
Reflecting on Self-Adaptive Software Systems

Jesper Andersson1, Rogerio de Lemos2, Sam Malek3, Danny Weyns4

1 Dept. of Computer Science, Växjö University, jesper.andersson@vxu.se
 2 Dept. of Informatics Engineering, University of Coimbra, rdelemos@dei.uc.pt

3 Dept. of Computer Science, George Mason University, smalek@gmu.edu
4 Dept. Computerwetenschappen, Katholieke Universiteit Leuven, danny.weyns@cs.kuleuven.be

Abstract

 Self-adaptability has been proposed as an effective

approach to automate the complexity associated with
the management of modern-day software systems.
While over the past decade we have witnessed
significant progress in the manner in which such
systems are designed, constructed, and deployed, there
is still a lack of consensus among the engineers on
some of the fundamental underlying concepts. In this
paper, we attempt to alleviate this issue by exploring
the crucial role of computational reflection in the
context of self-adaptive software systems. We show that
computational reflection forms the foundation of a self-
adaptive system, and an understanding of its properties
is a prerequisite to intelligent and predictable
construction of such systems. Examining several
systems in light of computational reflection has helped
us to identify a number of key challenges, which we
report on and propose as avenues of future research.

1. Introduction

As software engineers have developed new
technologies for managing the ever-increasing
complexity of constructing modern-day software
systems, it has become apparent that there is an equally
pressing need for mechanisms that automate and
simplify the adaptation and modification of software
systems after they are deployed. This has called for the
development of software systems with self-* (self-
configuring, self-healing, self-optimization, etc.)
capabilities. However, the development of such
systems has been shown to be significantly more
challenging than traditional, relatively more static and
predictable, software systems.

To that end, over the past decade, researchers and
practitioners have developed a variety of
methodologies and frameworks that are intended to
serve as guidelines for the design and development of
software systems with such characteristics
[1][9][10][14], which are named in this paper as self-

adaptive software systems. While these approaches
have been successful at alleviating some of the
associated challenges of constructing self-adaptive
software systems, numerous other challenges persist.
We have argued that the lack of consensus among
researchers on primitive and fundamental concepts to
be one of the main culprits in hindering further
progress in this area, and for that we have developed a
preliminary classification of self-adaptive software
systems in terms of their intrinsic properties [2].

To better understand the underlying principles of
self-adaptive software systems, in this paper we study
such systems through the prism of computational
reflection, i.e., executable logic dealing with the
system itself [11]. Computational reflection is an
established and well-understood concept in the
programming-in-the-small. It has traditionally been
studied at the level of programming languages and
realized using compiler technologies. We take the
position that the principles of computational reflection
are also applicable in the programming-in-the-large,
which represents the complex self-adaptive software
systems we are interested in our study.

The theory of computational reflection provides
our study with firm grounding. Maes argues that
reasoning about control, self-optimization, and learning
are examples of reflective computation [11]. Cazzola et
al. adopt the principles of computational reflection and
apply them at the software architecture level [5]. The
authors argue that architectural reflection provides a
conceptually clean model for designing self-adaptive
systems. Tanter et al. state that reflection is a powerful
approach for adapting the behavior of running
applications [16]. Coulson et al. argue for a reflective
middleware to support run-time reconfiguration of a
component-based target system [6].

Reflection is commonly used in the construction
of self-adaptive software systems,1 albeit often

1 For the exposition purpose we use the term reflection as a

shorthand way of referring to computational reflection. We
acknowledge that the general concept of reflection has been used
in a wide variety of contexts other than computation.

SEAMS’09, May 18-19, 2009, Vancouver, Canada
978-1-4244-3724-5/09/$25.00 © 2009 IEEE ICSE’09 Workshop38

unconsciously disguised under an assortment of other
terminologies. A self-adaptive software system is
essentially one that changes its behavior by reflecting
on itself. In this paper, we show that computational
reflection is a necessary criterion for any self-adaptive
software system. Clearly, understanding the role of
reflection in such systems is an important stepping
stone to unraveling the challenges associated with the
construction of such systems.

A thorough study of the literature has helped us to
identify a list of key reflection properties that can be
applied to self-adaptive systems. In turn, these
properties have helped us to discern the key, in some
cases hidden, characteristics of systems developed
previously in our respective research groups. This
exercise has illuminated the existence of a rich
spectrum of reflection techniques at the engineer’s
disposal. We believe a thorough understanding of the
implications of selecting one technique over another is
a prerequisite to intelligent and predictable
construction of self-adaptive systems.

Finally, our study has revealed several key
challenges with applying the principles of
computational reflection in the programming-in-the-
large. These challenges represent the essence of the
difficulty associated with the construction of self-
adaptive software systems. They serve as a guideline
for the future research in this area.

The rest of the paper is organized as follows.
Section 2 introduces a reference model for reflection.
Section 3 defines the “reflection prism”, where
properties described by Maes, Cazzola and Coulson are
reformulated and exemplified in the context of self-
adaptive systems. Section 4 applies the notion of
reflective prism to several systems from our respective
research groups, dealing with different application
domains, and compares the findings. Based on these
findings, we enumerate several challenges in Section 5.
The paper concludes with an outline of future work.

2. Reflection Reference Model

In this section we introduce the basic concepts of
computational reflection. Reflection is about meta-
computation, i.e., computation about computation.
Reflection was proposed by Smith as a programming
paradigm [15]. He describes self-knowledge as pivotal
in computational reflection. In her seminal paper [11],
Maes extends Smith’s work and provides a
comprehensive definition of computational reflection
as “the behavior exhibited by a reflective system”.

Figure 1 shows a reference model for reflection
that we have developed and rely on for explaining the
various properties of reflection. Figure 1a shows a
traditional computational system consisting of two
entities: system and domain. A system typically can be

broken down further to two parts: computation and
domain model. The computation part corresponds to
the application logic responsible for providing the
system’s functionality. The domain model is a
representation of the external world (e.g., business
problem) that drives the functionality. In other words,
the domain model is used by the computation part to
reason about and act upon changes in the environment.

An important property of any computational
system is the causal connection between the domain
model and domain (depicted in Figure 1a). This
relationship means that if the domain changes, the
domain model changes as well, and vice versa.
Moreover, we observe that through the domain model,
the computation part and the domain are also causally
related. The degree to which this causality is achieved
(enforced) depends on many factors. This is an issue
that will be revisited again in this paper.

So far, we have described a non-reflective system.
Reflection is, as stated before, computations about
computations, i.e., a computational system performs
computation about its own computation. If a
computational system is expected to reason about and
act upon itself, the system must reify a representation
of itself (self-representation). In Figure 1b we show the
reference model of a typical computational reflective
system. The system consists of two parts: meta-level
and base-level. The base-level provides the system’s
functionality. Very similar to a traditional software
system, the base-level also contains a computation part
and domain model. The meta-level provides the
reflective capability and consists of two parts: meta-
computation and meta-model. Meta-model is a
reification of the base-level. In other words, meta-
model is the self-representation of the system. Meta-
computation is the logic dealing with the changes in
the meta-model. In this paradigm, meta-model is
causally connected to the base-level system, where
changes in one are reflected in the other.

System

DomainDomain
ModelComputation

Base-Level Sub-System

DomainDomain
ModelComputation

Meta-Level Sub-System

Meta-
Computation

Meta-
Model

(a)

(b)

Reasons and
acts about

Causal
connection

Legend

System

Figure 1. (a) Traditional System, (b)

Reflective System.

39

The meta-computation may provide two types of
activities: introspection and intercession. Introspection
is when meta-computation inspects and reasons about
the self-representation. Intercession is when meta-
computation acts upon and modifies the system’s self-
representation (meta-model), which in turn through the
causal connection may result in the propagation of
change to the base-level.

3. Reflection Prism

To develop a better understanding of the important
role of reflection in self-adaptive software systems, we
performed a thorough study of the literature. Our
objective has been to identify (1) the crucial properties
of reflection, and (2) the variation points for each
property. In this section, we describe these properties
and delineate their importance using examples drawn
from well-known frameworks for self-adaptive
software systems.

In particular, we have heavily relied on three
previous works among others: the work by Maes [11]
that constitute a de facto reference point in the field of
computational reflection, and the work by Cazzola [5]
and Coulson [6] describing computational reflection in
the context of programming-in-the-large. For the
purposes of our research, the properties are
reformulated and exemplified in the context of
frameworks for self-adaptive software systems. We
have grouped the properties into a reflection prism
with three sides: Self-Representation, Reflective
Computation, and Separation of Concerns. Each of
these and their associated properties are discussed
below.

3.1. Self-Representation
Any computational system has a domain model,

which corresponds to the type of the application
domain (business problem) addressed by the system. In
a reflective system, there is a distinction between the
domain model and the self-representation. Self-
representation is a key characteristic of any reflective
software system. We have identified four key
properties associated with self-representation.

3.1.1. Type of Representation

A reflective system needs to have access to a
representation of itself. For the self-representation we
see two distinct approaches described by Maes [11]:
(1) procedural, the representation is part of the
implementation, and (2) declarative, the representation
is a stand-alone and independent entity. These two
cases represent the two end-points on a self-
representation continuum. In procedural reflection a
separate model is not maintained, i.e., the reflective

model is used to implement the system. This means
that causality is implicit, but on the other hand the
single model of procedural reflection must be
optimized for multiple usages (i.e., execution and
reflection). In declarative reflection at least two
models are maintained. With multiple models, each
model may be optimized for a more specific scope, but
multiple models require that the causality is achieved
by means of an implementation.

3.1.2. Granularity

Granularity refers to the smallest element of base-
level that is reified in the meta-model. The granularity
of meta-models pose engineering trade-offs [4]. A fine
granularity permits more flexibility and modularity at
the cost of larger and more complex models. In the
programming-in-the-small, the meta-models typically
consist of entities at the granularity of classes, objects,
methods, method calls, and so on. On the other hand, in
the programming-in-the-large, the meta-models
typically consist of components, connectors, ports,
ducts, styles, events, and so on [6][9][12][14].

3.1.3. Uniformity

Uniformity deals with the degree of variability in
the representation of base-level constructs that can be
reflected upon. In other words, uniformity is a measure
of the homogeneity in meta-models. Maes identifies
uniformity as a key criterion for reflective object-
oriented systems, and proposes a programming
language 3-KRS, whereby every programming
language construct is represented as an object, and
every object is accompanied with a meta-level
equivalent [11]. In the programming-in-the-large, the
uniform property can be achieved at a particular level
of granularity (recall Section 3.1.2). For instance, the
UCI framework provides a self-representation of all the
architecturally significant constructs via the equivalent
meta-model constructs. Each C2 architectural construct
is realized as an object in C2 framework [14], and each
object has a corresponding meta-model construct in
C2SADL [12].

3.1.4. Completeness

This property expresses whether the information
represented in the meta-level is complete [11]. It deals
with the extent of information about the base-level
system that is available in the meta-level. The
completeness has been identified as a crucial property
in the context of reflective object-oriented
programming languages. The 3-KRS system proposed
by Maes uses the meta-level information available
about language construct to realize the language
interpreter. In the programming-in-the-large, where the
meta-models are typically represented at the
granularity of the architecture, completeness

40

corresponds to the information available about the
various architectural constructs: component and
connector connections, ports and ducts used for the
linkage, component dependencies in terms of required
and provided interfaces, and so on. The reflective
middleware approach in OpenCom provides
architecture meta-model and an interface meta-model
representing the topology of the current set of
components within a system and their interactions
points [6]. The reflective middleware uses the meta-
models for course-grained inspection and adaptation of
the structure and behavior of the system at run-time.

3.2. Reflective Computation
The rationale for using reflection in a system

varies, and the behavioral properties of a reflective
system affect several system properties. These
together, make up the reflective computation side of
the prism.

3.2.1. Type of Reflection

A reflective programming language allows for
systems developed using it to reflect on the language
construct and potentially modify them. At this level,
two distinct reflection variations have been identified:
structural and behavioral. Structural reflection [8] is
concerned with the reification of structural program
aspects, such as data types. Behavioral reflection [11]
is concerned with the reification of computations and
their behavior. In practice this means that structural
reflection provides access to an application’s static
structure, such as classes, attributes, and method
definitions, while behavioral reflection provides access
to the dynamic structures, such as objects’ state,
messages, and call stack.

Cazzola [5] also identifies two types of reflection
at the architectural level that are closely related:
topological and strategic. A system with topological
reflection capability performs computations about its
own configuration. Examples of reflective activities
include the addition and removal of architectural
elements. Strategic reflection is concerned with system
coordination [7]. For example, observations made on
state reifications may trigger change to some
coordination policy. Topological and strategic
reflections respectively realize structural and
behavioral reflections at the architectural level
(programming-in-the-large).

3.2.2. Causality

Two entities are causally connected if they are
linked in such a way that if one of them changes, it
leads to a corresponding effect upon the other [11].

In a self-adaptive system two types of causal
relationship may exist. The first type of causal

relationship is between a system and the domain in
which it is deployed. This type of causal relationship is
more generally applicable to traditional software
systems as well. For example, an autonomous vehicle
system has a representation of the domain (e.g., road,
cars, traffic lights), and changes in the domain (e.g.,
movement of other cars on the road) may result in
updating the representation of the domain. This in turn
may result in a response from the system (e.g., new
steering direction), which corresponds to the
functionality expected of the system.

The second type of causal relationship is between
a system and its self-representation. For instance, in
the case of the autonomous vehicle, the system may
have a representation of itself (e.g., an architectural
model). This self-representation may be causally
connected to the running system, in which case
changes on the self-representation (e.g., adding a
component) would result in changes on the software
system and vice versa. In the architecture-based
approach to self-adaptive software, Oreizy et al. argue
for a strict correspondence between the architectural
model (at the meta-level) and the executing
implementation [14]. The authors propose an
Architecture Evolution Manager (AEM). The AEM
maintains consistency as changes are applied, reifies
changes in the architectural model to the
implementation, and prevents changes from violating
architectural constraints.

3.2.3. Level Shifts

A level shift happens when the computation
switches context from base-level to meta-level and
back [4]. A level shift is facilitated using traps.
Designated base-entity actions are trapped (caught) by
a meta-entity, which performs a meta-computation,
then it allows such base-entity to perform the action.
Examples of traps in an object oriented context
include, among others, access to attributes, method
calls, and instance creations. Traps in the
programming-in-the-large paradigm are realized using
probes and gauges [9]. Probes are the system-level
units that perform measurements and data collection
(e.g., available bandwidth on a network link, interface
invocation frequency). Gauges are used to identify
particular patterns in the data obtained using probes. If
gauges identify changes in the monitored data that
violate the system’s objectives, meta-computing
regarding the system is initiated.

3.2.4. Frequency of Shifts

This is a measure of how frequently the level
shifts occur. Level shifts have an impact on the
system’s performance. How frequently a system shifts
levels is an important criteria in the design of both
reflective programming language and self-adaptive

41

systems. An important responsibility of gauges is to
filter unnecessary level shifts and minimize the
overhead of meta-level computing [9].

3.3. Separation of Concerns
Separation of concerns is a principle tool in any

problem solving toolbox. In the context of reflective
computation, separation of concerns is pivotal as the
reflective behavior itself increases the system’s overall
complexity. If the reflective system is able to support
separate models of different system aspects, possibly at
different reflective levels, the overall complexity may
be reduced. In this prism surface you find the
following properties.

3.3.1. Disciplined Split

Maes emphasizes the importance of a clear
separation between the base-level and the meta-level of
a reflective system and a causal connection between
the models at both levels [11]. The base-level uses the
domain model to reason about the domain and provide
the system’s expected functionality. The meta-level
uses the self-representation to reason about the system
itself and act upon the system. Consistency is achieved
through casually connected models where a change to
any of the models is immediately reflected in the other
(recall Section 3.2.2). An explicit separation between
the domain model and the self-representation is
important, given the fact that the two levels deal with
different types of concerns. Base-level computation is
the common computation we use in every software
system. A simple example of a meta-level computation
is to keep performance statistics. An advanced example
is the scenario described in [9] in which an adaptation
engine monitors the response time of a group of servers
to client requests and either adds a server in case the
server group’s load exceeds a predefined threshold, or
moves the client to another group in case the available
bandwidth between the client and the current server
group drops too low. The authors of OpenCom argue
that the reflective infrastructure (reflective extensions)
help to maintain an architectural separation of concerns
between system building and system configuration and
adaptation [6].

3.3.2. Transparency

This property refers to the extent to which
system’s base-level is “unaware” of the “reflective
levels”. The degree of transparency is measured by the
number of changes that must be made to the base-level
to integrate with the meta-level. For example, in the
IBM’s autonomic computing architecture [1], the
interfacing with managed resources is handled with
manageability endpoints (touchpoints). The Autonomic
Integrated Development Environment (AIDE) enables a

developer to describe the manageability capabilities of
a managed resource and build automatically
manageability interface, transparently to the managed
resource. The AIDE tool supports the generation of the
manageability capabilities required by WSDM [20]
and also the manageability capability defined to
represent a Java EE server.

3.3.3. Hierarchy

A reflective system may be hierarchical and allow
for several layers, where each layer n reflects on layer
n-1 and is reflected upon by layer n+1. In other words,
models for reflection are defined at different levels of
abstraction. Maes discusses reflection at the
programming language level. More recent works
discuss reflection at the level of architectural constructs
[5][6] and aspects [17]. The critical element here is to
maintain model consistency when the semantic gap
between the models is widened. Cazzola and
colleagues address this problem through actuators and
system state abstractions [5]. In IBM’s autonomic
computing architecture, several autonomic elements
can be arranged in hierarchies [1]. Kramer and Magee
propose a two layer hierarchy, where one layer reacts
to exceptions in the base-level by deploying change
plans. If no suitable plan is available, computations
shift to the top layer, where new plans may be derived
in line with the system’s overall goals and the current
situation [10].

3.3.4. Extensibility

This property deals with how one may reuse,
adapt, combine, and integrate reflective layers to form
a new reflective tower system [4]. A reflective system
is considered extensible, if it is possible to specify new
meta-level concerns. As an example, consider a system
where the base-level provides the system’s
functionality and reflective layers that extend the
system with support for fault tolerance and persistency.
The reflective system is extensible if it can be easily
extended with support for another non-functional
concern, for example self-optimization. Related to the
notion of extensibility is the number of different
models that are reflected upon. Okamura, discusses
multi model reflection in the context of distributed
systems [13]. The inclusion of multiple models for
reflection is critical in this domain. However, multiple
models add complexity, which affects both the models
consistency and the reification performance. One
example of extensibility is the orchestration autonomic
elements, IBM suggests in their architecture [10]. In
OpenCom, the reflective middleware provides an
extensible set of orthogonal meta-models, each of
which is optional and can be dynamically loaded when
required, and unloaded when no longer required [6].

42

4. Case Studies

We performed several case studies from different
application domains with the intent to exemplify the
crucial properties of the reflection prism and their
variation points. For brevity we present two of these
case studies below.

4.1. Self-Healing Traffic Monitoring
Cameras

Providing scalable solutions for traffic monitoring
is an important challenge in intelligent transportation
systems. Figure 2 shows an excerpt of a multi-agent
system architecture for traffic monitoring. Each node
in the system comprises an intelligent camera on which
a software agent is deployed that is able to process data
of the monitored traffic and communicate with agents
on other cameras. The task of the camera agents is to
detect and monitor traffic jams on a highway in a
decentralized way, avoiding the bottleneck of a
centralized control center. Possible clients of the
monitoring system are traffic light controllers, driver
assistance systems, etc. Since traffic jams can span the
viewing range of multiple cameras and can
dynamically grow and dissolve, camera agents have to
collaborate and distribute the aggregated data to the
clients. In a realistic distributed setting, we must
consider failures as an essential part of the dynamic
environment. Failures will bring the system to an
inconsistent state and probably disrupt its services. To
make the system capable of dealing with failure
dynamics, we have extended the camera with a self-
healing subsystem.

The self-healing subsystem monitors the camera
base system for failures and only interferes in its
operation when a failure occurs. To that end, the self-
healing subsystem maintains a dependency model of
the camera. The dependencies represented in the model
can be architectural, e.g., a connector between
interacting components, but also logical, e.g., a
commitment between agents. Currently the
dependency model is specified at design time. More
specifically, the camera is designed to provide a set of
interfaces, which allow the self-healing subsystem to
query the current values of the relevant dependencies
and perform repair actions when a failure occurs
according to the applicable repair scenario. To check
whether a dependency is still valid, the subsystem
periodically requests alive signals from the dependent
nodes in the dependency model using the existing
communication functionalities of the camera as shown
in Figure 2. Repair actions bring the camera back to a
consistent state. Examples are updating the set of
references to neighboring cameras, removing a
commitment with an agent, and removing a

communication link in the agent middleware.
Currently, the self-healing subsystems only apply local
repair actions, i.e., each subsystem locally monitors the
dependencies and engages in local repair actions when
a failure is detected. There are no negotiations between
subsystems with respect to repair actions. The idea is
just to bring the camera back to a consistent state from
which it can continue its correct operation
autonomously. However, more advanced repair actions
are possible, such as executing an election protocol to
reestablish an ongoing collaboration between agents
from which the coordinator has failed. We now apply
the reflective prism to the self-healing traffic
monitoring cameras.

4.1.1. Self-representation

Type of Representation. The self-representation is
declarative and consists of the dependency model that
provides a representation of the dependencies of the
base system with respect to self-healing.
Granularity. The dependencies refer to diverse
aspects of the system ranging from primitive data types
such as the identity of a neighboring camera agent to
high-level concepts such as a commitment among
agents.
Uniformity. Dependencies maintained in the self-
representation are uniformly specified and represented
as objects.
Completeness. The self-healing subsystem maintains a
partial representation of the camera, i.e., only the
dependencies relevant for self-healing are part of the
dependency model. The self-representation changes
dynamically as the state of the system evolves over
time.

4.1.2. Reflective Computation

Type of Reflection. The self-healing subsystem is
concerned with structural aspects as well as behavioral
aspects of the camera. More specific, referring to
Cazzola [4], the self-healing subsystem includes

Figure 2. Architecture for Self-Healing Traffic
Monitoring Cameras.

43

aspects of topological as well as strategic reflection,
although the latter is not exploited to its full extent,
since currently only local repair actions are supported.
Distributed repair actions would enable changing the
coordination among agents when necessary.
Causality. The causality between the domain and the
domain model of the camera is established through the
monitoring of the traffic conditions. Guarantees about
the causality are based on best effort. To establish a
causal connection between the camera and the self-
representation, the self-healing subsystem monitors the
camera via dedicated interfaces. The dependencies of
the camera with cameras on other nodes refer to the
availability of other cameras and can be considered as
part of the domain. The causality between these
representations and the actual status of the cameras is
based on the exchange of alive messages among
cameras. Guarantees about the causality are based on
best effort.
Level Shifts. The self-healing subsystem interferes
with the camera only when a failure is detected.
However, background activities are required to
maintain the self-representation. As explained above,
the camera provides dedicated interfaces that allow the
self-healing subsystem to monitor the relevant aspects
of the camera and perform repair actions when needed.
Frequency of Shifts. Since node failures are expected
to happen rarely, the frequency of level shifts is very
low.

4.1.3. Separations of Concerns

Disciplined Split. The self-healing subsystem is
concerned with node failures. The subsystem cleanly
separates this concern from the domain concerns of the
camera (i.e., monitoring traffic jams and informing
interested clients).
Transparency. In the current version of the system,
the camera is designed to support self-management.
Dedicated interfaces enable the self-healing subsystem
to access the camera, so there is no transparency.
Ongoing research investigates how techniques from
aspect-orientation enable a clean separation of
concerns. Nevertheless, whether self-healing can be
achieved in a non-invasive manner remains an open
research question.
Hierarchy. The self-healing subsystem is a single
layer reflective system. The policy of self-healing is
encoded in the dependency model and the repair
scenarios. In order to deal with additional, probably
more complex failure scenarios, an additional layer
may be introduced that reflects on the activities of the
self-healing subsystem and adapts the repair policy or
selects an alternative policy under certain conditions.
Extensibility. The current self-healing subsystem is
conceived as an independent reflective subsystem.
Extensibility and reuse were not main concerns in the

design of the subsystem. The aspect-oriented approach
referred to above aims to bring these important quality
attributes to the forefront.

4.2. High-Performance Computing
The concrete application for this scenario is a

sensor network. It consists of geographically
distributed digital receptor units connected to
computing facilities with a high-speed network. In this
scenario, the system should dynamically schedule and
deploy experiments. The problem is that experiments
and analyses often are data-parallel programs that must
be scheduled on the underlying hardware architecture.
To address these issues we have developed the
Dynamic Model-Driven Architecture (DMDA).

The DMDA is a platform that combines three
architectural principles, Model Driven Architecture
(MDA), layered architectures, and dynamism. These
three combine into an architecture that supports: (1)
programmability, since end-users, i.e., experiment
developers, are mainly non-computer scientists, the
development and deployment of the application must
be intuitive and straightforward, (2) adaptability, the
platform must have means to deal with run-time
change to continuously satisfy QoS requirements,
including changed conditions in the observed world
and resource availability.

A DMDA level, depicted in Figure 3, includes
pairs of Adaptation Engines and System models
organized in layers. In this architectural principle each
level is similar to the reflective reference model
described above. The bottommost level interfaces with
the running system directly or indirectly via a system
model. Each level contains a Generator that produces
new/updated models, a set of Actuators that achieve
intercession on the system models using a set of
Probes that introspects the models, and a Coordinator
which is responsible for coordinating actions and
probing the layer immediately above to maintain model
causality. We now apply the reflective prism.

4.2.1. Self-Representation

Type of Representation. The self-representation is a
separate entity and not part of the base-level
implementation.
Granularity. The self-representation granularity in our
current implementation is task. Each task corresponds
to some piece of code to be executed on a processor in
the system.
Uniformity. The self-representation is not uniform.
The self-representation is structured and represented
differently at different layers in the current
implementation.
Completeness. The self-representation is partial. The
available information is restricted to task structures,

44

and the information forwarded from probes and
retrieved by coordinators.

4.2.2. Reflective Computation

Type of Reflection. The reflection is structural, for
instance, generating new deployments, and behavioral,
e.g., when QoS parameters are changed.
Causality. Causality needs to be investigated from two
perspectives. DMDA is a platform and hence not
responsible for maintaining causality for applications
running in the system. The domain of the DMDA is
parallel computing. The causality between the base-
level and meta-level is maintained by restricting the
capabilities of a task on the base-level. Structural
system modification is the result of a deployment
action initiated by the DMDA system. Changes to the
executing system, for instance, node failures, should be
probed and information concerning such changes
forwarded to the DMDA system. Within the reflective
system causality is dealt by the Coordinator, in a
similar manner.
Level Shifts. Level shifts may be triggered from the
top-down or bottom-up. If a new experiment is added
to the platform, this triggers a level shift top-down
where the new experiment is scheduled and prepared
for deployment, while a node failure triggers a bottom-
up shift.
Frequency of Shifts. Level shifts are assumed to
happen rarely, hence the frequency is considered to be
low.

4.2.3. Separation of Concerns

Disciplined Split. The split between the base-level and
the bottommost meta-layer is disciplined. In the
DMDA, the base level hosts experiments, while the
meta level is dealing with the management of
experiments. The meta-level retrieves application
specific information from the base-level to support
decision making and construction of management
directives.
Transparency. The current system implementation is
not transparent. The base system contains probe and
actuator programs. The nature of a data-parallel
application requires that all code is scheduled on the
target machine; hence this kind of functionality is a
part of the base-level system.
Hierarchy. DMDA is a multi-layer reflective system.
Each layer is a reflective system working on layer
specific models and communicates only with the level
immediately below and actions on “higher levels” are
“triggered” by probes.
Extensibility. The layered structure of the DMDA
reference architecture conceptually makes it easy to
add a new layer. In practice it is not as straightforward
since models must be adjusted to layers immediately
above and beneath. The current DMDA

implementation is restricted to one property, i.e.,
performance (completion time). We have tested other
criteria but not combinations of criteria. Hence, we
cannot express how extensible the system currently is.

5. Challenges

The application of reflective prism to different
case studies has led us to identify key challenges when
building self-adaptive systems. The following list of
challenges should not be considered exhaustive. They
have been grouped in key headings, but most are
highly interrelated.

5.1. Expressiveness of Self-Representation
Self-adaptive software systems require a

representation of the system at a suitable level of
abstraction. Our experience indicates that software
architecture has been shown to provide an appropriate
level of granularity for self-representation. A variety of
Architectural Description Languages (ADLs) [12] have
been utilized for modeling a software system’s
architecture. However, the existing ADLs suffer from
several shortcomings when employed for self-
representation.

Firstly, our study has revealed that in the
programming-in-the-large the notion of domain plays
an important role that must be accounted for at the
meta-model level. At the same time, existing research
on ADLs has often focused on providing generic
solutions for modeling the base-level characteristics
[12], while in most self-adaptive systems there is an
intrinsic causal relationship between the system’s
domain and its self-representation that needs to be
represented. Moreover, the majority of existing ADLs
are intended for modeling the design decisions, and
less suitable for representing the dynamic, in some case
unpredictable, behavior of self-adaptive systems at run-
time. We believe further research is needed in the
development of domain-specific ADLs that
incorporates not only the system’s properties, but also
domain characteristics. This could pave the way in
managing the causal relationship between the domain
and self-representation.

Figure 3. DMDA Reference Architecture.

45

Secondly, most existing ADLs do not provide
adequate expressiveness for the level of dynamism that
characterizes self-adaptive software systems.
Moreover, an ADL intended for self-adaptive software
systems needs to provide support for distinguishing
between the base-level and meta-level representations.
ADLs in this setting should also account for the
complexity of self-representation in distributed setting.

5.2. Meta-Level Conflicts
Self-adaptation is concerned with preserving or

changing a system’s functionality and quality footprint.
Ever-present grand challenges for software engineers
are extensibility and composability. A seamless
introduction of this kind of support in a self-adaptive
system requires multiple-model and multiple meta-
computation support. In our study we have experienced
a number of problems related to managing multiple
models at the meta-level. For example, in the DMDA,
each layer uses one or more models, it also interfaces
with models on other layers. How to effectively
manage all models and adapt functionality for seamless
model integration remains an issue

Maintaining multiple models brings several
challenging research issues to the table; multi-model
consistency and multi-model causality are two
examples. In addition, multiple models require that
mechanisms for uniformity are developed that can
bridge currently heterogeneous representations.

A seamless integration of meta-level computations
is another challenge. Multiple meta-level computations
may, for instance, realize several quality attributes and
extensive support is critical for the system’s
extensibility. In the long term, we may see
configurable standard models and computations, which
represent specific system aspects, integrated and reused
in self-adaptive systems. In this setting, model
management frameworks provide developers with a
standardized, yet configurable, architecture for
efficient management of multiple aspects in self-
adaptive software systems.

5.3. Uncertainty
In order to perform its reflective computation

properly, a self-adaptive system needs an accurate self-
representation. Typically, this representation is an
abstraction of (particular aspects of) the base-level
system. In addition, a self-adaptive system often needs
to take into account domain information. For example,
in the self-healing traffic monitoring cameras, a self-
healing subsystem requires information about the
status of cameras on other nodes.

The need for an abstract representation of the
base-level system and domain information introduce
uncertainty. First, uncertainty can result from

inaccurate models. Providing an abstract representation
of the base-level may introduce certain inaccuracies,
which also cannot be avoided when modeling relevant
aspects of the domain. Second, uncertainty can be
caused as a result of ensuring causality. Implementing
causality is challenging, in particular in uncertain real-
world settings. Since in general one can have no
guarantees about the domain, if causality cannot be
ensured, the lack of consistency between the domain
and its model introduces uncertainty when using this
model to adapt the base-level of the system.

Tackling the problems related to uncertainty is
challenging. In particular since some of the causes of
the problems are not under control of the designer. To
deal with the challenges of uncertainty, we need (1)
suitable languages that abstract self-representations
(see Section 5.1), (2) domain models that take into
account uncertainty explicitly, (3) disciplined
approaches for maintaining causality between the
different types of models at run-time (see Section 5.2).

5.4. Autonomy
A self-adaptive system is expected to act

autonomously, i.e., based on its self-representation, and
the ability to interpret and manipulate this
representation, the system should be able to make its
own decisions for achieving some goal. One way for
achieving autonomy is to make use of feedback control
loops that incorporate the principles associated with
monitoring-analysis-plan-execute (MAPE) from
autonomic computing [1]. While the “plan” activity
provides the ability for the system to reason about
itself, the feedback loop provides the necessary
robustness to deal with uncertainty. Since a system
depending on its different goals might have several
representations of self, a clear challenge that emerges
is how to solve meta-level conflicts (see Section 5.2).
In addition, such systems should not be considered in
isolation, they are usually part of larger more complex
systems. To deal with scalability, these systems are
typically decentralized, which raises further challenges.
How to achieve self-representation in decentralized
setting? How to identify and achieve a common goal?
How conflicts in the process of decision making can be
solved in such a setting?

5.5. Transparency
While it may be straightforward to achieve

transparency for reflective programming languages, it
is a major challenge for complex self-adaptive software
systems. Techniques for probing and actuating have
been proposed in various frameworks (e.g., touchpoints
[1], probes and effectors [9]). However, the degree to
which these techniques can be implemented
transparently to the base system is not well studied. A

46

promising idea to achieve transparency is to employ
techniques from aspect-orientation [19]. On the other
hand, since for many concerns considered in self-
adaptive systems (self-healing is a typical example)
there is a tight connection between the base system and
the meta-system, one can argue that instead of aiming
for full transparency, it might be better to develop
disciplined approaches that integrate a base system
with a meta-system. In line with this idea, some
researchers have proposed new component models to
build self-adaptive systems. An interesting example is
the Fractal component model that endows system
components with customized introspection and
intercession capabilities [3].

5.6. Performance
A commonly-cited disadvantage of interception is

that it incurs an inherent performance overhead.
Interception typically requires bindings to support a
level shift. In general, research on self-adaptive system
pay little attention on performance issues. Example
approaches that provide dedicated support for
interception based on the requirements of the
application at hand are proposed in [3] and [6].

6. Conclusion

Development of self-adaptive software systems
poses significant challenges to the software
engineering community. These challenges are
exacerbated by a lack of consensus among researchers
on very fundamental concepts. We have attempted to
alleviate this issue by exploring the crucial role of
computational reflection in the context of self-adaptive
systems. Our study resulted in the identification of key
reflection properties and their variation points.
Analyzing several self-adaptive software systems from
different domains in light of these properties has
helped us to verify our initial hypothesis that reflection
is a necessary criterion for any self-adaptive software
system. Moreover, our experience shows that while the
theory of computational reflection, which was initially
developed by the programming languages researchers,
provides firm grounding for the study of self-adaptive
system, it needs to be extended to accommodate the
unique challenges posed by the programming-in-the-
large. We hope these results can serve as an impetus to
propel the future research in this area.

7. Acknowledgments

This work is partially supported by grant CCF-
0820060 from the National Science Foundation, and
the Research Foundation Flanders (FWO).

8. References

[1] An Architectural Blueprint for Autonomic Computing,
IBM White Paper, 2006.

[2] J. Andersson, et al. Towards a Classification of Self-
Adaptive Software System. Software Engineering for
Self-Adaptive Systems, Eds. B. H. C. Cheng, et al.
LNCS, 2009. (to appear)

[3] E. Bruneton, et al. The Fractal Component Model and
Its Support in Java. Journal of Software Practice and
Experience, 36(11-12), 2006.

[4] W. Cazzola. Evaluation of Object-Oriented Reflective
Models. Workshop on Reflective Object-Oriented
Programming and Systems, London, 386-387.

[5] W. Cazzola, et al. Rule-Based Strategic Reflection:
Observing and Modifying Behaviour at the
Architectural Level. Int’l Conf. on Automated Software
Engineering, Oct 1999.

[6] G. Coulson, et al. A Generic Component Model for
Building Systems Software, ACM Transactions on
Computer Systems, 26(1), 2008.

[7] C. E. Cuesta, et al. Dynamic Coordination Architecture
through the Use of Reflection. ACM Symposium on
Applied Computing, Las Vegas, Nevada, 2001.

[8] J. Ferber. Computational Reflection in Class Based
Object-Oriented Languages. OOPSLA, New Orleans,
Louisiana, October, 1989.

[9] D. Garlan, et al. Rainbow: Architecture-Based Self-
Adaptation with Reusable Infrastructure. IEEE
Computer, Vol. 37, No. 10, pp. 46-54, Oct 2004.

[10] J. Kramer, and J. Magee. Self-Managed Systems: an
Architectural Challenge. Int’l Conf. on Software
Engineering, Minneapolis, Minnesota, May 2007.

[11] P. Maes. Concepts and Experiments in Computational
Reflection. OOPSLA, Orlando, FL, Oct 1977.

[12] N. Medvidovic, et al. A Classification and Comparison
Framework for Software Architecture Description
Languages. IEEE Trans. on Soft. Eng., vol. 26, 2000.

[13] H. Okamura, Y. Ishikawa, and M. Tokoro. AL-1/d: A
Distributed Programming System with Multi-Model
Reflection Framework. Workshop on New Models for
Software Architecture, November 1992.

[14] P. Oreizy, et al. Architecture-Based Runtime Software
Evolution. ICSE, Kyoto, Japan, May 1998.

[15] B. C. Smith. Reflection and Semantics in LISP.
Symposium on Principles of Programming Languages,
Salt Lake City, Utah, 1984.

[16] E. Tanter, et al. Partial Behavioral Reflection: Spatial
and Temporal Selection of Reification, OOPSLA,
Anaheim, CA, 2003.

[17] E. Tanter. From Metaobject Protocols to Versatile
Kernels for Aspect-Oriented Programming. PhD Thesis,
University of Chile, 2004.

[18] F. Tisato et al. Architectural Reflection: Realising
Software Architectures via Reflective Activities. W.
Emmerich and S. Tai, Eds. LNCS 1999, London, 2001.

[19] E. Truyen and W. Joosen, Towards an aspect-oriented
architecture for self-adaptive frameworks. Workshop on
Aspects, Components, and Patterns for Infrastructure
Software, Brussels, Belgium, 2008.

[20] WSDM 1.1 OASIS Standard, 2006.

47

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Also by Rogerio de Lemos
	Also by Danny Weyns
