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ABSTRACT: Drought is a major natural hazard with far-reaching social, economic, and environmental impacts whose
characteristics are highly interdependent across different spatial and temporal scales. Traditional global warming
impact assessments on drought at the global scale have, however, taken into account only one drought characteristic at a
time, likely leading to an underestimation of the overall impact. Here, we perform a trivariate analysis of changes in drought
conditions at 1.58, 28, and 38C global warming levels using 25 CMIP6 GCMs. Drought properties are characterized by the
Standardized Soil Moisture Index (SSI). The future joint return periods of droughts historically associated with 10-, 20-, and
30-yr return periods are computed under the warming levels using copula functions considering drought duration, peak, and
severity. Our comparative assessments of global warming impact on drought properties between univariate and trivariate
analyses corroborate the substantial underestimation of the impact by the univariate analysis. The trivariate analysis shows
that around 63%–91% of the global land will be subject to more recurrent droughts, while the percentage of the land reduces
to 41%–56% for the univariate analysis. The difference between the univariate and trivariate analyses enlarges with global
warming levels and the extremity of drought events. Based on the trivariate analysis, a 30-yr drought would become at least
threefold more recurrent in 11%, 15%, and 20% of the global land at 1.58, 28, and 38C warming levels, respectively, but the
univariate analysis could not reach such large increases in drought conditions.
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1. Introduction

Drought is one of the most destructive natural disasters due to
its prolonged and extensive socioeconomic impacts (Carrão et al.
2016; Mukherjee et al. 2018). During the 1970–2019 period,
drought was responsible for 34% of disaster-related fatalities in
the world and 95% of disaster-related fatalities in Africa (WMO
2021). Due to inevitable global warming in the twenty-first cen-
tury, the global water cycle has been intensifying (Hegerl et al.
2015), leading to more extreme events (Tabari 2020; Lange et al.
2020). Drought can be more severe and widespread under global
warming through either decreasing precipitation and/or increas-
ing evaporation (Dai 2011, 2013; Trenberth et al. 2014). Projected
severe droughts would cause stress in water resources, threaten
water security, and ultimately affect society (Hervás-Gámez and
Delgado-Ramos 2020). Due to the far-reaching impacts of
drought, its analysis under different global warming levels has re-
ceived great attention from researchers (Sieck et al. 2021), espe-
cially after the Paris Climate Agreement that set a target to keep
global warming well below 28C compared to preindustrial times
and aimed to limit it even further to 1.58C (UNFCCC 2015).
These Paris targets (i.e., 1.58 and 28C) have become the focus of

several global drought studies (Lehner et al. 2017; Liu et al. 2018;
Betts et al. 2018; Xu et al. 2019; Gu et al. 2020; Wu et al. 2020).

The identification and characterization of drought is challeng-
ing because of its slow onset and recovery, lack of a unified defi-
nition, and the difficult specification of its exact area (Wilhite
2000). It becomes even more complex by the interdependencies
between drought characteristics (e.g., between duration and
severity). Owing to these interdependencies at different spatial
and temporal scales, a univariate analysis may lead to a signifi-
cant underestimation of the overall drought impact (Zscheischler
and Seneviratne 2017). In other words, when different drought
characteristics are simultaneously considered, an amplified
climate change impact is expected. For example, in a univariate
assessment, a moderate but long-lasting drought is barely consid-
ered as an extreme event, whereas it can quickly deplete stored
water and consequently reduce resilience to subsequent droughts
(Lehner et al. 2017). A multivariate analysis of drought charac-
teristics is thus essential for a more realistic estimation of the
climate change impact to design adequate adaptation strategies.
However, most global studies on future climate change impacts
on droughts have taken into account only one drought character-
istic at a time (univariate analysis) (e.g., Liu et al. 2018; Xu et al.
2019; Spinoni et al. 2020; Liu et al. 2021), although several local
and regional studies have characterized future drought changes
based on amultivariate analysis (e.g., Madadgar andMoradkhani
2013; Afshar et al. 2020).

For a multivariate drought analysis, traditional methods
require the same family of marginal distribution for drought
characteristics, which might restrict their potential for practical
applications (Shiau 2006; Song and Singh 2010). Copulas can
overcome the identical marginal distribution limitation and en-
able the construction of a multivariate probability distribution
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function for correlated variables that might not be best fitted by
the same type of distribution (Shiau and Modarres 2009). Copula
functions have shown promising results for a compound analysis
between several single variables by solely focusing on modeling
the dependence structure rather than marginal modeling (i.e.,
modeling the distribution of each separate variable), which is the
case of multivariate models (Favre et al. 2004). In addition to the
ability of copula functions to characterize the dependence struc-
ture independently of the type of marginal distributions, they
allow a flexible mensuration of the tail dependence (Serinaldi
et al. 2009) as well as the estimation of conditional probabili-
ties (Ribeiro et al. 2019). They have, therefore, recently gained
popularity for drought analysis (Xu et al. 2020; Yang et al.
2020; Jehanzaib et al. 2021; Wu et al. 2021; Poonia et al. 2021).
Nevertheless, most of the previous studies using copula func-
tions focus on the local scale, and comprehensive studies on a
global scale are limited.

The handful of existing global studies of multivariate drought
analysis under climate change (Gu et al. 2020; Wu et al. 2021)
have characterized droughts using the Standardized Precipitation
Index (SPI) and the Standardized Precipitation Evapotranspira-
tion Index (SPEI). Drought quantification based on these indices
is however potentially subject to biases. The SPI underestimates
Earth’s land drying trends by considering only water supply side
changes (precipitation) and disregarding the interaction between
land surface processes, atmospheric demand, and plants (Burke
and Brown 2008; Vicente-Serrano et al. 2010). The SPEI overes-
timates drying trends by equally weighting both precipitation and
potential (not actual) evapotranspiration. The offline estimation
of potential evapotranspiration in SPEI also overpredicts the
changes in non-water-stressed evapotranspiration calculated by
climate models by neglecting stomatal conductance reductions
induced by elevated atmospheric CO2 (Milly and Dunne 2016).
Global warming impacts on drought are therefore more mean-
ingfully assessed by direct examination of climate model
outputs (e.g., soil moisture and runoff) that more explicitly rep-
resent the core physical processes that are missing in the esti-
mates of simple index-based impact models (e.g., SPI and SPEI)
(Milly and Dunne 2016; Greve et al. 2019).

The previous global multivariate assessments of future droughts
(Gu et al. 2020; Wu et al. 2021) used general circulation model
(GCM) simulations from phase 5 of the Coupled Model Inter-
comparison Project (CMIP5), which consider only emission
scenarios in the form of four representative concentration
pathways (RCPs). In the state-of-the-art CMIP6 simulations
(Eyring et al. 2016), the climate projections not only are pro-
duced by updated climate models but also include a wider
range of forcing than CMIP5 by considering socioeconomic
scenarios based on the Shared Socioeconomic Pathways
(SSPs) next to the RCPs (O’Neill et al. 2016). For the former,
the simulations of the CMIP6 GCMs are expected to better
represent physical processes at smaller scales (Stouffer et al.
2017) such as an improved process of interactions between
the world’s two major climate phenomena: El Niño–Southern
Oscillation (ENSO) and the Indian Ocean dipole (IOD)
(McKenna et al. 2020). For the latter, the inclusion of SSPs com-
plements the RCPs and then makes future scenarios more rea-
sonable (NCCEditorial Staff 2019). In addition, a larger number

of simulations for the same forcing in the CMIP6 dataset enables
a better representation of internal variabilities (Pascoe et al.
2019;Merrifield et al. 2020).

To address the aforementioned shortcomings, this study aims
to quantify changes in global droughts using a trivariate copula
analysis. In addition to 1.58 and 28C targets of the Paris Climate
Agreement, we also analyze the changes at a higher warming
level of 38C, which provides new insights for drought impact
under far future conditions and highlights the consequence of
failure to meet the global warming targets. We determine the
global warming levels of 1.58, 28, and 38C by the time sampling
method (Vautard et al. 2014) where specific time periods in the
future are identified when the global mean temperature increase
in a GCM reaches a certain level. Drought is characterized at
three time scales (3, 6, and 12 months) by the Standardized Soil
Moisture Index (SSI) using simulations from 25 CMIP6 GCMs.
A trivariate analysis is then performed to assess the joint impact
of global warming on drought characteristics (duration, peak,
and severity) by the best-fitted copula function, and the changes
in the trivariate return period of drought under the three global
warming levels are quantified.

2. Materials and methods

a. Data

We used the climate data from the CMIP6 GCMs, covering
the entire historical (1850–2014) and future (2015–2100) periods
under four CMIP6 Tier 1 SSP scenarios, including SSP1-2.6,
SSP2-4.5, SSP3-7.0, and SSP5-8.5. SSP1-2.6, SSP2-4.5, and
SSP5-8.5 can be seen as continuations of the RCP2.6, RCP4.5,
and RCP8.5 scenarios from CMIP5 respectively, while SSP3-7.0
presents a new scenario with high-level emissions (O’Neill et al.
2016). This set of scenarios covers a wide range of uncertainties
in future greenhouse gas forcings coupled to the corresponding
socioeconomic developments. Of the CMIP6 GCMs, 25 models
(Table S1 in the online supplemental material) have monthly
simulations for near-surface air temperature and total soil mois-
ture content for the selected SSP scenarios from 1850 to 2100.
The mean temperature is used to calculate global warming levels
above the preindustrial period and soil moisture as an input for
drought quantification using SSI.

b. Estimation of global warming

The warming is referred to as an increase in multidecadal
global mean surface temperature (GMST) above preindustrial
levels representing a climate without anthropogenic influence. In
this study, the preindustrial temperature is defined as the GMST
of the 30-yr period 1850–79. Three global warming levels of
1.58, 28, and 38C are determined by the time sampling method
(Vautard et al. 2014). The warming is computed by subtracting
the preindustrial temperature from the running mean of 30-yr
GMST over the entire period. To account for different sensi-
tivities of climate models, the first 30-yr periods of global
warming reaching 1.58, 28, and 38C under different SSP scenar-
ios versus the preindustrial temperature are determined for
each model.
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c. Drought characterization

We characterize drought using a multi-time-scalar indicator
to assess changes in drought conditions for the future, which al-
lows tailoring the drought impact for different sectors such as
water resources, agriculture, forestry, and ecology (Beguerı́a
et al. 2014). A multiscalar feature is essential for drought studies
owing to the highly varying arrival periods of water inputs to us-
able water resources (Vicente-Serrano et al. 2010). We employ
the SSI (Hao and AghaKouchak 2013), whose computation fol-
lows the SPI (McKee et al. 1993) calculation procedure, but
with soil moisture as input instead of precipitation. The SSI is
calculated in this study at the 3-, 6-, and 12-month scales (SSI-3,
SSI-6, and SSI-12), representing the degree of wetness/dryness
over different time periods. The empirical Gringorten plot-
ting position is employed to compute the empirical proba-
bility for soil moisture data [P = (i 2 0.44)/(n 1 0.12),
where n is the length of the data and i is the rank]. The SSI
values are computed by standardizing the empirical proba-
bility by the inverse normal transformation (Farahmand
and AghaKouchak 2015).

After computing the SSI time series (1850–2100) for each
model grid cell at the global scale, the run theory is employed
to detect drought events. We define that a drought event starts
when the SSI value is less than 20.5 (X0), lasts when the value
(Xi,t) stays less than 20.5 for at least three consecutive months
(including the first starting month), and ends when the indicator
is greater than 20.5. The threshold of 20.5 is chosen to ensure
sufficient number of events per 30-yr period for a more reliable
estimation of the parameters of marginal distributions and cop-
ulas as in previous studies (Hao and AghaKouchak 2014;
Gu et al. 2020). A sensitivity analysis is performed to test the
sensitivity of the results to the selected threshold for defining a
drought event. The independence between events is maximized
by setting an independence period (at least three months)
between two events. The drought characteristics are defined
as follows (Fig. S1): drought duration (DD) as the number
of months of a drought event, drought frequency (DF) as
the number of drought events in a given period, and drought
peak (DP) as the maximum of the absolute values of the SSI
in a recognized drought event; drought severity (DS) as the
absolute sum value of the SSI through a given event. More-
over, the interarrival time (Dl) is estimated as the period
from the beginning of one event to the beginning of the next
event (Shiau and Shen 2001). To compute the ensemble
median of the GCMs, drought statistics are regridded at a
spatial resolution of 2.08 3 2.08. The error of this last-step
procedure is less than a first-step procedure in which data
are first resampled, and then climate change signals are
computed (Diaconescu et al. 2015).

d. Trivariate distribution analysis

To analyze the complex nature of drought and discover the
compound effect of three drought properties (duration, peak,
and severity), copula functions are employed in this study. A
copula function can couple different marginal distributions
and present the joint probability distribution. The function can
be written as

H(x1, x2, x3,…, xm) � C[F1(x1),F2(x2),F3(x3),…,Fm(xm)]
� C(u1,u2,u3,…,um), (1)

where H represents an m-dimensional distribution function of
random variables (x1, x2, x3, … , xm), C is a copula function:
[0, 1]2 → [0, 1], (F1, F2, F3, … , Fm) are one-dimensional mar-
ginal cumulative distribution functions, and (u1, u2, u3, … ,um)
are variables produced by marginal distribution functions
[F1(x1), F2(x2), F3(x3), … , Fm(xm)] in the unit interval [0, 1].

Copula functions are usually limited to two-dimensional anal-
ysis because it is difficult to construct them in higher dimensions
(Kao and Govindaraju 2008). To overcome this difficulty and
allow us to use copulas for higher-dimensional analysis, one
solution is to couple bivariate copulas to construct higher-
dimensional copulas (Grimaldi and Serinaldi 2006). A trivariate
copula can accordingly be constructed based on a modified
bivariate copula expressed as

C(u1,u2,u3) � C2[C1(u1,u2),u3], (2)

where C1 is the first bivariate copula function corresponding
to variables u1 and u2 and C2 is the second bivariate copula
function corresponding to variables C1(u1, u2) and u3. The C1

and C2 are the same type of copula functions.

e. Selection of the best-fitted marginal and copula
functions

To conduct a copula analysis, the best-fitted one-dimensional
distribution function for each drought property should be
determined. The three drought properties are fitted to 16
marginal distributions (Birnbaum-Saunders, exponential,
extreme value, gamma, generalized extreme value, general-
ized Pareto, inverse Gaussian, logistic, loglogistic, lognor-
mal, Nakagami, normal, Rayleigh, Rician, t location scale,
Weibull), and then the best-fitted distribution is determined
based on the Bayesian information criterion (BIC). After
determining the most representative marginal distribution
for each property, the best-fitted copula function between
different properties needs to be identified. In contrast to
most previous studies that have employed only one copula
family (Tosunoglu and Can 2016; Gu et al. 2020), we test
the goodness of fit of seven copula functions (Gaussian,
Clayton, Frank, Gumbel, Ali-Mikhail-Haq, Joe, and Plack-
ett) from three families (Archimedean, elliptical, and Plack-
ett) (Table S2) to find the best one for further analyses. The
parameters of these copulas are estimated using the maxi-
mum likelihood method (ML). To avoid the misleading
performance assessment of copula functions with a single
measure (Sadegh et al. 2017), an ensemble of measures is
employed including root-mean-square error (RMSE), Nash-
Sutcliff efficiency (NSE), Akaike information criterion (AIC),
and BIC.

f. Estimation of joint return periods

To examine the composite impact of global warming on
drought characteristics, the trivariate joint return period
(JRP) is computed as
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TDPS � E(L)
P(D$d or P$p or S$ s) �

E(L)
1 2 FDPS(d,p, s)

� E(L)
1 2 C FD(d),FP(p),FS(s)

[ ] , (3)

where TDPS denotes the JRP for drought when duration (D)
or peak (P) or severity (S) are equal to or greater than certain
duration (d) and peak (p) and severity (s) values, respectively,
and where E(L) is the drought interarrival period for the cor-
responding level (30 years). The term FDPS represents joint
cumulative distribution function (CDF) of the three proper-
ties (d, p, s) and can be presented as the product of a copula
function (C) of three separate marginal CDFs (FD, FP, FS) of
the corresponding properties. The 10-, 20- and 30-yr JRPs are
calculated in this study. With the historical quantiles of refer-
ence return periods, the JRP can be calculated for the future
periods under different global warming levels considered
here. Take a drought with a 10-yr return period as a case. We
first identify the historical magnitudes of duration, peak, and
severity for a 10-yr drought. Then, we use these magnitudes
as inputs for the future marginal distribution function of prop-
erties under global warming levels. With the products of mar-
ginal distributions, the trivariate joint return period of 10-yr
drought under each warming level is obtained through a tri-
variate copula. The future joint return period can be com-
puted in another way where the joint return periods are
obtained from the properties of historical droughts, and then
the recurrence time of this historical joint return period under
future climatic conditions is derived. Our results show that

the future joint return periods computed using these two
methodologies do not differ in magnitude and global pattern
for most cases (Fig. 7; see also Fig. S8). We thus present only
the results of the first methodology in this paper. Because the
first methodology is far less computationally demanding, its
use is also recommended for future studies.

g. Trivariate correlation analysis

The copula is constructed on the correlated variables, and
thus it is essential to examine the magnitude and significance
of the correlation. Unlike past trivariate studies that only
tested correlations between every two variables, we introduce
the multiple correlation coefficient (R) to analyze the correla-
tions between the three variables. TheR is always used to assess
the relationship between one dependent variable (predictand)
and a combination of other independent variables (predictors).
Thus, three variables of this study can be sorted into three
orders with the form y–x1–x2: DS–DD–DP, DP–DS–DD, and
DD–DP–DS. The multiple correlation coefficient can be writ-
ten as

R �
����������������������������������������
R2

x1y 1 R2
x2y 2 2Rx1yRx2yRx1x2

1 2 R2
x1x2

√
, (4)

where R is the multiple correlation coefficient, Rx1y is the bivari-
ate correlation coefficient between predictor x1 and predictand
y, Rx2y is the bivariate correlation coefficient between predictor
x2 and predictand y, and Rx1x2 is the bivariate correlation coeffi-
cient between the two predictors x1 and x2 (Cohen et al. 2003).

FIG. 1. (a) Global warming relative to the preindustrial (1850–79) mean for 25 CMIP6 GCMs and (b) GCM-wide
distributions of the years for different global warming levels. In (a), lines and uncertainty bands represent the
ensemble median and interquartile range, respectively; the gray shaded area displays the range of historical simulations
and the colored areas display the range of future global warming projections based on different SSP scenarios; the three
global warming levels selected for this study are shown with dashed lines. In (b), the left and right of the box show the 75th
and 25th percentiles of uncertainty range, respectively; the left and right of the whiskers show the 95th and 5th percentiles,
respectively; and the vertical red line in themiddle of the box represents the ensemblemedian.
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The Student’s t test is used for statistical significance testing of
the correlation for different orders of the three variables.

3. Results

a. Estimation of global warming

The median and interquartile range of the estimated global
warming for the historical period and the future period under dif-
ferent SSP scenarios are illustrated in Fig. 1a. As expected, the
magnitude of global warming increases with the SSP scenario.
The projections of global warming based on SSPs start to diverge
in 2030, as emissions start to slow down in SS1-2.6 and continue
as usual in SSP5-8.5. For the 30-yr period at the end of this
century (2071–2100), the ensemble median of warming for
each scenario is as follows: 2.28C for SSP1-2.6, 3.38C for SSP2-
4.5, 4.38C for SSP3-7.0, and 5.18C for SSP5-8.5. Under the
SSP5-8.5 scenario, the median global warming across GCMs
reaches 1.58, 28, and 38C warming in the 2020s, 2030s, and
2050s, respectively (Fig. 1b). Compared to SSP5-8.5, the three
global warming levels will be reached later under the SSP3-7.0
scenario as expected. Only a few GCMs can reach 28C under
SSP1-2.6 and 38C under SSP2-4.5. Because this research aims
to study drought under three global warming levels of 1.58, 28,
and 38C, SSP1-2.6 and SSP2-4.5 were excluded from the analy-
ses. In addition, the results for the drought characteristics for
the three global warming levels show a negligible difference
between SSP3-7.0 and SSP5-8.5. We thus only discuss the results
for the SSP5-8.5-derived global warming levels.

b. Univariate analysis of drought properties under global
warming

After estimating global warming levels, the expected changes
in drought properties compared to the preindustrial levels are
quantified under different warming levels. The univariate analy-
sis of drought properties shows an uneven spatial pattern of the
changes, with the largest increases in South America, central
America, the Middle East and North Africa (MENA), southern
Europe, southern Africa, Australia, and parts of eastern Asia
(Figs. 2–4). While the spatial distribution of the changes remains
almost the same with global warming levels, the absolute magni-
tude of the changes increases with warming. The increasing
signals for different global warming levels are found over
42%–45%, 44%–56%, 41%–44%, and 42%–44% of the
global land for duration, frequency, peak, and severity, respec-
tively. The absolute magnitudes of the changes per decade
respectively for 1.58, 28, and 38C warming levels are 0.86, 1.01,
and 1.23 days for duration; 0.21, 0.24, and 0.3 for frequency;
0.032, 0.037, and 0.044 for peak; and 1.18, 1.41, and 1.71 for sever-
ity. While the spatial distribution of changes in drought proper-
ties is similar across all the time scales of SSI, the magnitude
becomes smaller from SSI-12 to SSI-3 (Figs. S2 and S3).

The changes in drought properties under different global
warming levels compared to the preindustrial levels are fur-
ther examined in the six most impacted subcontinental regions
(central America, eastern North America, the Mediterranean,
Amazon, southern Africa, and Australia). The results for the
12-month scale are shown in Fig. 5. For all six regions, drought

FIG. 2. Projected changes in drought characteristics derived from SSI-12 for 1.58C warming level based on the ensemble
median of 25 CMIP6 GCMs.
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properties in order of increasing change magnitude are peak,
frequency, duration, and severity. The magnitude of the increas-
ing signal for all properties is largest in the Mediterranean fol-
lowed by the Amazon and Central America. The duration,
peak, and severity of droughts rise with global warming levels
in all six regions, whereas there is no clear pattern for fre-
quency. For different global warming levels, the change dif-
ferences between 28 and 38C levels are notably larger than
those between 1.58 and 28C levels, as expected. In a 38C warming
world, the magnitudes of the increases in duration, peak, and se-
verity in the Mediterranean is respectively 2.6, 3, and 3.2 times
larger than those at 1.58C warming level and 1.7, 1.7, and 1.8
times larger than those at 28C warming level. Similar factors are
found in the Amazon and Central America by comparing the in-
creasing magnitude of duration, peak, and severity across the
three global warming levels. The uncertainty analysis of the
changes indicates that the larger the change, the larger the GCM
uncertainty. This pattern holds for both drought properties and
regions; the largest GCM uncertainty is found for severity among
drought properties and in the Mediterranean among the six most
impacted regions. For all drought properties, the GCM uncer-
tainty increase with lead time is consistent with previous studies
(Lehner et al. 2020; Zhou et al. 2020).

In the six regions, the longer the time scale is, the larger the
changes in duration, peak, and severity are (Fig. S4). This pattern
is not followed by drought frequency except in southern Africa.
Taking a 38C warming over Amazon as an example, the median
changes at the 12-month scale for duration, peak, and severity
are 56%, 25%, and 85% respectively, while they are 39%, 16%,

and 59% for the respective properties at the 3-month scale. We
also checked the sensitivity of the results to the choice of thresh-
old for defining drought events. The results show similar global
patterns and magnitude of changes in drought properties across
different thresholds (Fig. S5).

c. Trivariate analysis of drought properties under global
warming

The multiple correlation coefficient (R) was applied to test the
relationship between drought duration, peak, and severity. The
range of the R values for all GCMs over the entire 1850–2100
period for three orders of the drought properties (DS–DD–DP,
DP–DS–DD, and DD–DP–DS) is presented in Fig. 6. The
results indicate high and significant (p value , 0.05) correlations
among properties, with the median coefficient. 0.9 for all orders
of the drought properties. The coefficients for different orders of
the properties are of comparable magnitude. With a slight differ-
ence, they are ordered in terms of magnitude as DS–DD–DP,
DD–DP–DS, and DP–DS–DD. The highest correlation is
obtained when severity is considered as the predictand because
of a high correlation of severity with both duration and peak. In
contrast, owing to a lower predictability of extremes (peak), con-
sidering peak as the predictand results in the lowest correlation.

After the correlation examination, the goodness of fit of
16 marginal distributions for drought properties is evaluated.
The percentage of the global land area with the best-fitted dis-
tributions for the three drought properties is shown in
Fig. 7. The generalized Pareto distribution (GPD) is the domi-
nant marginal distribution for drought peak and duration and

FIG. 3. Projected changes in drought characteristics derived from SSI-12 for 28C warming level based on the ensemble
median of 25 CMIP6 GCMs.
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the third-best distribution for severity, although the difference
between the top three distributions for severity is small (3.5%).
The exponential distribution, which is among the top three dis-
tributions for severity, can be considered as a limiting case of
the three-parameter GPD when the shape parameter, describ-
ing the tail behavior of the distribution, is equal to zero. The
best-fitted distributions for severity, ranging from bounded to
heavy-tailed distributions, show diverse statistical behaviors of
drought severity across the globe. In contrast, the peak can be
best approximated by the GPD across almost the entire global
land, varying between 80% and 95% of the global land depend-
ing on climate models. It indicates a uniform global distribu-
tion of drought peak. The good performance of the GPD
for peak is expected as it is a heavy-tailed distribution suit-
able for approximating extreme values as previously shown
for other types of meteorologically related extremes (Katz
et al. 2002; Hosseinzadehtalaei et al. 2020). Due to a strong
linkage between duration and severity, the distribution of dura-
tion follows that of severity, which is a varying statically behavior
across the globe, although the GPD (the best-fitted distribution
over 27% of the global land) is much better than the other distri-
butions. Owing to a good performance of the GPD, it is selected
as the theoretical distribution of the three properties.

After selecting the marginal distribution for the drought prop-
erties, the next step is to choose the best copula function for the
joint distribution analysis between the properties. To this end,
the performance of seven copula functions (Gaussian, Clayton,
Frank, Gumbel, Ali-Mikhail-Haq, Joe, and Plackett) is evaluated
compared to the empirical joint distribution. Figure 8 presents

the land percentage of the best-fitted copula functions for all
CMIP6 GCMs. The best-fitted copula function for a grid cell is
selected if it performs best based on at least three out of the four
performance measures (RMSE, NSE, AIC, and BIC). Among
the tested copula functions, Joe, Gaussian, and Frank copulas
are the top three copulas that perform best for most grid cells.
Joe is the best-fitted copula over 28%–54% of the global
land, depending on GCMs.

The seven selected copulas account for either only positive
dependence between variables (e.g., Joe) or both positive and
negative dependencies (e.g., Frank). Since drought duration,
severity, and peak have a strong positive dependence, the dif-
ference between the performances of the copulas cannot be
due to the sign of correlations between the variables. The dis-
crepancy between the performances of the copulas is then
related to the role of the tail behavior of severity, duration,
and peak. The best performance of the Joe function from the
Archimedean family of copulas is because it can reproduce well
the upper tail dependence structure (i.e., a higher association
for large values) across the three drought properties (Ribeiro
et al. 2020). In contrast, the weak performance of the Clayton
copula from the same family is due to the fact that the depen-
dence of the three variables in the upper tail of this copula is
very weak (Lee et al. 2013).

The joint return periods of droughts in the future under differ-
ent global warming levels historically associated with return peri-
ods of 10, 20, and 30 years derived from the Joe copula are
shown in Figs. 9–11. The results show that the recurrence of
droughts will increase in most of the global land area under

FIG. 4. Projected changes in drought characteristics derived from SSI-12 for 38C warming level based on the ensemble
median of 25 CMIP6 GCMs.
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global warming. Around 63%–91% of the global land, depend-
ing on return periods and warming levels, will be subject to more
recurrent droughts, while the univariate analysis leads to a less
widespread increase in drought properties: increasing signals
over 41%–56% of the land area depending on drought proper-
ties and warming levels. The percentage of the global land area
exposed to a higher drought recurrence increases with the global

warming level. The impact of global warming also increases with
the rarity of drought events. The longer the return period, the
larger the change in the drought recurrence. About 1%, 9%, and
11% of the global land with at least threefold increase in the re-
currence of 10-, 20-, and 30-yr droughts under 1.58C warming ex-
pand to 1%, 14%, and 15% under 28C warming, and 2%, 19%,
and 20% under 38Cwarming.

FIG. 6. Multiple correlation coefficients between drought properties for all CMIP6 GCMs.

FIG. 5. Projected changes in drought properties derived from SSI-12 under different global warming levels for the six most impacted
regions. The multiplication factor is the ratio of future drought properties over the historical ones. The top and bottom of the boxes
show the 75th and 25th percentiles of uncertainty range, respectively; the top and bottom of the whiskers show the 95th and 5th percen-
tiles, respectively; and the horizontal red line in the middle of the box represents the ensemble median.
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Similar to the univariate analysis, the results of the trivariate
analysis of drought are further examined in the six most impacted
regions (Fig. 12). The increase of change magnitudes with the
drought event extremity and global warming levels is obvious in
the plots (Fig. 12). Our trivariate analysis identifies the Amazon
as the most impacted region where 30-yr droughts will be 3, 4.1,
and 4.2 times more recurrent under 1.58, 28, and 38C global
warming, respectively. The factors for the respective warming
levels in Amazon are 2.6, 3.3, and 4 for 20-yr droughts and 1.8, 2,
and 2.1 for 10-yr droughts. For 30-yr droughts, we find 2.2–3.9
fold increases in the drought recurrence for the Mediterranean,
2.5–3.4 for southern Africa, 2.3–3.4 for Central America, 1.7–2.6
for eastern North America, and 1.5–1.7 in Australia, depending
on warming levels. A comparison between the results of univari-
ate and trivariate analyses for the six most impacted regions re-
veals that the univariate analysis leads to much smaller drought
changes under global warming (Figs. 5 and 12).

In addition to the six hotspot regions identified by the univari-
ate analysis, eastern Africa and eastern Asia are also severely
impacted based on the results of the trivariate analysis where

twice more recurrent droughts are expected. We also performed
the trivariate analysis using the Gaussian function as the second-
best copula (Figs. S6 and S7). The Gaussian copula produces a
similar joint probability and a similar spatial pattern of changes.
The magnitude of the changes is however slightly larger for the
Gaussian copula compared to the Joe copula.

4. Discussion

Our trivariate analysis of drought properties reveals that the
percentage of the global land area exposed to an increase in
drought recurrence escalates with global warming levels. At
least a threefold increase in the recurrence of 10-, 20-, and 30-yr
droughts under 1.58C warming is expected in 1%, 9%, and 11%
of the global land respectively, which enlarge to 1%, 14%, and
15% under 28C warming, and 2%, 19%, and 20% under 38C
warming. It suggests that the impact of global warming increases
with the extremity of drought events. Larger impacts of climate
change on more severe hydroclimatic extreme events have also
been previously reported (Kharin et al. 2018; Hosseinzadehtalaei

FIG. 8. Percentage of the global land area of the best-fitted copula functions for different CMIP6
GCMs. “Rest” refers to the rest of the copula functions.

FIG. 7. Percentage of the global land area of the best-fitted marginal distributions for different
drought properties for all CMIP6 GCMs. “Rest” refers to the rest of distribution functions.
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et al. 2019; Li et al. 2019; Tabari 2021). A comparison between
the results of univariate and trivariate analyses of drought under
global warming approves the assumption that a univariate analy-
sis would underestimate the impact. Our results show that the
30-yr droughts are expected to become more recurrent in
63%–91% of the land area, depending upon return periods and
warming levels. The univariate analysis projects smaller and less
widespread changes for drought characteristics under global
warming. These findings are insightful in the sense that a univari-
ate analysis not only underestimates extreme events in the cur-
rent climate, which was reported in previous studies (e.g., Gräler
et al. 2013; Sadegh et al. 2018; Nikraftar et al. 2021), but also the
impact of global warming on extreme events. In other words, the
bias in the estimation of extreme events for both historical and
future climates by a univariate analysis is not compensated in

relative changes (under global warming levels) but is propagated.
Our results show that a univariate analysis may not reveal a sig-
nificant relationship between drought characteristics and repre-
sent an accurate picture of future global warming impacts on
droughts. In fact, drought events of a higher peak and severity of-
ten last longer (Ji et al. 2022), leading to an accumulated overall
impact that is overlooked in a univariate framework. Such inca-
pability of the univariate analysis was previously shown for
comprehensively describing historical regional drought events
(Ayantobo et al. 2018). The results of this study also reveal a
strong positive relationship between drought characteristics
across the globe. These strong positive relationships are not
spatially and temporally uniform, because of some exceptional
occurrences of slowly evolving drought events with low peaks
(Ayantobo et al. 2019) or a rapid intensification over a short

FIG. 9. Joint return periods of droughts historically associated
with return periods of 10, 20, and 30 years in the future under 1.58C
global warming level using the Joe copula function.

FIG. 10. Joint return periods of droughts historically associated
with return periods of 10, 20, and 30 years in the future under 28C
global warming level using the Joe copula function.
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period of time (Christian et al. 2019). A multivariate analysis
using copulas allows a better understanding of these relation-
ships for more reliable drought projections.

Our results also reveal that the increase in drought recurrence
with global warming is not spatially uniform and a greater magni-
tude of the increase is expected for the Americas (especially
Central America, eastern North America, and the Amazon),
southern and eastern Africa, the Mediterranean, Australia, and
eastern Asia. In fact, wherever both water demand component
increase and water supply decrease happen, the decrease in wa-
ter availability would be remarkable (Tabari et al. 2021), which is
the case more for arid regions of the world or for other regions
with high water stress due to population density and high water
demand. Specifically, the increment of evapotranspiration under
global warming (1.5%–4% per degree of warming; Scheff and

Frierson 2014) can decrease the remainder of water for the
land when precipitation cannot compensate for the extra evap-
oration. Our results also show that these drought conditions
adopt a prolonged pattern under global warming, particularly
in arid regions. That will increase the already high level of wa-
ter stress in these regions and force people to migrate or live
in conditions of water poverty and eventually raise the risk of
political conflict over transboundary water resources (Tabari
and Willems 2018).

The projected strong increases in drought conditions will
harm crop production and degrade food security especially in
regions that are highly dependent on climate-sensitive agricul-
ture specially rain-fed cereals. The United States, China, Brazil,
and Argentina are respectively the world’s biggest corn pro-
ducers (U.S. Department of Agriculture 2021) that will experi-
ence a remarkably higher recurrence of droughts, leading to
global food insecurity and huge damages. For example, the
2003 European summer drought in combination with heatwave
caused an extensive crop deficit in parts of southern Europe of
a total cost of approximately 15 billion euros (Garcı́a-Herrera
et al. 2010). A more reliable projection of drought impacts can
form the basis of proactive planning to limit such damages in
the future.

5. Conclusions

The impact of global warming on drought at the global scale
was scrutinized in this study by a trivariate copula-based analysis
at 1.58, 28, and 38C warming levels. Drought characteristics at the
3-, 6-, and 12-month scales were identified by SSI based on the
climate simulations from 25 CMIP6 GCMs. The joint return peri-
ods of droughts historically associated with return periods of 10,
20, and 30 years were determined for the future under different
global warming levels. The univariate drought analysis identifies
central America, eastern North America, the Mediterranean,
Amazon, southern Africa, and Australia as hotspot regions. In
addition to these regions, Africa and eastern Asia are recognized
as severely impacted regions by the trivariate analysis where
drought recurrence will be doubled. The duration, peak, and
severity of droughts rise with global warming levels in all hotspot
regions, whereas there is no clear pattern for frequency. Simi-
larly, the percentage of the global land area exposed to a higher
drought recurrence in the trivariate framework increases with
the global warming level. For both analyses, the longer the time
scale is, the larger the changes in drought conditions are. Com-
pared to the univariate analysis, the trivariate analysis however
demonstrates larger changes in drought conditions. Around 1%,
9%, and 11% of the land area would be exposed to 3 times more
recurrent 10-, 20-, and 30-yr droughts under 1.58C global warm-
ing. The drought conditions would worsen with higher global
warming levels, where the percentages for the respective return
periods grow to 1%, 14%, and 15% for 28C warming level, and
2%, 19%, and 20% for 38C warming level. In the Mediterranean
and Amazon, fourfold more recurrent droughts are expected
under global warming. A univariate analysis could not reach
such a large increase in drought conditions. The results under-
score the need of using a multivariate drought analysis consid-
ering the interdependency between different characteristics as

FIG. 11. Joint return periods of droughts historically associated
with return periods of 10, 20, and 30 years in the future under 38C
global warming level using the Joe copula function.

T A BAR I AND W I L L EM S 583315 SEPTEMBER 2022

Brought to you by KU LEUVEN | Unauthenticated | Downloaded 03/08/23 09:35 AM UTC



otherwise the impact of global warming on drought may be
underestimated.
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Copula-based agricultural drought risk of rainfed cropping
systems. Agric. Water Manage., 223, 105689, https://doi.org/10.
1016/j.agwat.2019.105689.

}}, }}, }}, and C. A. Pires, 2020: Drought-related hot sum-
mers: A joint probability analysis in the Iberian Peninsula.
Wea. Climate Extremes, 30, 100279, https://doi.org/10.1016/j.
wace.2020.100279.

Sadegh, M., E. Ragno, and A. AghaKouchak, 2017: Multivariate
Copula Analysis Toolbox (MvCAT): Describing dependence
and underlying uncertainty using a Bayesian framework. Water
Resour. Res., 53, 5166–5183, https://doi.org/10.1002/2016WR
020242.

}}, and Coauthors, 2018: Multihazard scenarios for analysis of
compound extreme events. Geophys. Res. Lett., 45, 5470–5480,
https://doi.org/10.1029/2018GL077317.

Scheff, J., and D. M. Frierson, 2014: Scaling potential evapotranspi-
ration with greenhouse warming. J. Climate, 27, 1539–1558,
https://doi.org/10.1175/JCLI-D-13-00233.1.

Serinaldi, F., B. Bonaccorso, A. Cancelliere, and S. Grimaldi,
2009: Probabilistic characterization of drought properties
through copulas. Phys. Chem. Earth, 34, 596–605, https://doi.
org/10.1016/j.pce.2008.09.004.

Shiau, J. T., 2006: Fitting drought duration and severity with two-
dimensional copulas. Water Resour. Manage., 20, 795–815,
https://doi.org/10.1007/s11269-005-9008-9.

}}, and H. W. Shen, 2001: Recurrence analysis of hydrologic
droughts of differing severity. J. Water Resour. Plann. Manage.,
127, 30–40, https://doi.org/10.1061/(ASCE)0733-9496(2001)127:
1(30).

}}, and R. Modarres, 2009: Copula-based drought severity–
duration–frequency analysis in Iran. Meteor. Appl., 16,
481–489, https://doi.org/10.1002/met.145.

Sieck, K., C. Nam, L. M. Bouwer, D. Rechid, and D. Jacob, 2021:
Weather extremes over Europe under 1.58 and 2.08C global
warming from HAPPI regional climate ensemble simulations.
Earth Syst. Dyn., 12, 457–468, https://doi.org/10.5194/esd-12-
457-2021.

Song, S., and V. P. Singh, 2010: Frequency analysis of droughts
using the Plackett copula and parameter estimation by genetic
algorithm. Stochastic Environ. Res. Risk Assess., 24, 783–805,
https://doi.org/10.1007/s00477-010-0364-5.

Spinoni, J., and Coauthors, 2020: Future global meteorological
drought hot spots: A study based on CORDEX data.
J. Climate, 33, 3635–3661, https://doi.org/10.1175/JCLI-D-
19-0084.1.

Stouffer, R. J., V. Eyring, G. A. Meehl, S. Bony, C. Senior,
B. Stevens, and K. E. Taylor, 2017: CMIP5 scientific gaps
and recommendations for CMIP6. Bull. Amer. Meteor. Soc.,
98, 95–105, https://doi.org/10.1175/BAMS-D-15-00013.1.

Tabari, H., 2020: Climate change impact on flood and extreme
precipitation increases with water availability. Sci. Rep., 10,
13768, https://doi.org/10.1038/s41598-020-70816-2.

}}, 2021: Extreme value analysis dilemma for climate change
impact assessment on global flood and extreme precipitation.
J. Hydrol., 593, 125932, https://doi.org/10.1016/j.jhydrol.2020.
125932.

}}, and P. Willems, 2018: More prolonged droughts by the end
of the century in the Middle East. Environ. Res. Lett., 13,
104005, https://doi.org/10.1088/1748-9326/aae09c.

}}, P. Hosseinzadehtalaei, W. Thiery, and P. Willems, 2021:
Amplified drought and flood risk under future socioeconomic
and climatic change. Earth’s Future, 9, e2021EF002295, https://
doi.org/10.1029/2021EF002295.

Tosunoglu, F., and I. Can, 2016: Application of copulas for regional
bivariate frequency analysis of meteorological droughts in
Turkey. Nat. Hazards, 82, 1457–1477, https://doi.org/10.1007/
s11069-016-2253-9.

Trenberth, K. E., A. Dai, G. van der Schrier, P. D. Jones,
J. Barichivich, K. R. Briffa, and J. Sheffield, 2014: Global
warming and changes in drought. Nat. Climate, 4, 17–22,
https://doi.org/10.1038/nclimate2067.

UNFCCC, 2015: Paris Agreement. United Nations Framework
Convention on Climate Change. Accessed 10 October 2021,
https://unfccc.int/files/essential_background/convention/
application/pdf/english_paris_agreement.pdf.

U.S. Department of Agriculture, 2021: World agricultural produc-
tion. Accessed 10 December 2021, https://usda.library.cornell.
edu/concern/publications/5q47rn72z?locale=en.

Vautard, R., and Coauthors, 2014: The European climate under a
28C global warming. Environ. Res. Lett., 9, 034006, https://doi.
org/10.1088/1748-9326/9/3/034006.

Vicente-Serrano, S. M., S. Beguerı́a, and J. I. López-Moreno, 2010:
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