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Abstract

Embedded applications that require security often rely on hardware cryptogra-
phy to enable several security services. Cryptographic implementations should
be transparent to the end-user, with minimal impact on the usability and
performance of the enabled service. Therefore, the cost of the cryptographic
layer should be minimized. Many applications require additional protection
against tampering and side-channel attacks, which introduces additional costs
to the implemented cryptographic service. This additional cost needs to be
kept under control and should not significantly impact the performance of the
system.

Achieving side-channel protection is a challenging task. The assumptions about
the leakage from the target platform used to devise a countermeasure need to
be sufficiently accurate and the countermeasure themselves need to provide
adequate protection against the assumed leakage. Otherwise, the final device
might still exhibit side-channel vulnerabilities, which can be seen from the
amount of vulnerabilities uncovered in side-channel protected implementations
over the years.

Low latency is critical for many practical applications. Secure boot and memory
encryption are just some of the examples in which low latency is needed to
ensure the responsiveness of the system, while the processing of sensitive data
mandates the use of side-channel protection to thwart any side-channel attacks.
Thus, providing low-latency side-channel protection is paramount in many cases.

In this thesis, we examine the aspects of low-latency design for side-channel
protection. We specifically focus on side-channel protected hardware implemen-
tations. Several methods to achieve low-latency Threshold Implementations
(TI) are presented. The main focus is on the algorithms that enable minimal
area implementation of single-cycle nonlinear Boolean functions. The presented
algorithms are generic and computationally feasible to a broad spectrum of
functions used in cryptographic primitives, as shown by the application to
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relevant classes of Boolean functions of up to 8 bits. This thesis focuses on first-
and second-order secure designs. However, higher-order secure designs can be
constructed using the same methods.

The thesis also includes several hardware implementations of the PRINCE
block cipher and detailed comparisons between them, emphasizing low-latency
and low-energy aspects and their relation to the overall area of the final side-
channel protected design. We also show that low-latency design can result in
low-energy implementation in spite of the area penalty. The impact of the
structure of the Algebraic Normal Form (ANF) of side-channel protected circuits
is also examined on a single-cycle masked S-Box of AES (Advanced Encryption
Standard); a large impact is shown on area and critical paths, with up to 50%
difference in area and 10% difference in critical path.

We also discuss the optimizations of single S-Box serialized AES implementations
which is the de facto standard for side-channel hardened AES realizations. The
solutions presented allow for a full S-Box pipeline during the round, resulting
in twenty cycles per round execution if the S-Box cycle latency is less than ten
cycles.



Beknopte samenvatting

Geïntegreerde toepassingen die beveiliging vereisen, zijn vaak afhankelijk van
hardware-cryptografie voor verschillende beveiligingstoepassingen. Cryptogra-
fische implementaties moeten onzichtbaar zijn voor de eindgebruiker en een
minimale impact hebben op de bruikbaarheid en prestaties van de ingeschakelde
toepassing. Bijgevolg moeten de kosten van de cryptografische laag zo minimaal
mogelijk gehouden worden. Veel toepassingen hebben extra bescherming
nodig tegen manipulatie en nevenkanaalsaanvallen wat extra kosten met zich
meebrengt. Deze extra kosten moeten beteugeld worden en mogen de prestaties
van het systeem niet significant beïnvloeden.

Beschermen tegen nevenkanaalsaanvallen is een uitdagende taak. De aannames
over de lekkage van het doelplatform die gebruikt worden om een tegenmaatregel
te bedenken, moeten voldoende nauwkeurig zijn; en de tegenmaatregelen moeten
voldoende bescherming bieden tegen de veronderstelde lekkage. Zoniet, kan het
uiteindelijke apparaat nog steeds kwetsbaar zijn voor nevenkanaalsaanvallen,
zoals blijkt uit het aantal kwetsbaarheden dat door de jaren heen ontdekt is in
nevenkanaalbeveiligde implementaties.

Lage latentie is van cruciaal belang voor veel praktische toepassingen. Veilig
opstarten en geheugenencryptie zijn slechts enkele voorbeelden van toepassingen
waarbij lage latentie noodzakelijk is voor een minimale reactietijd van het
systeem, maar de verwerking van gevoelige gegevens tegelijk het gebruik van
nevenkanaalsbescherming vereist. Daarom is het vaak van het grootste belang
om nevenkanaalsbescherming met lage latentie te bieden.

In dit proefschrift onderzoeken we de aspecten van het ontwerpen van
nevenkanaalsbescherming met lage latentie. We richten ons specifiek op
nevenkanaalsbeschermde hardware-implementaties en presenteren verschillende
methoden om threshold implementaties met lage latentie te realiseren. Dit
proefschrift spitst zich vooral toe op de algoritmen die een minimale-oppervlakte
implementatie van niet-lineaire Booleaanse functies met één cyclus toelaten.
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De voorgestelde algoritmen zijn algemeen, en rekenkundig haalbaar voor een
breed spectrum aan functies die gebruikt worden in cryptografische primitieven,
zoals blijkt uit de toepassing ervan op relevante klassen van Booleaanse functies
van maximaal acht bits. Dit proefschrift richt zich op veilige ontwerpen van
de eerste en tweede orde, maar veilige ontwerpen van een hogere orde kunnen
opgebouwd worden volgens dezelfde methoden.

Dit proefschrift bevat ook verschillende hardware-implementaties van het
PRINCE blokvercijferingsalgoritme en een gedetailleerde vergelijking van
deze verschillende implementaties. Hierbij ligt de nadruk op lage latentie
en energiezuinigheid, en hun verhouding tot de totale oppervlakte van het
uiteindelijke nevenkanaalsbeschermde ontwerp. We tonen hierbij aan dat een
ontwerp met lage latentie kan resulteren in een energiezuinige implementatie
ondanks de toename in oppervlakte. De impact van de structuur van de
algebraïsche normaalvorm (ANF) van nevenkanaalsbeschermde stroomkringen
werd onderzocht op een AES (Advanced Encryption Standard) gemaskeerde
S-Box met één cyclus; we vonden hierbij een grote invloed op de oppervlakte en
het kritieke pad, met tot 50% verschil in oppervlakte en 10% verschil in kritiek
pad.

Ten slotte bespreken we ook de optimalisaties van AES-implementaties met
één geserialiseerde S-box, de de facto standaard voor nevenkanaalsbeschermde
AES-realisaties. De gepresenteerde oplossingen laten een volledige S-Box-pijplijn
tijdens de ronde toe, resulterend in twintig cycli per uitvoeringsronde als de
S-Box-latentie minder is dan tien cycli.
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Chapter 1

Introduction

“Speed is irrelevant if you are
going in the wrong direction.”

Mahatma Gandhi

The technological expansion that started in the second half of the twentieth
century brought a new digital era to civilization, with electronic systems being an
essential component in the lives of ordinary individuals. Digital communication
became inexpensive, easily accessible, and fast, which led to the rise of various
systems and applications leveraging novel channels of communication. The
ability to quickly and reliably exchange information created a need to protect
information from potentially malicious third parties. Cryptographic systems,
originally exclusively used in a military and government setting, found their
way into the everyday life. Online shopping, eBanking, and secure messaging
applications rely on the ability to securely connect two or more physically distant
parties over a digital channel, using cryptographic protocols and primitives to
protect the data in transit. Cryptographic primitives also protect data at rest,
i.e., sensitive databases such as medical or financial records.

Recently, with the expansion of the Internet of Things (IoT) devices and smart
vehicles, the volume of data exchanged over public networks is drastically
increasing. While allowing for previously unparalleled levels of connectivity,
these devices often find themselves at the mercy of malicious parties. Smart
devices with an internet connection have already been used as nodes in large
Distributed Denial of Service (DDOS) attacks against widely used websites
and online services [47]. Moreover, many IoT devices serve as sensors whose

1



2 INTRODUCTION

readings should only be performed by authorized parties. An unprotected smart
meter with remote reading capability can be used as an indicator of residential
presence, with low energy, gas, and water consumption providing a good
indication a household is currently unoccupied and can be burglarized. Hence,
protecting these devices and their data is of utmost importance. Additionally,
low manufacturing costs must be maintained while stringent requirements for
power, energy, and chip area have to be met, especially when a device is
battery or passively powered. Thus, cryptographic protection also needs to be
lightweight, low-cost, and effective. Finally, many IoT devices will by nature
be located in remote locations, and they should also employ countermeasures
against physical tampering while maintaining their low-cost and performance.

Industrial control systems are designed to ensure timely responsiveness, and
a high degree of robustness. However, many of them were designed without
considering security, as is the case for Supervisory Control and Data Acquisition
(SCADA), the most widespread protocol for monitoring and control of various
industrial systems. Consequently, numerous attacks on SCADA have been
documented, with even more potential vulnerabilities known. Moreover, adding
security to the existing protocol is an arduous task, as the cost of consuming
the additional latency introduced by the security-providing component is too
high. Thus, security considerations should be included during the design stage
of any system/protocol operating in a distributed way. At the same time,
cryptographic components ensuring security should impose as little strain on
the system operation as possible, i.e., they should be lightweight and fast.

1.1 Cryptography

Cryptography is a science of studying methods that allow secure communication
between several parties over an untrusted channel by ensuring confidentiality
(secrecy) and integrity of data in transit or at rest. Additionally, cryptography
provides mechanisms used for authentication of entities, allowing for restricted
access of sensitive data in a system. Cryptography is also used for non-
repudiation, i.e., providing proof of origin of data or action.

Encryption is a method that transforms a message (plaintext) into a seemingly
random looking string (ciphertext) using an algorithm, a cipher. A cipher
takes an additional secret input, called the key, to produce the ciphertext.
Decryption is a method of retrieving the original message by applying the
inverse cipher operation on the ciphertext, using the key as additional input.
Message decryption should not be possible to any party which does not have
the decryption key. Modern encryption algorithms rely on Kerckhoffs’ principle
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which states that secrecy of the plaintext relies solely on the input key being
unknown to the adversary, with the assumption that the details of encryption
and decryption method are publicly known and available.

Cryptographic primitives can be divided into three categories:

• Symmetric key primitives.

• Asymmetric key primitives.

• Keyless primitives.

Symmetric key cryptography allows for secure communication between two
parties if they share the same secret key. Figure 1.1 depicts both the encryption
and decryption operation in the symmetric key setting, in which the same key
is used both during encryption and decryption.

Symmetric primitives are efficient to implement in both software and hardware,
typically using only bit manipulation instructions, arithmetic operations, and
lookup tables (LUTs). Block ciphers are symmetric encryption algorithms which
take an input block of the fixed size of m bits, and they produce the output
ciphertext block, also consisting of m bits. The most famous block cipher
example is Advanced Encryption Standard (AES) based on Rijndael [28]. AES
is the predominant block cipher, with fast implementations both in software
and in hardware. Processor manufacturers such as Intel, AMD and ARM even
employ specialized instructions to expedite the AES computation in their CPUs.
Specialized block ciphers designed for constrained devices are other notable
examples, such as PRESENT [10] and PRINCE [12]. These ciphers have a
smaller block size than AES and do not guarantee the same level of security, but
they are less costly to deploy in hardware. Authenticity of transmitted messages
between two parties is achieved by appending a message authentication code
(MAC).

The most prominent keyless primitives are cryptographic hash functions which
are typically used to create digital fingerprints as they provide a fixed length
output regardless of the input size. Most commonly used hashing algorithms
are SHA-3 [60] based on KECCAK permutation [4], and SHA-2 [35]. MAC
algorithms often rely on cryptographic hash functions, e.g., HMAC-SHA-256 [52]
is a hash-based MAC algorithm. Extendable-Output Functions (XOF) are
another widely used keyless primitive, which takes an input bit string as input
and can provide an output of any length. SHAKE-128 and SHAKE-256 [60] are
KECCAK based examples of XOFs. An asymmetric encryption cryptographic
primitives rely on using a pair of two distinct keys, and are predominantly
used for establishing a secure channel between two parties. Similarly, digital



4 INTRODUCTION

Figure 1.1: Symmetric encryption and decryption operations.

signatures leverage assymetric cryptography by using one key to create a
signature during the signing step, and another paired key during signature
verification step.

1.2 Modeling the Cryptographic Attacker

The original Kerckhoffs principle naturally lends itself to the black-box attacker
model in which the attacker has access to the plaintext, ciphertext, and the
algorithm itself, but not the key. The black-box attacker model is sufficient
for attackers with access to the communication channel but not the device
that performs the cryptographic operation. If the device is accessible to the
attacker, the black-box model is invalidated because the adversary can exploit
the physical nature of the implementation of the algorithm to recover the key.
The adversary can either observe the physical state of the device or even attempt
to disrupt the regular operation of the device. This more potent attacker model
is referred to as gray-box model. The attacker’s primary goal in the gray-box
model is not to mathematically break the underlying cryptographic algorithm
but to recover the key, whose value indirectly manifests itself via its physical
state. The gray-box model is presented in Figure 1.2.

Gray-box attacks can be characterized into two groups:

• Passive attacks are characterized by the non-interference of the adversary
with the operation of the device [51, 18, 37]. Instead, the device behavior
is monitored while it executes a cryptographic operation. The attacker
then tries to uncover the secret key from the obtained additional data. The
most commonly measured characteristics of the device are execution time,
instantaneous power consumption and electromagnetic radiation. Passive
attacks are also called side-channel attacks, as they can be interpreted as
an additional channel which the adversary has access to, in addition to
the communication channel.



MODELING THE CRYPTOGRAPHIC ATTACKER 5

Figure 1.2: Gray-box Cryptography.

• Active attacks involve a perturbation of the internal state of the device
while the cryptographic algorithm is being executed, with the goal of
producing incorrect output [11, 6]. The faulty output is either used to
undermine the integrity of the system if undetected or to recover the
secret key if it can be paired with the known correct output. Voltage
and clock glitching, and Electromagnetic Fault Injection (EMFI) are
the most common methods used to induce a fault by causing multiple
storage elements to update their outputs incorrectly[70, 3]. Laser fault
injection is another method, which can be used to precisely target any
single gate on the chip, allowing the adversary a much finer control over
the attack. Active attacks are invasive if the device cannot return to
normal operation after the attack, e.g., by removing the packaging of
the chip or by shortcircuiting PRNG inputs of the device. Non-invasive
attacks do not permanently impact the device. Hence the device can
normally operate after the attack. Invasive attacks are often used to
profile the device, to discover the most suitable points, both on die and in
time, which can be used to mount a successful attack.
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• Combined attacks perform a combination of both passive and active
attacks to recover the key or invalidate device’s security. The best example
of a combined attack is faulting of the Pseudo Random Number Generator
(PRNG) output to a constant value, which diminishes the protection level
of side-channel countermeasures, followed by mounting a side-channel
attack against the weakened implementation.

Both passive and active attacks pose a severe threat to the security of many
embedded devices today. Moreover, the cost of mounting a successful attack is
continuously decreasing, making these attacks more readily available. Hence,
correctly applying countermeasures against such attacks is becoming increasingly
important.

The device’s operating environment should be carefully evaluated to estimate
potential attacker capabilities and appropriate countermeasures should be
implemented accordingly. An inadequate attacker model can lead to exploitable
vulnerabilities, e.g., a side-channel only protected device can be easily broken
if the adversary can mount active attacks. Conversely, a too powerful attack
model would lead to an unnecessarily expensive device, with considerable power
consumption and chip area.

1.3 Motivation

Many digital systems mandate both fast performance and side-channel
protection, a daunting task, as most countermeasures introduce additional
latency, notwithstanding the area overhead of the countermeasures. However,
many applications do require both side-channel resilience and low latency.
Thus, minimizing the area overhead while limiting the performance impact of
side-channel countermeasures is critical for many applications in practice.

Memory encryption is probably the most obvious example where encryption
(decryption) latency has a significant impact on the overall system performance.
The standard memory encryption implementation is given in Figure 1.3.
Especially when dealing with external memory, it is of utmost importance
to protect the memory encryption key against side-channel attacks. The volume
of data being encrypted/decrypted with one key in a memory encryption setting
is high, allowing adversaries to mount side-channel attacks and easily recover
the key if no countermeasures are in place.

Secure boot is a method to ensure that the code image being run on a processor
comes from a trusted source and has not been tampered with on disk. Typically,
the secure boot is achieved by signing the hash of the boot image and checking
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Figure 1.3: Memory encryption diagram.

the signed hash against the computed signature after power up. Alternatively,
a MAC can be used to create a tag of the boot image, that again needs to
be checked at power up. Similar to memory encryption, a large amount of
data is processed during the hash computation using the same key, allowing
adversaries to mount side-channel attacks during the MAC computation. Hence
side-channel countermeasures should be in place to thwart side-channel attacks
while maintaining the overall speed of the boot image verification. The secure
boot speed is critical in scenarios in which the device idling in low power mode
most of the time, only occasionally waking up to quickly perform a specific
task and returning to low power mode. As waking up from low power mode
initiates a secure boot process, keeping the secure boot execution time minimal
is paramount to responsiveness and low energy consumption of the device.

Secure test and debug is another application in which a testing entity needs
to authenticate itself to the device to gain elevated access control of the device.
Allowing only authenticated parties to access the device test and debug ports
while keeping the access time low is vital as it translates directly into the silicon
manufacturing cost.

1.4 Organization

The work presented in this thesis focuses on reducing the cost of low-latency
side-channel countermeasures in hardware implementations, evaluating the
impact of side-channel countermeasures on the performance and chip area,
and examining trade-offs during the design stage of side-channel protected
implementations concerning latency, area, and power/energy consumption. The
main contributions from the thesis have been published internationally [14,
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17, 15, 79]. I was the main author in three publications [14, 17, 15] while in
Shahmirzadi et al. [79] I contributed with an efficient TI sharing of an 8-bit
cubic Boolean function, and a construction method for achieving such a sharing.
The thesis is organized in the following manner:

• Chapter 2 gives necessary background on hardware design, side-channel
attacks and countermeasures, focussing on Threshold Implementations
(TIs) [64] and state of the art in low-latency side-channel design.

• Chapter 3 explores the construction of optimal TIs for Boolean functions
of various algebraic degrees, and for different security orders. These
constructions are then practically explored in subsequent sections, and
they present the foundation of the thesis. The work presented in this
chapter is based on work published in [14, 79, 15].

• Chapter 4 discusses several side-channel protected implementations of
the PRINCE [12]. The main focus of the chapter is the comparison of
standard hardware metrics between variants of the protected circuits, with
special attention being given to latency and energy consumption. This
Chapter is based on work presented in [14, 15, 17].

• Chapter 5 discusses a first-order side-channel resistant single cycle AES
S-Box implementation and examines how the choice of the ANF of the
shares impact on area and latency. Additionally, an algorithm for the
efficient pipeline of serialized single S-Box AES is presented, allowing
for minimal latency of one encryption operation, despite the multi-stage
layout of the protected S-Box. The work presented in this chapter is based
on findings published in [15] as well as previously unpublished results.

• Chapter 6 summarizes the work presented in this thesis and explores
the future research directions of low-latency side-channel protected
implementations.



Chapter 2

Preliminaries

“To acquire knowledge, one must
study; but to acquire wisdom, one
must observe.”

Marilyn vos Savant

In this chapter, we provide an overview of the theoretical notions required to
understand subsequent chapters. We start with the overview of digital hardware
design, followed by the basis of Boolean algebra for cryptography. The bulk
of the chapter, however, is the background on side-channel attacks, as well as
protection against such attacks, with particular attention given to TI, the most
commonly used Boolean masking technique for hardware circuits.

2.1 Hardware Design

Digital circuits are the dominant electronic circuits type used to compute
discrete values. They are characterized by their ability to distinguish between
two values. Thus, the underlying physical properties could be separated from
the functionality of the circuit, allowing for the abstraction of the two signal
levels by interpreting them as logical zero and logical one. Hence, the designer
needs not know the physical properties of the technology in great detail, but
can still abstract the two signals level into binary ones and zeros and apply
discrete mathematical operations on such hardware. The rise of Electronic
Design Automation (EDA) during the 1980s brought an even larger expansion
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Figure 2.1: Logic inverter in CMOS technology.

of digital design. Complex digital circuitry could now be efficiently translated to
available logic cells within a well-characterized and tested library of cells. Thus,
the designers could focus their effort on the intricacies of the design instead of
manually optimizing Boolean functions using Karnaugh maps.

The dominant digital electronics technology is Complementary Metal Oxide
Semiconductor (CMOS), due to its extreme noise resistance and traditionally low
static power consumption. While the static power consumption has increased
with the decrease in technology size, it has remained one of the most used
fabrication processes in digital design since the late 1960s.

The total power of a CMOS circuit is P = Pstatic + Pdynamic. It has two
major components, static and dynamic power. Static power is the power due
to parasitic leakage currents, while dynamic power is the power drawn from
the voltage source while the circuit is computing a new output value. Typically,
static power is several orders of magnitudes smaller compared to dynamic power,
but with the increasing scaling, static power consumption is comparable to
dynamic power consumption in smaller technology processes.

The dynamic power consumption of a CMOS circuit can be explained using a
CMOS inverter, shown in Figure 2.1. This example, while simple, showcases
how dynamic power is dependent on the data processed by the circuit. The
energy consumption during the 0 → 1 transition on the output can be calculated
as the integral of the instantaneous power, equal to voltage and current product
during the transition, computed as follows:

Etot =
∫ T

0
PDD(t)dt = VDD

∫ T

0
IDD(t)dt = VDD

∫ VDD

0
CLdVout = CLV 2

DD.

(2.1)
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On the other side the energy EC stored in the output capacitor CL is

EC =
∫ T

0
PC(t)dt =

∫ T

0
VC(t)IC(t)dt =

∫ VDD

0
VoutCLdVout = 1

2CLV 2
DD

(2.2)

We can see that the total energy of the capacitor in the end EC is only half of
the energy provided by the voltage source Etot. The rest of the energy dissipated
during the transition in the upper PMOS transistor. Similarly during the 1 → 0
transition, the output capacitor will be discharged through the lower NMOS
transistor, dissipating the stored energy in the process. In the simple model
presented here, the energy that dissipates when the output changes its value
is the same for both 0 → 1 and 1 → 0 transitions. However, due to multiple
effects not taken into account, such as parasitic resistance of the source and
other parasitic elements, the dissipation energy will slightly differ in practice
for these two transitions.

The dynamic power of a CMOS circuit can be computed as the average energy
of a transition times the switching frequency of the gate. The switching activity
directly depends on the inputs of the CMOS logic circuit. This relation between
the dynamic power and the processed values is the basis of side-channel attacks,
as explained in Section 2.4.

Although EDA tremendously reduced the burden of hardware designers, they
still need to be aware of the various physical aspects of the circuit. The number
of logic cells used impacts the area of the implementation, which is often limited
by the available die surface on a chip. Moreover, equivalent capacitance of
the implementation is quadratically proportional to the total area [71], which
increases the power and energy consumption.

The time between the output value change as the result of an input change of a
logic cell is called output delay. Different cells have different output delays, and
even the output delay of a single cell varies between different inputs, as well as
different transitions of the same input. Thus, digital circuits utilizing multiple
logic cells have to be adequately synchronized to operate correctly. The most
common way to achieve synchronization is to incorporate a periodic pulse signal,
called the clock, with one period of the clock signal often being called clock cycle.
To ensure synchronization the clock signal is paired with logic cells that only
update their value once per clock period, called registers or flip-flops. Register
outputs are updated at every positive edge (0 to 1 transition) of the clock signal.
More rarely, some register designs update their values on the negative clock
edge, or both, to achieve synchronization. The digital logic between register
outputs is frequently referred to as combinatorial logic. Combinatorial logic
typically determines the maximal operating frequency of the circuit, which
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impacts the power and energy consumption.

The number of clock cycles needed to complete an operation is referred to as
cycle latency. The absolute amount of time needed to complete an operation is
referred to as simply latency. The number of output bits a design can output per
cycle is called throughput. In many applications, overall latency and operating
frequency are given as a requirement. Thus, the designer only has freedom
to investigate implementations with different cycle latencies. A circuit can be
designed for maximal throughput or minimal cycle latency, depending on the
requirements of a specific application. Cycle latency directly impacts power
and energy consumption, since requiring fewer cycles to complete an operation
might decrease the energy consumption. Lower cycle latency might lead to
increased power consumption due increased logic switching activity within one
clock cycle, negatively impacting the energy. Conversely, higher cycle latency by
introducing additional register stages might allow for higher maximal operating
frequency, which can result in lower energy consumption of the design. Hence,
the appropriate design choice between cycle latency and minimizing energy
consumption is application specific.

2.2 Mathematical Background

Classical cryptography relies on the foundation of discrete mathematics, and
here we will quickly introduce some basic notions of Boolean algebra. Boolean
algebra operates with variables that can take two different values, 0 or 1. A
Boolean function takes several input variables and produces a single output.
Alternatively, a Boolean function is mapping from the vectorspace Fn

2 of all
binary vectors of length n, to the finite field F2 [21]. Vectorial Boolean function
takes a number of input Boolean variables and produces a multi-dimensional
output, a binary vector x. Each bit of x can be considered as a separate Boolean
function on its own. Alternatively, a vectorial Boolean function is a mapping of
vectorspace Fn

2 to the vectorspace Fm
2 for some positive integers n and m [22].

Elements of vectorspace Fn
2 with 2n elements are represented using n-bit values.

To argue about Boolean functions further we need to first introduce the notions
of Hamming weight and Algebraic normal form.

Definition 2.2.1. The Hamming weight wt(x) of a positive integer x is the
number of 1s in the binary representation of x.
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Every n-bit Boolean function S can be represented uniquely by its Algebraic
Normal Form (ANF) [21]:

S(x) =
⊕

i=(i1,...,in)∈Fn
2

aix
i1
1 xi2

2 · · · xin
n . (2.3)

Here x1, . . . , xn represent the input bits of input variable x. The power function
xil

k is equal to xk if il is 1, or 1 otherwise. The algebraic degree of a Boolean
function S is defined as the maximal value of the Hamming weight wt(i) in
Equation (2.3) for which the coefficient ai is not zero. The notion of algebraic
degree extends to vectorial Boolean functions in which the algebraic degree is
the maximum of algebraic degrees of the output coordinates. Boolean functions
whose algebraic degree is 1 are referred to as linear. Boolean functions whose
algebraic degree is greater than 1 are referred to as nonlinear. Boolean functions
whose algebraic degree is equal to 2 are also referred to as quadratic Boolean
functions, while Boolean functions of degree 3 are also referred to as cubic
Boolean functions. Nonlinear vectorial Boolean functions are one of the crucial
components of many symmetric cryptographic algorithms, and are also called
substitution boxes or S-Boxes. Linear vectorial Boolean functions with constant
coefficient of 0 are also referred to as linear transforms. Linear vectorial Boolean
with nonzero constant coefficient are called affine transforms. S-Boxes are often
represented with their LUTs, which are frequently suitable for software and
hardware implementations.

A Boolean function is balanced if its output takes values of 0 and 1 for an equal
amount of inputs [21]. A Vectorial Boolean function is balanced if and only if
all of the linear combinations of its output component functions are balanced.
Balanced vectorial Boolean functions that map elements of the field F2n to the
same field Fn

2 are called permutations. An affine permutation is a permutation
with algebraic degree equal to one.

A finite or Galois field is a field with a with finite number of elements. The
number of elements, also known the order of a field, in a finite field is a prime,
or a power of a prime. We refer to a finite field with an order pn, p being a
prime, and n being a positive integer, as Fpn . All finite fields of the same order
are identical up to an isomorphism. A finite field Fpn can be represented using
an irreducible polynomial of degree n, whose coefficients are elements of the
field Fp.

It is well known that for a finite field with N elements, aN = a for each element
a of the field. Hence aN−1 = 1 for any nonzero element a, and multiplicative
inverse element of a is a−1 = aN−2. AES S-Box uses multiplicative inversion in
F28 field represented by irreducible polynomial x8 + x4 + x3 + x + 1.
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Another representation of a finite field is by using a normal basis. A field
element β is normal basis generator in finite field Fpn if and only if

(βn−1, βn−2, . . . , β1, β0) = (βpn−1
, βpn−2

, . . . , βp1
, βp0

)

forms a vector space basis for Fpn over Fp [44]. Each element a of the field can
be expressed in the normal basis using its coefficients (an−1, . . . , a0):

a = an−1βn−1 + . . . + a0β0 .

Two vectorial Boolean functions S and S′ are affine equivalent if and only
if there exists affine permutations A and B satisfying S′ = A ◦ S ◦ B. The
operation ◦ indicates composition of permutations. We refer to A as the output
and B as the input transformation. All permutations over the vectorspace Fn

2
can be separated into multiple equivalence classes. Affine equivalence classes
are frequently used as several important cryptographic properties are preserved
within one class, most notably the algebraic degree.

2.3 Block Ciphers

Here we will briefly describe AES and PRINCE block ciphers, whose
implementations are discussed in Chapters 3, 4 and 5.

2.3.1 AES

As mentioned in Section 1.1 encryption standard AES based on the Rijndael
cipher is a round-based block cipher design, supporting 128, 192 and 256 bit
key sizes, with a block size of 128 bits. The number of rounds is 10, 12, and 14,
depending on the size of the key. The state consists of 16 bytes s0, . . . , s15, and
is organized as a 4 × 4 matrix of bytes in the following manner:

s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15


AES round structure consisting of four steps:

• AddRoundKey: each byte of the state is XORed with the corresponding
byte of the round key. AddRoundKey is also performed before the first
round.
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• SubBytes: Each byte is subjected to the permutation specified by
the AES S-Box. The S-Box is based on an affine transformation of
the multiplicative inverse in the Galois field F28 represented with the
polynomial x8 + x4 + x3 + x + 1. Zero value of the inversion is mapped to
itself. S-Box y = S(x) can then be expressed in a following manner

y0
y1
y2
y3
y4
y5
y6
y7


=



1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1





z0
z1
z2
z3
z4
z5
z6
z7


+



1
1
0
0
0
1
1
0


where y7, . . . , y0 and z7, . . . , z0 are individual bits of y and z, respectively,
and z is the multiplicative inverse of x.

• ShiftRows: Four bytes of the i-th row of the state are rotationally shifted
by i positions to the left.

• MixColumns: Each column consisting of four bytes (x0, x1, x2, x3)
is transformed to four bytes (y0, y1, y2, y3) by the invertible linear
transformation: 

y0
y1
y2
y3

 =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2




x0
x1
x2
x3


MixColumns operation is not performed in the last round.

AES key schedule

AES round keys are obtained by expanding the input key using the AES key
schedule.

If we define the following:

• AES round constants are 32-bit values defined as 4 bytes rconi = [rci 0 0 0],
where rc1 = 1 and rci = x · rci−1 in the AES finite field represented with
polynomial x8 + x4 + x3 + x + 1.

• Rn as number of rounds

• N as number of 32-bit words in the input key
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Algorithm 1: AES key expansion algorithm.
Input: Input key k = (K0, . . . , KN−1), number of rounds Rn

Result: Expanded key w = (W0, . . . , W4Rn−1)
for i = 0 to N − 1 do

Wi = Ki

for i = N to 4Rn − 1 do
if i ≡ 0 mod N then

Wi = Wi−N ⊕ SubWord(RotWord(Wi−1)) ⊕ rconi/N

else if i ≡ 4 mod N then
Wi = Wi−N ⊕ SubWord(RotWord(Wi−1))

else
Wi = Wi−N ⊕ Wi−1

• RotWord as a one byte rotational left shift of a 32-bit word

• SubWord as AES S-Box operation on each byte in 32-bit word

• K0, . . . , KN−1 as input key separated into N 32-bit words

• W0, . . . , W4Rn−1 as 32-bit words of expanded key

then Algorithm 1 represents the key expansion of AES.

2.3.2 PRINCE

PRINCE [12] is a block cipher specifically designed for low-latency hardware
implementations. The PRINCE block size is 64 bits, with a 128-bit key size,
and the input key is used to derive three 64-bit internally used keys k0, k′

0
and k1. Its α-reflection property allows reuse of the same circuitry for both
encryption and decryption. Although not designed to be efficient in software, a
bit-sliced software implementation of PRINCE is surprisingly fast and can even
be executed in fewer clock cycles compared to other lightweight block ciphers
such as PRESENT and KATAN [66].

The input key is split into two 64-bit parts k0||k1 and expanded to k0||k′
0||k1 as

shown below.

(k0||k′
0||k1) = k0||((k0 ≫ 1) ⊕ (k0 ≫ 63))||k1 .

The PRINCE block diagram is shown in Figure 2.2. As depicted, k0 and k′
0 are

used as whitening keys at the start and at the end of the cipher, while k1 is used
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Figure 2.2: PRINCE cipher.

as round key in PRINCEcore which consists of 12 rounds. More precisely, 12
rounds are divided into 6 “forward” rounds, followed by the middle involution
layer, and finally 6 inverse rounds are applied at the end.

S-Box layer. The PRINCE S-Box is a 4-bit permutation of algebraic degree 3
and its look-up table is given in Equation (2.4).

S(x) = [B, F, 3, 2, A, C, 9, 1, 6, 7, 8, 0, E, 5, D, 4] . (2.4)

The S-Box inverse is in the same affine equivalence class as the S-Box itself.
Moreover, the input and output transformations are the same:

S−1 = Aio ◦ S ◦ Aio . (2.5)

The LUT representation of the affine transformation Aio is given by

Aio(x) = [5, 7, 6, 4, F, D, C, E, 1, 3, 2, 0, B, 9, 8, A] .

Linear layer. The Matrices M and M ′ define the diffusion layer of PRINCE.
M ′ is an involution, and the matrix M can be constructed from M ′ by applying
the shift-rows operation SR so that M = SR ◦ M ′. Recall that SR is a linear
operation that permutes the nibbles of the PRINCE state.
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The RCi addition is a 64-bit round constant addition. The round constants
RC0, . . . , RC11 are chosen such that RCi ⊕ RC11−i = α with α being a 64-bit
constant, α = c0ac29b7c97c50dd. Observing the structure of the PRINCEcore,
it can be seen that the PRINCEcore inverse with key k1 = k is equal to
PRINCEcore with key k1 = k ⊕ α, making the decryption circuit easy to
implement in hardware.

2.4 Side-Channel Attacks

As already stated in Section 1.2, side-channel attacks focus on exploiting a
weakness in an implementation by collecting additional information from the
device under attack, opposed to breaking the underlying cryptographic primitive,
to recover the secret information. Side-channel attackers merely observe one or
more characteristics of the device while computing the output of a cryptographic
primitive, and then try to recover the key from the collected additional data. The
type of auxiliary data can vary depending on the implementation and specific
attack, the most common ones being power consumption, electromagnetic
radiation, and execution time. The model where the attacker obtains extra
side-channel information while the device is executing is called the gray-box
model, while the classical black-box model assumes that only inputs or outputs
are visible to the attacker, mandating the use of attacks that mathematically
break the underlying cryptographic primitives.

Side-channel attacks first emerged in the 1990s, with the discovery of timing
attacks by Kocher [51] on various public key primitives by exploiting the
differences in execution time that could be associated with the private key
value. Kocher et al. [50] then showed how to recover the key from the chip
within a smart card using power consumption. As discussed in Section 2.1 the
power consumption depends on the switching activity of the circuit, which in
turn depends on the values circuit is processing. More formally, the power
consumption can be expressed as follows:

P (x) = L(x) + N . (2.6)
Here, L is the leakage function, expressing the dependency of the power
consumption on the chosen intermediate value, while N is the noise component
of the power consumption. The noise function consists of actual device and
measurement noise, present in any electronic circuit, and the power consumption
of elements of the circuits not operating on the intermediate value x under
attack.

Another widely used leakage model is the probing model of Ishai et al. [45]
which assumes an attacker who places a fixed amount of probes in the circuit,
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and can read out their exact value as the circuit operates. The model is also
referred to as d-probing model where the number of probes available to the
attacker is upper bounded by d. The probing model is extremely useful due
to its simplicity and it lends itself to the scrutiny of mathematical formalism.
Furthermore, side-channel security in the probing model by Duc et al. [34]
implies side-channel security in the noisy leakage model.

Differential Power Analysis

Side-channel attacks follow a simple but effective divide and conquer strategy.
The key is partitioned into several smaller length blocks, and the attacker
tries to recover each block independently. In the original power side-channel
attack, blocks were only one bit. The device which stores the secret key is
tasked with running multiple encryption operations with varying inputs. The
power consumption is recorded during each encryption. We refer to the power
consumption signature of one encryption operation as a power trace. Next the
attacker chooses an attack point, a value that is dependent on the secret key bit
kb the attacker is trying to recover, most notably the input or the output of an
S-Box. Next, for both potential values of the key bit kb, traces are partitioned
into two groups. The first group is all the traces in which the key-dependent
value vk is 0 when kb is 0. The second group contains all the traces where
vk is equal to 1 if kb is 0. Two average traces are then computed for the two
groups, and their difference is used to create a differential trace ∆trkb0 . The
same procedure is then repeated to obtain differential trace ∆trkb1 , where the
partitioning of traces is done assuming kb is equal to 1. If the power consumption
does depend on the value of kb, then if the correct key bit kb is 0 there should
exist a noticeable peak in differential trace ∆trkb0 as the partitioning is done
correctly and the power consumption will differ at the time position at which
key bit vk is computed. Trace ∆trkb1 should not exhibit any significant peaks,
as the partitioning is not correct, so the final averaging should produce only
noise. Calculation of differential traces for two values of kb is given below

∆trkb0 = mean(tr(i), vk(kb = 0, pt(i)) = 0) − mean(tr(i), vk(kb = 1, pt(i)) = 1)

∆trkb1 = mean(tr(i), vk(kb = 1, pt(i)) = 0) − mean(tr(i), vk(kb = 1, pt(i)) = 1) .

Correlation Power Analysis

The original attack method was quickly improved, allowing the possibility to
target multiple bits at once. Correlation Power Analysis (CPA) [18] expands
on DPA by assuming a leakage model, and then leveraging the statistical
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correlation tools to exploit the dependency between the key material and
power traces. In correlation-based attacks, the attacker introduces additional
assumptions on the noisy leakage model to enhance the potency of the attack.
The most commonly used leakage models are based on Hamming weight and
Hamming weight distance. The first one accurately models the leakage of
memory cells. The second one is more beneficial when modeling the temporary
storage registers in digital circuits because in most fabrication processes registers
consume significantly more power when their output value changes.

Attack point, ideally a register or memory element output, is targeted, as
they contribute more than the combinatorial logic, reducing the noise seen by
the attacker. Additionally, the output of nonlinear operations is shown to be
favorable for the attacker [69].

Once the attack point is chosen, the attack collects n power traces during which
encryption (or decryption) is run on the target device with one key. Using
a leakage model of choice, the attacker calculates the leakage value based on
the guess of the key and input given to the device. The Pearson correlation is
then independently computed for each time sample of the traces. If the leakage
model sufficiently accurate represents the leakage of the device, the correct key
guess will have the highest absolute correlation value at the time samples during
which the targeted intermediate value is being evaluated.

Template attacks and machine learning

Another improvement on the original DPA attack is template attacks [23], where
the attacker profiles the power consumption of the target device to create a
dictionary of power signatures associated with the leaky intermediate values. If
profiling is successful, template attacks require significantly fewer traces than
CPA or DPA to recover the key. However, the downside of template attacks
is the long profiling phase, during which the power consumption of the target
device is characterized. Additionally, template attacks lack scalability between
different devices because the profiling is valid only for a specific version of the
device being profiled.

Recently, machine learning (ML) methods have been investigated as means
to mount side-channel attacks. However, at the moment of writing, the more
traditional CPA and DPA seem to be several orders of magnitude more efficient
compared to attacks based on machine learning techniques. Machine learning
has been successful at reducing the noise level of hiding countermeasures. As
such, currently ML is primarily used as a preprocessing step on the collected
traces before the attacker applies classical attack methods.
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Higher-order attacks

Classical DPA and CPA presented previously exploited averages of power
traces to reduce the measurement noise and extract the key. Hence, early
countermeasures focused on removing the dependence of the mean power
consumption on the key, reducing the effectiveness of the attacks relying on that
dependence. However, a generalized type of attack, leveraging second-order
statistical moments of the power traces, variance, to uncover the leakage was
soon discovered [54, 46]. In a d-th order attack, d samples from the same
power trace are used in the attempt to correlate their combination with the
key. We say that a d-th order attack is univariate if the d-order statistic of the
sample is used or the sample value is raised to the d-th power. If d different
samples are combined, e.g., via product combining, such an attack is considered
multivariate.

Higher-order attacks are a powerful tool at the attacker’s disposal. Theoretically,
higher-order attacks can be used to thwart any countermeasure. However, due
to nonlinear combination of the samples, the physical noise of the device, and
the quantization noise of the measurement probe, the noise level is significantly
amplified, effectively hiding the correlation leakage from the attacker.

Leakage detection

While DPA and CPA pose a serious tool to the attacker, they can be difficult
to use from the countermeasure design standpoint. Namely, different leakage
models should be used to ensure the design is not vulnerable to any of them.
Moreover, multiple intermediate variables also need to be investigated, as the
exploitable leakage might only be observable in a few of them if it exists. Thus,
a more generic method is preferred in order to discover possible exploitable
leakage points. Test Vector Leakage Assessment (TVLA) [25] is a methodology
based on the statistical method of evaluating the probability that two sets are
distinguishable from one another based on the student’s distribution. Given
two sets S0 and S1, with their means µ(S0) µ(S1), variances σ(S0) and σ(S1),
and cardinalities |S0| and |S1|, the t-values are computed as

t = µ(S1) − µ(S0)√
σ2(S0)

|S0| + σ2(S1)
|S1|

.

The t-statistic of two sets S0 and S1 can then be used to quantify the probability
that these two sets come from populations with different means. Namely, larger
t values mean a larger probability that the populations for S0 and S1 can
be distinguished. According to the TVLA methodology [25] the established
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threshold of t = 4.5 is sufficient to distinguish between two sets, as the associated
probability that these two sets come from populations with different means is
p = 0.99999.

In TVLA, one set of power traces, S0, is chosen such that all traces belonging
to that set have fixed inputs to the implementation under test. The second set
of power traces, S1, contain power traces of execution where the inputs were
taken randomly.

The collection of the traces for sets S0 and S1 should ideally be interleaved to
minimize the effect of external factors during measurement, such as temperature
variations. If instead of inputs, a particular intermediate value in the algorithm
is chosen to differentiate S0 and S1, such as an S-Box input or output, the t-test
becomes specific. Otherwise, the test is non-specific.

Similarly, as with higher-order CPA and DPA attacks, TVLA was extended
to higher-orders by using higher order moments instead of the means of two
sets [76].

2.5 Side-Channel Countermeasures

With the discovery of side-channel attacks, the need for protection against these
attacks became apparent. Most countermeasures rely on increasing the noise
level to the attacker by increasing the noise level of the power traces, making
the successful attack more difficult to realize. Some countermeasures try to
limit the number of traces that can be collected in a specific time frame, usually
a couple of seconds, slowing down the trace collection needed in the first stage
of the attack.

There are several options available to the designer to increase the noise level or
reduce the leakage that occurs. Noise addition can be done at the physical level,
where the process technology used reduces as much as possible the amount of
leakage. The best known side-channel resistant process technology is Wave
Dynamic Differential Logic (WDDL) [80] which builds upon the standard
CMOS technology. In Table 2.1 we can see the Hamming weight of the 0 and 1
encoding is the same, which as discussed helps to reduce the observable leakage.
Complementary logic helps to reduce the leakage because in the Hamming
weight leakage model WDDL does not leak due to its outputs always being
differential. Additionally, WDDL uses precharge/evaluation operation phases
to reduce the amount of switching during the computation, thus preventing
glitches that are increasing the leakage levels of the circuit.
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Table 2.1: WDDL dual outputs with precharge logic.

x x Encoding wt(x|x)
0 0 Precharge 0
0 1 0 1
1 0 1 1
1 1 Error 2

While the physical layer countermeasures significantly reduce the amount of
leakage observable to the attacker, it was shown that side-channel attacks
in which a sufficient number of traces were acquired were still successful at
recovering the key.

Noise addition can also be achieved at the algorithmic level by modifying
the cryptographic operation’s algorithm so that the functionality remains
unchanged, with the execution generating significantly more noise. Algorithmic
countermeasures can be separates into two groups, hiding and masking.

Hiding countermeasures strive to prevent the attacker from pinpointing the time
sample at which the leakage occurs. The simplest way of hiding is to introduce
dummy operations during the execution of the algorithm at randomly chosen
clock cycles for each new execution. Moreover, even the entire algorithm can run
with dummy input data multiple times, with the actual leaky execution being
hidden among them. Depending on the algorithm, the internal operations could
be reordered for each execution. In AES, the S-Box operation order can be
shuffled for each round, for example. Most dummy-based hiding countermeasures
add multiple clock cycles to the execution. Additionally, dummies must not
be distinguishable. Namely, if the power characteristic of dummy cycles differs
from the cycles when intermediate values are processed, they could be filtered
out. As mentioned in Section 2.4, machine learning techniques have been
successfully used to filter out dummy cycles from the traces, nullifying any
perceived protection.

Masking countermeasure is an algorithmic approach to reduce noise in an
implementation: one separates each intermediate variable into several parts,
shares, which when all combined together reveal the intermediate value. There
are several ways to achieve masking operation, depending on how the shares
are combined. In Table 2.2 the difference between two share Boolean masking,
arithmetic masking over integers with two shares, and multiplicative masking
using finite field multiplication to generate a mask is shown. The choice of
the type of masking again depends on the algorithm to which the masking
is applied. There are even techniques to translate masking in one domain
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Table 2.2: Different types of masking.

Masking type Unmasking operation
Boolean x = x0 ⊕ x1
Multiplicative x = x0x1
Arithmetic x = x0 + x1

Table 2.3: Hamming weight of two shared Boolean variable.

x x0 x1 wt(x) = wt(x0) + wt(x1) Mean(wt(x)) Var(wt(x))

0 0 0 0 1 11 1 2

1 0 1 1 1 01 0 1

into masking of another domain. Masked HMAC-SHA-256 implementations
often use both Boolean and arithmetic masking to implement different parts
of the protected round function while performing Boolean to arithmetic and
arithmetic to Boolean conversions when masks of one domain need to be used in
the other. In what follows, we will focus exclusively on Boolean masking, which
is most widely used in side-channel protected implementations of symmetric
key cryptographic primitives. Table 2.3 shows again the average Hamming
weight for a 1-bit value x shared with two shares. While the average Hamming
weight is equal for both 0 and 1 values, the variance, or more general the second
statistical moment, differs in the two cases.

Boolean masking is linear for any function f that is linear, i.e., if f is applied
independently to each share, Boolean addition of the outputs would be the value
of f(x). Thus, linear operations are simple to mask using Boolean masking.
However, masking of a Boolean multiplication (2-input AND), or more generally
masking of nonlinear Boolean functions, is not as trivial. One of the first
examples of an SCA-protected 2-input AND gate in the literature came from
Trichina [81] whose proposed solution is depicted in Figure 2.3. A more generic
construction for SCA protected AND gate of any order using Boolean masking
is the ISW scheme [45]; it is summarized in Algorithm 2. Both Trichina AND
gate and the ISW scheme require the internal operations to be evaluated in
specific order to guarantee security. For Trichina AND gate XORs in Figure 2.3
should be evaluated in top to bottom fashion in the diagram. For the ISW
scheme it is essential that the rj,i calculation is achieved by computing ri,j ⊕aibj

before the final XOR with ajbi. These requirements on the order of evaluations
are not easily met during the design in CMOS technology. Namely, CMOS
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Figure 2.3: Trichina masked AND gate realization.

circuits exhibit the phenomena of glitches, where during one clock cycle, a gate
can have its output change value multiple times due to different timings of
the input signals. Glitches are an undesired effect in a digital circuit, as from
the traditional design viewpoint they increase the power consumption of the
circuit. From the security standpoint, they pose an additional problem, as
the power consumption increase when glitches occur could be exploited in a
side-channel attack. We will assume the most extreme potential gain of glitches
to the attacker. Namely, for each output of a gate, we assume that all inputs
are also known, and any intermediate Boolean function of the inputs that is
also featured in the final output of the gate. This is also known as the glitch
extended probing model [36].

2.6 Threshold Implementations

Threshold implementation emerged as another masking technique, particularly
suitable to hardware implementations due to its resilience to glitches. The main
idea behind TI comes from multi-party computation in which each player only
computes on a fraction of the masked input, disallowing him from learning the
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Algorithm 2: ISW AND circuit implementation.
Input: AND inputs a = a0 ⊕ . . . ⊕ an−1 and b = a0 ⊕ . . . ⊕ an−1 shared

with n shares.
Result: SCA protected value c equal to c = ab.
for i = 0 to n − 1 do

for j = i + 1 to n − 1 do
ri,j := Random()
rj,i := (ri,j ⊕ aibj) ⊕ ajbi

for i = 0 to n − 1 do
ci = aibi

for j = 0 to n − 1 do
if j ̸= i then

ci = ci ⊕ ri,j

return c = {c0, c1, . . . , cn−1}

unmasked input. In addition to glitch resilience, another appealing notion of
TI is its focus on the protection of any Boolean function with a given algebraic
degree, rather than protection of an AND gate. TI can also be used to protect
against higher-order attacks; in this thesis we will refer to TI designed to
protect against the d-th order attack as d-th order TI. We will represent the
TI of a function f using n output shares f = (f0, f1, . . . fn−1), and we will
interchangeably use terms sharing or shared function to refer to f . Each of the
components of f , f0, f1, . . . fn−1 is referred to as output component function,
or output share. Unmasking or unsharing retrieves the unprotected value x
from its masked representation x represented by the following definition:

Definition 2.6.1. Given a masked representation bmx shared with n shares
x = (x0, x1, . . . xn−1), operation unmask(x) computes the unprotected value
x = unmask(x) = x0 ⊕ x1 ⊕ . . . ⊕ xn−1.

Threshold implementations comply to the three properties

1. Correctness

2. Non-completeness

3. Uniformity

These properties are explained in what follows.
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2.6.1 Correctness

The correctness property is necessary in any masking technique as the
unmasking of the output f(x) should always produce the value equal to f(x).
Definition 2.6.2 describes correctness in a more formal manner.

Definition 2.6.2. Given a Boolean function f(x); f(x) is a correct sharing of
the function f(x) ⇐⇒ (∀x)(unmask(x) = x =⇒ unmask(f(x)) = f(x)).

2.6.2 Non-completeness

The non-completeness property of TI imposes restrictions on the component
functions of a sharing f . Namely, in order to achieve d-th order non-
completeness, any combination of up to d component functions should be
independent of at least one input share. It was shown in the glitch extended
probing model that non-completeness has to be achieved in ordered to prevent
exploitable side-channel leakage [33]. Thus, any non-complete circuit retains its
side-channel security even in the presence of glitches. The non-completeness
property gives a lower bound for the number of input shares required to secure a
given function. Two strategies in TI accomplish non-completeness, differentiated
by the minimal number of input shares required for a d-th order side-channel
secure implementation of a function with a given algebraic degree.

Traditional TI [64, 7] mandates the use of at least td + 1 input shares (td + 1
TI) in order to secure a function with algebraic degree t against d-th order
attacks. Non-completeness is achieved by ensuring that for any d-th order TI
f = (f0, f1, . . . , fn−1) any combination of d component functions should be
independent of at least one of the input shares completely, i.e., one input share
should not be present in any of the input variables featured in d component
functions. Figure 2.5 demonstrates the construction of a first-order td + 1 TI
of any quadratic function using three input and three output shares, while
Figure 2.6 shows a first-order td + 1 TI of an AND circuit, also using three
input and three output shares. The number of output shares if td + 1 input
shares are used is shown to be

(
td+1

t

)
[7]. It should be noted that while td + 1

is the minimal number of input shares, correct and non-complete TI circuits
can also have more than td + 1 input shares if that is for any reason beneficial
to the designer. In Chapter 3 we will use second-order td + 1 TI with 8 input
shares instead of 7 to reduce the number of output shares.

Consolidated Masking Scheme (CMS) [72] uses d + 1 input shares (d + 1
TI), building upon ISW and TI, while further demonstrating how to ensure
glitch resistance with fewer input shares available. The biggest trade-off with
d + 1 shares is the increased number of output shares, which is always at least
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Figure 2.4: First-order d + 1 TI of AND circuit including remasking,
synchronization and compression phase.

Figure 2.5: First-order td + 1 TI of a generic quadratic circuit.

(d + 1)t. A first-order d + 1 TI AND implementation is given in Figure 2.4,
showcasing the Nonlinear-register-compression layer structure (NLRC). While
using d + 1 TI the relation between the input shares needs to obey a stronger
requirement compared to td + 1 TI, namely shared input variables need to be
independent [72]. If shared input variables are not independent, independence
can be achieved by remasking some of the inputs or by using a technique
proposed by Gross et al. [41].



THRESHOLD IMPLEMENTATIONS 29

Figure 2.6: First-order three share td + 1 TI of AND circuit.

2.6.3 Uniformity

While the masking of nonlinear operations constitutes the central part of any
masking method, another critical element of a secure side-channel design is the
procedure of cascading two or more nonlinear blocks. More precisely, how can
the output of one nonlinear layer be used as input to another nonlinear layer
without the loss of side-channel resistance? As most symmetric cryptographic
primitives are realized by repeating a particular round function, the secure
composition is a crucial part of any masking technique. In TI, the uniformity
property is used to ensure the composability of subsequent nonlinear stages
by defining conditions under which the output of one nonlinear stage can be
used as input to the next stage. The classical definition of uniformity is given
in Definition 2.6.3. An interesting implication of Definition 2.6.3 is that the
sharing of a permutation with the same number of input and output shares is
uniform if and only if the output sharing is itself a permutation.
Definition 2.6.3. An output sharing f(x) of a Boolean function f(x) is
uniform if and only if

(∀x)(f(x) = y =⇒ (∀x, y)(unmask(x) = x ∧ unmask(y) = y
=⇒ Pr(f(x) = y) = const)).

Alternatively, for each x, its masking x and y = f(x), all possible different
outputs y of the f(x) must be equiprobable.

The uniformity property is mostly investigated in first-order td + 1 TI circuits,
as it was shown that it does not guarantee resilience against multivariate
attacks [72]. A brute force uniformity check is computationally quite expensive,
with the exponential complexity on the product of number input bits and
number of input shares, although specific optimizations for quadratic Boolean
functions with 3 shares exists [5].
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Additionally, the uniformity property is not preserved among the members on
an affine equivalence class, but Bilgin et al. [9] showed how to create a uniform
sharing for all members of an affine class if one of the members has uniform
sharing:

Lemma 2.6.1. If there exists a uniform sharing for any member of affine
equivalence class S, a uniform sharing can be constructed for all members of
that class.

Proof. if S has a uniform sharing S, and S1 = A ◦ S ◦ B where A and B are
affine transforms, then the sharing S1 = A ◦ S ◦ B is also uniform because A,
B and S are all uniform, hence their composition is also uniform.

Some functions have been shown not to have a uniform TI sharing, such as
a simple AND circuit if 3 input shares are used. Uniformity of a quadratic
permutation has been extensively investigated [9, 16], and a uniform sharing
has been found for some of them with 3 shares, and for all of them with 4 shares.
Since the number of invertible affine transformations of n bits is

2n ×
n−1∏
i=0

(2n − 2i),

brute force search across all members of a quadratic permutation class is
practically impossible for permutations of 4 or more bits. Furthermore,
it was shown that for an n-bit quadratic permutation there exist 29(n+(n

2))

different TI sharings with three shares, making an exhaustive search for uniform
sharing impossible even for 3-bit permutations as the total number of possible
sharings with three shares is 254. Thus, finding a uniform sharing of a given
vectorial Boolean function or proving that such a sharing does not exist in a
computationally efficient manner is an open problem.

There are several options to compensate for the lack of uniformity. The
straightforward method is to refresh the output shares using a mask refreshing
technique. This method requires a Pseudo Random Number Generator (PRNG)
to generate random masks during algorithm execution. Moreover, mask
refreshing significantly increases the power consumption of the circuit (cf.
Chapters 4 and 5). Another option is to increase the number of input shares.
Using the notation findings by Bilgin et al. [9], the quadratic 4-bit permutation
Q300 denoted with its lookup table [0, 1, 2, 3, 4, 5, 8, 9, 6, 7, 12, 13, 14, 15, 10, 11]
does not have any 3-share uniform sharings, but a 4-share uniform sharing of
Q300 is known. Finally, a change of guards method presented by Daemen [27]
significantly reduces the amount of added randomness to produce a uniform
sharing of the permutation-based nonlinear layer in the round function. Namely,
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the input shares of adjacent inputs to the S-Box are reused as output masks.
The state needs to be extended initially with random masks used for the first
S-Box evaluation, but further rounds do not need fresh randomness as the
sharing of the last S-Box input is used to refresh masks of the first S-Box in all
the following rounds.

From Definition 2.6.3 we can deduce that the d + 1 TIs of nonlinear functions
cannot be uniform, as the number of output shares would always be higher
than the number of input shares, thus different shared outputs cannot be
equiprobable. Hence, the output shares need to be refreshed in order to achieve
uniform output distribution for d + 1 TI.

2.6.4 Composability

In addition to uniformity, cascading of nonlinear functions in TI requires register
stages to be used after each nonlinear block. Registers serve to stop glitch
propagation from one block to another, which could lead to leakage, even if
both blocks are fully side-channel resistant.

When sharing a nonlinear function, the number of output shares is typically
larger than the number of input shares. The discrepancy between the number
of input and output shares is likely to occur when applying td + 1 TI, and it
always occurs when applying d + 1 TI. In order to minimize the number of
output shares, we need to refresh and recombine (compress) some shares by
adding several of them together. To prevent glitches from revealing unmasked
values, decreasing the number of shares can only be done after storing these
output shares into a register. The output shares that are recombined still need
to be carefully chosen such that they do not reveal any unmasked value, e.g.,
by combining output shares remasked with the same random mask.

In round-based designs, in which the output of a TI circuit in one cycle is
fed back to the same circuit in the following cycle, care needs to be taken in
order to prevent transient leakage. Let us assume TI of a function y = f(x)
implemented with 3 shares as shown on the right side of Figure 2.7:

y0 = f0(x1, x2)

y1 = f1(x2, x0)

y2 = f2(x0, x1) .
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Figure 2.7: Safe (left) and potentially leaky (right) option on how to implement
iterating td + 1 circuit.

Let z be the output of shared function f in the subsequent cycle, i.e., z = f(y):

z0 = f0(y1, y2)

z1 = f1(y2, y0)

z2 = f2(y0, y1) .

The Hamming distance of the change in the output register of share 0 is equal
to:

HD(z0, y0) = z0 ⊕ y0 = f0(y1, y2) ⊕ y0 .

From the previous equation we can see that Hamming distance of the subsequent
register values contains the information from all three shares, which can be
detectable in the power signature. We can notice the same dependency on
all three shares in other two output registers of shares 1 and 2. Hence, it is
recommended that the input share i is featured in the computation of the output
share i to mitigate the possibility of the Hamming distance leakage. If the
sharing is done in the following manner (left side of Figure 2.7):

y0 = f0(x0, x1)

y1 = f1(x1, x2)

y2 = f2(x2, x0) ,

the Hamming distance of the subsequent outputs of share 0 is equal to:

HD(z0, y0) = z0 ⊕ y0 = f0(y0, y1) ⊕ y0 .
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Figure 2.8: Direct side-channel protected S-Box implementation.

Thus, in this construction the Hamming distance leakage of all three shares is
reduced.

2.7 Low Latency SCA Design

Similar to other side-channel countermeasures, the area overhead of applying
TI increases polynomially with the security order and exponentially with the
algebraic degree of the function we are trying to protect. To keep the large
overheads caused by exponential dependency under control, designers often use
decomposition of the higher degree functions into several lower-degree functions.
This approach has originally been demonstrated by Poschmann et al. [68]
whose implementation of a TI-protected PRESENT block cipher [10] included
decomposing its cubic S-Box into two simpler quadratic S-Boxes. Finally,
decomposition of the cubic 4-bit S-Boxes into chains of smaller quadratic
S-Boxes was given in [9], which eventually enables compact, side-channel
secure implementations of all 4-bit S-Boxes. Many side-channel protected
implementations of AES S-Box use decomposition to reduce the area overhead,
most of which is derived from the decomposition presented by Canright [20]
in which the field inversion in F28 is implemented with field inversion in F24

which is, in turn, implemented using field inversion in F22 . A generic side-
channel design is showed in Figure 2.9 in which output computes function
out = Sm ◦ . . . ◦ S2 ◦ S1(in). Conversely, a monolithic approach without
decomposition is featured in Figure 2.8. A more intermediate approach would
reduce in the number of nonlinear stages during decomposition by merging
some stages.

Although a decomposition of nonlinear functions into several simpler functions
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Figure 2.9: Decomposition based side-channel protected S-Box implementation.

of smaller algebraic degree is the proper approach to use for area reduction of
the TI-protected implementations, its side-effect is the increased cycle latency
of the S-Box evaluation, and hence the entire implementation. Recall that
TI requires registers to be placed between the nonlinear operations in order
to prevent glitch propagation, increasing the latency. Additionally, realizing
side-channel implementations using decomposition is easier from the designer’s
perspective, as the number of output shares that need to be coded is smaller
with less complex ANFs.

Therefore, most of the effort the scientific community has initially been spent on
designing secure implementations with minimal area overhead. Another critical
metric is the amount of randomness used in protected implementations. While
both of these metrics are important, the performance and energy consumption of
secure implementations have been unjustly treated as less significant. It has been
widely accepted that performance is the metric to sacrifice in order to achieve the
lowest possible gate count. Contrary to this view, most practical applications
nowadays require high-speed execution, and it is often latency of the actual
implementation that matters rather than throughput. Energy consumption is
another equally important metric, and, unlike power consumption, it cannot be
well controlled by keeping the area low while sacrificing performance. Optimizing
for energy consumption is one of the most challenging optimization problems
in (secure) circuit design since the perfect balance between circuit power
consumption and execution speed needs to be hit.

The latency is directly proportional to the number of clock cycles a certain
operation takes to execute. Additionally, the absolute latency is inversely
proportional to the clock frequency of the system. While the clock frequency
is determined by taking into account multiple factors from the whole system,
most important of which is the overall power/energy consumption, the number
of clock cycles a certain algorithm takes to execute is under the full control of
the designer. Especially when considering embedded devices, the tendency is to
keep the clock frequency as low as possible while still meeting the performance
requirements. That is why minimizing the number of clock cycles of a certain
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algorithm is the most important strategy for minimizing the overall latency of
that algorithm.

As the field of side-channel protection and masking matured, researchers turned
their focus more and more on low latency side-channel designs, despite the
difficulties during the design process. Moradi and Schneider [59] explored the
extreme case of single-cycle side-channel secure implementations of PRINCE
and Midori. The AES S-Box design by Ueno et al. [82] does not decompose
inversion in field F24 to reduce S-Box latency by one clock cycle. Gross et
al. [38] presented the first single-cycle implementation of the AES S-Box with
256 output shares. The side-channel resistant KECCAK [4] design by Arribas et
al. [1] implements two rounds of KECCAK using second-order td + 1 TI without
a register stage in between to achieve a first-order secure implementation. The
AES design by Sasdrich et al. [75] combines td + 1 TI and precharge logic to
remove the need for registers between nonlinear blocks since precharge logic
designs inherently do not suffer from glitches.

2.8 Mask Refreshing Techniques

Section 2.6 states how mask refreshing is often needed at the output of a TI
circuit to ensure its composability. Remasking is realized by XORing the output
of a TI circuit with a random sharing of the zero value, which can be achieved in
several ways. Here we reiterate the most common mask refreshing techniques.

Given n shares x1, . . . , xn of a masked value x a (first- and second-order)
refreshing can be realized by mapping (x1, . . . , xn) to (y1, . . . , yn) using n
random values r1, . . . , rn as follows:

y1 = x1 ⊕ r1 ⊕ rn yi = xi ⊕ ri−1 ⊕ ri, i ∈ {2, . . . , n} . (2.7)

This refreshing scheme is called ring remasking. A simpler refreshing using n − 1
random values exists especially for the first-order secure implementations, and
is achieved in the following way:

yi = xi ⊕ ri, i ∈ {1, . . . , n − 1}, yn = xn ⊕ r1 ⊕ · · · ⊕ rn−1 . (2.8)

An improvement regarding the number of random bits used when multiplication
gate is shared has been achieved in Domain Oriented Masking (DOM) [41]
in which the amount of randomness required is halved compared to the ring
remasking techniques [72]; it is shown here:

yi = xi ⊕ri, i ∈ {1, . . . ⌊n/2⌋}, yi = xi ⊕rn−i, i ∈ {⌈n/2⌉+1, . . . , n} . (2.9)
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Figure 2.10: Different remasking options. Left (simple remasking, first-order
only), middle (ring remasking), right (DOM remasking) remasking.

Gross et al. [40] showed that the amount of randomness for sharing a
multiplication gate can be further reduced to one-third, although this comes
at a significant performance cost. Throughout the rest of the thesis, we
will interchangeably use the terms mask refreshing, resharing and remasking.
Diagrams of three different remasking options are given in Figure 2.10.

2.9 Pseudo Random Number Generators

Sections 2.6 and 2.8 emphasized the need to inject randomness into masked
circuits to ensure side-channel resilience and composability. The number of
random bits needed is often quite high, mandating a high throughput PRNG.
However, the PRNG used is not included in many of the published designs,
creating confusion about the actual cost of those designs. PRNGs impact area,
power and side-channel resilience, so their design must be carefully considered.

A PRNG is a circuit that provides a deterministic, yet seemingly random
sequence of bits of length l starting from some initial seed value of length s,
with l ≫ s. Since a PRNG is deterministic, knowledge of the initial seed is
sufficient to recreate the sequence.

The most well known PRNG design is the Mersenne Twister by Matsumoto
and Nishimura [53]. It has a sequence period of 219937 − 1 and can provide
32-bits of output per update. The Mersenne twister is the default PRNG in
many operating systems. In hardware implementations the Mersenne twister
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is seldom used as the large internal state translates to a large area, while the
throughput is limited to 32 bits per cycle.

A linear-feedback shift register (LFSR) is a cheap way one can generate
randomness, and it is used as such in some publications, e.g., by De Meyer et
al. [32] and Shahmirzadi et al. [79]. An LFSR is implemented by using a shift
register whose feedback is a linear Boolean function of the register state, i.e.,
it can be realized using only flip-flops and XOR cells. The downside of using
an LFSR as a PRNG is that the sequence can be completely recreated if the
attacker knows m output bits of the LFSR, where m is the order of the LFSR.

Stream ciphers such as Trivium by Cannière and Preneel [30] can also be used
as a PRNG for side-channel resistant implementations. They are more robust
than LFSRs as knowing parts or entirety of the output sequence should not
lead to recovery of the internal state, i.e., the future output cannot be predicted
better than a uniform guess. Stream ciphers typically mandate more area, and
in many cases an initialization sequence before they can be used.

Most reported PRNGs in side-channel designs are not themselves side-channel
protected. The reason is that side-channel attacks that exploit the PRNG are
not considered to be cost effective. The attacker would first need to extract
the PRNG output, and only then use that information to break the underlying
masking scheme. Since the environment is presumed to be noisy, it is expected
that the attacker cannot accurately enough recover the PRNG output sequence
to mount a successful attack. However, these assumptions might not always
hold and a more detailed study is needed on the impact of the PRNG design
on the side-channel resilience of masked implementations.





Chapter 3

Optimal Sharing of Any
Boolean Function

“No tool, no craft.”

Serbian proverb

The work presented in this chapter is based on several publications [14, 79, 15].
I was the main author and contributor for the work presented in [14, 15], and I
provided an optimal sharing for the work presented by Shahmirzadi et al. [79].

Masking nonlinear Boolean functions with n variables and algebraic degree
t, t ≥ 3 poses a challenging task to the designer. While all the constraints
required for masking quadratic functions are also present when protecting higher
degree functions, several new difficulties arise. The number of shares grows
exponentially in d+1 TI and polynomially in td+1 TI with the algebraic degree,
increasing the area and number of random bits during remasking. Besides,
the established theory only provides a trivial lower bound on the number of
output shares for d + 1 TI, and a rather inefficient construction for td + 1 TI [7].
Thus, the output sharing might become unnecessarily large, and minimizing
the number of output shares is essential since it directly impacts area and
randomness needed in a hardware implementation.

In this chapter, we present several heuristics that can be used to minimize the
number of output shares for d+1 and td+1 TI, together with an optimal method
for d + 1 TI when the algebraic degree of an n-bit function is t = n − 1. We also
connect the problem of finding the minimal output sharing for d + 1 TI with the

39
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known NP-hard discrete optimization problem of set covering. For td+1 sharing,
finding a minimal output sharing can be reduced to another NP-hard problem,
a variant of the vertex cover problem. Thus, these problems are difficult but
can be made practical with techniques described in this chapter, in many cases
even solved to optimality. Moreover, even when the optimal solution cannot be
identified, the following heuristics still provide output sharing with a number of
output shares that is close to minimal. Efficient sharing of arbitrary Boolean
functions is crucial for low latency applications, hence methods presented in
this chapter should be utilized in side-channel low latency hardware circuits.

Intuitively, sharing quadratic Boolean functions or functions with only a small
number of high degree terms in their ANF is quickly done by hand, for both
flavors of TI, d + 1 and td + 1. Nevertheless, as the ANF becomes more complex,
the proper way to create a minimal sharing becomes more elusive. Consequently,
the effort needed to find minimal output sharing becomes increasingly difficult.
Here we present several techniques that can help the designers to find the most
efficient or close to optimal sharing solutions for both td + 1 and d + 1 sharing
for any security order d.

3.1 Efficient First- and Second- Order td+1 Sharing

Each td + 1 TI implementation contains two distinct phases:

a) The expansion phase in which the shared function f uses sin ≥ td + 1
input shares and produces sout output shares. The output share functions
fi are referred to as component functions.

b) The compression phase in which remasked sout output shares stored in a
register are combined again to sin shares.

A register layer precedes the compression phase; for higher security order (d > 2),
it needs to be followed by another register layer to ensure composability. If
sin = sout, compression is omitted. Furthermore, if the TI sharing is uniform,
the refreshing step can also be omitted.

A d-th order TI (more specifically, its non-completeness property) requires
that any combination of up to d component functions fi is missing at least
one input share in each component function. The method presented in [7]
demonstrates how to find a sharing with the minimum number of input shares,
i.e., sin = td + 1, which results in sout =

(
sin

t

)
output shares. However, this

approach does not guarantee that sout is indeed the theoretical minimum. Even
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more, there are examples which show that by increasing sin it is possible to
decrease sout.

Throughout this thesis, we will use the number sout of output shares as a figure
of merit against which to optimize the implementation since the number of
registers required to store the output shares and the number of random bits
required for refreshing increases with the number of output shares.

As already discussed in Section 2.6, to comply with the td + 1 TI non-
completeness output component functions can only contain a subset of input
shares featured in their ANFs. Definition 3.1.2 introduces a notion of output
sets that uniquely define all output shares by indicating which input shares can
be featured in a given output, while Definition 3.1.1 introduces a notion of the
shared monomial, i.e., an ANF term comprised of products of different input
shares. Each unmasked ANF term of degree t produces st

in.

Definition 3.1.1. A Shared monomial or shared term is a single term
featured in the ANF of the output sharing, constituted by a product of one or
more shares of input variables.

Definition 3.1.2. Consider a td + 1 TI sharing of f with sin and sout output
shares. We can enumerate the input shares as elements of a set I = {0, . . . sin −
1}. With each output share fo we can associate a set O, which is a subset of
I, containing indices of allowed input shares that can appear in the ANF of
fo. We refer to O as the output set of the o-th output share of f . The set S
containing all output sets of a sharing as elements is an output sharing set.

Output sets do not impose any restriction for any particular input variable,
but only to the indices of input shares that can be appear in the ANF of the
output share. Table 3.1 shows an example of a second-order secure sharing of
function xy ⊕ z with 6 input shares and 7 output shares. An illustration of this
sharing is additionally represented by its output sets on the left. Note that the
output sets dictate which indexes of variables are allowed in the corresponding
output share. For example, for o0 only input shares (i.e., indexes) 0, 1 and 2
are allowed. That requirement is indeed fulfilled by the formula describing o0.
Note that these sets do not uniquely define the sharing. We could move the
term x0y1 from o0 to o4 or o5, as {0, 1} is a subset of both {0, 1, 4} and {0, 1, 5}.
Output sets would still be the same and the sharing would still be a correct
second-order td + 1 sharing. More generally, a shared monomial can appear
in an output share if and only if the set of input shares present in the shared
monomial is a subset of the output set. It is up to the designer to choose the
exact distribution of shared ANF monomials. As we will see in Chapter 5, the
choice impacts the area and latency of the final circuit.
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Table 3.1: Second-order td + 1 TI sharing of xy ⊕ z using 6 input and 7 output
shares.

Output set Output share ANF
{0, 1, 2} o0 = x0y1 ⊕ x1y0 ⊕ x0y2 ⊕ x1y2 ⊕ x2y1
{0, 3, 4} o1 = z4 ⊕ x4y4 ⊕ x0y3 ⊕ x0y4 ⊕ x3y4 ⊕ x4y3
{1, 3, 5} o2 = z3 ⊕ x3y3 ⊕ x1y3 ⊕ x3y1 ⊕ x1y5 ⊕ x3y5 ⊕ x5y3
{2, 4, 5} o3 = z5 ⊕ x5y5 ⊕ x2y4 ⊕ x4y2 ⊕ x2y5 ⊕ x5y2 ⊕ x4y5 ⊕ x5y4
{0, 1, 4} o4 = z0 ⊕ x0y0 ⊕ x4y0 ⊕ x1y4 ⊕ x4y1
{0, 1, 5} o5 = z1 ⊕ x1y1 ⊕ x0y5 ⊕ x5y0 ⊕ x5y1
{0, 2, 3} o6 = z2 ⊕ x2y2 ⊕ x2y0 ⊕ x3y0 ⊕ x2y3 ⊕ x3y2

An output sharing set fully determines compliance to the TI properties of
correctness and non-completeness. First, we will introduce several definitions
used in the rest of the section to ease the notation. Definition 3.1.3 just names
any set of cardinality k as a k-set, which will be useful during the characterization
of the td + 1 sharing, as the construction method we propose uses output sets
with the same cardinality to generate an output sharing. Definition 3.1.4
introduces a notion useful when checking the correctness property of td + 1 TI
sharings. Lemma 3.1.1 states the necessary and sufficient condition a td + 1
sharing has to meet to fulfil the correctness property.

Definition 3.1.3. A k-set is a set containing exactly k elements.

Definition 3.1.4. The Correctness Generator Table CGT(sin, t) of a
sharing with sin input shares of a function of degree t is a set whose elements
are

(
sin

t

)
t-sets representing all different combinations of input shares with t

elements.

Lemma 3.1.1. An output sharing set S, with sin input shares of a function of
degree t, is correct if and only if all sets from the correctness generator table
T = CGT(sin, t) are subsets of at least one output set of S.

Proof. If S contains at least one output set for each set from T , any shared
monomial of degree t can appear in at least one of the output sets. Thus, any
function of degree t can be correctly shared using output sharing set S. If S is
a correct sharing of any function with degree t, then all sets from T need to be
a subset of at least one output set of S. Otherwise, there would be a set C ∈ T
which is not a subset of any output set of S. Hence, a shared monomial whose
indices are from C could not belong to any output set of S, which is impossible
if the sharing is correct.
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In Table 3.1, the unshared function is of degree 2, and we can verify that all of
the

(6
2
)

2-sets of the correctness generator table are contained in sharing output
sets.

Non-completeness can be inferred from the output sharing set S in the following
manner:

Lemma 3.1.2. An output sharing set S with sin input shares represents a d-th
order non-complete sharing if and only if no union of d output sets is equal to
the set I = {0, . . . , sin − 1}.

Proof. If there exists d output sets whose union is equal to the set I then d
output component functions represented by these output sets would contain all
input shares, which is contradicting with the td + 1 non-completeness property
as explained in Section 2.6 because these d output component functions are
not independent of at least one input share. Conversely, if the sharing is non-
complete, any d output sets represent d output component functions which are
independent of at least one input share. Hence, union of any d output sets does
not contain at least one value from {0, . . . , sin − 1}.

In Table 3.1 we can verify that the output is second order non-complete as for
d = 2 no union of two output sets gives the set of all input shares {0, 1, 2, 3, 4, 5}.

While we have discussed correctness and non-completeness using the output
sets, we did not look at the number of output sets themselves. As was already
mentioned, the number of output sets directly determines the number of
storage registers needed to prevent glitch propagation, as well as the amount
of randomness required for mask refreshing. Since any subset of output shares
that contains all possible t-sets also contains all possible sets of smaller length
and smaller output sets do not contribute to the generation of a correct sharing
of a degree t function, output sets of length smaller than t do not have to be
considered.

Lemma 3.1.3. The maximal cardinality of an output set from the d-th order
non-complete output sharing S for functions of degree t with sin input shares is
sin − (t(d − 1) + 1).

Proof. Let us assume otherwise, i.e., there is an output set O of size at least
sin − t(d − 1). Since the minimal cardinality of output sets is t, t(d − 1) input
shares not in O can be separated into d − 1 disjunct t-sets, which are covered by
at most (d − 1) other output sets. This would mean that the non-completeness
property would be violated since these (d − 1) output sets together with O
combined comprise d output sets whose union is the set of all input shares.
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Finally, the uniformity of a given sharing cannot be investigated using its output
sets since uniformity is dependent on the exact ANF expressions of all output
shares.

Algorithm 3 finds a td + 1 sharing by adding output sets to the solution until
all the sets of the correctness generator table are subsets of at least one of
output sets of the solution. According to Lemma 3.1.1, the constructed output
sharing will fulfill the correctness property. For brevity, the procedures used in
Algorithm 3 are listed below.

• kSets(k, sin): Creates correctness generator table for degree k with sin

input shares, i.e., combinations without repetition of k elements from
{0, . . . , sin − 1}.

• doesNotCover(sin, t, S): Indicates if the set S of output shares given
ensures the correctness property in td + 1 TI with sin input shares and
algebraic degree t, i.e., all sets of CGT(sin, t) are subsets of at least one
output set of S.

• removeCompletenessShares(U , S, d): Takes as input a set of candidate
sets U that are not chosen as output shares, and the set S representing a
partially constructed output sharing. The procedure removes all output
sets from U that would, if chosen to be part of output sharing, violate the
non-completeness property.

• chooseGreedy(U , S, T ): Chooses the next output share in a greedy manner,
given a partial sharing S, the list of remaining shares U , and a set of all
not yet covered degree t sets from CGT. The next output set C is chosen
as the output set from U which is a superset of the highest number of sets
from T . If there are multiple output sets that cover the same number of
uncovered t-sets, the output set C is chosen uniformly at random among
them. Finally, T is updated by removing all the t-sets that are subsets of
C.
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Algorithm 3: Greedy Algorithm for efficient td + 1 sharing
Input: Number sin of input shares, security order d, algebraic degree t
Result: Found td + 1 sharing S
S = {}
k = sin − (t(d − 1) + 1)
O = kSets(k, sin)
T = kSets(t, sin)
while doesNotCover(sin, t, S) do

O = removeCompletenessShares(O, S)
C = chooseGreedy(O, S, T )
S = S ∪ {C}

return S

Procedure chooseGreedy in Algorithm 3 involves randomly choosing a k-set
C among all possible k-sets which are a superset of the maximal number of
uncovered t-sets in T . This non-deterministic behavior leads to different output
sharings with potentially different cardinalities if we restart the algorithm
multiple times. Hence, we restart the greedy algorithm 100 times and choose
the output sharing S with the smallest cardinality among all executions. We
have used 100 iterations to create the second-order td + 1 TI in Section 4.2.7,
since using up to more iterations did not yield a sharing with fewer output
shares.

An example single pass of the Algorithm 3 is given in Table 3.2, for Sin = 6, d = 2
and t = 2, with the set U containing all sets of size k = sin − (t(d − 1) + 1) = 3.
In each step of the greedy algorithm, these sets are scored according to the
procedure chooseGreedy. The chosen set to be added to the output sharing is
marked in bold, and in light gray we highlight the sets that must be removed
according to the removeCompletenessShares procedure, because if they remain
in the next steps of the algorithm, they would violate non-completeness of the
constructed sharing if chosen as part of the output sharing. The left column
in each table is the score of a given k-set, or the number of t-sets it contains,
that are not present in S. The right column contains all remaining k-sets that
do not violate non-completeness if added to S. In the same column above the
horizontal line is a partially constructed set S represented by k-sets that are
added to it. As an example, in the fourth table, k-set {0, 1, 4} has a score of 1
as only {1, 4} is the new t-set it would add, given {0, 1} and {0, 4} are already
subsets of output shares {0, 1, 2} and {0, 3, 4}. On the other hand, k-set {2, 4, 5}
has a score of 3 since none of the t-sets {2, 4}, {2, 5} and {4, 5} are present in
any of the output shares. For this particular order of the k-sets, we end up with
an output sharing that contains 7 shares.
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Table 3.2: Example execution of the greedy algorithm for the case sin = 6,
d = 2, t = 2. Each table shows a single step of the algorithm execution. Left
column is the amount of t-sets not covered in S by the set on the right. Sets
above the horizontal line are partially constructed sharing sets S.

{0, 1, 2}

3 {0, 1, 2}
3 {0, 1, 3}
3 {0, 1, 4}
3 {0, 1, 5}
3 {0, 2, 3}
3 {0, 2, 4}
3 {0, 2, 5}
3 {0, 3, 4}
3 {0, 3, 5}
3 {0, 4, 5}
3 {1, 2, 3}
3 {1, 2, 4}
3 {1, 2, 5}
3 {1, 3, 4}
3 {1, 3, 5}
3 {1, 4, 5}
3 {2, 3, 4}
3 {2, 3, 5}
3 {2, 4, 5}
3 {3, 4, 5}

{0, 1, 2}
{0, 3, 4}

2 {0, 1, 3}
2 {0, 1, 4}
2 {0, 1, 5}
2 {0, 2, 3}
2 {0, 2, 4}
2 {0, 2, 5}
3 {0, 3, 4}
3 {0, 3, 5}
3 {0, 4, 5}
2 {1, 2, 3}
2 {1, 2, 4}
2 {1, 2, 5}
3 {1, 3, 4}
3 {1, 3, 5}
3 {1, 4, 5}
3 {2, 3, 4}
3 {2, 3, 5}
3 {2, 4, 5}

{0, 1, 2}
{0, 3, 4}
{1, 3, 5}

1 {0, 1, 3}
1 {0, 1, 4}
2 {0, 1, 5}
1 {0, 2, 3}
1 {0, 2, 4}
2 {0, 2, 5}
2 {0, 3, 5}
2 {0, 4, 5}
2 {1, 2, 3}
2 {1, 2, 4}
2 {1, 3, 4}
3 {1, 3, 5}
3 {1, 4, 5}
2 {2, 3, 4}
3 {2, 3, 5}
3 {2, 4, 5}

{0, 1, 2}
{0, 3, 4}
{1, 3, 5}
{2, 4, 5}

0 {0, 1, 3}
1 {0, 1, 4}
1 {0, 1, 5}
1 {0, 2, 3}
2 {0, 2, 5}
1 {0, 3, 5}
2 {0, 4, 5}
1 {1, 2, 3}
2 {1, 2, 4}
1 {1, 3, 4}
2 {1, 4, 5}
2 {2, 3, 4}
2 {2, 3, 5}
3 {2, 4, 5}

{0, 1, 2}
{0, 3, 4}
{1, 3, 5}
{2, 4, 5}
{0, 1, 4}

1 {0, 1, 4}
1 {0, 1, 5}
1 {0, 2, 3}
1 {0, 2, 5}
1 {0, 3, 5}
1 {0, 4, 5}
1 {1, 2, 3}
1 {1, 2, 4}
1 {1, 3, 4}
1 {1, 4, 5}
1 {2, 3, 4}
1 {2, 3, 5}

{0, 1, 2}
{0, 3, 4}
{1, 3, 5}
{2, 4, 5}
{0, 1, 4}
{0, 1, 5}

1 {0, 1, 5}
1 {0, 2, 3}
1 {0, 2, 5}
1 {0, 3, 5}
1 {0, 4, 5}
1 {1, 2, 3}
0 {1, 2, 4}
0 {1, 3, 4}
0 {1, 4, 5}
1 {2, 3, 4}

{0, 1, 2}
{0, 3, 4}
{1, 3, 5}
{2, 4, 5}
{0, 1, 4}
{0, 1, 5}
{0, 2, 3}

1 {0, 2, 3}
0 {0, 2, 5}
0 {0, 3, 5}
0 {0, 4, 5}
1 {1, 2, 3}
0 {1, 2, 4}
0 {1, 3, 4}
0 {1, 4, 5}

3.2 Optimal d+1 Sharing for Functions with Degree
n − 1

Achieving d-th order security using a d + 1 sharing for a single term of degree t,
i.e. a product of t variables, mandates exactly (d + 1)t shares for the product [72].
Alternatively, for sin = d + 1 input shares and a product of t variables one gets
sout = (d + 1)t output shares.

The main difference with td + 1 sharing is how the non-completeness property
is interpreted in d + 1 TI. Unlike with td + 1 TI sharing, in the d + 1 TI sharing
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Table 3.3: First-order d + 1 sharing and table for the 3-bit function xy ⊕ z.

x y z Output share ANF
0 0 0 o1 = x0y0 ⊕ z0
0 1 ∗ o2 = x0y1
1 0 ∗ o3 = x1y0
1 1 1 o4 = x1y0 ⊕ z1

each output share should contain only one share per input variable. In other
words, if in an output share there are two shares of an input variable then the
d-th order non-completeness is considered violated. Recall that for the td + 1
TI using more shares per input variable is possible since the number of input
shares is larger. We observe the difference between td + 1 and d + 1 TI in
Table 3.1 and 3.4. The first output share of Table (3.1) contains 3 input shares
of x: x0, x1 and x2. In contrast, the d + 1 sharing of Equation (3.4) has only
one input share of x in the first output share: x0. Therefore, non-completeness
in d + 1 TI is satisfied if we have only one share (or zero) of each input variable
present in any given output share. We will assume that the independence of
input shares is always satisfied for the d + 1 case, an assumption that is not
needed for td + 1 TI.

Correctness of the sharing in the d + 1 case is achieved by verifying that each
monomial of a shared term (product) in the ANF of the unshared function f is
present in one of the output shares.

Let us consider again the simple function xy + z. One possible first-order d + 1
sharing of it is given in Table 3.3. The sharing can also be represented with a
table, as shown on the left side of Table 3.3. Each output share is a row of a
table, and each column represents the shares of a different input variable. The
entry in row i and column j is the allowed input share of the j-th input variable
for the i-th output share.

Columns are representing the variables x, y, and z, respectively. Compared to
the td + 1 set representation, the table representation restricts input shares for
each variable separately, while output sets impose a restriction that is the same
for all input variables.

The asterisk values indicate that we do not care about what input share of z is
there, because the sharing of the linear term z is ensured by combining rows 1
and 4 of the table. Additionally, the table representation of the sharing does
not uniquely determine the exact formula for each output share, and there is a
certain freedom in determining where we can insert the input shares.
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Table 3.4: First-order d + 1 sharing and table for 3-bit function xy + xz + yz.

x y z Output share ANF
0 0 0 o1 = x0y0 + x0z0 + y0z0
0 1 1 o2 = x0y1 + x0z1 + y1z1
1 0 0 o3 = x1y0 + x1z0
1 1 1 o4 = x1y0 + x1z1
∗ 0 1 o5 = y0z1
∗ 1 0 o6 = y1z0

For example, we can use Table 3.3 to share the function x + y + xy + z. There
are two options for the terms x0 and x1: rows 1 and 2, and rows 3 and 4,
respectively. The same holds for the terms y0 and y1: y0 can be either in output
share 1 or 3, and y1 can be in output share 2 or 4.

The non-completeness and correctness properties can be easily argued from
the table representation. Since for every table row, each column entry in the
table can represent only one input share of that column’s variable, first-order
non-completeness is automatically satisfied. For row 3 in Table 3.3 we ensure
that only x1 and y0 can occur in that output sharing by fixing the entries
representing x to 1 and y to 0. Hence, there is no way that x0 or y1 can
be a part of that particular output share, which is the only way to violate
non-completeness in a d + 1 sharing. Correctness of the table can be verified
by checking the correctness for every monomial in the unshared function f
individually. If the combined columns representing variables of the monomial
contain all possible combinations of share indexes, the sharing is correct. Indeed,
if this is the case, all terms of the shared product for each monomial can be
present in the output sharing. Following the example from Table 3.3, for the
monomial xy we see that all four combinations {(0, 0), (0, 1), (1, 0), (1, 1)} are
present in two columns representing the variables x and y. Hence, all of the
terms of the shared product xy = (x0 +x1)(y0 +y1) = x0y0 +x0y1 +x1y0 +x1y1
can be present in at least one output share. The same holds for z = z0 + z1
as both combinations {(0), (1)} are present in the output table of Table 3.3.
Also, it is easy to see that the number of rows in the correct sharing table is
lower-bounded by (d + 1)t.

Now, consider a function xy + xz + yz. One possible first-order d + 1 sharing
and its table is given in Table 3.4 with share indexes of the input variables on
the left. The columns represent x, y, and z, respectively.

The table now has 6 rows representing the different output shares, more than
the theoretically minimal 4 shares. The sharing given by Table 3.4 is also easily
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obtained when we try to derive it by hand. A naive approach is to start by
sharing xy into four shares. Next, we try to incorporate xz into these four
shares by setting all indexes of z to be equal to y. The problem arises when
we now try to add the sharing of yz. In the existing four output shares, z and
y have the same indexes. Thus we need to add two more shares for the terms
y0z1 and y1z0.

Further on, we will show that for any function with n input variables of degree
t = n − 1 it is possible to have a d + 1 sharing with the minimal (d + 1)t shares.

Definition 3.2.1. The table with n columns representing an output sharing
of a function of degree t with n input variables is referred to as a Dn-table.
The number of rows of the table is the number of output shares for a given
sharing. If the output sharing is correct then the Dn-table is a t-degree correct
Dn-table. A t-degree correct Dn-table with minimal numbers of rows is called
an optimal Dn-table. An optimal Dn-table that has (d + 1)t rows is called an
ideal Dn-table, denoted Dn

t -table.

The concept of Dn-table will be utilized in the rest of this thesis to succinctly
present d + 1 TIs, both in Chapters 4 and 5.

Obviously, for t = n the ideal Dn
n-table is just a table that contains all different

(d + 1)t indexes of input variables in terms of the shared product that occur
when sharing a function of degree t. We can also consider each row of a Dn-table
as an ordered tuple of size n. The i-th value in such a tuple represents the i-th
input variable, and its value is the allowed input share of that variable in the
output share represented by the tuple. All tuple entries can have values from
the set {0, . . . , d}.

Definition 3.2.2. A Dt-table D1 is a t-subtable of a Dn-table D2 for t given
columns if D2 reduced to these t columns is equal to D1.

We have shown with the sharing in Table 3.3 how one can check the correctness
of the table. Now we generalize this by showing how to check if a given Dn-table
can be used to share any function of degree t. It turns out that it is sufficient to
check correctness only for the terms of degree t, since if we can share a product
of t variables with a given number of output shares, we can also always share
any product of a subset of these t variables using the same output shares.

It is easy to see that a Dn-table D can be used to share any function of degree t
if and only if for any combination of t columns, the Dt-table formed by t chosen
columns contains all possible (d + 1)t ordered tuples of size t. In, other words,
a t-subtable of D for any t columns is a t-degree correct Dt-table.
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Table 3.5: D3-table and its 3 2-subtables.

xyz xy xz yz
000 00 00 00
011 01 01 11
100 10 10 00
111 11 11 11
001 00 01 01
110 11 10 10

Namely, a Dt-table that contains all possible (d + 1)t ordered t-tuples represents
the correct sharing for functions of degree t. If this is true for any combination
of t columns of D we can correctly share any combination of products of size t
from n input variables.

An example is given in Table 3.5 in which the D3-table on the left can be used
for a first-order sharing of any function of degree 2 since all 3 D2-tables obtained
from it have all 4 possible ordered 2-tuples (0, 0), (0, 1), (1, 0) and (1, 1) as at
least one of its rows.

Next we show how one can construct an ideal Dn-table for any function for
given n, d and t = n − 1. To recap, we first build a (d + 1)t × n table D, where
every row is a tuple of indexes (in a single row no variable index is allowed to
be missing and, naturally, no variable index is duplicated); any t-subtable of D
for any t columns is a t-degree correct Dt-table. Since t = n − 1 we can consider
t-subtable generation as column removal from D. Such a Dn-table D is then
equivalent to a sharing which fulfills the correctness and the non-completeness
properties of TI. Constructing an ideal Dn

n-table is trivial by enumerating all
ordered index n-tuples. Its number of rows is (d + 1)n.

Showing that a particular Dn-table with (d + 1)n−1 rows is a Dn
n−1-table

becomes equivalent to proving that removal of any single column (restriction to
n−1 columns or, equivalently, variables) from the Dn-table yields a Dn−1

n−1-table.
Alternatively, any (n − 1)-subtable of a Dn

n−1-table is a Dn−1
n−1-table.

Here we will show how to build the Dn
t -table for the case when t = n − 1.

For any given Dn
n−1-table and security order d we will prove the existence of

d other Dn
n−1-tables such that no n-tuple exists in more than one table. In

other words, no two tables contain rows that are equal. We call such d + 1
Dn

n−1-tables conjugate tables, and the sharings produced from them conjugate
sharings. Having all rows different implies that these d + 1 Dn

n−1-tables cover
(d + 1)(d + 1)n−1 = (d + 1)n index n-tuples, i.e. all possible index n-tuples.
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Therefore, these d + 1 Dn
n−1-tables together form a Dn

n-table.

We build the d + 1 conjugate Dn
n−1-tables inductively. For a given d we build

d + 1 conjugate D2
1-tables, then assuming d + 1 conjugate Dn

n−1-tables exist,
we construct d + 1 conjugate Dn+1

n -tables.

The initial step is simple: D2
1 has two columns (for the variables x and y) and

in each row i (enumerated from 0 to d) of each conjugate table j (enumerated
from 0 to d) we set the value in the first column to be i, and the value of the
second column to be (i + j) mod (d + 1), hence obtaining the (d + 1) conjugate
D-tables with d + 1 rows. Indeed, both columns of any of the constructed
D2

1-tables contain all values between 0 and d, so by removing either column,
we always obtain a correct D1

1-table. Also, this construction ensures that the
second column never has the same index value in one row for different tables,
therefore no two rows for different tables are the same, ensuring that the formed
tables are indeed conjugate.

Induction step - assume we have d + 1 conjugate Dn
n−1-tables. Using them we

now build d + 1 conjugate Dn+1
n -tables using two procedures:

• initDTable(n): initializes an empty D-table with n variables, with zero
rows.

• appendRows(Di, Dj , idx): appends (d + 1)n−1 additional rows to output
Dn+1-table Di, by taking Dn

n−1-table Dj and adding a new column at
the end whose values are idx.

Algorithm 4 explains the iterative step of the induction. An example of the
iterative step from Algorithm 4 is given in Figure 3.1.

Algorithm 4: Algorithm for optimal d + 1 sharing
Input: d + 1 conjugate Dn

n−1-tables D(0,n), . . . , D(d,n)
Result: d + 1 conjugate Dn+1

n -tables D(0,n+1), . . . , D(d,n+1)
for 0 ≤ i ≤ d do

D(i,n+1) := initDTable(n + 1)
for 0 ≤ j ≤ d do

appendRows(D(i,n+1), D(j,n), (i + j) mod (d + 1))

Lemma 3.2.1. Given d + 1 conjugate Dn
n−1-tables Algorithm 4 constructs d + 1

conjugate Dn+1
n -tables.

Proof. First, let us show that the constructed d + 1 Dn+1
n -tables are conjugate,

i.e., there is no (n + 1)-tuple which belongs to more than one of them. Let us
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Figure 3.1: Generating conjugate D3
2-tables from D2

1-tables.

assume there exists an (n + 1)-tuple which belongs to two Dn+1
n -tables. This

implies the existence of an n-tuple which belongs to two of the initial d + 1
Dn

n−1-tables, contradicting the fact that these initial tables are conjugate.

Finally, any restriction to a particular set of columns has to have all the
combinations of index n-tuples, to satisfy the correctness property. In fact, it is
sufficient to prove that any set of n columns in any of the new conjugate tables
contains all possible n-tuples. Indeed, if we remove the last column in any of the
so constructed tables, we get the union of the original d+1 Dn

n−1-tables forming
one Dn

n-table. By definition a Dn
n-table satisfies this property. Lastly, we are

left with the other case of removing one of the first n columns, which results in
a table of dimensions (d + 1)n × n. If we prove there are no duplicates among
the (d + 1)n tuples within this table, all combinations will be part of the table,
making it again a Dn

n-table. Consider two n-tuples. If they are equal, their last
indexes are also equal. By Algorithm 4, equality of the last indexes (these are
in the (n + 1)-st column) implies that the two (n − 1)-tuples belong to one of
the starting conjugate Dn

n−1-tables, i.e., they cannot be in different conjugate
Dn

n−1-tables. However, for the (n−1)-tuples which belong to one of the starting
Dn

n−1-tables by assumption it is known that there are no duplications and hence
the considered two (n − 1)-tuples cannot be equal.

Theorem 3.2.1. Any of the conjugate Dn
n−1-tables constructed by Algorithm 4

provides optimal sharing for given n, d and t = n − 1.

Proof. The algorithm is applied inductively for the number of variables from 2
till n. Since one Dn

n−1-table contains exactly (d + 1)n−1 rows, we conclude it is
optimal because this is the theoretical lower bound for the number of output
shares for the case t = n − 1.
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A significant benefit of using an algorithmic solution is that it can easily be
automated using a computer, removing the possibility of human error that is
likely to occur, for functions with a complex ANF.

It is well known that a balanced Boolean function of n variables has degree at
most n − 1 [21]. Therefore all n × n S-Boxes which are permutations, have a
degree of at most n − 1. Indeed nearly all bijective S-Boxes used in symmetric
ciphers are chosen to have the maximum degree n − 1. In particular, inversion
in the field always has maximum degree n − 1, the most notable example being
the AES S-Box. In the particular case of AES inversion, applying the algorithm
shown here will produce the minimal number of shares: 128. In Chapter 5
we will explore a single-cycle d + 1 TI of AES S-Box with an output sharing
generated using Algorithm 4.

The most notable example where a low-degree function is used within a round
structure is KECCAK’s [4] χ-function which is a 5 × 5 S-Box of degree 2. A
sharing with 8 shares can be easily found for χ by hand while a conjugate
D5-table will have 16 entries which correspond to the optimal sharing for degree
4. The heuristics given in the following section will help bridge this gap by
providing minimal or near minimal sharings of functions where the degree is
less than n − 1.

3.3 Optimal d + 1 Sharing for Functions of up to 8
Bits

When t < n − 1 as was already shown from the KECCAK example, we see
that the sharing obtained using Algorithm 4 does not give a solution with the
minimal number of output shares. Alternatively, the previous section’s method
is not optimal when the degree of the function is lower than n − 1. Therefore,
a different strategy is needed to find the optimal sharing for functions with a
degree lower than n − 1. In order to find a solution for this particular case, we
must first reformulate our problem.

By using a Dn-table to represent an output sharing, we showed in Section 3.2
that any function of degree t could be shared using a Dn-table D if all different
t-subtables of D are correct Dt-tables. For a function f with n input bits, a
Dn-table D can be used to correctly share f if for each ANF term of f of degree
t, the corresponding t-subtable of D is a t-degree correct Dt-table. In other
words, for each term l of t variables, columns representing output shares should
contain all different (d + 1)t combinations with repetitions. We evaluate the
shares of l from 1 to (d + 1)t in lexicographic order and say that output share
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S covers the i-th share of term l if columns of S representing variables of l form
the i-th share of t variables.

In order to find sharings of arbitrary functions we can transform the problem into
a set covering problem (SCP). The SCP is a well-known discrete optimization
problem, appearing in various applications, e.g., logic minimizer in EDA tools,
mobile network base station placement, etc. Hence, we can leverage well-known
methods for solving SCP instances to search for a minimal output sharing.
Instead of trying to construct a correct sharing using smaller correct sharings,
as in Algorithm 4, we will instead aim to choose a set of output shares among
all possible output shares, making sure that the chosen output shares satisfy
the correctness property.

Each different output share among all possible (d + 1)n shares will be considered
as a set, and the family of these sets will be referred to as D. The universe U
of all elements to be covered is created by going through the ANF of f , and for
each term l of degree t we add (d + 1)t elements, representing all shared terms
of l. In other words, each shared monomial of each term is a separate element
to be covered. Set S from D will contain an element e from U if the output
share represented by S covers the shared term from f represented by e. Now
given D and U we need to find a subfamily C ⊆ D with minimal cardinality
such that union of sets from C is U . Concerning elements e from U , in a valid
solution, there exists at least one set S from C that contains e.

We can further represent SCP in terms of decision variables. With all possible
output shares from D 1 . . . (d + 1)n we associate a {0, 1} variable xS denoting
if share S is chosen. The goal of finding correct and non-complete minimal
sharing can then be formulated as:

minimize
∑
S∈D

xS (3.1)

subject to
∑

S:e∈S

xS ≥ 1, (∀e, e ∈ U) . (3.2)

Expression (3.1) is referred to as the objective function, while the inequalities
given by (3.2) are called constraints.

The size of the search space for d + 1 optimal sharing grows with the number of
input variables and security order. Namely, there are (d + 1)n decision variables
for n-bit functions. For each decision variable the solver has to either include
it into the solution or not, meaning the search space for the solver is 2(d+1)n .
As such the smallest search space for the sharing problems investigated in this
Chapter is 224 = 216 for first-order secure quadratic 4-bit functions. Conversely,
the largest search space investigated is 238 = 26561 for second-order sharings
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Figure 3.2: The number of decision variables xS for the first- (left) and second-
order (right) SCP sharing problem for n-bit functions. The size of the search
space for the SCP solver is 2xS .

of 8-bit functions. Figure 3.2 shows the exponential growth of the decision
variables xS with the number of input bits.

The number of elements to cover from universe U , i.e.,
(

n
t

)
for the sharings we

are searching for, also impacts the solver in its ability to find optimal solution
quickly. Namely, having more elements to cover slows down the time needed to
find optimal solution.

3.3.1 Set Covering discrete optimization techniques

We have applied four different techniques to solve the underlying set covering
problem: Constraint Programming [74], Mixed Integer Programming [78],
Randomized Greedy with restarts [26], and Simulated Annealing [48] with
a greedy heuristic. Since discrete optimization solvers provide varying levels
of success depending on the problem instance, testing and comparing different
techniques is the only way to discover which technique is the most suitable for
minimizing the number of output shares in d + 1 TI.

Two of the investigated techniques, Constraint Programming and Mixed Integer
Programming, can find the optimal solution and prove its optimality, given
enough time. However, for large SCP instances it might take a unreasonable
amount of time to explore the entire search space. Hence, we restricted the
running time of these two solvers to one hour on a regular CPU for all SCP
instances we ran, unless stated otherwise. The other two techniques, Randomized
Greedy with restarts, and Simulated Annealing with a greedy heuristic, are
heuristic-based approaches. Hence they cannot prove the optimality of the
found solution. However, they can potentially tackle bigger instances of SCP
due to their computation speed.
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Constraint Programming (CP) [74] focuses on finding a feasible solution given
several constraints. Its original use is to determine if a problem is satisfiable.
Nevertheless, it can also be used for minimization optimization by finding a
feasible solution with objective cost N , then adding new constraints such that
the objective function has to be smaller than N , and restarting the process. The
cycle is repeated until the problem becomes infeasible, and the objective value
of the final feasible solution is minimal, as the problem with smaller objective
value is proven infeasible by the solver. We have used the freely available
MiniZinc [61] software to solve our set covering problem.

Mixed Integer Linear Programming (MILP) [78] relaxes the problem such that
decision variables become non-binary, but continuous real values, xS ∈ [0, 1],
then tries to solve the underlying Linear Programming Problem [29] to establish
a lower bound of the objective function. Afterwards, it tries to find a smallest
solution such that all decision variables are integers, satisfying the original
problem constraints. Similar to CP, MILP can prove the optimality of the
solution. We have used the Gurobi 9.0 [43] solver for this part.

Randomized Greedy heuristic with restarts, or Iterated Greedy (IG) is a
technique where a solution is constructed in a greedy manner, and in each
step we take the set S that covers most uncovered elements so far. We stop
when all elements are covered. All ties are broken randomly: if multiple sets
cover an equal number of still uncovered elements, the algorithm randomly
chooses one of them to add to the solution being built. We loop this approach
multiple times and take the solution from the iteration that has the smallest
number of sets. Since ties are broken randomly, solutions will differ from run
to run. The optimality of this technique cannot be proven since the greedy
algorithm finds local minima, not a global one for SCP. However, in practice,
its outputs are often close to optimal.

Simulated Annealing [48] is a meta-heuristic where a neighbor solution with
a higher objective function cost is accepted with a probability that gradually
decreases during execution time. Intuitively, accepting worse solutions allows us
to explore more of the search space and escape local minima. Over time lowering
of the acceptance probability guides the search more and more toward good
solutions, while the earlier rounds are used to explore a large search space more
indiscriminately. The probability parameter is called temperature. We utilized
the implementation approach given in [19, 55] where we separate execution into
multiple rounds. After each round, the temperature is decreased by a constant
factor cool. In each round, a number I of neighbors is explored. A neighbor is
constructed by removing some of the sets from the solution, then constructing
a new solution using the remaining sets as a starting point, and adding new
ones until all elements are covered again. We accept the new solution if it
is better than the previous one, or if not, we still accept it with probability



OPTIMAL D + 1 SHARING FOR FUNCTIONS OF UP TO 8 BITS 57

exp(−δ/temp) where δ is the difference in objective function of the new and
the current solution.

Here we reiterate the implementation details from [55]. The parameters are:

• A: data structure providing relation information of which sets cover which
element, normally given as a {0, 1} matrix.

• cool: Temperature reduction ratio between rounds tempr+1 = tempr ×
cool

• ρ: used to determine the percentage of shares to be dropped from the
current solution, during neighbor construction.

• R: number of rounds to run.

• I: number of neighbors examined in each round.

• rand(): function that returns a uniformly distributed random real number
in range [0, 1].

• temp: initial temperature parameter used to determine the probability
of accepting a bad neighbor.

• Construct(): greedy heuristic method used to construct a new covering
after a percentage of shares has been removed from it.

• Perturb(): neighbor defining function. A factor ρ of shares is stripped
from the current solution. Shares removed have the least amount of
uniquely covered elements.

• RemoveRedundant(): executed after a new solution has been
constructed. It can happen that some of the chosen shares are redundant
since all of the elements covered by it are already fully covered by other
shares in the candidate solution.

The simulated annealing algorithm for SCP is shown in Algorithm 5.

3.3.2 Sharing solutions

We have applied four discrete optimization techniques to all algebraic functions
of up to 8 bits, of algebraic degree t which contain all t-degree terms in their
ANFs. Since almost all symmetric key designs utilize a nonlinear S-Box of 8
or fewer bits, the obtained results would be applicable to most symmetric key
primitives. Since optimal sharing has already been solved in Section 3.2 for
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Algorithm 5: Simulated Annealing algorithm for the set cover problem.
Input: A, R, I, temp, cool, ρ
Result: Smallest found sharing Cbest

C∗ := {}
C∗ := Construct(A, C∗)
r := 0
repeat

i := 0
repeat

C′ := Perturb(A, C∗, ρ)
C′ := Construct(A, C′)
C′ := RemoveRedundant(A, C′)
δ := ObjectiveCost(C′) − ObjectiveCost(C∗)
rnd = rand()
if (δ ≤ 0) or (rnd ≤ e−δ/temp) then

C∗ := C′

if ObjectiveCost(C′) < ObjectiveCost(Cbest) then
Cbest := C′

i := i + 1
until i == I
temp := temp × cool
r := r + 1

until r == R
return Cbest

degree t = n − 1, we have focused on algebraic functions where t < n − 1. In
order for the solution to be generic, we further assume the most extreme case.
That is, given n variables and degree t, we search for a sharing of a function
with all

(
n
t

)
t-degree terms present in the ANF. Sharing of such a function can

be used for any n-bit function of degree t. However, a more efficient sharing for
a given n-bit function f of degree t might exist, depending on the number of
t-degree terms that are present in the ANF and their structure, and the same
discrete optimization methodology can be applied on f to find a possibly better
sharing.

First, we have applied CP using Minizinc [61] with Chuffed 0.10.4 [24] and
Google OR-tools [67] solvers. For d = 1, both options can find optimal sharings
for all cases, except for 8-bit functions of degree 5, where a solution with 52
shares is found after a few hours but without proof of optimality, even after
running the CP solver for several days on a regular PC. Optimality for other
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Table 3.6: Number of shares found using the CP solver. Values in bold mean
that the solver proved optimality.

d = 1 d = 2
t 2 3 4 5 6 2 3 4 5 6
n = 4 5 9
n = 5 6 10 15 44
n = 6 6 12 21 – – –
n = 7 6 12 24 42 – – – –
n = 8 6 12 24 52 85 – – – – –

Table 3.7: Number of shares found using the MILP solver. Values in bold mean
that the solver proved optimality.

d = 1 d = 2
t 2 3 4 5 6 2 3 4 5 6
n = 4 5 9
n = 5 6 10 11 33
n = 6 6 12 21 12 33 119
n = 7 6 12 24 42 12 45 153 440
n = 8 6 12 24 52 85 14 63 – – –

cases is proven within several tens of minutes. For the second-order case d = 2,
the CP solver is only able to prove optimality for the simplest of cases of 4
bits and degree 2. It can find a solution when n = 5, but without proof of
optimality. For n > 5, the solver cannot provide any solutions within a few
minutes, so we deem it not suitable for those cases due to the size of the search
space. We did not see much difference in solution times between Chuffed and
OR-tools solvers, although Chuffed seems to finish the search slightly faster.
The resulting number of shares using CP solvers is given in Table 3.6.

Next we have tried to use the MILP solver, in particular the Gurobi 9.0 solver [43].
For d = 1 the solver was able to find same solutions and prove optimality in less
time. However, for the case of 8 bits and degree 5, a solution of 52 was found
again, but without proof of optimality. When d = 2, the MILP solver was more
successful than the CP solver, finding optimal solutions for degree 2 functions
for all n = 4, 5, 6, 7, and degree three functions of 5 and 6 bits. However, more
complex cases seem to quickly become difficult for the solver. The resulting
number of shares using MILP solver is given in Table 3.7.
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Table 3.8: Number of shares found using the IG heuristic.

d = 1 d = 2

t 2 3 4 5 6 2 3 4 5 6

n = 4 5 9
n = 5 6 12 11 36
n = 6 6 12 22 13 40 128
n = 7 6 12 24 47 14 45 138 409
n = 8 6 12 30 56 96 15 45 135 405 1387

It becomes apparent that CP and MILP solvers struggle with d = 2, which is
unsurprising because the number of decision variables increases exponentially.
Hence for the more difficult cases, heuristics are the only possible way to
find good solutions. The Iterated Greedy approach consists of 100 000 greedy
algorithm runs and choosing the best solution among them. It finishes in just
a matter of seconds, even for harder cases. The program can sometimes find
optimal solutions of the CP and MILP approaches, but even when it does not,
the solutions it finds are within 30% of minimal, where the minimal solution is
known. The IG run results are given in Table 3.8.

To improve on the results of the IG heuristic, we have also tested the simulated
annealing technique. First, the IG technique was used with 20 000 runs to
provide an initial solution, and then SA was run with R = 150 rounds and
I = 100 iterations in each round. The program ran extremely fast on a regular
PC, and it was the slowest for 8-bit functions of degree 6 where it finished in
about 5 minutes. SA program was able to find the same results for d = 1 as the
CP and MILP solvers, finding optimal solutions faster. For d = 2 it improved
on some of the instances compared to the IG approach, but the solution quality
was at most 10% better in instances where CP and MILP were unable to provide
solutions in a reasonable amount of time. In some instances with 8 bits and
degrees 3, 4 and 5, it was unable to improve upon the solution provided by the
IG approach. Modifying the SA annealing parameters had a limited impact on
the quality of the solution. For minimal sharing problems we experimented with
cooling factors in the range of [0.8, 0.95], initial temperature between [20, 200]
and ρ in range [0.1, 0.5]. For these parameter ranges the cooling factor of 0.91,
starting temperature of 100, and removal coefficient ρ of 0.2 seemed to be
working well in almost all cases. The coefficient ρ had the most impact on the
improvements, and we noticed that smaller values are more beneficial for larger
t values, about 0.1, while values of 0.3 work better on smaller t values. The SA
run results are given in Table 3.9.

Finally, we can put together the solutions of all four approaches to collect the
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Table 3.9: Number of shares found using the SA heuristic.

d = 1 d = 2
t 2 3 4 5 6 2 3 4 5 6
n = 4 5 9
n = 5 6 10 11 33
n = 6 6 12 21 12 33 115
n = 7 6 12 24 42 12 40 130 379
n = 8 6 12 24 52 85 14 45 135 405 1234

Table 3.10: Best sharing using all four approaches. Values in bold mean that
solver proved optimality.

d = 1 d = 2
t 2 3 4 5 6 2 3 4 5 6
n = 4 5 9
n = 5 6 10 11 33
n = 6 6 12 21 12 33 115
n = 7 6 12 24 42 12 40 130 379
n = 8 6 12 24 52 85 14 45 135 405 1234

best ones. The aggregate results are presented in Table 3.10. Examining the
best solutions found, we can determine that the optimal sharing does not have
significantly more output shares compared to the trivial bound of (d + 1)t. For
d = 1 the increase is up to 50 percent, except in the hardest case with 8 variables
and degree 5 functions, in which we have 52 shares compared to the bound of
32 shares, an increase of a little over 60%. A similar situation happens with
d = 2 where found solutions are within 70% increase. Due to the particular
case of SCP for sharing being somewhat pathological, where all shares cover the
equal amount of elements, it is difficult for the solver to find optimal solutions
when the number of total shares increases. In contrast, good solutions are still
relatively easily discovered using a greedy heuristic.

A comparison of our result with the recent ones presented in Section 3.2 and [84]
is presented in Table 3.11. Obviously, the method presented in Section 3.2
achieves optimality when t = n−1, but it is ineffective for t < n−1. The greedy
heuristic given in [84] finds solutions that are multiples of (d + 1)t. However,
the authors only presented the solution for a specific case of an 8-bit degree 3
function, and for (n = 4, t = 2, d = 2), (n = 4, t = 2, d = 3), (n = 5, t = 2, d =
4), (n = 5, t = 3, d = 3), (n = 6, t = 3, d = 3) the optimal solution is found
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Table 3.11: Comparison to previously known results.

d = 1 d = 2

t 2 3 4 5 6 2 3 4 5 6

Proposed methodology
n = 4 5 9
n = 5 6 10 11 33
n = 6 6 12 21 12 33 115
n = 7 6 12 24 42 12 40 130 379
n = 8 6 12 24 52 85 14 45 135 405 1234

Construction from Algorithm 4
n = 4 8 27
n = 5 16 16 81 81
n = 6 32 32 32 243 243 243
n = 7 64 64 64 64 729 729 729 729
n = 8 128 128 128 128 128 2187 2187 2187 2187 2187

Construction from [84]
n = 4 8 9
n = 5 8 16 18 54
n = 6 8 16 32 18 54 162
n = 7 8 16 32 64 18 54 162 486
n = 8 8 16 32 64 128 18 54 162 486 1458

while not providing more information. Hence in Table 3.11 we indicated the
smallest number of output shares the algorithm [84] could find. Our method
provides better results in all cases for first and second security order.

Concrete sharings are given by Tables A.1, A.2, A.3, A.4 and A.5 in the
Appendix A. If we examine the solutions for d = 1 we can see that many
solutions have symmetric order: if an output share has a binary representation
x, then the solution also contains the output share with binary representation
equal to one’s complement of x. One could assume that optimal solutions will
always have sharings with such structure, but this is not the case. For example,
if we provide this additional constraint to the CP solver, it will no longer find
the sharing of 7-bit functions of degree 2 to be 12, but 14. The symmetric
structure is obtained from the CP solver, probably based on the heuristic it
used to parse the search space.
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3.3.3 Sharing for AES cubic power functions

As an example of an application of the generic method presented here, we
demonstrate the improved sharing of the power functions x26 and x49, used
to create AES inversion by De Meyer et al. and Nikova et al. [84, 63]. Both
of them are cubic Boolean functions since Hamming weight of both 26 and 49
is 3 [21], and De Meyer et al. [84] presented a sharing using 16 output shares
is used to produce a first-order secure d + 1 implementation. The sharing is
only valid for the lowest bit of the power functions, but using the rotational
symmetry of power functions in normal basis, we can use the same sharing for
other output bits as well.

The normal basis generator chosen by De Meyer et al. [84] is β = 205, with 205
being the representation of the generator in the AES polynomial basis. Table 3.10
gives a sharing with 12 shares which is 4 shares or 25% less than for a generic
cubic function. This approach was applied to the first-order d + 1 TI design by
Shahmirzadi et al. [79]. However, if we apply the smallest sharing on the exact
ANF of the cubic power functions, we can improve upon this result. Using the
MILP set covering program, we were able to find a first-order sharing for both
power functions x26 and x49 with 10 shares each, 6 shares or 37.5% less than
the original sharing. Furthermore, we have applied the same method to find a
second-order d+1 sharing of the same power function and the same normal basis
generator. Surprisingly, both functions can be shared with (d + 1)t = 27 shares,
the theoretical minimum. In order to make sure this is the best sharing, we have
investigated 7 other pairs of cubic functions that yield inversion when composed
together: (13, 98), (19, 161), (38, 208), (52, 152), (67, 137), (76, 104), (134, 196). In
addition, we have expanded the search across all 128 normal basis generators.
An exhaustive search showed that 10 shares are the smallest number of shares
in every case. Other generators that can be used to produce the sharing
with 10 shares of the cubic power functions are {36, 96, 117, 124, 140, 199, 202}.
Interestingly enough, in all the pairs of cubic power functions that produce
inversion, the generators that have 10 shares in the output sharing are always the
same. To make the notation as succinct as possible, we will only enumerate the
chosen shares of the power functions x26 and x49 with normal basis generator
205 in their lexicographical order, the first share having index 0, and the
last share having index (d + 1)n − 1. In other words, we look at all possible
shares as n-digit words in base d + 1. For example if we had a sharing with
d = 2, n = 4, t = 2 given as [2, 12, 25, 31, 44, 45, 60, 64, 77], it means that the
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actual nine shares are

(0, 0, 0, 2) (0, 1, 1, 0) (0, 2, 2, 1)

(1, 0, 1, 1) (1, 1, 2, 2) (1, 2, 0, 0)

(2, 0, 2, 0) (2, 1, 0, 1) (2, 2, 1, 2) .

A shortcut to getting actual output shares for first-order designs using this
notation where allowed shares are 0 and 1, is to observe the binary representation
of the index value when each bit represents the allowed share of that input
variable. It should be noted that this representation of the sharing, while
succinct, is not unique with respect to the actual distribution of ANF terms, as
low degree monomials have multiple possible output shares they can be a part
of. For a first-order sharing of an 8-bit function, there are 28 = 256 possible
shares, while for the second-order sharing there are 38 = 6561 total shares. The
chosen shares for first-order sharing are given below:

shares(x26) =[0, 30, 43, 93, 114, 154, 181, 195, 232, 246]

shares(x49) =[0, 30, 79, 115, 124, 165, 187, 214, 217, 234] .

The chosen shares for the second-order sharing are given below:

shares(x26) =[0, 439, 626, 796, 1145, 1338, 1511, 1938, 2044, 2388, 2575, 2690,

3103, 3290, 3474, 3863, 3975, 4162, 4533, 4639, 5069, 5212, 5408,

5754, 5927, 6111, 6550]

shares(x49) =[0, 338, 673, 930, 1025, 1324, 1617, 1919, 2011, 2218, 2553, 2882,

3148, 3231, 3542, 3745, 4053, 4148, 4436, 4762, 5097, 5276, 5368,

5676, 5963, 6271, 6354] .

3.4 Conclusion and Outlook

We have introduced several methods for optimizing Threshold Implementations,
which makes low latency, low energy, and higher throughput of side-channel
secure designs practical. First, we provided an algorithm that produces a d + 1
TI sharing with the optimal (minimum) number of output shares for any n-input
Boolean function of degree t = n − 1 and for any security order d. Second, when
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t < n − 1 we presented a discrete optimization based methodology that can be
used to find good, and in many cases optimal, sharings of Boolean functions up
to 8 bits. We also reduced the problem of finding optimal sharing to an instance
of the set covering problem, which can be efficiently solved using various discrete
optimization techniques. Third, we presented a heuristic for minimizing the
number of output shares for higher-order td + 1 TI. Minimizing the number of
output shares is of general interest since the method of minimizing the number
of output shares can be applied to any cryptographic design.

We would like to summarize that the generic algorithm for achieving the minimal
number of output shares is an essential tool for the side-channel secure circuit
designer. However, finding the minimal number of output shares is not the only
design criterion to investigate when designing for low latency and low energy
applications. Chapters 4 and 5 rely on the sharing techniques presented in this
chapter to provide TI designs with a minimal number of output shares.





Chapter 4

Low Latency Side-Channel
Protected PRINCE Cipher

“Measure twice, cut once.”

English proverb

The work presented in this chapter is based on three publications in which I
was the main author [14, 17, 15], and my contributions were designing, realizing
and analyzing presented PRINCE implementations.

In this chapter, we take a closer look at side-channel protected implementations
focusing on low latency applications, both with respect to cycle latency and
overall latency. We also demonstrate how low cycle latency can lead to energy-
efficient design. Specifically, we will look at the PRINCE block cipher due to
its low latency oriented design.

Applications such as memory encryption, in which low latency is essential
and additional cycles during processing considerably reduce the memory
response time, mandate the use of highly performant low latency cryptographic
solutions. Moreover, the critical path must remain short to meet the RAM
system’s stringent frequency requirements. Being designed specifically with
these criteria in mind, PRINCE is the optimal choice for such an application.
Many commercially available products today incorporate a hardware PRINCE
implementation to meet strict low latency encryption needs, including NXP
Semiconductors’ LPC55S general-purpose IoT microcontrollers [65].

67
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However, side-channel attacks could pose a serious threat even for such
an application, mandating the use of countermeasures in these extreme
environments. Hence, we investigate the overhead caused by TI side-channel
countermeasure in a case study of PRINCE. Most of the hardware relevant
metrics are examined in detail, namely the number of gate equivalents
needed to implement a circuit, power and energy consumption, and the
PRNG requirements imposed by the countermeasure. Several design options
are discussed, based on the S-Box decomposition, as well as on the S-Box
implementation without decomposition using d + 1 and td + 1 TI sharings
described in Chapter 3. All design options are thoroughly analyzed and should
provide sufficient insight for any future design, with its drawbacks and fortes
clearly indicated. The chapter consists of a brief explanation of the structure of
the PRINCE S-Box, followed by the description of several TI versions, both
d + 1 and td + 1, including first- and second-order security. We also explain the
method to reduce the randomness for round-based implementations leveraging
the mixing layer structure within PRINCE. Synthesis results are elaborated,
presented, and compared using a commercial TSMC 90 nm library. Finally, two
d + 1 TI designs without S-Box decomposition are tested for their side-channel
resilience using standard TVLA methodology.

4.1 PRINCE S-Box Decomposition

The PRINCE S-Box has an algebraic degree three and belongs to the class
C131 [9]. According to Bilgin et al. [9] and the tables provided by Nikova [62]
there are several hundreds of decompositions into three quadratic S-Boxes and
four affine transformations.

We choose a decomposition where all three quadratic S-Boxes are the same,
belonging to class Q294. Such a decomposition can reuse the Q294 circuit during
evaluation, leading to a smaller area footprint of the design. Decomposition
leads to lower area and randomness requirements as they depend on the algebraic
degree of the function when applying TI. However, the performance is penalized.
The PRINCE S-Box ANF (o1, o2, o3, o4) = F (x, y, z, w) is given by:

o1 = 1 ⊕ wz ⊕ y ⊕ zy ⊕ wzy ⊕ x ⊕ wx ⊕ yx

o2 = 1 ⊕ wy ⊕ zy ⊕ wzy ⊕ zx ⊕ zyx

o3 = w ⊕ wz ⊕ x ⊕ wx ⊕ zx ⊕ wzx ⊕ zyx

o4 = 1 ⊕ z ⊕ zy ⊕ wzy ⊕ x ⊕ wzx ⊕ yx ⊕ wyx . (4.1)
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The S-Box and its inverse decompositions used in our implementation are:

S = A1 ◦ Q294 ◦ A2 ◦ Q294 ◦ A3 ◦ Q294 ◦ A4

S−1 = A5 ◦ Q294 ◦ A2 ◦ Q294 ◦ A3 ◦ Q294 ◦ A6 . (4.2)

Here A1 to A6 are affine transformations and their respective look-up tables
are:

A1(x) = [C, E, 7, 5, 8, A, 3, 1, 4, 6, F, D, 0, 2, B, 9]

A2(x) = [6, D, 9, 2, 5, E, A, 1, B, 0, 4, F, 8, 3, 7, C]

A3(x) = [0, 8, 4, C, 2, A, 6, E, 1, 9, 5, D, 3, B, 7, F ]

A4(x) = [A, 1, 0, B, 2, 9, 8, 3, 4, F, E, 5, C, 7, 6, D]

A5(x) = [B, 8, E, D, 1, 2, 4, 7, F, C, A, 9, 5, 6, 0, 3]

A6(x) = [9, 3, 8, 2, D, 7, C, 6, 1, B, 0, A, 5, F, 4, E] .

The ANF of the Q294 quadratic permutation, (o1, o2, o3, o4) = F (a, b, c, d) has
the following form:

o1 = a

o2 = b

o3 = ab ⊕ c

o4 = ac ⊕ d (4.3)

It should be noted that the decomposition of the PRINCE S-Box using the
Q294 quadratic S-Box is not unique. For example, in the work by Moradi and
Schneider [59] Q294 is also used to decompose the PRINCE S-Box, but the
affine transforms A1 to A6 used there are different from the ones we described
here.

We recall that, for a secure implementation with this decomposition method,
nonlinear operations need to be separated by registers, making the evaluation of
a single S-Box take 3 clock cycles. If the S-Box needs to be separated from the
linear layer to avoid transient leakage, the number of cycles is further doubled
to 6.

We will explore the implementation of the decomposed S-Box in order to address
the issue of low-area and low-power applications but, in what follows, we also
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explore the sharing of the non-decomposed S-Box to address the issue of low
latency and low energy.

4.2 Implementations, Results and Evaluation

Next we describe in detail eight different side-channel protected versions of
PRINCE. The implementations are parametrized over three factors: first- and
second-order protection, using td + 1 and d + 1 TI sharings, with and without
S-Box decomposition. The round-based unprotected version of PRINCE is
explained, and it serves as a reference, followed by designs of S-Boxes used in
each of eight versions. Finally, the round structure of the PRINCE side-channel
protected designs is elaborated.

4.2.1 PRINCE unprotected implementation

Figure 4.1 represents the architecture of the unprotected round-based PRINCE.
In the unprotected design, the S-Box evaluation takes one cycle. One encryption
is performed in 12 clock cycles. Due to the S-Box and its inverse being in the
same equivalence class, they can share circuitry for both “forward” and “inverse”
rounds by utilizing the affine transformation circuits Aio during the inverse
S-Box evaluation. By adding an additional multiplexer, the design can perform
the decryption operation as well. To minimize the overhead of added decryption
functionality, we implement the round counter as explained in the design by
Moradi and Schneider [59], XORing the round constant multiplexer selector to
the input decryption indicator.

Following Figure 4.1, to correctly evaluate the S-Box, the data travels through
multiplexers α1 −β2 −δ1, except in the first round where the path is α1 −β1 −δ1.
Similarly, when evaluating the inverse S-Box, the active path is α2 − γ1 − δ2,
except in the last round when the chosen path is α1 − γ2 − δ2.

4.2.2 TIs of Q294

We have implemented td + 1 and d + 1 variants of TI for both the first- and
the second-order Q294 implementations. We use the first-order td + 1 direct TI
sharing [9], the second-order td + 1 sharing with 5 input shares and 10 output
shares, as explained by Bilgin et al. [7]. For the d + 1 first- and second-order
implementations, we used the sharing by Reparaz et al. [72]. Compression
(cf. Section 2.6) is applied to the second-order td + 1 and both d + 1 versions.
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Figure 4.1: Unprotected PRINCE round based architecture.

The td + 1 first- and second-order hardware diagrams are shown in Figure 4.2
and Figure 4.4, respectively. Due to the complexity of the second-order td + 1
implementation, the partial share evaluation circuit is isolated in Figure 4.3,
while Figure 4.4 references it as a block. Similarly, d + 1 first- and second-order
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Figure 4.2: Q294 first-order td + 1 TI hardware circuit.

Figure 4.3: Partial quadratic evaluation circuit of xy + z.

hardware diagrams can be seen in Figure 4.5 and Figure 4.6, respectively.

4.2.3 First-order secure td + 1 TI of the PRINCE S-Box

For the first-order td + 1 design of the PRINCE S-Box without decomposition,
we generated a sharing with 4 input and output shares following the sharing
method presented by Bilgin et al. [9]. Since the number of inputs and outputs
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Figure 4.4: Q294 second-order td + 1 TI hardware circuit.

is equal, again, there is no need for compression after the register stage. The
direct sharing we used is not uniform; hence the output bits are refreshed using
the simple remasking method given in Equation (2.8), requiring 3 random bits
per output S-Box bit, or 12 random bits in total to refresh the entire S-Box.

4.2.4 Second-order secure td + 1 TI of the PRINCE S-Box

To create a second-order secure td + 1 masking for the PRINCE S-Box we have
applied the iterated greedy algorithm described in Section 3.1. This algorithm
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Figure 4.5: Q294 first-order d + 1 TI hardware circuit.

Figure 4.6: Q294 second-order d + 1 TI hardware circuit.

provides a solution that has 17 output shares and 8 input shares. Compared
to the higher-order td + 1 method given by Bilgin et al. [7], which produces
35 output shares with 7 input shares, the total number of shares is reduced
by almost a half. All output bits are refreshed using the ring remasking from
Equation (2.7), requiring 68 random bits per S-Box. Since the rest of the
PRINCE core uses three shares (see Section 4.2.7), we generate five extra shares
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before the S-Box input which consumes extra 20 random bits. Therefore, the
whole S-Box evaluation uses 88 random bits.

4.2.5 First-order secure d + 1 TI of the PRINCE S-Box

To implement the first-order secure masking of the PRINCE S-Box, we use the
algorithm described in Section 3.2 to obtain the first-order conjugate D4

3-table.
This table represents an optimal solution for 2 input shares with 8 output shares
for each input/output bit of the S-Box. Recall that the PRINCE S-Box is
a 4 × 4-bit S-Box and that it has algebraic degree 3. All output bits can be
refreshed using the mask refreshing of Equation (2.8) similar to the first-order
td + 1 S-Box implementation. Simple refreshing uses 7 bits of randomness per
output bit, or 28 bits per S-Box in total. The optimal sharing is given below
in Equation (4.4) as a first-order conjugate D4

3-table. If we reorder the shares
in the conjugate D4

3-table by sorting them in lexicographical order, we obtain
the sharing of Equation (4.5). Notice the symmetry in the ordering, as the
indices in the first output share are complementary to the indices in the last
output share. In Section 4.2.8 we describe the mask refreshing method that can
decrease the amount of random bits needed to remask one output bit from 7 to
3.

(x, y, z, w)

(0, 0, 0, 0)

(1, 1, 0, 0)

(0, 1, 1, 0)

(1, 0, 1, 0)

(0, 0, 1, 1)

(1, 1, 1, 1)

(0, 1, 0, 1)

(1, 0, 0, 1) . (4.4)
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(x, y, z, w)

(0, 0, 0, 0)

(0, 0, 1, 1)

(0, 1, 0, 1)

(0, 1, 1, 0)

(1, 0, 0, 1)

(1, 0, 1, 0)

(1, 1, 0, 0)

(1, 1, 1, 1) . (4.5)

A first-order d + 1 sharing of the first coordinate function of PRINCE in
Equation (4.1): o1 = 1 ⊕ wz ⊕ y ⊕ zy ⊕ wzy ⊕ x ⊕ wx ⊕ yx is presented in
Equation (4.6).

o1
1 =1⊕w0z0⊕y0⊕z0y0⊕w0z0y0⊕x0⊕w0x0⊕y0x0

o1
2 = w1z1 ⊕w1z1y0 ⊕w1x0

o1
3 = w1z0 ⊕w1z0y1

o1
4 = w0z1 ⊕z1y1⊕w0z1y1 ⊕y1x0

o1
5 = w1z0y0

o1
6 = z1y0⊕w0z1y0 ⊕y0x1

o1
7 = y1⊕z0y1⊕w0z0y1⊕x1⊕w0x1⊕y1x1

o1
8 = w1z1y1 ⊕w1x1 . (4.6)
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Continuing for the second bit’s algebraic function o2 = 1 ⊕ yw ⊕ yz ⊕ xz ⊕
yzw ⊕ xyz the optimal sharing is:

o2
1 =1⊕y0w0⊕y0z0⊕x0z0⊕y0z0w0⊕x0y0z0

o2
2 = y0w1⊕y0z1⊕x0z1⊕y0z1w1⊕x0y0z1

o2
3 = y1w1⊕y1z0 ⊕y1z0w1⊕x0y1z0

o2
4 = y1w0⊕y1z1 ⊕y1z1w0⊕x0y1z1

o2
5 = x1z0⊕y0z0w1⊕x1y0z0

o2
6 = x1z1⊕y0z1w0⊕x1y0z1

o2
7 = y1z0w0⊕x1y1z0

o2
8 = y1z1w1⊕x1y1z1 . (4.7)

The optimal sharing for the third bit with algebraic function o3 = w ⊕ x ⊕ zw ⊕
xw ⊕ xz ⊕ xzw ⊕ xyz is:

o3
1 =w0⊕x0⊕z0w0⊕x0w0⊕x0z0⊕x0z0w0⊕x0y0z0

o3
2 =w1 ⊕z1w1⊕x0w1⊕x0z1⊕x0z1w1⊕x0y0z1

o3
3 = z0w1 ⊕x0z0w1⊕x0y1z0

o3
4 = z1w0 ⊕x0z1w0⊕x0y1z1

o3
5 = x1 ⊕x1w1⊕x1z1⊕x1z0w1⊕x1y0z0

o3
6 = x1w0⊕x1z1⊕x1z1w0⊕x1y0z1

o3
7 = x1z0w0⊕x1y1z0

o3
8 = x1z1w1⊕x1y1z1 . (4.8)
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Finally, for the fourth bit of the PRINCE S-Box and its function o4 = 1 ⊕ z ⊕
x ⊕ yz ⊕ xy ⊕ yzw ⊕ xzw ⊕ xyw the optimal sharing is given by:

o4
1 =1⊕z0⊕x0⊕y0z0⊕x0y0⊕y0z0w0⊕x0z0w0⊕x0y0w0

o4
2 = z1 ⊕y0z1 ⊕y0z1w1⊕x0z1w1⊕x0y0w1

o4
3 = y1z0⊕x0y1⊕y1z0w1⊕x0z0w1⊕x0y1w1

o4
4 = y1z1 ⊕y1z1w0⊕x0z1w0⊕x0y1w0

o4
5 = x1 ⊕x1y0⊕y0z0w1⊕x1z0w1⊕x1y0w1

o4
6 = y0z1w0⊕x1z1w0⊕x1y0w0

o4
7 = x1y1⊕y1z0w0⊕x1z0w0⊕x1y1w0

o4
8 = y1z1w1⊕x1z1w1⊕x1y1w1 . (4.9)

To make the differences easier to notice between the shares, each shared
monomial derived from the original unshared monomial is located one under the
other. Otherwise an empty space is left, indicating the absence of that particular
shared monomial in the observed output share. Such a visual representation
makes comparison between output shares effortless and shared monomials
originating from the same unshared monomial immediately apparent.

Note that the sharing of the cubic terms is unique while there are more options
for the sharings of the lower degree terms. Repetitions of lower degree terms
across different output shares could be interesting as they could lead to more
hardware-efficient implementations because the logic synthesizer could create a
better simplification depending on the ANF and cells available in the target
library. However, they can only be added an even number of times, similar to
the correction terms in td + 1 TI.

4.2.6 Second-order secure d + 1 TI of the PRINCE S-Box

For the second-order secure masking of the PRINCE S-Box, we again use the
algorithm described in Section 3.2 to obtain a second-order conjugate D4

3-table.
This table represents an optimal solution with 3 input shares and 27 output
shares for each input/output bit of the S-Box. All output bits are refreshed using
the ring remasking of Equation (2.7), requiring 108 random bits for the entire
S-Box. The optimal sharing is given below in Equation (4.10) as a conjugate
D4

3-table; the same rules are used as in the previous subsection. For brevity, we
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omit the exact ANF equations because of the large number of output shares.
We note again the symmetry in the output shares, as for each output share
there exist another output share whose share indices at the same column c are
equal to (d + 1) − idx, with idx being the input share index.

(x, y, z, w)

(0, 0, 0, 0) (0, 0, 1, 1) (0, 0, 2, 2)

(1, 1, 0, 0) (1, 1, 1, 1) (1, 1, 2, 2)

(2, 2, 0, 0) (2, 2, 1, 1) (2, 2, 2, 2)

(0, 1, 1, 0) (0, 1, 2, 1) (0, 1, 0, 2)

(1, 2, 1, 0) (1, 2, 2, 1) (1, 2, 0, 2)

(2, 0, 1, 0) (2, 0, 2, 1) (2, 0, 0, 2)

(0, 2, 2, 0) (0, 2, 0, 1) (0, 2, 1, 2)

(1, 0, 2, 0) (1, 0, 0, 1) (1, 0, 1, 2)

(2, 1, 2, 0) (2, 1, 0, 1) (2, 1, 1, 2) . (4.10)

4.2.7 Protected implementations of the PRINCE cipher

Figure 4.7 depicts the data path of the hardware implementation for the
four protected round-based implementations of PRINCE, which use the S-Box
decomposition. All the data lines have a width of 64 × s bits, in which s
is the number of input shares. The exception to this is the S-Box output,
which has more output shares than input shares in all cases, except for the
first-order td + 1 implementations. The RC constant output is not divided
into shares since the value is public and thus known to the attacker. The
RC addition is achieved by adding its value to the first share of the shared
state. Aside from already mentioned first-order td + 1 implementations, all
protected designs feature a compression layer to reduce the number of shares
used in the linear operations. Remasking is applied to the S-Box output in all
versions except the first-order td + 1 TI with decomposition, as the Q294 sharing
provided is uniform. Figure 4.7 shows the round structure of the hardware
implementation with blocks in red color potentially absent in some versions as
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Figure 4.7: TI PRINCE round based architecture with decomposition.

discussed. Hardware implementations of combinatorial logic of Q294 TIs are
detailed in Figures 4.2, 4.4, 4.5 and 4.6.

In order to support both encryption and decryption operations, input and
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output whitening keys, kwi and kwo are either k0 or k′
0 during encryption and

decryption, respectively. We only require one extra multiplexer to implement
this feature. During the S-Box evaluation the data path of the multiplexers is
α1 − β2 − δ2 in the first, α2 − δ1 in the second, and α2 − δ4 in the third Q294
computation, except in the first round where the third Q294 computation path
is α1 − β1 − δ2. Similarly, when evaluating the inverse S-Box, the active inputs
of multiplexers are α3 − γ1 − δ3 in the first, α2 − δ1 in the second, and α2 − δ4
in the third Q294 computation, except in the last round where the path during
the Q294 computation is α2 − γ2 − δ3.

For the td + 1 Q294 implementations, we use 3 and 5 shares respectively for
the affine operations to reduce the amount of randomness required for the
execution. This incurs an additional penalty in the area occupied by the
implementation. Recall that the output of the S-Box component functions
for td + 1 TI is shared with 3 and 10 shares respectively for the first- and
second-order secure implementations. Remasking and compression are done
only for the second-order td + 1 TI, since the first-order td + 1 sharing of Q294
is uniform. The d + 1 implementations use 2 and 3 shares for the first- and
second-order secure implementation, respectively. The output of the S-Box
component functions is shared with 4 and 9 shares for the first- and second-order
secure implementations. Remasking and compression are required in both cases.

The round constant is added to only one of the shares. The key is shared with
the same number of shares as the plaintext. We focus on the round-based
implementation instead of the serialized one, which is more commonly described
in the literature [31, 83, 58, 8, 84]. This greatly reduces the execution time
at the expense of increased area and the required amount of randomness per
clock cycle. In order to decrease the area, we employ multiplexers to avoid
instantiating additional registers for the three stages of the S-Box evaluation.
Since PRINCE has 12 rounds and each round has three stages of the S-Box
evaluations, with stages taking one (for first-order td + 1 TI) or two (for d + 1
TI and second-order td + 1 TI) cycles, the total execution takes 36 cycles if
a first-order td + 1 TI implementation is used or 72 clock cycles in all other
proposed designs with decomposition.

Figure 4.8 represents the architecture for the four protected round-based
implementations of PRINCE without S-Box decomposition. Comparing to
the Figure 4.1, we can see that the two architectures are almost indentical,
without taking into account that the data path in Figure 4.1 is unshared, while
it is shared in Figure 4.8. An additional difference is that protected TIs without
S-Box decomposition mandate the use of fresh masks during S-Box evaluation,
and in d + 1 TI designs and second-order td + 1 TI design, compression is
needed as well as adding a register layer before the S-Box to prevent transient
leakage effects. The implementations of the NLRC layers of PRINCE S-Box
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Figure 4.8: TI PRINCE round based architecture without decomposition.

are discussed in Sections 4.2.3-4.2.6.

To evaluate the S-Box, the data path of the multiplexers is α1 − β2 − δ1 except
in the first round where the path in the first clock cycle is α1 − β1 − δ1.



IMPLEMENTATIONS, RESULTS AND EVALUATION 83

Similarly, when evaluating the inverse S-Box, the active inputs of multiplexers
are α2 − γ1 − δ2, except in the first cycle of the last round where the path is
α1 − γ2 − δ2. Unlike in the unprotected version, the S-Box evaluation takes
two cycles (S-Box layer and linear layer are separated into two cycles); hence it
takes 24 cycles for one encryption/decryption operation. The exception is the
first-order td + 1 implementation where the S-Box evaluation takes one cycle,
making the encryption/decryption latency 12 cycles.

For td + 1 implementations, we use 4 and 3 shares respectively for the affine
operations. Recall that the output of the S-Box component functions for td + 1
TI is shared with 4 and 17 shares respectively for the first- and second-order
secure implementations. Compression is required only for the second-order
td + 1 implementation, while remasking is applied for both of them. The d + 1
implementations use 2 and 3 shares for the first- and the second-order secure
implementation, respectively. The output of the S-Box component functions is
shared with 8 and 27 shares, respectively, for d + 1 implementations without
S-Box decomposition. Remasking and compression are required in both cases.

4.2.8 Randomness reduction

The resharing of the first-order secure implementation without decomposition is
performed according to the DOM [41] rules, in which complementary domains
are remasked using the same randomness, with no remasking for output shares
containing only one domain. It can be noticed from Equation (4.5) that
output shares o1, o2, o3, o4 have complementary domains of shares o8, o7, o6, o5,
respectively. If we consider 8 4-bit output shares, remasking is given by
Equation (4.11)

ro1 = o1

ro2 = o2 ⊕ r1

ro3 = o3 ⊕ r2

ro4 = o4 ⊕ r3

ro5 = o5 ⊕ r3

ro6 = o6 ⊕ r2

ro7 = o7 ⊕ r1

ro8 = o8 , (4.11)
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in which oi, roi are S-Box outputs output before and after remasking, and ri

are random 4-bit values, accounting for 12 random bits to remask the S-Box.
Recombination is achieved by adding shares ro1, ro2, ro3, ro4 into one, and
ro5, ro6, ro7, ro8 into another recombined share.

The randomness usage can be decreased even further if we take advantage of
the structure of the PRINCE round. As explained in Section 2.3.2 the mixing
layer consists of the matrices M , M ′ or M−1. Recall that M can be obtained
from M ′ using the nibble shuffling operation SR, i.e. M = SR ◦M ′. The 64×64
involution matrix M ′ is constructed as a block diagonal matrix with entries
(M0, M1, M1, M0) where M0 and M1 are 16×16 matrices. This structure implies
that 16-bit chunks of the state are processed independently. Therefore, we can
use the same randomness for all four 16-bit blocks for the attacker case of d = 1
and d = 2.

Namely, if we enumerate the PRINCE state nibbles from 0 to 15, the following 4
groups can be formed: (0, 1, 2, 3), (4, 5, 6, 7), (8, 9, 10, 11) and (12, 13, 14, 15). Let
R be the number of random bits needed to refresh masks of a single S-Box. Masks
r1, r2, r3, r4, all containing R random bits, are reused 4 times to reshare nibbles
(0, 4, 8, 12), (1, 5, 9, 13), (2, 6, 10, 14) and (3, 7, 11, 15), respectively. Hence, when
evaluating the S-Boxes in a given group, the randomness required can be reused
for the evaluation of the S-Boxes in the other groups. It can also be observed
that the nibble shuffling

SR : (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15) →

→ (0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, 1, 6, 11)

→ (r1, r2, r3, r4, r1, r2, r3, r4, r1, r2, r3, r3, r1, r2, r3, r4)

SR−1 : (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15) →

→ (0, 13, 10, 7, 4, 1, 14, 11, 8, 5, 2, 15, 12, 9, 6, 3)

→ (r1, r2, r3, r4, r1, r2, r3, r4, r1, r2, r3, r4, r1, r2, r3, r4)

does not cause mixing of the S-Boxes outputs obtained with the same
randomness. This happens because 16-bit blocks newly formed groups after
the SR or SR−1 operation still have their inputs remasked with 4 different
randomness inputs. Hence, using this structure in a round-based implementation
reduces the consumed randomness by a factor of four. We will use the probing
model in the argumentation to showcase that side-channel resilience has not
been diminished by applying randomness reuse described here.

When we consider the first-order attacker, he can probe one share out of two at
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a given cycle, thus the reuse of randomness is not exploitable. For the case of
the second-order attacker, he is able to get either 2 shares out of 3 of one nibble
or 1 share of the 2 nibbles using the same randomness at a given cycle. In
the first case, again the attacker cannot exploit the reuse of randomness, since
he does not know anything about this second value which can be combined
with his own knowledge for the first value. In the second case, the attacker
is unable to mount a bivariate attack using points from different rounds (and
hence cycles) due to the remasking after each operation and the key addition
(all of them done in the same cycle), and since the nibble shuffling does not
cause mixing of the S-Box outputs in the same round.

4.2.9 Implementation Results

To demonstrate our results, we first use the 90 nm CMOS library provided by
TSMC and consider the worst PVT corner case (a temperature of +125◦ C and
a supply voltage of 1.0 V). The worst corner case is used almost exclusively
in industrial applications. Conversely, scientific publications tend to report
typical corner case, which yields a more optimistic estimate of what would
be practically viable. In order to have a fair comparison and emphasize the
difference between typical and worst case, we have also synthesized our designs
as well as the previously existing TI PRINCE implementation by Moradi and
Schneider [59] using the TSMC 90 nm library for the typical case of +25◦ C.
Moradi and Schneider [59] provided their implementations, allowing for an apple
to apple comparison of the best designs using the same compiler and library, as
the synthesis results presented in this section for design presented by Moradi
and Schneider [59] differ from the original paper.

For synthesis, we use the Cadence Encounter RTL Compiler version 14.20-s034
to evaluate the proposed architectures. The designs are synthesized using an
operating frequency of 10 MHz, and the power consumption is estimated by
simulating a back-annotated post-synthesis netlist with 100 random test vectors
using the Cadence Incisive Enterprise Simulator version 15.10.006. The energy
estimation is calculated for one complete encryption/decryption operation.
Table 4.1 shows the area, power and energy consumption, the number of
random bits required per clock cycle, and the maximum frequency for all the
hardware implementations measured at the worst PVT corner case. All designs
have their unconstrained critical paths well below 100 ns. Thus collecting area
figures and power/energy consumption at the frequency of 10 MHz guarantees a
fair comparison. The maximal operating frequency and the minimal latency are
presented for the fully constrained implementations, which have significantly
larger area than their timing unconstrained counterparts.
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Table 4.1: Area/power/energy/randomness/latency/max frequency comparison
at worst case PVT.

PRINCE Area1 Power1 Energy1 Rand/ Clock fmax Latency
Cycle # @ fmax

(GE) (µW) (pJ) (bits) (cycle) (MHz) (ns)

Unprotected 3597 57 69 0 12 285 42.2

[59] 1st (td + 1)2 9484 66 264 0 40 328 122
1st (d + 1)2,4 8701 97 698 24 72 260 277
1st (td + 1)2,4 14153 75 270 0 36 268 134
1st (d + 1)3,4 11613 99 238 112 24 285 84.0
1st (td + 1)3,4 31116 576 691 48 12 204 58.8

2nd (d + 1)2,4 13421 161 1159 72 72 250 288
2nd (td + 1)2,4 18767 232 1670 40 72 243 296
2nd (d + 1)3,4 32444 374 898 432 24 292 82.2
2nd (td + 1)3,4 177647 1533 3679 352 24 282 85.1
1 area, power and energy figures given at 10 MHz operating frequency
2 with S-Box decomposition
3 without S-Box decomposition
4 designs presented in Section 4.2.7

The area, power and energy consumption of the PRNG are not included in
Table 4.1 and Table 4.2, thus making the obtained results favoring solutions
with more randomness. In practice, one must take the impact of PRNG into
account since it is expected that higher throughput PRNGs consume more
area, power and energy. However, in most security applications, PRNG is a
component shared between multiple resources, making its impact on the overall
area, power and energy consumption limited.

As expected, the first-order d + 1 TI design with S-Box decomposition occupies
the smallest area compared to other secure implementations. Compared to the
first-order td + 1 TI architecture with S-Box decomposition, this comes at the
cost of extra randomness required.

We report an interesting observation when comparing the energy consumption
of different architectures. The smallest energy consumption of 238 pJ has
been achieved for the first-order secure d + 1 TI architecture without S-Box
decomposition presented here. This is closely followed by design from Moradi
and Schneider [59] with S-Box decomposition 264 pJ. We attribute its low power
consumption to the absence of randomness needed for resharing in this specific
design, despite the area of both versions of first-order td + 1 TI architectures
with S-Box decomposition being larger compared to several other designs in
Table 4.1. The absence of randomness greatly reduces the switching activity of
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the circuit lowering the power consumption considerably. Another interesting
observation is that the first-order secure designs consume considerably less
energy compared to second-order designs.

For second-order designs, those without S-Box decomposition lead to large area
overheads (particularly in the td + 1 scenario) and a high number of random
bits consumed during remasking compared to simpler designs. We conclude
that the d + 1 designs are still interesting implementation choices if enough
randomness can be provided to ensure side-channel resilience. Second-order
td+1, on the other hand, seems quite unpractical due to its large area overheads
and considerable power and energy consumption.

One can see that all protected designs except first-order td + 1 without S-Box
decomposition have their maximal frequency within 20% of each other. The
reason for the first-order td + 1 without S-Box decomposition smaller maximum
frequency is the absence of the register before the S-Box operation. Also,
the implementation by Moradi and Schneider [59] has a smaller critical path
compared to our designs. The critical path for all implementations goes from
the round counter to the S-Box input register. For the first-order td + 1 without
S-Box decomposition, we do not have the S-Box input register, making the
critical part longer. Still, even with this limitation, the td + 1 first-order version
achieves smaller total latency compared to other designs.

Compared to the designs presented in Section 4.2.7, the design described by
Moradi and Schneider [59] stores the key in an unshared register, requiring
less area for key storage. This may lead to vulnerabilities to template-based
side-channel attacks, but it certainly reduces the area, power, and energy
consumption. Also, the authors proposed a more efficient affine transformation
of decomposed S-Boxes, and the architecture has simplified interface and control
logic. That is why their design is considerably smaller and has lower power
consumption than the first-order td + 1 version of our proposal with S-Box
decomposition. When the energy consumption is compared, the two designs
perform similarly with the design of Moradi and Schneider [59] being 2.3% more
efficient. This is because our first-order td + 1 design with S-Box decomposition
is 10% faster in terms of the required number of clock cycles.

Another interesting observation is that our first-order td + 1 design with S-
Box decomposition has lower power consumption than four other designs from
Table 4.1, while having larger area. As discussed previously, this is because no
additional randomness is required during the encryption/decryption process.
A quick experiment with the d + 1 TI PRINCE without S-Box decomposition
in which random inputs are all set to zero shows that the mask refreshing
accounts for a significant amount of the total power consumption. Namely,
the power/energy consumption drops by 40% if the random inputs are set to
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Table 4.2: Area/power/energy/randomness/latency/max frequency compari-
son at normal case PVT.

PRINCE Area Power Energy Rand/ Clock fmax Latency
Cycle # @ fmax

(GE) (uW) (pJ) (bits) (cycle) (MHz) (ns)

Unprotected 3596 57 68 0 12 381 31.5

[59] 1st (td + 1) 1 9502 66 264 0 40 421 95.1
1st (d + 1) 2 11634 100 241 48 24 379 63.3
2nd (d + 1) 2 32477 364 874 1728 24 375 64.0
1 with S-Box decomposition
2 without S-Box decomposition

zero. Hence, when achieving lower power/energy is a major requirement using
uniform td + 1 sharing is the best approach if such a sharing can be found.
Also, we note the conflicting nature of designing hardware-efficient side-channel
protected circuits. We prefer additional switching activity to hide the useful
signal from the attacker, but at the same time, the added switching largely
contributes to the power consumption of the circuit.

Table 4.1 also clearly shows the difference between power and energy
consumption. The most extreme example is the comparison between the
first-order td + 1 design without S-Box decomposition and the d + 1 design with
S-Box decomposition. Although the td + 1 design without S-Box decomposition
has almost 6 times the power consumption, it has slightly smaller energy
consumption, as it takes 6 times fewer clock cycles to complete.

As can be seen by the reported figures, adding side-channel countermeasures
increases the size by at least a factor of 2.5 compared to the unprotected
PRINCE. One has the penalty of extra clock cycles as well in all the cases
except the first-order td + 1 without S-Box decomposition version. However,
even in that particular implementation, the minimal latency is higher compared
to the unprotected design due to its longer critical path.

The fastest unprotected PRINCE with worst-case PVT synthesis takes 42.2 ns,
followed by the first-order td + 1 TI without decomposition, which takes
58.8 ns, i.e., a 39% latency increase; next is the second-order d + 1 TI without
decomposition, which takes 82.2 ns, i.e., an additional 41% latency increase.
Moreover, all designs without S-Box decomposition have significantly smaller
latency compared to the implementation by Moradi and Schneider [59], ranging
from 1.4 to 2 times less delay.

Table 4.2 shows the area, power and energy consumption, the number of random
bits required per clock cycle and the maximum frequency for 3 hardware
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implementations, one given by Moradi and Schneider [59], and two d + 1 designs
without S-Box decomposition all measured at the typical PVT case.

Again, at the maximum frequency, our first-order design surpasses the previous
state of the art by reducing the latency by almost a third. The energy
consumption of our first-order at the frequency of 10 MHz is almost 10%
lower. On the other hand, the implementation of Moradi and Schneider [59]
beats our version with respect to area, power consumption, maximal running
frequency, and randomness required during the remasking process. It can
achieve higher throughput, with minor modifications to the finite state machine,
so it processes three messages at once. Given that our goal was to minimize
implementation latency, these results are not surprising. As was expected
comparing the same designs using the typical and the worst-case corner case,
we observe that the maximal frequency has increased by about a third when
using the typical corner case. The area, power, and energy values differ only
insignificantly because they are reported for a running frequency at 10 MHz,
i.e., unconstrained timing. Since the same library is used, it is expected that
both typical and worst-case corner case would synthesize to a similar minimal
area.

4.2.10 Side-channel evaluation

We first provide an evaluation of the first-order PRINCE without S-Box
decomposition using optimal d + 1 sharing described in Section 3.2 which
design was programmed into a Xilinx Spartan-6 FPGA. The platform used is
a Sakura-G board. The design is separated into two FPGAs to minimize the
noise: one performs the PRINCE encryption, and the second FPGA handles the
I/O and the start signal. Our core runs at a low frequency of 3.072 MHz, while
the sampling rate is 500 million samples per second. Since one trace consists of
2500 points, we can cover the first seven rounds of the execution. The power
waveform is given in Figure 4.9.

We performed a non-specific leakage detection test [25] on the input plaintext
following the standard methodology [73], and the resulting t-test graphs are
shown in Figure 4.10. Initially, the PRNG is turned off to verify the validity of
the setup, and leakage is clearly detected with one million traces. The left-hand
side in the Figure 4.10 demonstrates a substantial first-order leakage during the
loading of the plaintext and the key. This can be attributed to the one share of
both the key and the plaintext being equal to the unshared value, while the
other share is zero. Another strong peak is during the first S-Box execution as
there is still a high correlation to the input in the PRINCE state in the first
round. Leakage is also present in later rounds as well due to lack of additional
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Figure 4.9: Example power trace waveform used to perform the t-test on first-
order PRINCE.
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Figure 4.10: Leakage detection test results on first-order PRINCE. PRNG off
(left) and PRNG on (right). First- (top) and second- (bottom) order t-test
results.

randomness, although it becomes smaller. Second-order leakage can also be
observed when the masks are off. When the PRNG is on, no first-order leakage
is detected after 100 million traces, while second-order leakage is present as
expected.

Due to the size and the randomness needed, the second-order design did not
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Figure 4.11: Leakage detection test results on second-order PRINCE. PRNG
off (left) and PRNG on (right). First, second and third-order (top - middle -
down) t-test results.

fit on the same FPGA board. Instead, the design is tested against simulated
power traces. We measured the estimated power consumption by running a
post-synthesis simulation with a back-annotated netlist. Input-to-output timing
delays and the current consumption of every gate in the netlist were taken
into account and modeled as specified by the technology liberty timing file. In
our simulations, one clock cycle is represented by 50 sample points and the
first seven rounds of the execution are covered. One million traces have been
obtained with PRNG switched on, and 2 000 traces with PRNG off. Simulated
traces are perfectly aligned, they do not contain any measurement noise, and
numerical noise of the samples is minimized by having a precision of 32-bit
floating point representation compared to 8-bit obtained from the FPGA setup.

The second-order implementation t-test results are shown in the Figure 4.11.
We note that with PRNG off, leakage occurs in all orders with only 2 000 traces.
With PRNG on, the design is leakage-free in first- and second-order, while
several points leak in the third order. More precisely, third-order leakage occurs
during the writing of the S-Box output to the register every other cycle.
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4.3 Conclusion

As discussed in the work of Moradi and Schneider [59] designing low-latency side-
channel protection in general, and for PRINCE block cipher in particular, has
been identified as an open problem. In this chapter, we have shown the fastest
round-based first- and second-order secure implementations of PRINCE using
td + 1 and d + 1 TI sharing correspondingly, leveraging the sharing techniques
from Chapter 3. Additionally, we showed how low cycle latency could lead to an
energy-efficient design by demonstrating the most energy-efficient round-based
first-order secure implementation of PRINCE using a d + 1 TI sharing. We
have investigated several trade-offs that occur in side-channel secure designs.
Particularly, we discuss the energy consumption of the implementations, an
important factor in several applications, such as battery-powered devices.

We reported, evaluated, and compared hardware figures for eight different
TI protected round-based versions of the PRINCE cipher, namely d + 1 and
td + 1 TI versions, first- and second-order secure, with or without the S-Box
decomposition. The td+1 TI versions tend to consume less randomness. The d+1
TI versions with decomposition achieve lower area and power consumption. The
first-order designs without decomposition have favorable energy consumption.
The comparison with the state of the art showed that our designs have more
than 30% lower latency compared to the architecture presented by Moradi and
Schneider [59] while the energy consumption is lower by about 10% It should,
however, be noted that the previous TI design of PRINCE [59] still has the
highest power efficiency reported in the literature while using more hardware
efficient affine transformations to achieve decomposition.

As can be seen from the investigated TI designs of PRINCE cipher, many
factors attribute to the characteristics of the final design in different ways.
TI-protected functions with high algebraic degree reduce the final clock count
and the latency and energy consumption during one operation. Conversely, the
associated increased circuit complexity burdens both the area and the critical
path, negatively impacting energy consumption and latency, respectively. A
hardware designer must consider all these parameters since the optimal design
choice heavily depends on the algorithm in question, alongside the constraints
imposed upon the design. Our work shows, for the case of PRINCE block cipher,
to achieve low latency, it is more efficient not to perform S-Box decomposition.



Chapter 5

Low Latency Side-Channel
Protected AES Solutions

“Shortcut is noxious, longer path
is closer.”

Serbian proverb

The work presented in this chapter is based on findings published in [15] in
which I was the main author. It also contains previously unpublished results
from joint work with Danilo Šijačič, presented in Sections 5.1, 5.2, and 5.3.
My contribution was the idea to test different ANF term distributions, and
realization of the two single cycle masked AES S-Box implementations.

Low-latency masked implementations present a considerable challenge, as was
discussed already in previous chapters. The biggest and most interesting
challenge of low-latency side-channel protected design is an AES implementation
due to the high algebraic degree of its S-Box. With the algebraic degree 7 of the
S-Box, the minimal number of shares in the first-order d + 1 TI implementation
is 128. However, due to the complex algebraic structure, the only known
implementation has 256 output shares [38], twice more than optimal. We try to
improve upon this result by applying the optimal d + 1 sharing presented in
Section 3 to reduce the number of output shares to the theoretical minimum of
128. Also, we reduce the number of random bits needed for mask refreshing from
2048 down to 512. The result is the smallest reported single cycle side-channel
protected AES S-Box up to date. We must indicate that, while it is possible
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to implement first-order td + 1 TI AES S-Box with 8 input and output shares,
the number of shared ANF terms for a single unshared monomial of degree 7 is
87 = 2 097 152 or 252 144 per output share. This complexity makes it practically
infeasible to use the td + 1 approach as the critical path would become too long,
and the synthesis tool would likely struggle to compile such a complex Boolean
function.

The masked shares are typically given in the literature using the ANF for each
share, however, we introduced a table notation in Chapter 3 in order to more
succinctly present the output sharing. Nevertheless, while the table notation
does allow us to evaluate the TI properties of non-completeness and correctness,
it does not uniquely determine the ANF of each output share, due to the
possibility to distribute shared monomials of the ANF in multiple different ways.
The table notation of a sharing can be viewed as a placeholder for ANF terms.
To reiterate, to satisfy the d+1 correctness property of TI, for each monomial of
the shared ANF msh, there has to exist at least one row r in the D-table which
can hold msh. But, often there exists multiple rows r1, . . . , rn that can hold
msh. In that case, it is left to the designer to choose the output row in which
the shared monomial msh will be located. The notion of redistributing shared
monomials across different shares is not unknown in the scientific community.
It was previously explored in td + 1 TI strictly from a SCA resistance point
of view by Bilgin et al. [9] to find a uniform td + 1 sharing. In this chapter,
however, we investigate the impact of several distribution strategies for shared
ANF terms in low cycle latency TI designs. We address this issue with respect
to hardware design metrics such as area, latency, as well as side-channel security.
In particular, we study the impact of different ANF monomial allocations to
output shares of a single-cycle AES S-Box. We demonstrate and quantify the
trade-offs between area and latency in ASIC designs that can be made using
commercial hardware design tools. For the given AES S-Box, we cover edge
cases for both area and latency and discuss implications of such design choices
on side-channel security. Combining two ANF distribution strategies with two
hardware optimization goals (area/latency), we obtain results for four AES
S-Box implementations that can be either as small as 21 kGE or as fast as
330 MHz in a 90 nm TSMC library.

In the end, we introduce a method to efficiently schedule the S-Box evaluation
during the AES rounds in fully serialized AES implementations, allowing for
the S-Box pipeline to always be full. Effectively, such a scheduling allows for
the round to be completed in 20 cycles. Using a CP solver, we prove that there
is such a scheduling for S-Boxes that take up to 10 cycles to complete. And for
S-Box cycle latency between 6 and 10 cycles we provide an S-Box scheduling
during one round that achieves 20 cycles per round.
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5.1 Non-Uniqueness of TI

The TI properties listed in the Chapter 2 and the Chapter 3 are required for
a secure implementation, however, they do not fully determine the ANF of
the output component functions of a TI circuit. Depending on the ANF of
the unshared function, several degrees of freedom are left to the designer as to
in which output share to place certain ANF terms. A simple example of the
first-order d + 1 TI of the OR gate, with the ANF c = ab + a + b, can showcase
this non-uniqueness. Two different solutions are given in Equation (5.1) and
Equation (5.2).

c0 = a0b0 + a0 + b0

c1 = a0b1

c2 = a1b0

c3 = a1b1 + a1 + b1 . (5.1)

c0 = a0b0 + a0

c1 = a0b1 + b1

c2 = a1b0 + b0

c3 = a1b1 + a1 . (5.2)

The resulting hardware implementations of the four shares for these two TI
solutions are given in Figure 5.1 and Figure 5.2. The sharing using Equation (5.1)
produces two shares that contain three terms (c0 and c3), and two shares that
contain one term (c1 and c2) in their ANF representation. In contrast, all
output shares obtained using Equation (5.2) contain two terms each in their
ANFs. We refer to the former one as unbalanced, and the latter one as balanced
concerning the distribution of ANF terms among shares. In the unbalanced
sharing, certain output shares absorb most of the shared terms, while others
contain few shared terms, and in some cases, only the terms that can not belong
to any other output share. In the balanced sharing, each output share contains
an equal or roughly equal number of shared ANF monomials. The provided two
examples clearly demonstrate that the distribution of ANF monomials among
output shares can greatly influence the target circuit. It should also be noted
that the choice of ANF distribution does not directly correlate with the logic
depth of the circuit. While it might be intuitive that balanced strategy produces
lower logic depth, that is not always true. Balanced TI OR in Figure 5.2 has
a logic depth of 3, while unbalanced TI OR in Figure 5.1 has a logic depth
of 2. The reason for such an outcome is that ANF representation uses XOR
circuit which is more complex than simple NOR and NAND circuits in most
technologies.
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Figure 5.1: Unbalanced d + 1 TI OR gate
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Figure 5.2: Balanced d + 1 TI OR gate

5.2 Hardware Design Strategies

The nonlinear layer, i.e., the S-Box, is the most challenging part in designing
a Boolean masking scheme of a block cipher. First, the designer needs to
decide if the appropriate route is decomposition, which yields low area and low
randomness needed for remasking, or direct sharing, which yields a low latency
side-channel implementation. Second, in the case of direct sharing, the designer
further has to find an appropriate output sharing table, a non-trivial task, as
already discussed in Chapter 3. In the AES implementation by Gross et al. [38],
a sharing was derived by hand without using a more algorithmic approach,
resulting in 256 output shares. Third, for the selected sharing scheme, the exact
ANF of the sharing is not unique and has to be chosen.

We assume the ANF of the sharing is determined for two AES S-Boxes, and
we illustrate the ramifications of different distributions of ANF monomials.
Two extreme cases are presented. In the first case, ANF terms are as evenly
distributed as possible, i.e., balanced. In the second case, ANF terms are
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distributed as unevenly as possible, i.e., unbalanced. Naturally, designers can
opt for any of the intermediate options as per their needs and constraints.
We resort to the edge cases to showcase their difference, and by extension,
to introduce ANF monomial redistribution as a valuable hardware design
parameter.

5.2.1 First-order single cycle side-channel protected AES S-
Box

The AES S-Box is an 8-bit S-Box of algebraic degree 7. Hence, the d + 1
sharing obtained using the construction method described with Algorithm 4 in
Chapter 3 is optimal with respect to the number of output shares. It guarantees
the minimal number of output shares, 128 in this case, and consumes 504 bits
of randomness. We give the matrix representation of the 128 output shares in
Appendix B. The exact ANFs of the two S-Box implementations are omitted as
they have 24 302 ANF terms each across 128 output shares.

Figure 5.3 depicts the principal architecture of the chosen S-Box. 128 output
shares of the S-Box and the adjacent remasking layer as constitute the majority
of the combinatorial logic, followed by a 1024-bit register which also has a large
area contribution. On the right-hand side of the register is the compression
layer, that can be safely composed without additional register layers. The
design is first-order secure, so composability problems mentioned by Moos et
al. [57] affecting higher-order implementations do not apply here. Using the
domain-oriented masking (DOM) remasking presented in Figure 2.10, we can
reduce the number of random bits required to securely remask the sharing to
504. This is viable as the shares are again complementary, similar to shares of
the PRINCE S-Box described in Section 4.2.8; complementary shares can be
remasked with the same masks.

5.2.2 Implementation Results

Implementation results are summarized in Table 5.1. We use the Synopsys
Design Compiler v2019.03 to synthesize the gate-level netlist. For static timing
analysis, we use the Synopsis PrimeTime v2019.03 and its PX plugin for event-
driven power simulation with CCS library models. We use a 90 nm TSMC
library, in particular, the tcbn90lphp “flavor”.

We synthesize both S-Box options with two design goals in mind: optimized for
low area and low latency. In either case, we push the design constraint to the
extreme case. We report two timing paths t1 and t2, as shown in Figure 5.3.
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Figure 5.3: Principle architecture of the AES S-Box.

Path t1 is the critical path dictating the maximal frequency, but t2 cannot be
neglected as it cuts into the slack of adjacent round logic. We report the average
power consumption, assuming the 1 MHz operating frequency and averaging
10 000 fully annotated PrimeTime PX traces with and without randomness.
Thus we illustrate the impact of remasking on power consumption. As we
use post-synthesis, i.e., pre-layout, results, the design does not include a clock
tree. Also, we use statistical wire-load models for timing calculation. For the
area-optimized implementations, we use TSMC32K_Lowk_Conservative, and
for the latency-optimized ones, we use TSMC64K_Lowk_Conservative. We
set the minimal D-flip-flop DFQD1 as the driving cell of all data inputs and
the loading cell of all data outputs. Lastly, all reports are generated for the
worst-case process corner.

We include the first-order secure implementation reported by Gross et al. [38]
in Table 5.1. However, in that work, the 90 nm Low-K UMC library is used,
synthesized using a different compiler. The used process corner case was not
reported. Hence the direct comparison should be taken with a grain of salt.
Nonetheless, we see that the S-Box by Gross et al. [38] is nearly three times
larger than the smallest design presented here. Even with the library, toolchain,
and setup differences, a threefold smaller area is a strong indicator that the
designs presented in this chapter are more area efficient.
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Table 5.1: Implementation results for the low latency AES S-Box. t1 is the
critical path of the design, based on the combinatorial logic prior to the register.
t2 is the timing path of the output compression logic. fmax is the maximal
frequency at which the synthesized circuit can operate. P1 and P2 are the
average power consumption when the PRNG is turned on and off, respectively.

DesignGoal t1 [ns] t2 [ns] fmax [MHz] Area [kGE] P1 [µW]1 P2 [µW]1,2

BalancedA 18.58 7.20 53.83 32.37 54.52 24.88
BalancedL 3.03 1.86 330.03 91.78 121.48 40.12
UnbalancedA 15.79 7.20 63.33 21.14 40.22 22.02
UnbalancedL 3.26 1.86 306.75 73.28 94.59 37.21

Related work

Gross et al. [38]3 2.81 N/A 356 60.73 N/A N/A
1 average power at 1 MHz operating frequency
2 mask refreshing inputs set to zero during power evaluation
3 the results are copied from original work [38] that used a different library, different

technology and wire-load models

On the importance of timing constraints for reporting.

The large number of output shares in low latency S-Boxes yields a high fanout for
each of the data-input drivers. Not providing design constraints, especially the
realistic driving cells, while beneficial for low-area synthesis, leads to manifold
inaccurate timing reports. Concretely, for our low-area designs, given the default
(ideal) input drive, the reported t1 would be 2 to 3 times smaller. Similarly,
achieving good low latency results requires the synthesis tool to employ many
buffer cells to mitigate the delay caused by the large fanout of input drivers.
Concretely, for our low latency designs, given the default (ideal) input drive,
the reported design area would be 30% to 40% smaller. These effects are highly
prominent due to the unusually high fanout of the input drivers in designs such
as this one, with a large number of output shares.

Similarly, generating the timing report naively using report_timing without
additional arguments (e.g., -from, -through and -to), reports the timing of
the default timing path. The default timing path is often the combinatorial
path that ends with design outputs. In this case, this would be t2. Thus the
reported critical path would be wrongly reported if the timing report is not
processed properly.
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5.3 Security Evaluation

Table 5.1 shows different tradeoffs that can be made for a single low latency
S-Box, as a function of two ANF distributions and two hardware optimization
strategies. In this section, we perform a side-channel security evaluation
to ensure that such optimizations do not compromise security. We use the
TVLA [25] fixed versus random leakage detection test, with partitioning based
on unshared inputs.

We perform our security evaluations based on logic simulations with the 10 ps
precision using the CASCADE framework [85] to generate and process traces.
This approach was computationally efficient and reliable for design-time side-
channel evaluations of countermeasures implemented in a standard-cell ASIC.
While simulated traces do not perfectly reflect all of the physical effects in
an actual chip, we believe they are more suitable than an FPGA platform in
this particular case, as we study the effect of design optimizations forASIC
implementation. A similar study for FPGA platforms is also important, but we
leave this for future work.

In order to validate our setup, 10 thousand TVLA traces are collected with
masks set to 0. The results of the first- and the second-order TVLA are given
in Figure 5.4 and Figure 5.5. As expected, all designs leak in all orders when
masks are not random.

Next, we simulate 1 million traces using uniform random masks. Results of the
first- and the second-order TVLA are given in Figure 5.6 and Figure 5.7. As
expected, no leakage can be found in the first-order TVLA, while the second-
order TVLA shows significant information leakage. Note that unbalanced
designs consistently reach much higher t-values in the second order.

Additionally, we include the t-statistic evolution for one million traces in
increments of 10 000 traces in Figure 5.8 and Figure 5.9. The figures show a
constant trend within the |t| < 4.5 confidence interval for the first-order TLVA,
indicating first-order security.
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Figure 5.4: First-order TVLA (top) and second-order TVLA (bottom) using
10 000 simulated traces without randomness for low-area unbalanced (left) and
balanced (right) AES S-Boxes.

0

50

100

t
va

lu
e

0

50

100

0 250 500 750
sample

0

50

100

t
va

lu
e

0 250 500 750
sample

0

50

100

Figure 5.5: First-order TVLA (top) and second-order TVLA (bottom) using
10 000 simulated traces without randomness for low latency unbalanced (left)
and balanced (right) AES S-Boxes.
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Figure 5.6: First- (top) and second-order (bottom) TVLA using 1 million simulated
traces with randomness for low-area unbalanced (left) and balanced (right) AES
S-Boxes.
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Figure 5.7: First- (top) and second-order (bottom) TVLA using 1 million simulated
traces with randomness for low latency unbalanced (left) and balanced (right) AES
S-Boxes.
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Figure 5.8: Evolution of the first-order (top) and the second-order (bottom)
TVLA maximum using 1 million simulated traces with randomness for low-area
unbalanced (left) and balanced (right) AES S-Boxes.
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Figure 5.9: Evolution of the first-order (top) and the second-order (bottom)
TVLA maximum using 1 million simulated traces with randomness for low
latency unbalanced (left) and balanced (right) AES S-Boxes.
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5.4 Optimizing Secure AES Schedule for Maximum
Throughput

While the design of a low latency AES in Section 5.2 focused on designing the
fastest possible side-channel resistant S-Box, we can also take an alternative
approach when dealing with S-Box serialized AES implementations, in which a
single S-Box instance computes both the SubBytes and round key update of
AES key schedule sequentially. While this approach is justified, as there are
multiple applications such as RFID devices, where area and power are pretty
constrained, it still fares rather poorly with respect to latency and throughput.
In the case of AES-128, the AES variant that is most prominent in the academic
implementations, taking this approach limits the execution time asymptotically
to 200 cycles per execution, with each round performing 20 S-Box operations.
To ease the notation, we will refer to AES-128 simply as AES. While it is
possible to use the S-Box design from Section 5.3, the area and the power
consumption are quite significant for the single-cycle SCA protected S-Box
implementation, even if the number of output shares is theoretically minimal.
Thus the previously mentioned application, such as RFID devices, could rarely
accommodate that much area or power consumption. Hence, we propose a
solution focused on optimizing the S-Box evaluation schedule in a serialized
implementation of AES.

Adding the required ShiftRows, MixColumns, key schedule operations, and
the several clock cycle latency of the S-Box in side-channel protected
implementations increases the total latency even further. Several side-channel
AES implementations [58, 8, 31, 42] require at least 246 cycles to complete one
AES encryption. Recently, several approaches have been proposed that achieve
the throughput of one encryption per 200 cycles while achieving latency of 216
cycles [42, 83]. But they are only feasible for S-Boxes that compute the output
in 5 or fewer cycles, which is a restrictive requirement since many existing
side-channel secure AES S-Box implementations take 6 or more cycles, going as
far as 9 cycles [32]. Automated generation of masked hardware also frequently
produces S-Boxes with high number of pipeline stages. The automatically
generated implementation presented by Knichel et al. [49] takes 454 cycles to
complete, while Momin et al. [56] present an implementation which can finish
one encryption in 322 cycles. Here we propose a new method of scheduling that
can achieve a throughput of 20 cycles per round for S-Box latency up to 10
cycles, allowing for a serialized AES implementation with the lowest possible
latency. First, we declare a set of data dependencies that need to be followed in
order to have a correct AES round implementation using a serialized S-Box:
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• All state bytes that are to be overwritten by the S-Box output need to
either be in the S-Box pipeline or to have finished the S-Box operation.

• All MixColumns input operation column bytes need to have finished the
S-Box operation. However, the last byte can be collected straight from
the S-Box output and not from the state registers.

• A state byte in the next round can only be used as S-Box input if the
MixColumns operation for that byte’s column has been performed.

• A key byte must not be updated before it is used in the current round.

• The first 4 bytes of the key during the key schedule are updated when
the corresponding S-Box operation of the last 4 bytes of the key has been
completed.

• Except for the first 4 bytes of the key, each subsequent byte i of the key
can only be updated if byte i − 4 has been updated.

We can program these rules in the MiniZinc constraint modeling language [61],
providing the latency of the S-Box as a parameter. MiniZinc will then try to
satisfy all constraints and output a solution if it exists, or if it cannot find a
solution after exploring the entire search space, it will state that the problem is
unsatisfiable. We have run our constrained model for different latencies, and it
has always found a scheduling for a latency up to 10 clock cycles. The model is
unsatisfiable for an S-Box latency of 11, proving that we cannot find a solution
for any S-Box latency of 11 or more cycles.

We illustrate our solution on the 9-cycle latency S-Box that can, for example,
be used to improve the scheduling of the M&M implementation [32]. The state
and the key update schedule is shown in Figure 5.10, while the corresponding
timing diagram can be seen in Figure 5.11. In the AES round control flow,
the ShiftRows operation is performed together with the S-Box output. The
output of the S-Box is written to the state byte in which it would be stored
after performing the ShiftRows operation. Alternatively, it means that each
column is written back diagonally with rotational wrapping around to the state
matrix, not back to itself. This can be seen in Figures 5.10 and 5.11. The
MixColumns operation is performed as soon as all column bytes are ready, i.e.,
in the 28th, 24th, 29th and 30th cycle, respectively. The result of MixColumns
is ready in the following cycle. The key addition is performed in the next round
iteration, and the final key addition is computed during the read-out operation.
From the timing diagram in Figure 5.11 we see that the actual output for all
the state bytes is ready 10 cycles after the beginning of the following round.

It should be noted that the trade-off in using our approach is an additional
multiplexer at the S-Box input as we are required to read from and write to
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Figure 5.10: S-Box pipeline schedule.
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Figure 5.11: Timing diagram of S-Box usage in the pipeline schedule.

arbitrary bytes of the state and the key matrix, which slightly increases the
occupied area. However, we can achieve speed-ups of roughly 20% to 35% for
existing implementations with S-Box latency greater than 6.

5.5 Conclusion

In this chapter, we investigated low latency SCA protected hardware AES
implementations by analyzing single cycle d + 1 TI AES implementation
as well as improvements in the S-Box pipeline scheduling in serialized AES
implementations. The presented UnbalancedA implementation is currently the
smallest single cycle SCA protected AES S-Box, with 3 times smaller area
compared to the previous result by Gross et al. [38].
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Additionally, we demonstrate the implementation difference of TI circuits caused
by the choice of ANF during the design phase. We elaborate on two distinct
strategies. The unbalanced strategy allocates ANF terms to output shares in
an uneven manner, in which the first chosen output share absorbs as much
shared ANF terms as possible, the next chosen output share absorbs as much
of the remaining shares until all of the shared terms are associated to one of
the output shares. On the other hand, the balanced strategy tries to distribute
the shared ANF monomials as equally as possible across all output shares.

To quantify the effects of the two strategies, we examine a low latency AES
S-Box designed using each of the two strategies. We then apply two hardware
optimization strategies using commercial tools, low-area and low latency, to
both the balanced and the unbalanced S-Box. Thus we create four extreme
corner cases of the ASIC hardware design space. The results show that the
unbalanced strategy achieves a smaller area than the balanced one, both when
synthesized for lowest area and for minimal latency. The impact is significant
as the area difference between the two S-Boxes is about 50% at the low area
end, unbalanced S-Box requiring 21 kGE compared to 32 kGE of the balanced
one. However, if the latency is of utmost importance in an application, the
S-Box with balanced ANF is roughly 10% faster than the unbalanced one.
The maximal frequencies are 330 MHz and 307 MHz for a balanced and an
unbalanced S-Box, respectively, when synthesized for the minimal latency.

We evaluate the side-channel security of both S-Boxes using TVLA to ensure
that such optimizations do not degrade the side-channel security. Our
evaluation yields similar resistance levels, i.e., they are both secure against
first-order attackers, both in unconstrained implementations and in low latency
implementations.

Regarding the optimization of the S-Box pipeline schedule in serialized AES
implementations, we show a how full pipeline can be achieved, i.e., 20 cycles
to process one round, for S-Boxes with cycle latency of up to 10 cycles. The
MiniZinc model shows that no 20-cycle solution exists for S-Boxes with cycle
latency greater than 10. An example of scheduling that can be applied to
M&M AES [32] is also presented. All scheduling solutions for the S-Box latency
between 6 and 10 cycles are listed in Appendix C. Improved S-Box scheduling can
also be used to reduce the number of clock cycles for masked implementations
created using automated methods.

The choice of which low latency option is best is again dependent on the
application. If the latency of 200 cycles per AES encryption is sufficient,
optimizing the pipeline schedule of a slower S-Box in a serialized AES
implementation with a single S-Box instance should be the preferred option
of the designer. However, if the latency needs to be reduced maximally, a
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round-based implementation with single-cycle protected S-Box has to be used.
In the end, there is also an option of a partial round-based design, where 2, 4
or even 8 S-Boxes are running in parallel to reduce the computation time of a
single round. It is up to the designer to consider all the implications and to
choose a design strategy most suitable to the target application’s needs.



Chapter 6

Conclusion

“What you know is just a point of
departure. So let’s move!”

Keorapetse Kgositsile

In this thesis, we have explored the means of minimizing the overhead of
side-channel protection in a low-latency setting. We have developed novel
construction methods aiming to provide efficient Threshold Implementations
for a variety of Boolean function classes. Next, we have quantified the overhead
of low-latency side-channel protection in hardware. Finally, we have provided
multiple examples of low-latency masked designs.

In Chapter 3, we investigated construction methods for TI sharings of arbitrary
Boolean functions, both for td+1 and d+1 flavors of TI. We introduced the td+1
notation of sharing via output sets and demonstrated how to analyze correctness
and non-completeness properties in the output set notation. Algorithm 3
provided a construction method for td + 1 TI sharing, which was used to
generate to our knowledge the smallest second-order td + 1 TI for cubic Boolean
functions, with 8 input shares and 17 output shares. For the case of d + 1 TI,
we have established a succinct notation for the sharing and presented several
construction methods of optimal or near-optimal d + 1 TI sharings. The table
notation of d + 1 sharing can be easily used to check both the correctness
and non-completeness properties of TI while avoiding the need to provide the
complete ANF of a TI sharing. Algorithm 4 presented a construction that
ensures a minimal number of output shares for any Boolean function of n bits of
degree n − 1, which can be used to construct a minimal sharing for any security
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order d. As many cryptographic primitives use n-bit S-Boxes of degree n − 1, an
optimal d + 1 sharing construction is valuable to anyone aiming to design a d + 1
TI of these primitives. Finally, Chapter 3 demonstrated how to transform a
d + 1 sharing table problem into a well-known discrete optimization problem of
set covering. We then applied multiple discrete optimization techniques, some of
which could guarantee the solution’s optimality (constraint programming, mixed
integer linear programming), and others that could solve larger instances (greedy
heuristic, simulated annealing). Leveraging the power of discrete optimization
techniques, we were able to find first-order secure optimal generic sharings and
many good second-order sharings of any Boolean function of up to 8 bits. The
first-order optimal sharing of cubic 8-bit functions has been used on a first-order
secure AES design which decomposes the S-Box into two cubic 8-bit S-Boxes [79].
Moreover, the sharing tables of first- and second-order secure TIs of Boolean
functions of up to 8 bits can be used for side-channel implementations of many
other symmetric key primitives, as nearly all block ciphers use S-Boxes no larger
than 8 bits.

Chapter 4 explored trade-offs during the design of side-channel protected
hardware circuits. Specifically, we focused on comparing standard hardware
figures of merit of power/energy, performance, and area across different side-
channel protected TIs with first- and second-order security, realized using
td + 1 and d + 1 versions of TI. The PRINCE block cipher was chosen
for this case study due to its design being suitable for low-latency hardware
applications. A round-based implementation of PRINCE is used for all versions
of the implementations. A baseline unprotected version of PRINCE is also
presented and compared to masked versions to showcase the cost of side-channel
protection. Masked implementations are diversified across three orthogonal
parameters: first- or second-order security, td + 1 or d + 1 TI, and masked
S-Box realization with and without decomposition. Versions without S-Box
decomposition leverage Algorithm 3 and Algorithm 4 for the TIs of the cubic
PRINCE S-Box. To the best of our knowledge, the S-Box implementations
without S-Box decomposition introduced in this chapter, aiming to reduce the
overall latency, were not previously available in the literature. At the end
of the chapter, TVLA assessments of d + 1 implementations without S-Box
decomposition are presented, indicating that the expected security level is
reached in both variants. The main findings from the chapter are listed below:

• S-Box decomposition should be used when low area and low power are
necessary for the target application. The smallest first-order protected
version with S-Box decomposition is about 30% smaller than the smallest
first-order protected design without S-Box decomposition.

• Low-latency mandates the use of masked S-Box without decomposition.
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If operated at maximal frequency, the fastest implementation with S-Box
decomposition takes more than twice the time to finish compared to the
fastest masked version without S-Box decomposition.

• The lowest energy consumption is achieved by the masked d + 1 TI
PRINCE without S-Box decomposition, by a small margin. While having
a little less than 50% higher power consumption in comparison with td + 1
TI PRINCE by Moradi and Schneider [59], it finishes in fewer clock cycles,
resulting in a lower final energy consumption.

• Mask refreshing accounts for up to half of the total power consumption of
the circuit. Thus, power-aware implementations should strive for masked
constructs that maximally reduce the number of XOR operations right
before the register stage, such as uniform td + 1 TIs.

• The cost of side-channel countermeasures is still high when compared
to the unprotected design. The smallest masked version of round-based
PRINCE is two and a half times larger than the unmasked version, with
the most power-efficient version still consuming 14% more power. Finally,
the unprotected version of PRINCE is faster, about 40%, when clocked at
a maximal frequency than the fastest side-channel protected version.

• A randomness reduction scheme suitable from PRINCE is proposed
to reduce the number of random bits consumed by the masked
implementation by a factor of four.

In Chapter 5 we introduced the smallest single-cycle AES S-Box, implemented
using sharing obtained from Algorithm 4, with 128 output shares and two
input shares. The chapter also discussed two design strategies for ANF term
distribution among permitted output shares, which significantly impact the
physical characteristics of the final circuit. The first strategy denoted unbalanced
sharing produces a circuit that has about 50% lower area footprint compared
to a circuit obtained via the balanced strategy. However, the balanced circuit
can achieve 10% higher maximal frequency. Security evaluation was performed
on both circuits using simulated traces, and no first-order leakage was observed
in either circuit, as expected.

The second part of Chapter 5 investigated low-latency optimizations of S-Box
serialized AES implementation with pipelined multi-cycle S-Box implementation,
which is the typical S-Box architecture for masked AES implementations. Using
a constraint programming model of execution dependencies within two rounds,
we found optimal scheduling orders of S-Box input interleaved with MixColumns
and ShiftRows operations for S-Box latencies of up to 10 cycles. Since most
side-channel protected S-Boxes have less than 10 register stages, the obtained
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scheduling orders are applicable to nearly all existing masked AES S-Boxes. The
cost of custom scheduling order of S-Box inputs is in additional multiplexers
needed at the input of the S-Box, and in the control logic driving the selector
signals of these multiplexers. The latency reduction amounts to at least 20%:
round implementations of S-Box serialized designs with separate cycles for
ShiftRows and MixColumn finish in 25 cycles for S-Box latencies of five cycles.

6.1 Future Work

The work presented in this dissertation advances the state of the art of low-
latency side-channel protection. However, many aspects of it can be further
improved and explored in more detail.

The sharing construction methods presented in Chapter 3 can be applied to
many other cryptographic designs. Some primitives use arithmetic addition
operation to compute their output. These primitives are notoriously difficult to
mask using Boolean masking, e.g., the algebraic degree of the most significant
bit and carry-out bit of an n-bit adder is equal to n and n + 1, respectively.
Thus, even a 32-bit adder poses a major challenge for straightforward Boolean
masking, with only a handful of side-channel protected multi-bit adders available
in the literature, implemented using the Kogge-Stone adder [77, 39]. Boolean to
arithmetic and arithmetic to Boolean masking conversions have also been used
to mask arithmetic operations. However, they introduce a latency overhead
on both ends of the conversion, making such design extremely slow. Side-
channel protected Addition-Rotation-XOR (ARX) designs, such as the SHA-2
family of hash functions, can be achieved fully with Boolean masking, with
pipelined masked ripple-carry adders implemented using d + 1 TI with sharing
obtained using discrete optimization techniques, circumventing the need for
masking conversion entirely. Post-quantum schemes such as Kyber [13] also use
arithmetic adders. Thus its side-channel implementation would need an efficient
masked adder. Side-channel implementation of an arithmetic multiplier could
also be realized entirely in the Boolean masking domain. Such a multiplier
could be used inside of a side-channel protected ALU.

Another interesting extension of this work is the investigation and improvement
of SCA resistant software implementations, both on algorithmic and on
architecture level. The current microcontroller design is aimed towards
fast execution and performance. On a surface level, faster microcontroller
architecture should imply faster side-channel resistant software running on the
microcontroller. However, many architecture components responsible for faster
execution also introduce leakage into the side-channel software implementation,
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mandating the use of higher-order countermeasures [2], which has a severe
negative impact on the performance of the implementation. Thus, it is
worthwhile to investigate microcontroller architectures that have hardened
leakage points of the implementation, such as logical functions of the ALU,
pipeline registers, and branch predictors. In particular, the RISCV platform
is interesting as the architecture specification is fully open source and can be
easily modified. Fully realized side-channel RISCV cores have already been
proposed in the literature [39], but they add significant area and performance
cost, which is not suitable for all applications. A middle-ground solution in which
software countermeasures are running on a microcontroller with SCA hardening
of critical components might be suitable in many cases. It would negate the
need for higher-order software implementation while minimally impacting the
performance and size of the microcontroller for general purpose use.

While examining the power consumption of several hardware implementations
in Chapter 4 and Chapter 5 we have discovered that the power consumption is
heavily influenced by the mask refreshing operation. For the AES S-Box from
Chapter 5 turning mask refreshing off reduced the total power consumption by
70%. In the case of PRINCE, the power consumption was reduced by half also by
switching off mask refreshing. Hence, reducing the number of mask refreshing
operations should significantly improve the power and energy consumption.
Moreover, it would reduce the complexity of the PRNG used to provide fresh
masks, which would further decrease power consumption. One example where
no mask refreshing is needed is uniform td+1 TI sharing. However, we currently
have a limited understanding of how to efficiently construct a uniform TI sharing
of an arbitrary function. Hence, a more thorough study of schemes with no
need for mask refreshing is needed to reduce the power consumption overhead
of side-channel protection.

In Chapter 5 we showcased the dependency of the sharing ANF to the area and
latency of its hardware implementation. However, the two distribution strategies
for shared ANF terms can be improved to provide TI circuits that provide even
more efficient implementations regarding area or latency. A better strategy
would involve a more elaborate metric instead of the number of ANF terms,
also focusing on logic function minimization while considering the available cells
from the library used during synthesis.

Finally, due to the increased complexity of higher-order TIs, it is essential to
develop automated methods that can create masked circuit components using a
computer program, as manual code development is highly error-prone due to
the sheer number of shared ANF terms. The increased number of shares further
exacerbates the issue in low-latency SCA protected designs which typically
mask Boolean functions of high degree. Moreover, an automated toolbox for
side-channel code generation would facilitate widespread adoption of masked
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circuit design and lower the barrier of expertise needed to design side-channel
hardened circuits. It would also reduce the development time during design,
consequently reducing the cost of the design as well. Such a tool should leverage
the table notation of the sharing, provide several shared ANF term distribution
strategy options, and translate the input Boolean function into a masked circuit
protected up to the security order required.



Appendix A

Sharing Tables

We provide a quick reference for the sharings of the cases examined in
Section 3.3.2. To make the notation as succinct as possible, we only enumerate
the chosen shares in their lexicographical order, the first share having index
0. For example if we had a sharing with d = 2, n = 4, t = 2 given as
[2, 12, 25, 31, 44, 45, 60, 64, 77], it means that the actual nine shares are

(0, 0, 0, 2) (0, 1, 1, 0) (0, 2, 2, 1) (1, 0, 1, 1) (1, 1, 2, 2)

(1, 2, 0, 0) (2, 0, 2, 0) (2, 1, 0, 1) (2, 2, 1, 2)

115
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Table A.1: Sharing indices of best shares for security order d = 1, for n = 4, 5, 7, 8
bit functions, and algebraic degree t = 2, . . . , n − 2.

t Sharing indices

n = 4
2 (1, 6, 8, 11, 13)

n = 5
2 (3, 12, 20, 24, 29, 30)
3 (2, 5, 8, 11, 14, 17, 20, 23, 26, 29)

n = 6
2 (2, 21, 30, 35, 45, 56)
3 (3, 9, 10, 15, 20, 27, 36, 43, 48, 53, 54, 60)
4 (1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61)

n = 7
2 (24, 43, 54, 66, 85, 109)
3 (6, 25, 37, 43, 50, 60, 67, 76, 85, 90, 96, 127)
4 (0, 9, 14, 21, 23, 26, 35, 36, 47, 50, 57, 60, 67,

70, 77, 80, 91, 92, 101, 104, 106, 113, 118, 127)
5 (1, 6, 10, 12, 15, 16, 19, 21, 25, 30, 32, 35, 37, 41, 46, 50, 52, 55, 56, 59, 61, 66, 68,

71, 72, 75, 77, 81, 86, 90, 92, 95, 97, 102, 106, 108, 111, 112, 115, 117, 121, 126)

n = 8
2 (15, 64, 119, 154, 177, 236)
3 (12, 27, 33, 54, 85, 106, 130, 189, 207, 216, 228, 243)
4 (9, 20, 31, 36, 42, 51, 66, 71, 88, 109, 113, 126, 129, 142, 146,

167, 184, 189, 204, 213, 219, 224, 235, 246)
5 (1, 6, 8, 15, 19, 28, 36, 43, 50, 53, 57, 62, 69, 74, 80, 87, 89, 94, 96, 99, 109, 110,

118, 122, 124, 127, 128, 131, 133, 137, 145, 148, 154, 159, 161, 162, 173, 174,
183, 184, 193, 198, 203, 204, 210, 221, 231, 232, 241, 244, 251, 254)

6 (3, 5, 6, 9, 10, 12, 17, 18, 20, 24, 31, 33, 34, 36, 40, 47, 48, 55, 59, 61, 62, 65, 66,
68, 72, 79, 80, 87, 91, 93, 94, 96, 103, 107, 109, 110, 115, 117, 118, 121, 122,
124, 129, 130, 132, 136, 143, 144, 151, 155, 157, 158, 160, 167, 171, 173, 174,
179, 181, 182, 185, 186, 188, 192, 199, 203, 205, 206, 211, 213, 214, 217, 218,
220, 227, 229, 230, 233, 234, 236, 241, 242, 244, 248, 255)
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Table A.2: Sharing indices of best shares for security order d = 2 of n-bit
functions of degree t part 1.

t Sharing indices

n = 4
2 (2, 12, 25, 31, 44, 45, 60, 64, 77)

n = 5
2 (0, 49, 71, 93, 106, 110, 139, 185, 195, 199, 234)
3 (0, 5, 17, 19, 31, 38, 51, 61, 64, 66, 77, 87, 94, 101, 109, 116, 117, 131, 138, 152,

153, 160, 169, 171, 183, 188, 192, 203, 205, 208, 218, 231, 238)

n = 6
2 (0, 41, 143, 238, 295, 369, 408, 470, 555, 580, 674, 676)
3 (0, 52, 68, 104, 112, 145, 159, 178, 201, 209, 224, 269, 275, 280, 312, 331, 336,

369, 380, 416, 438, 481, 499, 534, 547, 560, 586, 611, 624, 653, 672, 676, 711)
4 (7, 11, 23, 24, 32, 34, 39, 44, 46, 54, 67, 75, 80, 82, 86, 96, 103, 108, 121, 128,

132, 143, 146, 147, 158, 160, 165, 176, 178, 180, 188, 191, 199, 204, 210, 220,
222, 225, 233, 235, 246, 251, 256, 261, 268, 271, 276, 281, 292, 302, 307, 312,
317, 324, 331, 338, 344, 359, 360, 367, 372, 382, 395, 397, 402, 407, 415, 420,
427, 436, 446, 450, 458, 459, 466, 471, 482, 488, 490, 498, 503, 505, 513, 529,
536, 537, 547, 549, 554, 562, 573, 577, 588, 593, 598, 608, 609, 613, 623, 624,
637, 639, 655, 657, 671, 678, 683, 686, 700, 703, 707, 715, 719, 722, 726)

n = 7
2 (0, 483, 632, 679, 872, 995, 1144, 1257, 1525, 1667, 1812, 2050)
3 (1, 131, 173, 222, 288, 349, 380, 445, 521, 552, 570, 611, 721, 753, 873, 877, 920,

977, 1009, 1043, 1086, 1209, 1264, 1316, 1393, 1419, 1435, 1488, 1501, 1532,
1547, 1642, 1762, 1794, 1863, 1916, 1953, 2053, 2103, 2174)

4 (0, 23, 52, 65, 66, 97, 111, 118, 149, 157, 166, 186, 198, 209, 224, 255, 268, 287,
302, 315, 330, 365, 371, 379, 389, 404, 425, 439, 453, 472, 496, 515, 517, 519,
565, 572, 585, 601, 636, 665, 687, 694, 702, 725, 737, 748, 769, 807, 822, 852,
857, 871, 873, 887, 905, 919, 944, 948, 976, 999, 1022, 1043, 1064, 1069, 1088,
1099, 1110, 1152, 1176, 1190, 1200, 1213, 1224, 1258, 1272, 1285, 1289, 1297,
1322, 1334, 1344, 1363, 1383, 1399, 1409, 1441, 1473, 1490, 1503, 1513, 1541,
1564, 1583, 1614, 1629, 1633, 1653, 1669, 1690, 1694, 1703, 1738, 1740, 1761,
1777, 1805, 1813, 1833, 1845, 1866, 1870, 1880, 1882, 1901, 1931, 1951, 1955,
1965, 1997, 2012, 2038, 2040, 2052, 2087, 2098, 2108, 2145, 2149, 2164, 2184)
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Table A.3: Sharing indices of best shares for security order d = 2 of n-bit
function of degree t part 2.

t Sharing indices

n = 7
5 (0, 8, 14, 19, 24, 30, 36, 43, 47, 49, 56, 58, 69, 77, 83, 90, 95, 97, 103, 109, 113, 123,

134, 135, 143, 148, 154, 156, 163, 165, 179, 184, 185, 196, 199, 201, 206, 207, 221,
222, 227, 241, 245, 250, 256, 258, 266, 276, 282, 289, 296, 300, 307, 314, 315, 325,
327, 341, 342, 349, 353, 365, 367, 372, 382, 385, 389, 393, 401, 410, 414, 421, 425,
429, 432, 436, 443, 457, 460, 467, 472, 478, 480, 481, 485, 490, 497, 502, 507, 514,
521, 527, 531, 545, 546, 552, 560, 565, 572, 573, 577, 579, 593, 597, 601, 603, 614,
616, 622, 635, 637, 645, 648, 655, 662, 667, 677, 688, 690, 698, 699, 705, 711, 719,
724, 731, 736, 741, 746, 751, 764, 767, 769, 779, 780, 784, 786, 799, 801, 808, 809,
814, 816, 820, 830, 837, 841, 849, 853, 856, 860, 871, 872, 873, 878, 888, 896, 900,
910, 915, 920, 925, 933, 940, 945, 958, 962, 965, 966, 972, 977, 982, 992, 997, 1000,
1016, 1020, 1032, 1035, 1040, 1048, 1061, 1064, 1066, 1068, 1074, 1087, 1089, 1100,
1102, 1104, 1107, 1112, 1123, 1126, 1128, 1133, 1135, 1146, 1160, 1164, 1169, 1171,
1175, 1179, 1190, 1192, 1203, 1211, 1213, 1216, 1224, 1238, 1239, 1242, 1246, 1257,
1262, 1267, 1277, 1280, 1281, 1282, 1288, 1297, 1310, 1314, 1321, 1328, 1333, 1340,
1344, 1352, 1353, 1358, 1365, 1372, 1376, 1380, 1385, 1388, 1393, 1399, 1405, 1410,
1416, 1430, 1438, 1441, 1445, 1449, 1461, 1468, 1484, 1487, 1492, 1500, 1504, 1506,
1517, 1518, 1521, 1526, 1534, 1540, 1544, 1554, 1560, 1565, 1572, 1577, 1579, 1584,
1591, 1596, 1603, 1610, 1613, 1628, 1631, 1633, 1638, 1645, 1647, 1651, 1661, 1673,
1675, 1686, 1690, 1697, 1698, 1705, 1708, 1713, 1718, 1719, 1722, 1728, 1733, 1739,
1741, 1753, 1756, 1763, 1769, 1771, 1775, 1779, 1789, 1791, 1801, 1805, 1806, 1812,
1819, 1826, 1832, 1838, 1842, 1848, 1850, 1858, 1865, 1869, 1873, 1877, 1885, 1889,
1897, 1905, 1910, 1911, 1920, 1926, 1934, 1936, 1946, 1950, 1958, 1961, 1963, 1974,
1981, 1993, 1997, 1998, 2005, 2013, 2019, 2021, 2025, 2036, 2038, 2041, 2048, 2053,
2060, 2064, 2076, 2083, 2090, 2097, 2098, 2104, 2110, 2121, 2126, 2127, 2131, 2138,
2142, 2144, 2149, 2152, 2162, 2166, 2173, 2186)

n = 8
2 (0, 1255, 1923, 2045, 2347, 3100, 3210, 3599, 3844, 4729, 4796, 4926, 5490, 5909)
3 (33, 424, 512, 635, 740, 919, 1191, 1348, 1534, 1608, 1706, 1830, 1907, 2025, 2170,

2261, 2277, 2354, 2589, 2626, 2710, 2784, 3148, 3227, 3269, 3423, 3852, 3982, 4193,
4318, 4510, 4667, 4846, 5037, 5223, 5287, 5353, 5445, 5633, 5730, 5825, 5861, 5939,
6138, 6511)

4 (5, 33, 92, 151, 188, 207, 238, 268, 318, 378, 446, 495, 613, 644, 682, 807, 839, 904,
954, 984, 1015, 1037, 1102, 1133, 1140, 1162, 1273, 1310, 1338, 1397, 1495, 1560,
1651, 1682, 1703, 1731, 1799, 1936, 1997, 2016, 2026, 2057, 2085, 2122, 2172, 2261,
2268, 2299, 2364, 2497, 2562, 2594, 2653, 2674, 2705, 2733, 2792, 2820, 2857, 2888,
2955, 2986, 3023, 3042, 3073, 3083, 3133, 3194, 3250, 3368, 3396, 3426, 3448, 3486,
3635, 3652, 3770, 3789, 3857, 3906, 3937, 3975, 4028, 4062, 4093, 4115, 4145, 4195,
4291, 4320, 4387, 4418, 4474, 4593, 4645, 4676, 4710, 4741, 4763, 4797, 4859, 4908,
4949, 5064, 5086, 5103, 5165, 5252, 5317, 5369, 5457, 5488, 5544, 5605, 5627, 5692,
5742, 5752, 5783, 5811, 5858, 5877, 5908, 5946, 5968, 6005, 6033, 6144, 6181, 6203,
6241, 6374, 6439, 6504, 6557)
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Table A.4: Sharing indices of best shares for security order d = 2, functions of
n = 8 bits and algebraic degree t = 5.

t Sharing indices

n = 8
5 (6, 9, 21, 35, 38, 61, 76, 100, 123, 140, 152, 188, 202, 214, 216, 245, 271, 295, 309,

330, 333, 374, 388, 409, 424, 447, 450, 464, 476, 479, 502, 516, 545, 560, 569, 581,
595, 607, 619, 633, 645, 657, 669, 683, 724, 734, 775, 798, 801, 810, 834, 839, 851,
863, 865, 877, 898, 901, 939, 956, 979, 982, 994, 1005, 1020, 1037, 1049, 1070, 1084,
1110, 1125, 1146, 1163, 1175, 1213, 1239, 1256, 1268, 1270, 1303, 1318, 1332, 1358,
1394, 1397, 1408, 1420, 1434, 1446, 1449, 1471, 1485, 1497, 1538, 1550, 1562, 1573,
1614, 1623, 1635, 1652, 1667, 1678, 1690, 1693, 1719, 1745, 1759, 1771, 1795, 1807,
1809, 1821, 1833, 1838, 1862, 1871, 1886, 1900, 1923, 1952, 1955, 1967, 1981, 1993,
2004, 2007, 2028, 2072, 2095, 2098, 2107, 2133, 2157, 2174, 2204, 2207, 2218, 2259,
2280, 2297, 2323, 2347, 2356, 2359, 2382, 2385, 2397, 2414, 2426, 2452, 2466, 2478,
2492, 2516, 2528, 2531, 2542, 2554, 2568, 2583, 2616, 2633, 2647, 2659, 2673, 2697,
2714, 2726, 2728, 2740, 2752, 2761, 2787, 2802, 2819, 2840, 2852, 2881, 2904, 2929,
2941, 2943, 2955, 2972, 2984, 2996, 3020, 3034, 3046, 3057, 3081, 3096, 3122, 3136,
3162, 3174, 3206, 3229, 3241, 3291, 3308, 3320, 3329, 3344, 3355, 3358, 3370, 3381,
3384, 3413, 3436, 3439, 3477, 3486, 3498, 3501, 3515, 3530, 3553, 3556, 3577, 3591,
3620, 3644, 3651, 3680, 3695, 3709, 3730, 3742, 3745, 3768, 3771, 3785, 3797, 3809,
3859, 3873, 3885, 3890, 3902, 3916, 3940, 3942, 3954, 3966, 3978, 4004, 4007, 4045,
4066, 4069, 4080, 4124, 4135, 4150, 4173, 4190, 4238, 4252, 4266, 4278, 4302, 4314,
4328, 4331, 4343, 4354, 4369, 4375, 4387, 4425, 4442, 4463, 4478, 4492, 4504, 4515,
4518, 4530, 4539, 4568, 4583, 4606, 4620, 4632, 4649, 4661, 4664, 4687, 4690, 4711,
4723, 4725, 4778, 4790, 4813, 4839, 4854, 4883, 4897, 4920, 4923, 4959, 4985, 4988,
4999, 5023, 5035, 5047, 5049, 5061, 5078, 5102, 5112, 5138, 5164, 5179, 5200, 5214,
5226, 5258, 5267, 5279, 5291, 5293, 5317, 5331, 5343, 5348, 5372, 5386, 5400, 5436,
5448, 5462, 5465, 5488, 5491, 5503, 5527, 5550, 5553, 5567, 5593, 5608, 5619, 5631,
5634, 5648, 5660, 5672, 5684, 5722, 5736, 5757, 5801, 5815, 5827, 5849, 5852, 5863,
5875, 5878, 5889, 5904, 5913, 5937, 5954, 5968, 6016, 6030, 6056, 6059, 6082, 6123,
6140, 6152, 6161, 6187, 6202, 6225, 6237, 6249, 6261, 6278, 6290, 6292, 6304, 6330,
6342, 6347, 6397, 6406, 6409, 6432, 6447, 6461, 6464, 6476, 6497, 6511, 6523, 6552)
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Table A.5: Sharing indices of best shares for security order d = 2, functions of
n = 8 bits and algebraic degree t = 6. (Part 1)

Shares used

(1, 12, 20, 24, 33, 38, 41, 43, 50, 54, 58, 62, 68, 75, 79, 84, 87, 90, 97, 103, 107, 108, 113, 115, 116,
119, 125, 127, 129, 137, 138, 145, 148, 159, 162, 170, 173, 175, 185, 193, 201, 207, 209, 214, 223,
226, 230, 231, 236, 245, 246, 260, 265, 277, 279, 283, 288, 289, 296, 302, 307, 321, 328, 332, 335,
336, 344, 353, 357, 361, 374, 379, 392, 393, 396, 403, 410, 414, 421, 424, 429, 433, 437, 449, 450,
453, 459, 462, 465, 470, 471, 481, 485, 494, 496, 500, 504, 511, 515, 516, 528, 535, 544, 549, 552,
556, 560, 568, 572, 582, 583, 588, 598, 605, 606, 618, 621, 628, 638, 640, 644, 651, 655, 657, 665,
668, 670, 681, 684, 689, 691, 694, 701, 704, 715, 726, 732, 738, 743, 745, 751, 758, 760, 768, 774,
782, 790, 794, 798, 802, 806, 815, 821, 825, 831, 835, 840, 847, 850, 860, 861, 865, 872, 876, 882,
892, 897, 903, 909, 917, 925, 927, 935, 938, 940, 945, 950, 958, 969, 973, 980, 987, 990, 995, 1004,
1005, 1010, 1024, 1028, 1029, 1035, 1039, 1043, 1044, 1053, 1060, 1063, 1070, 1074, 1078, 1081,
1089, 1096, 1100, 1101, 1112, 1113, 1118, 1119, 1129, 1133, 1136, 1138, 1140, 1148, 1159, 1162,
1164, 1169, 1173, 1183, 1185, 1195, 1197, 1204, 1207, 1211, 1215, 1222, 1227, 1235, 1239, 1243,
1245, 1255, 1259, 1261, 1263, 1274, 1275, 1279, 1287, 1295, 1302, 1309, 1310, 1315, 1322, 1331,
1337, 1341, 1348, 1352, 1354, 1359, 1366, 1371, 1382, 1387, 1392, 1399, 1404, 1415, 1417, 1419,
1427, 1432, 1439, 1445, 1451, 1452, 1456, 1458, 1466, 1471, 1476, 1481, 1483, 1490, 1495, 1500,
1505, 1507, 1513, 1515, 1525, 1529, 1536, 1541, 1543, 1549, 1553, 1554, 1558, 1574, 1578, 1584,
1591, 1599, 1602, 1607, 1609, 1613, 1615, 1623, 1627, 1629, 1637, 1642, 1648, 1652, 1653, 1658,
1660, 1663, 1666, 1676, 1686, 1693, 1695, 1700, 1706, 1707, 1712, 1713, 1717, 1720, 1727, 1728,
1732, 1745, 1749, 1762, 1764, 1769, 1775, 1777, 1780, 1783, 1791, 1805, 1806, 1812, 1816, 1822,
1823, 1826, 1828, 1835, 1838, 1846, 1851, 1857, 1871, 1876, 1883, 1884, 1892, 1900, 1905, 1913,
1915, 1917, 1921, 1925, 1934, 1935, 1941, 1945, 1948, 1959, 1965, 1967, 1979, 1980, 1985, 1987,
1990, 1994, 1995, 2000, 2004, 2009, 2016, 2020, 2028, 2033, 2036, 2043, 2050, 2052, 2062, 2067,
2072, 2074, 2080, 2084, 2092, 2094, 2105, 2108, 2110, 2116, 2120, 2128, 2130, 2138, 2140, 2145,
2150, 2151, 2163, 2169, 2176, 2183, 2187, 2192, 2194, 2200, 2204, 2206, 2208, 2217, 2223, 2230,
2234, 2243, 2251, 2264, 2265, 2270, 2276, 2278, 2286, 2291, 2293, 2296, 2304, 2309, 2310, 2321,
2326, 2328, 2334, 2339, 2341, 2353, 2363, 2364, 2368, 2375, 2378, 2383, 2387, 2398, 2400, 2406,
2411, 2412, 2419, 2426, 2434, 2436, 2439, 2442, 2450, 2455, 2458, 2465, 2471, 2478, 2484, 2495,
2499, 2500, 2506, 2510, 2512, 2524, 2528, 2535, 2541, 2549, 2554, 2556, 2560, 2570, 2572, 2574,
2585, 2586, 2594, 2595, 2599, 2602, 2615, 2619, 2632, 2634, 2638, 2645, 2647, 2660, 2666, 2670,
2678, 2684, 2688, 2689, 2695, 2699, 2700, 2704, 2712, 2717, 2724, 2725, 2728, 2730, 2733, 2741,
2745, 2757, 2761, 2763, 2768, 2779, 2781, 2789, 2794, 2800, 2804, 2810, 2818, 2821, 2823, 2829,
2834, 2836, 2843, 2847, 2853, 2867, 2868, 2872, 2882, 2883, 2889, 2893, 2906, 2914, 2924, 2926,
2934, 2939, 2941, 2944, 2957, 2965, 2967, 2974, 2976, 2982, 2987, 2990, 3001, 3003, 3014, 3017,
3024, 3026, 3031, 3037, 3043, 3045, 3056, 3060, 3067, 3073, 3077, 3080, 3090, 3094, 3100, 3108,
3113, 3115, 3120, 3123, 3128, 3133, 3143, 3153, 3157, 3160, 3162, 3170, 3185, 3186, 3191, 3196,
3201, 3208, 3220, 3227, 3232, 3237, 3248, 3252, 3256, 3258, 3262, 3266, 3269, 3271, 3273, 3284,
3292, 3294, 3304, 3309, 3313, 3317, 3318, 3326, 3330, 3340, 3345, 3355, 3362, 3368, 3369, 3377,
3378, 3388, 3392, 3393, 3400, 3406, 3416, 3417, 3421, 3423, 3432, 3437, 3441, 3445, 3449, 3458,
3465, 3469, 3478, 3481, 3483, 3485, 3493, 3506, 3507, 3511, 3515, 3521, 3525, 3527, 3532, 3536,
3540, 3544, 3545, 3551, 3555, 3557, 3564, 3567, 3571, 3575, 3577, 3590, 3593, 3595, 3600, 3615,
3616, 3624, 3630, 3634, 3637, 3641, 3648, 3656, 3660, 3667, 3674, 3679, 3689, 3693, 3698, 3699,
3707, 3713, 3715, 3718, 3733, 3735, 3739, 3747, 3752, 3753, 3758, 3759, 3763, 3770, 3773, 3775,
3781, 3783, 3791, 3804, 3808, 3812, 3813, 3816, 3827, 3831, 3834, 3838, 3846, 3851, 3859, 3868,
3874, 3876, 3879, 3884, 3890, 3895, 3898, 3905, 3906, 3911, 3921, 3924, 3928, 3935, 3940, 3943,
3947, 3957, 3963, 3974, 3975, 3980, 3984, 3988, 3997, 4008, 4019, 4020, 4027, 4031, 4037, 4039,
4041, 4050, 4054, 4064, 4067, 4071, 4075, 4080, 4085, 4088, 4093, 4095, 4106, 4110, 4114, 4116,
4126, 4130, 4131, 4139, 4144, 4155, 4161, 4165, 4169, 4176, 4177, 4181, 4189, 4195, 4197, 4202,
4205, 4209, 4213, 4216, 4224, 4229, 4232, 4241, 4255, 4260, 4272, 4275, 4289, 4291, 4299, 4302,
4309, 4312, 4316, 4321, 4334, 4335, 4342, 4346, 4348, 4352, 4358, 4368, 4373, 4377, 4383, 4396,
4400, 4402, 4409, 4414, 4419, 4426, 4435, 4442, 4443, 4448, 4460, 4462, 4467, 4472, 4474, 4486,
4492, 4502, 4506, 4509, 4520, 4525, 4532, 4534, 4538, 4542, 4546, 4557, 4561, 4566, 4573, 4578,
4580, 4586, 4591, 4595, 4602, 4603, 4608, 4612, 4616, 4618, 4622, 4633, 4638, 4647, 4655, 4660,
4666, 4668, 4675, 4677, 4680, 4683, 4688, 4690, 4694, 4698, 4709, 4713, 4721, 4723, 4727, 4732,
4737, 4739, 4744, 4751, 4755, 4760, 4762, 4765, 4776, 4780, 4787, 4793, 4797, 4801, 4805, 4810)
Continued on next page
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Table A.6: Sharing indices of best shares for security order d = 2, functions of
n = 8 bits and algebraic degree t = 6. (Part 2)

Shares used

(4812, 4815, 4826, 4831, 4835, 4849, 4854, 4862, 4864, 4866, 4871, 4872, 4879, 4883, 4892, 4894,
4897, 4902, 4907, 4914, 4922, 4927, 4935, 4939, 4941, 4954, 4955, 4959, 4961, 4967, 4968, 4985,
4989, 4993, 4996, 5000, 5001, 5004, 5015, 5017, 5027, 5031, 5038, 5046, 5049, 5050, 5057, 5062,
5067, 5079, 5083, 5087, 5091, 5095, 5099, 5105, 5110, 5116, 5118, 5124, 5136, 5141, 5146, 5153,
5157, 5162, 5167, 5169, 5175, 5179, 5183, 5185, 5193, 5197, 5210, 5216, 5223, 5228, 5229, 5236,
5240, 5244, 5245, 5252, 5259, 5265, 5269, 5276, 5279, 5284, 5289, 5293, 5305, 5313, 5318, 5322,
5327, 5328, 5335, 5339, 5352, 5355, 5359, 5366, 5371, 5377, 5385, 5390, 5391, 5392, 5399, 5401,
5408, 5416, 5421, 5423, 5429, 5430, 5441, 5446, 5448, 5451, 5454, 5462, 5467, 5469, 5477, 5485,
5490, 5501, 5506, 5515, 5518, 5520, 5525, 5531, 5540, 5546, 5551, 5553, 5562, 5576, 5577, 5584,
5588, 5594, 5599, 5606, 5607, 5618, 5623, 5625, 5630, 5638, 5640, 5646, 5650, 5654, 5658, 5666,
5671, 5675, 5676, 5682, 5686, 5692, 5700, 5704, 5707, 5717, 5724, 5735, 5737, 5741, 5743, 5748,
5754, 5759, 5760, 5771, 5772, 5776, 5784, 5790, 5795, 5797, 5801, 5807, 5809, 5815, 5823, 5831,
5836, 5838, 5842, 5846, 5852, 5859, 5863, 5871, 5876, 5878, 5888, 5893, 5895, 5909, 5910, 5913,
5924, 5935, 5937, 5941, 5943, 5948, 5956, 5963, 5972, 5980, 5982, 5986, 5988, 5993, 6002, 6006,
6010, 6012, 6017, 6023, 6028, 6030, 6035, 6041, 6043, 6045, 6051, 6052, 6054, 6058, 6065, 6073,
6075, 6083, 6089, 6097, 6099, 6104, 6109, 6112, 6117, 6125, 6132, 6140, 6142, 6147, 6155, 6160,
6164, 6168, 6172, 6176, 6188, 6189, 6194, 6201, 6205, 6210, 6211, 6227, 6233, 6235, 6240, 6248,
6252, 6256, 6265, 6277, 6285, 6290, 6296, 6298, 6300, 6310, 6315, 6321, 6327, 6335, 6338, 6343,
6346, 6351, 6358, 6366, 6371, 6377, 6388, 6391, 6396, 6401, 6406, 6409, 6414, 6422, 6430, 6432,
6434, 6435, 6440, 6445, 6450, 6460, 6464, 6465, 6471, 6481, 6485, 6491, 6493, 6501, 6506, 6510,
6518, 6523, 6532, 6534, 6542, 6548, 6549, 6554, 6556)





Appendix B

AES Single Cycle d + 1 S-Box
Sharing

We present a sharing used to generate a single-cycle first-order d + 1 AES S-Box.
The sharing has 128 shares, and is created using Algorithm 4, represented using
D8

7-table below.
(0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 1, 1) (0, 0, 0, 0, 0, 1, 0, 1) (0, 0, 0, 0, 0, 1, 1, 0)

(0, 0, 0, 0, 1, 0, 0, 1) (0, 0, 0, 0, 1, 0, 1, 0) (0, 0, 0, 0, 1, 1, 0, 0) (0, 0, 0, 0, 1, 1, 1, 1)

(0, 0, 0, 1, 0, 0, 0, 1) (0, 0, 0, 1, 0, 0, 1, 0) (0, 0, 0, 1, 0, 1, 0, 0) (0, 0, 0, 1, 0, 1, 1, 1)

(0, 0, 0, 1, 1, 0, 0, 0) (0, 0, 0, 1, 1, 0, 1, 1) (0, 0, 0, 1, 1, 1, 0, 1) (0, 0, 0, 1, 1, 1, 1, 0)

(0, 0, 1, 0, 0, 0, 0, 1) (0, 0, 1, 0, 0, 0, 1, 0) (0, 0, 1, 0, 0, 1, 0, 0) (0, 0, 1, 0, 0, 1, 1, 1)

(0, 0, 1, 0, 1, 0, 0, 0) (0, 0, 1, 0, 1, 0, 1, 1) (0, 0, 1, 0, 1, 1, 0, 1) (0, 0, 1, 0, 1, 1, 1, 0)

(0, 0, 1, 1, 0, 0, 0, 0) (0, 0, 1, 1, 0, 0, 1, 1) (0, 0, 1, 1, 0, 1, 0, 1) (0, 0, 1, 1, 0, 1, 1, 0)

(0, 0, 1, 1, 1, 0, 0, 1) (0, 0, 1, 1, 1, 0, 1, 0) (0, 0, 1, 1, 1, 1, 0, 0) (0, 0, 1, 1, 1, 1, 1, 1)

(0, 1, 0, 0, 0, 0, 0, 1) (0, 1, 0, 0, 0, 0, 1, 0) (0, 1, 0, 0, 0, 1, 0, 0) (0, 1, 0, 0, 0, 1, 1, 1)

(0, 1, 0, 0, 1, 0, 0, 0) (0, 1, 0, 0, 1, 0, 1, 1) (0, 1, 0, 0, 1, 1, 0, 1) (0, 1, 0, 0, 1, 1, 1, 0)

(0, 1, 0, 1, 0, 0, 0, 0) (0, 1, 0, 1, 0, 0, 1, 1) (0, 1, 0, 1, 0, 1, 0, 1) (0, 1, 0, 1, 0, 1, 1, 0)

(0, 1, 0, 1, 1, 0, 0, 1) (0, 1, 0, 1, 1, 0, 1, 0) (0, 1, 0, 1, 1, 1, 0, 0) (0, 1, 0, 1, 1, 1, 1, 1)
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(0, 1, 1, 0, 0, 0, 0, 0) (0, 1, 1, 0, 0, 0, 1, 1) (0, 1, 1, 0, 0, 1, 0, 1) (0, 1, 1, 0, 0, 1, 1, 0)

(0, 1, 1, 0, 1, 0, 0, 1) (0, 1, 1, 0, 1, 0, 1, 0) (0, 1, 1, 0, 1, 1, 0, 0) (0, 1, 1, 0, 1, 1, 1, 1)

(0, 1, 1, 1, 0, 0, 0, 1) (0, 1, 1, 1, 0, 0, 1, 0) (0, 1, 1, 1, 0, 1, 0, 0) (0, 1, 1, 1, 0, 1, 1, 1)

(0, 1, 1, 1, 1, 0, 0, 0) (0, 1, 1, 1, 1, 0, 1, 1) (0, 1, 1, 1, 1, 1, 0, 1) (0, 1, 1, 1, 1, 1, 1, 0)

(1, 0, 0, 0, 0, 0, 0, 1) (1, 0, 0, 0, 0, 0, 1, 0) (1, 0, 0, 0, 0, 1, 0, 0) (1, 0, 0, 0, 0, 1, 1, 1)

(1, 0, 0, 0, 1, 0, 0, 0) (1, 0, 0, 0, 1, 0, 1, 1) (1, 0, 0, 0, 1, 1, 0, 1) (1, 0, 0, 0, 1, 1, 1, 0)

(1, 0, 0, 1, 0, 0, 0, 0) (1, 0, 0, 1, 0, 0, 1, 1) (1, 0, 0, 1, 0, 1, 0, 1) (1, 0, 0, 1, 0, 1, 1, 0)

(1, 0, 0, 1, 1, 0, 0, 1) (1, 0, 0, 1, 1, 0, 1, 0) (1, 0, 0, 1, 1, 1, 0, 0) (1, 0, 0, 1, 1, 1, 1, 1)

(1, 0, 1, 0, 0, 0, 0, 0) (1, 0, 1, 0, 0, 0, 1, 1) (1, 0, 1, 0, 0, 1, 0, 1) (1, 0, 1, 0, 0, 1, 1, 0)

(1, 0, 1, 0, 1, 0, 0, 1) (1, 0, 1, 0, 1, 0, 1, 0) (1, 0, 1, 0, 1, 1, 0, 0) (1, 0, 1, 0, 1, 1, 1, 1)

(1, 0, 1, 1, 0, 0, 0, 1) (1, 0, 1, 1, 0, 0, 1, 0) (1, 0, 1, 1, 0, 1, 0, 0) (1, 0, 1, 1, 0, 1, 1, 1)

(1, 0, 1, 1, 1, 0, 0, 0) (1, 0, 1, 1, 1, 0, 1, 1) (1, 0, 1, 1, 1, 1, 0, 1) (1, 0, 1, 1, 1, 1, 1, 0)

(1, 1, 0, 0, 0, 0, 0, 0) (1, 1, 0, 0, 0, 0, 1, 1) (1, 1, 0, 0, 0, 1, 0, 1) (1, 1, 0, 0, 0, 1, 1, 0)

(1, 1, 0, 0, 1, 0, 0, 1) (1, 1, 0, 0, 1, 0, 1, 0) (1, 1, 0, 0, 1, 1, 0, 0) (1, 1, 0, 0, 1, 1, 1, 1)

(1, 1, 0, 1, 0, 0, 0, 1) (1, 1, 0, 1, 0, 0, 1, 0) (1, 1, 0, 1, 0, 1, 0, 0) (1, 1, 0, 1, 0, 1, 1, 1)

(1, 1, 0, 1, 1, 0, 0, 0) (1, 1, 0, 1, 1, 0, 1, 1) (1, 1, 0, 1, 1, 1, 0, 1) (1, 1, 0, 1, 1, 1, 1, 0)

(1, 1, 1, 0, 0, 0, 0, 1) (1, 1, 1, 0, 0, 0, 1, 0) (1, 1, 1, 0, 0, 1, 0, 0) (1, 1, 1, 0, 0, 1, 1, 1)

(1, 1, 1, 0, 1, 0, 0, 0) (1, 1, 1, 0, 1, 0, 1, 1) (1, 1, 1, 0, 1, 1, 0, 1) (1, 1, 1, 0, 1, 1, 1, 0)

(1, 1, 1, 1, 0, 0, 0, 0) (1, 1, 1, 1, 0, 0, 1, 1) (1, 1, 1, 1, 0, 1, 0, 1) (1, 1, 1, 1, 0, 1, 1, 0)

(1, 1, 1, 1, 1, 0, 0, 1) (1, 1, 1, 1, 1, 0, 1, 0) (1, 1, 1, 1, 1, 1, 0, 0) (1, 1, 1, 1, 1, 1, 1, 1)



Appendix C

AES S-Box scheduling for
S-Box latency of 6, 7, 8, and
10

We provide AES pipeline schedules that enable maximal throughput of 20 cycles
per round as discussed in Section 5.4, for S-Box latencies of 6, 7, 8 and 10 cycles.
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Key update

21 24

23 24

25 30

25 30

22 24

18 24

25 30

25 30

State update

SRow update

8 27

1120

12 25

14 17

9 24

10 16

15 26

1319

MixCol update

21 28

21 28

18 26

18 26

21 28

21 28

18 26

18 26

S-Box Schedule

1 20

4 13

5 18
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2 17
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8 19

6 12
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11

14

16

15

Key

Figure C.1: S-Box pipeline schedule for S-Box latency of 6 cycles.

Key update

12 20

10 20

21 22

21 22

18 20
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21 22

21 22

State update

SRow update

14 21

1322

11 26

25 19

15 23

16 20

9 28

2724

MixCol update

25 29

25 29

21 28

21 28

25 29

25 29

21 28

21 28

S-Box Schedule

6 13

5 14

3 18

17 11

7 15

8 12

1 20

19 16
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9

4

2
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Key

Figure C.2: S-Box pipeline schedule for S-Box latency of 7 cycles.
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Key update

10 19

11 19

20 21

20 21

12 19

13 19

20 21

20 21

State update

SRow update

16 21

1420

25 28

27 19

17 22

15 23

24 29

2618

MixCol update

25 30

25 30

26 29

26 29

25 30

25 30

26 29

26 29

S-Box Schedule

7 12

5 11

16 19
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8 13

6 14
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17 9
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4

1

2

3

Key

Figure C.3: S-Box pipeline schedule for S-Box latency of 8 cycles.
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26 32
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Figure C.4: S-Box pipeline schedule for S-Box latency of 10 cycles.
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