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A B S T R A C T

Amyotrophic lateral sclerosis (ALS) is a fatal late-onset neurodegenerative disease that specifically affects the
function and survival of spinal and cortical motor neurons. ALS shares many genetic, clinical, and pathological
characteristics with frontotemporal dementia (FTD), and these diseases are now recognized as presentations of a
disease spectrum known as ALS/FTD. The molecular determinants of neuronal loss in ALS/FTD are still debated,
but the recent discovery of nucleocytoplasmic transport defects as a common denominator of most if not all
forms of ALS/FTD has dramatically changed our understanding of the pathogenic mechanisms of this disease.
Loss of nuclear pores and nucleoporin aggregation, altered nuclear morphology, and impaired nuclear transport
are some of the most prominent features that have been identified using a variety of animal, cellular, and human
models of disease. Here, we review the experimental evidence linking nucleocytoplasmic transport defects to the
pathogenesis of ALS/FTD and propose a unifying view on how these defects may lead to a vicious cycle that
eventually causes neuronal death.

1. Introduction

Nucleocytoplasmic transport (NCT) is a tightly regulated process
that controls the exchange and cellular distribution of proteins and
RNAs between the nucleus and the cytoplasm. Three main groups of
proteins are involved in the regulation of NCT, including 1) the nu-
cleoporins that make up the nuclear pore complex (NPC), which serves
as a gateway connecting the nucleoplasm and cytoplasm, 2) the nuclear
transport receptors (NTRs), which chaperone RNA and protein cargo
through the selective permeability barrier of the NPC, and 3) the small
GTPase Ran with associated GTPase-activating protein RanGAP1 and
Ran guanine nucleotide exchange factor (RanGEF/RCC1), which reg-
ulate NTR-specific cargo-loading and release in the nucleoplasm and
cytoplasm, thus governing directionality of the transport (Jamali et al.,
2011; Schmidt and Görlich, 2016). NPCs are large multiprotein com-
plexes, composed of more than 30 different nucleoporins arranged in an
8-fold symmetry (Hampoelz et al., 2019; Stoffler et al., 2003). They
provide a tightly controlled barrier for the shuttling of high molecular
weight (MW) cargo (i.e.~>40 kDa) in and out of the nucleus, thanks
to the presence of phenylalanine glycine-rich nucleoporins (FG-Nups) in

the central channel (Fig. 1A). These highly dynamic components of the
NPC are characterized by the presence of intrinsically disordered re-
gions that form a permeability barrier, acting as a size filter (Hayama
et al., 2017; Hülsmann et al., 2012; Li et al., 2016). Current models
suggest either the formation of a hydrogel-like molecular sieve formed
via attractive interactions between hydrophobic FG-repeats, or the
formation of polymer ‘brushes’ dominated by repulsive interactions,
with both types of FG-Nup polymers serving to repel large macro-
molecules from NPC passage (Lemke, 2016; Zilman, 2018). Only large
proteins that are endowed with nuclear localization (NLS) or nuclear
export signals (NES) can pass through the pore by binding to NTRs, the
most common of which are karyopherins that act as either importins or
exportins. The best characterized NLS types are the classical NLS
(cNLS), consisting of basic amino acid clusters which is recognized by
an importin-α/β heterodimer, and the proline-tyrosine NLS (PY-NLS)
which is bound by importin-β2/transportin-1 (Soniat and Chook,
2015). Karyopherins facilitate the transport by forming transient in-
teractions with the FG-Nups in the pore to chaperone their protein and/
or RNA cargos across the permeability barrier (Aramburu and Lemke,
2017). The directionality for this process is provided through a gradient
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formed by the small Ras-related nuclear protein, Ran, which is highly
enriched in its GTP-bound form in the nucleus. Here, Ran-GTP forms a
trimeric complex with exportin-bound cargos that are shuttled to the
cytoplasm, and is then hydrolyzed to Ran-GDP by RanGAP1, triggering
the release of the cargo. Ran-GDP is imported by nuclear transport
factor 2 (NTF2) back into the nucleus, where the nucleotide exchange
factor RCC1 catalyzes the conversion to the GTP-bound state. In the
nucleus, binding of Ran-GTP to importins triggers the release of their
cargo and their translocation back to the cytoplasm, restarting the cycle
(Fig. 1B) (Matsuura, 2016; Steggerda and Paschal, 2002).

Each individual nucleus contains several hundreds to thousands of
NPCs, but their precise number and density changes depending on
phases of the cell cycle and cell types (Weberruss and Antonin, 2016).
For instance, the number of NPCs almost doubles during interphase in
dividing cells, a process regulated by cyclin-dependent kinases
(Maeshima et al., 2010). The insertion, anchoring, and positioning of
NPCs in metazoans is mediated by their interaction with the nuclear
lamina, a meshwork of intranuclear intermediate filaments that include
A- and B-type Lamins (de Leeuw et al., 2018; Fiserova and Goldberg,
2010). The nuclear lamina also anchors the whole nucleus to the cell
cytoskeleton through its interaction with the linker of nucleoskeleton
and cytoskeleton (LINC) complex (Fig. 1A). This multiprotein complex
spans both the inner and outer nuclear membrane, transmitting tensile
force generated by the cytoskeleton onto the nucleus to regulate nuclear
morphology, positioning, and migration (Burke, 2019; Goldberg, 2017;
Hieda, 2017; Jahed et al., 2016). Although much is known about the
NPC lifecycle in dividing cells, the mechanisms controlling the forma-
tion, anchoring, and especially maintenance and repair of the nuclear
pores in postmitotic cells are still largely unknown. Indeed, contrary to
dividing cells that refresh their pool of NPCs at the end of mitosis when
the nuclear envelope is newly formed, postmitotic neurons lack this
replacement mechanism (Hetzer, 2010). Some nucleoporins are among
the longest lived proteins in the cell, and they are never or very slowly
replaced during the life time of a cell once the NPC is formed (D'Angelo

et al., 2009; Savas et al., 2012; Toyama et al., 2013). It is thus likely
that even subtle alterations that damage the function and integrity of
the NPC would accumulate over time, leading to late onset defects in
the import and export of cargo across the pore, accumulation of nuclear
proteins in the cytoplasm, and eventually cell death. These considera-
tions point to the NPC as a prime suspect to explain the late-onset
neuron-specific cell death observed in neurodegenerative diseases. In
fact, defects to the NCT pathway have been recently identified as a
common pathogenic event in several neurodegenerative diseases, in-
cluding Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal De-
mentia (FTD), Alzheimer's disease (AD), and Huntington's disease (HD)
(Hutten and Dormann, 2019; Kim and Taylor, 2017). Cytoskeletal
dysregulation, protein aggregation, and oxidative stress, common
phenomena in neurodegenerative diseases, have been shown to induce
NCT defects such as loss of NPCs at the nuclear envelope, protein
mislocalization, nuclear RNA retention, and disrupted nuclear lamina.
Here we will focus on the accumulated evidence linking NCT defects to
the pathobiology of ALS and FTD, and propose a mechanistic view on
how such defects may originate in the first place.

2. NCT defects as a common feature of ALS/FTD

ALS and FTD form a disease spectrum based on shared clinical,
genetic, and neuropathological features (Lattante et al., 2015; Talbot
and Ansorge, 2006; Weishaupt et al., 2016). A defining characteristic of
ALS/FTD is the loss of specific RNA-binding proteins (RBPs) from the
nucleus and their mislocalization into cytoplasmic aggregates (Ito et al.,
2017; Mandrioli et al., 2019). TDP-43 pathology is present in ~ 97% of
ALS, and~ 45% of FTD cases, whereas FUS pathology is less common
and only found in<1% of ALS and~ 9% of FTD cases (Ling et al.,
2013). Genetic studies demonstrate that TDP-43 and FUS mutations can
directly cause ALS, suggesting a direct functional connection of these
mislocalized proteins to the disease process (Lagier-Tourenne and
Cleveland, 2009). In the past few years, there has been accumulating

Fig. 1. The NPC and associated factors. A. Depiction of the basic structure of the NPC. Cytoplasmic filaments and the nuclear basket extend into the cytoplasm and
nucleoplasm respectively, while transmembrane Nups anchor the NPC to the nuclear envelope. The central channel is rich in FG-Nups, that form a selectivity filter to
prevent the unregulated passage of large proteins (i.e. ~ > 40 kDa) though the pore. The LINC complex is tightly associated with the nuclear pore and connects the
nuclear lamina with the cytoskeleton. B. Representation of the NCT pathway. Importins bind to their cargo and facilitate movement through the NPC. In the
nucleoplasm, Ran-GTP either binds to importins to trigger the release of the cargo, or to the exportin-cargo complex, facilitating its transport through the nuclear
pore to the cytoplasm. RanGAP1 then hydrolyzes Ran-GTP to Ran-GDP and triggers the release of the cargo into the cytoplasm. RCC1 restores the GTP-bound state of
Ran in the nucleoplasm, resetting the cycle.
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evidence that beyond the mislocalization of these proteins, general NCT
defects in protein import and RNA export are also a common feature of
ALS/FTD and other age-related neurodegenerative diseases, suggesting
a possible link between these two phenomena. The first evidence for
potential defects in the NCT machinery itself in ALS comes from the
observation of irregularly shaped nuclear membranes and abnormal
NTR distribution in spinal motor neurons from sporadic ALS and fa-
milial ALS cases with SOD1 mutations (mSOD1). Nuclear staining of the
FG-rich Nup62 was irregular or completely absent in some cases
(Aizawa et al., 2019; Kinoshita et al., 2009; Nagara et al., 2013;
Yamashita et al., 2017). This was also confirmed in mSOD1 mice where
Nup62 staining progressively weakened with age and became dis-
continuous (Kinoshita et al., 2009; Nagara et al., 2013). These early
observations were followed by a series of studies based on genetic
modifier screens in flies and yeast models of C9ORF72 GGGGCC (G4C2)
repeat expansion pathology, one of the most common genetic causes of
ALS/FTD (DeJesus-Hernandez et al., 2011). These studies reported a
direct connection between C9ORF72 G4C2 pathology and morpholo-
gical and functional defects to the NCT pathway (Freibaum et al., 2015;
Jovičić et al., 2015; Zhang et al., 2015). Similar defects were observed
in models of TDP-43 proteinopathy and sporadic ALS patient cells,
suggesting that NCT dysfunction may be a common hallmark not only
for C9ORF72-linked disease (C9-ALS/FTD), but for most if not all ALS/
FTD cases (Chou et al., 2018). While these studies identified co-ag-
gregation of components of the NCT machinery with pathological
protein aggregates or RNA foci as potential pathomechanisms, newer
studies have implicated cytoskeletal defects as additional mechanisms
that may cause NCT defects in ALS/FTD and AD (Eftekharzadeh et al.,
2018; Giampetruzzi et al., 2019; Paonessa et al., 2019). A compendium

and schematic of all NCT-related defects identified thus far in ALS/FTD
models as well as patient tissue are provided in Table 1 and Fig. 2,
respectively.

3. NCT defects linked to protein aggregation

Abnormal protein aggregation is considered a central disease me-
chanism in ALS/FTD. Affected neurons in postmortem tissue as well as
in animal models of ALS are most often characterized by the presence of
large cytoplasmic inclusions positive for proteasome and autophagy-
associated markers such as ubiquitin and p62 (Blokhuis et al., 2013).
The main protein component of these aggregates was TDP-43, a mostly
nuclear RBP that abundantly translocates to the cytoplasm and is lost
from the nucleus under pathological conditions now referred to as TDP-
43 proteinopathies (Neumann et al., 2006). Nearly all sporadic and
familial ALS cases test positive for TDP-43 pathology in postmortem
tissue, with the notable exceptions of FUS- and SOD1-associated ALS.
The role of aggregates in ALS as well as other neurodegenerative dis-
eases is still controversial, with conflicting hypotheses describing the
accumulation of misfolded proteins in insoluble aggregates as either a
protective mechanism or toxic initiator of neuronal death (Bolognesi
et al., 2019; Hergesheimer et al., 2019; Zhu et al., 2018). Of note,
regulators of autophagy and protein homeostasis represent a major
class of ALS/FTD disease genes, suggesting that a diminished ability of
the cell to clear misfolded and aggregating proteins causes increased
toxicity. Taken together, these observations point to misfolded proteins
and aggregates as being more of a foe than a friend (Hergesheimer
et al., 2019; Ramesh and Pandey, 2017). Furthermore, repeat-asso-
ciated non-ATG (RAN) translation of aggregation-prone dipeptide-

Table 1
Summary of functional and morphological NCT defects in ALS/FTD.

Defect ALS/FTD subtype Models References

Irregular nuclear morphology C9ORF72 Drosophila, mouse Freibaum et al., 2015; Chew et al., 2019
PFN1 Cell lines Giampetruzzi et al., 2019
SetX Patient tissue, mouse Bennett et al., 2018
SOD1 Patient tissue, mouse Kinoshita et al., 2009; Nagara et al., 2013
Tau Drosophila, cell lines, patient

tissue
Frost et al., 2016; Eftekharzadeh et al., 2018; Cornelison et al., 2019;
Paonessa et al., 2019

TDP-43 Cell lines Chou et al., 2018; Roczniak-Ferguson et al., 2019
VAPB Cell lines Tran et al., 2012
sALS Patient tissue Kinoshita et al., 2009; Nagara et al., 2013; Aizawa et al., 2019

Loss of Ran gradient C9ORF72 Cell lines Zhang et al., 2015; Zhang et al., 2018
GRN Mouse Ward et al., 2014
PFN1 Cell lines Giampetruzzi et al., 2019
Tau Patient tissue, mouse Eftekharzadeh et al., 2018
TDP-43 Cell lines Zhang et al., 2018; Gasset-Rosa et al., 2019;

Protein import defect C9ORF72 Cell lines Zhang et al., 2015; Khosravi et al., 2017; Shi et al., 2017; Vanneste et al.,
2019

PFN1 Cell lines Giampetruzzi et al., 2019
SetX Mouse Bennett et al., 2018
Tau Cell lines Eftekharzadeh et al., 2018; Paonessa et al., 2019;
TDP-43 Cell lines Chou et al., 2018

RNA export defect C9ORF72 Drosophila Freibaum et al., 2015
Tau Cell lines Cornelison et al., 2019
TDP-43 Cell lines Woerner et al., 2016; Chou et al., 2018

Mislocalization/aggregation of NCT proteins ADAR-2 Mouse Yamashita et al., 2019
C9ORF72 Drosophila, patient cells and

tissue
Zhang et al., 2015

SOD1 Mouse Shang et al., 2017
Tau Cell lines, patient tissue Eftekharzadeh et al., 2018
TDP-43 Cell lines Chou et al., 2018; Gasset-Rosa et al., 2019
sALS Patient tissue Shang et al., 2017; Chou et al., 2018, Aizawa et al., 2019

Mislocalization of importins C9ORF72 Drosophila, patient tissue Xiao et al., 2015; Solomon et al., 2018
SOD1 Mouse Nagara et al., 2013
TDP-43 Cell lines, Drosophila Gasset-Rosa et al., 2019; Solomon et al., 2018
sALS Patient tissue Kinoshita et al., 2009; Nishimura et al., 2010; Yamashita et al., 2017;

Aizawa et al., 2019
Loss of nuclear integrity Tau/AD Patient tissue Eftekharzadeh et al., 2018

Aging C. elegans, rat D'Angelo et al., 2009
Blocked nuclear pores C9ORF72 Cell lines Shi et al., 2017
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repeat proteins (DPRs) from C9ORF72 repeat expansions has been
shown to be a prominent cause of toxicity in several animal and cellular
model of disease, strengthening the case for protein aggregation as a
cause of cellular toxicity. However, the mechanisms by which DPR
protein aggregation induces cell death and its potential contribution to
C9ORF72-related ALS/FTD phenotypes is not fully understood.

Recent studies have demonstrated that cytoplasmic protein ag-
gregation, regardless of the misfolded protein species, can lead to NCT
defects and neuronal degeneration. Amyloidogenic β-sheet proteins
have been shown to undergo fibrillary aggregation when they accu-
mulate in the cytoplasm, and disrupt the nucleocytoplasmic shuttling of
proteins and RNAs (Woerner et al., 2016). Formation of nuclear RNA
foci and cytoplasmic DPRs in C9-ALS/FTD has been shown to cause
NCT dysfunction (Zhang et al., 2015). NCT defects can also be caused
by the formation of pathological TDP-43 inclusions that can abnormally
sequester nucleoporins into aggregates and affect the localization of
other NCT factors in ALS/FTD patients (Chou et al., 2018). While me-
chanisms of cytoplasmic mislocalization of FUS in ALS/FTD have been
well studied, in contrast to TDP-43 there is currently little evidence for
FUS pathology directly causing NCT defects. A targeted screen for
modifiers of FUS toxicity in Drosophila found that downregulation of
Nup154 and exportin-1 prevented neurotoxicity induced by over-
expression of human FUS in motor neurons. However, knock-down of
exportin-1 also significantly reduced the propensity of FUS to form
inclusions upon stress (Steyaert et al., 2018), suggesting that NCT
proteins modulated FUS toxicity by directly or indirectly acting on the
mislocalization and aggregation of FUS (see also section 6). In this
section, we will review the evidence linking NCT disruption and ag-
gregation caused by different ALS/FTD disease genes.

3.1. C9ORF72 repeat expansion

The most common genetic cause of ALS and FTD is the presence of

expanded G4C2 hexanucleotide repeats (HRE) in intron 1 of the
C9ORF72 gene (DeJesus-Hernandez et al., 2011; Renton et al., 2011).
Potential disease mechanisms include loss of function due to hap-
loinsufficiency and a toxic gain of function of either the intronic RNA
repeats or DPRs generated via RAN-translation (Gendron and Petrucelli,
2018). While the cellular function of the two long and short C9ORF72
protein isoforms is not fully defined, the short C9 isoform strongly lo-
calizes to the nuclear membrane but relocates to the plasma membrane
in ALS motor neurons. Both long and short C9 isoforms also interact
with Ran and importin-β1, suggesting that reduced levels of these
proteins could interfere with NCT, thus contributing to pathology (Xiao
et al., 2015). Currently substantial more evidence exists linking repeat
RNA and DPR toxicity to NCT dysfunction in several cell and animal
models of ALS/FTD (Rodriguez and Todd, 2019).

Evidence for expanded RNA repeats disrupting NCT comes from a
candidate-based genetic screen in a Drosophila model expressing
(G4C2)30 repeat constructs, which identified Drosophila RanGAP as a
potent suppressor of neurodegeneration (Zhang et al., 2015). A pre-
vious study using a proteome array to identify G4C2–binding proteins
had found that HREs can physically bind to RanGAP1 (Donnelly et al.,
2013), which formed large perinuclear puncta in G4C2-expressing
Drosophila cells, as well as in iPSC-derived neurons and in the motor
cortex of C9ALS/FTD patients (Zhang et al., 2015). It has also been
reported that RanGAP1 abnormally accumulates in nuclear invagina-
tions in the cortex of (G4C2)149 mice (Chew et al., 2019). Disrupting the
interaction between RanGAP1 and HREs rescued NCT defects, sug-
gesting that RanGAP1 sequestration by G4C2 RNA is upstream of nu-
clear import dysfunction (Zhang et al., 2015). Since RanGAP1 is an
essential regulator of the Ran cycle, its sequestration and loss from the
nuclear envelope is expected to alter the nuclear-cytoplasmic distribu-
tion of Ran. Indeed, overexpression of RanGAP1 could rescue Ran cy-
toplasmic accumulation, and further rescue photoreceptor and motor
neuron degeneration in (G4C2)30–expressing flies, indicating that dis-
ruption of the Ran gradient contributes to G4C2 RNA toxicity. Accord-
ingly, overexpression of RCC1 enhanced the degenerative phenotype,
while its knock-down rescued it. HREs also caused nuclear import
deficits in Drosophila cells and iPSC neurons, including an abnormal
cytoplasmic accumulation of TDP-43. Modulation of NCT via either the
exportin-1 inhibitor KPT-276, RNAi-mediated downregulation of ex-
portin-1, or overexpression of importin-α rescued photoreceptor neuron
degeneration in these flies. Although the exact mechanisms responsible
for this rescue are not fully understood, these data suggest that NCT
defects are central to disease pathogenesis (Zhang et al., 2015). Inter-
estingly, the eye phenotype in these flies appeared to be linked to a
G4C2 RNA-mediated mechanism, since DPRs were either absent or
below the detection level in the fly eye at the time of photoreceptor
neuron degeneration.

Very similar observations were also made in a parallel study that
employed (G4C2)58 flies in which poly(GP) and poly(GR) expression via
RAN-translation was evident (Freibaum et al., 2015). Ran was identi-
fied as a strong suppressor of the rough eye phenotype, highlighting the
Ran gradient again as an important target of the G4C2 toxicity. Ex-
panded G4C2 disrupted the nuclear envelope in Drosophila salivary
glands and induced Nup107 mislocalization, which has also been re-
ported in patient tissue (Freibaum et al., 2015; Zhang et al., 2015).
Knock-down of the NTRs transportin-1, exportin-1, and of nuclear
basket nucleoporins Nup50 and Nup153 – nucleoporins involved in the
initiation of NPC assembly (Schwartz et al., 2015) - enhanced retinal
degeneration, further strengthening the link between NCT and ALS/
FTD pathology. Interestingly, several RNA nuclear export factors were
identified as genetic modifiers in this disease model. These included the
mRNA export factors ALYREF and GLE1 (Freibaum et al., 2015), the
latter having been previously associated with recessive fetal motor
neuron diseases and familial forms of ALS (Kaneb et al., 2015;
Nousiainen et al., 2008). In support of these genetic data, nuclear re-
tention of RNA was observed in flies and in different cell models of G4C2

Fig. 2. ALS/FTD-linked defects in the NPC and NCT. (left panel) In healthy
cells, RNA export and protein shuttling through the nuclear pore are tightly
regulated processes that depend on the nucleocytoplasmic distribution of GTP-
bound Ran (blue circles). (right panel) In ALS/FTD cells, the nuclear pore in-
tegrity is compromised and the shuttling of RNAs and proteins is no longer
controlled. Irregular nuclear morphology is often observed with deep mem-
brane invaginations and disruption of the lamina (1). The Ran gradient is im-
paired, leading to increased levels of Ran in the cytoplasm (2). This impairs the
import of proteins (3), as well as the export of mature RNAs from the nucleus
(4). The mislocalization and aggregation of shuttling proteins sequesters NCT
factors such as importins and nucleoporins into the cytoplasm (5), further
disrupting the process. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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toxicity, and downregulation of ALYREF partially rescued nuclear RNA
accumulation in flies, presumably by permitting RNA degradation via
the nuclear exosome (Freibaum et al., 2015). Although this study did
not directly explore the role of DPRs vs HRE in inducing NCT defects,
this question has been addressed by using DPR-only models of disease
as discussed below.

A clear connection between DPR toxicity and NCT defects has been
established by a study based on unbiased genetic screens for modifiers
of poly(PR)50 toxicity in yeast (Jovičić et al., 2015). Potent modifiers
included karyopherins and other components of the NCT machinery, a
category also represented in genetic screens for modifiers of poly
(GR)100 toxicity in yeast (Chai and Gitler, 2018). Interestingly, several
NCT factors were also found to modify the degenerated eye phenotype
in poly(GR)50-expressing flies. These proteins only interact with argi-
nine-containing poly(PR) and poly(GR), which appear to be especially
harmful in comparison with other DPRs (Lee et al., 2016). Moreover,
poly(PR) have been shown to increase the permeability of NPCs by
direct binding to FG-Nups (Shi et al., 2017). These findings suggest that
NCT dysfunction may be a key disease mechanism in poly(PR)/(GR)
pathology. On the other hand, co-aggregation of RanGAP1 and trans-
membrane nucleoporin Pom121 with poly(GA) inclusions was reported
in poly(GA)-expressing mice. Surprisingly, these aberrations were not
observed in mice expressing a soluble form of poly(GA), suggesting that
poly(GA)-induced NCT defects are caused by GA aggregation (Zhang
et al., 2016). Interestingly, a study measuring nuclear import and ex-
port in DPR-expressing cell lines found that poly(GA), but not poly(GR)
and poly(PR), induced NCT deficits (Vanneste et al., 2019), specifically
altering the importin-α/β-dependent import pathway (Khosravi et al.,
2017). Finally, in flies TDP-43 was shown to accumulate in the cyto-
plasm in the presence of DPRs but not HREs, which favors the role of
DPRs in NCT dysfunction (Solomon et al., 2018). Taken together, these
studies demonstrate that RNA repeat as well as DPR-mediated toxicity
can cause NCT defects in cellular and animal models, and may both
contribute to the disease phenotype in patients where these pathologies
are found together.

3.2. TDP-43 proteinopathy

An effort to characterize the proteome associated with pathological
TDP-43 inclusions has led to the discovery that aggregates formed by
the 25 kDa C-terminal fragment of TDP-43 (TDP-CTF) did not resemble
stress granules (SG) but were highly enriched in components of the
endomembrane system that are involved in intracellular transport, in-
cluding components of the NCT machinery (Chou et al., 2018). TDP-
CTF is a major component of cytoplasmic inclusions in ALS/FTD brain
but not spinal cord tissue, and its expression in cellular models shows
hallmarks of human TDP-43 proteinopathy, such as ubiquitination and
hyperphosphorylation (Chou et al., 2018; Fallini et al., 2012; Igaz et al.,
2008). The TDP-CTF associated proteome showed particular enrich-
ment in nucleoporins, and co-expression studies in cells with mCherry-
tagged TDP-CTF and GFP-tagged nucleoporins caused a cytosolic mis-
localization and co-aggregation with TDP-CTF aggregates of most nu-
cleoporins, including Nup62 and other FG-Nups (Chou et al., 2018). In
a seeding model of TDP-43 proteinopathy, exposing mitotically arrested
neuroblastoma cells to recombinant TDP-43 amyloid fibrils caused the
loss of nuclear endogenous TDP-43 and the formation of cytoplasmic
TDP-43 aggregates. Over time, these cytosolic TDP-43 assemblies se-
questered Nup62 and induced mislocalization of RanGAP1, Ran, and
Nup107, causing NCT defects and cell death (Gasset-Rosa et al., 2019).
Ran and RanGAP1 have also been reported to form cytoplasmic puncta
in motor neurons of ALS patients (Shang et al., 2017; Xiao et al., 2015).
Defects in the localization of other nucleoporins have also been re-
ported in spinal motor neurons of ALS patients, including nuclear ag-
gregation of Nup50 and cytoplasmic accumulation of gp210 and
Nup205, with the latter strongly colocalizing with TDP-43 aggregates
(Shang et al., 2017). Cytoplasmic inclusions of Nup205 were also

detected in different brain regions of sporadic ALS, familial TDP-ALS/
FTD and familial C9-ALS/FTD cases, and strong co-localization of
phospho-TDP-43 and Nup205 in large cytoplasmic inclusions was de-
monstrated in the motor cortex and hippocampus of a TDP-ALS case.
Interestingly, in these cases Nup205 aggregation was not observed in
the cerebellum, which remains unaffected by TDP-43 pathology, and it
was also absent in the motor cortex of a familial SOD1-ALS patient
without TDP-43 pathology, highlighting a distinct role of TDP-43 in
NCT pathology (Chou et al., 2018). The role of TDP-43 pathology in C9-
ALS/FTD and how it may contribute to the observed NCT defects is
currently unclear.

4. NCT defects linked to cytoskeletal alterations

The role of cytoskeletal disruption in neurodegenerative diseases in
general and ALS/FTD in particular has become increasingly evident in
recent years (Hensel and Claus, 2018; Kounakis and Tavernarakis,
2019). Mutations in several cytoskeletal-related genes are causative or
associated with disease, including microtubule-associated protein tau
(MAPT) in FTD, and actin-binding Profilin-1 (PFN1), tubulin alpha-4A
(TUBA4A), and the motor protein kinesin heavy chain isoform 5A
(KIF5A) in ALS/FTD (Iqbal et al., 2016; Nicolas et al., 2018; Smith
et al., 2014; Wu et al., 2012). Pathological forms of TDP-43 and FUS
interfere with normal cytoskeletal function such as axonal outgrowth
and intracellular transport (Baskaran et al., 2018; Fallini et al., 2012;
Klim et al., 2019; Melamed et al., 2019; Oberstadt et al., 2018; Sama
et al., 2017; Sugiura et al., 2016; Yasuda et al., 2017), and alterations to
the cytoskeleton have been observed as early events in mSOD1G93A

mice as well as mSOD1 iPSCs (Bellouze et al., 2016; Chen et al., 2014;
Fanara et al., 2007). But how can these defects lead to specific (moto)
neuron degeneration and cell death? Evidence from different genetic
models of ALS and dementia suggest a direct link between the cytos-
keleton and the disruption of nuclear pore stability and function. Sev-
eral studies have shown that in human and animal models of AD and
FTD associated with pathological forms of tau, neuronal nuclei are
misshapen, presenting with deep and frequent invaginations and folds
of the nuclear membrane (Cornelison et al., 2019; Eftekharzadeh et al.,
2018; Frost et al., 2016; Paonessa et al., 2019). Nuclei isolated from
mild and severe AD brains were also found to be leaky, as large MW
dextran molecules are no longer excluded from the nucleoplasm, sug-
gesting that the diffusion-barrier function of the nuclear membrane
and/or the nuclear pores was severely compromised (Eftekharzadeh
et al., 2018). Indeed, nuclear aberrant morphologies were accompanied
by loss of nucleoporins, particularly the FG-rich Nup62 and Nup98,
possibly due to their interaction with soluble and oligomeric forms of
phospho-tau accumulating in the perinuclear region. While the tau–-
nucleoporin interaction and co-aggregation could explain some phe-
notypes observed in these tauopathy models, a different mechanism has
been proposed to be responsible for the distortion of the nuclear mor-
phology and nuclear lamina disruption observed. Using iPSC-derived
neurons carrying two different FTD-associated tau mutations, it was
shown that the presence of hyperphosphorylated tau qualitatively al-
tered microtubule dynamics in the neuron's cell body (Paonessa et al.,
2019). Microtubule plus ends labeled with the GFP-EB3 marker were
frequently observed projecting into the nucleus of human FTD neurons,
severely deforming the nuclear envelope with deep lamin-positive in-
vaginations. Microtubule depolymerization via nocodazole treatment
restored normal nuclear morphology and reversed NCT defects, de-
monstrating a direct link between abnormal microtubule dynamics and
nuclear morphology (Paonessa et al., 2019).

A disease-relevant association between cytoskeletal structures and
NPCs has been further supported by studies in an ALS cellular model
characterized by mutant PFN1. Mutations in this actin binding protein
cause subtle changes to actin polymerization, leading to reduced F-actin
levels in motor neuron growth cones and reduced axonal outgrowth in
vitro (Wu et al., 2012). A combination of genetic and pharmacological
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tools demonstrated that the modulation of actin homeostasis, either
positive or negative, impacts the structural integrity and function of the
NPC (Giampetruzzi et al., 2019). While mutant forms of PFN1 caused
changes to the NPC composition and/or density on the nuclear en-
velope and severely decreased nuclear import rates, even slight in-
creases in actin polymerization via the overexpression of wild type
PFN1 or the constitutively active form of the formin mDia1, which
nucleates and elongates actin filaments (Breitsprecher and Goode,
2013; Wallar and Alberts, 2003), reduced nuclear import rates. Simi-
larly, actin depolymerization via Latrunculin A treatment in normal
neurons disrupted the normal nucleocytoplasmic Ran gradient and
RanGAP1 localization to the nuclear envelope, suggesting that actin
homeostasis is critical to the maintenance of functional NPCs. Strik-
ingly, restoring the right balance of actin polymerization in mutant
PFN1 neurons led to a full rescue of both structural and functional
defects of the NPC, restoring a normal staining pattern of NPC markers
and RanGAP1. Nuclear import defects were also rescued, which led to
the reversal of TDP-43 cytoplasmic mislocalization and a normalization
of TDP-43-dependent mRNA post-transcriptional regulation. One sur-
prising finding was that this approach was effective in rescuing NPC
defects not only in PFN1-linked ALS, but also in neurons expressing the
C9ORF72 repeat expansion and in C9-ALS/FTD patient fibroblasts. Al-
though there is currently no strong evidence linking C9ORF72 repeat
expansions to actin disruption, decreased levels of the C9ORF72 protein
have been found associated with reduced actin dynamics and cofilin
activity in cellular models of C9-ALS/FTD, including iPSC-derived
neurons (Sivadasan et al., 2016).

Two interesting observations emerge from these studies. First,
changes in cytoskeletal dynamics and stability are key events in leading
to the break-down of the NCT pathway in multiple genetic models of
ALS/FTD. Disruption of nuclear morphology and lamina stability ap-
pears to be the first insult, which leads to a cascade of currently not
well-defined events that terminates with the functional demise of the
NPC. While mild overexpression of wild-type PFN1 had no negative
impact on nucleoporin or Ran localization, disrupted Lamin A/C
staining as well as reduced import rates were already evident
(Giampetruzzi et al., 2019). Second, NPC defects observed in these
cytoskeletal protein-related models of disease do not seem to be de-
pendent on protein aggregation. In both cultured neurons and post-
mortem tissue, the mislocalization of nucleoporins and the dissolution
of the Ran gradient were occurring in the presence of oligomeric and/or
soluble forms of both tau and PFN1 (Eftekharzadeh et al., 2018;
Giampetruzzi et al., 2019), suggesting that these defects are directly
linked to tau and PFN1 function as regulators of cytoskeletal dynamics.
How are defects in actin or microtubule dynamics disrupting the nu-
clear lamina and NPC function? One possible mechanism is via their
association with the LINC complex. Previous research has demonstrated
that changes to perinuclear actin homeostasis negatively regulate nu-
clear integrity (Kanellos et al., 2015; Wiggan et al., 2017). Knock-out of
ADF/cofilin in keratinocytes and mouse embryonic fibroblasts led to an
actin- and Arp2/3-dependent increase in nuclear deformation and
breaks in the continuity of the nuclear lamina. Interestingly, knock-
down or expression of dominant negative forms of Nesprin2 – a com-
ponent of the cytoplasmic side of the LINC complex – completely res-
cued that phenotype. LINC does not only associate with actin, but it can
bind either directly or indirectly via molecular motors to microtubules
(Burke, 2019; Yang et al., 2018). This interaction is essential for correct
positioning of the nucleus, especially in migrating cells and myotubes,
possibly via favoring microtubule nucleation (Burke, 2019; Gimpel
et al., 2017). However, no clear role has been outlined thus far for the
LINC-cytoskeleton association in postmitotic neurons. Of note, mis-
localization of LINC proteins was also observed in neurons containing
TDP-43 aggregates (Chou et al., 2018), and mutations in LINC proteins
are associated with cerebellar ataxia (Gros-Louis et al., 2007; Wang
et al., 2015), suggesting that this complex may play an essential role in
maintaining neuronal function and survival. It will be interesting to

further explore the role of this complex in mediating NPC/NCT dis-
ruption during aging and in disease.

5. NCT defects linked to cellular stress

Together with protein aggregation and cytoskeletal disruption, in-
creased oxidative stress is a hallmark of disease in ALS and FTD (Bozzo
et al., 2017; Singh et al., 2019). Mutations in genes involved in the
stress response such as ATXN2, TIA1, and hnRNPA2B1 are associated
with ALS (Elden et al., 2010; Mackenzie et al., 2017; Martinez et al.,
2016; Murakami et al., 2015; Ostrowski et al., 2017), and pathogenic
forms of TDP-43 and FUS, as well as DPRs from mutant C9ORF72, have
been shown to alter the dynamics of SG formation and dissolution
(Boeynaems et al., 2017; Bosco et al., 2010; Khalfallah et al., 2018; Lee
et al., 2016). Similar to protein aggregation and cytoskeletal disruption,
also cellular stress has been linked to changes to the NCT pathway.
Several labs using a wide range of models from yeast to human iPSC-
derived neurons have demonstrated that upon cellular stress many NCT
factors, including NTRs and THOC2, localize to SGs (Chang and Tarn,
2009; Fujimura et al., 2010; Jain et al., 2016; Mahboubi et al., 2013;
Markmiller et al., 2018; Zhang et al., 2018). Severe stress from oxida-
tive, hyperosmotic, or heat insults have been shown to cause the cy-
toplasmic mislocalization of nuclear proteins including Ran, and the
nuclear retention of importins (Kodiha et al., 2008; Kodiha et al., 2004;
Miyamoto et al., 2004; Stochaj et al., 2000; Zhang et al., 2018). Several
nucleoporins, including Nup50, Nup88, and Nup205, have also been
shown to localize to SGs (Jain et al., 2016; Kodiha et al., 2008, 2004;
Zhang et al., 2018), as well as Ran, although only minimally (Fujimura
et al., 2010; Zhang et al., 2018).

From these studies, it appears clear that stress induces changes to
the NCT pathway, but whether these changes are a physiological and
protective response, or a cytotoxic consequence to the stress is not yet
fully understood, at least in healthy cells. For instance, damaging mu-
tations in yeast orthologs of Ran and RanGAP1 reduce SG formation
upon nutrient starvation, reducing survival rates after stress removal,
and overall lead to a hyperactivation of gene expression programs in
response to stress. This would suggest that changes to NCT happen as an
important protective response to stress (Yang et al., 2014). This hy-
pothesis is further supported by the observation that transportin-1 lo-
calization to SGs is required to shuttle the RBP tristetraprolin (TTP) and
its bound mRNAs between processing (P) bodies and SGs, aiding in the
cellular response to stress (Chang and Tarn, 2009). However, chronic
stress such as during aging or in disease may disrupt this balance,
leading to the breakdown of physiological stress response. In fact,
pharmacological inhibition of SG formation was shown to normalize
Ran localization and NCT, and rescued neurodegeneration in fly models
of ALS expressing the G4C2 hexanucleotide repeat, although whether
this effect was directly linked to the modulation of NCT factors or other
mechanisms is not clear (Zhang et al., 2018). Some nucleoporins are
extremely long lived (Savas et al., 2012; Toyama et al., 2013) and are
prone to accumulate oxidative stress-related injury, especially in post-
mitotic cells. Oxidative stress was shown to inhibit exportin-1-depen-
dent nuclear export, and to increase phosphorylation and O-glycosyla-
tion of several FG-Nups (i.e. Nup358, Nup214, Nup98, and Nup62)
(Crampton et al., 2009). Nup107, Nup153, Nup205, and Nup214 have
also been identified as substrates of thioredoxin1, a redox protein es-
sential for the removal of specific disulfide bonds and other cysteine
post-translational modifications (Wu et al., 2014), suggesting that the
NPC is subject to increased and age-dependent oxidative damage. Nu-
clei of aging mice become progressively leaky, allowing large dextrans
and other cytoplasmic proteins to permeate the nucleoplasm (D'Angelo
et al., 2009). This phenotype may be directly caused by a loss of the
NPC permeability barrier integrity due to carbonylation of nucleoporins
such as Nup62, Nup93, and Nup153. Exposing worms to increased
oxidative stress dramatically accelerated this process, directly linking
aging, oxidative stress and NPC function (D'Angelo et al., 2009). In a
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comparison of neurons trans-differentiated from fibroblasts isolated
from young and old individuals, it was found that NCT is specifically
affected in aging neurons, perhaps because of reduced levels of
RanBP17, a member of the karyopherin β family NTR family. Inter-
estingly, cell reprogramming into rejuvenated induced pluripotent stem
cells followed by differentiation into neurons erased such changes,
suggesting that aging leads to an accumulation of epigenetic and me-
tabolic defects that affect the NPCs (Mertens et al., 2015). Aging and
oxidative stress also lead to the accumulation of protein aggregates
that, as we discussed above, can cause NCT defects (Nowotny et al.,
2014). However, TDP-CTF aggregate formation inhibits stress granule
formation (Chou et al., 2018) and TDP-43 ubiquitylation and in-
solubility can be triggered via distinct pathways and independent of
stress granules (Hans et al., 2019). Thus, stress-dependent aggregates
are most likely different from the aggregation of disease-related pro-
teins due to their distinct protein composition (Chou et al., 2018;
Gasset-Rosa et al., 2019; Mann et al., 2019), and the relationship be-
tween SGs as direct precursors of TDP-43 aggregates in ALS remains
controversial.

6. Mislocalization of importins in ALS/FTD

Aside from the sequestration of nucleoporins into aggregates and
the disruption of the Ran gradient, NCT defects in ALS/FTD are also
associated with reduced levels or mislocalization of importins. Nuclear
depletion and cytoplasmic accumulation of importin-β1 have been re-
ported in patient motor neurons by several groups, with no obvious
sequestration into TDP-43-positive aggregates (Aizawa et al., 2019;
Kinoshita et al., 2009; Nagara et al., 2013; Xiao et al., 2015). However,
no changes in importin-β1 protein levels were observed in the cortex of
TDP-ALS/FTD patients or in spinal cord of TDP-43-positive sporadic
ALS patients (Nishimura et al., 2010), despite importin-β1 being a di-
rect RNA target of TDP-43 (Sephton et al., 2011). Expression of amy-
loidogenic β-sheet proteins in HEK293 cells caused the cytoplasmic
sequestration of importin-α1 and importin-α3 into cytoplasmic ag-
gregates, thus interfering with protein nuclear import (Woerner et al.,
2016). Cytoplasmic mislocalization and reduced protein levels of im-
portin-α3 were also found in the frontal cortex of sporadic FTD and C9-
ALS/FTD patients with or without TDP-43/DPR pathology (Solomon
et al., 2018). Importin-α3 cytoplasmic accumulation has also been
observed in spinal motor neurons of mSOD1G93A mice (Nagara et al.,
2013), suggesting that importin-α3 mislocalization does not necessarily
correlate with TDP-43/DPR pathology. Nuclear depletion of both im-
portin-α1 and importin-α3 was also reported in TDP-43 proteinopathy
fly models, even in the absence of a marked disruption of the NPCs
(Solomon et al., 2018). Of interest, knock-down of importin-α3 en-
hanced the rough eye phenotype in a fly model of poly(GR) pathology
(Lee et al., 2016). Immunostaining of exportin-2, which recycles the
importin-α/Ran-GTP complex back to the cytoplasm, was reduced both
in the nucleus and in the cytoplasm of FTD and ALS patients, while
importin-α1 was depleted from the nucleus (Nishimura et al., 2010).
These results correlate with reduced levels of exportin-2 and importin-
α1 versus no change in importin-β1 levels in aged fibroblasts (Pujol
et al., 2002). Interestingly, exportin-2 immunoreactivity was also ab-
sent in motor neurons of mice with knock-out of ADAR2, a protein
downregulated in motor neurons of sporadic ALS patients (Yamashita
et al., 2017). These observations are of particular interest, since the
importin-α/β1 NTR complex mediates the nuclear import of many
cargo including TDP-43, which could explain why TDP-43 accumulates
in the cytoplasm of ALS/FTD patients (Kim et al., 2012; Nishimura
et al., 2010). However, future studies will be required to define the
mechanisms and disease relevance of these defects, and how they relate
to a non-canonical role of importins as molecular chaperones to prevent
the aggregation of their cargo proteins, as discussed below.

7. Importins as molecular chaperones to prevent cargo
aggregation

Beside their canonical role as import factors, karyopherin β family
importins have been shown to prevent the cytoplasmic aggregation of
histones and ribosomal proteins (Jäkel et al., 2002) as well as FG-Nups
(Milles et al., 2013), and the inappropriate non-nucleosomal interac-
tions of histones (Padavannil et al., 2019). These observations suggest
that this class of NTRs may have a non-canonical chaperone-like ac-
tivity. At least for FUS protein, importins appear to govern not only its
nuclear import but also its liquid-liquid phase separation (LLPS) and
aggregation in the cytoplasm (Mikhaleva and Lemke, 2018). Similarly
to TDP-43, FUS pathology has been reported in ALS and FTD patients
(Ling et al., 2013), while mutations in FUS have been linked to familial
ALS (Shang and Huang, 2016). Four independent studies have elegantly
demonstrated that transportin-1/importin-β2 can bind FUS and prevent
it from undergoing LLPS and aberrant liquid-to-solid phase transition
(LSPT) into pathological fibrils, both in vitro and in vivo (Guo et al.,
2018; Hofweber et al., 2018; Qamar et al., 2018; Yoshizawa et al.,
2018). Transportin-1 regulates nuclear import of FUS by binding to its
C-terminal PY-NLS, and defective nuclear import of FUS has been
shown to cause its cytoplasmic accumulation and aggregation in dis-
ease. FUS can phase-separate in vitro into spherical liquid droplets
which can undergo fusion events, as well as LSPT (Patel et al., 2015;
Qamar et al., 2018). Transportin-1 prevented and reversed phase se-
paration of FUS into droplets and stable hydrogels (Guo et al., 2018;
Hofweber et al., 2018; Qamar et al., 2018; Yoshizawa et al., 2018).
These results indicate that transportin-1 can both chaperone and dis-
aggregate FUS. This dual activity is inhibited by Ran-GTP which dis-
sociates transportin-1 from its cargo, and it highly depends on the
presence of the PY-NLS (Guo et al., 2018; Hofweber et al., 2018;
Yoshizawa et al., 2018). Interestingly, LLPS of other RBPs with a PY-
NLS can also be prevented by transportin-1 (Guo et al., 2018). How-
ever, transportin-1 can still abrogate FUS phase separation in the ab-
sence of the PY-NLS under conditions of high concentrations
(Yoshizawa et al., 2018). The majority of ALS-causing mutations resides
in the NLS of FUS and impairs its recognition by transportin-1. Phase
separation of FUS with ALS-causing mutations in the PY-NLS was also
blocked by transportin-1, although the effect was less pronounced
compared to wild-type FUS. Interestingly, transportin-1 does not solely
bind to the PY-NLS of FUS, but the high-affinity interaction with the
NLS enables the formation of weak and dynamic interactions between
transportin-1 and other regions of FUS, including its N-terminal low-
complexity domain, the RGG/RG regions, as well as the RRM and the
ZnF domains (Yoshizawa et al., 2018). These additional binding sites
may explain the effect of Transportin-1 on mutant FUS, despite the
disruption of its canonical NLS.

Previous studies have shown that both the N-terminal and C-term-
inal regions of FUS are required for it to phase-separate and aggregate
(Boeynaems et al., 2017; Kato et al., 2012; Patel et al., 2015; Schwartz
et al., 2013; Sun et al., 2011). Tethering of both regions is necessary for
the LLPS of FUS, through the formation of cation-π interactions be-
tween tyrosines in the N-terminal domain and arginines in the C-
terminal RGG motifs (Lin et al., 2017; Qamar et al., 2018; Yoshizawa
et al., 2018). Increasing the number of these arginines or inhibiting
their methylation can promote phase separation of FUS. Of interest,
hypomethylation of FUS has been described in FUS-FTD (Dormann
et al., 2012), although how FUS methylation is lost in these patients is
currently unknown. This might be due to neuron-specific differences in
methylase and/or demethylase activity, although no mutations in ar-
ginine methyltransferases have been described to date. Loss of arginine
methylation promoted phase separation of FUS in vitro, while di-
methylated FUS underwent LLPS but at a very high concentration
compared to unmethylated FUS (Hofweber et al., 2018). Therefore,
hypomethylation of FUS can contribute to its aggregation in disease
(Gittings et al., 2019). On the other hand, hypomethylated FUS shows a
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higher binding affinity to transportin-1 compared to dimethylated FUS
(Dormann et al., 2012; Suárez-Calvet et al., 2016). This could explain
why transportin-1 strongly co-aggregates with hypomethylated FUS in
FUS-FTD cases but not with methylated FUS in familial FUS-ALS
(Brelstaff et al., 2011; Neumann et al., 2012; Takeuchi et al., 2013).
Importantly, transportin-1 efficiently suppressed phase separation of
hypomethylated FUS in vitro and in SH-SY5Y cells (Qamar et al., 2018).
Thus, the question of why transportin-1 is unable to suppress ag-
gregation of hypomethylated FUS in FTD-FUS remains to be answered.

In yeast and human cells, transportin-1 overexpression reduced the
number of cytoplasmic FUS foci and restored FUS localization to the
nucleus (Guo et al., 2018). In addition, it reduced the partitioning of
FUS into SGs, without affecting SG biogenesis nor by directly increasing
transportin-1-dependent FUS nuclear import (Guo et al., 2018;
Hofweber et al., 2018). On the other hand, drug-induced inhibition of
endogenous transportin-1 increased the number of cells with FUS-po-
sitive SGs (Hofweber et al., 2018). Elevating transportin-1 levels res-
cued mutant FUSR521H-induced toxicity in HEK293T cells and restored
the expression of FUS mRNA targets in mutant FUSR521H ALS-patient
fibroblasts. This protective effect was also confirmed in fly models of
FUS proteinopathy, where silencing transportin-1 enhanced the rough
eye degeneration phenotype, whereas increasing transportin-1 expres-
sion in motor neurons rescued survival defects in vivo (Guo et al.,
2018). Of interest, transportin-1 also was identified as one of the
strongest suppressors of toxicity in yeast and Drosophila models of poly
(PR) pathology (Boeynaems et al., 2016; Jovičić et al., 2015), as well as
in other G4C2 fly models (Freibaum et al., 2015; Lee et al., 2016),
suggesting it might play a key role in the pathogenesis of both FUS-ALS
and C9-ALS/FTD cases. Poly(PR) can interact with transportin-1 and
impair its nuclear import activity, thus causing the cytoplasmic accu-
mulation of its cargo (Boeynaems et al., 2016). Knock-down of im-
portins TNPO1, IPO11 and KPNA3 enhanced rough eye degeneration in
poly(PR)25-expressing flies, whereas overexpression of the same im-
portins rescued yeast toxicity (Boeynaems et al., 2016; Jovičić et al.,
2015). Overexpression of importins in yeast did not change the levels or
distribution of poly(PR) aggregates, suggesting that importins rescued
toxicity by restoring normal NCT (Jovičić et al., 2015). In addition,
upregulation of TNPO3, IPO9 and XPO5 also abrogated poly(PR) toxi-
city in yeast (Jovičić et al., 2015), and KPNB1 knock-down in poly(PR)
and poly(GR) flies enhanced eye degeneration (Boeynaems et al., 2016;
Lee et al., 2016).

Aside from transportin-1, the importin-α/β complex was shown in
vitro to strongly reduce fibrillization of TDP-43 by binding to its cNLS.
However, the import complex had neither an effect on TDP-43 fibrils
lacking a cNLS, nor on FUS which harbors a PY-NLS (Guo et al., 2018).
Thus, the NLS appears to act as a specific key initiation signal for nu-
clear import, chaperoning and dis-aggregation of RBPs with prion-like
domains. On the other hand, importin-β1 expression was able to reduce
the aggregation of TDP-CTF which lacks the N-terminal cNLS of TDP-43
in neuroblastoma cells (Chou et al., 2018). This would suggest that
importin-β1 does not reduce TDP-CTF aggregation through binding the
cNLS via importin-α, or that other factors not present in in vitro ex-
periments are required for this process to occur. Since transportin-1 can
still reduce the LLPS of FUS proteins lacking a PY-NLS when added at
high concentrations, multivalent interactions at different regions may
also be able to facilitate this process (Yoshizawa et al., 2018). It will be
of interest to see what the substrate-specificity and mode of action for
karyopherin family proteins is, and how they may modulate LLPS of
other RBPs under normal physiological and disease conditions.

8. Discussion

The discovery of NCT defects as a common denominator of ALS/FTD
can be surely considered a major milestone in the research on these
invariably fatal and yet untreatable diseases. Although many questions
still remain unanswered, this discovery impacts our understanding of

disease mechanisms and their connection to aging, as well as the de-
velopment of innovative therapeutic approaches focused on NCT
modifiers.

Mutations in several genes have been identified in ALS, collectively
implicating four main pathways, including 1) RNA processing, 2) pro-
tein quality control and degradation, 3) cytoskeletal integrity and
trafficking, and 4) mitochondrial function and transport (Cook and
Petrucelli, 2019). Despite the wide range of genes and cellular functions
involved, all familial and sporadic ALS patients present with almost
indistinguishable clinical symptoms, regardless of the primary cause of
the disease. This suggests that all these different pathways may con-
verge onto a common mechanism of disease, which eventually leads to
motor neuron dysfunction and death. The collective evidence gathered
by several labs using a variety of cellular, animal and human models
summarized in this review support the hypothesis that such a unifying
mechanism may be the disruption of the NCT pathway.

As we have discussed, experimental evidence directly links cellular
stress, RNA (e.g. HRE) and protein aggregation (e.g. TDP-43, DPRs),
and cytoskeletal disruption (e.g. PFN, tau) to nuclear transport defects,
possibly caused by the sequestration and/or mislocalization of nu-
cleoporins and NTRs. This in turn leads to the cytoplasmic accumula-
tion of shuttling proteins such as TDP-43 and FUS, favoring their ag-
gregation via LLPS/LSPT, a hallmark of ALS. The formation of these
aggregates further sequesters transport factors and nucleoporins,
leading to a vicious cycle that culminates in neuronal cell death (Fig. 3).
Changes to RNA export, splicing and post-transcriptional regulation as a
consequence of NCT defects have been reported (Freibaum et al., 2015;
Giampetruzzi et al., 2019; Woerner et al., 2016), potentially affecting
many downstream ALS-relevant pathways. Stress and disruption of
metabolic homeostasis, common phenomena in ALS, have also been
shown to induce the rearrangement of the cytoskeleton, further feeding
this toxic loop (Fig. 4). Despite this compelling hypothesis, the exact
mechanisms and initial steps that trigger the loss or mislocalization of
NPC proteins and NCT defects in the familial and sporadic forms of ALS,
as well as the consequences of such defects that lead to cell death, still
remain unclear. This relationship is difficult to disentangle, since many
of the observed defects, such as TDP-43 mislocalization and RNA dys-
regulation, may be both the cause and consequence of NCT defects. In

Fig. 3. Cellular disease mechanisms associated with NCT defects in ALS/FTD.
Cytoskeletal dysfunction can lead to an increase in the force exerted on the
nucleus, causing the formation of nuclear invaginations and disrupting the in-
tegrity of the nuclear lamina (1). Abnormal protein aggregation (2) and stress
granule formation (3) sequester nucleoporins and transport proteins in the
cytoplasm, affecting the integrity of the nuclear pore and impairing nuclear
import. C9-ALS-associated HREs bind and sequester RanGAP1 in the nucleus,
thereby disrupting the nuclear gradient of Ran and leading to NCT defects (4).
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addition, some of the basic aspects of NPC function, maintenance and
repair in postmitotic cells are not well understood. A common defect
linked to NCT dysfunction is the mislocalization and aggregation of
nucleoporins and transport proteins. The NCT transport machinery is
part of the endomembrane system, which provides internal compart-
mentalization in eukaryotic cells. NPCs and NTRs, clathrin, COPI, and
COPII vesicle coats are involved in membrane-associated cargo traf-
ficking and share a common evolutionary origin and conserved struc-
tural similarity (Onischenko and Weis, 2011), containing many β-pro-
pellers and α-solenoid–like domains (Rout and Field, 2017). It will be
interesting to see if these related intracellular transport pathways, such
as ER–Golgi transport, are affected in a similar manner to NCT (Burk
and Pasterkamp, 2019; Schreij et al., 2016). Numerous studies dis-
cussed in this review article have also observed morphological defects
in the nuclear envelope and lamina, such as deep invaginations into the
nucleoplasm, but their frequency, contribution to NCT defects, and
relevance to the neurodegenerative disease phenotypes is currently
unclear.

The discovery of NCT defects in neurodegenerative diseases has
generated much interest in both the academic and biotech world be-
cause of the potential for new drug discovery and development. Several
studies have found a protective effect of selective inhibitors of exportin-
1 in cellular and animal models of ALS (Chou et al., 2018; Giampetruzzi
et al., 2019; Zhang et al., 2015). This class of selective inhibitors of
nuclear transport (SINE) compounds have originally been developed as
potential therapeutics for cancer, where exportin-1 upregulation is
commonly found and associated with poor prognosis (Jans et al., 2019;
Wang and Liu, 2019). While it has been speculated that in the context of
neurodegenerative disease models these compounds may prevent nu-
clear export of TDP-43, further studies have shown that TDP-43 may
not be actively exported via exportin-1 (Archbold et al., 2018; Ederle
et al., 2018; Pinarbasi et al., 2018). Different hypotheses have been put
forward to explain the efficacy of SINE compounds in preclinical ALS
models. These inhibitors might act indirectly, by inhibiting export of
other nuclear proteins. They may also prevent formation of SGs, reduce
neuroinflammation, or counteract defects in protein import and re-es-
tablish a balance between these processes. Regardless of the exact
mechanism, preclinical trials testing the efficacy of these compounds

are ongoing, and more strategies are being developed as new promising
therapies for the treatment of ALS/FTD and related disorders.
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