Data-driven state-space identification of nonlinear feedback systems
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1 Background

Many nonlinear systems can be represented as linear time-
invariant (LTI) systems with a static nonlinear function in
the feedback path (see Fig. 1). As for system identification,
modelling of the nonlinear function is particularly challeng-
ing since this typically requires prior system information,
expert knowledge and/or engineering judgement. Another
issue in identification of nonlinear systems is that the opti-
misation algorithm may converge to a local minimum of the
typically non-convex cost function.

2 Problem statement

Consider the discrete-time state-space representation of a
nonlinear feedback system

X1 = Axg + Bug +wy,

(la)
Yk = Cxy + Duy,

where A, B, C and D are the linear state, input, output, and
direct feedthrough matrices, respectively. Moreover, x; is
the latent state vector and u; and y; are the measured in-
puts and outputs, respectively, at discrete time instant k. The
nonlinear function is represented by an additional multivari-
ate input wy, which is modelled as a feedforward neural net-
work with one hidden layer:

Wi = WWG(Wsz + bz) + by,

(1b)
7k = Exg + Fug + Gyg,

where W, and W,, are the inner and outer weights of the neu-
ral net, respectively, and b, and b,, their associated biases.
Any suitable nonlinear activation function ¢(.) can be cho-
sen. The neural net input is z;, which is comprised of a linear
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Figure 1: Block-diagram of a nonlinear feedback system.

combination of the states, inputs, and outputs, through co-
efficient matrices E, F' and G, respectively. The aim of this
work is to first infer the nonlinear input wy and the latent
state x; in the time domain, such that their functional map-
ping in the form of a neural net can be learnt afterwards.

3 Method

Based on the measured input-output data only, the identifi-
cation procedure consists of four steps:

1. Initialise A, B, C and D, through the best linear ap-
proximation (BLA) [1]. This facilitates the ability to
gather crucial data about the system, such as the order
of its dynamic behaviour.

2. Use the BLA and the input-output data to find wy
in the time domain by solving a convex optimisa-
tion problem similar to unconstrained model predic-
tive control [2]. Here, the reference that we track is
the original output data y;, while the original input
data u; is treated as a known disturbance. This step
automatically yields an estimate of the latent state xy.

3. Define E, F and G; decide on the activation function
and the number of neurons; possibly perform some
dimensionality reduction on z; and wy; and train the
feedforward neural net (1b).

4. Perform final optimisation on all model parameters to
further reduce the simulation error.

Steps 1-3 thus serve as an initialisation of the final optimisa-
tion step, and are meant to mitigate the risk of getting stuck
in a local minimum. The considered method also requires al-
most no prior system knowledge, therefore overcoming one
of the main challenges in nonlinear system identification.

4 Results

The effectiveness of the proposed method is evaluated
on a number of nonlinear benchmark data sets (from
www.nonlinearbenchmark.org), including the Sil-
verbox system and the Bouc-Wen hysteric system.
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