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ABSTRACT
Investigating the security of Wi-Fi devices often requires writing
scripts that send unexpected or malformed frames, to subsequently
monitor how the devices respond. Such tests generally use Linux
and off-the-self Wi-Fi dongles. Typically, the dongle is put into
monitor mode to get access to the raw content of received Wi-Fi
frames and to inject, i.e., transmit, customized frames.

In this paper, we demonstrate that monitor mode on Linux may,
unbeknownst to the user, mistakenly inject Wi-Fi frames or even
drop selected frames instead of sending them. We discuss cases
where this causes security testing tools to misbehave, making users
believe that a device under test is secure while in reality it is vulner-
able to an attack. To remedy this problem, we create a script to test
raw frame injection, and we extend the Radiotap standard to gain
more control over frame injection. Our extension is now part of the
Radiotap standard and has been implemented in Linux. We tested
it using commercial Wi-Fi dongles and using openwifi, which is an
open implementation of Wi-Fi on top of software-defined radios.
With our improved setup, we reproduced tests for the KRACK and
FragAttack vulnerabilities, and discovered previously unknown
vulnerabilities in three smartphones.

CCS CONCEPTS
• Security and privacy → Mobile and wireless security; • Net-
works→ Protocol testing and verification.
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1 INTRODUCTION
A large number of Wi-Fi experiments are performed using Linux
scripts with commercial off-the-shelf network cards. This is es-
pecially the case in security research, where often unexpected or
malformed frames are sent towards a device under test. For in-
stance, the aircrack-ng toolsuite, which is arguably one of the most
well-known tools for offensive Wi-Fi research, is designed to be
used on Linux with commodity Wi-Fi dongles. The same is true
for other Wi-Fi tools such as mdk4. However, these commercial
network cards are often black-boxes over which researchers have
no control, meaning there is no guarantee that injected frames are
transmitted as intended by the (user space) Linux scripts.

Overall, Wi-Fi scripts on Linux generally make use of monitor
mode to have control over the full (raw) frames that are transmitted,
but the reliability of raw Wi-Fi frame injection on Linux has never
been studied. This means it is unclear how reliable such scripts are
in practice. We provide a sobering answer to this question: depend-
ing on the experimental setup, various problems may arise when
injecting Wi-Fi frames, and these problems can cause scripts to mis-
behave. To understand the extent of this problem, we study Wi-Fi
frame injection in detail, and propose, implement, and standardize
improvements to make frame injection more reliable.

To evaluate the correctness of raw Wi-Fi frame injection, we
create a tool to perform various injection tests under different
configurations of the network card, and this tool checks whether
frames are transmitted as intended [19]. These tests revealed that
header fields may be overwritten before transmission, that injected
frames may be reordered, that some types of injected frames may
get unexpectedly dropped by the driver or network card, and that
frames may be unintentionally sent when the receiver is in sleep
mode. In this paper, we discuss how these injection problems may
impact the correctness of Wi-Fi experiments and tests.

To improve the correctness of frame injection, we extend Ra-
diotap, which is a cross-platform Application Programming Inter-
face (API) that is used when injecting and capturing raw Wi-Fi
frames. We implement these extensions on Linux and test them
with off-the-shelf Wi-Fi dongles and with openwifi, which is an
open Wi-Fi implementation that uses software defined radios [12].
Our extensions have been included in an update to the Radiotap
standard, and our new Radiotap code and injection fixes are mean-
while part of the official Linux kernel since kernel version 5.11.

To demonstrate the impact of the injection fixes, we replicate
recent Wi-Fi attacks to test (new) devices in a more reliable manner.
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control addr1/2/3 Seq. No. Frag. No. Packet No. QoS ...

Figure 1: Simplified header of an encrypted Wi-Fi frame.

In particular, we reproduce tests for the KRACK and FragAttacks
vulnerabilities [18, 21]. This led to the discovery of previously un-
known vulnerabilities in three smartphones, which we disclosed to
the affected vendors. To summarize, our contributions are:

• We test the injection of various Wi-Fi frames under different
conditions and give an overview of issues that can occur
when injecting raw Wi-Fi frames (Section 3).

• We extend the Radiotap standard to better control frame
injection, implement our extensions on Linux, and make the
extensions compatible with openwifi [12] (Section 4).

• We evaluate our injection improvements by replicating test
for the KRACK and FragAttacks vulnerabilities. This allowed
us to (more reliably) discover three new vulnerable devices.

Finally, we give an overview of related work regarding frame injec-
tion in Section 6, and conclude in Section 7.

2 BACKGROUND
This section introduces the IEEE 802.11 standard that underpins
Wi-Fi and focuses on monitor mode and injection of raw frames.

2.1 Header layout of encrypted 802.11 frames
Figure 1 shows the layout of an encrypted 802.11 frame. The frame
starts with a control field that contains flags indicating whether
the client is entering sleep (power-save) mode and whether there
are more fragments of the frame to follow. Next are the transmitter,
sender, and final destination MAC address. The 12-bit sequence
number (Seq. No.) is used to identify and ignore retransmissions,
while the 4-bit fragment number (Frag. No.) is used to reassemble a
fragmented frame. The packet number contains the nonce used to
encrypt and authenticate the transported data. Finally, the 802.11e
0oS (Quality-of-Service) field contains a flag to indicate whether
this is an aggregated (A-MSDU) frame and contains the Traffic
Identifier (TID) which represents the frame’s priority.

2.2 The Radiotap standard
Normally, the operating system fills in all fields of a Wi-Fi frame.
However, some operating systems also support injection of raw
802.11 frames, where the user has full control over the frame’s
content. When injecting such raw 802.11 frames, various parame-
ters must also be provided: the transmission bitrate, the channel
bandwidth to use, whether to retransmit the frame if it was not
acknowledged, whether to use collision-avoidance methods such as
CTS-to-self, etc. User-space programs specify these parameters by
prepending the Wi-Fi frame with a Radiotap header. This header
contains control info to specify exactly how the injected frame is
transmitted [2]. Note that the kernel also prepends received frames
with a Radiotap header containing metadata related to the received
frame, such as the bitrate, signal strength, and so on. As a result,
Radiotap is typically used by specialized tools to inject and monitor
traffic, but it is also used by standard programs such as hostap.

Radiotap is a de facto standard. New fields are added by propos-
ing a change, implementing it in wireshark or tcpdump, adding

support for the new field to at least one driver, and posting the
proposal to the Radiotap mailing list [2]. If the proposal withstands
discussion, the proposed change is re-posted in its final form, after
which it is adopted one week later if there are no further objections.

2.3 Frame injection on Linux
The Linux kernel has built-in support for raw frame injection [10].
To use it, the wireless interface needs to be set in monitor mode,
after which user space processes use the nl80211 interface to inject,
i.e., transmit, raw Wi-Fi frames over this interface. Commands sent
over nl80211 are handled by the cfg80211 kernel module, which
will in turn call a transmit callback function that was registered by
the driver during the initialization of the network interface.

There are two types of Linux Wi-Fi drivers: Full-MAC and Soft-
MAC ones. A Full-MAC driver implements the MAC sublayer Man-
agement Entity (MLME) in hardware or firmware. The MLME layer
is responsible for handling operations such as scanning, (open)
authentication, association, and so on. A Soft-MAC driver relies
on the mac80211 kernel module to handle (parts of) the MLME in
software. A Full-MAC driver registers callbacks in cfg80211 us-
ing the cfg80211_ops structure, while a Soft-MAC driver registers
callbacks in mac80211 using the ieee80211_ops structure.

All combined, with Full-MAC drivers, injected frames are directly
passed by cfg80211 to the driver, meaning the driver or hardware
will parse the Radiotap header. In contrast, with Soft-MAC drivers,
injected frames are passed by cfg80211 to the mac80211 kernel
module, meaning mac80211 will parse the Radiotap header.

When injecting a frame, it will appear twice when capturing
packets on the interface used to inject the frame. The first copy
appears before and is independent of whether the frame is actually
transmitted, and it represents the frame as injected by the user space
process. The second copy is the frame that is actually transmitted,
containing extra details in the Radiotap header such as the bitrate
that was used and whether an acknowledgement was received.

Various flags exists to control how an interface in monitor mode
behaves [6]. An important flag is the activate flag. When set, the
network card actively acknowledges incoming unicast frames if
they match the configured MAC address. However, at the time of
writing, few network cards on Linux support this flag, and recent
works instead used virtual interface to assure that incoming frames
are acknowledged [15, 18] (see also Section 3.2).

2.4 Virtual interfaces on Linux
Linux can use a network card in several modes, such as client or
Access Point (AP) mode, while simultaneously operating the card in
monitor mode. This is done using virtual interfaces: one virtual in-
terface implements the client or AP behavior, while a second virtual
interface can be used to monitor and inject frames. Recent works
used this ability to quickly prototype proof-of-concepts [15, 18].

When the network card is only used in monitor mode, then we
say it is operating in pure monitor mode. When the network card
is used by one or more (virtual) interfaces in client or AP mode,
and also by one or more (virtual) interfaces in monitor mode, then
we say that the network card is operating in mixed monitor mode.
In case of mixed monitor mode, the term non-monitor interface(s)
refers to the interfaces that are operating in client or AP mode.
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3 TESTING FOR FRAME INJECTION ISSUES
In this section, we test the correction of raw frame injection, and
discuss cases where injected frames are incorrectly transmitted.

3.1 Experimental setup
To test the correctness of frame injection for various network cards,
we wrote a Python script using the Scapy library to inject several
kinds of frames [19]. A second independent network card is used in
pure monitor mode to capture injected frames and verify whether
the frame has been sent without any unexpected modifications. To
reliably detect the injected frame, a unique random identifier is
appended to every injected frame. If the frame was not detected, it
is retransmitted once, meaning the frame is injected at most twice.

In our experiments we consider various configurations. First, we
test the network card in pure monitor mode. Second, we test the
card in mixed monitor mode. Here we perform the injection tests
before the client is connecting, while the client is connecting, and
once the client has successfully authenticated to the AP. In these
scenarios, the injection tests were done both when the non-monitor
interface is in client mode and when it is in AP mode.

We tested the network cards recommended by the KRACK and
FragAttack tools [18, 21]. In particular, we tested the TP-Link TL-
WN722N, Intel Wireless-AC 3160, and Alfa AWUS036ACM. These
internally use an Atheros, Intel, and MediaTek chip, respectively.
We also tested a network card with a RT5572 chipset. We used a
(second) TL-WN722N and AWUS036ACM for the network card that
monitors whether the network card under test is correctly injecting
frames. All experiments are performed using an ZBook Power G8
running Arch Linux with kernel version 5.4.223-1-lts.

3.2 Acknowledgements and retransmissions
Our first observation is that the retransmission behavior depends
on the type of network card being used. When no retransmissions
are executed, this means that injected frames may not have arrived
at their destination, while an excessive number of retransmissions
may impact the reliability of time-sensitive experiments because
unnecessary retransmissions delay the reception and transmission
of other frames. Our experiments indicate that the retransmission
behavior depends on: (1) the type of network card; (2) whether pure
or mixed monitor mode is used (recall Section 2.4); and (3) whether
the transmitter MAC address of the injected frame equals the MAC
address of a non-monitor interface that is associated to the network
card. We suspect that these behavioral differences could be abused
to fingerprint and detect the network card used by an attacker.

Whether an interface in monitor mode acknowledges received
frames also depends on various factors. In theory, when in pure
monitormode, acknowledgements should only be sent if the active
flag was set (recall Section 2.3). However, none of our tested net-
work cards support this flag. An inspection of the Linux kernel
source code indicates that only two out of more than 60 Wi-Fi dri-
vers support this flag: the MediaTek mt76 and mt7601u driver.1
Interestingly, we found that the WN-722N acknowledges received
frames in pure monitor mode without setting the active flag.

Not acknowledging frames can impact time-sensitive experi-
ments and can cause experiments to fail. For instance, since 2002, the
1This was determined by searching for the word NL80211_FEATURE_ACTIVE_MONITOR.

hostapd AP requires that authentication and association responses
are acknowledged [13]. Otherwise, the client will be disconnected,
at least if this info is accurately provided. Since acknowledgement
frames cannot be injected in a timely manner from user space, they
must be generated in hardware. Hence, when the monitor interface
does not acknowledge frames, one cannot simulate a client that can
successfully connect to APs with such behavior.

3.3 Handling sleeping clients
Another issue we observed is that scripts may inject frames when
the client is in sleep mode. This can be problematic because this may
lead some testing scripts, such as the FragAttacks tool, to wrongly
believe that the client being tested is not vulnerable [18]. Previous
works mitigated this issue by using the network card in mixed
monitor mode [15, 18]. That is, one interface is operating as an AP
while a second interface is in monitor mode. When a Wi-Fi frame
is then injected on the monitor interface, the kernel will effectively
add the frame to the AP’s transmission queue, meaning the injected
frame is only sent once the client wakes up. Unfortunately, even in
mixed mode we observed that some injected frames did not arrive at
the client, or arrived significantly later than expected. It is unclear
what caused this.

We are not aware of a method to force clients to wake up. Nev-
ertheless, one can use a second network card in monitor mode to
detect when the client under test wakes up, and more importantly
when the injected frame is sent. If the frame is sent much later than
expected, the user can be warned. Similarly, if the injected frame
was not acknowledged, a warning can also be shown. Though this
does not fundamentally solve the problem of handling sleeping
clients, it does make the user aware that a test needs to be re-run.

3.4 Order of injected frames
When using a network card in mixed monitor mode, we found that
frames may be transmitted in a different order compared to their
injection from user space programs. We observed this behavior on
all tested network cards. A code inspection of the Linux kernel re-
vealed that frames may get reordered based on their QoS TID. This
may cause Wi-Fi tools to misbehave and give incorrect results. For
instance, in some of the implementation-specific FragAttacks vul-
nerabilities, a device is only vulnerable before the 4-way handshake
has completed. To test whether a device is vulnerable, a (plaintext)
frame is sent during the handshake by the user space script. Un-
fortunately, because injected frames may get reordered, in reality
the (plaintext) frame may get sent by the network card after the
handshake completes. This would cause the script to think that a
device may not be affected by a vulnerability, while in reality it is.

3.5 Sequence number and fragment number
One of the most blatant issues is that the sequence and fragment
number of injected frames was modified by all tested network
cards when operating in mixed monitor mode. This was caused by
kernel the function ieee80211_tx_h_sequence in the mac80211
module, meaning only Soft-MAC drivers are affected. The problem
is that this function overwrites the sequence and fragment number
if there is a non-monitor interface associated to the network card,
regardless of whether the frame being processed is an injected
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frame or not. Note that this kernel function does not overwrite the
sequence number when the network card is in pure monitor mode.

After fixing the above issue, the WN-722N card, which is man-
aged by the ath9k_htc driver, still overwrites the sequence num-
ber (but not the fragment number) when in mixed monitor mode.
Moreover, this network card even overwrites the sequence number
when operating in pure monitor mode. By inspecting the open
source firmware code of this card, we identified that the function
ath_tgt_tx_seqno_normalwas overwriting the sequence number
(but not the fragment number) of all transmitted frames.

The FragAttack tool bypassed the above issues by patching the
TL-WN722N firmware and the Linux kernel to not overwrite non-
zero sequence numbers [18]. In Section 4 we generalize these fixes
by extending Radiotap, so user space can inform the kernel whether
a new sequence number should be assigned or not.

3.6 Hardware decryption
When operating in mixed monitor mode, the non-monitor interface
may enable hardware crypto, meaning frames get decrypted in
hardware before they arrive at the driver. Unfortunately, with the
network cards we tested, the virtual monitor frame then no longer
has access to the original encrypted frame when using hardware
decryption. Moreover, hardware encryption may also remove the
packet number from the frame header (see Figure 1). This is prob-
lematic in case access to the packet number (also called nonce or
initialization vector) of received encrypted frames is essential. For
example, the KRACK scripts require access to the packer number
to detect nonce reuse and key reinstallations.

One work-around is to disable hardware decryption. Unfortu-
nately, the driver for the AWUS036ACM has no parameters to
disable hardware crypto, even the latest Linux kernel, which at
the time of writing was version 6.0. In fact, we found that since
kernel 5.8, the ability to disable hardware crypto was also removed
for the Intel AC-3160. Because the AWUS036ACM removes the
packet number from the frame header during hardware decryption,
and this cannot be disabled by its current driver, this network card
cannot be used out-of-the-box with the KRACK test scripts.

In Section 4.2 we discuss how we added an option the Linux
kernel to disable hardware cryptography in all Soft-MAC drivers.

3.7 Dropped injected frames
When using mixed monitor mode, the Linux kernel drops normal
data frames that are injected before a client has finished authenticat-
ing. This is due to a bug in the function ieee80211_tx_dequeue in
the mac80211 kernel module, meaning this issue only occurs when
using Soft-MAC drivers. This behavior is problematic because a
user space script expects that injected frames will be transmitted
no matter when they are sent.

We also observed that the Intel AC-3160 did not transmit in-
jected frames in mixed monitor mode when the sender address
of the injected frame was different from the MAC address of the
non-monitor interface. Instead, these injected frames got silently
discarded. We also found that the Intel AC-3160 did not correctly
inject A-MSDU frames: sometimes they were transmitted in a mal-
formed manner (with two extra random bytes in the middle) and
sometimes injected A-MSDU frames were not transmitted at all.

The Intel AC-3160 and RT5572 chipset did not transmit injected
frames with the More Fragments (MF) flag set. This could be solved
by, after injecting the frame with the MF flag set, immediately
injecting a dummy frame without the MF flag. With the RT5572,
this dummy frame must also have the same QoS TID as the injected
frame, but all other fields of the dummy frame do not matter.

3.8 Unexpected Block Ack procedure
When injecting fragmented frames in mixed mode after the client is
connected with the AP, the AWUS036ACM starts a Block Ack proce-
dure after injecting the first fragment. This is problematic because
any frame transmitted between two fragmented frames may inter-
fere with their reassembly [18]. Initiating the Add Block Ack proce-
dure also caused the receiver to buffer the second fragment, making
it appear as if the second fragment never arrived at the receiver. The
WN-722N card started a Block Ack before the first fragment and
did not send the second fragment, which FragAttacks avoided by
making the driver not advertise the AMPDU_AGGREGATION feature.
Finally, the RT5572 also started a Block Ack procedure, which again
interfered with the correct transmission of fragmented frames.

To avoid Block Acks we can disable 802.11n in the non-monitor
interface, since Block Acks are part of 802.11n. Unfortunately, this
work-around cannot always be used, as some experiments require
that the non-monitor interface advertises support for 802.11n. For
instance, this injection issue was not noticed during the FragAttack
research because 802.11n was disabled by default in all tests. How-
ever, disabling 802.11n means that the aggregation vulnerability
was initially not detected in OpenBSD [18], because OpenBSD only
processes aggregated (A-MSDU) frames when the client negotiated
to support 802.11n. Interesting future work would be to patch the
Linux kernel to avoid this issue without having to disable 802.11n.

4 IMPROVEDWI-FI INJECTION
In this section we discuss howwe extended the Radiotap standard to
gain more control over how injected Wi-Fi frames are transmitted.
We implement our extensions on Linux and discuss how software-
defined radio platforms can be used as a more flexible, albeit more
costly, alternative to commercial network cards.

4.1 Extending the Radiotap standard
We cannot just update the Linux kernel to implement the desired
frame injection behavior because some programs rely on the cur-
rent injection behavior. For instance, hostap assumes that the Linux
kernel overwrites the sequence number of injected frames with a
fresh value. To assure backwards-compatibility, we extend Radio-
tap with two flags that inform the kernel how to transmit injected
frames. The first flag, no-seqnum, instructs the kernel not to over-
write the sequence number. The second flag, no-reorder, instructs
the kernel not to reorder the injected frame relative to other in-
jected frames that have this flag set. Both new transmission flags
have meanwhile been accepted as part of the Radiotap standard.

While extending Radiotap, we noticed that Linux also supports
a noack flag to indicate that injected frames do not have to be ac-
knowledged. Surprisingly, this flag was not yet part of the Radiotap
standard, and during our work we also standardized this flag so
other operating systems can implement support for it as well.
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4.2 Linux fixes for Wi-Fi injection & reception
We implemented the Radiotap extension in the Linux kernel. This
involved parsing the new Radiotap flags and assuring they are re-
spected when processing an injected frame. Among other things,
we modified the ieee80211_tx_h_sequence function to prevent
overwriting the sequence number if the no-seqnum flag was set.
Additionally, we modified ieee80211_select_queue_80211 to al-
ways use the same transmission queue for injected frames that have
the no-reorder flag set. This assures that injected frame with this
flag set are not reordered relative to each other.

We contributed our Radiotap code to the Linux kernel and it
has been included in the official kernel. In particular, the code to
prevent sequence number overwrites is part of the Linux kernel
since version 5.9, and the code to prevent frame reordering is part
of the Linux kernel since version 5.11.

To overcome the problems related to hardware decryption men-
tioned in Section 3.6, we added an option to the mac80211 kernel
module to disable hardware cryptography for all Soft-MAC drivers.
When enabled, this forces the driver to disable hardware decryp-
tion and encryption, and instead perform these crypto operations
in software using the built-in crypto support in mac80211. As an
example, this change allowed us to use the mt76 network cards,
such as the AWUS036ACM, with the KRACK attack scripts.

Our global parameter to disable hardware crypto did not work
with the iwlwifi driver of the Intel AC-3160. The problem is that,
when disbaling hardware crypto is forced, the iwlwifi driver will
mistakenly drop non-decrypted frames. We solved this issue by
porting older code for iwlwifi to disable hardware decryption,
which was removed in kernel 5.8 onwards, to the latest long-term-
support kernel (version 5.15). With these changes, network cards
using the iwlwifi driver can again disable hardware crypto.

4.3 Adding support for openwifi
4.3.1 Background. Another disadvantage of commercial off-the-
shelf Wi-Fi dongles, besides being closed-source, is that after some
years specific models may no longer be available on the market.
Additionally, new hardware versions of a Wi-Fi dongle may contain
a radio chip of a different vendor, meaning its frame injection and
transmission behavior may suddenly change. Overall, relying on
off-the-shelf dongles can be troublesome in practice.

A better solution is using open source Wi-Fi implementations
that run on Software Defined Radios (SDRs), such as openwifi [12].
Openwifi offers a physical and low MAC layer implementation of
Wi-Fi on FPGA and provides an open-source Soft-MAC driver for
Linux. From the perspective of a user, it provides an ordinary Wi-Fi
network interface, with the advantage that its full implementation
is open-source. This means openwifi gives complete control over
the transmission behavior of injected frames, while at the same
time being compatible with user space Wi-Fi scripts and tools.

Openwifi runs on the ARM processor of the Xilinx Zynq SoC, and
the low-layer Wi-Fi functionality, such as sending acknowledge-
ments and (re)transmitting frames, is implemented in Verilog and
runs on the FPGA that is part of the same SoC. The latest version of
openwifi is based on the Analog Devices Linux distribution called
ADI-Linux [4], since it provides the most reliable support for the
AD9361 RF fort-end. Openwifi uses version 2019_R1 of ADI-Linux,

and this distribution is in turn based on Linaro 14.04, which is a
variant of Ubuntu that uses Linux kernel 4.14.0.

4.3.2 Incorporating our Radiotap extensions. To reuse (most of)
our existing Linux kernel patches that implement the previously-
discussed Radiotap extensions, we first upgraded openwifi to run on
a newer ADI-LINUX release, namely version 2021_R1. Doing so also
makes it easier to run and test the latest Wi-Fi security tools such
as KRACK and FragAttacks. This new release of ADI-Linux is based
on Raspberry Pi OS 11.2, which in turn is based on Debian 11.2, and
uses Linux kernel 5.10.0. As a result, the new no-seqnum Radiotap
flag (recall Section 4.2) is supported by default. The patches to
support the no-reorder flag had to be included manually since
they are not yet part of Linux 5.10. During the upgrade to 2021_R1,
the openwifi driver had to be adapted for some kernel API changes.
The openwifi device tree was also updated according to the new
Analog Devices ARM peripheral address space allocation. Finally,
the Verilog FPGA code also had to be adapted to be compatible
with the new Xilinx Vivado 2021.1 toolsuite. All these changes have
been contributed to the public openwifi project.

Thanks to this upgrade of openwifi to a new Linux distribution,
we can now directly run our injection tests and Wi-Fi tools on it.
For instance, the KRACK and FragAttacks scripts run out-of-the-
box on the upgraded openwifi release, and we could reliably test
commodity Wi-Fi devices such as the iPhone 13, Dell XPS15 2016,
and AR93XX PCIe card. We validated that these scripts correctly
injected frames towards these devices in line with our expectations.

5 EVALUATION
In this section, we evaluate the impact of our injection fixes. We do
this by testing for vulnerabilities, where our injection fixes enable
us to more reliably discover vulnerable devices.

5.1 Tested vulnerabilities
We evaluate our injection improvements by testing whether de-
vices are (still) affected by (variants of) the FragAttacks vulnerabili-
ties [18]. In our tests we focus on attacks where our injection fixes
make detection of a vulnerable device more reliable. In particular,
we focus on two vulnerabilities:

• Transmission of broadcast frames: we perform tests where
broadcast frames are sent to the device under test. Since
broadcast frames are not automatically retransmitted, it is
essential that the frame is injected when the client is awake.
This can be done by using mixed monitor mode such that
the Linux kernel will only transmit injected frames once the
client is awake (recall Section 3.3).

• Transmission of frames during the handshake: we perform
tests where plaintext frames are sent during the handshake.
Since handshake messages are typically sent using a different
QoS TID priority, it is essential that the injected frame is not
reordered relative to the handshake messages, which our
injection patches will guarantee.

Since our first test case is aimed towards clients that may enter
sleep mode, we focus our tests on smartphones. Concretely, we
tested the Huawei Y6 prime, Nexus 5X, Samsung i9305, iPhone XR,
iPad Pro 2, OnePlus 6 A6000, and Pixel 4 XL.
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We also tested our patches to disable hardware encryption for
all Soft-MAC drivers by running the KRACK script. We used the
AWUS036ACM to run the KRACK script against our phones.

5.2 Vulnerability test results
We discovered three new vulnerable devices that accept (frag-
mented) plaintext data frame before the client has authenticated:
OnePlus 6 This device accepts and processes plaintext broadcast

data frames while it is still authenticating, which is a new
variant of the implementation-specific FragAttack vulnera-
bilities. Note that to correctly inject broadcast Wi-Fi frames
we set the no-ack flag in the Radiotap, instructing the sender
not to wait for an acknowledgment (and thereby not retrans-
mitting the frame). We reported this vulnerability to the
vendor and it was assigned CVE-2021-36196.

Pixel 4 XL and OnePlus 6 Both devices accept plaintext unicast
Wi-Fi data frames while it is still authenticating to a net-
work, i.e., during the 4-way handshake. We reported both
vulnerabilities to the vendors, and the vulnerability in the
OnePlus 6 was assigned the identifier CVE-2021-36197.

Huawei Y6 Prime This device accepts plaintext unicast and broad-
cast frames both during and after this handshake. As a result,
this vulnerability is trivial to exploit.

Finally, only the Samsung i9305 was vulnerable to KRACK. Since
this is an old phone that has not received updates after the disclosure
of this attack, this is an expected result, and it confirms that our
patches to disable hardware decryption are working properly.

6 RELATEDWORK
Bellardo et al. modified an iPAQ H3600 containing a Dlink DWL-
650 card to be able to inject control frames [1]. Others created
an open firmware version for Broadcom network cards, giving
researchers a high level of control over transmitted frames [11]. To
enable monitor mode and frame injection on Android, researchers
modified the closed-source firmware of Broadcom chips [16].

In another work, the ath9k_htc driver and firmware was modi-
fied to prevent modification to forwarded frames [20]. The same
driver has also been modified to acknowledge a range of MAC
addresses in order to launch denial-of-service attacks [22]. Users
also modified drivers to more easily inject frames in the 5 GHz
band [17].

There have been various open implementations of the 802.11
standard on top of software-defined radio platforms. One of the first
is an implementation of 802.11b by BBN technologies using GNU
Radio [5, 9]. This was extended by the Signal Processing Across Net-
works (SPAN) lab to improve reliability [5, 7]. In 2010, researchers
from Forschungszentrum Telekommunikation Wien (FTW) created
an implementation of 802.11p using GNU Radio and a USRP2 [8].
Bloessl et al. implemented 802.11p in GNU Radio in2013 [3]. Finally,
Jiao et al. created an open implementation of 802.11 on an System-
on-Chip [12], and Nuand created an open implementation of 802.11
that can run on the FPGA of a software defined radio [14]. These
projects are mainly for study and experimentation of the 802.11
communication protocols and are rarely used in the context of test-
ing Wi-Fi implementations by injecting unexpected or malformed
frames.

7 CONCLUSION
When performing Wi-Fi experiments, it is essential to use an addi-
tional, independent, Wi-Fi dongle to monitor whether frames are
transmitted correctly and as expected. We also encourage vendors
to open-source the firmware of network cards, as this would give
researchers more control over the network card in experiments.

We created a script to test the correctness of Wi-Fi frame injec-
tion which is available online [19]. Our frame injection improve-
ments are now part the Radiotap standard, we implemented them
on Linux, and our patches are now part of the Linux kernel since
version 5.11. Our changes provide support for a selection of commer-
cial Wi-Fi dongles as well as software defined radio platforms, such
as openwifi. By having greater control over how and when frames
are injected, we were able to more reliably test wireless cards for
vulnerabilities, leading to the discovery of three vulnerable devices.
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