
Feta: Efficient Threshold Designated-Verifier
Zero-Knowledge Proofs

Carsten Baum

Dept. Computer Science, Aarhus

University

Aarhus, Denmark

cbaum@cs.au.dk

Robin Jadoul

robin.jadoul@esat.kuleuven.be

imec-COSIC, KU Leuven

Leuven, Belgium

Emmanuela Orsini

emmanuela.orsini@kuleuven.be

imec-COSIC, KU Leuven

Leuven, Belgium

Peter Scholl

peter.scholl@cs.au.dk

Dept. Computer Science, Aarhus

University

Aarhus, Denmark

Nigel P. Smart

nigel.smart@kuleuven.be

imec-COSIC, KU Leuven

Leuven, Belgium

ABSTRACT
Zero-Knowledge protocols have increasingly become both popular

and practical in recent years due to their applicability in many areas

such as blockchain systems. Unfortunately, public verifiability and

small proof sizes of zero-knowledge protocols currently come at

the price of strong assumptions, large prover time, or both, when

considering statements with millions of gates. In this regime, the

most prover-efficient protocols are in the designated verifier setting,

where proofs are only valid to a single party that must keep a secret

state.

In this work, we bridge this gap between designated-verifier

proofs and public verifiability by distributing the verifier efficiently.

Here, a set of verifiers can then verify a proof and, if a given thresh-

old 𝑡 of the 𝑛 verifiers is honest and trusted, can act as guaran-

tors for the validity of a statement. We achieve this while keeping

the concrete efficiency of current designated-verifier proofs, and

present constructions that have small concrete computation and

communication cost. We present practical protocols in the setting

of threshold verifiers with 𝑡 < 𝑛/4 and 𝑡 < 𝑛/3, for which we give

performance figures, showcasing the efficiency of our approach.

CCS CONCEPTS
• Security and privacy→ Mathematical foundations of cryptog-
raphy; • Theory of computation→ Cryptographic protocols;
Cryptographic primitives.

KEYWORDS
Zero-Knowledge Proofs, Multi-Party Computation, Threshold Cryp-

tography

ACM Reference Format:
Carsten Baum, Robin Jadoul, Emmanuela Orsini, Peter Scholl, and Nigel P.

Smart. 2022. Feta: Efficient Threshold Designated-Verifier Zero-Knowledge

Proofs. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and

This work is licensed under a Creative Commons Attribution

International 4.0 License.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9450-5/22/11.

https://doi.org/10.1145/3548606.3559354

Communications Security (CCS ’22), November 7–11, 2022, Los Angeles, CA,
USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3548606.

3559354

1 INTRODUCTION
A zero-knowledge proof of knowledge (ZKPoK) is an interactive

protocol which allows a prover to convince a verifier, given a state-

ment 𝑥 , that the prover knows a witness𝑤 such that the pair (𝑥,𝑤)
lies in some NP language L. This is done in such a way that the

verifier learns nothing but the validity of the statement, i.e. they

learn nothing about the witness 𝑤 , only that the prover knows

the it. ZKPoKs have a wide range of applications, especially in the

burgeoning area of blockchain [17], but also as building blocks of

highly efficient signature schemes [13] or to increase the security

level of existing cryptographic protocols from passive to active

security in a black-box manner [16].

There are various parameters that influencewhich ZKPoK scheme

is suitable for a certain application. For example, when using ZKPoKs

for blockchains one needs proofs that are publicly verifiable and
non-interactive; namely the proof is sent in a single message from

the prover such that any verifier can verify it. Another common

requirement is that they are succint, namely that the proof has size

and verification time that is sublinear in the size of the statement.

Therefore, most ZKPoKs such as SNARKs [10] and STARKs [9]

that are considered for practical applications within blockchains for

instance, are mainly optimized for small proof size and verification

time (and are also publicly verifiable and non-interactive). Their

drawback is that prover running time can be prohibitive for large

statements, i.e. statements expressed by arithmetic circuits with

billions of gates. This is because the prover runtime for all current

practical succinct schemes has an inherent polylog(|𝑥 |) overhead
over the optimal 𝑂 (|𝑥 |) proof time and because prover memory ac-

cess is not local
1
, which leads to inherent slowdowns for increasing

|𝑥 |.
ModernMPC-in-the-Head ZKPoKs such as KKW [21] or Limbo [15]

have a proof size that is at least linear in |𝑥 |, with the unique excep-

tion of Ligero [2] which achieves sub-linear proof for large enough

statements. In addition, they usually use a “light” inner proof (which

1
There are theoretical works that achieve linear prover time such as e.g. [23], but to

the best of our knowledge they are not concretely efficient.

293

https://orcid.org/0000-0002-5997-9992
https://orcid.org/0000-0002-1917-1833
https://orcid.org/0000-0003-3567-3304
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3548606.3559354
https://doi.org/10.1145/3548606.3559354
https://doi.org/10.1145/3548606.3559354
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3548606.3559354&domain=pdf&date_stamp=2022-11-07

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Carsten Baum, Robin Jadoul, Emmanuela Orsini, Peter Scholl, & Nigel P. Smart

is a passively-secure MPC scheme) that requires 𝑂 (|𝑥 |) computa-

tion, but must be repeated 𝑠/log(𝑠) times to achieve negligible

soundness error where 𝑠 is the security parameter.

Alternative ZKPoKs for large statements, which also have a

practically efficient prover due to small concrete constants, are

either based on garbled circuits ([19] and follow-ups) or vOLE-

commitments [6, 26, 28]). All of these prover-efficient schemes have

the disadvantage that they require the verifier to keep a secret state,

i.e. they are designated-verifier ZKPoKs. This means that the proof

can only be verified by a single party, who must be identified before

the proof is produced. This makes the application in blockchains,

where a proof may need to be verified by a set of validator nodes,

impossible.

One can mitigate the problem of a designated verifier by dis-

tributing the verification among a larger set of parties. Here, each

such verifier comes from a pre-defined, possibly large set, leading

to a form of distributed designated verifier proof system. Now, if a

majority of these verifiers is trusted, the statement of the prover

can be accepted as validated by a majority of third parties.

Distributing Verification. This distribution of verification has an

impact on the question of what a proof actually is, and also changes

how protocols for such a setting can be designed.

• If the verifier is distributed, an adversary may corrupt multi-

ple verifiers, in addition to the prover, in order to convince

honest verifiers of the validity of a false statement. This

means that soundness must be redefined to take this into

consideration.

• When a proof is rejected, this might happen either if a prover

does not have a proof or if it is honest, but verifiers may

prevent successful verification of a proof. Hence, honest

verifiers may want to distinguish these cases in order to not

blame an honest prover or verifier as corrupt. So in the case

of dishonest behaviour a security definition may require

that honest verifiers do not just abort, but they also identify

one (or more) of the cheating parties. This enables a form of

cheater elimination.

• The distributed nature of the verifier may allow to obtain

more efficient protocols: while in standard zero-knowledge

the verifier must always be considered as fully corrupted,

we may now be ok with only maintaining zero-knowledge

if a strict subset of the verifiers does not collude.

1.1 Related Work
Thresholdizing in zero-knowledge proofs has a long history. The

earliest works are those of [12] and [7], both from 1991. In the work

of [12] the verifiers do not need to agree on the validity of the proof,

and in addition do not communicate directly. Our work is closer

in spirit to that of [7], although with a modern security definition

and practical, concrete efficiency. In particular our security notion

is UC-based, and captures issues related to a dishonest prover and

dishonest verifiers colluding, as well as (by definition) providing a

proof-of-knowledge. We also require that cheaters are identified

which we feel is important in applications (and is missing in all

prior work). The construction in [7] is based, unsurprisingly for it’s

time, on Verifiable Secret Sharing (VSS), thus the protocol is highly

inefficient compared to our more modern approach. Whilst VSS

enables identifiable abort, it is unclear in [7] how (or even if) this

can be used to identify if a verifier and prover collaborate to cheat.

In the 2000’s interests continued in this problem, but focused on

proofs related to languages based on discrete logarithms (for ex-

ample proving that certain discrete logarithm-based commitments

satisfied some given properties). Work in this vein included [1],

which focused on statements related to relations between discrete

logarithms. Their application are statements tailored for systems

using VSS in MPC. We essentially lift the definitions of [1] to a

more general UC setting for arbitrary adversary structures, as well

as extend the definitions to general languages (and not just those

related to discrete logarithms).

Conceptually, our setting bears resemblance to the one consid-

ered in the MPC-in-the-head paradigm [18] where the proof is

verified by a set of simulated verifiers. Compared to [18] we require

that an adversarial prover can only cooperate with a small set of

corrupt verifiers, as we assume a majority of verifiers to be honest.

There are other related works, which are similar but distinct from

our own work. For example, one related notion is the concept of

distributed zero-knowedge from [11], which looks at the case where

the statement 𝑥 is unknown to any given verifier, and is instead

secret shared. The protocols in that work only support a limited

class of languages, and do not consider identifiable abort, and so are

vulnerable to denial-of-service attacks from amalicious verifier. Our

notion can be seen as orthogonal to Multi-Prover Interactive Proofs

[8], where multiple provers act independently to convince a verifier.

Our notion is also complementary to the setting considered in [27]

where the witness 𝑤 is shared amongst a set of provers. Instead,

we only have one prover and𝑤 is shared among the verifiers.

A relatively recent paper [4] focuses on reducing the total amount

of entropy needed by a set of verifiers, if all verifiers are to verify the

proof. This is othogonal to ourwork, aswe require a joint/distributed

verification where some verifiers can be dishonest. However, the

idea of reducing the entropy requirement would be an interesting

aspect to consider in the future. As would extending the ideas of [4]

to more general problem statements, since [4] focuses on languages

based on discrete logarithms.

Another interesting orthogonal direction to our work is that of

“Fair-Zero Knowledge” introduced in [24]. In this work a distributed-

verifier notion is presented, where a prover might leak the secret to

a dishonest verifiers via a subliminal channel. Nevertheless, since

our “online” proof stage only requires broadcast interaction from

the prover to the verifiers, fairness as in [24] for our type of proof

systems might be interesting line for future work.

The renewed interest in the distributed verifier setting is shown

by two recent papers by Yang et al. [29] and Applebaum et al. [3].

Both works consider the case where a majority of verifiers are

honest. Applebaum et al. focus more on the theoretical side and

study the minimal assumptions needed to achieve round-optimal

distributed verifier protocols; the work of Yang et. al. is similar

to our approach and oriented to real-world efficiency, however

does not present an implementation and does not consider cheater

identification, thus only achieving security with selective abort.

294

Feta: Efficient Threshold Designated-Verifier Zero-Knowledge Proofs CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

1.2 Our Contribution
In this work, we formalize the notion of Distributed Verifier ZKPoKs

(DV-ZKPoKs) in the UC framework. We provide multiple construc-

tions of such protocols, all with cheater identification, that are

secure against different thresholds of corrupted verifiers
2
.

New definitions. We first present a formal definition of what it

means for a DV-ZKPoK to be secure in the UC framework. Let

us first redefine the three standard properties of ZKPoKs to be

applicable to the threshold setting:

Distributed Correctness: If the prover has a witness, then

the honest parties either accept the proof or identify the

same corrupted verifiers that interfered with the proof.

Distributed Soundness: If the prover does not have a witness
then honest verifiers only accept with negligible probability,

given not too many other verifiers are corrupted. In addition

the honest verifiers either agree that the prover does not

have a witness, or will identify a set of corrupted verifiers.

Distributed Zero-Knowledge: The corrupted verifiers learn

no new information beyond the fact that the statement is

true.

Our definition will allow different adversarial structures for all of

these properties. This means that our definition also encapsulates

protocols where e.g. soundness breaks down if just one verifier is

corrupted, but which are zero-knowledge even if all verifiers are

corrupted.

There are a number of “naive” protocols which enable such dis-

tributed verifier zero-knowledge proofs using existing techniques.

We will describe some of these protocols, showing the applicability

of our framework.

New protocols. We then present two efficient DV-ZKPoK proto-

cols together with necessary preprocessing protocols. These proto-

cols are optimized for 𝑡 < 𝑛/4 and 𝑡 < 𝑛/3 corruptions, respectively,
where 𝑛 is the number of verifiers and 𝑡 is the number of corrupted

verifiers. Our protocols are plausibly post-quantum secure, and

require as setup assumptions a PKI as well as a broadcast chan-

nel. The latter can easily be implemented if 𝑡 < 𝑛/3 information

theoretically.

Implementations. We have implemented our protocols in C++,

showing concretely efficiency both in terms of prover and ver-

ifier time. For example, for the case of 𝑡 < 𝑛/4, the combined

pre-processing and prover time for proving knowledge of the pre-

image of a single SHA-256 evaluation with 𝑛 = 5 verifiers is about

10 milliseconds, with a proof time of around 7 milliseconds. The ver-

ification time is under 15 milliseconds. A circuit with a million AND

gates requires a total proof time of 96 milliseconds pre-processing

and 30 milliseconds for the proof generation. The verification time

is 90 milliseconds. For 𝑛 = 100 verifiers and 𝑡 = 20 the million AND

gate circuit times become 431 milliseconds for pre-processing, 176

milliseconds to generate a proof and 219 milliseconds for the 100

verifiers to verify it. This is with a single threaded implementation

of our protocols.

2
In our construction, the single (cheesy) verifier of the Mac-and-Cheese protocol [6]

has been crumbled into a large set of smaller verifiers. Thus, our protocol name Feta.

As remarked above the prior works on distributed verifier zero-

knowledge have all been for discrete logarithm based languages,

as opposed to the general languages considered in our paper. In

addition, they have considered different and often less general se-

curity requirements, as we outlined above. Thus to compare our

implementation we are left, with the admittedly unsatisfactory situ-

ation of, comparison against either publicly verifiable or designated

verifier proof systems.

Our run times are all significantly smaller than the single in-

stance publicly-verifiable proofs of similar SHA-256 pre-images,

using a system such as Ligero [2]. Using machines less powerful

than the ones we used in our experiments, [2] give prover and

verification times for a single pre-image of a SHA-256 evaluation of

over 100 milliseconds. Our proof size, excluding pre-processing, is

also significantly smaller (8 KBytes vs 100’s of KBytes for Ligero).

Note, Ligero provides a publicly verifiable proof as opposed to our

distributed designated verifier proofs.

The Limbo system [15], which again provides publicly verifiable

proofs, reports single threaded prover and verifier times for the

same circuit of 50 milliseconds, using machines comparable to the

ones in our experiments, with their proof sizes being 42 KBytes.

The Mac-n-Cheese [26] and Quicksilver protocols [6], which

provide designated verifier proofs using a single threaded imple-

mentation can achieve around 7 million AND gates per second in

terms of prover/verification time. Translating this to the 22.573

AND gate SHA-256 circuit would equate to a prover/verification

time of 3 milliseconds.

Thus, we see our prover/verification time of 6.5/10 milliseconds,

for the SHA-256 circuit in the distributed verifier case, provides a

compromise between slower publicly verifiable proofs and faster

designated verifier proofs.

The protocol for the case of 𝑡 < 𝑛/3 is slightly less efficient,

but still provides a highly efficient methodology for performing

distributed verifier zero-knowledge proofs. Also in this case both

prover and verification time are significantly smaller than in pub-

licly verifiable schemes like Ligero and Limbo.

Hence, we see that our notion of distributed designated verifier

proofs can enable more efficient practical zero-knowledge proofs

when compared to publicly verifiable proofs.

1.3 Applications
Protocols with distributed verification have a number of applica-

tions, mainly in blockchains.

• For permissioned blockchains, which are popular for use in

companies, the validators (usually) authenticate the next

block via majority voting. Such validators could act as the

distributed verifiers for a proof. In such a situation the total

number of validators is a handful, and thus the techniques of

this paper could be used to validate a proof before the next
block is authenticated by the chosen validator.

• In permissionless blockchains with oracles (i.e. groups of par-

ties that vouch for certain external facts), the oracle par-

ties could serve as verifiers for our proofs. The oracles are

e.g. trusted by a smart contract, and our distributed verifier

means that this trust can be minimized in the case of proof

295

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Carsten Baum, Robin Jadoul, Emmanuela Orsini, Peter Scholl, & Nigel P. Smart

verification. Oracles are sometimes also used in Layer-2 pro-

tocols on the blockchain. For example, in commit-chains like

NOCUST [22], there is an operator responsible (i.e. an oracle)

for committing the latest state of user account balances to

the main blockchain every epoch. In the case of optimistic

rollups (as in Arbitrum [20] and Optimism
3
), the verification

and state-progression are done off-chain by the validator

(i.e. an oracle) as well, while the final states (assertions) are

published on the blockchain. Our distributed verifier proofs

can act as a balance between optimistic rollups and full ZK-

rollups. In all cases, the number of such oracles is relatively

small and so the techniques of this paper could be applied.

More generally, zero-knowledge with distributed verification

can be used in all zero-knowledge applications where the verifiers

are known ahead of time.

1.4 Techniques
On a high level, our protocols can be described using the following

four-step paradigm:

(1) The verifiers create consistent commitments to random val-

ues 𝑟𝑖 such that only the prover can open these later. Here, if

𝑡 or less verifiers are corrupted, then they cannot reconstruct

the committed values themselves.

(2) The verifiers and the prover check together that the commit-

ments to the random values are indeed consistent among

all verifiers, and that the prover knows the openings. If not,

then cheaters are identified. If they are consistent, then the

preprocessing of the DV-ZKPoK is considered as finished.

(3) In the online phase, the prover uses the 𝑟𝑖 to commit to

𝑤 as well as auxiliary information necessary to show that

(𝑥,𝑤) ∈ 𝑅. This commitment can ideally be done by sending

one message via a broadcast channel.

(4) Upon the prover having finished committing, the verifiers

perform a proof verification step. Here we aim for a “cheap”

proof verification that only requires the verifiers to commu-

nicate in 𝑂 (1) rounds, with a message complexity that is

sublinear in |𝑥 | or |𝑤 | as well.
To achieve this, our “preprocessing” phase lets the verifiers create

many random Shamir secret sharings as commitments, where the

prover only learns the secret being shared. Given the linearity of

this secret sharing, consistency can easily be established using

a linear test. This test only requires communication that scales

in the number of parties but not |𝑥 | or |𝑤 |. Moreover, we show

that cheater identification can be achieved by additionally signing

certain messages in the preprocessing protocol.

In our online phase, our protocols let the prover commit both to

𝑤 as well as the intermediate wire values for a circuit 𝐶 that evalu-

ates to 0 iff𝑤 is a valid witness for the statement 𝑥 . The verifiers

re-evaluate 𝐶 based on the committed𝑤 using the homomorphic

properties of the commitment/secret sharing and check if the inter-

mediate wire values are consistent with𝑤 and that the output of

𝐶 (𝑤) is 0. This only requires a depth-1 circuit to be evaluated by

the verifiers.

3
https://community.optimism.io

In the first protocol (for 𝑡 < 𝑛/4) we make use of error-detecting

properties of a Reed-Solomon code/Shamir sharing. The linear gates

are free to evaluate as the Shamir sharing is linearly homomorphic,

while the multiplication is performed by each verifier multiplying

the input shares of a multiplication gate locally. The bound of

𝑡 < 𝑛/4 comes from having to perform error detection on product

codes (coming from degree 2 · 𝑡 polynomials stemming from the

share multiplication), which is necessary to detect cheating during

the multiplication protocol by a verifier.

Our second protocol (for 𝑡 < 𝑛/3) is slightly more complex and

avoids the verifiers having to multiply shares altogether. Instead,

we let the prover commit to slightly more data and use a checking

procedure for multiplications that is based on the Schwarz-Zippel

Lemma, similarly to [11]. This means that multiplication checks

only require linear operations.

2 PRELIMINARIES
2.1 Shamir Sharing
Our protocols are built on top of Shamir’s secret-sharing scheme

[25]. We briefly recap on it here in order to fix the notation we will

use in the rest of the paper.

A secret 𝑠 , in a finite field F, is shared amongst 𝑛 parties P =

{𝑃1, . . . , 𝑃𝑛} by the sharing party defining a random degree 𝑡 poly-

nomial 𝑓𝑠 (𝑋) whose constant term is the value 𝑠 . Assuming 𝑛 > |F|
and that the integers {1, . . . , 𝑛} are mapped to distinct non-zero val-

ues𝛼1, . . . , 𝛼𝑛 in F, each party 𝑃𝑖 is given the share 𝑠
(𝑖) = 𝑓𝑠 (𝛼𝑖) ∈ F.

We denote such a sharing by ⟨𝑠⟩𝑡 .
Note that this secret sharing scheme is linear, namely given

𝛽, 𝛿,𝛾 ∈ F and two sharings ⟨𝑥⟩𝑡 and ⟨𝑦⟩𝑡 , both of degree 𝑡 , parties

can locally produce the sharing ⟨𝑧⟩𝑡 , where 𝑧 = 𝛽 · 𝑥 + 𝛿 · 𝑦 + 𝛾 , by
computing

𝑧 (𝑖) = 𝛽 · 𝑥 (𝑖) + 𝛿 · 𝑦 (𝑖) + 𝛾 .

Also note that one can linearly combine sharings of different degrees

to produce a sharing of the maximal degree, i.e. given ⟨𝑥⟩𝑡1 and
⟨𝑦⟩𝑡2 then one can locally produce ⟨𝑥 + 𝑦⟩𝑡 , where 𝑡 = max(𝑡1, 𝑡2),
which we shall write as ⟨𝑥⟩𝑡1 + ⟨𝑦⟩𝑡2 .

Reconstruction of a secret 𝑠 , shared via ⟨𝑠⟩𝑡 , requires 𝑡 +1 correct
share values from different parties. It is well known that Shamir’s

secret sharing scheme defined as above is equivalent to a Reed-

Solomon code [𝑛, 𝑡 + 1, 𝑛 − 𝑡] over F, where the shares (𝑓𝑠 (𝛼1), . . .,
𝑓𝑠 (𝛼𝑛)) are viewed as a codeword. In particular, when the number

of dishonest parties is bounded by 𝑑 and 𝑛 > 𝑡 + 2 · 𝑑 , the parties
can robustly reconstruct a shared value ⟨𝑠⟩𝑡 , so that any party who

lies about their sharings will be detected. In one of our protocols

we will use the fact that, if 𝑛 > 4 · 𝑡 and 𝑑 < 𝑡 we can robustly

reconstruct a value for a sharing of degree 2 · 𝑡 .
Assuming 𝑛 > 𝑡 + 2 ·𝑑 , we denote by RobustReconstruct(⟨𝑠⟩𝑡 , 𝑑)

the reconstruction algorithm associated with Shamir’s scheme

which outputs a pair (𝑠, flag), where either flag = (correct, ∅),
indicating that all the shares are consistent with a degree 𝑡 sharing,

or flag = (incorrect,D) where D indicates the parties who input

an inconsistent shares.

296

https://community.optimism.io

Feta: Efficient Threshold Designated-Verifier Zero-Knowledge Proofs CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

2.2 Digital Signatures
Our basic protocols will make use of digital signatures, for which

we use the following two standard definitions.

Definition 2.1. A digital signature scheme for message spaceM
is given by the polynomial time algorithms (KeyGen, Sign, Verify).
• KeyGen(1_): On input a security parameter _ this random-

ized algorithm outputs a public/private key pair (𝔭𝔨, 𝔰𝔨).
• Sign(𝔰𝔨,𝑚):On input of private key 𝔰𝔨 and amessage𝑚 ∈ M,

this (potentially) randomized algorithm outputs a digital

signature 𝜎 .

• Verify(𝔭𝔨, 𝜎,𝑚): On input of a public key 𝔭𝔨, a message 𝑚

and a purported signature 𝜎 , this algorithm outputs either

true (meaning accept the signature) or false (meaning reject

the signature).

A digital signature scheme is said to be correct if for each𝑚 ←M
and (𝔭𝔨, 𝔰𝔨) ← KeyGen(1_), Verify(𝔭𝔨, Sign(𝔰𝔨,𝑚),𝑚) = true.

A digital signature scheme is said to be UF-CMA secure if the

probability of any adversary A winning the following game is

negligible in _

(1) (𝔭𝔨, 𝔰𝔨) ← KeyGen(1_).
(2) (𝑚∗, 𝜎∗) ← ASign(𝔰𝔨,·) (𝔭𝔨).
(3) Output ‘win’ if and only if Verify(𝔭𝔨, 𝜎∗,𝑚∗) = true and𝑚∗

was not queried to A’s signing oracle.

2.3 Zero-knowledge Proofs
A standard zero-knowledge proof takes a statement 𝑥 and a witness

𝑤 from some NP relation R. The prover P holds the pair (𝑥,𝑤) ∈ R,
whilst the verifier only has 𝑥 . The goal of a zero-knowledge proof (of

knowledge) is to convince the verifier that 𝑥 is in the language LR
of statements that have a witness inR. This is done by asserting that
the prover holds𝑤 such that (𝑥,𝑤) ∈ R, while no information about

𝑤 (bar the fact that the prover knows it) is revealed to the verifier.

Informally, a zero-knowledge proof has three security properties:

Correctness: If (𝑥,𝑤) ∈ R thenV always accepts.

Soundness: If P does not have 𝑤 then V only accepts with

negligible probability.

Zero-Knowledge: There exists a simulator S that on input 𝑥

can create transcripts of protocol instances between P and

V that makeV accept.

In the designated verifier setting, the soundness only holds for a

verifier that has a secret state.

2.4 Schwarz-Zippel Lemma
One of our protocols will make use of the Schwarz-Zippel lemma

for univariate polynomials, which we state here.

Lemma 2.2 (Schwartz-Zippel Lemma). Let 𝐹 ∈ F[𝑋] denote a
non-zero polynomial of degree 𝑑 over a field F. Let 𝑆 denote a finite
subset of elements of F. If one selects 𝑟 ∈ 𝑆 uniformly at random then

Pr[𝐹 (𝑟) = 0] ≤ 𝑑

|𝑆 | .

2.5 Coin Flipping
Wewill utilize at various points the ideal functionalityF

Rand
(P, 𝑀, F),

described in Fig. 1. This functionality allows a set of parties P to

sample𝑀 uniformly random values from a finite field F such that

each party learns these. It does this in a manner which has identifi-

able abort, in the case that the adversary aborts the execution of

the protocol. The implementation of this functionality is standard:

The parties agree on a shared single seed using a non-interactive

commitment via broadcast, then open via broadcast, and then the

seed is expanded into the desired number of random values from F
using a PRG.

The Ideal F
Rand
(P, 𝑀, F) Functionality

On input (Rand, cnt) from all parties in P, if the counter
value is the same for all parties and has not been used

before:

(1) Sample 𝑟𝑖 ← F for 𝑖 ∈ [𝑀].
(2) The values 𝑟𝑖 are sent to the adversary, and the

functionality waits for its input.

(3) If the input is Deliver then the values 𝑟𝑖 are sent to

all parties. Otherwise the adversary will return a

non-trivial subset 𝐶𝐴 of the dishonest parties. The

value (Abort,𝐶𝐴) is returned to all parties.

Figure 1: Functionality F
Rand
(P, 𝑀)

3 DISTRIBUTED VERIFIER
ZERO-KNOWLEDGE PROOFS

Our definition of Distributed Verifier Zero-Knowledge Proofs (DV-
ZKPoKs) aims to generalize the notion of a Designated Verifier
Zero-Knowledge Proof to the threshold setting. Namely, we will

have a set of designated verifiersV1, . . . ,V𝑛 who jointly verify the

correctness of the proof using an interactive protocol.

3.1 Zero-Knowledge in the Threshold Setting
As mentioned in Section 1 in a distributed verifier setting there

might exist multiple verifiersV𝑖 , some of whom may collaborate

with a potentially corrupt prover P. For a DV-ZKPoK we therefore

get the following intuitive properties.

Distributed Correctness: If (𝑥,𝑤) ∈ R then either all honest

verifiersV always accept or all honest verifiers agree on a

set of cheating verifiers 𝐶𝐴 .

Distributed Soundness: If P does not have 𝑤 then honest

verifiers only accept with negligible probability.

Distributed Zero-Knowledge: There exists a simulatorS that

on input 𝑥 can create transcripts of protocol instances be-

tween P and verifiersV1, . . . ,V𝑛 that make verifiers accept.

Let V = {V1, . . . ,V𝑛} denote the set of verifiers. An access
structure Γ onV is a monotonically increasing subset of 2

V
, i.e.,

if 𝑆 ∈ Γ then we have 𝑇 ∈ Γ for all 𝑇 such that 𝑆 ⊆ 𝑇 ⊆ V . The

adversary structure Δ associated with Γ is the set of all setsV \ 𝑆
for 𝑆 ∈ Γ.

When dealing with a potentially dishonest prover and a subset

of potentially dishonest verifiers, we can consider three different ac-

cess structures related to the three different properties of ZK proofs.

297

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Carsten Baum, Robin Jadoul, Emmanuela Orsini, Peter Scholl, & Nigel P. Smart

We let the relevant access structures, for the potentially dishonest

verifiers, be denoted by Γ𝐶 (for Correctness), Γ𝑆 (for Soundness)

and Γ𝑍 (for Zero-Knowledge). With their different associated ad-

versary structures being Δ𝐶 , Δ𝑆 and Δ𝑍 . We allow different access

structures to provide better flexibility in applications, as well as

more flexibility in designing protocols. To aid the reader one could

initially think of the threshold case of Γ𝐶 = Γ𝑆 = Γ𝑍 being all sub-

sets of size greater than 𝑛 − 𝑡 , and Δ𝐶 = Δ𝑆 = Δ𝑍 being all subsets

of the verifiers of size less than or equal to 𝑡 .

We letVD denote the precise set of dishonest verifiers in a given

protocol instance. We desire that at the end of the protocol, the

verifiers either output Abort, Success or Fail. Here, Success or Fail
imply that the proof was correct or not, respectively, while Abort
means that some verifiers or the prover may have aborted. In all

cases each honest party 𝑃 will obtain a non-empty list of parties

who aborted.

3.1.1 Distributed Correctness. Wefirst discuss correctness; as usual

this assumes an honest prover. In the case of VD ∉ Δ𝐶 then the

adversary has enough power to break correctness. In this case some

honest verifiers will abort, some will accept and some will fail - no

common guarantees can be made. Note in the case whenVD ∉ Δ𝐶 ,
the set 𝐶 that each honest verifier identifies as corrupt parties in

the case of abort, can be different for each of them, and they may

even identify honest parties as corrupted. In the case of failure

or success the honest verifiers may in addition identify cheating

verifiers. This is captured by the procedure Breakdown() in our

ideal functionality FDV−ZK, which can be found in Fig. 2.

However, whenVD ∈ Δ𝐶 then the parties obtain consensus of

output: either all honest verifiers output Success or they all out-

put Abort. In the latter case, the verifiers identify a set 𝐶𝐴 ≠ ∅
of dishonest verifiers which is the same for each honest verifier.

Consensus of output when VD ∈ Δ𝐶 is needed to avoid denial-

of-service attacks where a single dishonest verifier can make the

honest verifiers reject a valid proof. This is captured by the proce-

dure CompleteWithAbort() in our ideal functionality FDV−ZK.
Note that cheater identification is not necessary in the case

of honest majority access structures Γ𝐶 . This is because a simple

majority vote will result in the honest verifiers accepting the proof

(assuming consensus on accept). In the case of dishonest majority

the ability for the honest parties to identify a single dishonest party

(with consensus) will act as a deterrent to verifiers to act dishonestly.

Thus even in the case of acceptance we allow the identification of

dishonest verifiers so as to allow our functionality to capture the

dishonest majority case.

3.1.2 Distributed Soundness. Soundness considers the case of a

dishonest prover. We require that ifVD ∉ Δ𝑆 then the adversary

can get the honest verifiers to output anything it wants. Which is

again captured by the procedure Breakdown() in Fig. 2.

As we require the prover to input a witness𝑤 , ifVD ∈ Δ𝑆 and

if (𝑥,𝑤) ∈ R then the worst P can do is get some honest verifiers

to abort and identify a cheating party. This is again captured by

the procedure CompleteWithAbort() in Fig. 2. On the other hand,

if (𝑥,𝑤) ∉ R then the best P can achieve is to get some honest veri-

fiers to abort and identify a cheating party (which could include the

prover). Again, this is captured by the procedure FailWithAbort()
in Fig. 2.

3.1.3 Distributed Zero-Knowledge. Finally in the case of a honest

prover, ifVD ∉ Δ𝑍 then the adversary has enough power to break

the zero-knowledge property and potentially learn information

about𝑤 . But ifVD ∈ Δ𝑍 then the adversary cannot learn𝑤 .

It is straightforward to change FDV−ZK so that it only has unan-

imous abort. Another interesting strengthening is to not permit

identifiable aborts ifVD ∈ Δ𝐶 . Since this setting seems to be not

achievable if a majority of verifiers is corrupted for any interesting

protocol
4
, we have opted for a definition that is achievable in both

the honest and dishonest-majority setting.

In the full version we present some trivial (but potentially ineffi-

cient or not necessarily suitably secure) protocols which illustrate

the definition captured by FDV−ZK.

4 PREPROCESSING FOR DISTRIBUTED
PROOFS WITH HONEST MAJORITY 𝑡 < 𝑛/2

We begin by outlining the preprocessing phase for our proof in

the presence of a honest majority. This preprocessing can then

be used with the actual online phases of the proof, which require

𝑡 < 𝑛/4 (Section 5) or 𝑡 < 𝑛/3 (Section 6) corruptions. The ideal

preprocessing functionality F 𝑡,𝑛
Prep

is described in Fig. 3. Both the

protocols and functionality are defined over an extension field of

appropriate degree to allow for Shamir secret sharing with 𝑛 parties.

We focus on the case of a binary field F
2
𝑘 with 2

𝑘 > 𝑛, but our

protocols are easily adapted to F𝑞 for any 𝑞 > 𝑛. We also use a

repetition factor 𝜌 such that 2
𝑘 ·𝜌 > 2

sec
, where sec is our security

parameter.

In the protocol Πt,n
Prep that implements the preprocessing func-

tionality, and given in Fig. 4, each of the 𝑛 verifiersV𝑖 samples a

random 𝑟𝑖 and sends a share of ⟨𝑟𝑖 ⟩𝑡 to each other verifier and 𝑟𝑖 to

the prover P. These values are checked for consistency by forming

a random linear combination using random values 𝛼𝑖 . This random

linear combination simultaneously guarantees the correctness of

the underlying secret known to the prover and the consistency of

the shares on a degree 𝑡 polynomial. It can be repeated to achieve

negligible soundness error. Next, let ⟨®𝑟 ⟩𝑡 be the vector representing
all sharings made by the verifiers, and let 𝑀𝑡 be an (𝑛 − 𝑡) × 𝑛
Vandermonde matrix. The verifiers locally compute the sharings

⟨®𝑠⟩𝑡 = 𝑀𝑡 · ⟨®𝑟 ⟩𝑡 , while the prover computes ®𝑠 = 𝑀𝑡 · ®𝑟 . This ran-
domness extraction ensures that out of these 𝑛 shares, of which

𝑡 are known to the adversary, 𝑛 − 𝑡 uniformly random shares are

recovered, unknown to any other party than the prover. Several

instances of this preprocessing phase are performed in parallel to

obtain more than 𝑛 − 𝑡 secret sharings, with (at least) an additional

𝜌 sharings produced so as to verify the entire production is correct.

The protocol assumes a PKI in which each verifierV𝑖 has a public
key 𝔭𝔨𝑖 and a signing key 𝔰𝔨𝑖 , which enables them to authenticate

sent messages𝑚 with a digital signature Sign(𝔰𝔨𝑖 ,𝑚). In the case

when the consistency check fails, this allows parties to reveal the

shares that they obtained from each other. This means that parties

can identify cheaters by either identifying incorrectly generated

4
It is achievable if the prover broadcasts a publicly verifiable proof to all verifiers. If the

verifiers need to use a secret-shared state to validate the proof, then dishonest-majority

completeness implies that < 𝑛/2 verifiers are sufficient to perform this validation

and possibly reconstruct the secret state. But then, this implies that < 𝑛/2 corrupted
verifiers can use their knowledge to aid a dishonest prover to break soundness.

298

Feta: Efficient Threshold Designated-Verifier Zero-Knowledge Proofs CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Functionality FDV−ZK

This functionality communicates with 𝑛 + 1 parties P,V1, . . . ,V𝑛 as well as the ideal adversary S. We call P the prover and

V = {V1, . . . ,V𝑛} the verifiers. For simplicity, we writeW = V ∪ {P}. The functionality is instantiated with descriptions of three

access structures Γ𝐶 , Γ𝑆 , Γ𝑍 ⊆ 2
V
, and their associated adversary structures Δ𝐶 , Δ𝑆 and Δ𝑍 . The adversary structures denote which

parties S can corrupt without leading to a loss of correctness, soundness or zero-knowledge. Let init be a flag that is initially ⊥.
Corrupt: Before any other command, S sends (Corrupt,D) where D ⊆ W. Let H = W \ D. If P ∈ D then we call the

prover “corrupted”, otherwise “honest”. We callVD = V ∩D the corrupted verifiers andVH = V \VD the honest verifiers.

Init: On input (Init) by all parties inH :

(1) Send (Init?) to S. If S responds with (ok) then send (InitOK) to all parties in H and set init ← ⊤. Otherwise send
(Abort) to all parties inH .

ProveHonest: On input (Prove, 𝑥,𝑤) by P ∈ H as well as (Prove, 𝑥) by all parties inVH , if init = ⊤ and if (𝑥,𝑤) ∈ 𝑅𝐿 :
(1) IfVD ∉ Δ𝑍 then send (Prove?, 𝑥,𝑤) to S, otherwise send (Prove?, 𝑥).
• IfVD ∉ Δ𝐶 then run Breakdown().
• IfVD ∈ Δ𝐶 then run CompleteWithAbort().

ProveDishonest: On input (Prove, 𝑥,𝑤) by S if P ∈ D as well as (Prove, 𝑥) by all parties inVH and if init = ⊤:
• IfVD ∉ Δ𝑆 orVD ∉ Δ𝐶 then run Breakdown().
• IfVD ∈ Δ𝑆 ,VD ∈ Δ𝐶 and (𝑥,𝑤) ∈ 𝑅𝐿 then run CompleteWithAbort().
• IfVD ∈ Δ𝑆 ,VD ∈ Δ𝐶 and (𝑥,𝑤) ∉ 𝑅𝐿 then run FailWithAbort().

Method Breakdown():
(1) Wait for a message (Abort, 𝐴, 𝐹, 𝑆,𝐶) from S where 𝐴, 𝐹, 𝑆 are disjunct sets, 𝐴 ∪ 𝐹 ∪ 𝑆 = H , 𝐶𝐴 : H → 2

W
.

(2) Send (Abort, 𝑥,𝐶𝐴 (𝑃)) to each 𝑃 ∈ 𝐴, (Fail, 𝑥,𝐶𝐴 (𝑃)) to each 𝑃 ∈ 𝐹 and (Success, 𝑥,𝐶𝐴 (𝑃)) to each 𝑃 ∈ 𝑆 .
Method CompleteWithAbort():
(1) Wait for a message (Abort, 𝑏,𝐶𝐴) from S where 𝐶𝐴 ⊆ VD , 𝑏 ∈ {0, 1} and 𝐶𝐴 ≠ ∅ if 𝑏 = 0.

(2) If 𝑏 = 0 then send (Abort, 𝑥,𝐶𝐴) to each 𝑃 ∈ H , otherwise send (Success, 𝑥,𝐶𝐴) to each 𝑃 ∈ H .

Method FailWithAbort():
(1) Wait for a message (Abort, 𝑏,𝐶𝐴) from S where 𝐶𝐴 ⊆ VD , 𝑏 ∈ {0, 1} and 𝐶𝐴 ≠ ∅ if 𝑏 = 0.

(2) If 𝑏 = 0 then send (Abort, 𝑥,𝐶𝐴) to each 𝑃 ∈ H , otherwise send (Fail, 𝑥,𝐶𝐴) to each 𝑃 ∈ H .

Figure 2: Functionality FDV−ZK for Distributed-Verifier ZK

Functionality F 𝑡,𝑛
Prep

This functionality communicates with 𝑛 + 1 parties P,V1, . . . ,V𝑛 as well as the ideal adversary S, where P denotes the prover and

V = {V1, . . . ,V𝑛} the verifiers. LetW = V ∪ {P} and 𝑡 < 𝑛/2.
Corrupt: Before any other command, S sends (Corrupt,D) where D ⊆ W. Let H = W \ D. If P ∈ D then we call the

prover “corrupted”, otherwise “honest”. We callVD = V ∩D the corrupted verifiers andVH = V \VD the honest verifiers.

Distribute Shares: On input (Shares, 𝑛𝑆) from all parties

(1) Sample 𝑛𝑆 random values 𝑠𝑖 ∈ F2𝑘 for 𝑖 ∈ [𝑛𝑆].
(2) If P is corrupted then send {𝑠𝑖 }𝑖∈[𝑛𝑆] to S.
(3) Wait for a message (Abort,𝐶𝐴) from S where ∅ ≠ 𝐶𝐴 ⊆ D or (Continue, {𝑠 (𝑝)

𝑖
}𝑝∈VD ,𝑖∈[𝑛𝑆]).

• If S inputs Abort then (Abort,𝐶𝐴) is returned to each party inH and the functionality aborts.

• If S inputs Continue then generate a Shamir sharing of 𝑠𝑖 of degree 𝑡 for each 𝑖 ∈ [𝑛𝐻], which we denote by ⟨𝑠𝑖 ⟩𝑡 . The
individual Shamir shares are denoted by 𝑠

(𝑗)
𝑖
∈ F

2
𝑘 for 𝑗 ∈ [𝑛]. The sharing is chosen so that 𝑠

(𝑗)
𝑖

= 𝑠
(𝑗)
𝑖

. The values 𝑠𝑖

are passed to P if P ∈ H , whilst the values 𝑠
(𝑝)
𝑖

are given toV𝑝 for 𝑝 ∈ VH .

Figure 3: Functionality F 𝑡,𝑛
Prep

for preprocessing in the case when 𝑡 < 𝑛/2

299

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Carsten Baum, Robin Jadoul, Emmanuela Orsini, Peter Scholl, & Nigel P. Smart

Protocol Πt,n
Prep

We let𝑀𝑡 be an (𝑛 − 𝑡) ×𝑛 Vandermonde matrix for randomness extraction. The protocol is parametrized by the number of verifiers

𝑛, number of corruptions 𝑡 < 𝑛/2 and two integers 𝑛𝑆 and 𝜌 .

The protocol uses the hybrid functionality F
Rand

. If F
Rand

sends (Abort,𝐶𝐴) then each party in the protocol outputs (Abort,𝐶𝐴)
and terminates.

Distribute Shares:
(1) Each partyV𝑖 ∈ V executes the following protocol:

(a) For 𝑗 ∈ [⌈(𝑛𝑆 + 𝜌)/(𝑛 − 𝑡)⌉] do
(i) Sample 𝑟𝑖, 𝑗 ∈ F2𝑘 and generate a sharing ⟨𝑟𝑖, 𝑗 ⟩𝑡 .
(ii) Send (𝑟 (𝑝)

𝑖, 𝑗
, Sign(𝔰𝔨𝑖 , 𝑟 (𝑝)𝑖, 𝑗

)) toV𝑝 for 𝑝 ≠ 𝑖 . Note this is done as a single message for all 𝑗 values needed.

(iii) Send (𝑟𝑖, 𝑗 , Sign(𝔰𝔨𝑖 , 𝑟𝑖, 𝑗)) to P, again this is done as a single message for all 𝑗 values needed.

(iv) On receiving (𝑟 (𝑖)
𝑝,𝑗
, 𝜎
(𝑖)
𝑝,𝑗
) = (𝑟 (𝑖)

𝑝,𝑗
, Sign(𝔰𝔨𝑝 , 𝑟 (𝑖)𝑝,𝑗

)) from partyV𝑝 , verify the signature. If the signature 𝜎
(𝑖)
𝑝,𝑗

does not

hold or ifV𝑝 did not send any message at all

(A) Broadcast (Complaint, 𝑖,V𝑝).
(B) Upon receiving (Complaint, 𝑖,V𝑝) partyV𝑝 publicly sends (𝑟 (𝑖)

𝑝,𝑗
, 𝜎) to all parties, who forward it toV𝑖 .

(v) Similarly, do the same for the signatures that P should obtain.

(2) For ℓ ∈ [𝜌] do as follows.

(a) Execute (𝛼1, 𝑗,ℓ , . . . , 𝛼𝑛,𝑗,ℓ) ← FRand ({V1, . . . ,V𝑛,P}, 𝑛, F2𝑘).
(b) Compute 𝑇

(𝑖)
ℓ
← ∑

𝑗

∑
𝑣∈[𝑛] 𝛼𝑣,𝑗,ℓ · 𝑟

(𝑖)
𝑣,𝑗

and broadcast 𝑇
(𝑖)
ℓ

.

(c) The prover P computes 𝑇ℓ ←
∑

𝑗

∑
𝑣∈[𝑛] 𝛼𝑣,𝑗,ℓ · 𝑟𝑣,𝑗 and broadcasts 𝑇ℓ .

(d) If the 𝑇
(𝑖)
ℓ

do not form a valid degree-𝑡 sharing of 𝑇ℓ then go to Abort(ℓ).
(3) For 𝑗 ∈ ⌈𝑛𝑆/(𝑛 − 𝑡)⌉ do
(a) 𝑐 ← (𝑗 − 1) · (𝑛 − 𝑡).
(b) The prover P computes and outputs (𝑠1+𝑐 , . . . , 𝑠𝑛−𝑡+𝑐)𝑇 = 𝑀𝑡 × (𝑟1, 𝑗 , . . . , 𝑟𝑛,𝑗)𝑇 ,
(c) V𝑖 ∈ V compute and output (⟨𝑠1+𝑐 ⟩𝑡 , . . . , ⟨𝑠𝑛−𝑡+𝑐 ⟩𝑡)𝑇 = 𝑀𝑡 × (⟨𝑟1, 𝑗 ⟩𝑡 , . . . , ⟨𝑟𝑛,𝑗 ⟩𝑡)𝑇 .

Abort(ℓ): Each V𝑖 holds 𝑟 (𝑖)𝑣,𝑗
, 𝜎
(𝑖)
𝑣,𝑗

for 𝑣 ∈ [𝑛] and 𝑗 ∈ [⌈(𝑛𝑆 + 𝜌)/(𝑛 − 𝑡)⌉], while P holds 𝑟𝑣,𝑗 , 𝜎𝑣,𝑗 for 𝑣 ∈ [𝑛] and 𝑗 ∈
[⌈(𝑛𝑆 + 𝜌)/(𝑛 − 𝑡)⌉] (for simplicity, eachV𝑖 signs a share 𝑟 (𝑖)𝑖, 𝑗

for itself).

(1) Each verifier V𝑖 broadcasts {𝑟 (𝑖)𝑣,𝑗
, 𝜎
(𝑖)
𝑣,𝑗
}𝑣,𝑗 , while P broadcasts {𝑟𝑣,𝑗 , 𝜎𝑣,𝑗 }𝑣,𝑗 . If any signature 𝜎

(𝑖)
𝑣,𝑗

does not hold then

identifyV𝑖 as a cheater and abort. If any 𝜎𝑣,𝑗 does not hold then identify P as cheater and abort.

(2) If for some 𝑖 ∈ [𝑛] it holds that 𝑇 (𝑖)
ℓ

≠
∑

𝑣,𝑗 𝛼𝑣,𝑗,ℓ · 𝑟
(𝑖)
𝑣,𝑗

then identify V𝑖 as cheater and abort. If it holds that 𝑇ℓ ≠∑
𝑗

∑
𝑣 𝛼𝑣,𝑗,ℓ · 𝑟𝑣,𝑗 then identify P as a cheater and abort.

(3) For anyV𝑣 , if 𝑟
(1)
𝑣,𝑗
, . . . , 𝑟

(𝑛)
𝑣,𝑗

do not form a valid degree-𝑡 sharing of 𝑟𝑣,𝑗 then identifyV𝑣 as a cheater and abort.

Figure 4: Protocol for preprocessing with 𝑡 < 𝑛/2

sharings or incorrectly formed messages. Signatures prevent dis-

honest parties from framing honest parties by claiming to have

obtained shares that the honest party never sent.

Theorem 4.1. Assuming that Sign is an unforgeable signature
scheme, then the protocol Πt,n

Prep in Fig. 4 securely implements the

functionality F 𝑡,𝑛
Prep

in the F
Rand

-hybrid model against any static
adversary corrupting at most 𝑡 < 𝑛/2 parties except with probability
2
−𝜌 ·𝑘+1.

The proof is based on the following three lemmas. First, we

show that if a dishonest party creates an incorrect sharing, then the

protocol enters Abort with overwhelming probability. Second, we

show that if a verifier sends an incorrect share to an honest prover,

then the protocol enters Abort with overwhelming probability.

Finally, we show that upon entering Abort at least one dishonest
party is identified, and only dishonest parties are identified. The

proofs of these Lemmas, Theorem 4.1, are given in the full version.

Lemma 4.2. LetVH = V ∩H and assume 𝑡 < 𝑛/2. For 𝑣 ∈ [𝑛],
consider the shares 𝑟 (𝑖)

𝑣,𝑗
for V𝑖 ∈ VH and let 𝑆𝑣,𝑗 be the unique

polynomials of smallest degree over F
2
𝑘 such that 𝑆𝑣,𝑗 (𝑖) = 𝑟 (𝑖)𝑣,𝑗

. If
there exist 𝑣, 𝑗 such that5 𝑑𝑒𝑔(𝑆𝑣,𝑗) > 𝑡 , then the protocol enters
Abort except with probability 2

−𝑘 ·𝜌 .

Lemma 4.3. LetVH = V ∩H and 𝑡 < 𝑛/2 and assume P ∈ H .
For 𝑣 ∈ [𝑛], consider the shares 𝑟 (𝑖)

𝑣,𝑗
of V𝑖 ∈ VH and let 𝑆𝑣,𝑗 be

5
Here we use that 𝑡 < 𝑛/2, as 𝑆𝑣,𝑗 could otherwise not be of degree > 𝑡 .

300

Feta: Efficient Threshold Designated-Verifier Zero-Knowledge Proofs CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

the unique polynomials of degree 𝑡 over F
2
𝑘 such that 𝑆𝑣,𝑗 (𝑖) = 𝑟 (𝑖)𝑣,𝑗

.
Furthermore, let 𝑟𝑣,𝑗 be the values received by P. If there exist 𝑣, 𝑗
such that 𝑆𝑣,𝑗 (0) ≠ 𝑟𝑣,𝑗 , then the protocol enters Abort except with
probability 2

−𝑘 ·𝜌 .

Lemma 4.4. Assuming unforgeability of Sign, then Abort always
terminates with at least one dishonest party being identified. Further-
more, it only terminates identifying dishonest parties.

5 DISTRIBUTED PROOF WITH 𝑡 < 𝑛/4
CORRUPTIONS

In this section we describe a protocol which deals with 𝑡 < 𝑛/4
corruptions of the verifiers, i.e. Γ𝐶 , Γ𝑆 and Γ𝑍 are access structures

consisting of all sets with more than 𝑛 − 𝑡 verifiers in them. The

protocol Π4t, given in Fig. 5, forms the basis of our following proto-

col in the case of 𝑡 < 𝑛/3, indeed it shares the same pre-processing

phase from the previous section.

In the setting where we have 𝑡 < 𝑛/4 corruptions we can rely

on the Reed-Solomon decoding to robustly open secret sharings

of degree up to 2𝑡 . Thus we can efficiently verify multiplications.

We assume the statement to be verified is given by a circuit 𝐶 over

F
2
𝑘 which will evaluate to zero only on input of the witness𝑤 , i.e.

𝐶 (𝑤) = 0.

Given the values ®𝑠 generated in pre-processing, the prover can

trivially “commit” to the witness𝑤 as well as the outputs of all the

multiplication gates of 𝐶 by broadcasting the difference between ®𝑠
and these values towards the verifiers. The verifiers can then evalu-

ate the circuit as follows: to obtain the wire output values of a gate,

they can either simply apply the corresponding linear operation

directly on their shares, or obtain a sharing for the output wire

from the prover’s broadcast for multiplications. After evaluating

the entire circuit in this manner, the verifiers can robustly open

⟨𝐶 (𝑤)⟩𝑡 and verify it correctly evaluates to zero.

The verifiers also have to check that the commitments the prover

provided for the outputs of the multiplication gates are consistent.

For each verifierV𝑖 , let𝑎 (𝑖)𝑗 be the share of the left input correspond-

ing to the 𝑗th multiplication/AND gate, 𝑗 ∈ [𝑛𝑆]. Correspondingly,
𝑏
(𝑖)
𝑗

is the share for the right input and 𝑐
(𝑖)
𝑗

for the output. Then

𝑐
(𝑖)
𝑗

= 𝑎
(𝑖)
𝑗
· 𝑏 (𝑖)

𝑗
is a degree 2 · 𝑡 sharing of the value 𝑐 𝑗 = 𝑎 𝑗 · 𝑏 𝑗

output by this multiplication gate. We represent this sharing by

⟨𝑐 𝑗 ⟩2·𝑡 . The proof proceeds by verifying that the values held in

⟨𝑐 𝑗 ⟩2·𝑡 are identical with the values held in ⟨𝑐 𝑗 ⟩𝑡 = ⟨𝑠 𝑗 ⟩𝑡 − (𝑠 𝑗 −𝑐 𝑗),
and provided by the prover, therefore checking that all committed

multiplication gate outputs were correct.

To achieve this, the verifiers check that a random linear combina-

tion over all products of the inputs corresponds to the same linear

combination over the gate outputs. More precisely, for each multi-

plication gate 𝑗 ∈ [𝑛𝑆], the verifiers sample a uniformly random

multiplier 𝛽 𝑗 and locally compute shares 𝐴(𝑖) =
∑

𝑗 𝛽 𝑗 · 𝑎
(𝑖)
𝑗
· 𝑏 (𝑖)

𝑗
,

and𝐶 (𝑖) =
∑

𝑗 𝛽 𝑗 ·𝑐
(𝑖)
𝑗

. Then, since 𝑡 < 𝑛/4, the verifiers reliably re-
construct ⟨𝐴⟩2𝑡 and ⟨𝐶⟩𝑡 . If𝐴 = 𝐶 then the verifiers accept the proof,

otherwise they reject. Cheater identification can be achieved in a

straightforward manner thanks to the error correction during the

robust reconstruction. Moreover, the check is made zero-knowledge

by letting P share additional valid random multiplication triples.

Theorem 5.1. If 𝑡 < 𝑛/4, then protocol Π4t secure implements
the functionality FDV−ZK in the (F 𝑡,𝑛

Prep
, F

Rand
)-hybrid model with

Γ𝐶 = Γ𝑆 = Γ𝑍 being the set of all subsets of verifiers of size 𝑛 − 𝑡 or
more, except with probability 1/|F|.

Proof (Sketch) The main observation is that given a correct shar-

ing of random values ⟨𝑠 𝑗 ⟩𝑡 from the preprocessing, the verifiers can

check the validity of the proof by evaluating the circuit 𝐶 on input

⟨𝑤 𝑗 ⟩𝑡 = ⟨𝑠 𝑗 ⟩𝑡 − (𝑠 𝑗 −𝑤 𝑗) and using multiplicative shares ⟨𝑐 𝑗 ⟩𝑡 =

⟨𝑠 𝑗 ⟩𝑡 − (𝑠 𝑗 −𝑐 𝑗), which are consistent Shamir’s shares of the witness

value and output of the multiplication gates provided by the prover.

Thismeans that all the honest shares are guaranteed to be consistent

with the same 𝑡-degree and 2𝑡-degree polynomials. Therefore, since

𝑡 < 𝑛/4, the Reed-Solomon reconstruction allows honest parties

to obtain the correct output of the circuit’s evaluation by running

RobustReconstruct(⟨𝑜⟩𝑡 , 𝑡) and also to correct errors on the degree

2𝑡-polynomial derived by RobustReconstruct(⟨𝐴⟩2𝑡 − ⟨𝐶⟩𝑡 , 𝑡).
In this way honest verifiers can detect an incorrect proof, either

because 𝑜 ≠ 0 or the multiplication check fails; moreover the re-

construction algorithm also allows to detect errors, i.e. incorrect

shares from dishonest verifiers, and hence identify cheaters.

In the simulation, if the prover is corrupt, the adversary provides

the proof to the simulator, which can extract the witness using the

preprocessed values obtained by emulating the preprocessing func-

tionality. If the proof is incorrect, S rejects the proof and checks if

during the verification dishonest verifiers sent inconsistent shares,

identifying cheaters.

A more detailed proof of this theorem is given in the full version.

6 DISTRIBUTED PROOF WITH 𝑡 < 𝑛/3
CORRUPTIONS

The general approach for this setting will be very similar to the

case 𝑡 < 𝑛/4 described in the previous section. The main difference

is that now we can no longer robustly reconstruct a degree 2𝑡

polynomial, so we will instead rely on the Schwartz-Zippel lemma

to check the correctness of the multiplications. More precisely, we

use a checking method similar to the one used in [6, 11]. We first

transform the 𝑛𝑆 multiplication gates into an inner product triple

by taking a random linear combination and updating the left inputs

to the multiplications correspondingly. Given a challenge from the

verifiers, this operation is entirely local.

This inner product triple is then repeatedly compressed by ap-

plying the Schwartz-Zippel lemma, until only a final, single mul-

tiplication triple remains. This final triple can be checked by the

verifiers by robustly opening it. The prover adds an extra random

multiplication to preserve the zero-knowledge property in this

process. To avoid log𝑛𝑆 rounds of communication between the

prover and the verifiers, we apply the Fiat-Shamir transform to

make the process of proving non-interactive. We also use the Fiat-

Shamir transform to compute the initial re-randomization factors.

For this to work we apply a minor change to the preprocessing

functionality F 𝑡,𝑛
Prep

, so that it additionally outputs a random string

a ∈ F_
2
to each parties P,V1, . . . ,V𝑛 . This is used in the random

oracle to bind the statement and the proof to this value. The com-

pression itself is performed as follows. Assume we have an inner

301

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Carsten Baum, Robin Jadoul, Emmanuela Orsini, Peter Scholl, & Nigel P. Smart

Protocol Π4t

Let 𝐶 be the circuit to be proved; the prover P is assumed to know an input witness𝑤 such that 𝐶 (𝑤) = 0.

Let 𝑛𝑆 denote the number of AND gates in the circuit, 𝑛𝑊 the length of the witness𝑤 and 𝜌 a positive integer.

Let CheckMult and OutputRec be two additional flags initially set to ⊤ and ⊥ respectively.

Init: Call F 𝑡,𝑛
Prep

, so that P obtains 𝑠𝑖 and the verifiersV1, . . . ,V𝑛 obtain ⟨𝑠𝑖 ⟩𝑡 for 𝑖 ∈ [𝑛𝑆 +𝑛𝑊 + 3𝜌], i.e.V𝑗 obtains 𝑠
(𝑗)
𝑖
, 𝑗 ∈ [𝑛].

Set 𝑥 𝑗 = 𝑠 𝑗+𝑛𝑊 +𝑛𝑠+𝜌 and 𝑦 𝑗 = 𝑠 𝑗+𝑛𝑊 +𝑛𝑠+2𝜌 , 𝑗 ∈ [𝜌].
Prove: The prover “evaluates” the circuit as follows:
(1) Compute the difference between the input wire values𝑤𝑖 and the pre-processed values 𝑠𝑖 , i.e.𝑤𝑖 − 𝑠𝑖 , 𝑖 ∈ [𝑛𝑊].
(2) Evaluate the circuit gate-by-gate:

(a) For every linear gate, simply compute the resulting wire value

(b) For each AND gate, compute the resulting wire value 𝑐 𝑗 ← 𝑎 𝑗 · 𝑏 𝑗 and 𝑐 𝑗 − 𝑠 𝑗+𝑛𝑊 , 𝑗 ∈ [𝑛𝑆].
(c) Compute 𝜌 additional random triples as 𝑥 𝑗 · 𝑦 𝑗 = 𝑧 𝑗 , and 𝑧 𝑗 − 𝑠 𝑗+𝑛𝑊 +𝑛𝑆 , 𝑗 ∈ [𝜌]

(3) Set the proof to be the concatenation of all the values {𝑤𝑖 − 𝑠𝑖 }𝑖∈[𝑛𝑊] , {𝑐 𝑗 − 𝑠 𝑗+𝑛𝑊 } 𝑗∈[𝑛𝑆] , and {𝑧 𝑗 − 𝑠 𝑗+𝑛𝑊 +𝑛𝑆 } 𝑗∈[𝜌] .
Verify: The verifiersV1, . . . ,V𝑛 jointly check the circuit evaluation:

(1) Evaluate the circuit within the Shamir secret sharing, computing a share of the output wire ⟨𝑜⟩𝑡 :
(a) Shares of the input wires can be computed as ⟨𝑤𝑖 ⟩𝑡 ← ⟨𝑠𝑖 ⟩𝑡 + (𝑤𝑖 − 𝑠𝑖) for 𝑖 ∈ [𝑛𝑊].
(b) Shares of the output wire values for an AND gate can be computed as

⟨𝑐 𝑗 ⟩𝑡 ← ⟨𝑠 𝑗+𝑛𝑊 ⟩𝑡 + (𝑐 𝑗 − 𝑠 𝑗+𝑛𝑊), for 𝑗 ∈ [𝑛𝑆] .

(c) A degree 2 · 𝑡 sharing ⟨𝑐 𝑗 ⟩2·𝑡 of this same value is computed by eachV𝑖 as 𝑐 (𝑖)𝑗 ← 𝑎
(𝑖)
𝑗
· 𝑏 (𝑖)

𝑗
.

(d) Linear gates can be evaluated linearly over the shares in the degree 𝑡 sharing.

(e) Recompute ⟨𝑥𝑖 ⟩𝑡 = ⟨𝑠𝑖+𝑛𝑊 +𝑛𝑠+𝜌 ⟩𝑡 , ⟨𝑦𝑖 ⟩𝑡 = ⟨𝑠𝑖+𝑛𝑊 +𝑛𝑠+2𝜌 ⟩𝑡 and ⟨𝑧𝑖 ⟩𝑡 ← ⟨𝑠𝑖+𝑛𝑊 +𝑛𝑠 ⟩𝑡 + (𝑧𝑖 − 𝑠𝑖+𝑛𝑊 +𝑛𝑠). Furthermore,

compute a degree-2𝑡 sharing of 𝑧𝑖 by locally multiplying the shares of 𝑥𝑖 , 𝑦𝑖 as in Step 1c.

(2) The verifiers call RobustReconstruct(⟨𝑜⟩𝑡 , 𝑡), to obtain (𝑜, flag𝑜).
(3) If 𝑜 ≠ 0:

• If flag𝑜 = (correct, ∅) then output Fail.
• If flag𝑜 = (incorrect,𝐶𝑜), then output the dishonest verifiers in 𝐶𝑜 and Fail.

(4) Else, set OutputRec = ⊤. If flag𝑜 = (incorrect,𝐶𝑜), identify the dishonest verifiers in 𝐶𝑜 .

(5) Multiplications check: Verifiers repeat 𝜌 times the following.

(a) Call (𝛽1, . . . , 𝛽𝑛𝑆+1) ← FRand ({V1, . . . ,V𝑛}, 𝑛𝑆 + 1, F2𝑘).
(b) Compute

⟨𝐴⟩2𝑡 =
∑︁

𝑗∈[𝑛𝑆]
𝛽 𝑗 · ⟨𝑐 𝑗 ⟩2𝑡 + 𝛽𝑛𝑆+1 · ⟨𝑧𝑖 ⟩2𝑡 and ⟨𝐶⟩𝑡 =

∑︁
𝑗∈[𝑛𝑆]

𝛽 𝑗 · ⟨𝑐 𝑗 ⟩𝑡 + 𝛽𝑛𝑆+1 · ⟨𝑧𝑖 ⟩𝑡

(c) Run RobustReconstruct(⟨𝐴⟩2𝑡 − ⟨𝐶⟩𝑡 , 𝑡), to obtain (𝑇, flag𝑇)
(d) If 𝑇 ≠ 0, set CheckMult = ⊥. Moreover,

• If flag𝑇 = (correct, ∅), then output Fail.
• If flag𝑇𝑣 = (incorrect,𝐶𝑀), then identify the dishonest verifiers in flag𝑇𝑣 and output Abort

(6) If bothCheckMult = ⊤ andOutputRec = ⊤, accept the proof and identify possible dishonest verifiers𝐶𝐴 = 𝐶𝑜∪{𝐶𝑀𝑣
}𝑣∈[𝜌]

Figure 5: Protocol Π4t for 𝑡 < 𝑛/4

product triple ((𝑥𝑖)1≤𝑖≤𝑁 , (𝑦𝑖)1≤𝑖≤𝑁 , 𝑧), such that 𝑧 =
∑𝑁
𝑖=1 𝑥𝑖 · 𝑦𝑖 ,

and that 𝑁 is a multiple of two (otherwise, we implicitly pad the

𝑥𝑖 and 𝑦𝑖 by zeroes). The prover then interpolates 𝑁 polynomi-

als of degree 1, 𝑓𝑘 (𝑥) and 𝑔𝑘 (𝑥), such that 𝑓𝑘 (𝑗) = 𝑥
2·𝑘+𝑗 and

𝑔𝑘 (𝑗) = 𝑦2·𝑘+𝑗 = 𝑦 𝑗 , for 𝑗 ∈ [2]. Furthermore, define the polyno-

mial of degree 2 ℎ(𝑥) = ∑𝑁
2

𝑘=1
𝑓𝑘 (𝑥) · 𝑔𝑘 (𝑥) = ℎ1 + ℎ2 · 𝑥 + ℎ3 · 𝑥2.

Observe that by construction, 𝑧 =
∑
2

𝑗=1 ℎ(𝑗) = ℎ2 + ℎ3. The prover
commits to the coefficients of ℎ(𝑥) so that the verifiers can eval-

uate it with only linear operations. Given the relation between 𝑧

and those coefficients above, the verifiers can recover a commit-

ment to ℎ3 from ⟨𝑧⟩𝑡 , and ⟨ℎ2⟩𝑡 through only linear operations,

allowing the prover to eliminate a commitment to ℎ3 from the

proof. The compressed inner product triple can now be obtained

as ((𝑓𝑘 (𝑟))1≤𝑘≤𝑁 /2, (𝑔𝑘 (𝑟))1≤𝑘≤𝑁 /2, ℎ(𝑟)) for a randomly chosen

value of 𝑟 .

To verify the proof, the verifiers check that the circuit output

reconstructs to 0 and that the final multiplication triple is correct.

The interpolation of 𝑓𝑘 (𝑥) and 𝑔𝑘 (𝑥) is linear, so the verifiers can

perform the operation locally over the secret sharing, and with the

302

Feta: Efficient Threshold Designated-Verifier Zero-Knowledge Proofs CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Protocol-Π3t

Let 𝐶 be the circuit to be proved; the prover P is assumed to know an input witness𝑤 such that 𝐶 (𝑤) = 0.

Let 𝑛𝑆 denote the number of AND gates in the circuit, 𝑛𝑊 the length of the witness𝑤 , and 𝜎 = ⌈log
2
𝑛𝑆 ⌉. Let 𝐾 = F

2
𝑘 and 𝐿 = F

2
𝜌 ·𝑘 ,

with 𝜙 : 𝐾 → 𝐿 the field homomorphism that embeds 𝐾 in 𝐿. The protocol uses a hash function modelled as a random oracle. For

secret sharings in 𝐿, let the evaluation points of verifierV𝑖 be 𝜙 (𝑖 ∈ 𝐾).
Init: Call F 𝑡,𝑛

Prep
in 𝐾 , so that P obtains 𝑠𝑖 and the verifiersV1, . . . ,V𝑛 obtain ⟨𝑠𝑖 ⟩𝑡 for 𝑖 ∈ [𝑛𝑆 +𝑛𝑊], i.e.V𝑗 obtains 𝑠

(𝑗)
𝑖
, 𝑗 ∈ [𝑛].

Call F 𝑡,𝑛
Prep

in 𝐿, so that P obtains 𝑆𝑖 and the verifiers obtain ⟨𝑆𝑖 ⟩𝑡 for 𝑖 ∈ [3 + 2 · 𝜎]. All parties obtain a random string a ∈ F_
2
.

Prove: The prover “evaluates” the circuit as follows:
(1) Compute the difference between the input wire values𝑤𝑖 and the pre-processed values 𝑠𝑖 , i.e.𝑤𝑖 − 𝑠𝑖 , 𝑖 ∈ [𝑛𝑊].
(2) Evaluate the circuit gate-by-gate:

(a) For every linear gate, simply compute the resulting wire value

(b) For each AND gate, compute 𝑐 𝑗 ← 𝑎 𝑗 · 𝑏 𝑗 and 𝑐 𝑗 − 𝑠 𝑗+𝑛𝑊 , 𝑗 ∈ [𝑛𝑆]. Let 𝐴 𝑗 = 𝜙 (𝑎 𝑗), 𝐵 𝑗 = 𝜙 (𝑏 𝑗) and 𝐶 𝑗 = 𝜙 (𝑐 𝑗).
(3) Compute an additional random multiplication triple (𝐴, 𝐵,𝐶) ∈ 𝐿3, and compute 𝐴 − 𝑆1, 𝐵 − 𝑆2, 𝐶 − 𝑆3.
(4) Set 𝜋 to be the concatenation of all committed values so far: {𝑤𝑖 − 𝑠𝑖 }𝑖∈[𝑛𝑊] , {𝑐 𝑗 − 𝑠 𝑗+𝑛𝑊 } 𝑗∈[𝑛𝑆] , 𝐴 − 𝑆1, 𝐵 − 𝑆2, 𝐶 − 𝑆3.
(5) Randomize the multiplication triples (𝐴 𝑗 , 𝐵 𝑗 ,𝐶 𝑗 = 𝐴 𝑗 · 𝐵 𝑗) 𝑗 into an inner product triple ((𝑅 𝑗 · 𝐴 𝑗) 𝑗 , (𝐵 𝑗) 𝑗 ,

∑
𝑗 𝑅 𝑗 · 𝐶 𝑗),

where 𝑛𝑆 + 1 random value 𝑅 𝑗 are sampled, seeded with a hash of (𝜋, 𝑥, a).
(6) Compress the inner product triple 𝜎 times until a single multiplication triple remains. For 𝑗 ∈ [𝜎]:
(a) Parse the current inner product triple as ((𝑋𝑘)𝑘 , (𝑌𝑘)𝑘 , 𝑍), 𝑘 ∈ [𝑛𝑆/2𝑗]
(b) Interpolate the polynomials 𝑓𝑘 (𝑥) and 𝑔𝑘 (𝑥) such that 𝑓𝑘 (0) = 𝑋2·𝑘−1, 𝑓𝑘 (1) = 𝑋2·𝑘 , 𝑔𝑘 (0) = 𝑌2·𝑘−1 and 𝑔𝑘 (1) = 𝑌2·𝑘 .
(c) Define ℎ(𝑥) = ∑

𝑘 𝑓𝑘 (𝑥) · 𝑔𝑘 (𝑥) = ℎ1 + ℎ2 · 𝑥 + ℎ3 · 𝑥2.
(d) Append commitments to the coefficients ℎ1, ℎ2 of the polynomial ℎ(𝑥) to 𝜋 : {ℎ𝑖 − 𝑋3+2· 𝑗+𝑖 }𝑖∈[2] .
(e) Obtain a random field element 𝑇𝑗 ∈ 𝐿, seeded with a hash of the current value of 𝜋 .

(f) The inner product triple now becomes ((𝑓𝑘 (𝑇𝑗))𝑘 , (𝑔𝑘 (𝑇𝑗))𝑘 , ℎ(𝑇𝑗)).
The proof consists of the final value of 𝜋 .

Verify: The verifiersV1, . . . ,V𝑛 jointly check the circuit evaluation:

(1) Evaluate the circuit within the Shamir secret sharing on 𝐾 , computing a share of the output wire ⟨𝑜⟩𝑡 :
(a) Shares of the input wires can be computed as ⟨𝑤𝑖 ⟩𝑡 ← ⟨𝑠𝑖 ⟩𝑡 + (𝑤𝑖 − 𝑠𝑖) for 𝑖 ∈ [𝑛𝑊].
(b) Shares of the output wire values for an AND gate 𝑐 𝑗 = 𝑎 𝑗 · 𝑏 𝑗 can be computed as

⟨𝑐 𝑗 ⟩𝑡 ← ⟨𝑠 𝑗+𝑛𝑊 ⟩𝑡 + (𝑐 𝑗 − 𝑠 𝑗+𝑛𝑊), for 𝑗 ∈ [𝑛𝑆] .
Let ⟨𝐴 𝑗 ⟩𝑡 = 𝜙 (⟨𝑎 𝑗 ⟩𝑡), ⟨𝐵 𝑗 ⟩𝑡 = 𝜙 (⟨𝑏 𝑗 ⟩𝑡) and ⟨𝐶 𝑗 ⟩𝑡 = 𝜙 (⟨𝑐 𝑗 ⟩𝑡).

(c) Linear gates can be evaluated linearly over the shares in the degree 𝑡 sharing.

(2) The verifiers obtain 𝐴, 𝐵 and 𝐶 by similarly adding the commitment to the preprocessing shares.

(3) The verifiers call (𝑜, flag𝑜) ← RobustReconstruct(⟨𝑜⟩𝑡).
(a) If 𝑜 ≠ 0:

• If flag𝑜 = (correct, ∅) then output Fail.
• If flag𝑜 = (incorrect,𝐶𝑜), then output the dishonest verifiers in 𝐶𝑜 and Fail.

(b) If flag𝑜 = (incorrect,𝐶𝑜), identify the dishonest verifiers in 𝐶𝑜 .

(4) Obtain the same – secret-shared – randomization to an inner product triple as the prover, using the same random value 𝑅.

(5) Perform the analog of the prover’s compressions, for 𝑗 ∈ [𝜎]:
(a) Interpolate ⟨𝑓𝑘 (𝑥)⟩𝑡 and ⟨𝑔𝑘 (𝑥)⟩𝑡 similar to the prover.

(b) The polynomial ⟨ℎ(𝑥)⟩𝑡 can be recovered from the commitment to its coefficients, together with ⟨ℎ2⟩𝑡 = ⟨𝑍 ⟩𝑡 − ⟨ℎ2⟩𝑡 .
(c) Update the inner product triple to be the compressed version with the same random 𝑇𝑗 as the prover.

(6) Let the final remaining multiplication triple be (⟨𝑋 ⟩𝑡 , ⟨𝑌 ⟩𝑡 , ⟨𝑍 ⟩𝑡).
(7) Call (𝑤, flag𝑤) ← RobustReconstruct(⟨𝑤⟩𝑡 , 𝑡) for𝑤 ∈ {𝑋,𝑌, 𝑍 }. If flag𝑤 = (incorrect,𝐶𝑤), identify the cheaters in 𝐶𝑤 .

(8) If 𝑋 · 𝑌 ≠ 𝑍 , Fail. Otherwise accept the proof.

Figure 6: Protocol Π3t for 𝑡 < 𝑛/3

shares of the coefficients of ℎ(𝑥) the evaluation of all polynomials

in 𝑟 can also be performed locally.

Fig. 6 describes the protocol in detail. To ensure the soundness

of this protocol, the multiplication check and compression must be

performed over a large enough finite field. It is however possible to

303

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Carsten Baum, Robin Jadoul, Emmanuela Orsini, Peter Scholl, & Nigel P. Smart

keep the proof size small by performing the circuit evaluation over

a smaller finite field F
2
𝑘 such that 2

𝑘 > 𝑛 to allow for the secret

sharing. The (shares of the) inputs and outputs of the multiplication

gates are then lifted to an extension field F
2
𝜌 ·𝑘 to perform the

multiplication check with sufficient soundness.

Theorem 6.1. Let H be a random oracle that maps into F
2
𝜌 ·𝑘 .

If 𝑡 < 𝑛/3 then protocol Π3t described in Fig. 6 securely imple-
ments the functionality FDV−ZK against a static adversary in the
(F 𝑡,𝑛

Prep
, F

Rand
)-hybrid model with Γ𝐶 = Γ𝑆 = Γ𝑍 being the set of all

subsets of verifiers of size 𝑛 − 𝑡 or more, except with probability

𝜖 · log
2
(𝑛𝑆) + 𝑞(𝜖 + 2/|D| + 2−_)

where 𝑞 is the number of random oracle queries made by a malicious
prover, 𝜖 = 2

−𝜌 ·𝑘+2 and |D| = 2
−𝜌 ·𝑘 .

The main idea of the proof is similar to that of Theorem 5.1 and

the main difference is the multiplication check as described above.

A detailed proof of this theorem is given in the full version.

7 EXPERIMENTS
We implemented our protocols in C++ and tested with different

circuits and number of verifiers.

For experiments with less than 10 parties, our tests were run on

a cluster of computers running Ubuntu 20.04.2 with a ping time of

roughly 0.6 ms, and a total bandwidth of 9.41Gbit/s per machine.

The machines had either Intel i7-770K CPUs running at 4.2 GHz

with 32 GB of RAM, or Intel i9-9900 CPUs running at 3.1 GHz with

128 GB of RAM. For the other experiments (𝑛 > 10), we utilized

𝑛 + 1 machines on Amazon AWS. Each of these was an individual

c5.large instance in the eu-central-1 region, with a measured ping

of roughly 0.5 ms, and 4.17Gbit/s bandwidth. Each configuration

was run a total of 200 times and the median was taken to obtain

the presented running times.

We present experimental validation of the efficiency of our pro-

tocols for small circuits by presenting prover and verification times

for proving knowledge of an AES-128 key corresponding to a public

plaintext-ciphertext pair and a boolean circuit proving the knowl-

edge of a pre-image for the SHA-256 compression function. These

functions where chosen as the boolean circuits for these are read-

ily available, and well-studied. The AES-128 circuit has 6400 AND

gates, while the SHA-256 circuit has 22573 AND gates. We also

present results for a SHA-256 pre-image consisting of 10 512-bit

blocks, which gives a circuit of 1,317,424 total gates and 220,369

AND gates, and a circuit consisting solely of one million AND gates,

with 128 inputs. For all circuits and protocols we present results for

a system tolerating a single corrupted verifier (𝑡 = 1) and a total

of 𝑛 = 5 verifiers in Table 1. For the protocol for 𝑡 < 𝑛/3, we also
provide numbers for 𝑡 = 2 corruptions with 𝑛 = 7 parties in total.

In Fig. 7, we present results for 𝑛 ∈ {20, 40, 60, 80, 100} with the

maximum value for 𝑡 allowed by the protocols. Table 2 contains

more detailed results of our experiments with 𝑛 = 100 verifiers.

7.1 Results
Our experimental results are presented in Table 1 and Fig. 7. We can

immediately see that Π4t is a small factor more efficient than Π3t.

Both protocols have runtimes that allow for practical deployment.

Given that a threshold of 𝑡 < 𝑛/4 may be enough in a number of

practical situations, one can see that the more efficient Π4t can be

preferred.

We have already made some comparisons with other systems

in Section 1. Notice that [5, 14, 15] report comparable prover and

verification times for AES, however these papers use a more com-

pact description of the AES circuit over F
2
8 with S-boxes instead

of AND gates. We could utilize the same approach, obtaining bet-

ter runtimes. However, our goal is different from the one in these

papers as they specifically aim to obtain efficient post-quantum

signature schemes based on AES, while we support general circuits,

only using AES and SHA-256 as examples.

For protocol Π4t from Fig. 5, targeting 𝑡 < 𝑛/4, we selected the

finite field F
2
3 to accommodate the secret sharing, when 𝑛 < 7 and

F
2
7 for the other cases. We performed 𝜌 = 14 (resp. 𝜌 = 6) parallel

repetitions of the protocol to boost the statistical security to 2
−42

.

When looking at the trade-off between the field size of F
2
𝑘 and the

number of repetitions 𝜌 for this protocol, notice that the security

level will always be 2
−𝑘 ·𝜌

, regardless of how we distribute the

load across the two parameters. Similarly, the communication cost

among the verifiers does not depend on either 𝜌 or 𝑘 individually,

but only on the product 𝜌 · 𝑘 . Using a larger field size, however,

does increase the proof size and the communication cost of the

preprocessing phase, as those only depend on the field size, and

not on 𝜌 . Hence it should be preferred to use a smaller field with

more parallel repetitions, rather than increasing the field size to

target a security level for this protocol. The communication cost (in

terms of amount of bytes sent by each verifier) in the verification

protocol is 𝑂 (𝑛) in the case of protocol Π4t.

For Π3t in Fig. 6, targeting 𝑡 < 𝑛/3, we again choose to aim

for a security level of sec = 40 and let the maximum number of

queries the prover can make toH be 𝑞 = 2
40
. Similar to the above

case, we choose F
2
𝑘 = F

2
3 as the minimal field to accommodate

for the secret sharing for 𝑛 ≤ 7 and F
2
7 for the other cases; we let

F
2
𝜌 ·𝑘 = F

2
87 be the extension field, when 𝑛 ≤ 7, and F

2
𝜌 ·𝑘 = F

2
91 for

the other cases, to ensure soundness for all our evaluation circuits.

Large number of verifiers. Table 2 and Fig. 7 show that increasing

the number of parties has a small impact on proof and verification

time for protocol Π4t, while the change is a little more evident

in Π3t. There is only a small difference in the pre-processing ex-

ecution between our two protocols. Our Π4t protocol can prove

circuits of 1 million AND gates in less than 176/220ms for proof

and verification, respectively, with 100 verifiers; while our Π3t re-

quires proof/verification time of 563/892ms for the same circuit and

number of verifiers. In both protocols the proof size is ≈ 0.8MB.

Communication cost. The communication cost is𝑂 (𝑛) in the case
of protocol Π3t; which scales linearly with the number of verifiers,

however, importantly it is sublinear in the total circuit size. Note,

the threshold 𝑡 has no effect on the round or total communication

cost, it only increases the computational cost to perform a robust

opening. Also note, for small 𝑛, the computation time mostly dom-

inates for the prover, and we see only little impact of a growing

number of verifiers on the prover time. When the number of veri-

fiers grows larger, the communication starts to dominate. For the

304

Feta: Efficient Threshold Designated-Verifier Zero-Knowledge Proofs CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Number of Proof Preprocessing Prover Verifier

Protocol Circuit n t Field Parameters preproc. element size (bytes) Time (ms) Time (ms) Time (ms)

Π4t AES 5 1 F
2
3 𝜌 = 14 7000 2496 1.67 4.07 6.83

Π4t SHA-256 5 1 F
2
3 𝜌 = 14 23000 8449 3.45 7.06 14.02

Π4t SHA x10 5 1 F
2
3 𝜌 = 14 230000 84655 28.52 33.64 43.87

Π4t 1M AND 5 1 F
2
3 𝜌 = 14 1100000 375048 95.64 30.03 89.81

Π3t AES 4 1 F
2
3 F

2
87 6655 + 50 2811 2.01 7.81 8.43

Π3t SHA-256 4 1 F
2
3 F

2
87 22530 + 35 8808 3.41 22.83 24.24

Π3t SHA x10 4 1 F
2
3 F

2
87 225745 + 50 85079 24.46 50.32 50.94

Π3t 1M AND 4 1 F
2
3 F

2
87 1000128 + 50 375516 98.89 180.07 200.27

Π3t AES 7 2 F
2
3 F

2
87 6655 + 50 2811 2.98 7.86 8.93

Π3t SHA-256 7 2 F
2
3 F

2
87 22530 + 35 8808 4.52 21.88 24.16

Π3t SHA x10 7 2 F
2
3 F

2
87 225745 + 50 85079 25.16 54.23 80.28

Π3t 1M AND 7 2 F
2
3 F

2
87 1000128 + 50 375516 113.79 187.56 212.69

Table 1: Experimental results for running the protocols in Fig. 5 and Fig. 6 on our evaluation circuits

Figure 7: Timing on the 10-block SHA256 circuit with 𝑡 = ⌊(𝑛 − 1)/4⌋ and 𝑡 = ⌊(𝑛 − 1)/3⌋ respectively. The base field is F
2
7 and for

𝑡 < 𝑛/3 the extension field is F
2
91 .

Proof Preprocessing Prover Verifier

Protocol Circuit n t Field Parameters size (bytes) Time (ms) Time (ms) Time (ms)

Π4t AES 100 20 F
2
7 𝜌 = 6 5, 824 33.26 2.36 10.60

Π4t SHA-256 100 20 F
2
7 𝜌 = 6 19, 714 42.09 5.47 13.39

Π4t SHA x10 100 20 F
2
7 𝜌 = 6 197, 527 166.35 46.63 51.28

Π4t 1M AND 100 20 F
2
7 𝜌 = 6 875, 112 432.21 175.92 218.51

Π3t AES 100 30 F
2
7 F

2
91 6, 153 71.55 5.56 68.06

Π3t SHA-256 100 30 F
2
7 F

2
91 20, 090 70.20 15.34 80.52

Π3t SHA x10 100 30 F
2
7 F

2
91 197, 971 181.13 135.09 215.65

Π3t 1M AND 100 30 F
2
7 F

2
91 875, 602 595.44 562.45 891.46

Table 2: Experimental results for 𝑛 = 100 verifiers on our evaluation circuits

verifiers, similarly the increased amount of communication part-

ners takes its toll, along with an increased computational cost for

robust reconstruction when 𝑡 starts to grow.

For our preprocessing protocol for any 𝑡 < 𝑛/2, the dominant

cost is each verifier sending 𝑛𝑆/(𝑛−𝑡) shares to every other verifier,
and the prover. Therefore, if 𝑡 is a constant fraction of 𝑛, the com-

munication per verifier is linear in the circuit size but essentially

independent of 𝑛. For instance, with 𝑡 = 𝑛/3 it is roughly
3

2
· 𝑛𝑆

field elements, and for 𝑡 = 𝑛/4 this becomes
4

3
· 𝑛𝑆 .

8 ACKNOWLEDGEMENTS
We thank Pratik Sarkar for identifying a bug in an earlier version.

This work has been supported in part by ERC Advanced Grant ERC-

2015-AdG-IMPaCT, by the Defense Advanced Research Projects

Agency (DARPA) under contract HR001120C0085, by the FWO un-

der an Odysseus project GOH9718N, by CyberSecurity Research

Flanders with reference number VR20192203, by the Aarhus Univer-

sity Research Foundation, and by the Independent Research Fund

Denmark under project number 0165-00107B.

REFERENCES
[1] Masayuki Abe, Ronald Cramer, and Serge Fehr. 2002. Non-interactive Distributed-

Verifier Proofs and Proving Relations among Commitments. In Advances in Cryp-
tology – ASIACRYPT 2002 (Lecture Notes in Computer Science, Vol. 2501), Yuliang

305

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Carsten Baum, Robin Jadoul, Emmanuela Orsini, Peter Scholl, & Nigel P. Smart

Zheng (Ed.). Springer, Heidelberg, Germany, Queenstown, New Zealand, 206–223.

https://doi.org/10.1007/3-540-36178-2_13

[2] Scott Ames, Carmit Hazay, Yuval Ishai, andMuthuramakrishnan Venkitasubrama-

niam. 2017. Ligero: Lightweight Sublinear Arguments Without a Trusted Setup.

In ACM CCS 2017: 24th Conference on Computer and Communications Security,
Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.).

ACM Press, Dallas, TX, USA, 2087–2104. https://doi.org/10.1145/3133956.3134104

[3] Benny Applebaum, Eliran Kachlon, and Arpita Patra. 2022. Verifiable Relation

Sharing and Multi-Verifier Zero-Knowledge in Two Rounds: Trading NIZKs

with Honest Majority. Cryptology ePrint Archive, Report 2022/167. https:

//eprint.iacr.org/2022/167.

[4] Foteini Baldimtsi, Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang.

2020. Crowd Verifiable Zero-Knowledge and End-to-End Verifiable Multiparty

Computation. In Advances in Cryptology – ASIACRYPT 2020, Part III (Lecture
Notes in Computer Science, Vol. 12493), Shiho Moriai and Huaxiong Wang (Eds.).

Springer, Heidelberg, Germany, Daejeon, South Korea, 717–748. https://doi.org/

10.1007/978-3-030-64840-4_24

[5] Carsten Baum, Cyprien de Saint Guilhem, Daniel Kales, Emmanuela Orsini, Peter

Scholl, and Greg Zaverucha. 2021. Banquet: Short and Fast Signatures from

AES. In PKC 2021: 24th International Conference on Theory and Practice of Public
Key Cryptography, Part I (Lecture Notes in Computer Science, Vol. 12710), Juan
Garay (Ed.). Springer, Heidelberg, Germany, Virtual Event, 266–297. https:

//doi.org/10.1007/978-3-030-75245-3_11

[6] Carsten Baum, Alex J. Malozemoff, Marc B. Rosen, and Peter Scholl. 2021.

Mac’n’Cheese: Zero-Knowledge Proofs for Boolean and Arithmetic Circuits

with Nested Disjunctions. In Advances in Cryptology – CRYPTO 2021, Part IV
(Lecture Notes in Computer Science, Vol. 12828), Tal Malkin and Chris Peikert (Eds.).

Springer, Heidelberg, Germany, Virtual Event, 92–122. https://doi.org/10.1007/

978-3-030-84259-8_4

[7] Donald Beaver. 1991. Secure Multiparty Protocols and Zero-Knowledge Proof

Systems Tolerating a Faulty Minority. Journal of Cryptology 4, 2 (Jan. 1991),

75–122. https://doi.org/10.1007/BF00196771

[8] Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi Wigderson. 1988. Multi-

Prover Interactive Proofs: How to Remove Intractability Assumptions. In 20th
Annual ACM Symposium on Theory of Computing. ACM Press, Chicago, IL, USA,

113–131. https://doi.org/10.1145/62212.62223

[9] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. 2019. Scal-

able Zero Knowledge with No Trusted Setup. In Advances in Cryptology –
CRYPTO 2019, Part III (Lecture Notes in Computer Science, Vol. 11694), Alexandra
Boldyreva and Daniele Micciancio (Eds.). Springer, Heidelberg, Germany, Santa

Barbara, CA, USA, 701–732. https://doi.org/10.1007/978-3-030-26954-8_23

[10] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars

Virza. 2013. SNARKs for C: Verifying Program Executions Succinctly and in Zero

Knowledge. In Advances in Cryptology – CRYPTO 2013, Part II (Lecture Notes
in Computer Science, Vol. 8043), Ran Canetti and Juan A. Garay (Eds.). Springer,

Heidelberg, Germany, Santa Barbara, CA, USA, 90–108. https://doi.org/10.1007/

978-3-642-40084-1_6

[11] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai.

2019. Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs.

In Advances in Cryptology – CRYPTO 2019, Part III (Lecture Notes in Computer
Science, Vol. 11694), Alexandra Boldyreva and Daniele Micciancio (Eds.). Springer,

Heidelberg, Germany, Santa Barbara, CA, USA, 67–97. https://doi.org/10.1007/

978-3-030-26954-8_3

[12] Mike Burmester and Yvo Desmedt. 1991. Broadcast Interactive Proofs (Extended

Abstract). In Advances in Cryptology – EUROCRYPT’91 (Lecture Notes in Com-
puter Science, Vol. 547), Donald W. Davies (Ed.). Springer, Heidelberg, Germany,

Brighton, UK, 81–95. https://doi.org/10.1007/3-540-46416-6_7

[13] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ra-

macher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha. 2017. Post-

Quantum Zero-Knowledge and Signatures from Symmetric-Key Primitives. In

ACM CCS 2017: 24th Conference on Computer and Communications Security, Bha-
vani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM

Press, Dallas, TX, USA, 1825–1842. https://doi.org/10.1145/3133956.3133997

[14] Cyprien de Saint Guilhem, Lauren De Meyer, Emmanuela Orsini, and Nigel P.

Smart. 2019. BBQ: Using AES in Picnic Signatures. In SAC 2019: 26th Annual Inter-
national Workshop on Selected Areas in Cryptography (Lecture Notes in Computer
Science, Vol. 11959), Kenneth G. Paterson and Douglas Stebila (Eds.). Springer, Hei-

delberg, Germany, Waterloo, ON, Canada, 669–692. https://doi.org/10.1007/978-

3-030-38471-5_27

[15] Cyprien de Saint Guilhem, Emmanuela Orsini, and Titouan Tanguy. 2021. Limbo:

Efficient Zero-knowledge MPCitH-based Arguments. In ACM CCS 2021: 28th
Conference on Computer and Communications Security, Giovanni Vigna and Elaine
Shi (Eds.). ACM Press, Virtual Event, Republic of Korea, 3022–3036. https:

//doi.org/10.1145/3460120.3484595

[16] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to Play any Mental

Game or A Completeness Theorem for Protocols with Honest Majority. In 19th
Annual ACM Symposium on Theory of Computing, Alfred Aho (Ed.). ACM Press,

New York City, NY, USA, 218–229. https://doi.org/10.1145/28395.28420

[17] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. 2016. Zcash

protocol specification. GitHub: San Francisco, CA, USA (2016).

[18] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. 2007. Zero-

knowledge from secure multiparty computation. In 39th Annual ACM Symposium
on Theory of Computing, David S. Johnson and Uriel Feige (Eds.). ACM Press, San

Diego, CA, USA, 21–30. https://doi.org/10.1145/1250790.1250794

[19] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. 2013. Zero-knowledge

using garbled circuits: how to prove non-algebraic statements efficiently. In ACM
CCS 2013: 20th Conference on Computer and Communications Security, Ahmad-

Reza Sadeghi, Virgil D. Gligor, and Moti Yung (Eds.). ACM Press, Berlin, Germany,

955–966. https://doi.org/10.1145/2508859.2516662

[20] Harry A. Kalodner, Steven Goldfeder, Xiaoqi Chen, S. Matthew Weinberg, and

EdwardW. Felten. 2018. Arbitrum: Scalable, private smart contracts. InUSENIX Se-
curity 2018: 27th USENIX Security Symposium, William Enck and Adrienne Porter

Felt (Eds.). USENIX Association, Baltimore, MD, USA, 1353–1370.

[21] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. 2018. Improved Non-

Interactive Zero Knowledge with Applications to Post-Quantum Signatures. In

ACM CCS 2018: 25th Conference on Computer and Communications Security, David
Lie, MohammadMannan, Michael Backes, and XiaoFengWang (Eds.). ACM Press,

Toronto, ON, Canada, 525–537. https://doi.org/10.1145/3243734.3243805

[22] Rami Khalil, Alexei Zamyatin, Guillaume Felley, Pedro Moreno-Sanchez, and

Arthur Gervais. 2018. Commit-Chains: Secure, Scalable Off-Chain Payments.

Cryptology ePrint Archive, Report 2018/642. https://eprint.iacr.org/2018/642.

[23] Jonathan Lee, Srinath Setty, Justin Thaler, and RiadWahby. 2021. Linear-time and

post-quantum zero-knowledge SNARKs for R1CS. Cryptology ePrint Archive,

Report 2021/030. https://eprint.iacr.org/2021/030.

[24] Matt Lepinski, Silvio Micali, and abhi shelat. 2005. Fair-Zero Knowledge. In

TCC 2005: 2nd Theory of Cryptography Conference (Lecture Notes in Computer
Science, Vol. 3378), Joe Kilian (Ed.). Springer, Heidelberg, Germany, Cambridge,

MA, USA, 245–263. https://doi.org/10.1007/978-3-540-30576-7_14

[25] Adi Shamir. 1979. How to Share a Secret. Communications of the Association for
Computing Machinery 22, 11 (Nov. 1979), 612–613.

[26] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. 2021. Wolverine:

Fast, Scalable, and Communication-Efficient Zero-Knowledge Proofs for Boolean

and Arithmetic Circuits. In 2021 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, San Francisco, CA, USA, 1074–1091. https://doi.org/10.

1109/SP40001.2021.00056

[27] HowardWu,Wenting Zheng, Alessandro Chiesa, Raluca Ada Popa, and Ion Stoica.

2018. DIZK: A Distributed Zero Knowledge Proof System. In USENIX Security
2018: 27th USENIX Security Symposium, William Enck and Adrienne Porter Felt

(Eds.). USENIX Association, Baltimore, MD, USA, 675–692.

[28] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. 2021. QuickSilver:

Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials

over Any Field. In ACM CCS 2021: 28th Conference on Computer and Communica-
tions Security, Giovanni Vigna and Elaine Shi (Eds.). ACM Press, Virtual Event,

Republic of Korea, 2986–3001. https://doi.org/10.1145/3460120.3484556

[29] Kang Yang and Xiao Wang. 2022. Non-Interactive Zero-Knowledge Proofs to

Multiple Verifiers. Cryptology ePrint Archive, Report 2022/063. https://eprint.

iacr.org/2022/063.

306

https://doi.org/10.1007/3-540-36178-2_13
https://doi.org/10.1145/3133956.3134104
https://eprint.iacr.org/2022/167
https://eprint.iacr.org/2022/167
https://doi.org/10.1007/978-3-030-64840-4_24
https://doi.org/10.1007/978-3-030-64840-4_24
https://doi.org/10.1007/978-3-030-75245-3_11
https://doi.org/10.1007/978-3-030-75245-3_11
https://doi.org/10.1007/978-3-030-84259-8_4
https://doi.org/10.1007/978-3-030-84259-8_4
https://doi.org/10.1007/BF00196771
https://doi.org/10.1145/62212.62223
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-030-26954-8_3
https://doi.org/10.1007/978-3-030-26954-8_3
https://doi.org/10.1007/3-540-46416-6_7
https://doi.org/10.1145/3133956.3133997
https://doi.org/10.1007/978-3-030-38471-5_27
https://doi.org/10.1007/978-3-030-38471-5_27
https://doi.org/10.1145/3460120.3484595
https://doi.org/10.1145/3460120.3484595
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/1250790.1250794
https://doi.org/10.1145/2508859.2516662
https://doi.org/10.1145/3243734.3243805
https://eprint.iacr.org/2018/642
https://eprint.iacr.org/2021/030
https://doi.org/10.1007/978-3-540-30576-7_14
https://doi.org/10.1109/SP40001.2021.00056
https://doi.org/10.1109/SP40001.2021.00056
https://doi.org/10.1145/3460120.3484556
https://eprint.iacr.org/2022/063
https://eprint.iacr.org/2022/063

	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution
	1.3 Applications
	1.4 Techniques

	2 Preliminaries
	2.1 Shamir Sharing
	2.2 Digital Signatures
	2.3 Zero-knowledge Proofs
	2.4 Schwarz-Zippel Lemma
	2.5 Coin Flipping

	3 Distributed Verifier Zero-Knowledge Proofs
	3.1 Zero-Knowledge in the Threshold Setting

	4 Preprocessing for distributed proofs with honest majority t<n/2
	5 Distributed proof with t < n/4 corruptions
	6 Distributed proof with t < n/3 corruptions
	7 Experiments
	7.1 Results

	8 Acknowledgements
	References

