr) + P2(RCFN − pr)

P1 + P2

(17)

- Sub-state 22 (sb22) : Wtn = 0 and data(tn) ̸= data(tn−1).{
P1 = PFPs2CFNsb22

= P (FPs2 ∩ CFNsb22)

P2 = PCTNs2TPsb22
= P (CTNs2 ∩ TPsb22)

(18)

Usb22 = Us2+

γ
P1(RCFN − pr) + P2(RTP − pr)

P1 + P2

(19)

- Sub-state 23 (sb23) : Wtn = 1 and data(tn) = data(tn−1).{
P1 = PFPs2FPsb23

= P (FPs2 ∩ FPsb23)

P2 = PCTNs2CTNsb23
= P (CTNs2 ∩ CTNsb23)

(20)

Usb23 = Us2+

γ
P1(RFP − pr) + P2(RCTN − pr)

P1 + P2

(21)

- Sub-state 24 (sb24) : Wtn = 1 and data(tn) ̸= data(tn−1).
P1 = PFPs2CTNsb24

= P (FPs2 ∩ CTNsb25)

P2 = PCTNs2FPsb24
= P (CTNs2 ∩ FPsb24)

P3 = PCTNs2CTNsb24
= P (CTNs2 ∩ CTNsb24)

(22)

Usb24 = Us2

+ γ
P1(RCTN − pr) + P2(RFP − pr) + P3(RCTN − pr)

P1 + P2 + P3
(23)

V. SIMULATION RESULTS

A. Systematic Fault Injection Model

Within this fault injection model, all possible bit flips within
the 7-bit Hamming code are injected systematically: first, all
single-bit bit-flips, then all double-bit bit-flips, all triple-bit bit-
flips until the last injection will flip all seven bits within the
codeword. Then, the category of each codeword is determined
as explained in Section III-B. Injecting a bit flip is done by
performing the XOR value of the codeword with a logical “1”.
The XOR function transforms a “0” into a “1” and vice versa.
The results from the systematic fault injection are shown in
Fig. 6.

Fig. 6: Results of the Systematic Fault Injection Model on
Hamming code (7,4).

As the Hamming code is linear, if a codeword undergoes
complete corruption (i.e., 7 bit-flips), it will result in another
valid codeword. This scenario can occur in the case of a
Channel False Negative (CFN), and the error-checking algo-
rithm will fail to identify the error. The results indicate that
all double-bit bit-flips are detectable and categorized as Data
True Negatives (DTN). The 5-bit and 6-bit bit-flips are also
detectable, as well as the 3-bit and 4-bit bit-flips. Those are
the cases in which a correction was attempted, but the final
codeword is incorrect. A correction attempt yields the incorrect
result for all the detectable multi-bit errors. In the case of a
single bit-blip, the correction leads to the correct codeword
(False Positives).

B. Packet Error Rate

Previous studies reported a correlation between the ratio
of fEMI and bit rate and the susceptibility to EMI [31], [32].
Therefore, seven frequencies were selected in our study and
the bit rate was swept from 200 MHz to 450 MHz, while also
sweeping the EMI frequency fEMI from 100 MHz to 500 MHz
in steps of 66.67 MHz.

The results for these combinations are shown in Table
III. For each simulation, a total of 16.000 packets were
transmitted.

Firstly, the Packet Error Rate (PER) is calculated for the
first received data (without the decision algorithm) and the
data selected by the algorithm. The PER is calculated as the
number of incorrectly received packets divided by the total
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number of transmitted packets (16000). Figure 7 shows the
PER obtained with and without the decision algorithm, and
the PER when the algorithm rewards are random or learned
for different combinations of EMI frequency and bit rates. The
process of learning these rewards is explained in Section V-D.

Table III summarizes the gain obtained with the decision
algorithm when the rewards are random or learned. For
the calculations, the reference PER is the case without the
algorithm. Some of these results are shown in Fig. 7.

TABLE III: Simulation results summary

Gain (dB)
Random rewards | Learned rewards

fEMI Bit rate 200 250 300 450
(MHz) (MHz)

Ratio 0.50 0.40 0.33 0.22
100 PER= 5% 1.05|2.08 0.82|1.20 1.76|2.02 0.80|1.22

PER= 10% 1.49|2.29 1.06|1.38 1.80|1.97 1.08|1.44
PER= 20% 2.19|2.60 1.22|1.64 1.66|1.98 1.36|1.67

Ratio 0.83 0.67 0.56 0.37
166.67 PER= 5% 1.22|1.53 1.27|1.61 0.70|1.22 0.81|1.21

PER= 10% 1.01|1.39 0.83|1.39 0.59|1.25 1.06|1.27
PER= 20% 1.66|1.74 0.69|1.13 0.88|1.43 1.23|1.43

Ratio 1.17 0.93 0.78 0.52
233.33 PER= 5% 0.90|1.08 0.94|1.11 0.67|0.83 1.31|1.44

PER= 10% 0.85|1.39 0.98|1.38 0.92|1.37 1.13|1.37
PER= 20% 1.20|1.60 1.14|1.43 0.82|1.68 1.49|1.63

Ratio 1.50 1.20 1.00 0.67
300 PER= 5% 0.74|1.42 0.90|0.96 1.46|1.54 0.68|0.86

PER= 10% 1.01|1.63 0.93|0.99 1.61|1.63 0.92|1.25
PER= 20% 1.26|1.55 1.15|1.33 1.46|1.49 0.68|1.28

Ratio 1.83 1.47 1.22 0.81
366.67 PER= 5% 1.03|1.10 0.48|0.77 0.76|0.86 1.06|1.30

PER= 10% 0.75|1.01 0.29|0.70 1.13|1.24 0.80|1.07
PER= 20% 1.12|1.27 0.86|0.98 1.23|1.24 1.12|1.36

Ratio 2.17 1.73 1.44 0.96
433.33 PER= 5% 0.56|0.58 0.63|0.83 0.34|0.97 0.47|0.87

PER= 10% 1.04|1.11 0.91|1.21 0.63|1.22 0.30|0.76
PER= 20% 0.95|0.97 0.76|1.04 0.34|0.85 0.49|1.11

Ratio 2.50 2.00 1.67 1.11
500 PER= 5% 0.56|1.01 0.90|1.33 0.88|1.26 1.09|1.12

PER= 10% 0.83|1.09 0.63|1.21 0.73|0.92 1.17|1.20
PER= 20% 0.64|0.80 0.90|1.47 1.10|1.32 0.92|0.94

Where:

• ∆learned = PERbaseline − PERwith learned rewards
• ∆random = PERbaseline − PERwith random rewards

and “Baseline” is the PER obtained without the proposed
decision algorithm. That is, we calculated the PER between the
first received data and the sent data. These results are obtained
with a maximum of 8 resends (at each SIR level, the algorithm
chooses between 0 and 8 resends).

As stated above, we swept the EMI frequency from 100
MHz to 500 MHz in steps of 66.67 MHz while changing the
bit rate from 200 MHz to 450 MHz. The results for these
combinations are shown in Table III while Fig. 7 shows some
of these results. Table III shows that the gain with learned
rewards is higher than in the case where the rewards are set as
random, and this is for all the chosen frequency combinations.
The maximum gain (2.60 dB) is obtained with fEMI = 100
MHz and fBIT = 200 MHz, at a PER =20% and with learned
rewards. It can also be seen from Fig. 7b that the maximum
gain (16.94 %) is obtained at SIR = -13.58 dB, with the MDP
with learned rewards and fEMI = 233.33 MHz and fBIT = 300

MHz. The gain with random rewards at that same SIR level
is 8.90%.

Additionally, Fig. 7 shows the difference in PER and gain
depending on the ratio between the EMI frequency and the
bit rate. When the EMI frequency is an integer multiple of the
bit frequency, for low SIR disturbances, the codewords can be
easily transformed into all-one or all-zero data words, which
introduces multiple bit errors that the Hamming code cannot
detect. Thus, the PER decreases, resulting in a reduction of the
obtained gain with the algorithm. This behaviour can be seen
in Fig. 7d, for fEMI = 500 MHz and fBIT = 250 MHz. These
results show the capability of the algorithm to operate with
different EMI frequencies and bit rates and the improvement
in terms of gain when the rewards are learned. The results also
show the algorithm’s limitations in harsh EM environments.

C. Latency

The latency of the algorithm is determined by the maximum
number of resends allowed. Fig. 8 shows the amount of resends
used for the algorithm (with and without learned rewards)
at each SIR level when the maximum number of resends
is set to 8, for fEMI = 500 MHz and fBIT = 350 MHz.
Therefore, the performance of the algorithm highly depends on
this parameter. As we can see, when the rewards are learned
(Fig. 8b), the amount of resends (for a SIR between -11
dB and -5 dB) is more significant than the resends used for
the algorithm when the rewards are set as random (Fig. 8a).
However, when the rewards are learned through the process,
as will be explained in Section V-D, each time the algorithm
chooses to stop resending at a given SIR and the probabilities
of receiving correct data at the next time step are less than in
the present time (wrong decision), the rewards are modified,
and the new decision is to continue resending until these
probabilities become higher again. When the rewards are
optimal, the algorithm employs a higher number of resends
(which decreases the PER, as seen in Fig. 7).

As shown in Fig. 8, the decision algorithm decides to resend
only once 100% of the times from -30 to -16 dB, in both
cases. This is because the amount of Channel True Negatives
and Channel False Negatives increases due to the harsh EMI
environment at these SIR levels. This causes the algorithm
never to trust the first received data and ask for a resend. As
soon as the EM environment is less harsh, from -9 dB to -5
dB, we observe an increase in the number of resends used.
Finally, when the amount of True Positives is considerably
high (more than 96%), the algorithm uses the first received
data without resending, assuming it can trust the data ( from
-5 to 5 dB).

D. Learned Rewards

The decision algorithm formulation highly depends on the
rewards assigned to the different data categories and the
penalty resend. For this reason, an experiment was performed
in which we started with rewards chosen randomly in the range
of [−1, 1], and then, for a specific packet at a specific SIR
level, we determined if the algorithm has made the right deci-
sion (use the data, resend or go to a minimum risk state) or the
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(a) fEMI = 500 MHz, fBIT = 250 MHz (b) fEMI = 433.33 MHz, fBIT = 250 MHz

(c) fEMI = 233.33 MHz, fBIT = 300 MHz (d) fEMI = 100 MHz, fBIT = 200 MHz

Fig. 7: Gain with the decision algorithm at different PER and SIR levels, with and without optimal rewards.

wrong decision. We measure that by setting a threshold for the
received data (see Table IV). Then, when the algorithm makes
the wrong decision, we adjust the rewards (subtracting/adding
a fixed amount) until the decision is correct.

Table V shows the performance metrics obtained with the
decision algorithm if the rewards are set as random or learned.
Accuracy is calculated as the number of right/wrong decisions
divided by the total number of decisions. For each decision
(“Resend”, “Use data received at tn”, or “Go to minimum
risk state”), we set a criterion to measure how accurate these
decisions are. Table IV shows the criterion for evaluating the
algorithm’s accuracy. We set a threshold for the probability
of the received data being correct (96%), which serves as a
metric to evaluate whether the decisions are right or wrong.
The process to calculate the accuracy is as follows:

1) The probabilities of receiving a TP, FP, CTN, DTN or
CFN are determined for each SIR level. This is shown
in Fig. 4.

2) The algorithm works with these probabilities and de-
termines its final decisions for each packet using the

modified Bellman equation, as explained in Section
IV-A.

3) We evaluate how accurate these final decisions are (see
Table IV). For example, for the decision “Resend”, the
following criterion is used: if the algorithm has decided
to resend at t

n
, and the probability of receiving a True

Positive at that same SIR level is higher than 96%, we
consider that the algorithm made a “right decision”.

4) For each packet and each SIR level, we count how often
each decision is “right” or “wrong”. We do that for the
two cases considered in this paper: with and without
learned rewards, finally obtaining the results shown in
Table V.

The table shows that for the decision “resend”, in 77.63%
of the cases, it was the right decision, while in 22.37%
of the cases this was the wrong decision. When we allow
the algorithm to learn those rewards, the number of correct
decisions increases to 98.01%, while the wrong decisions
decrease to 1.99%. That demonstrates the dependence of the
algorithm on the chosen rewards. The same behavior can be
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(a)

(b)

Fig. 8: Number of resends used by the decision algorithm per
SIR level, with random rewards (Fig. 8a) and with learned
rewards (Fig. 8b), for fEMI = 500 MHz and fBIT = 350 MHz.

TABLE IV: Criterion to evaluate the algorithm decisions

Decision State of data Effect
(Right/wrong

decision)

Resend Pdata after resend(TP ) ≥ 96% Right

Resend Pdata after resend(TP ) < 96% Wrong

Use data received at tn Pdata at tn (TP ) ≥ 96% Right

Use data received at tn Pdata at tn (TP ) < 96% Wrong

Go to minimum risk state Pdata at tn−1
(TP ) < 96%

and Right

Pdata at tn (TP ) < 96%

Go to minimum risk state Pdata at tn−1
(TP ) < 96%

and Wrong

Pdata at tn (TP ) ≥ 96%

observed with the decisions “Use data received at tn” and “Go
to minimum risk state”.

TABLE V: Performance metrics with and without learned
rewards, for fEMI = 500 MHz and fBIT = 350 MHz

Decision Accuracy
Initial rewards Learned rewards

Resend 77.63% 98.01%
(Right decision)

Resend 22.37% 1.99%
(Wrong decision)

Use data received at tn 54.93% 85.29%
(Right decision)

Use data received at tn 45.07% 14.71%
(Wrong decision)

Go to minimum risk state 6.90% 98.17%
(Right decision)

Go to minimum risk state 93.10% 1.83%
(Wrong decision)

VI. CONCLUSION

This paper assessed the performance of a decision-making
algorithm based on the Bellman Equation used in Markov
Decision Processes to deal with EMI-induced bit errors. A
detailed explanation of the decision algorithm was presented,
and a comparison was made with the case in which no
decision-making has been implemented. This comparison in
terms of PER shows that the proposed technique decreases the
PER by 16.94 % at low SIR (-13.58 dB) when fEMI = 233.33
MHz and fBIT = 300 MHz. This leaves a higher percentage
of data that is error-free or has been successfully corrected. As
such, the overall safety and availability of a system operating
in harsh electromagnetic environments increases.

Furthermore, two different cases are studied to show the
influence of the rewards and the maximum amount of resends
on the algorithm’s performance. When the rewards are learned,
the number of resends used by the algorithm increases, in-
creasing the certainty of the received data.

In the second case, it is shown that the process of learning
the rewards increases the accuracy of the final decisions made
by the algorithm. This study also shows that these parameters
can be tuned to maximize the algorithm’s performance.

Harsh EM environments show the limits of the proposed
algorithm. As can be seen from the obtained results, at low
SIR, the algorithm’s effectiveness significantly drops due to
the high amount of incorrect data words received, leading
the algorithm to “go to a minimum risk state”. Therefore,
further research is needed to protect the transmitted data from
corruption due to EMI and improve the decision algorithm.

In future work, the proposed decision algorithm will be
evaluated using different coding techniques, such as Pulse Am-
plitude Modulation or Huffman coding instead of Hamming
code. In addition, we will explore other decision algorithms,
for instance, based on Bayesian theory. Finally, the robustness
of the algorithm will be tested against multi-harmonic EM
disturbances.
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This paper demonstrated the feasibility of using a decision-
making algorithm based on a modification of the Bellman
equation in harsh electromagnetic environments, to increase
the certainty of the received data.
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