
Neighborhood Enumeration in Local Search
Metaheuristics

Michiel Van Lancker1[0000−0002−2417−9928], Greet Vanden
Berghe1[0000−0002−0275−5568], and Tony Wauters1[0000−0002−1014−6340]

KU Leuven, Department of Computer Science, CODeS, Belgium
michiel.vanlancker@cs.kuleuven.be

Abstract. Neighborhood enumeration is a fundamental concept in the
design of metaheuristics. It is often the only principle of intensification
present in a metaheuristic and serves as the basis for various metaheuris-
tics. Given its importance, it is surprising that academic reporting on
enumeration strategies lacks the necessary information to enable repro-
ducible algorithms. One aspect of neighborhood enumeration in particu-
lar has been under the radar of researchers: the order in which neighbors
are enumerated. In this paper, we introduce a versatile formalism for
neighborhoods which makes explicit enumeration order and we analyse
the impact of enumeration order on the outcome of search procedures
with a small set of benchmark problems.

Keywords: Enumeration Order · Local Search · Neighborhoods ·
Metaheuristics

1 Introduction

Metaheuristics have gained a somewhat ambiguous reputation over the years. On
the one hand they are lauded for their useful characteristics in practical applica-
tions: metaheuristics are problem-independent, general optimization algorithms.
They are not only capable of being reused over a wide variety of problems, but
many are also anytime algorithms which maintain a valid solution throughout
the entire search process. Furthermore, they can be implemented in a highly con-
figurable fashion, enabling automated algorithm design and parameter tuning.
This results in algorithm templates that can be instantiated and automatically
tailored to solve specific problems or instances. On the other hand, metaheuris-
tics research has not yet reached the scientific rigor found in other fields, with
many researchers tending to focus on algorithmic efficiency – or worse, novelty
– rather than algorithmic understanding. This has led to a large variety of al-
gorithms which differ only slightly from one another or are identical except for
the terminology used [6].

While big steps have been made – especially during the last two decades – to
transform the field into a more academic one with rigorous scientific discipline
built on formalized concepts, many publications continue to operate in the sphere
of problem-solving rather than algorithmic understanding. This resulted in many

2 M. Van Lancker et al.

metaheuristics, but few insights. Nevertheless, efforts are underway to mature
the discipline. Notable examples of this are (i) the endorsement by the Journal
of Heuristics of the view that nature should no longer serve as an explicit inspi-
ration for “novel” metaheuristics, (ii) the recognition of the need for white-box
algorithm implementations, preferably described in a purely functional style[8],
(iii) the call for rigorous evaluation and testing practices, and (iv) the active
promotion of a view of what metaheuristics research ought to be [7].

In this paper we zoom in on one specific component of metaheuristics: the
concept of local search neighborhoods. We argue that a gap exists between com-
mon theoretical neighborhood definitions and how they are implemented in prac-
tice. In other words: we argue that neighborhoods are not implemented according
to the white-box principle, preventing algorithm reproducibility and standard-
ized evaluation.

si s
N

N(s)
select

s′

s′ = s

no

yes sf

Fig. 1: Iterative improvement consists of repeatedly applying an improving op-
eration to the solution.

Many optimization techniques can be considered instantiations of the itera-
tive improvement-scheme (II-scheme), the distinction between which results from
the interaction between their instantiating components. The II-scheme itself is
straightforward: starting from an initial incumbent solution the search process
consists of a series of iterations, where in each iteration a selection criterion se-
lects an alternative solution of better quality than the incumbent solution. If
a better solution is found, it is accepted as the new incumbent solution. This
process is repeated until no improving solution can be found.

Most, if not all, single-solution (local search) metaheuristics can be mapped
to the II-scheme shown in Fig. 1. In local search metaheuristics, a set of al-
ternative solutions – called the neighborhood of the incumbent solution – is
constructed by making a set of small modifications to the initial solution. The
difference between various metaheuristics yet again results from the differing
interactions between their constituent components. Which components to con-
sider and how to combine them is the responsibility of the (human) algorithm
designer. Some design choices which require some thought include how to gener-
ate a neighborhood of the incumbent solution, which solution to select from the
neighborhood and how to compare solutions. It is well known that good neigh-
borhood design is of crucial importance when it comes to the efficiency of a local
search (meta)heuristic, as poor design choices can have a large negative impact
on both the runtime and the behavior of the algorithm. Choosing an appropriate

Neighborhood Enumeration in Local Search Metaheuristics 3

selection criterion is equally important, as it strongly determines the behavior
of the search and can have a dramatic impact on runtime.

Given the importance of these two design questions, it is fair to assume
that reporting on metaheuristic algorithms should include complete information
concerning which choices were made and, ideally, why. However, at present the
opposite situation is the case: many publications concerning metaheuristics do
not report neighborhood specifications to the level of detail required to facil-
itate reproducibility. Most obvious is the lack of information concerning how
operators in a neighborhood are enumerated. This information is crucial if an
order-dependent selection criterion is used and, indeed, virtually all deterministic
selection criteria are order-dependent. A second, more subtle issue is the lack of
information concerning which operators are a priori included in a neighborhood.

Our contributions in this paper are threefold. First, we introduce a formalism
for the concept of a neighborhood as used in local search, which makes explicit
the enumeration order. Second, we analyze the effect of enumeration order on
the outcome of a search procedure through a series of computational experi-
ments. Third and finally, we provide several examples of the expressiveness of
the proposed formalism.

The remainder of this paper is structured as follows. Beginning with the
concept of iterative improvement, Section 2 introduces neighborhoods and selec-
tion methods and provides a brief overview of how neighborhood enumeration
is commonly reported in metaheuristics research. In Section 3 we introduce a
formalism for neighborhood enumeration. Section 4 then analyzes the effect of
enumeration order on the outcome of a search procedure on a set of benchmark
instances. Several examples demonstrating the flexibility of the formalism are
given in Section 5. Section 6 then concludes the paper.

2 Iterative improvement, neighborhoods & selection

In this section we review the relationship between iterative improvement, neigh-
borhoods and selection criteria. In doing so we identify a gap between the com-
monly used definitions for the aforementioned concepts and the components
required to implement the II-scheme, resulting in an incomplete algorithm spec-
ification. The section ends with a brief analysis of how neighborhood enumeration
is currently reported on in the academic literature.

To approach local search metaheuristics as instantiations of iterative improve-
ment, strict definitions are required for the instantiating components. Consider
the II-scheme shown in Fig. 1. It is clear that an instantiation of the scheme
is determined by three factors, namely: a neighborhood generation function N ,
a neighbor selection function select and a condition to test whether or not the
search has ended. Since we are only interested in improvement methods, the
ending condition can be excluded from the analysis and thus the behavior of a
deterministic II-procedure is dependent on only two functions: the neighborhood
function N : S → P(S) and the selection function select : P(S) → S. As is clear
from its type, the neighborhood-function must map the incumbent solution to a

4 M. Van Lancker et al.

set of alternative solutions, resulting in the common introductory definition of a
neighborhood[2,9]:

Definition 1. A neighborhood function is a mapping N : S → P(s) which
assigns to each solution s ∈ S a set of solutions N(s) ⊆ S. The members of
N(s) are called neighbors of s.

In the context of local search however, a different definition is sometimes used
to more adequately capture the notion of operators and locality. A neighborhood
is defined in terms of a relation – the local search operator – on S:

Definition 2. The R-neighborhood NR(s) of solution s ∈ S is the neighborhood
defined by the relation R on S, NR(s) = {s′ ∈ S : sRs′}.

The second component of the II-scheme is a selection function, which returns
a single neighbor from the neighborhood it receives as input. We refrain from
giving a general definition of selection criteria, but note that any selection cri-
terion must be a function of type select : P(S) → S and we shall examine how
well two of the most popular selection criteria adhere to this definition.

The first criterion we will consider is the argmin selection criterion (Eq. 1),
which selects the best solution from the neighborhood. Next is the firstmin
selection criterion (Eq. 2), which selects the first improving solution from the
neighborhood. More formal definitions of both criteria are as follows:

argmin
s′∈N(s)

c(s′) := {s′ | ∀s′′ ∈ N(s) : c(s′) ≤ c(s′′)} (1)

firstmin
si∈N(s)

c(si) := {si ∈ N↓(s) | ∀sj ∈ N↓(s) : i ≤ j} (2)

where N↓(s) := {s′ ∈ N(s) | c(s′) ≤ c(s)}

Note that this definition of argmin does not have the required type: if multi-
ple solutions have the best objective value, all of these solutions will be returned.
As such the definition specifies a function of type P(S) → P(S) and a modifica-
tion, a tie-breaker, is needed to acquire the required type. Common tie-breakers
are to select the first, the last or a random solution from the set of most improv-
ing solutions. Only the first two of these tie-breakers are deterministic and both
of these are order-dependent.

For firstmin, the impact of order is obvious. To be able to return the first
improving neighbor an order must be imposed on neighborhood N . In the worst
case all solutions in the neighborhood are improving and thus each possible
ordering of N will return a different solution. It follows that the neighborhood
enumeration order must be known to achieve a full specification of a single
iteration in the II-scheme. While the effect of enumeration order on the outcome
of a single iteration is generally fairly limited, this is less so when considering the
entire II-scheme. Since every iteration starts from the outcome of the previous
iteration, the effect of an enumeration order compounds throughout the whole
search.

Neighborhood Enumeration in Local Search Metaheuristics 5

Given the effect of enumeration order on the outcome of a search procedure,
it is somewhat surprising that most publications do not contain any information
about it. Many publications only describe neighborhoods in terms of their local
search operator. A notable exception is [5], in which the authors not only mention
the use of a random enumeration order, but also published the complete source
code of their implementation.

Finally, let us examine some open-source implementations of metaheuristics
and see how neighborhood enumeration is implemented in them. The following
two implementations serve as an example: the Java Metaheuristics Search Frame-
work(JAMES)[4] and the suite of metaheuristic frameworks PARADISEO[3]. In
JAMES it is possible for users to implement custom neighborhoods through a
neighborhood- and operator-interface, but imposing orders on neighborhood sets
through an interface is not possible and must be programmed from scratch by
the user. When querying the full neighborhood, an eagerly constructed list of
operators is returned. In PARADISEO, users can implement custom neighbor-
hoods in a similar fashion, though here order is made explicit by means of an
iterator-interface. Querying the full neighborhood returns a lazy iterator over
the neighborhood. Furthermore, neighborhoods can be linked together into new
neighborhoods.

Before continuing with the next section, we end this section with an example
of what kind of issues arise when neighborhood definitions are incomplete. We
will illustrate these issues by considering the TwoOpt-operator for the Traveling
Salesperson Problem (TSP). Let C = {c1, . . . , cn} be a set of points on the
Euclidean plane representing cities and let d : C × C → N be the distance
between two cities. Then, the goal of the TSP is to find the shortest tour which
visits each city once. Let permutation π ∈ Π represent a tour through all cities
in C and let Iπ = {1, . . . , n} be the index set of π. Element πi ∈ π, where i ∈ Iπ,
represents the ith visited city in the tour. The objective value c(π) is computed
with (Eq. 3).

c(π) =
∑
i∈Jπ

d(πi, πi+1) + d(πn, π1) (3)

Applying the TwoOpt-operator to a solution for the TSP equals swapping
two edges in the tour, or equivalently, inverting a subsequence of the solution
representation π. The operator takes as input the current tour and two indices
i, j ∈ Iπ. To implement a function to generate the TwoOpt neighborhood, a
double for loop is typically used. A naive implementation would generate neigh-
bors for all possible pairs (i, j) ∈ I2π. This is however redundant: TwoOpt is a
symmetric operator, thus a more efficient implementation would only generate
neighbors for the pairs (i, j) for which i < j, as these are sufficient to cover
the whole neighborhood. Aside from redundancy, which is unwanted but not
problematic, if it is unclear which moves are included in the neighborhood and
which aren’t, any order-dependent selection function can cause diverging search
outcomes for two neighborhoods that “look” the same.

6 M. Van Lancker et al.

3 Neighborhood Enumeration

The previous section provided an introduction to how common definitions of
neighborhoods, selection criteria and local optima are not sufficiently exact from
an implementation perspective and how this in turn results in an incomplete al-
gorithm specification. As suggested by the TwoOpt-example, there are two pieces
of information missing from Definition 2: how many (i.e. which) solutions be-
long to a neighborhood and the order in which these solutions are visited. In this
section we present an alternative definition of a neighborhood function, which
makes concrete the aforementioned information. The purpose of the definition
being introduced is to capture the structure of a local search neighborhoods in
such a way that the required implementation steps become clear.

Consider the neighborhood NM (s) ⊆ S. For all sφ ∈ NM (s) we know that we
can move from s to sφ. Let mφ : s 7→ sφ be the function representing the move
from s to si. There are |NM (s)| such functions, one for each sφ ∈ NM (s). Thus
we can define the neighborhood as NM (s) = {mi(s)}i∈Φ, where Φ is an index
over NM (s). Note that if we provide a constructor function M : Φ → (S → S),
we can construct function mφ : S → S by evaluating M(φ). Given an iterator
T over Φ, the first neighbor in the neighborhood can be generated as follows:
take the first element φ from the iterator, call constructor M to construct move
mφ, and apply mφ(s). To generate subsequent neighbors, take the next element
from T and repeat the process until all elements from T have been consumed.
The neighborhood can then be defined as:

Definition 3. A neighborhood NM (s, T) is the set of solutions constructed by
applying each function mφ : S → S for each φ ∈ T to s, where T is an iterator
over (a subset of) ΦM , the parameter space of operator M : ΦM → (S → S).
As T is ordered, a neighborhood enumeration is uniquely defined by the triple
(s,M, T).

This definition results in several extra design questions concerning the pa-
rameter space used in a neighborhood. While neighborhood design typically only
considers the choice of operator, now two more design choices must be made:
which operator parameters should be included in a neighborhood and in what
order should they be generated? In the next two sections we take a more detailed
look at what options are available regarding these choices.

3.1 Parameter spaces

When considering operators, we make three observations: First, the parameter
space ΦM of operator M is dependent on the solution representation. Second, it
is dependent on functional properties of its operator. Third, any subset of the
parameter space can be used to generate a neighborhood.

Consider the TSP and three operators defined in Table 1. All three operators
are quadratic and, since solution representation π is unconstrained, each operator
can take any (i, j) ∈ I2π as input, where I2π is the Cartesian product of Iπ.

Neighborhood Enumeration in Local Search Metaheuristics 7

However, depending on the operator, we can eliminate some elements from I2π.
For example, we know that the Swap- and TwoOpt-operators are symmetric
operators and thus parameter combinations (i, j) and (j, i) will construct the
same moves. Furthermore, for all three operators it is the case that no matter
the state of the incumbent solution, parameter (i, i) will construct the identity
move.

Operator Parameter space Neighbor Relation
Swap (i, j) ∈ I2π : i < j π′

i = πj ∧ π′
j = πi

TwoOpt (i, j) ∈ I2π : i < j ∀k ∈ [0, j − i] : π′
i+k = πj−k

Shift (i, j) ∈ I2π : i 6= j π′
j = πi

π′
k =

{
∀k ∈ [i+ 1, j] : πk−1, if i < j

∀k ∈ [j, i− 1] : πk+1 otherwise

Table 1: Definitions of the Swap, 2opt and Shift operators and their respective
parameter spaces.

1

2

3

1 2 3 4 5

6 7

8 9 10

(a) Single-level indexing

1

2

3

1 2 3 4 5

1 2

1 2 3

(b) Multi-level indexing

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

(c) Parameter space

Fig. 2: The interpretation of operators and their respective parameter spaces is
dependent on the indexing system used.

The importance of the chosen solution representation and index set becomes
more obvious when we consider more complex solution representations. Instead
of permutation π, consider an ordered set of permutations ρ. To implement a

8 M. Van Lancker et al.

neighborhood for this structure, we require an index set to base our parameter
space on. Looking at Fig. 2 it is clear that multiple options are available. We
can use a single-level, linear index – like we did for permutation π – where every
position in the representation is represented by a single integer: its position in
the overall element order. Alternatively, a multi-level index can be used, where
every position in the representation is represented by two integers: the position
of the permutation in the set and the position within the permutation. Fig.
2c illustrates the correspondence between the parameter spaces of a symmetric
operator using single-level and multi-level indexing. In light grey is the parameter
space based on the single-level index. In dark grey are parameters corresponding
to moves that operate inside a permutation of the set of permutations, using
the multi-level index. Similarly, in white are the parameters corresponding to
inter-permutation moves when using the multi-level index.

3.2 Enumeration order

The final step is to impose an order on the defined parameters. Given a set
of parameters of size n, there are n! ways to impose an order. However, some
of these orders are more interesting than others. Of special interest are those
that follow particular patterns, which can usually be efficiently implemented
as an iterator which generates the parameter sequence lazily. Some of these
patterned sequences can be interpreted as prioritizing certain moves: consider
the TwoOpt operator for the TSP and assume that we are using the firstmin
selection function. If TwoOpt moves are enumerated according to the scheme
(1, 2), (1, 3), (1, 4), . . . , the beginning position of the subsequence is considered
more important than that of the end. Similarly scheme (2, 1), (3, 1), (4, 1), ...
deems the end position more important. Finally, scheme (1, 2), (2, 3), (3, 4), . . .
prioritizes moves corresponding to shorter subsequence inversions. Such semantic
distinctions can help algorithm designers gain insights in the workings of their
algorithms.

1
1

2

2

3

3

4

4

5

5

(a) I2π

1
1

2

2

3

3

4

4

5

5

(b) I2π : i 6= j

1
1

2

2

3

3

4

4

5

5

(c) I2π : i < j

1
1

2

2

3

3

4

4

5

5

(d) I2π : i < j

Fig. 3: Various iterators over I2π.

Four iterators for quadratic operators are shown in Fig. 3 which differ in
terms of their parameters included, order and direction. Fig. 3a illustrates an

Neighborhood Enumeration in Local Search Metaheuristics 9

iterator over the full parameter space – the Cartesian product I2π – ordered
along the rows. Fig. 3b is ordered along the columns and eliminates parameters
(i, i) ∈ I2π. Figures 3c and 3d are both ordered along the diagonals and eliminate
parameters (i, j) ∈ I2π for which i ≥ j, but they differ in the direction they take.

4 Experimental Evaluation

To evaluate the influence of enumeration order on search procedures we consider
a search procedure to be a program of type solve : S → S. This program takes
an initial solution si and returns a local optimum as final solution sf . We refer
to the change induced on si by solve as ∆s = |C| − |ec| − 1, where |C| is the
number of cities and |ec| is the number of edges si and sf have in common. In a
similar fashion, we refer to the difference between the objective value of si and
sf as ∆v = c(sf)− c(si) and its runtime as ∆t.

Constructive Select Operator Order Direction
random argmin Swap Column Forward
greedy firstmin TwoOpt Row Reverse

rolling Shift Diagonal

Table 2: The set of algorithm design parameters considered when experimentally
evaluating enumeration order.

To study the impact of enumeration order on the search we compare ∆s,
∆v and ∆t for solve procedures instantiated with different design parameters.
Table 2 lists these design parameters. As the first three columns do no influence
enumeration order, they can be considered design parameters resulting in dif-
ferent “contexts” in which the effect of enumeration order is evaluated. These
parameters serve to broaden the scope of our analysis. All of the included design
parameters have been defined in earlier sections of this paper, except for the selec-
tion function rolling. This selection function is an adapted version of firstmin.
Whereas firstmin begins from scratch in the next iteration after selecting the
first improving neighbor si = mi(s), rolling will continue enumerating from its
current position. The last two columns determine enumeration order. Three dif-
ferent iterators are used as parameter Order, each of which can be used in two
Directions, resulting in six enumeration order. Every configuration is tested
on 42 TSP instances from TSPLIB. All algorithms and experiments are imple-
mented in the Julia programming language for technical computing[1] and run
in a single-core-per-run configuration on an Intel(R) Xeon(R) CPU E5-2650 v2
@ 2.60GHz machine with 16 cores. A complete description of the experimental
setup and data is available online1.

1 see: github.com/Michiel-VL/Neighborhood_Enumeration_Data

github.com/Michiel-VL/Neighborhood_Enumeration_Data

10 M. Van Lancker et al.

(a) Greedy (b) Random

Fig. 4: The relative difference between the final solutions should be zero if order
had no influence.

First, we examine the effect of enumeration order on the solution state. If
no such effect were to exist, then the final solutions of the six runs for a given
context and instance should be identical, independent of the enumeration or-
der parameters. To measure if there is an effect of enumeration order on the
solution state, we compute the mean relative pairwise distance ∆sr between the
set of final solutions of a given context and instance. Fig. 4 is given for each of
the 18 contexts. It is clear that the enumeration order does have an influence
on the search outcome. Even for argmin selection, which is just barely order-
dependent, ∆sr is fairly large, suggesting that the effect compounds quickly over
the iterations of a search procedure.

(a) Greedy,Shift (b) Greedy,Swap (c) Greedy,TwoOpt

(d) Random,Shift (e) Random,Swap (f) Random,TwoOpt

Fig. 5: The numbers of wins for different orders and operators.

Neighborhood Enumeration in Local Search Metaheuristics 11

Fig. 5, shows the relative number of wins per enumeration order for different
constructive heuristics and local search operators. While enumeration order does
seem to affect the winrate, the results are inconclusive as to which order should
be preferred for a given operator or constructive heuristic.

5 Discussion

Modeling a local search neighborhood as the combination of an operator with
its own parameter space and an iterator over this parameter space has several
advantages. First, it renders explicit the enumeration order used to explore the
neighborhood, which we have shown has an impact on the search outcome. Fur-
thermore it is modular, as operator, set of parameters and order are completely
separable implementation-wise. This not only enables easy reuse of code but it is
also expressive, offering a range of neighborhood structures at virtually no cost.

It is also possible to encode structural properties of the problem in the neigh-
borhood. As shown in Section 3, parameter spaces based on structured index sets
can be used to distinguish between different parts of a solution representation.
By opening up a neighborhood’s structure through its parameter space, it is pos-
sible to use a wide variety of known algorithms to construct parameter spaces
and reuse these over various neighborhoods.

Given a set of neighborhood definitions, new neighborhoods can be con-
structed in an algorithmic manner. Using function composition, operators can
be composed into new operators and through the Cartesian product and disjoint
union, various enumeration structures are available. Furthermore, given that in
many programming languages iterators are a data structure that can are com-
posable in various ways – like filtering, linking or zipping – the definition as a
whole is very expressive and enables concise descriptions of algorithms like Vari-
able Neighborhood Descent and concepts such as path relinking or higher-order
neighborhoods.

Note that defining a neighborhood as a triple (s,M, T (ΦM)) replaces the
nested for-loops found in many neighborhood implementations with a single
foreach-loop. This triple separates three different neighborhood design concerns
that are typically entangled in code: local-search operators, neighborhood size
and enumeration order. This enables algorithm designers not only to reuse op-
erator, parameter space and enumeration order implementations for multiple
neighborhoods, but it also leads to a more descriptive way of handling neighbor-
hoods, enabling swift development and automated algorithm configuration.

6 Conclusion

In this paper we introduced a novel definition for neighborhoods aimed at for-
malizing their implementation. Defining local search neighborhoods in terms of
a parametrized local search operator and an iterator over the parameter space of
the operator leads to an expressive, composable definition which can be readily
used during implementation. The iterator makes explicit two algorithm design

12 M. Van Lancker et al.

considerations that are typically overlooked: in what order should neighbors be
generated and which neighbors should be included in a neighborhood. Further-
more, by basing the operator parameter spaces on the indexing mechanism of
a solution representation, significant parts of neighborhood design can be auto-
matically derived from a solution representation. Finally, as many enumeration
orders can be efficiently implemented as a lazy sequence, neighborhoods can be
generated lazily.

While in this paper we only considered unconstrained problem representa-
tions, it would be interesting to look at constrained problems to examine how
particular types of constraints affect the use of the definition, as complex con-
straints could prevent efficient iterator implementations. Though interesting, this
primarily concerns implementation efficiency rather than formalization and thus
lay outside the scope of this paper.

Acknowledgements

Research supported by Data-driven logistics (FWO-S007318N). Editorial con-
sultation provided by Luke Connolly.

References
1. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: A fresh

approach to numerical computing. SIAM Review 59(1), 65–98 (2017).
https://doi.org/10.1137/141000671

2. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and
conceptual comparison. ACM computing surveys (CSUR) 35(3), 268–308 (2003)

3. Cahon, S., Melab, N., Talbi, E.G.: Paradiseo: A framework for the reusable design of
parallel and distributed metaheuristics. Journal of heuristics 10(3), 357–380 (2004)

4. De Beukelaer, H., Davenport, G.F., De Meyer, G., Fack, V.: James: An
object-oriented java framework for discrete optimization using local search
metaheuristics. Software: Practice and Experience 47(6), 921–938 (2017).
https://doi.org/https://doi.org/10.1002/spe.2459, https://onlinelibrary.
wiley.com/doi/abs/10.1002/spe.2459

5. Mecler, J., Subramanian, A., Vidal, T.: A simple and effective hybrid genetic search
for the job sequencing and tool switching problem. Computers & Operations Re-
search p. 105153 (2020). https://doi.org/https://doi.org/10.1016/j.cor.2020.105153,
http://www.sciencedirect.com/science/article/pii/S0305054820302707

6. Sörensen, K.: Metaheuristics—the metaphor exposed. International Transactions in
Operational Research 22(1), 3–18 (2015)

7. Swan, J., Adraensen, S., Brownlee, A.E., Johnson, C.G., Kheiri, A., Krawiec, F.,
Merelo, J., Minku, L.L., Özcan, E., Pappa, G.L., et al.: Towards metaheuristics” in
the large”. arXiv preprint arXiv:2011.09821 (2020)

8. Swan, J., Adriaensen, S., Bishr, M., Burke, E.K., Clark, J.A., De Causmaecker,
P., Durillo, J., Hammond, K., Hart, E., Johnson, C.G., et al.: A research agenda
for metaheuristic standardization. In: Proceedings of the XI metaheuristics interna-
tional conference. pp. 1–3 (2015)

9. Talbi, E.G.: Metaheuristics: from design to implementation, vol. 74. John Wiley &
Sons (2009)

https://doi.org/10.1137/141000671
https://doi.org/https://doi.org/10.1002/spe.2459
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2459
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2459
https://doi.org/https://doi.org/10.1016/j.cor.2020.105153
http://www.sciencedirect.com/science/article/pii/S0305054820302707

	Neighborhood Enumeration in Local Search Metaheuristics

