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Abstract 

 
 Self-adaptability has been proposed as an effective 

approach to automate the complexity associated with 
the management of modern-day software systems. 
While over the past decade we have witnessed 
significant progress in the manner in which such 
systems are designed, constructed, and deployed, there 
is still a lack of consensus among the engineers on 
some of the fundamental underlying concepts. In this 
paper, we attempt to alleviate this issue by exploring 
the crucial role of computational reflection in the 
context of self-adaptive software systems. We show that 
computational reflection forms the foundation of a self-
adaptive system, and an understanding of its properties 
is a prerequisite to intelligent and predictable 
construction of such systems. Examining several 
systems in light of computational reflection has helped 
us to identify a number of key challenges, which we 
report on and propose as avenues of future research.  

1. Introduction 

As software engineers have developed new 
technologies for managing the ever-increasing 
complexity of constructing modern-day software 
systems, it has become apparent that there is an equally 
pressing need for mechanisms that automate and 
simplify the adaptation and modification of software 
systems after they are deployed. This has called for the 
development of software systems with self-* (self-
configuring, self-healing, self-optimization, etc.) 
capabilities. However, the development of such 
systems has been shown to be significantly more 
challenging than traditional, relatively more static and 
predictable, software systems.  

To that end, over the past decade, researchers and 
practitioners have developed a variety of 
methodologies and frameworks that are intended to 
serve as guidelines for the design and development of 
software systems with such characteristics 
[1][9][10][14], which are named in this paper as self-

adaptive software systems. While these approaches 
have been successful at alleviating some of the 
associated challenges of constructing self-adaptive 
software systems, numerous other challenges persist. 
We have argued that the lack of consensus among 
researchers on primitive and fundamental concepts to 
be one of the main culprits in hindering further 
progress in this area, and for that we have developed a 
preliminary classification of self-adaptive software 
systems in terms of their intrinsic properties [2].  

To better understand the underlying principles of 
self-adaptive software systems, in this paper we study 
such systems through the prism of computational 
reflection, i.e., executable logic dealing with the 
system itself [11]. Computational reflection is an 
established and well-understood concept in the 
programming-in-the-small. It has traditionally been 
studied at the level of programming languages and 
realized using compiler technologies. We take the 
position that the principles of computational reflection 
are also applicable in the programming-in-the-large, 
which represents the complex self-adaptive software 
systems we are interested in our study.  

The theory of computational reflection provides 
our study with firm grounding. Maes argues that 
reasoning about control, self-optimization, and learning 
are examples of reflective computation [11]. Cazzola et 
al. adopt the principles of computational reflection and 
apply them at the software architecture level [5]. The 
authors argue that architectural reflection provides a 
conceptually clean model for designing self-adaptive 
systems. Tanter et al. state that reflection is a powerful 
approach for adapting the behavior of running 
applications [16]. Coulson et al. argue for a reflective 
middleware to support run-time reconfiguration of a 
component-based target system [6]. 

Reflection is commonly used in the construction 
of self-adaptive software systems,1 albeit often 

                                                           
1  For the exposition purpose we use the term reflection as a 

shorthand way of referring to computational reflection. We 
acknowledge that the general concept of reflection has been used 
in a wide variety of contexts other than computation. 
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unconsciously disguised under an assortment of other 
terminologies. A self-adaptive software system is 
essentially one that changes its behavior by reflecting 
on itself. In this paper, we show that computational 
reflection is a necessary criterion for any self-adaptive 
software system. Clearly, understanding the role of 
reflection in such systems is an important stepping 
stone to unraveling the challenges associated with the 
construction of such systems.  

A thorough study of the literature has helped us to 
identify a list of key reflection properties that can be 
applied to self-adaptive systems. In turn, these 
properties have helped us to discern the key, in some 
cases hidden, characteristics of systems developed 
previously in our respective research groups. This 
exercise has illuminated the existence of a rich 
spectrum of reflection techniques at the engineer’s 
disposal. We believe a thorough understanding of the 
implications of selecting one technique over another is 
a prerequisite to intelligent and predictable 
construction of self-adaptive systems.  

Finally, our study has revealed several key 
challenges with applying the principles of 
computational reflection in the programming-in-the-
large. These challenges represent the essence of the 
difficulty associated with the construction of self-
adaptive software systems. They serve as a guideline 
for the future research in this area.  

The rest of the paper is organized as follows. 
Section 2 introduces a reference model for reflection. 
Section 3 defines the “reflection prism”, where 
properties described by Maes, Cazzola and Coulson are 
reformulated and exemplified in the context of self-
adaptive systems. Section 4 applies the notion of 
reflective prism to several systems from our respective 
research groups, dealing with different application 
domains, and compares the findings. Based on these 
findings, we enumerate several challenges in Section 5. 
The paper concludes with an outline of future work.  

2. Reflection Reference Model  

In this section we introduce the basic concepts of 
computational reflection. Reflection is about meta-
computation, i.e., computation about computation. 
Reflection was proposed by Smith as a programming 
paradigm [15]. He describes self-knowledge as pivotal 
in computational reflection. In her seminal paper [11], 
Maes extends Smith’s work and provides a 
comprehensive definition of computational reflection 
as “the behavior exhibited by a reflective system”. 

Figure 1 shows a reference model for reflection 
that we have developed and rely on for explaining the 
various properties of reflection. Figure 1a shows a 
traditional computational system consisting of two 
entities: system and domain. A system typically can be 

broken down further to two parts: computation and 
domain model. The computation part corresponds to 
the application logic responsible for providing the 
system’s functionality. The domain model is a 
representation of the external world (e.g., business 
problem) that drives the functionality. In other words, 
the domain model is used by the computation part to 
reason about and act upon changes in the environment.  

An important property of any computational 
system is the causal connection between the domain 
model and domain (depicted in Figure 1a). This 
relationship means that if the domain changes, the 
domain model changes as well, and vice versa. 
Moreover, we observe that through the domain model, 
the computation part and the domain are also causally 
related. The degree to which this causality is achieved 
(enforced) depends on many factors. This is an issue 
that will be revisited again in this paper.  

So far, we have described a non-reflective system. 
Reflection is, as stated before, computations about 
computations, i.e., a computational system performs 
computation about its own computation. If a 
computational system is expected to reason about and 
act upon itself, the system must reify a representation 
of itself (self-representation). In Figure 1b we show the 
reference model of a typical computational reflective 
system. The system consists of two parts: meta-level 
and base-level. The base-level provides the system’s 
functionality. Very similar to a traditional software 
system, the base-level also contains a computation part 
and domain model.  The meta-level provides the 
reflective capability and consists of two parts: meta-
computation and meta-model. Meta-model is a 
reification of the base-level. In other words, meta-
model is the self-representation of the system. Meta-
computation is the logic dealing with the changes in 
the meta-model. In this paradigm, meta-model is 
causally connected to the base-level system, where 
changes in one are reflected in the other.  

System
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Figure 1. (a) Traditional System, (b) 

Reflective System. 
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The meta-computation may provide two types of 
activities: introspection and intercession. Introspection 
is when meta-computation inspects and reasons about 
the self-representation. Intercession is when meta-
computation acts upon and modifies the system’s self-
representation (meta-model), which in turn through the 
causal connection may result in the propagation of 
change to the base-level. 

3. Reflection Prism 

To develop a better understanding of the important 
role of reflection in self-adaptive software systems, we 
performed a thorough study of the literature. Our 
objective has been to identify (1) the crucial properties 
of reflection, and (2) the variation points for each 
property. In this section, we describe these properties 
and delineate their importance using examples drawn 
from well-known frameworks for self-adaptive 
software systems.  

In particular, we have heavily relied on three 
previous works among others: the work by Maes [11] 
that constitute a de facto reference point in the field of 
computational reflection, and the work by Cazzola [5] 
and Coulson [6] describing computational reflection in 
the context of programming-in-the-large. For the 
purposes of our research, the properties are 
reformulated and exemplified in the context of 
frameworks for self-adaptive software systems. We 
have grouped the properties into a reflection prism 
with three sides: Self-Representation, Reflective 
Computation, and Separation of Concerns. Each of 
these and their associated properties are discussed 
below. 

3.1. Self-Representation 
Any computational system has a domain model, 

which corresponds to the type of the application 
domain (business problem) addressed by the system. In 
a reflective system, there is a distinction between the 
domain model and the self-representation. Self-
representation is a key characteristic of any reflective 
software system. We have identified four key 
properties associated with self-representation. 

3.1.1. Type of Representation 

A reflective system needs to have access to a 
representation of itself. For the self-representation we 
see two distinct approaches described by Maes [11]: 
(1) procedural, the representation is part of the 
implementation, and (2) declarative, the representation 
is a stand-alone and independent entity. These two 
cases represent the two end-points on a self-
representation continuum. In procedural reflection a 
separate model is not maintained, i.e., the reflective 

model is used to implement the system. This means 
that causality is implicit, but on the other hand the 
single model of procedural reflection must be 
optimized for multiple usages (i.e., execution and 
reflection). In declarative reflection at least two 
models are maintained. With multiple models, each 
model may be optimized for a more specific scope, but 
multiple models require that the causality is achieved 
by means of an implementation. 

3.1.2. Granularity 

Granularity refers to the smallest element of base-
level that is reified in the meta-model. The granularity 
of meta-models pose engineering trade-offs [4]. A fine 
granularity permits more flexibility and modularity at 
the cost of larger and more complex models. In the 
programming-in-the-small, the meta-models typically 
consist of entities at the granularity of classes, objects, 
methods, method calls, and so on. On the other hand, in 
the programming-in-the-large, the meta-models 
typically consist of components, connectors, ports, 
ducts, styles, events, and so on [6][9][12][14].  

3.1.3. Uniformity 

Uniformity deals with the degree of variability in 
the representation of base-level constructs that can be 
reflected upon. In other words, uniformity is a measure 
of the homogeneity in meta-models. Maes identifies 
uniformity as a key criterion for reflective object-
oriented systems, and proposes a programming 
language 3-KRS, whereby every programming 
language construct is represented as an object, and 
every object is accompanied with a meta-level 
equivalent [11]. In the programming-in-the-large, the 
uniform property can be achieved at a particular level 
of granularity (recall Section 3.1.2). For instance, the 
UCI framework provides a self-representation of all the 
architecturally significant constructs via the equivalent 
meta-model constructs. Each C2 architectural construct 
is realized as an object in C2 framework [14], and each 
object has a corresponding meta-model construct in 
C2SADL [12]. 

3.1.4. Completeness 

This property expresses whether the information 
represented in the meta-level is complete [11]. It deals 
with the extent of information about the base-level 
system that is available in the meta-level. The 
completeness has been identified as a crucial property 
in the context of reflective object-oriented 
programming languages. The 3-KRS system proposed 
by Maes uses the meta-level information available 
about language construct to realize the language 
interpreter. In the programming-in-the-large, where the 
meta-models are typically represented at the 
granularity of the architecture, completeness 
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corresponds to the information available about the 
various architectural constructs: component and 
connector connections, ports and ducts used for the 
linkage, component dependencies in terms of required 
and provided interfaces, and so on. The reflective 
middleware approach in OpenCom provides 
architecture meta-model and an interface meta-model 
representing the topology of the current set of 
components within a system and their interactions 
points [6]. The reflective middleware uses the meta-
models for course-grained inspection and adaptation of 
the structure and behavior of the system at run-time. 

3.2. Reflective Computation 
The rationale for using reflection in a system 

varies, and the behavioral properties of a reflective 
system affect several system properties. These 
together, make up the reflective computation side of 
the prism. 

3.2.1. Type of Reflection 

A reflective programming language allows for 
systems developed using it to reflect on the language 
construct and potentially modify them. At this level, 
two distinct reflection variations have been identified: 
structural and behavioral. Structural reflection [8] is 
concerned with the reification of structural program 
aspects, such as data types. Behavioral reflection [11] 
is concerned with the reification of computations and 
their behavior. In practice this means that structural 
reflection provides access to an application’s static 
structure, such as classes, attributes, and method 
definitions, while behavioral reflection provides access 
to the dynamic structures, such as objects’ state, 
messages, and call stack. 

Cazzola [5] also identifies two types of reflection 
at the architectural level that are closely related: 
topological and strategic. A system with topological 
reflection capability performs computations about its 
own configuration. Examples of reflective activities 
include the addition and removal of architectural 
elements. Strategic reflection is concerned with system 
coordination [7]. For example, observations made on 
state reifications may trigger change to some 
coordination policy. Topological and strategic 
reflections respectively realize structural and 
behavioral reflections at the architectural level 
(programming-in-the-large).  

3.2.2. Causality 

Two entities are causally connected if they are 
linked in such a way that if one of them changes, it 
leads to a corresponding effect upon the other [11].  

In a self-adaptive system two types of causal 
relationship may exist. The first type of causal 

relationship is between a system and the domain in 
which it is deployed. This type of causal relationship is 
more generally applicable to traditional software 
systems as well. For example, an autonomous vehicle 
system has a representation of the domain (e.g., road, 
cars, traffic lights), and changes in the domain (e.g., 
movement of other cars on the road) may result in 
updating the representation of the domain. This in turn 
may result in a response from the system (e.g., new 
steering direction), which corresponds to the 
functionality expected of the system.  

The second type of causal relationship is between 
a system and its self-representation. For instance, in 
the case of the autonomous vehicle, the system may 
have a representation of itself (e.g., an architectural 
model). This self-representation may be causally 
connected to the running system, in which case 
changes on the self-representation (e.g., adding a 
component) would result in changes on the software 
system and vice versa. In the architecture-based 
approach to self-adaptive software, Oreizy et al. argue 
for a strict correspondence between the architectural 
model (at the meta-level) and the executing 
implementation [14]. The authors propose an 
Architecture Evolution Manager (AEM). The AEM 
maintains consistency as changes are applied, reifies 
changes in the architectural model to the 
implementation, and prevents changes from violating 
architectural constraints. 

3.2.3. Level Shifts 

A level shift happens when the computation 
switches context from base-level to meta-level and 
back [4]. A level shift is facilitated using traps. 
Designated base-entity actions are trapped (caught) by 
a meta-entity, which performs a meta-computation, 
then it allows such base-entity to perform the action. 
Examples of traps in an object oriented context 
include, among others, access to attributes, method 
calls, and instance creations. Traps in the 
programming-in-the-large paradigm are realized using 
probes and gauges [9]. Probes are the system-level 
units that perform measurements and data collection 
(e.g., available bandwidth on a network link, interface 
invocation frequency). Gauges are used to identify 
particular patterns in the data obtained using probes. If 
gauges identify changes in the monitored data that 
violate the system’s objectives, meta-computing 
regarding the system is initiated. 

3.2.4. Frequency of Shifts 

This is a measure of how frequently the level 
shifts occur. Level shifts have an impact on the 
system’s performance. How frequently a system shifts 
levels is an important criteria in the design of both 
reflective programming language and self-adaptive 
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systems. An important responsibility of gauges is to 
filter unnecessary level shifts and minimize the 
overhead of meta-level computing [9].  

3.3. Separation of Concerns 
Separation of concerns is a principle tool in any 

problem solving toolbox. In the context of reflective 
computation, separation of concerns is pivotal as the 
reflective behavior itself increases the system’s overall 
complexity. If the reflective system is able to support 
separate models of different system aspects, possibly at 
different reflective levels, the overall complexity may 
be reduced. In this prism surface you find the 
following properties. 

3.3.1. Disciplined Split 

Maes emphasizes the importance of a clear 
separation between the base-level and the meta-level of 
a reflective system and a causal connection between 
the models at both levels [11]. The base-level uses the 
domain model to reason about the domain and provide 
the system’s expected functionality. The meta-level 
uses the self-representation to reason about the system 
itself and act upon the system. Consistency is achieved 
through casually connected models where a change to 
any of the models is immediately reflected in the other 
(recall Section 3.2.2). An explicit separation between 
the domain model and the self-representation is 
important, given the fact that the two levels deal with 
different types of concerns. Base-level computation is 
the common computation we use in every software 
system. A simple example of a meta-level computation 
is to keep performance statistics. An advanced example 
is the scenario described in [9] in which an adaptation 
engine monitors the response time of a group of servers 
to client requests and either adds a server in case the 
server group’s load exceeds a predefined threshold, or 
moves the client to another group in case the available 
bandwidth between the client and the current server 
group drops too low. The authors of OpenCom argue 
that the reflective infrastructure (reflective extensions) 
help to maintain an architectural separation of concerns 
between system building and system configuration and 
adaptation [6]. 

3.3.2.  Transparency 

This property refers to the extent to which 
system’s base-level is “unaware” of the “reflective 
levels”. The degree of transparency is measured by the 
number of changes that must be made to the base-level 
to integrate with the meta-level. For example, in the 
IBM’s autonomic computing architecture [1], the 
interfacing with managed resources is handled with 
manageability endpoints (touchpoints). The Autonomic 
Integrated Development Environment (AIDE) enables a 

developer to describe the manageability capabilities of 
a managed resource and build automatically 
manageability interface, transparently to the managed 
resource. The AIDE tool supports the generation of the 
manageability capabilities required by WSDM [20] 
and also the manageability capability defined to 
represent a Java EE server. 

3.3.3. Hierarchy 

A reflective system may be hierarchical and allow 
for several layers, where each layer n reflects on layer 
n-1 and is reflected upon by layer n+1. In other words, 
models for reflection are defined at different levels of 
abstraction. Maes discusses reflection at the 
programming language level. More recent works 
discuss reflection at the level of architectural constructs 
[5][6] and aspects [17]. The critical element here is to 
maintain model consistency when the semantic gap 
between the models is widened. Cazzola and 
colleagues address this problem through actuators and 
system state abstractions [5]. In IBM’s autonomic 
computing architecture, several autonomic elements 
can be arranged in hierarchies [1]. Kramer and Magee 
propose a two layer hierarchy, where one layer reacts 
to exceptions in the base-level by deploying change 
plans. If no suitable plan is available, computations 
shift to the top layer, where new plans may be derived 
in line with the system’s overall goals and the current 
situation [10]. 

3.3.4. Extensibility 

This property deals with how one may reuse, 
adapt, combine, and integrate reflective layers to form 
a new reflective tower system [4]. A reflective system 
is considered extensible, if it is possible to specify new 
meta-level concerns. As an example, consider a system 
where the base-level provides the system’s 
functionality and reflective layers that extend the 
system with support for fault tolerance and persistency. 
The reflective system is extensible if it can be easily 
extended with support for another non-functional 
concern, for example self-optimization.  Related to the 
notion of extensibility is the number of different 
models that are reflected upon. Okamura, discusses 
multi model reflection in the context of distributed 
systems [13]. The inclusion of multiple models for 
reflection is critical in this domain. However, multiple 
models add complexity, which affects both the models 
consistency and the reification performance. One 
example of extensibility is the orchestration autonomic 
elements, IBM suggests in their architecture [10]. In 
OpenCom, the reflective middleware provides an 
extensible set of orthogonal meta-models, each of 
which is optional and can be dynamically loaded when 
required, and unloaded when no longer required [6]. 
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4. Case Studies 

We performed several case studies from different 
application domains with the intent to exemplify the 
crucial properties of the reflection prism and their 
variation points. For brevity we present two of these 
case studies below. 

4.1. Self-Healing Traffic Monitoring 
Cameras 

Providing scalable solutions for traffic monitoring 
is an important challenge in intelligent transportation 
systems. Figure 2 shows an excerpt of a multi-agent 
system architecture for traffic monitoring. Each node 
in the system comprises an intelligent camera on which 
a software agent is deployed that is able to process data 
of the monitored traffic and communicate with agents 
on other cameras. The task of the camera agents is to 
detect and monitor traffic jams on a highway in a 
decentralized way, avoiding the bottleneck of a 
centralized control center. Possible clients of the 
monitoring system are traffic light controllers, driver 
assistance systems, etc.  Since traffic jams can span the 
viewing range of multiple cameras and can 
dynamically grow and dissolve, camera agents have to 
collaborate and distribute the aggregated data to the 
clients. In a realistic distributed setting, we must 
consider failures as an essential part of the dynamic 
environment. Failures will bring the system to an 
inconsistent state and probably disrupt its services. To 
make the system capable of dealing with failure 
dynamics, we have extended the camera with a self-
healing subsystem.  

The self-healing subsystem monitors the camera 
base system for failures and only interferes in its 
operation when a failure occurs. To that end, the self-
healing subsystem maintains a dependency model of 
the camera. The dependencies represented in the model 
can be architectural, e.g., a connector between 
interacting components, but also logical, e.g., a 
commitment between agents. Currently the 
dependency model is specified at design time. More 
specifically, the camera is designed to provide a set of 
interfaces, which allow the self-healing subsystem to 
query the current values of the relevant dependencies 
and perform repair actions when a failure occurs 
according to the applicable repair scenario. To check 
whether a dependency is still valid, the subsystem 
periodically requests alive signals from the dependent 
nodes in the dependency model using the existing 
communication functionalities of the camera as shown 
in Figure 2. Repair actions bring the camera back to a 
consistent state. Examples are updating the set of 
references to neighboring cameras, removing a 
commitment with an agent, and removing a 

communication link in the agent middleware. 
Currently, the self-healing subsystems only apply local 
repair actions, i.e., each subsystem locally monitors the 
dependencies and engages in local repair actions when 
a failure is detected. There are no negotiations between 
subsystems with respect to repair actions. The idea is 
just to bring the camera back to a consistent state from 
which it can continue its correct operation 
autonomously. However, more advanced repair actions 
are possible, such as executing an election protocol to 
reestablish an ongoing collaboration between agents 
from which the coordinator has failed. We now apply 
the reflective prism to the self-healing traffic 
monitoring cameras.  

4.1.1. Self-representation  

Type of Representation. The self-representation is 
declarative and consists of the dependency model that 
provides a representation of the dependencies of the 
base system with respect to self-healing.  
Granularity. The dependencies refer to diverse 
aspects of the system ranging from primitive data types 
such as the identity of a neighboring camera agent to 
high-level concepts such as a commitment among 
agents. 
Uniformity. Dependencies maintained in the self-
representation are uniformly specified and represented 
as objects.  
Completeness. The self-healing subsystem maintains a 
partial representation of the camera, i.e., only the 
dependencies relevant for self-healing are part of the 
dependency model. The self-representation changes 
dynamically as the state of the system evolves over 
time.   

4.1.2. Reflective Computation 

Type of Reflection. The self-healing subsystem is 
concerned with structural aspects as well as behavioral 
aspects of the camera. More specific, referring to 
Cazzola [4], the self-healing subsystem includes 

Figure 2. Architecture for Self-Healing Traffic 
Monitoring Cameras. 
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aspects of topological as well as strategic reflection, 
although the latter is not exploited to its full extent, 
since currently only local repair actions are supported. 
Distributed repair actions would enable changing the 
coordination among agents when necessary.  
Causality. The causality between the domain and the 
domain model of the camera is established through the 
monitoring of the traffic conditions. Guarantees about 
the causality are based on best effort. To establish a 
causal connection between the camera and the self-
representation, the self-healing subsystem monitors the 
camera via dedicated interfaces. The dependencies of 
the camera with cameras on other nodes refer to the 
availability of other cameras and can be considered as 
part of the domain. The causality between these 
representations and the actual status of the cameras is 
based on the exchange of alive messages among 
cameras. Guarantees about the causality are based on 
best effort.  
Level Shifts. The self-healing subsystem interferes 
with the camera only when a failure is detected. 
However, background activities are required to 
maintain the self-representation. As explained above, 
the camera provides dedicated interfaces that allow the 
self-healing subsystem to monitor the relevant aspects 
of the camera and perform repair actions when needed.  
Frequency of Shifts. Since node failures are expected 
to happen rarely, the frequency of level shifts is very 
low. 

4.1.3. Separations of Concerns 

Disciplined Split. The self-healing subsystem is 
concerned with node failures. The subsystem cleanly 
separates this concern from the domain concerns of the 
camera (i.e., monitoring traffic jams and informing 
interested clients).  
Transparency. In the current version of the system, 
the camera is designed to support self-management. 
Dedicated interfaces enable the self-healing subsystem 
to access the camera, so there is no transparency. 
Ongoing research investigates how techniques from 
aspect-orientation enable a clean separation of 
concerns. Nevertheless, whether self-healing can be 
achieved in a non-invasive manner remains an open 
research question.  
Hierarchy. The self-healing subsystem is a single 
layer reflective system. The policy of self-healing is 
encoded in the dependency model and the repair 
scenarios. In order to deal with additional, probably 
more complex failure scenarios, an additional layer 
may be introduced that reflects on the activities of the 
self-healing subsystem and adapts the repair policy or 
selects an alternative policy under certain conditions. 
Extensibility. The current self-healing subsystem is 
conceived as an independent reflective subsystem. 
Extensibility and reuse were not main concerns in the 

design of the subsystem. The aspect-oriented approach 
referred to above aims to bring these important quality 
attributes to the forefront.  

4.2. High-Performance Computing 
The concrete application for this scenario is a 

sensor network. It consists of geographically 
distributed digital receptor units connected to 
computing facilities with a high-speed network. In this 
scenario, the system should dynamically schedule and 
deploy experiments. The problem is that experiments 
and analyses often are data-parallel programs that must 
be scheduled on the underlying hardware architecture. 
To address these issues we have developed the 
Dynamic Model-Driven Architecture (DMDA).  

The DMDA is a platform that combines three 
architectural principles, Model Driven Architecture 
(MDA), layered architectures, and dynamism. These 
three combine into an architecture that supports: (1) 
programmability, since end-users, i.e., experiment 
developers, are mainly non-computer scientists, the 
development and deployment of the application must 
be intuitive and straightforward, (2) adaptability, the 
platform must have means to deal with run-time 
change to continuously satisfy QoS requirements, 
including changed conditions in the observed world 
and resource availability. 

A DMDA level, depicted in Figure 3, includes 
pairs of Adaptation Engines and System models 
organized in layers. In this architectural principle each 
level is similar to the reflective reference model 
described above. The bottommost level interfaces with 
the running system directly or indirectly via a system 
model. Each level contains a Generator that produces 
new/updated models, a set of Actuators that achieve 
intercession on the system models using a set of 
Probes that introspects the models, and a Coordinator 
which is responsible for coordinating actions and 
probing the layer immediately above to maintain model 
causality. We now apply the reflective prism. 

4.2.1. Self-Representation  

Type of Representation. The self-representation is a 
separate entity and not part of the base-level 
implementation. 
Granularity. The self-representation granularity in our 
current implementation is task. Each task corresponds 
to some piece of code to be executed on a processor in 
the system.  
Uniformity. The self-representation is not uniform. 
The self-representation is structured and represented 
differently at different layers in the current 
implementation.  
Completeness. The self-representation is partial. The 
available information is restricted to task structures, 
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and the information forwarded from probes and 
retrieved by coordinators. 

4.2.2. Reflective Computation 

Type of Reflection. The reflection is structural, for 
instance, generating new deployments, and behavioral, 
e.g., when QoS parameters are changed. 
Causality. Causality needs to be investigated from two 
perspectives. DMDA is a platform and hence not 
responsible for maintaining causality for applications 
running in the system. The domain of the DMDA is 
parallel computing. The causality between the base-
level and meta-level is maintained by restricting the 
capabilities of a task on the base-level. Structural 
system modification is the result of a deployment 
action initiated by the DMDA system. Changes to the 
executing system, for instance, node failures, should be 
probed and information concerning such changes 
forwarded to the DMDA system. Within the reflective 
system causality is dealt by the Coordinator, in a 
similar manner. 
Level Shifts. Level shifts may be triggered from the 
top-down or bottom-up. If a new experiment is added 
to the platform, this triggers a level shift top-down 
where the new experiment is scheduled and prepared 
for deployment, while a node failure triggers a bottom-
up shift. 
Frequency of Shifts. Level shifts are assumed to 
happen rarely, hence the frequency is considered to be 
low.  

4.2.3. Separation of Concerns 

Disciplined Split. The split between the base-level and 
the bottommost meta-layer is disciplined. In the 
DMDA, the base level hosts experiments, while the 
meta level is dealing with the management of 
experiments. The meta-level retrieves application 
specific information from the base-level to support 
decision making and construction of management 
directives. 
Transparency. The current system implementation is 
not transparent. The base system contains probe and 
actuator programs. The nature of a data-parallel 
application requires that all code is scheduled on the 
target machine; hence this kind of functionality is a 
part of the base-level system.  
Hierarchy. DMDA is a multi-layer reflective system. 
Each layer is a reflective system working on layer 
specific models and communicates only with the level 
immediately below and actions on “higher levels” are 
“triggered” by probes.  
Extensibility. The layered structure of the DMDA 
reference architecture conceptually makes it easy to 
add a new layer. In practice it is not as straightforward 
since models must be adjusted to layers immediately 
above and beneath. The current DMDA 

implementation is restricted to one property, i.e., 
performance (completion time). We have tested other 
criteria but not combinations of criteria. Hence, we 
cannot express how extensible the system currently is. 

5. Challenges  

The application of reflective prism to different 
case studies has led us to identify key challenges when 
building self-adaptive systems. The following list of 
challenges should not be considered exhaustive. They 
have been grouped in key headings, but most are 
highly interrelated.  

5.1. Expressiveness of Self-Representation 
Self-adaptive software systems require a 

representation of the system at a suitable level of 
abstraction. Our experience indicates that software 
architecture has been shown to provide an appropriate 
level of granularity for self-representation. A variety of 
Architectural Description Languages (ADLs) [12] have 
been utilized for modeling a software system’s 
architecture. However, the existing ADLs suffer from 
several shortcomings when employed for self-
representation.  

Firstly, our study has revealed that in the 
programming-in-the-large the notion of domain plays 
an important role that must be accounted for at the 
meta-model level. At the same time, existing research 
on ADLs has often focused on providing generic 
solutions for modeling the base-level characteristics 
[12], while in most self-adaptive systems there is an 
intrinsic causal relationship between the system’s 
domain and its self-representation that needs to be 
represented. Moreover, the majority of existing ADLs 
are intended for modeling the design decisions, and 
less suitable for representing the dynamic, in some case 
unpredictable, behavior of self-adaptive systems at run-
time. We believe further research is needed in the 
development of domain-specific ADLs that 
incorporates not only the system’s properties, but also 
domain characteristics. This could pave the way in 
managing the causal relationship between the domain 
and self-representation. 

Figure 3. DMDA Reference Architecture. 
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Secondly, most existing ADLs do not provide 
adequate expressiveness for the level of dynamism that 
characterizes self-adaptive software systems. 
Moreover, an ADL intended for self-adaptive software 
systems needs to provide support for distinguishing 
between the base-level and meta-level representations. 
ADLs in this setting should also account for the 
complexity of self-representation in distributed setting.  

5.2. Meta-Level Conflicts  
Self-adaptation is concerned with preserving or 

changing a system’s functionality and quality footprint. 
Ever-present grand challenges for software engineers 
are extensibility and composability. A seamless 
introduction of this kind of support in a self-adaptive 
system requires multiple-model and multiple meta-
computation support. In our study we have experienced 
a number of problems related to managing multiple 
models at the meta-level. For example, in the DMDA, 
each layer uses one or more models, it also interfaces 
with models on other layers. How to effectively 
manage all models and adapt functionality for seamless 
model integration remains an issue 

Maintaining multiple models brings several 
challenging research issues to the table; multi-model 
consistency and multi-model causality are two 
examples. In addition, multiple models require that 
mechanisms for uniformity are developed that can 
bridge currently heterogeneous representations.  

A seamless integration of meta-level computations 
is another challenge. Multiple meta-level computations 
may, for instance, realize several quality attributes and 
extensive support is critical for the system’s 
extensibility. In the long term, we may see 
configurable standard models and computations, which 
represent specific system aspects, integrated and reused 
in self-adaptive systems. In this setting, model 
management frameworks provide developers with a 
standardized, yet configurable, architecture for 
efficient management of multiple aspects in self-
adaptive software systems. 

5.3. Uncertainty  
In order to perform its reflective computation 

properly, a self-adaptive system needs an accurate self-
representation. Typically, this representation is an 
abstraction of (particular aspects of) the base-level 
system. In addition, a self-adaptive system often needs 
to take into account domain information. For example, 
in the self-healing traffic monitoring cameras, a self-
healing subsystem requires information about the 
status of cameras on other nodes.  

The need for an abstract representation of the 
base-level system and domain information introduce 
uncertainty. First, uncertainty can result from 

inaccurate models. Providing an abstract representation 
of the base-level may introduce certain inaccuracies, 
which also cannot be avoided when modeling relevant 
aspects of the domain. Second, uncertainty can be 
caused as a result of ensuring causality. Implementing 
causality is challenging, in particular in uncertain real-
world settings. Since in general one can have no 
guarantees about the domain, if causality cannot be 
ensured, the lack of consistency between the domain 
and its model introduces uncertainty when using this 
model to adapt the base-level of the system. 

Tackling the problems related to uncertainty is 
challenging. In particular since some of the causes of 
the problems are not under control of the designer. To 
deal with the challenges of uncertainty, we need (1) 
suitable languages that abstract self-representations 
(see Section 5.1), (2) domain models that take into 
account uncertainty explicitly, (3) disciplined 
approaches for maintaining causality between the 
different types of models at run-time (see Section 5.2). 

5.4. Autonomy  
A self-adaptive system is expected to act 

autonomously, i.e., based on its self-representation, and 
the ability to interpret and manipulate this 
representation, the system should be able to make its 
own decisions for achieving some goal. One way for 
achieving autonomy is to make use of feedback control 
loops that incorporate the principles associated with 
monitoring-analysis-plan-execute (MAPE) from 
autonomic computing [1]. While the “plan” activity 
provides the ability for the system to reason about 
itself, the feedback loop provides the necessary 
robustness to deal with uncertainty. Since a system 
depending on its different goals might have several 
representations of self, a clear challenge that emerges 
is how to solve meta-level conflicts (see Section 5.2). 
In addition, such systems should not be considered in 
isolation, they are usually part of larger more complex 
systems. To deal with scalability, these systems are 
typically decentralized, which raises further challenges. 
How to achieve self-representation in decentralized 
setting?  How to identify and achieve a common goal? 
How conflicts in the process of decision making can be 
solved in such a setting?  

5.5. Transparency  
While it may be straightforward to achieve 

transparency for reflective programming languages, it 
is a major challenge for complex self-adaptive software 
systems. Techniques for probing and actuating have 
been proposed in various frameworks (e.g., touchpoints 
[1], probes and effectors [9]). However, the degree to 
which these techniques can be implemented 
transparently to the base system is not well studied. A 
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promising idea to achieve transparency is to employ 
techniques from aspect-orientation [19]. On the other 
hand, since for many concerns considered in self-
adaptive systems (self-healing is a typical example) 
there is a tight connection between the base system and 
the meta-system, one can argue that instead of aiming 
for full transparency, it might be better to develop 
disciplined approaches that integrate a base system 
with a meta-system. In line with this idea, some 
researchers have proposed new component models to 
build self-adaptive systems. An interesting example is 
the Fractal component model that endows system 
components with customized introspection and 
intercession capabilities [3]. 

5.6. Performance 
A commonly-cited disadvantage of interception is 

that it incurs an inherent performance overhead. 
Interception typically requires bindings to support a 
level shift. In general, research on self-adaptive system 
pay little attention on performance issues. Example 
approaches that provide dedicated support for 
interception based on the requirements of the 
application at hand are proposed in [3] and [6].  

6. Conclusion  

Development of self-adaptive software systems 
poses significant challenges to the software 
engineering community. These challenges are 
exacerbated by a lack of consensus among researchers 
on very fundamental concepts. We have attempted to 
alleviate this issue by exploring the crucial role of 
computational reflection in the context of self-adaptive 
systems. Our study resulted in the identification of key 
reflection properties and their variation points. 
Analyzing several self-adaptive software systems from 
different domains in light of these properties has 
helped us to verify our initial hypothesis that reflection 
is a necessary criterion for any self-adaptive software 
system. Moreover, our experience shows that while the 
theory of computational reflection, which was initially 
developed by the programming languages researchers, 
provides firm grounding for the study of self-adaptive 
system, it needs to be extended to accommodate the 
unique challenges posed by the programming-in-the-
large.  We hope these results can serve as an impetus to 
propel the future research in this area.  
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