How to optimize the adherence to a guideline-directed medical therapy in the
secondary prevention of cardiovascular diseases: a clinical consensus statement from
the European Association of Preventive Cardiology (EAPC)
*Roberto F.E. Pedretti, MD: Cardiovascular Department, IRCCS MultiMedica, Sesto San Giovanni, Milano, Italy
*Dominique Hansen, PhD: REVAL/BIOMED, Hasselt University, Belgium, Heart Centre Hasselt, Jessa Hospital,
Hasselt, Belgium
Marco Ambrosetti , MD: Cardiovascular Rehabilitation Unit, ASST Crema, Santa Marta Hospital, Rivolta D'
Adda, Italy.
Maria Back, PhD: Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy,
University of Gothenburg and Department of Health, Medicine and Caring Sciences, Linköping University,
Sweden.
Thomas Berger, MD: Cardiomed Linz, St.John of God Hospital Linz, Austria
Mariana Cordeiro Ferreira, Psychologist, Centro de Reabilitação Cardiovascular do Centro Universitário
Hospitalar Lisboa Norte, Portugal
Véronique Cornelissen, PhD: Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
Constantinos H Davos, MD, PhD: Cardiovascular Research Laboratory, Biomedical Research Foundation,
Academy of Athens, Athens, Greece
Wolfram Doehner, MD, PhD: BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité
- Universitätsmedizin Berlin, Berlin, Germany, Department of Cardiology (Virchow Klinikum), Charité
Universitätsmedizin Berlin, and German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin,
Germany, Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany.
Carmen de Pablo y Zarzosa, MD, PhD: Department of Cardiology. University Hospital Ramón y Cajal, Madrid,
Spain
Ines Frederix, MD, PhD: Heart Centre Hasselt, Jessa Hospital Hasselt Belgium, Hasselt University, Faculty of
Medicine and Life Sciences Diepenbeek Belgium, University of Antwerp, Faculty of Medicine and Health
Sciences Antwerp Belgium, Antwerp University Hospital Edegem Belgium.
Andrea Greco, PhD: Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy
Donata Kurpas, MD, PhD: Department of Family Medicine, Wroclaw Medical University, Poland

© The Author(s) 2022. Published by Oxford University Press on behalf of European Society of Cardiology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)

- 1 Matthias Michal, MD: Department of Psychosomatic Medicine and Psychotherapy, University Medical Center
- 2 Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz,
- 3 Germany
- 4 Elena Osto , MD, PhD: Institute of Clinical Chemistry & Department of Cardiology, Heart Center, University &
- 5 University Hospital Zurich, Zurich, Switzerland
- 6 Susanne Pedersen, PhD: Department of Psychology, University of Southern Denmark, Odense Denmark, and
- 7 Department of Cardiology, Odense University Hospital, Odense, Denmark
- 8 Rita Esmeralda Salvador, MD, PhD: Vienna, Austria
- 9 Maria Simonenko, MD, PhD: Heart Transplantation Outpatient Department, Cardiopulmonary Exercise Test
- 10 Research Department, Almazov National Medical Research Centre, St. Petersburg, Russia
- 11 Patrizia Steca , PhD: Department of Psychology, University of Milan-Bicocca, Italy
- 12 David R. Thompson, PhD: School of Nursing and Midwifery, Queen's University Belfast, Belfast, UK
- **Matthias Wilhelm, MD: Department of Cardiology, Bern University Hospital, University of Bern, Bern,
 Switzerland
- 14 Switzenanu
- 15 ** Ana Abreu, MD, PhD: Department of Cardiology of Hospital Santa Maria, Centro Hospitalar Universitário
- 16 Lisboa Norte, Institute of Preventive Medicine and Institute of Environmental Health of the Faculty of Medicine
- 17 of University of Lisbon, Centre of Cardiovascular Investigation of University of Lisbon (CCUL) and Academic
- 18 Centre of Medicine of University of Lisbon (CAML), Portugal
- 19
- 20 *Shared first autorship
- 21 **Shared last autorship
- 22 Running title: Adherence in secondary prevention of CVD
- 23
- 24 Sources of funding: none
- 25 Conflicts of interest: none to be declared by the authors26
- 27 Address correspondence:
- 28 Roberto F.E. Pedretti, MD, FESC
- 29 Cardiovascular Department, IRCCS MultiMedica
- 30 Via Milanese, 30, I-20099, Sesto San Giovanni, Milano, Italy
- 31 E-mail: robertofrancoenrico.pedretti@multimedica.it

1 Abstract

2 A key factor to successful secondary prevention of cardiovascular disease (CVD) is optimal patient adherence to 3 treatment. However, unsatisfactory rates of adherence to treatment for CVD risk factors and CVD have been 4 observed consistently over the last few decades. Hence, achieving optimal adherence to lifestyle measures and 5 guideline-directed medical therapy in secondary prevention and rehabilitation is a great challenge to many 6 healthcare professionals. Therefore, in this European Association of Preventive Cardiology (EAPC) clinical 7 consensus document a modern reappraisal of the adherence to optimal treatment is provided, together with 8 simple, practical, and feasible suggestions to achieve this goal in the clinical setting, focusing on evidence-9 based concepts.

10

11 Keywords: cardiovascular disease, cardiovascular risk, secondary prevention, adherence

- 12
- 13

1 Introduction

In secondary prevention of cardiovascular disease (CVD), significant room for improvement is present as many lifestyle measures and/or guideline-directed medical therapy remain too poor.[1,2] Medication adherence ranges from 50% for primary CVD prevention to 66% for secondary prevention; of all medication-related hospital admissions in the United States, 33 to 69 % and approximately 9% of CVD cases in Europe can be attributed to poor medication adherence.[3–5]

In this regard, sufficient treatment adherence is a key element for (i) improving prognosis in CVD and/or highrisk patients, (ii) reducing the burden of morbidity and mortality associated with CVD, and (iii) decreasing costs due to rehospitalizations.[6] The promotion of treatment adherence should embrace all pharmacological and non-pharmacological interventions in secondary CVD prevention, including lifestyle and behavioural changes. In this perspective, multidisciplinary CVD prevention and rehabilitation programs are the most appropriate and cost-effective settings for delivering structured and multi-component interventions on patients' adherence.

13 Despite the realization that treatment adherence is a key aspect of successful secondary CVD prevention, optimisation of treatment adherence remains a great challenge to many healthcare professionals. In coronary 14 artery disease (CAD) patients, ≥6 months after hospital discharge, 42% still had a blood pressure ≥140/90 15 mmHg, 71% still had low-density lipoprotein cholesterol ≥1.8 mmol/L (≥70 mg/dL) and 29% had insufficiently 16 controlled diabetes.[1]. In the EUROASPIRE IV and V surveys, 16259 coronary artery disease (CAD) patients 17 18 were examined and interviewed during a study visit ≥ 6 months after hospital discharge.[2] Data gathering was fully standardized and the Brief Illness Perception questionnaire was completed by a subsample of 2379 19 patients.[2] Half of those who were smoking prior to hospital admission were still smoking; 37% of current 20 21 smokers had not attempted to quit and 51% were not considering to do so.[2] The prevalence of obesity was 22 38%, in relation to physical activity, 40% was on target with half of the patients trying to do more everyday 23 activities.[2] Less than half had the intention to engage in planned exercise and only 29% of all patients were on target for all three lifestyle factors[2]. The number of adverse lifestyles was strongly related to the way 24 25 patients perceive their illness as threatening.[2] Although a lack of adherence to guidelines by healthcare 26 professionals cannot be ruled out, there is a very high likelihood that also patient adherence to treatment or advices is still too poor. 27

28

29 Aim

The preventive cardiology community needs a formal clinical consensus document detailing how to optimize patient adherence to treatment for the secondary prevention of CVD. Aims of this clinical consensus document are to provide a modern reappraisal of the concept of adherence together with simple, practical, and feasible suggestions to achieve optimal adherence in the clinical setting, focusing on evidence-based concepts.
Although aspects of adherence have been discussed fragmentally in previous guidelines and position
statements, the novelty of this paper is thus that all clinically relevant and state-of-the-art knowledge on
adherence on all aspects of guideline-directed medical therapy is brought together.

5

6 Methods

7 The accumulation of the current evidence was based on a search strategy of English language published 8 research, consensus documents and policy documents, by using electronic databases (MEDLINE, EMBASE, CINAHL), as selected, evaluated and reviewed by experts from the EAPC, and authors of the original 9 10 documents. In the development process of this position paper, individuals from relevant healthcare 11 professional groups (e.g. cardiologists, general practitioners, psychologists, psychosomaticists, nutritionists, physiotherapists, nurses) were included. From the collected evidence, consensus statements have been 12 formulated (see Table 1), as well as an agreed approach with respect to adherence optimisation strategies (see 13 Figures 1, 3). Finally, all position statements were carefully aligned with current EAPC/ESC position papers or 14 15 guidelines.[7–13]

16

17 Definition and measurement of adherence

18 Adherence is defined as the extent to which a person's behaviour – taking medication, following a diet, and/or executing lifestyle changes - corresponds with agreed recommendations from a healthcare provider.[14] The 19 term "adherence," is preferred to "compliance," and strong emphasis is placed on the need to differentiate 20 adherence from compliance. The main difference is that adherence requires the patient's agreement 21 22 ('informed consent') to the recommendations.[14] Patients should be active partners with healthcare 23 professionals in their own care and thus, good communication between patient and healthcare professional is 24 a must for an effective clinical practice. [14] The process starts with the informed consent of the patient and is 25 followed by the initiation of treatment, when the patient takes the first dose of a prescribed medication or 26 initiates lifestyle changes. [15] The process continues with the implementation of the dosage regimen, defined 27 as the extent to which a patient's actual dosing corresponds to the prescribed dosage regimen, from initiation 28 until the last dose is taken.[15] Discontinuation marks the end of therapy, when the next dose to be taken is 29 omitted and no more doses or lifestyle changes are taken thereafter.[15] Persistence is the length of time 30 between initiation and the last dose or lifestyle action.[15] Non-adherence to medication or healthy lifestyle 31 behaviours can occur in the followingcases: late or non-initiation of the prescribed treatment/therapy, sub-32 optimal implementation of the dosing regimen or early discontinuation of the treatment/therapy.[15] Non-

1 adherence behaviours include intentional and unintentional components. The former refers to an active and 2 reasoned process that leads the patient to modify the treatment plan, deviating from the agreed prescriptions, 3 while the latter is considered a passive process in which patients are careless, forgetful, or unable to adhere to 4 the treatment plan for other reasons, such as unable to collect their medications or not understanding the 5 information on medications provided.[16] In some cases, i.e. significant cognitive impairment, the patient is not 6 able to agree to the recommendation and in these cases the healthcare provider is responsible for providing 7 the necessary support and/or information. It is also important to note that some behaviours affecting 8 treatment adherence may represent specific mental disorders per se, acknowledged in ICD classification, that 9 needs to be diagnosed and treated. In the ICD-11-CM a specific clinical entity, defined as 'psychological and 10 behavioural factors that may adversely affect the manifestation, treatment, or course of a physical condition by 11 affecting treatment adherence or care-seeking' exists and is coded 6E40.[17] In everyday clinical practice, however, the awareness of these diagnoses is extremely poor and healthcare providers are very reluctant to 12 assess, code, and treat these mental disorders although the mental comorbidity mitigates therapeutic 13 14 efforts.[18]

Measurements of adherence can be direct, including observed administration or measuring the blood 15 concentration of a metabolite, measuring physical activity by step counters/accelerometers, or measuring 16 17 carbon monoxide (CO) exhalation, or they can be indirect, including patient self-reporting, pill counting, 18 pharmacy refill rates, physical activity or dietary questionnaires, and electronic monitoring systems. [19] Indices such as the medication possession ratio (MPR) or the proportion of days covered (PDC), based on counting the 19 20 number of days the patient has been in possession of the drug and has actually used it, as derived from the intervals between supplies of the drug. Using PDC for statins and angiotensin-converting enzyme inhibitors, 21 22 stratification of patients with known CVD as fully adherent (\geq 80%), partially adherent (\geq 40% to \leq 79%), or 23 nonadherent (<40%) was able to identify groups with a significantly different event rate.[20] There are 24 numerous methods for measuring adherence by self-reported questionnaires: at least 43 adherence scales 25 exist.[21] Of these, two instruments are particularly used in CVD medicine to assess the degree of patient 26 adherence, which are based on the patients' answers to specific questions. The Morisky Medication Adherence 27 Scale (MMAS) investigates only the domain of the pharmacological treatment [22], while the Hill-Bone 28 Compliance Scale (HBCS) also investigates behavioural domains.[23].

29

30 Why are patients non-adherent to cardiovascular prevention recommendations?

The need to integrate the therapeutic routine into one's daily life and to cope with the onset of potential side effects and undesirable changes in lifestyle, or in established habits, represent challenges that many patients

1 face, using their own inner resources in the search for a balance among the need to take care of oneself, 2 preventing relapses, and the need to maintain an acceptable quality of life.[24] The distinction between the 3 intentional and unintentional components of non-adherent behaviours is very important.[16,25,26] 4 Understanding the nature of the non-adherence processes, which can be highly variable (see Table 2), is 5 important not only for the purpose of defining useful strategies to manage their detrimental effects, but also 6 for decreasing these phenomena. Therefore, it is fundamental to understand the emotional and cognitive 7 aspects underlying patients' choices and behaviours regarding treatment. Although the risk factors for CVD are 8 often acknowledged by patients as predisposing them to CVD, their risk perception can still be inadequate, thus affecting preventive behaviours. Moreover, a lower health literacy could also be highly prevalent among 9 10 patients with CVD risk. As a result, there is a tendency to underestimate the causal link between CVD risk 11 factors and disease manifestations among many patients.[27-31] Indeed, a patient's lower perceived necessity for secondary prevention is related to non-adherence. [28,32] Concerns and irrational beliefs about preventive 12 measures are identified as powerful predictors of (un)intentional non-adherence to treatment.[29] On the 13 other hand, coping skills and the perception of (personal) control over the management of care are important 14 15 elements capable of increasing the adherence to treatment.[33-35] Patients tend to modify their use of medications in an improper way when they feel they are no longer able to integrate the therapeutic routine 16 17 into their daily life, due to consequences on their quality of life, which results in their health condition 18 worsening.[34] This highlights the significant role of a high level of self-efficacy in the processes of adherence to treatment.[35] Also the quality of patients' social support, understood as family relationships and available 19 healthcare networks, can affect individual coping and the development of self-care skills:[33] weaker 20 practical/social support is associated with non-participation in rehabilitation programs and non-adherence to 21 22 medication.[36,37] Also mental disorders (especially mood disorders, depression, anxiety disorder and 23 personality disorders) are associated with poorer adherence to treatment, [34, 35, 38] [39] [40] and favor 24 development of irrational beliefs about pharmacotherapy or lifestyle measures. Therefore, it is useful to 25 conduct a careful assessment of the above-mentioned psychosocial variables at entry of prevention and 26 rehabilitation programs, to detect potential contributors to a lower treatment adherence and, by appropriate 27 actions, maximize the patients' adherence to treatment (see Figure 2).

28

29 Poor adherence to treatment in patients with specific CVD risk factors and diseases

30 Next to medication intake, the implementation of lifestyle changes such as a healthy diet, physical 31 activity/exercise training and smoking cessation is recommended by ESC Guidelines in secondary prevention of 32 CVD.[11,13] Poor adherence to long-term therapies, including lifestyle changes, has important public health implications, as it leads to increased morbidity and mortality, as well as significant economic costs (e.g. number
 of visits, diagnostic procedures, prescribed drugs), and should thus be prevented.[14] Additionally, in specific
 CVD's and risk factors, some factors seem highly predictive of low adherence to therapy (see Figure 2).

4

5 Overweight and obesity

6 The adherence to treatment is generally lower in persons with overweight or obesity.[41] Barriers to lifestyle 7 change include poor motivation, environmental, societal and social pressures, lack of time, health and physical 8 limitations, negative thoughts and moods, socioeconomic constraints, gaps in knowledge or awareness, and lack of enjoyment of exercise.[41] Therefore, a good preparticipation screening is of utmost importance to 9 10 detect such factors or contributors. On the other hand, the most prominent predictors of greater adherence to 11 lifestyle treatment in obese patients include: early weight loss success, a lower baseline body mass index (BMI), having existing cardiometabolic comorbidities, better baseline mood, being male and older age.[41,42] As the 12 overweight/obesity and unhealthy lifestyle cluster are overrepresented in economically disadvantaged and 13 other more vulnerable populations (including people with psychological issues), they are also important 14 contributors to health disparities. In line with this notion, all lifestyle modifications must be personalized 15 according to the availability of foods, geographic localizations, health status and psychosocial factors of the 16 17 patient to fully exert their health-promoting effects.[41,42]

18

19 Hypertension

Despite large evidence confirming the importance of blood pressure (BP) lowering and the availability of many 20 effective and well-tolerated antihypertensive drugs, BP control rates are still unsatisfactory.[1] This is, at least 21 22 in part, related to poor adherence to lifelong anti-hypertensive therapy. The most common 23 predictors/determinants for a lower adherence to the intake of BP-lowering medications are: lower diastolic 24 blood pressure, higher cost or insurance type/coverage, non-white race/ethnicity, fewer healthcare contacts 25 within six months after the prescription, and \geq 4 comorbidities.[43] Distrust, (concern for) side effects, and lack 26 of perceived need for the medication (becausehypertension is often a symptomless condition it will further 27 lower the adherence to treatment).[43] Crucially, also a lack of patient involvement in the treatment decision-28 making process will lower the patient's adherence to medication prescription.[44] The lack of adherence to 29 medication prescription should not be confused with difficult-to-treat hypertension, which is BP not optimally 30 controlled despite adherence to an appropriate regimen of three antihypertensive drugs of different classes 31 (including diuretics) in which all drugs are prescribed at appropriate antihypertensive doses.[13] In this regard, 32 pseudo-resistance (such as inaccurate BP measurement, extracellular volume expansion, intake of NSAIDs or

1 stimulants known to elevate BP) as well as a secondary cause of hypertension should be excluded before this 2 diagnosis is accepted.

3

4 Dyslipidaemia

5 Low-density lipoprotein (LDL) cholesterol is a key causal factor of CVD.[45,46] Lipid-lowering medications are 6 often prescribed to decrease the risk of micro- and macro-cardiovascular complications related to 7 dyslipidaemia, in both primary and secondary CVD prevention, [13] including patients who have undergone 8 heart transplantation.[47] Despite widespread prescription of lipid-lowering drugs, including statins, adherence 9 to therapy is a challenge worldwide, in particular in primary prevention.[48] Statins reduce the risk of recurrent 10 ischemic stroke and myocardial infarction (MI) and better adherence to outpatient statin prescriptions lowers 11 the rates of subsequent CVD events.[49] The following characteristics/factors predict a greater adherence to statin prescription: male sex, older age, history of MI or stroke, presence of diabetes, hypertension or co-12 morbidities, positive patients' beliefs about medicines, and very recent treatment initiation.[48,50,51] 13 14 However, the adherence to medications for treatment of a symptomless condition, such as dyslipidaemia, is a 15 great challenge: lipid-lowering agents may be discontinued sooner than other oral medications for chronic therapy because of a lack of sensation of improvement in symptoms or benefit. A substantial proportion of 16 17 patients do not achieve adequate reduction in LDL-cholesterol levels despite intensive statin treatment, cannot 18 tolerate statins, or remain at high residual risk despite being on statin therapy.[52,53] For high-risk patients in whom statin therapy alone is insufficient, add-on treatment with non-statin medications, ezetimibe and 19 proprotein convertase subtilisin/kexin-9 inhibitors (PCSK9i) is a valuable option.[54,55] Importantly, 20 appropriately identifying and characterizing barriers to PCSK9i access, and developing approaches to overcome 21 22 them, will reduce the clinical and economic burden for patients who are likely to benefit from PCSK9 inhibition 23 and likely result in more cost-effective policies.[56,57]

24

Diabetes 25

26 The current management of diabetes in the secondary prevention of CVD remains suboptimal,[1] 27 notwithstanding the well-established clinically significant relation between a worse glycaemic control and 28 greater risk for adverse CVD events.[58] Sometimes, the treatment of diabetes can be even more challenging 29 when not only glycaemic control is targeted, but also the lipid profile, body weight and blood pressure of the 30 patient with diabetes.[13] This often leads to the need to take different medications in combination with important lifestyle adjustments (e.g. nutrition, quit smoking, and physical activity/exercise training), and 31 32 stepwise approach is recommended by guidelines, [13] which should be better settled by a shared-decision 1 making process. In this process, health education can be offered: very often the health literacy is low in 2 diabetic patients, which negatively affects adherence to treatment. In addition to the intensiveness of 3 treatment, there are additional predictors for a lower adherence to treatment: anxiety, diabetes distress, older 4 age, poor communication with healthcare professionals, stress, concerns about medicines, cognitive 5 impairment, and low levels of self-care. [26] In particular the experience of frequent hypoglycaemia can significantly lower the adherence to prescriptions of glucose-lowering medications. As a result, it is important 6 7 to provide a close/regular follow-up of the patient with diabetes, in which such side effects can be remediated 8 timely. On the other hand, a high self-efficacy, social and family support, and the acceptance of illness have a 9 beneficial effect on medication and lifestyle adherence.[26]

10 Coronary artery disease and heart failure

Poor adherence to prescribed regimens is pervasive and results in preventable hospitalisations, premature 11 12 deaths and unnecessary healthcare expenditure in CAD and heart failure (HF), regardless of the underlying CVD etiology.[5,14,59–67] Non-adherence to treatment remains high.[68–70] Many factors contribute to 13 medication non-adherence, such as lack of social support, absence of symptoms, cognitive decline, adverse 14 15 reactions, depression, poor attention span, poor knowledge about medication or treatment, the prescription of 16 multiple medications, difficulty with swallowing (large) pills, and inconveniences of urinary frequency with diuretics.[64] Healthcare providers should continue to provide education, constantly reinforce the importance 17 18 of taking medication as prescribed, and when feasible, utilize one of the successful evidence-based strategies 19 to increase adherence.[64] In this regard, shared decision making and applying a stepwise approach based on 20 the capacities and preferences of the patient could be of vital importance. A multidisciplinary team approach, 21 such as cardiac rehabilitation (CR) programs, would be the best way to improve medication adherence, since 22 the patient would receive education and resources from every discipline.[14] In addition, a close 23 monitoring/follow-up of the patient may assist in keeping the adherence to treatment high.[11] Telehealth and 24 remote consultations are excellent options to consider.[71]

- 25
- 26 Stroke

The burden of stroke is immense and rapidly growing and recurrence is a major risk factor since recurrent stroke is more likely to cause death and disability. Medication adherence and persistence rates are low in patients after suffering a stroke as well as adherence to exercise programs. [72,73] Nevertheless, there is a lack of a uniform method of measurement of adherence to exercise or physical activity recommendations in the stroke population.[73] Further research using clear, standardized and objective assessments is needed to clarify the association between cognitive impairment, psychological determinants and medication adherence in
 stroke survivors.[74,75]

3

4 Atrial fibrillation

5 The impact of atrial fibrillation is increasing and an a holistic care approach for atrial fibrillation patients, the 6 'Atrial fibrillation Better Care' (ABC) pathway has been proposed.[76] The ABC pathway stands on three main 7 pillars: 'A': Avoid stroke (with Anticoagulants); 'B': Better symptom management; 'C': Cardiovascular and 8 Comorbidity management and it is recommended in the recent European Society of Cardiology atrial fibrillation 9 management guidelines.[77,78] Adherence to the ABC pathway is associated with a reduction inthe risk of 10 major adverse outcomes, however adherence to the ABC pathway is suboptimal, being adopted in one in every 11 five patients.[79]

12

13 COPD

14 COPD is a common disease that, if not managed appropriately, causes an enormous strain on health 15 services.[80] Optimal medication adherence in patients with COPD assists in improving disease management 16 and reducing health care costs and patients who adhere to treatment have a lower risk of exacerbating their 17 medical condition as compared to those with poor adherence.[80] Nevertheless, adherence to COPD 18 medication is generally low, with the majority of studies identifying the presence of depression and subjects' 19 concern about the harmful effects of the medicine as barriers to adherence.[80]

20 Elderly patients

Despite the beneficial effects of secondary prevention, including CR, on clinical outcome in elderly patients 21 22 with CVD, participation and adherence significantly decrease with age (next to its negative impact on guideline-23 directed medical therapy adherence).[81,82] The main reasons include transport difficulties and a lack of 24 referral by healthcare providers. Also, elderly patients are more likely to assume that lifestyle changes would 25 not improve their health.[82,83] Key factors that have previously been identified as relevant to increase 26 exercise adherence in elderly patients include supervision, social support from staff and peers, and 27 individualization.[84] Moreover, it is important to provide adequate information about benefits and potential 28 risks, identifying perceived barriers and facilitators, as patients with realistic expectations of change are more 29 likely to be adherent.[84] This may also increase patients' self-efficacy which is related to achieving lifestyle 30 goals. Enjoyment is an immediate reward that is closely related with intrinsic motivation and could lead to better adherence than delayed rewards, such as health benefits in the long-term.[84] Many secondary 31 32 prevention services have not specifically been designed for the elderly and the implementation requires a high degree of individualization. A comprehensive geriatric assessment including not only CV function, but also peripheral functional evaluation (strength, balance, coordination, aerobic capacity), assessment of disability and comorbidities, nutritional, cognitive and psychosocial components are suggested.[11] Interventions should be tailored to target the main goals of CR for the elderly, including preserved independence, prevention of sarcopenia and frailty, improvement in quality of life and encouragement of social adaptation.[11] Only those programs that are in line with the preferences of patients, improving them globally, can become an actual longterm sustained habit.[84]

8

9 Bringing it all together: the five dimensions of adherence to treatment (patient, disease, healthcare provider, 10 therapy, healthcare system) – barriers and strategies

11 The non-adherence to (non)-pharmacological treatment is common.[1–5] Based on the above-mentioned 12 information, combined with insights from research in the psychology of non-adherence to treatment, barriers 13 and motivators to adherence are presented, originating from the patient him/herself, the (type of) disease, the 14 healthcare professional, the therapy and the healthcare system (see Table 2 and Figure 2).[85–87]

15 Improving the adherence to treatment requires an active process of behavioural change, which is nearly always 16 a challenge. It requires education, motivation, tools, support, monitoring, and evaluation.[88] Multifactorial 17 interventions are more effective,[89] tailored solutions addressing a patient's specific adherence barriers 18 (precision medicine), scaled to the population level (population health), may be a successful strategy to 19 facilitate improved medication adherence on a larger scale.[90]

20

21 The patient

22 Sex/gender

23 There is a significant impact of sex/gender on adherence rates to secondary prevention measures, which need 24 to be considered in clinical practice. For example, among 9.283 patients with ACS (in Australia), it was 25 discovered that women had lower odds of attending CR than men (OR [95% CI] 0.87) and at 12 months after 26 discharge, women were less likely to be on ≥75% of the indicated medications (OR 0.84).[91] This sex 27 difference in secondary prevention of CVD is a global phenomenon, as also in China it was found that women 28 with established CVD were significantly less likely than men to receive BP-lowering medications (OR 0.79), lipid-29 lowering medications (OR 0.69), antiplatelets (OR 0.53), or any CVD prevention medication (OR 0.62).[92] 30 Women were less likely to achieve physical activity targets (OR 1.92), but also were less likely to smoke (OR 31 13.89).[92] In the USA, very similar findings were reported.[91] It is also noted that next to a lower referral rate 32 to CR, also the drop-out during CR seems to be greater in women.[93] Potential barriers to women's

participation in CR could be greater psychological distress, pressure as the primary caretaker of the family, and
the lack of financial resources and social or emotional support.[94]

Hence, secondary prevention interventions should be adapted accordingly, and caregivers should be more
aware of the issues, to meet these needs and to maximize women's adherence to treatment and participation
rates in structured secondary prevention and CR programs.

6

7 The psychosocial health status and the barriers to their appropriate management

To enhance secondary prevention and ensure the best possible prognosis for patients with CVD, it is 8 9 paramount to treat not only the underlying disease and ensure management of traditional risk factors, but also 10 to treat mental disorders/issues, such as anxiety, depression, and post-traumatic stress disorder. The sudden 11 confrontation with chronic and potentially life-threatening disease may trigger the onset of one or more mental disorders/issues or increase symptom levels that warrant treatment. Hence, not surprisingly, 20% of 12 CVD patients suffer from depression, anxiety, or both.[95] It is not sufficient to screen patients for mental 13 health problems only at the time of the index event, as the incidence of new-onset anxiety and depression are 14 15 14% and 11% during 24 months of follow-up in patients without anxiety and depression at baseline.[96] In addition, mental disorders are often undetected and undertreated.[97] Irrespective of whether patients 16 17 receive a clinical diagnosis or report subthreshold levels, the impact on patient prognosis is potentially large. 18 Mental disorders comprise barriers for lifestyle changes, impair patients' quality of life and health status, increase the risk of refusal or drop-out from CR, non-adherence, hospitalisation, premature death, and 19 20 increased costs.[98–102]

21 Several barriers exist for the provision of appropriate management of mental disorders in patients with CVD at 22 the patient, society, and healthcare system levels. One barrier is the current organisation of our healthcare 23 system, with its primary focus on treatment of the underlying heart disease, while largely ignoring the 24 interaction between heart and mind and how they through biological and behavioural pathways interact to 25 influence patient and clinical outcomes.[98] Generally, the adherence rate of healthcare providers to the 26 implementation of guideline-based psychosocial interventions in medical settings is poor. Luckily, in some 27 countries and in some healthcare settings (i.e. CR) mental health professionals are part of the multi-disciplinary 28 team At the patients' and society level, while some CVD patients are interested in receiving psychological 29 support and therapy even before the onset of CR, [103] others still feel the stigma associated with going to a 30 psychologist or other mental health professionals; others may lack confidence in these interventions or lack the 31 financial means to go to a psychologist due to lack of reimbursement.

1 Psychological treatments, such as cognitive behavioural therapy, help in reducing psychological distress and 2 increase quality of life in patients with CVD, [104–106] and mental healthcare is effective for the treatment of 3 mental disorders.[13,107] Observational studies with large sample sizes revealed that remission of mental 4 disorders is associated with improvement of cardiac prognosis.[13,107] Nevertheless, some uncertainties 5 remain regarding the magnitude of psychological intervention effects in patients with CVD,[108] and the areas 6 of the mental healthcare impact on cardiovascular outcomes in CVD patients. A systematic Cochrane review 7 and meta-analysis found that psychological interventions had important health benefits among people with 8 CAD, reducing the rate of cardiac mortality and alleviating the psychological symptoms of depression, anxiety, 9 and stress. However, no effects were observed for total mortality, myocardial infarction, or revascularisation. 10 The mixed effects of interventions may also be attributed to a "one-size-fits-all" therapeutic approach in RCTs 11 rather than a precision-medicine approach that is targeted to patients' specific needs and preferences.[109]; in 12 addition, trials should avoid an over-representation of well-educated and motivated patients.[110] Therefore 13 large-scale trials are still warranted.[108]

- 14
- 15

16 Impact of psychological determinants of non-adherence

The ability of a patient to adhere to medical treatments and healthy behaviour changes depends on complex cognitive-emotional capacities and interaction with his or her social environment (e.g., the healthcare system). Emotional factors are symptoms of mental disorders such as anxiety, depression, and other signs of emotional dysregulation.[107] Emotional factors, knowledge (health literacy), and the belief about the consequences of medications strongly influence medication adherence.[111] Other, less essential elements are displayed in Table 3.[111]

These factors are all closely related to the level of personality functioning, i.e., the mental capacity of persons to do something good for themselves (self-care), their capacity of self-directedness, and interpersonal skills (communication, being able to ask for help, to cooperate effectively, to trust doctors and to depend on them). Psychological determinants of non-adherence in themselves are a medical problem that has to be tackled explicitly in the treatment.

28

29 Health literacy

Health literacy can be defined as the knowledge, motivation, and competencies of people to access,
 understand and apply health information to make judgments and decisions in daily life about health matters.
 These skills include reading, writing, numeracy, communication, and increasingly the use of electronic

1 technology. Health literacy therefore plays an important role in CVD secondary prevention, encompassing 2 some of necessary skills, such as understanding health information and active interaction with health 3 professionals, needed to improve self-care. [112,113] Low levels of health literacy have been associated with 4 low educational attainment, low income, and ethnic minority status and have less favorable. CVD risk 5 profiles.[114,115] Inadequate health literacy is highly prevalent in patients with CVD and it is associated with 6 poorer control of CVD risk factors and poorer adherence to drugs and changes in lifestyle. [116,117] A high level 7 of health literacy is associated with a lower readmission rate after MI and may be a factor influencing dropout 8 in CR.[116–118] Poor health literacy can be modified through the development of knowledge and skills related 9 to self-care.[119,120] The most commonly used strategies include attention to printed patient educational 10 materials, including elimination of medical jargon by using plain language with clear and concise messages, to 11 ensure that patients understand the advice of healthcare professionals.[121] Digital solutions can improve health literacy by providing patients the opportunity to be a more active participant in their own healthcare. 12 Digital solutions will provide a more person-centred approach in which individuals will have more control over 13 14 health and data, while staying connected to their healthcare team.[122]

15

16 From the "awareness" state to the "empowerment" state

17 The efficacious promotion of treatment adherence requires patients to acquire a solid awareness of their 18 status and then they move to an active engagement in managing their disease. The awareness of the disease and of its potential risks is critical for patient adherence: patients' awareness level is not always high.[123–125] 19 20 Such a lower awareness is usually associated with various factors, including age, familiar history for a specific risk factor, and unhealthy behavioral habits like poor physical activity, smoking, and heavy alcohol use.[126] 21 22 The educational status also plays an important role.[127] The sources of information mostly reported are 23 traditional ones and digital media, including social media, print information in newspapers and magazines, 24 healthcare professionals, and family members.[128,129] Educational and informative programs are primarily 25 suggested to promote patients' awareness of their condition and are suitable for interventions directed to 26 large communities, particularly those that consider patients' information needs and offer tailored content and 27 communication strategies.[130] Despite increased knowledge, awareness is insufficient to guarantee 28 prolonged adherence to the treatment. The association between awareness and behavior is usually modest, 29 suggesting that awareness alone does not motivate individual action.[131] Self-management programs are 30 needed to enable patients to have a major role in coping with their condition, controlling their symptoms, 31 understanding and accepting their prescribed treatment, recognizing the time they need medical follow-up, in 32 other words: exerting control over their own situation. This process has been defined as «empowerment», namely, "the process through which people gain greater control over decisions and actions affecting their
health".[132] Digital solutions are largely employed to enhance patients' empowerment by providing a large
variety of opportunities to be active and engaged in managing their health.[133]

4

5 Maintenance self-efficacy and recovery self-efficacy

6 Unhealthy lifestyles are difficult to change, and, when changes occur, it is hard to maintain them over time. 7 People could make multiple attempts to move from intention to a healthy actual behavior. However, relapses could happen anytime, especially in complex and chronic disease conditions requesting multiple behavioral 8 9 changes. Maintenance self-efficacy refers to the confidence in one's capability to maintain the behavior despite 10 potential barriers and obstacles. A self-efficacious person responds confidently with efficacious strategies, more effort, and greater perseverance. Greater maintenance self-efficacy correlates with higher medication 11 adherence among CR patients.[134] Patients with a first coronary event and CV high-risk who feel more self-12 efficacious in coping with potential difficulties related to behavioral changes, are more likely to improve their 13 physical activity over time, [135] while a lower self-efficacy in CVD patients is associated with higher 14 15 hospitalisation rates and all-cause mortality.[136] Programs focusing on self-efficacy increase patients' engagement in managing their condition with an improvement in clinical outcomes, such as lower blood 16 17 pressure levels and reduced hospitalizations. [137] A poor self-efficacy can be improved through the sources 18 originally identified by Bandura in psychological counselling programs. [138] The direct experience of mastery and success in increasing difficulty tasks is the primary source of self-efficacy beliefs. Furthermore, self-efficacy 19 could be improved by vicarious experiences. Patients may observe significant and competent patterns, for 20 example, by sharing CR sessions with a practiced patient who serves as a model. A further source of self-21 22 efficacy is verbal persuasion by others (doctors, nurses, physiotherapists) to help patients in gaining confidence 23 and esteem.

24

25 The disease

26 Condition/disease-related factors

Among barriers to adherence co-morbidities adversely impact treatment adherence in case of linked conditions (e.g. CVD and diabetes) or when conditions co-exist (e.g. CVD and orthopaedic limitations), particularly when drug regimens are complex, costly, and influencing activities of daily life. Non-cardiovascular comorbidities play a major role in determining unsatisfactory adherence levels, both to medications and lifestyle, especially in the elderly.[139] Although it is difficult to establish which disease combinations are at highest risk of nonadherence, several situations should be carefully monitored, such as atrial fibrillation and renal impairment after MI.[140] Co-morbidities could also lead to the prescribing cascade, i.e. a situation in which a first drug
 administered to a patient causes adverse signs and symptoms, that are misinterpreted as a new condition,
 resulting in a new medication prescription.[141]

The duration of disease has an uncertain impact,[142] even though chronic conditions or long duration of acute
illnesses reasonably increase the risk for low adherence.

6 The absence of current signs of symptoms (i.e. the "asymptomatic" patient) constitutes per se a condition 7 potentially interfering with adherence, since patients may believe they do not need the medication and might 8 not even follow their prescription.[143] This kind of intentional non-adherence primarily affects dyslipidaemia, 9 hypertension, and subclinical atherosclerosis treatments.

10

11 The healthcare provider

12 Avoid information overload and forgetfulness

Many patients, families and caregivers are exposed to 'information overload', often far more than they can remember, exacerbated by the widespread use of social media, emails, and online communications, and the pressure to simultaneously read, produce and exchange information. This is likely to affect the assimilation, understanding, retention and recall of information,[144] which may have an adverse impact on adherence to therapy and lifestyle changes. Therefore, improving access to and delivery of information is important for increasing transparency, patient autonomy and engagement, and improving safety.[145,146]

19 Most patients prefer a written lay summary of health information, [147] but, to avoid information overload and forgetfulness, healthcare professionals should consider the relevance, timing, content, duration, presentation 20 and readability of information and information-processing abilities of patients. Improving recall, understanding 21 22 and adherence to treatment involves: i) using plain, simple, uncomplicated, and consistent language and 23 terminology, ii) being specific, using some repetition, minimizing jargon and iii) checking a person's 24 understanding. This can be aided by a variety of information and educational media formats and modes of 25 delivery, encouraging note-taking, clarifying with questions, and using techniques like teach-back and 'chunk' and check'.[148] Shared decision-making [149] taking account of patients' self-efficacy and autonomy and 26 27 experience in risk factor modification, can help patients have a more active role and more accurate risk 28 perceptions.[150] How information is portrayed can influence perceptions and adherence.[151]

29

30 Enhance communication: ask, tell, ask

The physician-patient relationship is critical for establishing a good working alliance and hereby improve the adherence to treatment.[152] Therefore, medical training is supposed to include education in interpersonal

1 and communication skills aiming at effective collaboration with patients, their relatives, and other healthcare 2 professionals.[153] Concerning non-adherence, its detection and effective treatment also depends of 3 physician-patient communication. However, problems with adherence are rarely addressed and recognized by 4 physicians.[18] One teachable method of patient-centred communication is the Ask-Tell-Ask method. This 5 method aims at increasing the involvement of the patient in the treatment process. It consists of asking the 6 patient's understanding of his/her disease and treatment. Based on this information, the physician tells the 7 patient what is needed and then asks again what the patient received and his/her further informational needs. 8 There is continuous feedback between physician and patient to ensure that the patient has understood the information and grasped its meaning and consequences. The physician should use a language style adapted to 9 10 the health literacy and the emotional state of the patient. The sentences should be short and digestible.[18,154] The Ask-Tell-Ask method needs to be embedded in basic patient-centred communication 11 skills, including active listening and attending to the patient's emotions.[155] 12

13

14 Improve patients' risk perception

Risk perception may be defined as individual thoughts and feelings about the risks they face in behaving in 15 certain manners. The greater the perceived risk for one's health, the greater the motivation for taking 16 17 protective action.[156] Therefore, risk perception, both absolute ('How I am at risk') and comparative ('How I 18 am at risk comparing to people around me'), is an integral part of many major health behaviour theories, aimed at describing, explaining, and modifying human habits. About 40% of the general population 19 underestimate their risk for developing CVD, while 20% overestimate it.[157,158] Risk underestimation is very 20 common among individuals with CVD. This dysfunctional belief essentially compromises the adoption and the 21 22 maintenance of healthy habits, [159,160] diminishing the success of CVD secondary prevention. On the other 23 side, excessive overestimation may cause a significant psychological burden. Complex explanations of CVD risk 24 appear insufficient to motivate behaviour change. Providing more medical information to patients may not 25 mitigate the impact that prevailing beliefs have on patients' views on medical issues. They seek personal, 26 meaningful information that can be helpful in making healthcare and lifestyle decisions and a tailored approach 27 should be adopted.[161] Online calculators (such as the ESC CVD Risk app) can be used to estimate the average 28 lifetime benefit of smoking cessation, lipid lowering, and BP lowering on an individual patient level expressed 29 as extra CVD-free life-years. Average lifetime benefit is easy to interpret and may improve the communication 30 of potential therapy benefits to patients in a shared decision-making process. This may increases patient 31 engagement, self-efficacy, and motivation to adhere to lifestyle changes and drug treatment.[13]

32

1 Enhance patients' self-efficacy

Self-efficacy is extensively treated above, here is only to be emphasised that each healthcare provider should consider the patient's self-efficacy. It is important to incorporate self-efficacy as a key element in CVD selfmanagement programs. These programs should have a multidisciplinary approach, should be patient-driven and should have a theoretical basis for behaviour change. More research is needed to investigate the causal relationship between self-efficacy, self-control, and clinical outcomes.[137]

7

8 *Healthcare professional: Don't be inert!*

9 Clinical inertia is defined as the failure to initiate or intensify therapy when treatment goals are not met and is 10 a well-recognized barrier to improving patient care and clinical outcomes.[162] The lack of treatment 11 intensification and goal achievement is multifactorial, involving not only healthcare professionals, but also patients, healthcare system, and policy/regulatory factors.[162] One key contributor to therapeutic inertia is 12 poor guideline implementation and slow integration of new knowledge into practice.[162] Educating 13 14 healthcare professionals on practice guideline changes through continuing education programming is one 15 approach, however, evidence supporting the effectiveness of this strategy is limited.[163] A more effective approach is to provide education outreach visits in which a trained individual provides face-to-face education 16 17 and feedback on healthcare professional performance. This methodology improves clinical outcomes while also 18 reducing costs. (6) A healthcare professional-patient discussion that helps patients navigate medical 19 misinformation found in online and published media is also extremely important, [164] and educational 20 outreach visits may help healthcare professionals in implementing this in their daily practices. There is also an urgent need to increase guideline dissemination improving readability and dissemination also by smartphone 21 22 applications and social media. [162] Multidisciplinary team-based care models are more likely to achieve CVD 23 risk factor control and can reach high-risk populations successfully.[162,165] A key aspect of such models is a 24 guideline-based algorithmic approach to treatment, which can significantly reduce therapeutic inertia. Regarding systems approach, the creation of quality improvement programs that incorporate feedback metrics 25 26 provides healthcare professionals with data needed to drive improvement. In some institutions, these data are 27 available on dashboards where healthcare professionals can compare their control rates for a particular 28 disease, such as hypertension, with others, with the intent to use this information to improve their 29 performance metrics.[162] In a general view of this important topic, patient preference must also be included, as not all patients desire treatment intensification or change, owing to concerns about side effects or personal 30 31 convictions about prescription-medication use. This underlines the importance of shared decision making with 32 patients to guide treatment decisions that are consistent with the patient's wishes and goals.[162] Finally,

studies and efforts aimed to the improvement of therapeutic inertia should be based in implementation science, which is a scientific area focused on determining the best methods for increasing the integration of research findings into clinical practice, with the goal of improving the quality of health services.[166]

4

5 Promote and use a slogan in your facility: "I am with my therapy!"

6 According to the Oxford English Dictionary, a motto is "a maxim or saying adopted by a person, family, 7 institution, etc., expressing a rule of conduct or philosophy of life". It's usually simple, catchy, timeless, and 8 easy to remember as well. So defined, the "I am with my therapy!" motto could apply to patients suffering from CVD and was created for the purposes of this consensus statement as a tool to promote treatment 9 10 adherence. It is not trademarked for protection and could be enriched by an accompanying logo created at a 11 local level. These five words evoke personal empowerment and engagement ("I am", i.e. taking control of own life, and making positive decisions), appropriate relationship between the patient and prescription/prescriber 12 ("with"), and finally recognition of the importance of individualised treatment regimens, tailored to patients' 13 views and embracing all aspects of pharmacotherapy and lifestyle ("my therapy"). This declaimed alliance 14 15 between patient and therapy definitely overcomes the old concept of passive "compliance" by shifting towards a mutually agreed treatment programme, best appreciated in terms of "concordance" and "persistence". The 16 17 motto is offered to providers and prescribers, communities, institutions, and healthcare policy makers. By way of example, it could be systematically adopted by multidisciplinary teams for counselling activities during 18 secondary prevention and CR programmes. It could be inserted among educational (posters, pamphlets, 19 booklets, audio tape, tutorial videos) materials prepared for patients. It could be conveyed by websites, apps, 20 and digital health tools, also during telemedicine activities. It could be utilized as slogan for campaigns at a 21 22 population level or for community activities during phase III CR programmes. It could be even reproduced on T-23 shirts or presented as jingles for enhancing memory and recall. In other words, it could support the "brand" of CV prevention to 360°, by expanding patient-centred thinking and action. 24

25

26 The therapy

27 Many medications have side effects, require additional monitoring, and serve as a consistent reminder of the 28 patient's illness. All these factors might reduce the patient's persistence/adherence [167]. Furthermore, 29 complicated dosing regimens can lead to inconvenient administration times and contribute to forgetting to 30 take medications. Individuals with multiple medical conditions or conditions that require a large pill burden 31 must adhere to complex regimens and may experience medication interactions and polypharmacy leading to 32 non-adherence. Therefore, the number of diseases as well as the number of prescribed drugs can reduce 1 adherence and adversely affect both secondary prevention of CVD and comorbidity trends. The financial cost of 2 medication can also act as a barrier to adherence and persistence, especially in healthcare systems that have a 3 higher patient cost burden. [5,168] Finally, frequent changes in medication plan pose a greater risk for non-4 adherence, especially during transition phases between acute and primary care or routine follow-up visits. 5 Medication changes during hospitalization are common and those patients, particularly in the elderly, who are 6 not aware of the changes, may have higher rates of non-adherence.[169] Further, also prolonged disease 7 could lower the adherence to pharmacologic therapy, as well as the absence of symptoms (i.e. the 8 "asymptomatic" patient). [142,143]

9

10 The Polypill: focus on therapy simplification:

A polypill is a medication that combines multiple active pharmaceutical ingredients. In the prevention of CVD, 11 the types of treatment can be classified into three groups: i) single-pill combinations containing aspirin, a statin 12 and BP-lowering agents mainly focused on prevention and treatment in patients with established 13 14 atherosclerotic CVD; ii) fixed-dose combinations containing a statin at different dosages and ezetimibe or three 15 or four BP-lowering medications at low doses; and iii) two-drug or three-drug combinations currently on the market, such as two-drug combinations of a BP-lowering drug and a statin, metformin and a statin, and other 16 17 combinations.[170] The polypill approach aims at controlling multiple risk factors and diseases and it addresses adherence simultaneously, particularly among certain high-risk populations (e.g. low- and middle-income 18 countries, low socioeconomic status).[171] It substantially differs from a precision medicine approach which is 19 individualized and tailors guideline-directed medical therapies, based on measurement of CVD risk 20 21 factors.[172] However, for secondary prevention of CVD, both approaches could be combined. Patients should 22 be prescribed the components of the polypill according to best medical practice, but providing these 23 components in a combined polypill format simplifies the administration of therapy and improves 24 adherence. [173] In patients with, or at high risk of, CVD polypill-based care with all the three formats described 25 above is more likely than usual care to achieve therapeutic targets for BP, LDL-cholesterol and adherence to 26 antiplatelet therapy simultaneously. [173–175] [176]

27

28 Digital technologies: *m*-Health/eHealth

The rapidly growing interest and advances in digital technologies such as mHealth (mobile-Health) and eHealth (electronic-Health) are gaining universal popularity and coverage and have the potential to address the challenge of poor adherence to CVD therapy and lifestyle changes, hereby improving outcomes.

32

1 *m*-Health

2 The WHO defines m-Health technology as "a medical and public health practice supported by mobile devices, 3 such as mobile phones, patient monitoring devices, personal digital assistants, and other wireless 4 devices".[177] mHealth provides access to multiple resources and allows monitoring and real-time analysis of 5 health data, and enable patients to become more engaged in the self-management of their condition. For 6 example, mHealth appears to improve health behaviours and medication adherence and to be generally 7 preferred by patients and healthcare professionals to other interventions. [178–180] It is becoming more userfriendly for older adults and an adjunct to manage CVD risk and improve overall cardiovascular health.[181] In 8 9 older adults, mHealth is particularly effective when there is a short message service (texting) component 10 involved. However, there remain distinct barriers to the use of mHealth, such as affordability, usability, privacy, and security issues.[181] Also, mHealth interventions that incorporate personalized features other than 11 12 content (e.g. format/visualisation of screen) may improve effectiveness.[182]

13

14 eHealth

eHealth refers to the organisation and delivery of health services and information using the Internet and 15 related technologies, such as web-based technology and mHealth.[183] eHealth interventions are emerging as 16 17 an effective alternative model for improving secondary prevention of CVD, where patients receive access to 18 resources at their discretion. For instance, eHealth could be offered to patients who cannot attend traditional CR programmes or as an adjunct and may decrease non-participation and dropout rates due to better 19 20 adaptation to patients' needs and preferences. [184] Utilising eHealth technology in education delivery, which 21 might be more popular among the youngsters, provides easier access for patients and permits them to self-22 pace through educational materials. An additional advantage of remote delivery of interventions through 23 eHealth platforms is that patients can receive treatment and information during pandemics, such as covid-19. 24 However, it is important to acknowledge patient-related barriers, such as low eHealth literacy, which might 25 inhibit patients' ability to apply knowledge, make appropriate decisions and achieve better self-26 management.[184] To improve health outcomes, eHealth should be designed to foster effective interactions at 27 a distance between patients and healthcare professionals, closer to those which are presential. However, little 28 is known about whether social support offered through eHealth programmes has the same effect on self-29 management behaviour and psychosocial outcomes as traditional secondary prevention programs. Thus, while 30 eHealth interventions offer the potential of more flexibility, which can overcome barriers of work schedule or 31 geographical distance, further research is needed regarding their acceptability, feasibility, content, delivery and impact, in particular in the elderly and in patients with low socio-economic status and low health/eHealth
 literacy.

3

4 The healthcare system

5 The epidemiological shift in disease burden from acute to chronic diseases has rendered acute care models of 6 health service delivery inadequate to address the health needs of the population.[14] The healthcare delivery 7 system has the potential to affect patients' adherence behavior.[14] Healthcare systems control access to care. 8 For example, health systems control providers' schedules, length of appointments, allocation of resources, fee 9 structures, communication and information systems, and organizational priorities.[14]

10 The following are examples of the ways in which systems influence patients' behavior:[14]

- Systems direct appointment length, and providers report that their schedules do not allow time to
 adequately address adherence behavior;
- Systems determine fee structures, and in many systems (e.g. fee-for-service) the lack of financial
 reimbursement for patient counselling and education seriously threatens adherence-focused
 interventions;
- Systems allocate resources in a way that may result in high stress and increased demands upon
 providers which, in turn, have been associated with decreased adherence in their patients;
- Systems determine continuity of care. Patients demonstrate better adherence behavior when they
 receive care from the same provider over time;
- Systems direct information sharing. The ability of clinics and pharmacies to share information on
 patients' behavior regarding prescription refills has the potential to improve adherence;
- Systems determine the level of communication with patients. Ongoing communication efforts (e.g. telephone contacts) that keep the patient engaged in healthcare may be the simplest and most cost-effective strategy for improving adherence.

Unless variables such as these are addressed, it would be expected that the impact of the efforts of providers
and patients would be limited by the external constraints.[14].

27

28 Social media

Social media, defined as "electronic communication, especially applications and websites, through which users create and share information, ideas, and personal messages in an online community", is increasing exponentially. [185,186] Reported social media use by American adults has gone from 5% in 2005 to 69% in 2018, and the impact of social media on both adults and youth is both mixed and incompletely

understood.[185]. Over recent years, social media have gained powerful influence globally and throughout 1 2 society. Although initially cautious, healthcare professionals and organizations are increasingly present on 3 social media platforms, with young professionals in particular viewing social media as an integral component of 4 communicating, networking, and keeping up to date with the latest science. While potential problems need to 5 be considered, responsible social media use is likely a beneficial addition to traditional means of obtaining and 6 disseminating medical and scientific education. Healthcare professionals and organizations are advised to 7 actively engage in social media to counterbalance un-reviewed and biased information [7,8]. Future investigations of social media effects should focus on best practices, patient-oriented research, and the costs-8 9 benefit of using certain tools or platforms in varying healthcare settings. [187,188]

10

11 The role of informal caregivers in adherence to CVD management

Family members and friends can provide practical (e.g., prepare meals, bring a patient to an appointment) and 12 emotional support to improve patients' mood, encourage compliance, and reward them for their efforts. 13 Involving social networks can improve patients' quality of life, self-efficacy and relationship quality and at the 14 15 same time lower the risk of hospitalisations.[189,190] However, informal carers most often report problems such as lack of time for care and the need for institutional and personal support. In addition, caregivers require 16 information and training (e.g., emergency first aid, practical advice on caring for a bed rest, simple medical 17 18 procedures, administering medications, patting to prevent pressure ulcers, basic massage and rehabilitation 19 treatments, blood pressure measurement, among others) as well as counselling and the availability of respite care.[191,192] Targeting informal caregivers with behavioural interventions and training may be cost-effective. 20 21 Carers could help with the multifactorial origin of adherence such as reminding patients to take the medication 22 even if asymptomatic and motivating them to continue with treatment leading to lower rates of 23 hospitalisations or lower use of additional medical resources.[70] Adherence to medication is increased with 24 the support of paid carers. Therefore, providing informal carers with the knowledge of paid professional carers 25 may lead to more successful patient management. [193] Caregivers feel powerless and ignored if they do not 26 engage in relationships with healthcare professionals. This lack of coordination between health caregivers, as 27 well as the lack of access to information, was clearly highlighted in research and stakeholder 28 consultations.[191,194] Therefore, psychosocial support for patients and caregivers can lead towards a more 29 successful management of patients.[195] Adherence to smoking cessation for secondary prevention can be 30 improved by involving family members and friends, with such as a 67% probability for smoking cessation if the 31 spouse of the patient takes the steps to stop smoking.[196]

32

1 The role of integrated care: community-based projects

2 The most common intervention is education (41%), followed by counselling or support (38%), and exercise 3 (28%). Half of the interventions are multi-component. The most common interventionists are health workers. 4 Interventions to lower BP are the most promising, with behaviour change interventions being the most 5 challenging. There is a pattern of successful educational and supportive interventions, initially a more intense 6 phase individual or group based, followed by a less intense phase that often involves individual telephone 7 support or support groups. [197] Increasing accessibility to pharmacists and integrating them in community 8 programs with general practitioners for screening of CVD risk factors or for monitoring patients who have been already diagnosed and require monitoring has proved to be effective in increasing early diagnosis, adherence 9 10 and follow-up by physicians.[198] The most important barriers are lack of adequate funding, qualified 11 personnel, equipment and material resources, technical support in the field of data management and analysis, training for providers, political support of local authorities and approval of the proposed intervention by the 12 authorities in the local community. The facilitators are motivated local leaders, cross-sector participation and 13 seizing local resources. The evaluation of the project should be based on the process, not on the results 14 15 indicators.[199] However, the patient adherence to treatment over time seems to be a more complex process in which factors such as individual motivation and professional-patient interaction play an important role.[200] 16 17 Getting closer to the neighbourhood has proven to be effective. For example, an improved adherence to 18 therapy and management of high BP can be achieved through the involvement of barbershops in CVD 19 prevention.[165]

20

21 Future directions/research

22 Regarding future research, suggestions from a recent Policy Statement of the American Heart Association are 23 available (see Table 4).[201] The currently available studies are relatively small and of short duration, and few 24 information about how study designs were performed are provided. These facts significantly limit their ability to be replicated in other settings and with other populations. Several studies used a multi-component 25 26 interventional design compared to usual care arm. Therefore, it is very difficult to identify the relationship 27 between each intervention and the outcome. The implementation in clinical practice of a policy to improve 28 adherence to optimal therapy is still often disregarded, due to the complexity of the problem and its 29 multidimensional nature. A great hope is in e-Health as a tool to improve adherence by facilitating the 30 relationship and communication between patients and healthcare professionals in the long term. In future 31 studies, it will be of particular importance to isolate the contribution of each component, in order to identify 32 the best target to test in future e-Health tools.

1

2 Conclusions

3 Adherence to pharmacological treatments and healthy lifestyle behaviours is poor in secondary CVD 4 prevention. However, adherence to therapy is an extremely complex problem. Probably, it is because of this 5 complexity that, despite the large size of the available literature and the widespread awareness of its 6 importance, effective approaches to address this problem are lacking in daily clinical practice. Since a complex 7 problem necessarily does not have a simple solution, in daily clinical practice every healthcare provider is 8 needed to increase sensitivity to the fact that without considering the future patient's adherence to therapies, 9 every effort done to improve the patient's health status can be insufficient. Each healthcare professional must 10 therefore apply a multidisciplinary approach, focused on adherence to guideline-directed medical therapy and a heart-healthy lifestyle, based on present knowledge. This approach might be based on the following steps: i) 11 12 the identification of patients at risk of non-adherence, ii) the development of a multidisciplinary intervention 13 pathway useful to support adherence in the long-term, and iii) develop an adequate follow-up strategy in the 14 long term.

1 Author's contribution

- 2 RFEP conceived the idea for paper, led the work group, drafted sections of the text, and provided editorial
- 3 oversight. DH co-led the work group, drafted sections of the text, and provided editorial oversight.
- 4 MA/MB/MCF/CPZ/AG/DK/MM/EO/SP/RES/MS/PS/DRT/MW/AA drafted sections of the text, reviewed and
- 5 commented on a final draft of the paper. CV/CHD/DW/IF reviewed and commented on a final draft of the
- 6 paper. All authors agreed to the final version of the paper.

1 References

- 2 1. Kotseva K, De Backer G, De Bacquer D *et al.* Lifestyle and impact on cardiovascular risk factor control in
- coronary patients across 27 countries: Results from the European Society of Cardiology ESC-EORP EUROASPIRE
 V registry. *Eur J Prev Cardiol* 2019;**26**:824–35.
- De Bacquer D, Astin F, Kotseva K *et al.* Poor adherence to lifestyle recommendations in patients with
 coronary heart disease: results from the EUROASPIRE surveys. *European Journal of Preventive Cardiology* 2022;29:383–95.
- 3. Chowdhury R, Khan H, Heydon E *et al.* Adherence to cardiovascular therapy: a meta-analysis of prevalence
 and clinical consequences. *Eur Heart J* 2013;**34**:2940–8.
- A. Naderi SH, Bestwick JP, Wald DS. Adherence to drugs that prevent cardiovascular disease: meta-analysis on
 376,162 patients. *Am J Med* 2012;**125**:882-887.e1.
- 12 5. Osterberg L, Blaschke T. Adherence to medication. *N Engl J Med* 2005;**353**:487–97.
- 13 6. Rea F, Ronco R, Pedretti RFE *et al.* Better adherence with out-of-hospital healthcare improved long-term
- 14 prognosis of acute coronary syndromes: Evidence from an Italian real-world investigation. *Int J Cardiol*
- 15 2020;**318**:14–20.
- 16 7. Hansen D, Abreu A, Ambrosetti M *et al.* Exercise intensity assessment and prescription in cardiovascular
- 17 rehabilitation and beyond: why and how: a position statement from the Secondary Prevention and
- 18 Rehabilitation Section of the European Association of Preventive Cardiology. *European Journal of Preventive*
- 19 *Cardiology* 2022;**29**:230–45.
- 20 8. Abreu A, Frederix I, Dendale P *et al.* Standardization and quality improvement of secondary prevention
- 21 through cardiovascular rehabilitation programmes in Europe: The avenue towards EAPC accreditation
- 22 programme: A position statement of the Secondary Prevention and Rehabilitation Section of the European
- Association of Preventive Cardiology (EAPC). *Eur J Prev Cardiol* 2020:2047487320924912.
- 24 9. Ladwig K-H, Baghai TC, Doyle F *et al.* Mental Health-Related Risk Factors and Interventions in Patients with
- 25 Heart Failure. A Position Paper endorsed by the European Association of Preventive Cardiology (EAPC). Eur J
- 26 Prev Cardiol 2022:zwac006.
- 27 10. Pedretti RFE, Iliou M-C, Israel CW *et al.* Comprehensive multicomponent cardiac rehabilitation in cardiac
- 28 implantable electronic devices recipients: a consensus document from the European Association of Preventive
- 29 Cardiology (EAPC; Secondary prevention and rehabilitation section) and European Heart Rhythm Association
- 30 (EHRA). Eur J Prev Cardiol 2021;**28**:1736–52.
- 31 11. Ambrosetti M, Abreu A, Corrà U *et al.* Secondary prevention through comprehensive cardiovascular
- 32 rehabilitation: From knowledge to implementation. 2020 update. A position paper from the Secondary
- 33 Prevention and Rehabilitation Section of the European Association of Preventive Cardiology. Eur J Prev Cardiol
- 34 2020:2047487320913379.

- 12. A P, S S, S G *et al.* 2020 ESC Guidelines on sports cardiology and exercise in patients with cardiovascular
 disease. *European heart journal* 2021;42, DOI: 10.1093/eurheartj/ehaa605.
- 13. Visseren FLJ, Mach F, Smulders YM *et al.* 2021 ESC Guidelines on cardiovascular disease prevention in
 clinical practice. *Eur Heart J* 2021;**42**:3227–337.
- 5 14. Sabaté E, World Health Organization eds. *Adherence to Long-Term Therapies: Evidence for Action*. Geneva:
 6 World Health Organization, 2003.
- 7 15. Vrijens B, De Geest S, Hughes DA *et al*. A new taxonomy for describing and defining adherence to
 8 medications. *Br J Clin Pharmacol* 2012;**73**:691–705.
- 9 16. van der Laan DM, Elders PJM, Boons CCLM *et al.* Factors Associated With Nonadherence to Cardiovascular
 10 Medications: A Cross-sectional Study. *J Cardiovasc Nurs* 2019;**34**:344–52.
- 11 17. ICD-11 for Mortality and Morbidity Statistics.
- 12 18. Hines R, Stone NJ. Patients and Physicians Beliefs and Practices Regarding Adherence to Cardiovascular
- 13 Medication. *JAMA Cardiol* 2016;**1**:470–3.
- 14 19. Tomaszewski M, White C, Patel P *et al.* High rates of non-adherence to antihypertensive treatment revealed
 by high-performance liquid chromatography-tandem mass spectrometry (HP LC-MS/MS) urine analysis. *Heart*2014;**100**:855–61.
- 20. Bansilal S, Castellano JM, Garrido E *et al.* Assessing the Impact of Medication Adherence on Long-Term
 Cardiovascular Outcomes. *Journal of the American College of Cardiology* 2016;**68**:789–801.
- Nguyen T-M-U, La Caze A, Cottrell N. What are validated self-report adherence scales really measuring?: a
 systematic review. *Br J Clin Pharmacol* 2014;**77**:427–45.
- 22. Morisky DE, Green LW, Levine DM. Concurrent and predictive validity of a self-reported measure of
 medication adherence. *Med Care* 1986;24:67–74.
- 23. Kim MT, Hill MN, Bone LR *et al.* Development and Testing of the Hill-Bone Compliance to High Blood
 24 Pressure Therapy Scale. *Progress in Cardiovascular Nursing* 2000;**15**:90–6.
- 24. Sav A, King MA, Whitty JA *et al.* Burden of treatment for chronic illness: a concept analysis and review of
 the literature. *Health Expect* 2015;**18**:312–24.
- 25. Khatib R, Marshall K, Silcock J *et al.* Adherence to coronary artery disease secondary prevention medicines:
 exploring modifiable barriers. *Open Heart* 2019;**6**:e000997.
- 29 26. Świątoniowska-Lonc N, Tański W, Polański J et al. Psychosocial Determinants of Treatment Adherence in
- 30 Patients with Type 2 Diabetes A Review. *Diabetes Metab Syndr Obes* 2021;**14**:2701–15.
- 31 27. Anderson DR, Emery CF. Irrational health beliefs predict adherence to cardiac rehabilitation: a pilot study.
- 32 *Health Psychol* 2014;**33**:1614–7.

- 28. Allen LaPointe NM, Ou F-S, Calvert SB *et al.* Association between patient beliefs and medication adherence
 following hospitalization for acute coronary syndrome. *Am Heart J* 2011;**161**:855–63.
- 3 29. Park Y, Park Y-H, Park K-S. Determinants of Non-Adherences to Long-Term Medical Therapy after
- 4 Myocardial Infarction: A Cross-Sectional Study. Int J Environ Res Public Health 2020;17:E3585.
- 30. Soroush A, Komasi S, Saeidi M *et al.* Coronary artery bypass graft patients' perception about the risk factors
 of illness: Educational necessities of second prevention. *Ann Card Anaesth* 2017;**20**:303–8.
- 31. Sud A, Kline-Rogers EM, Eagle KA *et al*. Adherence to medications by patients after acute coronary
 syndromes. *Ann Pharmacother* 2005;**39**:1792–7.
- 9 32. Dunlay SM, Witt BJ, Allison TG *et al.* Barriers to participation in cardiac rehabilitation. *Am Heart J*2009;**158**:852–9.
- 33. Danielson E, Melin-Johansson C, Modanloo M. Adherence to Treatment in Patients with Chronic Diseases:
 From Alertness to Persistence. *Int J Community Based Nurs Midwifery* 2019;**7**:248–57.
- 13 34. Mohammed MA, Moles RJ, Chen TF. Medication-related burden and patients' lived experience with 14 medicine: a systematic review and metasynthesis of gualitative studies. *BMJ Open* 2016;**6**:e010035.
- 15 35. Yohannes AM, Yalfani A, Doherty P *et al.* Predictors of drop-out from an outpatient cardiac rehabilitation
- 15 35. Yonannes Alvi, Yanani A, Donerty P *et al.* Predictors of drop-out from an outpatient cardiac rena
 16 programme. *Clin Rehabil* 2007;**21**:222–9.
- 36. Johnson JE, Weinert C, Richardson JK. Rural residents' use of cardiac rehabilitation programs. *Public Health Nurs* 1998;15:288–96.
- 37. Molloy GJ, Perkins-Porras L, Bhattacharyya MR *et al.* Practical support predicts medication adherence and
 attendance at cardiac rehabilitation following acute coronary syndrome. *J Psychosom Res* 2008;**65**:581–6.
- 38. Grace SL, Abbey SE, Shnek ZM *et al.* Cardiac rehabilitation II: referral and participation. *Gen Hosp Psychiatry* 2002;**24**:127–34.
- 39. Aggarwal B, Mosca L. Lifestyle and psychosocial risk factors predict non-adherence to medication. *Ann Behav Med* 2010;40:228–33.
- 40. Kronish IM, Rieckmann N, Halm EA *et al.* Persistent depression affects adherence to secondary prevention
 behaviors after acute coronary syndromes. *J Gen Intern Med* 2006;**21**:1178–83.
- 27 41. Burgess E, Hassmén P, Pumpa KL. Determinants of adherence to lifestyle intervention in adults with
- 28 obesity: a systematic review. *Clin Obes* 2017;**7**:123–35.
- 42. Chopra S, Malhotra A, Ranjan P *et al.* Predictors of successful weight loss outcomes amongst individuals
 with obesity undergoing lifestyle interventions: A systematic review. *Obes Rev* 2021;**22**:e13148.
- 43. Cooke CE, Xing S, Gale SE *et al.* Initial non-adherence to antihypertensive medications in the United States:
- 32 a systematic literature review. J Hum Hypertens 2021, DOI: 10.1038/s41371-021-00549-w.

- 1 44. Pathak A, Poulter NR, Kavanagh M *et al.* Improving the Management of Hypertension by Tackling
- Awareness, Adherence, and Clinical Inertia: A Symposium Report. *Am J Cardiovasc Drugs* 2021, DOI:
- 3 10.1007/s40256-021-00505-6.
- 4 45. Benjamin EJ, Virani SS, Callaway CW *et al.* Heart Disease and Stroke Statistics-2018 Update: A Report From
 5 the American Heart Association. *Circulation* 2018;**137**:e67–492.
- 46. Cholesterol Treatment Trialists' (CTT) Collaboration, Baigent C, Blackwell L *et al.* Efficacy and safety of more
 intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised
- 8 trials. *Lancet* 2010;**376**:1670–81.
- 9 47. Costanzo MR, Dipchand A, Starling R *et al.* The International Society of Heart and Lung Transplantation
- 10 Guidelines for the care of heart transplant recipients. *J Heart Lung Transplant* 2010;**29**:914–56.
- 48. Ingersgaard MV, Helms Andersen T, Norgaard O *et al.* Reasons for Nonadherence to Statins A Systematic
 Review of Reviews. *Patient Prefer Adherence* 2020;**14**:675–91.
- 49. Bansilal S, Castellano JM, Fuster V. Global burden of CVD: focus on secondary prevention of cardiovascular
 disease. *Int J Cardiol* 2015;**201 Suppl 1**:S1-7.
- 50. Chan SL, Edwards NJ, Conell C *et al.* Age, race/ethnicity, and comorbidities predict statin adherence after
 ischemic stroke or myocardial infarction. *Eur J Prev Cardiol* 2020;**27**:2299–301.
- 51. Lansberg P, Lee A, Lee Z-V *et al.* Nonadherence to statins: individualized intervention strategies outside the
 pill box. *Vasc Health Risk Manag* 2018;**14**:91–102.
- 52. Ferrieres J, De Ferrari GM, Hermans MP *et al.* Predictors of LDL-cholesterol target value attainment differ in
 acute and chronic coronary heart disease patients: Results from DYSIS II Europe. *Eur J Prev Cardiol*2018;25:1966–76.
- 53. Serban M-C, Colantonio LD, Manthripragada AD *et al.* Statin Intolerance and Risk of Coronary Heart Events
 and All-Cause Mortality Following Myocardial Infarction. *J Am Coll Cardiol* 2017;**69**:1386–95.
- 54. Koskinas KC, Gencer B, Nanchen D *et al.* Eligibility for PCSK9 inhibitors based on the 2019 ESC/EAS and 2018
 ACC/AHA guidelines. *Eur J Prev Cardiol* 2021;**28**:59–65.
- 26 55. Koskinas KC, Siontis GCM, Piccolo R et al. Effect of statins and non-statin LDL-lowering medications on
- cardiovascular outcomes in secondary prevention: a meta-analysis of randomized trials. *Eur Heart J*2018;**39**:1172–80.
- 29 56. O'Brien EC, Roe MT, Fraulo ES *et al.* Rationale and design of the familial hypercholesterolemia foundation
- 30 CAscade SCreening for Awareness and DEtection of Familial Hypercholesterolemia registry. *Am Heart J*
- 31 2014;**167**:342-349.e17.
- 32 57. Myers KD, Farboodi N, Mwamburi M et al. Effect of Access to Prescribed PCSK9 Inhibitors on Cardiovascular
- 33 Outcomes. *Circ Cardiovasc Qual Outcomes* 2019;**12**:e005404.

- 1 58. Prattichizzo F, de Candia P, De Nigris V *et al.* Legacy effect of intensive glucose control on major adverse
- 2 cardiovascular outcome: Systematic review and meta-analyses of trials according to different scenarios.
- 3 *Metabolism* 2020;**110**:154308.
- 59. Ho PM, Bryson CL, Rumsfeld JS. Medication adherence: its importance in cardiovascular outcomes.
 Circulation 2009;**119**:3028–35.
- 6 60. Oosterom-Calo R, van Ballegooijen AJ, Terwee CB *et al.* Determinants of adherence to heart failure
 7 medication: a systematic literature review. *Heart Fail Rev* 2013;**18**:409–27.
- 61. Juarez DT, Williams AE, Chen C *et al.* Factors affecting medication adherence trajectories for patients with
 heart failure. *Am J Manag Care* 2015;**21**:e197-205.
- 62. Molloy GJ, O'Carroll RE, Witham MD *et al.* Interventions to enhance adherence to medications in patients
 with heart failure: a systematic review. *Circ Heart Fail* 2012;**5**:126–33.
- 63. Fitzgerald AA, Powers JD, Ho PM *et al.* Impact of medication nonadherence on hospitalizations and
 mortality in heart failure. *J Card Fail* 2011;**17**:664–9.
- 64. Shah D, Simms K, Barksdale DJ *et al.* Improving medication adherence of patients with chronic heart failure:
 challenges and solutions. *RRCC* 2015;**6**:87–95.
- 16 65. Ruppar TM, Delgado JM, Temple J. Medication adherence interventions for heart failure patients: A meta-17 analysis. *Eur J Cardiovasc Nurs* 2015;**14**:395–404.
- 18 66. Ruppar TM, Cooper PS, Mehr DR et al. Medication Adherence Interventions Improve Heart Failure Mortality
- 19 and Readmission Rates: Systematic Review and Meta-Analysis of Controlled Trials. J Am Heart Assoc
- 20 2016;**5**:e002606.
- 67. Toh C, Jackson B, Gascard D *et al.* Barriers to Medication Adherence in Chronic Heart Failure Patients during
 Home Visits. *Journal of Pharmacy Practice and Research* 2010;40:27–30.
- 68. Calvin JE, Shanbhag S, Avery E *et al.* Adherence to evidence-based guidelines for heart failure in physicians
 and their patients: lessons from the Heart Failure Adherence Retention Trial (HART). *Congest Heart Fail*2012;**18**:73–8.
- 69. Silavanich V, Nathisuwan S, Phrommintikul A *et al.* Relationship of medication adherence and quality of life
 among heart failure patients. *Heart Lung* 2019;48:105–10.
- 70. Aggarwal B, Pender A, Mosca L *et al.* Factors associated with medication adherence among heart failure
 patients and their caregivers. *J Nurs Educ Pract* 2015;**5**:22–7.
- 30 71. Dalal HM, Taylor RS. Telehealth technologies could improve suboptimal rates of participation in cardiac
- 31 rehabilitation. *Heart* 2016;**102**:1155–6.
- 72. Zhang J, Gong Y, Zhao Y *et al.* Post-stroke medication adherence and persistence rates: a meta-analysis of
 observational studies. *J Neurol* 2021;**268**:2090–8.

- 73. Levy T, Laver K, Killington M *et al.* A systematic review of measures of adherence to physical exercise
 recommendations in people with stroke. *Clin Rehabil* 2019;**33**:535–45.
- 3 74. Rohde D, Merriman NA, Doyle F *et al.* Does cognitive impairment impact adherence? A systematic review
- 4 and meta-analysis of the association between cognitive impairment and medication non-adherence in stroke.
- 5 Quinn TJ (ed.). *PLoS ONE* 2017;**12**:e0189339.
- 75. Crayton E, Fahey M, Ashworth M *et al.* Psychological Determinants of Medication Adherence in Stroke
 Survivors: a Systematic Review of Observational Studies. *ann behav med* 2017;**51**:833–45.
- 76. Lip GYH. The ABC pathway: an integrated approach to improve AF management. *Nat Rev Cardiol*2017;**14**:627–8.
- 10 77. Lip GYH. The ABC pathway: an integrated approach to improve AF management. *Nat Rev Cardiol*2017;**14**:627–8.
- 12 78. Hindricks G, Potpara T, Dagres N *et al.* 2020 ESC Guidelines for the diagnosis and management of atrial
- 13 fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS).
- 14 *European Heart Journal* 2021;**42**:373–498.
- 15 79. Romiti GF, Pastori D, Rivera-Caravaca JM *et al.* Adherence to the 'Atrial Fibrillation Better Care' Pathway in
- 16 Patients with Atrial Fibrillation: Impact on Clinical Outcomes—A Systematic Review and Meta-Analysis of
- 17 285,000 Patients. Thromb Haemost 2022;122:406–14.
- 18 80. Bhattarai B, Walpola R, Mey A *et al.* Barriers and Strategies for Improving Medication Adherence Among
- 19 People Living With COPD: A Systematic Review. *Respir Care* 2020;**65**:1738–50.
- 81. Ruano-Ravina A, Pena-Gil C, Abu-Assi E *et al.* Participation and adherence to cardiac rehabilitation
 programs. A systematic review. *Int J Cardiol* 2016;**223**:436–43.
- 82. Menezes AR, Lavie CJ, Forman DE *et al.* Cardiac rehabilitation in the elderly. *Prog Cardiovasc Dis*2014;**57**:152–9.
- 24 83. González-Salvado V, Peña-Gil C, Lado-Baleato Ó *et al.* Offering, participation and adherence to cardiac
- rehabilitation programmes in the elderly: a European comparison based on the EU-CaRE multicentre
 observational study. *Eur J Prev Cardiol* 2021;**28**:558–68.
- 84. Collado-Mateo D, Lavín-Pérez AM, Peñacoba C *et al.* Key Factors Associated with Adherence to Physical
 Exercise in Patients with Chronic Diseases and Older Adults: An Umbrella Review. *Int J Environ Res Public Health*2021;18:2023.
- 85. Melloni C, Alexander KP, Ou F-S *et al.* Predictors of early discontinuation of evidence-based medicine after
 acute coronary syndrome. *Am J Cardiol* 2009;**104**:175–81.
- 32 86. Kripalani S, Henderson LE, Jacobson TA et al. Medication use among inner-city patients after hospital
- discharge: patient-reported barriers and solutions. *Mayo Clin Proc* 2008;**83**:529–35.

- 87. Kvarnström K, Airaksinen M, Liira H. Barriers and facilitators to medication adherence: a qualitative study
 with general practitioners. *BMJ Open* 2018;**8**:e015332.
- 3 88. Kleinsinger F. The Unmet Challenge of Medication Nonadherence. *Perm J* 2018;**22**:18–033.
- 4 89. Nieuwlaat R, Wilczynski N, Navarro T *et al.* Interventions for enhancing medication adherence. *Cochrane*
- 5 Database Syst Rev 2014:CD000011.
- 90. Zullig LL, Blalock DV, Dougherty S *et al.* The new landscape of medication adherence improvement: where
 population health science meets precision medicine. *Patient Prefer Adherence* 2018;**12**:1225–30.
- 91. Hyun K, Negrone A, Redfern J *et al.* Gender Difference in Secondary Prevention of Cardiovascular Disease
 and Outcomes Following the Survival of Acute Coronary Syndrome. *Heart Lung Circ* 2021;**30**:121–7.
- 92. Xia S, Du X, Guo L *et al.* Sex Differences in Primary and Secondary Prevention of Cardiovascular Disease in
 China. *Circulation* 2020;**141**:530–9.
- 93. Oosenbrug E, Marinho RP, Zhang J *et al.* Sex Differences in Cardiac Rehabilitation Adherence: A Meta analysis. *Can J Cardiol* 2016;**32**:1316–24.
- 94. Sanderson BK, Bittner V. Women in cardiac rehabilitation: outcomes and identifying risk for dropout. Am
 Heart J 2005;150:1052–8.
- 16 95. Lichtman JH, Froelicher ES, Blumenthal JA *et al*. Depression as a risk factor for poor prognosis among
- 17 patients with acute coronary syndrome: systematic review and recommendations: a scientific statement from
- 18 the American Heart Association. *Circulation* 2014;**129**:1350–69.
- 19 96. Pedersen SS, Nielsen JC, Wehberg S *et al.* New onset anxiety and depression in patients with an implantable
- 20 cardioverter defibrillator during 24 months of follow-up (data from the national DEFIB-WOMEN study). Gen
- 21 Hosp Psychiatry 2021;**72**:59–65.
- 22 97. Hoogwegt MT, Kupper N, Theuns DAMJ *et al.* Undertreatment of anxiety and depression in patients with an
- implantable cardioverter-defibrillator: impact on health status. *Health Psychol* 2012;**31**:745–53.
- 98. Pedersen SS, von Känel R, Tully PJ *et al.* Psychosocial perspectives in cardiovascular disease. *Eur J Prev Cardiol* 2017;24:108–15.
- 26 99. Pogosova N, Saner H, Pedersen SS *et al.* Psychosocial aspects in cardiac rehabilitation: From theory to
- 27 practice. A position paper from the Cardiac Rehabilitation Section of the European Association of
- 28 Cardiovascular Prevention and Rehabilitation of the European Society of Cardiology. Eur J Prev Cardiol
- 29 2015;**22**:1290–306.
- 30 100. Tully PJ, Cosh SM, Baumeister H. The anxious heart in whose mind? A systematic review and meta-
- 31 regression of factors associated with anxiety disorder diagnosis, treatment and morbidity risk in coronary heart
- 32 disease. J Psychosom Res 2014;**77**:439–48.

- 101. Luppa M, Heinrich S, Angermeyer MC *et al.* Cost-of-illness studies of depression: a systematic review. J
 Affect Disord 2007;**98**:29–43.
- 102. Rodwin BA, Spruill TM, Ladapo JA. Economics of psychosocial factors in patients with cardiovascular
 disease. *Prog Cardiovasc Dis* 2013;55:563–73.
- 103. Shields GE, Wright S, Wells A *et al.* Delivery preferences for psychological intervention in cardiac
 rehabilitation: a pilot discrete choice experiment. *Open Heart* 2021;8:e001747.
- 104. Reavell J, Hopkinson M, Clarkesmith D *et al.* Effectiveness of Cognitive Behavioral Therapy for Depression
 and Anxiety in Patients With Cardiovascular Disease: A Systematic Review and Meta-Analysis. *Psychosom Med*2018;**80**:742–53.
- 105. Schneider LH, Hadjistavropoulos HD, Dear BF *et al.* Efficacy of internet-delivered cognitive behavioural
 therapy following an acute coronary event: A randomized controlled trial. *Internet Interv* 2020;**21**:100324.
- 12 106. Helmark C, Ahm R, Andersen CM *et al.* Internet-based treatment of anxiety and depression in patients

13 with ischaemic heart disease attending cardiac rehabilitation: a feasibility study (eMindYourHeart). European

- 14 *Heart Journal Digital Health* 2021;**2**:323–35.
- 15 107. Michal M, Beutel M. Mental disorders and cardiovascular disease: what should we be looking out for?
 16 *Heart* 2021;**107**:1756–61.
- 17 108. Richards SH, Anderson L, Jenkinson CE *et al*. Psychological interventions for coronary heart disease:
- 18 Cochrane systematic review and meta-analysis. *Eur J Prev Cardiol* 2018;**25**:247–59.
- 109. Andersson G, Estling F, Jakobsson E *et al.* Can the patient decide which modules to endorse? An open trial
 of tailored internet treatment of anxiety disorders. *Cogn Behav Ther* 2011;**40**:57–64.
- 110. Cajita MI, Cajita TR, Han H-R. Health Literacy and Heart Failure: A Systematic Review. *J Cardiovasc Nurs* 2016;**31**:121–30.
- 23 111. E C, M F, M A et al. Psychological Determinants of Medication Adherence in Stroke Survivors: a Systematic
- 24 Review of Observational Studies. Annals of behavioral medicine : a publication of the Society of Behavioral

25 *Medicine* 2017;**51**, DOI: 10.1007/s12160-017-9906-0.

- 26 112. Berkman ND, Davis TC, McCormack L. Health literacy: what is it? *J Health Commun* 2010;**15 Suppl 2**:9–19.
- 113. Kickbusch I, Pelikan JM, Apfel F *et al. Health Literacy: The Solid Facts*. World Health Organization. Regional
 Office for Europe, 2013.
- 114. Sørensen K, Pelikan JM, Röthlin F *et al.* Health literacy in Europe: comparative results of the European
 health literacy survey (HLS-EU). *Eur J Public Health* 2015;**25**:1053–8.
- 115. van der Heide I, Wang J, Droomers M *et al.* The relationship between health, education, and health
- 32 literacy: results from the Dutch Adult Literacy and Life Skills Survey. *J Health Commun* 2013;**18 Suppl 1**:172–84.

- 116. Kripalani S, Goggins K, Nwosu S *et al.* Medication Nonadherence Before Hospitalization for Acute Cardiac
 Events. *J Health Commun* 2015;**20 Suppl 2**:34–42.
- 117. Ghisi GL de M, Chaves GS da S, Britto RR *et al.* Health literacy and coronary artery disease: A systematic
 review. *Patient Educ Couns* 2018;**101**:177–84.
- 5 118. Aaby A, Friis K, Christensen B *et al.* Health Literacy among People in Cardiac Rehabilitation: Associations
- 6 with Participation and Health-Related Quality of Life in the Heart Skills Study in Denmark. Int J Environ Res
- 7 *Public Health* 2020;**17**:E443.
- 8 119. Aaby A, Friis K, Christensen B *et al.* Health literacy is associated with health behaviour and self-reported
 9 health: A large population-based study in individuals with cardiovascular disease. *Eur J Prev Cardiol*
- 10 2017;**24**:1880–8.
- 11 120. van Schaik TM, Jørstad HT, Twickler TB *et al.* Cardiovascular disease risk and secondary prevention of
- 12 cardiovascular disease among patients with low health literacy. *Neth Heart J* 2017;**25**:446–54.
- 121. Magnani JW, Mujahid MS, Aronow HD *et al.* Health Literacy and CVD: Fundamental Relevance to Primary
 and Secondary Prevention: A Scientific Statement From the AHA. *Circulation* 2018;**138**:e48–74.
- 15 122. Conard S. Best practices in digital health literacy. Int J Cardiol 2019;**292**:277–9.
- 16 123. Boateng D, Wekesah F, Browne JL et al. Knowledge and awareness of and perception towards
- 17 cardiovascular disease risk in sub-Saharan Africa: A systematic review. *PLoS One* 2017;**12**:e0189264.
- 124. Caligiuri SPB, Austria JA, Pierce GN. Alarming Prevalence of Emergency Hypertension Levels in the General
 Public Identified by a Hypertension Awareness Campaign. *Am J Hypertens* 2017;**30**:236–9.
- 20 125. Shal'nova S Svetlana, Deev A, Metelskaya V et al. Awareness and treatment specifics of statin therapy in
- persons with various cardiovasular risk: The study ESSE-RF. *Cardiovascular Therapy and Prevention* 2016;15:29–
 37.
- 126. Wang C, Yu X, Zhang X *et al.* Awareness, treatment, control of diabetes mellitus and the risk factors:
 survey results from northeast China. *PLoS One* 2014;**9**:e103594.
- 127. Tchicaya A, Braun M, Lorentz N *et al.* Social inequality in awareness of cardiovascular risk factors in
 patients undergoing coronary angiography. *Eur J Prev Cardiol* 2013;**20**:872–9.
- 128. Finken LR, Coomes E, Bajaj RR *et al.* HAS GOOGLE REPLACED TRADITIONAL SOURCES OF CARDIOVASCULAR
 DISEASE AND RISK FACTOR INFORMATION? *Canadian Journal of Cardiology* 2014;**10 Supplement**:S180.
- 129. Redmond N, Baer HJ, Clark CR *et al.* Sources of health information related to preventive health behaviors
 in a national study. *Am J Prev Med* 2010;**38**:620-627.e2.
- 31 130. Noar SM, Harrington NG. Tailored communications for health-related decision-making and behavior
- 32 change. Handbook of Health Decision Science. New York, NY, US: Springer Science + Business Media, 2016,
- 33 251–63.

- 131. Alzaman N, Wartak SA, Friderici J *et al.* Effect of patients' awareness of CVD risk factors on health-related
 behaviors. *South Med J* 2013;**106**:606–9.
- 3 132. Nutbeam D, Kickbusch I. Health promotion glossary. *Health promotion international* 1998;**13**:349–64.
- 4 133. Karni L, Dalal K, Memedi M *et al.* Information and Communications Technology-Based Interventions
- 5 Targeting Patient Empowerment: Framework Development. J Med Internet Res 2020;22:e17459.
- 134. Greer AE, Milner K, Marcello R *et al.* Health Action Process Approach: Application to Medication
 Adherence in Cardiac Rehabilitation (CR) Patients. *Educational Gerontology* 2015;**41**:685–94.
- 135. Steca P, Pancani L, Cesana F *et al.* Changes in physical activity among coronary and hypertensive patients:
 A longitudinal study using the Health Action Process Approach. *Psychol Health* 2017;**32**:361–80.
- 10 136. Sarkar U, Ali S, Whooley MA. Self-efficacy as a marker of cardiac function and predictor of heart failure
- 11 hospitalization and mortality in patients with stable coronary heart disease: findings from the Heart and Soul
- 12 Study. *Health Psychol* 2009;**28**:166–73.
- 137. Katch H, Mead H. The role of self-efficacy in cardiovascular disease self-management: a review of effective
 programs. *PI* 2010;**2**:33–44.
- 15 138. Salim U. Bandura, A.(1997). Self Efficacy The Exercise of Control. New York: WH Freeman and Company.
- 16 139. Griffo R, Ambrosetti M, Tramarin R *et al.* Effective secondary prevention through cardiac rehabilitation
- 17 after coronary revascularization and predictors of poor adherence to lifestyle modification and medication.
- 18 Results of the ICAROS Survey. Int J Cardiol 2013;167:1390–5.
- 140. Brieger D, Chow C, Gullick J *et al.* Improving patient adherence to secondary prevention medications 6
 months after an acute coronary syndrome: observational cohort study. *Intern Med J* 2018;48:541–9.
- 21 141. Rochon PA, Gurwitz JH. Drug therapy. *Lancet* 1995;**346**:32–6.
- 142. Gast A, Mathes T. Medication adherence influencing factors-an (updated) overview of systematic reviews.
 Syst Rev 2019;8:112.
- 143. Miller NH. Compliance with treatment regimens in chronic asymptomatic diseases. *Am J Med*1997;**102**:43–9.
- 144. Liu C-F, Kuo K-M. Does information overload prevent chronic patients from reading self-management
 educational materials? *Int J Med Inform* 2016;**89**:1–8.
- 145. Delbanco T, Berwick DM, Boufford JI *et al.* Healthcare in a land called PeoplePower: nothing about me
 without me. *Health Expect* 2001;**4**:144–50.
- 30 146. Bell SK, Mejilla R, Anselmo M *et al.* When doctors share visit notes with patients: a study of patient and
- 31 doctor perceptions of documentation errors, safety opportunities and the patient-doctor relationship. *BMJ*
- 32 *Qual Saf* 2017;**26**:262–70.

- 147. Fritz Z, Schlindwein A, Slowther A-M. Patient engagement or information overload: patient and physician
 views on sharing the medical record in the acute setting. *Clin Med (Lond)* 2019;**19**:386–91.
- 3 148. Teach-Back.
- 4 149. Navar AM, Stone NJ, Martin SS. What to say and how to say it: effective communication for cardiovascular
 5 disease prevention. *Curr Opin Cardiol* 2016;**31**:537–44.
- 150. Stacey D, Légaré F, Lewis K *et al.* Decision aids for people facing health treatment or screening decisions.
 Cochrane Database Syst Rev 2017;4:CD001431.
- 151. Navar AM, Wang TY, Mi X *et al.* Influence of Cardiovascular Risk Communication Tools and Presentation
 Formats on Patient Perceptions and Preferences. *JAMA Cardiol* 2018;**3**:1192–9.
- 152. Fuertes JN, Mislowack A, Bennett J *et al.* The physician-patient working alliance. *Patient Educ Couns* 2007;66:29–36.
- 12 153. *Textbook of Palliative Care Communication*. Oxford University Press
- 13 154. Härter M, Dirmaier J. 4.3. Arzt-Patient-Kommunikation.
- 14 https://books.publisso.de/de/publisso_gold/publishing/books/overview/46/175 2020, DOI:
- 15 10.5680/OLMPS000062.
- 16 155. Hashim MJ. Patient-Centered Communication: Basic Skills. *Am Fam Physician* 2017;**95**:29–34.
- 17 156. Renner B, Gamp M, Schmälzle R *et al.* Health Risk Perception. *International Encyclopedia of the Social & Behavioral Sciences*. Elsevier, 2015, 702–9.
- 157. Hengen KM, Alpers GW. What's the Risk? Fearful Individuals Generally Overestimate Negative Outcomes
 and They Dread Outcomes of Specific Events. *Front Psychol* 2019;**10**:1676.
- 158. Webster R, Heeley E. Perceptions of risk: understanding cardiovascular disease. *Risk Manag Healthc Policy* 2010;3:49–60.
- 159. Davidson PM, Salamonson Y, Rolley J *et al.* Perception of cardiovascular risk following a percutaneous
 coronary intervention: a cross sectional study. *Int J Nurs Stud* 2011;**48**:973–8.
- 160. Plana N, Ibarretxe D, Cabré A *et al.* Prevalence of atherogenic dyslipidemia in primary care patients at
 moderate-very high risk of cardiovascular disease. Cardiovascular risk perception. *Clin Investig Arterioscler* 2014;26:274–84.
- 161. Goldman RE, Parker DR, Eaton CB *et al.* Patients' perceptions of cholesterol, cardiovascular disease risk,
 and risk communication strategies. *Ann Fam Med* 2006;**4**:205–12.
- 30 162. Dixon DL, Sharma G, Sandesara PB *et al.* Therapeutic Inertia in Cardiovascular Disease Prevention: Time to
- 31 Move the Bar. *Journal of the American College of Cardiology* 2019;**74**:1728–31.

- 1 163. Chan WV, Pearson TA, Bennett GC *et al.* ACC/AHA Special Report: Clinical Practice Guideline
- 2 Implementation Strategies: A Summary of Systematic Reviews by the NHLBI Implementation Science Work
- 3 Group: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical
- 4 Practice Guidelines. J Am Coll Cardiol 2017;69:1076–92.
- 5 164. Hill JA, Agewall S, Baranchuk A *et al.* Medical Misinformation. *Circulation* 2019;**139**:571–2.
- 6 165. Victor RG, Lynch K, Li N *et al.* A Cluster-Randomized Trial of Blood-Pressure Reduction in Black
 7 Barbershops. *N Engl J Med* 2018;**378**:1291–301.
- 8 166. Bauer MS, Damschroder L, Hagedorn H *et al.* An introduction to implementation science for the non9 specialist. *BMC Psychol* 2015;**3**:32.
- 167. Choudhry NK, Krumme AA, Ercole PM *et al.* Effect of Reminder Devices on Medication Adherence: The
 REMIND Randomized Clinical Trial. *JAMA Intern Med* 2017;**177**:624–31.
- 12 168. Goldman DP, Joyce GF, Zheng Y. Prescription drug cost sharing: associations with medication and medical
- 13 utilization and spending and health. JAMA 2007;**298**:61–9.
- 14 169. Harris CM, Sridharan A, Landis R *et al.* What happens to the medication regimens of older adults during
- and after an acute hospitalization? *J Patient Saf* 2013;**9**:150–3.
- 16 170. Chow CK, Meng Q. Polypills for primary prevention of cardiovascular disease. *Nat Rev Cardiol*2019;**16**:602–11.
- 171. Roshandel G, Khoshnia M, Poustchi H *et al.* Effectiveness of polypill for primary and secondary prevention
 of cardiovascular diseases (PolyIran): a pragmatic, cluster-randomised trial. *The Lancet* 2019;**394**:672–83.
- 172. Joyner MJ, Paneth N. Cardiovascular Disease Prevention at a Crossroads:: Precision Medicine or Polypill?
 JAMA 2019;322:2281–2.
- 173. Thom S, Poulter N, Field J *et al.* Effects of a fixed-dose combination strategy on adherence and risk factors
 in patients with or at high risk of CVD: the UMPIRE randomized clinical trial. *JAMA* 2013;**310**:918–29.
- 174. Patel A, Cass A, Peiris D *et al.* A pragmatic randomized trial of a polypill-based strategy to improve use of
 indicated preventive treatments in people at high cardiovascular disease risk. *Eur J Prev Cardiol* 2015;**22**:920–
 30.
- 175. Selak V, Elley CR, Bullen C *et al.* Effect of fixed dose combination treatment on adherence and risk factor
 control among patients at high risk of cardiovascular disease: randomised controlled trial in primary care. *BMJ*2014;**348**:g3318.
- 176. Selak V, Webster R, Stepien S *et al.* Reaching cardiovascular prevention guideline targets with a polypill based approach: a meta-analysis of randomised clinical trials. *Heart* 2019;105:42–8.
- 32 177. WHO Global Observatory for eHealth. *MHealth: New Horizons for Health through Mobile Technologies:*
- 33 *Second Global Survey on EHealth*. World Health Organization, 2011.

- 1 178. Burke LE, Ma J, Azar KMJ *et al.* Current Science on Consumer Use of Mobile Health for Cardiovascular
- 2 Disease Prevention. *Circulation* 2015;**132**:1157–213.
- 179. Thakkar J, Kurup R, Laba T-L *et al.* Mobile Telephone Text Messaging for Medication Adherence in Chronic
 Disease: A Meta-analysis. *JAMA Internal Medicine* 2016;**176**:340–9.
- 5 180. Gandapur Y, Kianoush S, Kelli HM *et al.* The role of mHealth for improving medication adherence in
- patients with cardiovascular disease: a systematic review. European Heart Journal Quality of Care and Clinical
 Outcomes 2016;2:237–44.
- 7 Outcomes 2010,**2**.237–44.
- 8 181. Schorr EN, Gepner AD, Dolansky MA et al. Harnessing Mobile Health Technology for Secondary
- 9 Cardiovascular Disease Prevention in Older Adults: A Scientific Statement From the American Heart
- 10 Association. *Circulation: Cardiovascular Quality and Outcomes* 2021;**14**:e000103.
- 11 182. Tong HL, Quiroz JC, Kocaballi AB *et al.* Personalized mobile technologies for lifestyle behavior change: A
- systematic review, meta-analysis, and meta-regression. *Prev Med* 2021;**148**:106532.
- 13 183. Frederix I, Caiani EG, Dendale P *et al.* ESC e-Cardiology Working Group Position Paper: Overcoming
- challenges in digital health implementation in cardiovascular medicine. *Eur J Prev Cardiol* 2019;**26**:1166–77.
- 15 184. Brørs G, Pettersen TR, Hansen TB *et al*. Modes of e-Health delivery in secondary prevention programmes
- 16 for patients with coronary artery disease: a systematic review. *BMC Health Services Research* 2019;**19**:364.
- 17 185. LaBarge G, Broom M. Social Media in Primary Care. *Mo Med* 2019;**116**:106–10.
- 18 186. Dictionary by Merriam-Webster: America's most-trusted online dictionary.
- 19 187. Social Media Use 2018: Demographics and Statistics. *Pew Research Center: Internet, Science & Tech* 2018.
- 20 188. Ladeiras-Lopes R, Baciu L, Grapsa J *et al.* Social media in cardiovascular medicine: a contemporary review.
- 21 European Heart Journal Digital Health 2020;1:10–9.
- 22 189. Martire LM, Schulz R, Keefe FJ et al. Couple-Oriented Education and Support Intervention for
- 23 Osteoarthritis: Effects on Spouses' Support and Responses to Patient Pain. *Fam Syst Health* 2008;**26**:185–95.
- 190. Nichols LO, Martindale-Adams J, Burns R *et al*. Translation of a dementia caregiver support program in a
 health care system--REACH VA. *Arch Intern Med* 2011;**171**:353–9.
- 191. Morris SM, King C, Turner M *et al.* Family carers providing support to a person dying in the home setting: A
 narrative literature review. *Palliat Med* 2015; 29:487–95.
- 28 192. Ploeg J, Matthew-Maich N, Fraser K *et al.* Managing multiple chronic conditions in the community: a
- Canadian qualitative study of the experiences of older adults, family caregivers and healthcare providers. *BMC Geriatr* 2017;**17**:40.
- 193. Aggarwal B, Liao M, Mosca L. Medication adherence is associated with having a caregiver among cardiac
 patients. *Ann Behav Med* 2013;46:237–42.
 - 40

- 194. Ventura AD, Burney S, Brooker J *et al*. Home-based palliative care: a systematic literature review of the
 self-reported unmet needs of patients and carers. *Palliat Med* 2014;**28**:391–402.
- 195. Blair J, Volpe M, Aggarwal B. Challenges, needs, and experiences of recently hospitalized cardiac patients
 and their informal caregivers. *J Cardiovasc Nurs* 2014;**29**:29–37.
- 5 196. Trivedi RB, Bryson CL, Udris E *et al.* The influence of informal caregivers on adherence in COPD patients.
 6 Ann Behav Med 2012;44:66–72.
- 197. Walton-Moss B, Samuel L, Nguyen TH *et al.* Community-based cardiovascular health interventions in
 vulnerable populations: a systematic review. *J Cardiovasc Nurs* 2014;**29**:293–307.
- 9 198. Snella KA, Canales AE, Irons BK *et al.* Pharmacy- and community-based screenings for diabetes and
- 10 cardiovascular conditions in high-risk individuals. *J Am Pharm Assoc (2003)* 2006;**46**:370–7.
- 11 199. Belizan M, Chaparro RM, Santero M *et al.* Barriers and Facilitators for the Implementation and Evaluation
- 12 of Community-Based Interventions to Promote Physical Activity and Healthy Diet: A Mixed Methods Study in
- 13 Argentina. Int J Environ Res Public Health 2019;**16**:E213.
- 14 200. Taylor AJ, Bindeman J, Feuerstein I *et al.* Community-based provision of statin and aspirin after the
- detection of coronary artery calcium within a community-based screening cohort. *J Am Coll Cardiol*2008;**51**:1337–41.
- 17 201. Piña IL, Di Palo KE, Brown MT et al. Medication adherence: Importance, issues and policy: A policy
- 18 statement from the American Heart Association. *Prog Cardiovasc Dis* 2021;**64**:111–20.
- 19
- 20

- 1 Table 1 Take-home messages and consensus statements
- ° In the secondary prevention of CVD, it is crucial to optimize the adherence to therapy since most CVD risk
 factors and lifestyle measures are far from optimally controlled in many patients.
- ° Considering the multifactorial process that can lead to suboptimal adherence to treatment, secondary CVD
 prevention should be deployed in a multidisciplinary setting or context.
- 6 ° In general, a low self-efficacy, poor health literacy and risk perception, and certain psychosocial issues (e.g.
- depression, anxiety, cognitive decline, poor social support and socio-economic status) predict a low adherence
 to therapy. Hence, these factors should be screened at entry of a secondary prevention program and targeted
- 9 accordingly.
- ° For each CVD risk factor or condition separately, additional specific predictors for a low adherence to therapy
 are established, and should thus be taken into account by healthcare providers.
- [°] To optimize the adherence to therapy, it is important to work on its five dimensions simultaneously,
- 13 including: the patient, the disease, the healthcare provider, the therapy, and the healthcare system.
- 14

15

Table 2 General barriers to adherence to treatment

Patient-centred barriers to adherence to treatment
Low education level
Low health literacy with poor knowledge of illness and medication
Lack of competence in self-management
Misbeliefs (alternative belief systems as media and neighbours medication information
Lack of motivation
Fear for medication side-effects
Low economic status
Depression or cognitive disturbances
Old age
Poor vision
Alcohol or drug abuse
Disease-driven barriers to adherence to treatment
Absence of symptoms
Chronicity
Good prognosis
Healthcare professional-centred barriers to adherence to treatment
Not enough time for consults (short consult period)
Poor practitioner-patient relationship
Unsatisfactory skills in coaching self-management treatment
No satisfactory full list of medication review (too time-consuming)
Difficulties to obtain the accurate knowledge of home medication (generics, past medication maintained)
Healthcare professional authoritarian approach to patients
Medication-driven barriers to adherence to treatment
Complexity of medication
Polypharmacy
Doubts on duration of medication (temporary, chronic)

Medication withdrawal

Drugs adverse effects and toxicity

Drug-to-drug interaction

Existence of different generic drugs (different names and boxes for the same drug)

Costs (economic, personal, social)

Inconvenience

Time

Unavailability

Healthcare system-driven barriers to adherence to treatment

Provided poor access to healthcare (distance, costs, reimbursement)

Poor communication within the system

Problems in keeping the list of medication up-to-date

Lack of enough healthcare professionals with multitask appointments and short time for consults

- 1
- 2 **Table 3** Psychological determinants of non-adherence
 - Skills (language skills, planning, and organization skills): Poorer skills yield worse adherence
 - Beliefs about capabilities: Helplessness impairs adherence, perceived control improves adherence
 - Memory: Memory deficits were related to poorer adherence
 - Social Influences: Perceived discrimination due to race, ethnicity, education, or income was linked to a higher risk of non-adherence. Increasing inertia appeared was related to increased non-adherence

3

- 1 Table 4 Gaps in current knowledge need for future studies
- 2
- ° Which interventions have the broadest impact on maximising adherences to therapy across patient groups or
 health conditions? Which interventions work best for which component of the CVD therapy?
- ⁶ What is the direct impact of improved adherence to medication and improved adherence to lifestyle in
 specific patient populations or health conditions on actual healthcare outcomes and costs?
- [°] Does the adherence to medications for multiple medical conditions differ from adherence if only one medical
 condition is present? If yes what additional tools, resources needed?
- 9 ° Are there patient subgroups for whom spending on adherence interventions yields more benefit in terms of
 10 reducing future healthcare costs than other patient subgroups?
- [°] What healthcare provider-patient communication strategies mostly impact adherence to heart healthy
- 12 therapies (i.e medication and lifestyle) in a positive direction?
- [°] To what degree does payment reform and incentives impact medication adherence rates on the long-term?
- 14

Figure 3 Graphical abstract

