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Abstract 

Biodiversity is essential for maintaining the terrestrial ecosystem multifunctionality (EMF). 

Recent studies have revealed that the variations in terrestrial ecosystem functions are captured 

by three key axes: the maximum productivity, water use efficiency, and carbon use efficiency 

of the ecosystem. However, the role of biodiversity in supporting these three key axes has not 

yet been explored. In this study, we combined the i) data collected from more than 840 

vegetation plots across a large climatic gradient in China using standard protocols, ii) data on 

plant traits and phylogenetic information for more than 2,500 plant species, and iii) soil nutrient 

data measured in each plot. These data were used to systematically assess the contribution of 

environmental factors, species richness, functional and phylogenetic diversity, and community 

weighted-mean (CWM) and ecosystem traits (i.e. traits intensity normalized per unit land area) 

to EMF via hierarchical partitioning and Bayesian structural equation modeling. Multip le 

biodiversity attributes accounted for 70% of the influence of all the variables on EMF, and 

ecosystems with high functional diversity had high resource use efficiency. Our study is the 

first to systematically explore the role of different biodiversity attributes, including species 

richness, phylogenetic and functional diversity, and CWM and ecosystem traits, in the key axes 

of ecosystem functions. Our findings underscore that biodiversity conservation is critical for 

sustaining EMF and ultimately ensuring human well-being. 

 

Keywords: biodiversity-ecosystem functioning, functional trait, functional diversity, 

multifunctionality, mass ratio hypothesis, phylogenetic diversity, productivity, resource use 

efficiencies 

Tel. 86-10-64889263; 

Fax. 86-10-64889432 

 13652486, ja, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16666 by K

u L
euven, W

iley O
nline L

ibrary on [10/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



  

Introduction 

The functioning of ecosystems is based on multiple processes governing carbon, water, and 

energy cycling, which support ecosystem services and are closely related to the well-being of 

human societies(Hu et al., 2021; Jing et al., 2015). Recent ecosystem functioning research, 

focusing on carbon, water, and energy fluxes across major terrestrial biomes, has revealed that 

this set of ecosystem functions could be captured by three main axes (Migliavacca et al., 2021). 

The first axis reflects maximum ecosystem productivity (GPPmax), second axis reflects 

ecosystem water use strategies with a significant contribution of water use efficiency (WUE), 

and third axis represents ecosystem carbon use efficiency (CUE). These findings greatly 

improved our understanding of complex natural ecosystems and provided a new avenue to 

develop metrics of ecosystem multifunctionality (EMF) (Manning et al., 2018). However, light 

use efficiency (LUE) has not been included in these three main axes of ecosystem functions, 

despite being an important indicator for characterizing ecosystem resource use efficiency and 

a key parameter in various earth system models and remotely sensed products to assess 

ecosystem productivity (Gitelson et al., 2015). Focusing on a few simple and easily measurable 

ecosystem functions such as GPPmax, WUE, CUE, and LUE allows us to explore most of the 

across-site variability in ecosystem functioning and clarify the potential direct and indirect 

effects of environmental factors and biodiversity on EMF.  

Ecosystem functioning depends on the environmental conditions and diversity and traits of 

the species that constitute an ecological community (Bruelheide et al., 2018). On the one hand, 

environmental conditions, including climatic and soil factors, can directly influence ecosystem 

functions, particularly in the context of intensified global environmental change of the 

Anthropocene. For example, the imbalance in precipitation among years (i.e. the changes in 

amount and frequency) affects the WUE of an ecosystem (Felton et al., 2020). On the other 

hand, environmental factors regulate species composition and affect ecosystem attributes, 

thereby indirectly affecting ecosystem functions (Fernández-Martí nez et al., 2021). For 

example, climate change may lead to diversity loss (Mori et al., 2021) and a shift in functiona l 

components (Chapin et al., 2003; Suding et al., 2008), which would in turn affect the 
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functioning of ecosystems and their carbon sink capacity (Chapin et al., 2003; Jing et al., 2022; 

Mori et al., 2021). Although the relationship between key ecosystem functions, environmenta l 

factors, and vegetation structural attributes (such as leaf area index) have been investigated by 

Migliavacca et al. (2021), the direct and indirect effects of environmental factors and 

biodiversity on the key axes of ecosystem functioning have not been explored to date. 

Biodiversity is multifaceted and affects ecosystem functioning in two non-exclusive ways: 

through complementarity and selection effects (Liu et al., 2020). The complementarity effects 

usually refer to the increase in niche differentiation within a community reducing the 

competition among species and leading to greater complementarity in resource use, thereby 

ultimately enhancing ecosystem functioning. Species richness (i.e., the number of species in a 

community) is widely used as a proxy for diversity to characterize complementarity in research 

devoted to exploring biodiversity–ecosystem function relationships. However, the current 

consensus is that the contributions of different species are not equal, and therefore, species 

richness alone cannot adequately represent the effect of diversity on ecosystem functioning 

(Brun et al., 2019; Gross et al., 2017). Other facets of diversity, including phylogenetic diversity 

(reflecting the presence of different evolutionary lineages) and functional diversity (reflect ing 

the variety of functions and resource use strategies), contain more information about the 

dissimilarities among species (Huang et al., 2020). Ecosystems with high diversity are more 

likely to have more dissimilar species, and these co-occurring species may contain dissimilar 

information, such as opposing traits and contrasting evolutionary histories (Brun et al., 2019). 

Such ecosystems may exploit different resources or the same resources on different spatial or 

temporal scales, leading to an increased overall resource utilization efficiency (Barry et al., 

2019). There is no doubt that all the mentioned diversity measures, including species richness, 

functional diversity, and phylogenetic diversity, reflect niche differentiations and reduction in 

interference competition and can therefore be used to represent compensatory effects (Le 

Bagousse-Pinguet et al., 2019). Therefore, simultaneously evaluating the effects of these 

different diversity attributes on the key axes of ecosystem functions is necessary.   

  Selection effects, in which a well-performing species with a particular combination of 
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characteristics becomes the dominant species and plays a positive role in ecosystem functioning 

(such as resource use efficiency), are also crucial. From a functional trait perspective, 

community-weighted mean (CWM) traits, which reflect the dominance of plants with particular 

traits at the expense of others, based on the mass ratio hypothesis have been used to identify the 

selection effects (Jing et al., 2021; Van de Peer et al., 2018). CWM traits reflect the dominance 

of particular trait values in a community and are closely related to the mass ratio hypothes is 

that the effect of a plant species on ecosystem function is proportional to its biomass (Garnier 

et al., 2004; Grime, 1998). This hypothesis was originally intended to explain functions related 

to biomass production and carbon cycling (Garnier et al., 2004). Indeed, the CWM trait value 

reflects the central behavior of an ecosystem or community. For example, high CWM of the 

concentrations of leaf nutrients, particularly nitrogen, typically indicate a community 

dominated by individuals of fast-growing acquisitive species with high photosynthetic rates 

(Garnier et al., 2016; Wright et al., 2010). However, ecosystems are complex adaptive systems 

with scale emergent properties. Therefore, it is difficult to predict ecosystem-level functions by 

only using CWM trait values (He et al., 2019). For example, predicting ecosystem productivity 

variations along elevation gradients with CWM values of leaf nutrient concentrations alone is 

challenging (Enquist et al., 2017). Fortunately, ecosystem traits or plant community traits per 

unit of land area, containing more community context information, such as biomass allocation 

and community size, appear to be a better proxy for dominant effects (Jing et al., 2021). 

Therefore, using community- level traits may provide valuable insights into how individua l-

level functional traits scale up to influence ecosystem-level multifunctionality and the roles 

they play in key ecosystem functions. Additionally, although manipulative experimental studies 

are valuable for determining the causality underlying biodiversity–EMF relationships, 

observational studies are also important. This is because they rely on natural climatic variations 

across multiple sites to explore how climate and biodiversity affect EMF, thereby reflecting the 

actual situation in “real-world” ecosystems (Baeten et al., 2013). 

To investigate how environmental factors and biodiversity simultaneously influence EMF, 

we combined comprehensive data collected from 840 community plots, plant traits and 
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phylogenetic information for 2,500 plant species, and soil data collected in 72 sites from 8 

different biomes across China together with ecosystem functioning data. We used hierarchica l 

partitioning and Bayesian structural equation modeling (SEM) to answer the following 

questions: 1) Are all multiple biodiversity attributes (species diversity and functional and 

phylogenetic diversity) related to the EMF key axis? 2) What are the relative contributions of 

environmental factors and multiple biodiversity attributes in driving EMF? 3) How do 

environmental factors and multiple biodiversity attributes directly and indirectly affect EMF? 

Methods 

Study sites and vegetation inventory data 

Field data were collected in 72 sites located in eight biome types spanning a range of 50 degrees 

of longitude (78.46–128.89 °E) and 35 degrees of latitude (18.75–53.33 °N) across China 

(Figure 1), including boreal forests/taiga; deserts & xeric shrublands; flooded grasslands & 

savannas; montane grasslands & shrublands; broadleaf & mixed forests; temperate conifer 

forests; temperate grasslands, savannas & shrublands; and tropical & subtropical moist 

broadleaf forests. The 72 typical natural ecosystems investigated included deciduous needle-

leaf forests, evergreen needle-leaf forests, deciduous broad-leaved forests, evergreen broad-

leaved forests, meadows, sparse grasslands, steppes, sparse shrubbery, and desert grassland. 

Our data set included representative sites of all zonal vegetation in China and covered all 

climatic belts and biogeographic regions with highly varying environmental conditions (the 

mean annual temperature and precipitation range from –4.75 to 22.85 °C and from 53.50 to 

2274.20 mm, respectively; Appendix S1 Table S1) and total vascular plant species richness 

(ranges from 2 to 90 species per site, average = 16). The soils have large variations in nutrient 

concentrations (e.g., the soil nitrogen concentration [%] ranges from 0.01 to 0.94; Appendix S1 

Table S1), ranging from black earth with high organic content in cold temperate zones to 

tropical red soils with low organic content (Liu et al., 2018). 

To ensure that the surveyed sites are free of human interference, they were generally set up in 

nature reserves or nearby long-term monitoring sites near ecological stations. We collected 

plant community data using the quadrat method (from July to August in four 30 m × 40 m plots 
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in forests, six 10 m × 10 m plots in shrublands, and eight 1 m × 1 m plots in grasslands; 

Appendix S1 Text S1), and individual plant samples were collected during the peak period of 

plant growth (Appendix S1 Text S1 and Text S2). Although differences in vegetation types 

result in different plot areas for field surveys, the species accumulation curve shows that our 

field survey is adequate and representative, implying that it is sufficient to represent the local 

biodiversity (Appendix S1 Figure S1). Detailed site information has been previously reported 

(Zhang et al., 2020; Zhao et al., 2020) and is provided in Appendix S1 Text S1. For each site, 

we extracted growing season precipitation (GSP) and temperature (GST) from CHELSA v.2.1 

(https://chelsa-climate.org/downloads/) based on the coordinates.  

Soil nutrients in each plot in all sites were measured using standardized protocols. Specifica lly, 

topsoil samples (0–10 cm) were collected using a soil auger after removing the surface litter 

and were combined to obtain a composite sample per plot to account for soil heterogeneity. All 

visible roots and organic debris were manually removed. The samples were ground to a fine 

powder using a ball mill (MM400 Ball Mill; Retsch, Haan, Germany) and an agate mortar 

grinder (RM200; Retsch). Soil carbon and nitrogen concentrations were measured using a Vario 

MAX CN Elemental Analyzer (Elemental, Hanau, Germany). Finally, we calculated the 

average concentrations of nutrients (soil total C and N) and the C/N ratio in each site, 

representing the nutrient status of the site. We used the first principal component (PC) of the 

soil nutrient variables (soil total C and N and C/N) to represent the nutrient status of each site 

(Appendix S1 Table S2). 

Ecosystem functions 

Ecosystem carbon, water, and energy cycling-related functions are captured by GPPmax, WUE, 

and CUE (Migliavacca et al., 2021). Considering the importance of LUE in earth system models, 

we estimated ecosystem multifunctionality using GPPmax, WUE, CUE, and LUE. All data 

related to ecosystem gross primary productivity (GPP [g C m2 year–1]; GPPmax, ecosystem-scale 

maximum daily photosynthetic CO2 uptake [g C m2 day–1]) used in this study are from a 

vegetation photosynthesis model with a spatial resolution of 0.05° × 0.05° (Zhang et al., 2017). 

The model is a satellite-based vegetation photosynthesis model used to estimate GPP over the 
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photosynthetically active period of vegetation (Xiao et al., 2004). It exhibited superior 

performance in site-level validation across a wide range of biomes compared to other models 

(such as the MOD17 algorithm and the greenness and radiation model), particularly in China, 

and is therefore suitable for large-scale studies across multiple biomes(Liu et al., 2014; Zhang 

et al., 2017). However, there is an evident scale mismatch between the plant diversity data based 

on field surveys (1 km × 1 km) and the productivity data based on vegetation photosynthes is 

models (5.5 km × 5.5 km). Therefore, to ensure the reliability of the results, we carried out a 

quantitative assessment of the scale mismatch problem. The results show that the spatial 

heterogeneity caused by the scale mismatch does not affect the robustness of our results 

(Appendix S1 Text S3 and Figure S2). 

WUE represents the ecosystem-scale water use efficiency (g C L−1) and can be computed using 

the formula reported by Migliavacca et al. (2021): 

𝑊𝑊𝑊𝑊𝑊𝑊 = 𝐺𝐺𝐺𝐺𝐺𝐺√𝑉𝑉𝐺𝐺𝑉𝑉 𝑊𝑊𝐸𝐸⁄  

where VPD is vapor pressure deficit (hPa), collected from CHELSA v.2.1 (https://chelsa-

climate.org/downloads/), and ET is actual evapotranspiration (mm year−1), obtained from 

Elnashar et al. (2021). We also calculated the water use efficiency as WUE = GPP/T, where T 

represents vegetation transpiration (mm year−1) and transpiration data downloaded from 

https://www.nature.com/articles/s41597-020-00693-x (Niu et al., 2020). Despite showing slight 

numerical differences, the results of the two methods exhibited high collinearity across diverse 

ecosystems (Appendix S1 Figure S3). Considering that only focusing on vegetation 

transpiration and ignoring land surface evaporation may underestimate the impact of plant 

diversity on ecosystem-level WUE, we adopted the former equation to characterize WUE in 

the main analysis. 

CUE represents the carbon use efficiency at the ecosystem level (%). CUE was predicted using 

boosted regression tree (BRT) models. Combining the strengths of regression trees (models that 

link responses to their predictors through recursive binary segmentation) and boosting (an 

adaptive method for combining multiple simple models to improve prediction performance), 

BRT models achieve high predictive accuracy (Elith et al., 2008). We collected global 325 site-
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year Re and GPP data from eddy flux observations through a literature search (Chen et al., 2019; 

Chen et al., 2015; Xu et al., 2014), matched these with the coordinates (Appendix 1 Figure S4), 

and calculated CUE as follows: 

CUE = 1 − (Re/GPP) 

where Re is ecosystem respiration (g C m2 year−1). All data used in this study are provided as 

supplementary material (Appendix S5). Using the same coordinates, we then extracted 21 site-

level environmental variables (including 19 bioclimatic variables, growing season length, and 

saturation vapor pressure deficits) from CHELSA v.2.1 (https://chelsa-climate.org/downloads /) 

and used these data to construct a BRT model to predict Re as the response variable. BRTs were 

built using the R package gbm (Greenwell et al., 2020). The optimal hyperparameter values 

were identified using the caret package (Kuhn et al., 2012) through 10-fold cross-validation and 

a grid search spanning a range of values for four hyperparameters: interaction depth (2–5), total 

number of trees (1,000–5,000), learning rate (0.1–0.001), and the minimal number of 

observations in each terminal node (5, 10). The optimal model (R² = 0.98) was used to predict 

Re at the 72 study sites. 

LUE represents light use efficiency (g C MJ−1) and is defined as GPP/PAR according to 

Fernández-Martínez et al., (2014), where PAR stands for the incident photosynthetically active 

radiation (MJ m–2 yr–1) and was extracted from Ren et al., (2018). 

Ecosystem multifunctionality 

Several methods have been recently used to investigate the relationship between biodivers ity 

and multifunctionality, three of which are the most frequently used: the single function 

approach, averaging approach, and multiple threshold approach. Considering that each 

approach has its strengths and weaknesses (Jing et al., 2020), we used all three methods to 

calculate the multifunctionality. Specifically, i) the single function approach uses individua l 

ecosystem functions that are independently related to biodiversity for analysis; ii) the averaging 

approach combines a collection of different ecosystem functions (f) into a single 

multifunctionality index (M) that quantifies the average level of standardized multip le 

ecosystem functions (Equation 1); iii) the multiple threshold approach is derived from the single 
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threshold method (see Equation 2) and captures different thresholds that simultaneously exceed 

the maximum observed value of each function and evaluates whether more (or fewer) funct ions 

are simultaneously present at a high (or low) level (Byrnes et al., 2014; Hu et al., 2021). The 

multiple threshold multifunction can be calculated as the number of functions that exceeded the 

maximum value of each function for a series of consecutive thresholds (from 1% to 99% with 

1% intervals). 

𝑀𝑀 = 1
𝐹𝐹
∑ 𝑔𝑔�𝑟𝑟𝑖𝑖(𝑓𝑓𝑖𝑖)�𝐹𝐹
𝑖𝑖=1                                     (1) 

𝑀𝑀 = ∑ (𝑟𝑟𝑖𝑖(𝑓𝑓𝑖𝑖) > 𝑡𝑡𝑖𝑖)𝐹𝐹
𝑖𝑖=1                                    (2) 

where F represents the number of measured functions, fi represents the measured value of 

function i, ri is a mathematical function that converts fi to be positive when necessary, g 

represents the standardization (mean = 0, SD = 1) of all measured values, and ti represents the 

threshold value. For Equation 2, different thresholds can be selected for different functions as 

required.  

Overall, the multifunctionality data for the study sites effectively reflected the patterns across 

several key axes of ecosystem functions at the global level (Figure 1c and d). As this study 

focused on a limited number of ecosystem functions and aimed to distinguish direct from 

indirect effects of environmental factors, we report the results for the single function and 

averaging approaches. These two approaches are straightforward and interpretable ways to 

measure an ecosystem’s ability to simultaneously sustain multiple functions (Jing et al., 2015). 

All selected single functions were positively correlated with the EMF index (Appendix Figure 

S5). The results of the multiple threshold method are presented in Appendix S1. 

Biodiversity measures 

CWM traits We used five leaf traits measured at the individual level (for more details, see 

Appendix S1 Text S2), including two size traits (leaf area [LA, cm2], leaf dry mass [LM, g]) 

and three economic traits (specific leaf area [SLA cm2/g], leaf N concentration [LNC, mg/g], 

and leaf P concentration [LPC, mg/g]). Variations in these traits are controlled by climatic and 

soil factors (Joswig et al., 2022), and these traits are closely related to ecosystem carbon, water, 

and energy cycling (Garnier et al., 2016). All trait values were log-transformed and subjected 
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to PC analysis using the R package vegan (Oksanen et al., 2013). The first PC axis was used to 

represent the CWM traits, capturing 53% of the variations in these five traits (Appendix S1 

Figure S6a). 

Ecosystem traits Based on the CWM traits, the ecosystem traits can be calculated using the 

following formula: 

𝐸𝐸𝑟𝑟𝑇𝑇𝑇𝑇𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = ∑ 𝐸𝐸𝑟𝑟𝑇𝑇𝑇𝑇𝑡𝑡𝑇𝑇𝑛𝑛
𝑇𝑇=1 × 𝐿𝐿𝑀𝑀𝐿𝐿𝑇𝑇 = 𝐸𝐸𝑟𝑟𝑇𝑇𝑇𝑇𝑡𝑡𝑒𝑒𝑐𝑐𝑒𝑒𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 × 𝐿𝐿𝑀𝑀𝐿𝐿             (3) 

where i and n are the species i and the number of species in the community, respectively; LMI 

is the LM index, that is, the LM per unit land area (kg m–2). We standardized (mean = 0, SD = 

1) all four ecosystem traits, including leaf area index (LAI, m2 m–2), LMI (g m–2), and LNC and 

LPC per unit land area (LNI and LPI, g/m2), and we used the first PC axis as a measure of 

ecosystem trait (Appendix S1 Figure S6b). 

Functional diversity We used kernel density n-dimensional hypervolumes (Blonder et al., 2018) 

to calculate functional dispersion as a measure of functional diversity (Blonder et al., 2014; 

Mammola et al., 2020). Dispersion is calculated as the average pairwise distance of a sample 

of stochastic points in the trait space and similar to the dispersion of a phylogenetic or functiona l 

tree (Laliberté et al., 2010). Hypervolume-based functional dispersion reflects the average 

difference between the trait space centroid and random points within the boundaries of the 

hypervolume (Mammola et al., 2020). All five CWM traits were log-transformed and scaled 

before creating the hypervolume (Blonder et al., 2018). We first built the hypervolumes with 

species abundance data and a species × traits matrix using the kernel.build function in the BAT 

R package (Blonder et al., 2018; Mammola et al., 2019; Mammola et al., 2020). We used the 

recommended settings of high-dimensional gaussian kernel density estimation to estimate the 

stochastic points that determine the hypervolume shape and volume (Mammola et al.,2019; 

Mammola et al., 2020). Then, we used the kernel.dispersion function to calculate functiona l 

dispersion (Blonder et al., 2018; Mammola et al., 2019; Mammola et al., 2020).  

Phylogenetic diversity We used the mean phylogenetic distance (MPD) to represent the 

phylogenetic diversity. MPD is calculated as the mean phylogenetic distance (i.e., branch length) 

between all pairs of species within a community, reflecting the phylogenetic structuring 
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throughout the phylogeny. We used the R package Taxonstand based on The Plant List 

(http://www.theplantlist.org) to correct and confirm the names of the species found in the 72 

sites. We constructed a phylogenetic tree using the V.PhyloMaker package with PhytoPhylo 

megaphylogeny as the backbone (Jin et al., 2019; Qian et al., 2015; Tsirogiannis et al., 2016). 

We then used the PhyloMeasures package to calculate the MPD. 

Species richness We used the average number of species across all plots within each site to 

represent taxonomic diversity (i.e., species richness) as a fundamental driver of the other 

diversity measures. 

Statistical analysis 

Data analyses were conducted on site-level (n = 72) since data on the ecosystem functioning 

(i.e., the response variable in the data analyses) were only available at this level. The CWM 

traits, ecosystem traits and other diversity measures were therefore averaged per site. 

Relationships between environmental factors, biodiversity, and EMF (including individua l 

ecosystem functions) were assessed using Pearson’s r and linear regression models fitted with 

ordinary least squares. Model assumptions were checked by visually inspecting residual plots 

for homogeneity and quantile–quantile plots for normality. GSP was log10-transformed to 

account for a nonlinear response. We used partial regressions to detect relationships between 

environmental factors and multiple biodiversity attributes and EMF after controlling for the 

effects of the other covariates within a model (James et al., 2013). The interaction between the 

variables was not significant; therefore, we fitted the models using only the main effects. All 

variables were standardized (z-score, mean = 0, SD = 1) prior to analysis to interpret parameter 

estimates on a comparable scale.  

Hierarchical partitioning We evaluated the relative importance of the predictors under 

consideration as the drivers of EMF via the hierarchical partitioning method. This method 

employs a quantitative framework that unifies commonality analysis and hierarchica l 

partitioning to estimate the overall importance of individual predictors, and it is implemented 

in the rdacca.hp package (Lai et al., 2022). This method indicates the partial effects, includ ing 

individual R2 and relative importance, of each explanatory variable (i.e., GSP, soil nutrients, 
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species richness, functional diversity, phylogenetic diversity, CWM traits, and ecosystem traits) 

based on hierarchical partitioning (Lai et al., 2022). Hierarchical partitioning does not consider 

potential interactions between factors but determines the contribution of a given explanatory 

variable to EMF by examining each possible model structure containing a given predictive 

variable, thereby avoiding the increase or decrease in the variance explained by any given 

predictor variable and the problem of multicollinearity among predictor variables (Conner et 

al., 2009). It is well known that correlations exist between environmental factors and the 

multiple biodiversity attributes of an ecosystem under a given environmental condition (Joswig 

et al., 2022); thus, this approach is suitable for our data. The significance level (P-value) of the 

individual contribution of each explanatory variable was obtained by permutation tests using 

the permu.hp function in the R package rdacca.hp (Lai et al., 2022). The true value of each 

individual contribution was compared with the reference distribution under the null hypothes is 

generated by randomly rearranging the data multiple times (Legendre et al., 2012). 

Bayesian structural equation modeling We examined the direct and indirect effects of 

environmental factors (i.e., GSP and soil nutrients) and multiple biodiversity attributes (i.e., 

species richness, functional diversity, phylogenetic diversity, CWM traits, and ecosystem traits) 

on EMF using Bayesian piecewise SEM (Appendix S1 Figure S7). Although both ecosystem 

and CWM traits showed good predictive power in hierarchical partitioning, owing to the high 

collinearity between the two (r > 0.70; Appendix S1 Figure S4) and to reduce model complexity, 

we established two alternative models (one including only ecosystem traits and one includ ing 

only CWM traits) and reported the one with the best goodness of fit. For both models, we not 

only included pathways through which environmental factors affect functional and 

phylogenetic diversity via species richness but also included pathways through which 

environmental factors directly impact these measures of diversity. This is because several 

studies have established that these diversity measures have independent ecological significance 

as different aspects of biodiversity (Díaz et al., 2022) and are directly regulated by 

environmental factors (Anacker et al., 2012; Le Bagousse-Pinguet et al., 2019; Li et al., 2019; 

Wieczynski et al., 2019). In other words, species richness is decoupled from community 
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composition, and changes in composition can still lead to changes in functional diversity and/or 

phylogenetic diversity with no change in species richness. As there was no significant 

correlation between GST and EMF, we excluded it from the SEM analysis. We rechecked 

collinearity before model construction using the variance inflation factor (VIF), which was 

below 5 for all explanatory variables included and far below the problematic collinear ity 

threshold (VIF > 10) (Lüdecke et al., 2021). All SEM models fitted in this study were created 

in the Stan computational framework (http://mc-stan.org/) using the brms package (Bürkner et 

al., 2017) and run with two Markov chain Monte Carlo (MCMC) chains with 10,000 iterations 

and a warm-up of 1,000 runs. The accuracy of the MCMC results is reliable and robust as (1) 

visual inspection showed that it was stable and converged toward a common target, (2) all Rhat 

values (the ratio of the effective sample size to the overall number of iterations, with values 

close to one indicating convergence) were below 1.01 and effective sample sizes were > 5,000 

for all coefficient estimates, and (3) there were no divergent transitions after warm-up 

(Appendices S2 and S3). The estimate of a coefficient is considered significant when its 

confidence interval does not include zero. As all variables were standardized before analys is, 

the obtained parameter estimates (standardized path coefficient, hereafter, βstd) were the 

standardized direct effects, and the standardized indirect effects were obtained by multiplying 

the direct effects. 

We used the leave-one-out cross-validation information criterion (LOOIC) and expected log 

predictive density (ELPD) for model verification using the loo package (for LOOIC and ELPD; 

smaller and larger values are indicative of a better fit, respectively) (Vehtari et al., 2017). We 

performed posterior prediction checks using the bayesplot package (Gabry et al., 2018). The 

validation results for all models are provided in Appendices S2 and S3. We used the Pareto 

shape to diagnose abnormal observation points for each constructed SEM (Vehtari et al., 2017). 

Notably, very few (1–2) observations were diagnosed as being of poor quality; however, the 

results did not substantially change after removing the outliers, further demonstrating the 

reliability of the data (field surveys for 72 ecosystems based on uniform standards) We report 

the results including all observations. The described main analysis was repeated for individua l 
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ecosystem functions, including GPPmax, WUE, CUE, and LUE (Appendix S4). 

Results 

1) Bivariate relationships between multiple biodiversity attributes and EMF 

Our results showed that GSP, soil nutrients, and multiple biodiversity attributes were positive ly 

correlated with EMF (Table 1; Figure 2; Appendix S1 Figure S5). There was no significant 

correlation between GST and EMF (P > 0.05; Figure 2). Partial regressions revealed substantia l 

relationships between ecosystem traits and CWM traits and EMF (Appendix S1 Figure S8). 

However, the strength of the relationships between multiple biodiversity attributes and 

individual ecosystem functions varied widely (Table 1; Table 2; Appendix S1 Figure S9–12). 

Specifically, multiple biodiversity attributes had robust relationships with GPPmax and LUE 

(Appendix S1 Figure S9 and S12), moderate relationships with WUE (Appendix S1 Figure 

S10), and weak relationships with CUE (only those with CWM traits and ecosystem traits were 

significant; Appendix S1 Figure S11). Notably, ecosystem traits and individual ecosystem 

functions showed consistent significantly positive relationships, although the strength of the 

relationships varied (Figure 3). LUE was closely correlated with GPPmax of the key axis of 

ecosystem function (Figure 1d), and variations in both were well captured (Table 2). Additiona l 

analyses revealed that CWM traits were positively correlated with ecosystem traits (Appendix 

S1 Figure S13); however, this relationship was strongly influenced by the selected traits 

(Appendix S1 Figure S14). CWM traits were poorly correlated with ecosystem traits when both 

were based on leaf nutrient concentration (Appendix S1 Figure S14), whereas CWM traits and 

ecosystem traits were positively correlated when both were based on leaf size and dry mass 

(Appendix S1 Figure S14). 

2) Relative contributions of multiple biodiversity attributes to EMF 

Ecosystem traits, CWM traits, functional and phylogenetic diversity, and species richness were 

selected as significant predictors of EMF, indicating that both selection (i.e., the mass ratio 

effect) and compensatory effects influence the key axes of ecosystem functions (Table 1). 

Moreover, the mass ratio effects represented by ecosystem traits and CWM traits (R2 = 0.34; 

Table 1) on the key axis of ecosystem functions were stronger than the compensatory effects 
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represented by the diversity index (i.e., species richness, functional diversity, and phylogenetic 

diversity; R2 = 0.21; Table 1). Specifically, hierarchical partitioning results showed that 

biodiversity indicators were strongly associated with EMF, representing key axes of ecosystem 

functions, and that ecosystem traits had the highest individual contribution among all predictors 

(22.48% of the total R2; Table 1). Species richness alone explained only a small portion of the 

EMF variations (R2 = 0.05; Table 1); however, the inclusion of other multiple biodivers ity 

attributes increased the effect of biodiversity on EMF by 10-fold (up to 0.50 of the total R2; 

Table 1). Although the individual contribution of multiple biodiversity attributes in individua l 

ecosystem functions greatly varied, ecosystem traits and CWM traits were the two most robust 

predictors of individual ecosystem functions (15.42–46.19% and 14.77–40.08%, respectively, 

of the total R2; Table 2). 

3) Effects of environmental factors and multiple biodiversity attributes on EMF 

SEM with ecosystem traits explained 73% of the variations in EMF (Figure 4a), and SEM with 

CWM traits explained 76% of the variations in EMF (Appendix S1 Figure S15). However, 

SEM with ecosystem traits representing the dominant effect had a better goodness of fit 

(LOOIC = 572.9 ± 45.1, ELPD = –286.4 ± 22.6; Figure 4a) than the model where CWM traits 

represented the dominant effect (LOOIC = 635.50 ± 46, ELPD = –317.8 ± 23; Appendix S1 

Figure S12). Ecosystem traits had the significantly highest direct effect on EMF, with a βstd of 

0.45, whereas GSP exerted the highest indirect effect on EMF, with a βstd of 0.28 (Figure 4b). 

Notably, as expected, in addition to directly affecting EMF, environmental factors indirect ly 

affected EMF through multiple biodiversity attributes (phylogenetic diversity, CWM traits, and 

ecosystem traits; Figure 4b and Appendix S1 Figure S15). In addition, the interpretation of 

SEM (i.e., R2) with individual ecosystem functions greatly varied, ranging from 0.85 (for LUE) 

to 0.16 (for CUE); however, the indirect effects of environmental factors through multip le 

biodiversity attributes were also evident in individual ecosystem functions (Appendix S4). 

Similarly, strong, positive effects of multiple biodiversity attributes on EMF were observed via 

the multiple threshold approach (Appendix S1 Figures S16 and S17). 

Discussion 

Our results provide insights into the roles of multiple biodiversity attributes in sustaining 
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multiple ecosystem functions. More specifically, we comprehensively investigated the key 

roles of multiple diversity attributes in the key axes of ecosystem functions. Collectively, these 

attributes, including species richness, phylogenetic diversity, functional diversity, CWM traits, 

and ecosystem traits, explained up to 59% of EMF across a wide range of geographical settings, 

including large climatic differences and soil nutrient conditions. The simultaneous effects of 

multiple biodiversity attributes on multiple functions emphasize the necessity to shift from 

studying biodiversity from a taxonomic perspective to using a more multidimensiona l 

perspective to better grasp the complex effect of biodiversity on terrestrial ecosystem funct io ns 

and prevent the underestimation of the consequences of biodiversity loss on ecosystem 

functions. The need to consider multiple biodiversity attributes has recently been demonstrated 

and highlighted in the studies of ecosystem productivity (Brun et al., 2019) and carbon, nitrogen, 

and phosphorus cycling in ecosystems (Le Bagousse-Pinguet et al., 2019). Our results extend 

this field of research by highlighting how multiple biodiversity attributes simultaneously affect 

several key axes of ecosystem functions. 

Key roles of community-weighted mean traits and ecosystem traits in sustaining EMF 

Our study revealed the important roles of CWM traits and ecosystem traits in driving EMF, 

with even higher influence than that of abiotic factors such as GSP. Both CWM traits and 

ecosystem traits reflect the functional component of selection effect, according to the mass-

ratio hypothesis (Jing et al., 2021). Specifically, the roles of species traits mentioned in selection 

effects in influencing ecosystem function were directly quantified here by CWM and ecosystem 

trait values and effectively summarized by mass ratio effects (i.e., ecosystem functioning is 

largely determined by the traits of dominant species) (Mokany et al., 2008). Briefly, if a 

community or ecosystem is strongly dominated by species with traits that indicate high 

productivity or efficient resource use (such as a large LA), the ecosystem can achieve its highest 

resource use efficiency and production potential. From this, we can further reasonably infer that 

species diversity is not as important as traits in this case (i.e., dominated by mass ratio effects). 

As our results show, species diversity may even have a negative relationship with EMF. 

Numerous previous studies, both in forests and grasslands, have found widespread mass ratio 
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effects, which are typically even stronger than those of diversity (Finegan et al., 2015; Fotis et 

al., 2018; Garnier et al., 2004; Mokany et al., 2008). These studies provided direct evidence 

that the traits of dominant species play irreplaceable roles in promoting ecosystem functions, 

such as carbon uptake (Finegan et al., 2015; Fotis et al., 2018; Garnier et al., 2004) and nutrient 

cycling (Le Bagousse-Pinguet et al., 2019; Tardif et al., 2014). Our study further demonstrates 

the existence of mass ratio effects in driving ecosystem resource (such as light and water) use 

efficiency and GPPmax. 

One of the most interesting findings is the strong association between ecosystem traits (i.e., 

traits per unit land area) and EMF. The ecosystem traits in this study were closely related to 

plant nutrient pools (e.g., total leaf nitrogen and phosphorus content) and leaf area index (see 

Appendix S1 Figure S6) and even directly reflected their magnitudes. Although the plant 

nutrient pool is not a direct measure of ecosystem function (i.e., ecosystem fluxes of energy and 

matter) (Farnsworth et al., 2017), it is an important attribute for its determination (e.g., 

decomposition, carbon sequestration, nitrification and nutrient recycling) (Hu et al., 2021; Jing, 

Prager, et al., 2022; Jing et al., 2015; Peters et al., 2019; Zhang et al., 2022a). LAI is also an 

important indicator that reflects the light interception ability of ecosystems and is closely related 

to the GPPmax (Zhang et al., 2022b). Several empirical studies have revealed that the plant 

nutrient pool and leaf area index are particularly relevant to the long-term net balance of energy 

and matter in the ecosystem (Jing et al., 2022; Jing et al., 2015) and actively maintain and 

promote ecosystem functions related to production (Jing et al., 2022). Therefore, higher 

ecosystem trait values mean that the vegetation per unit area of land has higher resource 

utilization efficiency and capacity, indicating that more productive and efficient species are 

selected and thereby considered as the drivers of EMF (He et al., 2019; He et al., 2022). 

Similarly, the study by Migliavacca et al. (2021) revealed the important roles of leaf area index, 

ecosystem scale foliar N content, and aboveground biomass in two key axes, GPPmax and CUE, 

which is consistent with our findings. The link between CWM traits and EMF has been widely 

reported and studied (Finegan et al., 2015; Fotis et al., 2018; Garnier et al., 2004; Grime, 1998); 

however, the link between EMF and ecosystem traits has been less well studied. The results of 
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this study demonstrate that, in contrast to CWM traits, which rely heavily on the selection of 

traits, the relationship between ecosystem traits and ecosystem function is relatively robust as 

long as the selected traits can be standardized to unit land area. 

In addition, an advantage of using ecosystem traits is that their relationship to ecosystem 

functioning quantified per unit land area is independent of the area as long as the surveyed 

quadrats are adequately representative of local biodiversity (see Appendix S1 Figure S18). 

Scaling theory in the biodiversity–ecosystem functioning field (Gonzalez et al., 2020; Isbell et 

al., 2017; Thompson et al., 2018) predicts that the contribution of each additional species to 

ecosystem function will increase with the sampling extent, under the premise that ecosystem 

function linearly increases with sampling extent (i.e., the functioning of large-scale ecosystems 

is the sum of the functioning of small-scale ecosystems). However, most ecosystem level 

functions, such as ecosystem productivity and resource use efficiency, are currently measured 

on a per unit land area basis. In per unit land area terms, functioning should be invariant to area. 

Hence, the strength (i.e., the slope) of the diversity-ecosystem function relationship could 

potentially weaken by increasing the sampling extent (Barry et al., 2021). As ecosystem traits 

are also quantified on a unit land area basis, similar to ecosystem functions (He et al., 2022), 

using them rather than diversity can prevent this dilemma. Their use would help us draw more 

objective conclusions about diversity–ecosystem function relationships. 

Mechanisms underlying the effects of multifaceted diversity on EMF 

In addition to CWM traits and ecosystem traits, diversity (particularly functional diversity and 

phylogenetic diversity) also plays a vital role in EMF (see Table 1). Numerous empirical and 

theoretical studies have revealed that diversity improves resource (such as light and water) use 

efficiency at the ecosystem level through compensatory effects(Barry et al., 2019; Milcu et al., 

2014; Williams et al., 2021), which is consistent with our findings (Table S3). It is well known 

that differences between species may lead to more efficient light use in diverse ecosystems, a 

central premise for complementary effects (Niklaus et al., 2017; Williams et al., 2021). The 

results of the Jena grassland experiments also suggested that high functional diversity (based 

on leaf nitrogen) increases LUE and WUE by increasing the complexity of the community 

 13652486, ja, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16666 by K

u L
euven, W

iley O
nline L

ibrary on [10/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



  

vertical structure (Milcu et al., 2014). Although evapotranspiration may be stronger in 

ecosystems with more species (Milcu et al., 2014), greater productivity (i.e., photosynthet ic 

processes) is the dominant regulator of WUE (Hu et al., 2008; Niu et al., 2011). Therefore, 

ecosystems with high functional diversity tend to have a higher resource use efficiency (Milcu 

et al., 2014), which is consistent with our findings. In addition, the estimated effect of functiona l 

diversity on ecosystem functioning may be related to the type and quantity of the traits selected 

(Huang et al., 2020). In this study, we selected typical economic traits (leaf nutrient content and 

SLA) and size traits (leaf size), both of which are closely related to the vegetation primary 

production of the ecosystem (Garnier et al., 2016). This is also an indispensable reason why 

functional diversity has a significant effect on EMF. 

In contrast with functional diversity, phylogenetic diversity does not depend on selected traits, 

but only on the phylogenetic history of the species within a community (Huang et al., 2020). 

Thus, phylogenetic diversity may reflect additional functional specialization axes that are 

captured neither by leaf nutrient content nor by size traits but by two basic characteristics that 

reflect plant resource utilization strategies (Srivastava et al., 2012). Specifically, phylogenetic 

diversity can effectively consider hidden traits that are particularly relevant to ecosystem 

functioning, such as those related to pathogen infection, pollination rates, mycorrhiza l 

communities (Barry et al., 2019; Parker et al., 2015), or plant population strategies (Le 

Bagousse-Pinguet et al., 2019). Recent studies have revealed that communities with distant 

phylogenetic relationships exhibit greater compensatory effects (Huang et al., 2020). A study 

on drylands demonstrated a significant positive relationship between phylogenetic diversity and 

resource use efficiency (Le Bagousse-Pinguet et al., 2019). However, the plasticity of plant 

traits, such as their potential intraspecific variation, leads to functional diversity being malleab le 

even without the changes in plant community composition, whereas phylogenetic diversity is 

not, at least until species composition changes. Therefore, the response of phylogenetic 

diversity to environmental changes may be delayed, which could be why it is not as important 

as functional diversity. Overall, our results confirm that the introduction of phylogenetic and 

functional diversity increases the contribution of diversity to EMF than using species richness 
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alone. 

Effects of environmental factors on EMF via multiple biodiversity attributes 

Our results underscore that environmental conditions, including climatic factors and soil 

nutrient status, influence EMF directly and indirectly by acting on plant traits and multip le 

biodiversity attributes, as revealed by several recent studies (Hu et al., 2021; Jing et al., 2015). 

We followed a macroecological approach to encompass numerous ecosystem types, spanning 

a large environmental gradient covering most of Earth’s major biomes. Precipitation is an 

important factor driving ecosystem type gradients, such as changes from grassland to shrub and 

forest ecosystems along the precipitation gradient (Chapin et al., 2002). Accordingly, we found 

that precipitation during the growing season is an important environmental predictor of EMF. 

On the one hand, precipitation during the growing season directly determines the availab le 

water as a limiting resource in most ecosystems and has an effect on ecosystem productivity 

(Gherardi et al., 2019), which in turn affects the use efficiency of other resources, such as light. 

On the other hand, precipitation and water availability affect the plant traits in an ecosystem 

(i.e., response traits) (Suding et al., 2008), such as the vertical distribution of roots (B. Zhang 

et al., 2019) and anatomical traits related to hydraulic transport and WUE (Griffin-Nolan et al., 

2018; Liu et al., 2018), thereby indirectly regulating the ecosystem resource use efficiencies. 

The soil nutrient content affects the nutrients available to vegetation and directly regulates 

resource use efficiencies, such as CUE (Fernández-Martínez et al., 2014). A study in temperate 

forests by Xu et al. (2020) revealed that the availability of soil nutrients, particularly nitrogen, 

regulates forest resource use efficiency (WUE and LUE) by affecting the canopy photosynthet ic 

capacity (i.e., maximum photosynthetic capacity). This is similar to the mechanism through 

which functional diversity improves resource utilization efficiency by increasing the magnitude 

of productivity. Simultaneously, increased soil nutrient contents imply that the ecosystem can 

accommodate more species, thereby improving EMF through compensation effects (Barry et 

al., 2019). In addition to the macroclimate factors evaluated in this study, microclimate factors, 

such as sub-canopy temperature, affect ecosystem functioning. For example, microclimate can 

directly affect species distribution and abundance in the ecosystem (Murphy et al., 2015), which 
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in turn affects leaf physiological traits, such as canopy packing (Jucker et al., 2015). All these 

may affect the utilization of limited resources by the ecosystem and are worthy of further 

exploration. 

Perspectives for future studies on biodiversity–EMF relationships 

Our study provided evidence that biodiversity plays an important role in the key axes of 

ecosystem functions. However, this study has some limitations that need to be addressed in 

future studies. First, the robustness of the research results can be enhanced if the CUE data are 

derived from measured data based on flux observations. Future biodiversity surveys are 

expected to be combined with ecosystem-level flux observations to provide high-quality data 

on both biodiversity and ecosystem functions. This will help us better understand the linkages 

between ecosystem structure and function. Second, the effect of soil microbial diversity (i.e., 

belowground diversity) on resource use efficiency and maximum ecosystem productivity is a 

future research direction that cannot be ignored. Focusing only on aboveground diversity may 

obscure the relationship between diversity and EMF. Soil microbial diversity significant ly 

affects the nutrient uptake in an ecosystem (Fleischer et al., 2019; Hu et al., 2021; Jing et al., 

2015; Terrer et al., 2021), particularly in arid climates (Hu et al., 2021). Thus, it can be expected 

to play a significant role in resource use efficiency. For example, soil microorganisms 

decompose litter and soil organic matter through heterotrophic respiration (Tang et al., 2020), 

which affects the carbon cycle and CUE of the ecosystem. Despite these limitations, we 

revealed for the first time that the importance of ecosystem traits no less important than CWM 

traits This study provides an important indicator to facilitate the understanding of EMF from a 

trait perspective. Furthermore, we suggest that the standardization of traits to unit land area 

should be given more attention in the future to prevent underestimating the effect of plant traits 

in driving ecosystem processes and functions. 
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Table 1 Independent effects of environmental factors and biodiversity measures on ecosystem 
multifunctionality (EMF) based on hierarchical partitioning. 

Predictors 
Unique 

effect† 
Share effect 

Importance 

(R2) 

Contribution 

(%) 
P-value 

GSP‡ 0.013 0.12 0.13 16.70 0.003 

GST 0.024 0.02 0.04 4.99 0.05 

Soil nutrients 0.004 0.07 0.07 8.72 0.02 

Species richness -0.002 0.05 0.05 6.07 0.04 

Functional diversity 0.003 0.09 0.09 11.40 0.007 

Phylogenetic diversity -0.001 0.08 0.07 9.29 0.014 

CWM traits 0.027 0.14 0.16 20.42 0.001 

Ecosystem traits 0.020 0.16 0.18 22.48 0.001 

Total 0.088 0.71 0.80 100  

The table shows the results of variance partitioning in an independent-effects analysis; P-values are from 

permutation tests based on 999 randomizations. 
‡GSP, growing season precipitation, GST, growing season temperature; CWM, community-weighted mean. CWM 

traits and ecosystem traits represent the first principal components of five CWM traits and four ecosystem traits, 

respectively. 
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Table 2 Relative importance of individual environmental variables and biodiversity 
measures in predicting individual ecosystem functions based on hierarchical partitioning. 

Predictors 

GPPmax† WUE CUE LUE 

Importance 

(R2) 

Contribution 

(%) 

Importance 

(R2) 

Contribution 

(%) 

Importance 

(R2) 

Contribution 

(%) 

Importance 

(R2) 

Contribution 

(%) 

GSP‡ 0.12**§ 14.83 0.09** 13.34 0.011 9.05 0.18*** 21.35 

GST 0.02 3.02 0.10** 15.82 -0.010 -7.94 0.04* 5.26 

Soil nutrients 0.11** 13.22 0.05 7.19 0.001 1.11 0.05* 5.95 

Species richness 0.04* 5.52 0.04 6.27 -0.005 -4.21 0.08** 9.65 

Functional diversity 0.10** 11.96 0.08* 11.94 0.022 17.38 0.13** 14.67 

Phylogenetic diversity 0.11** 13.53 0.07* 11.06 -0.002 -1.75 0.05* 5.76 

CWM traits 0.12** 14.77 0.12** 18.96 0.051* 40.08 0.16** 18.42 

Ecosystem traits 0.19*** 23.12 0.10** 15.42 0.058* 46.19 0.16** 18.96 

Total 0.81 100 0.64 100 0.13 100 0.85 100 
†GPPmax, ecosystem-scale maximum photosynthetic CO2 uptake (g C m2 day−1); CUE, carbon use efficiency at the 

ecosystem level (%); LUE, light use efficiency (g C MJ−1); WUE, water use efficiency (g C L−1). 
‡GSP, growing season precipitation; GST, growing season temperature; CWM, community-weighted mean. 

“CWM traits” represents the first PC of CWM traits, which explains 53% of the variation in four CWM traits, and 
“ecosystem traits” represents the first PC of ecosystem traits, which explains 98% of the variation in five ecosystem 

traits. 
§*P < 0.05; **P < 0.01; ***P < 0.001; P-values are from permutation tests based on 999 randomizations. 
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Figure Captions 

Figure 1 Spatial distribution of the study sites across diverse biomes (a) and along a broad 
environmental gradient (b). The ecosystem types that were investigated included tropical 
forests, temperate forests, boreal forests, steppe, montane grasslands, and others across a wide 
environmental gradient. The data in panel (c) were derived from the Global FLUXNET data 
used by Migliavacca et al. (2021) to reveal the three key axes of terrestrial ecosystem functions. 
In panels b and e, circle size represents the species richness at each study site. In panel e, the 
color gradient of the circles indicates the changes in ecosystem multifunctionality (z-score, 
dimensionless) of the sites studied along the environmental gradient. Data for the division of 
biomes in panel a were obtained from the revised map of Ecoregions 2017 (Dinerstein et al., 
2017) available at ecoregions2017.appspot.com. The spatial distribution map of the study 
sampling sites was created using ArcGIS software v10.8. Map lines delineate study areas and 
do not necessarily depict accepted national boundaries. 
Figure 2 Relationships between ecosystem multifunctionality and environmental factors  
and multiple biodiversity attributes. “CWM trait” represents the first principal component 
(PC) of community-weighted mean (CWM) traits, which explains 53% of the variations in four 
CWM traits and “ecosystem trait” represents the first PC of ecosystem traits, which explains 
98% of the variations in five ecosystem traits. Lines were fitted by ordinary least squares (lm 
function in R) after all variables were standardized (z-score, mean = 0, SD = 1). 
Figure 3 Bivariate relationships between ecosystem traits and individual ecosystem 
functions, including (a) GPPmax, (b) LUE, (c) WUE, and (d) CUE. GPPmax, ecosystem-scale 
maximum photosynthetic CO2 uptake (g C m2 day−1); WUE, water use efficiency (g C L−1); 
CUE, carbon use efficiency at the ecosystem level (%); LUE, light use efficiency (g C MJ−1). 
“Ecosystem trait” represents the first PC of ecosystem traits, which explains 98% of the 
variations in five ecosystem traits. All variables were standardized (z-score, mean = 0, SD = 1) 
prior to analysis. 
Figure 4 Bayesian piecewise structural equation (SEM) models exploring the direct and 
indirect effects of environmental factors and biodiversity measures on ecosystem 
multifunctionality (EMF), which is related to carbon, water, and energy cycling of 
ecosystems. GSP, precipitation in the growing season. Ecosystem trait represents the first PC 
of ecosystem traits, which explains 98% of the variations in five ecosystem traits. Black arrows 
represent positive relationships, whereas red arrows represent negative relationships. Solid lines 
indicate significant effects, and dotted gray lines represent non-significant effects. For the 
leave-one-out cross-validation information criterion (LOOIC) and expected log predictive 
density (ELPD), smaller and larger values, respectively, indicate a better fit. 
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