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Abstract:

Automatic Guided Vehicles (AGVs) are fully automated vehicles that are able
to transport goods in an industrial environment. To cope with new and future
system requirements such as flexibility and openness, we have applied a situated
multiagent system to developed a decentralized control architecture for AGV
transportation systems. In this paper, we give an overview of the software ar-
chitecture of the system and we zoom in on two specific concerns: transport
assignment and collision avoidance. We discuss the evaluation of the software
architecture and test results obtained from realistic simulations and a demonstra-
tor system that we have developed.

The architectural design and development of this real-world application learns
us that the primary use of a situated multiagent system comes from the way in
which it structures the software. In particular, the set of adaptive agents that
coordinate through the environment allows to shape the software architecture of
the transport application to provide the required functionalities of the system and
achieve the important quality goals flexibility and openness.
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1 INTRODUCTION

Automatic Guided Vehicles (AGVs) are fully automated, battery powered vehicles that
are able to transport goods in a logistic or production environment. An AGV control system
receives transport requests from a client system such as a warehouse managing system or
machine operating software, and instructs AGVs to execute the transports. The stream
of transports that enter the transportation system is typically irregular and unpredictable.
AGVs are provided with low-level control software connected to sensors and actuators
to move safely through the warehouse environment. While moving, the vehicles follow
specific paths in the warehouse by means of a navigation system which uses stationary
beacons in the work area (e.g., laser reflectors on walls or magnet strips in the floor). To
enable the AGV software to communicate with software systems on other machines, the
vehicles are equipped with infrastructure for wireless communication.

Traditionally, AGVs are directly controlled by a central server. AGVs have little au-
tonomy: the server plans the schedule for the system as a whole, dispatches commands
to the AGVs and continually polls their status. In a joint R&D project (EMC 2 [13]), our
research group and Egemin, a producer of logistic service systems, have applied a situated
multiagent system architecture. The goal of the project was to investigate the feasibility
of a decentralized control system to cope with new and future system requirements such
as flexibility and openness. In the new architecture the AGVs are provided with a consid-
erable amount of autonomy. This opens perspectives to improve flexibility and openness
of the system. The AGVs can adapt themselves to changing situations in their vicinity:
transport assignment is dynamic, the system can deal autonomously with AGVs leaving
and re-entering the system for maintenance, etc.

In previous work, we have studied a number of specific research issues of AGV trans-
portation systems. [31] focusses on the decentralized control, [29] zooms in on transport
assignment, and [7] reflects on the assessment of qualities. In this paper, we give an in-
tegrated overview of the software architecture of the decentralized AGV control system
that we have developed. Starting from system requirements, we discuss the architectural
design of the application. We elaborate on the evaluation of the software architecture of the
system and we discuss test results collected from simulations and an implemented demon-
stration system. Finally, we conclude and reflect on our experiences with applying MAS
in practice.

2 AGV TRANSPORTATION SYSTEM

In this section, we introduce the AGV application. We start with an overview of the
functionalities of the system and we discuss the main quality requirements. System re-
quirements are kept fairly general, independent of any particular AGV system. In sec-
tion 7, we zoom in on specific functionalities and quality scenario’s for a concrete AGV
transportation application. Then we outline a number of important problem characteris-
tics of industrial AGV transportation systems that have to be taken into account during
architectural design.
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2.1 Main Functionalities

The main functionality the system has to perform is handling transports, i.e. moving
loads from one place to another. There should be enough AGVs available to execute the
transports that enter the system, i.e. the AGVs should be able to handle the load of the
system. In order to execute transports, the main functionalities the system has to perform
are:

e Transport assignment: transports are generated by clients and have to be assigned to
AGVs that can execute them.

e Routing: AGVs must route efficiently through the layout of the warehouse when
executing their transports.

e Collision avoidance: safety measures are necessary when AGVs cross the same in-
tersection at the same moment and when AGVs pass each other on closely located
paths.

e Deadlock avoidance: since AGVs are relatively constrained in their movements (they
cannot divert from their path), the system must ensure that AGVs do not find them-
selves in a deadlock situation.

To perform transport tasks, AGVs have to maintain their battery. AGVs can charge their
battery at the available charging stations. Finally, when an AGV is idle it can park at a free
park location.

2.2 Quality Requirements

Stakeholders of an AGV transportation system have various quality requirements. Per-
formance is a major requirement; customers expect that transports are handled efficiently
by the transportation system. Configurability is important, it allows installations to be eas-
ily tailored to client-specific demands. Obviously, an automated system is expected to be
robust, intervention of service operators is time consuming and costly.

Besides these “traditional” qualities, evolution of the market puts forward new quality
requirements. Customers request for self-adapting systems, i.e. systems that are able to
adapt their behavior with changing circumstances autonomously. Self-adaptation with re-
spect to system dynamics translates to two specific quality goals: flexibility and openness.

Flexibility refers to the system’s ability to deal with dynamic operating conditions. The
centralized planning algorithms for transport assignment and routing applied by Egemin
are based on predefined rules that are associated with AGVs and locations in the layout.
This approach lacks flexibility. A flexible control system allows an AGV that is assigned
a transport and moves toward the load, to switch tasks along the way if a more interest-
ing transport pops up. Another desired property is that the system can handle particular
situations autonomously, e.g., when a truck with loads arrives, the system should adapt its
behavior taking into account this new task.

Openness refers to the transportation system’s ability to deal with AGVs leaving and
(re-)entering the system autonomously. Examples are an AGV that temporarily leaves the
system for maintenance, and an AGV that resumes work after its battery is recharged. In
some cases, customers expect to be able to intervene manually during execution of the
system, e.g., to force an AGV to perform a particular job.
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In summary, flexibility and openness are high-ranking quality requirements for today
AGV transportation systems. One possibility to tackle these new quality requirements
would be to adapt the central planning approach aiming to improve the flexibility and
openness of the system. In the EMC? project, we investigated the feasibility to apply a
new decentralized architecture to cope with the new quality requirements.

2.3 Problem Characteristics

In addition to the required functionalities and the quality goals, a number of specific
problem characteristics must be considered during architectural design.

e AGVs have to move toward loads before they can actually execute the transports.
Moving toward a load may imply a considerable effort.

e AGVs are very constrained in their movements, they are confined to follow the paths
of a predefined layout.

e The speed of AGVs is orders of magnitude lower than the speed of communication
and the execution of the control software.

e A wireless LAN provides continual communication access to the distributed soft-
ware system.

The architect(s) have to take into account these problem characteristics when selecting
suitable architectural approaches for the software architecture.

3 HIGH LEVEL MODEL OF THE AGV SYSTEM

In this section, we give a high-level model of the agent-based AGV system. First, we
introduce the agent types. Then, we explain the concept of virtual environment and we
illustrate how the agents use this environment to coordinate their behavior.

3.1 AGV Agents and Transport Agents

We have introduced two types of agents: AGV agents and transport agents. The choice
to let each AGV be controlled by an AGV agent is obvious. Transports have to be handled
in negotiation with different AGVs, therefore we have introduced transport agents.

Each AGV in the system is controlled by an AGV agent. The agent is responsible for
obtaining and handling transports, and ensuring that the AGV gets maintenance on time.
As such, an AGV becomes an autonomous entity that can take advantage of opportunities
that occur in its vicinity, and that can enter and leave the system without interrupting the
rest of the system.

Each transport in the system is represented by a transport agent. A transport agent is re-
sponsible for assigning the transport to an AGV and reporting the status and completion of
the transport to the client that has requested the transport. Transport agents are autonomous
entities that interact with AGV agents to find suitable AGVs to execute the transports. The
transport agents reside at a transport base, i.e. a dedicated computer located in the ware-
house.
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3.2 Virtual Environment

To achieve the system functionality, AGV agents and transport agents have to coordi-
nate. Agents have to coordinate for routing, for transport assignment, for collision avoid-
ance, etc. One approach is to provide an infrastructure for communication that enables the
agents to exchange messages to coordinate their behavior. Such approach however, would
put the full complexity of coordination in the agents and result in complex architectures of
the agents, in particular for the AGV agents. We have chosen for a solution that enables
the agents to exploit the environment to coordinate their behavior. This approach separates
responsibilities in the system and helps to manage the complexity [30].

The physical environment in which AGVs are situated is very constrained: AGVs can-
not manipulate the environment, except by picking up and dropping loads. This restricts
how agents can exploit their environment. We introduced a virtual environment that offers
a medium for AGV agents and transport agents to exchange information and to coordinate
their behavior. Besides, the virtual environment serves as a suitable abstraction that shields
the agents from low-level issues, such as the communication of messages and the physical
control of an AGV vehicle. Fig. 1 shows a high-level model of an AGV transportation
system. The virtual environment is necessarily distributed over the AGVs and the trans-
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} Local Virtual Environment Environment Local Virtual Environment Environment |
|
| |
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Figurel High-level model of an AGV transportation system

port base. In effect, each AGV and the transport base maintain a local virtual environment,
which is a local manifestation of the virtual environment. The instances are tailored to the
type of agents deployed on the nodes. For example, the local virtual environment on the
AGVs enables the AGV agent to read out the status of the AGV and send commands to the
vehicle. Obviously, this functionality is not available in the local virtual environment on
the transport base.

The states of local virtual environments on neighboring nodes are synchronized with
each other opportunistically, as the need arises. State synchronization is supported by
the ObjectPlaces middleware [22]. ObjectPlaces provides services to gather data from
neighboring network nodes and set up an interaction between neighboring nodes. We
discuss an interaction protocol for collision avoidance of AGVSs in section 6.

AGVs are equipped with low-level control software that is called E’nsor (Egemin Nav-
igation System On Robot). E’nsor provides an interface to command the AGV and to
monitor its state. We fully reused the control software in the project. The local virtual
environment uses E’nsor to steer the vehicle based on the commands of the AGV agent,
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and to regularly poll the vehicle’s status and adjust its own state appropriately.

Coordination Medium. The local virtual environment offers high-level primitives to
agents to act in the environment, perceive the environment, and communicate with other
agents. This enables agents to share information and coordinate their behavior. As an
illustration, we explain how agents exploit the virtual environment to avoid collisions by
coordinating with other agents through the local virtual environment. AGV agents mark
the path they are going to drive in their local virtual environment using hulls. A hull is the
physical area an AGV occupies and a series of hulls describe the physical area the AGV
occupies along a certain path. If an AGV’s hulls do not intersect with hulls of other AGVs,
the AGV can drive over the reserved path. In case of a conflict, the involved local virtual
environments use the priorities of the transported loads to determine which AGV can move
on. AGV agents monitor the local virtual environment and only instruct the AGV to move
on when they are allowed. Afterwards, the AGV agents remove the markings in the virtual
environment.

This example shows that the virtual environment serves as a flexible coordination
medium: agents coordinate by putting marks in the local virtual environment, and ob-
serving marks from other agents.

4 SOFTWARE ARCHITECTURE

We now give an overview of the software architecture of the AGV transportation sys-
tem. First, we explain the architecture design process we used. Next, we discuss the main
views of the software architecture.

4.1 Architectural Design

The general motivation to apply a situated MAS to the AGV transportation system
was the importance of the required qualities flexibility and openness. Situated agents are
self-adapting entities that are able to efficiently respond to changing circumstances in the
system. During architectural design, we have applied various mechanisms for adaptivity
for situated MAS [28], including selective perception, behavior-based action selection with
roles and situated commitments, and protocol-based communication. Selective perception
enables an agent to adapt its perception according to its current tasks. An agent selects
a set of foci that allows it to sense the environment for specific types of information. To
enable situated agents to set up collaborations, we have extended behavior-based action se-
lection mechanisms with the notions of role and situated commitment. A role represents a
coherent part of an agent’s functionality in the context of an organization. A situated com-
mitment is an engagement of an agent to give preference to the actions of a particular role
in the commitment. Behavior-based action selection with roles and situated commitments
allow agents to adapt their behavior efficiently with changing circumstances in the environ-
ment. Protocol-based communication structures communicative interactions among agent
according to well-defined sequences of messages. Exchanging messages enable situated
agents to set up explicit collaborations and exploit opportunities that occur in their local
context.

For the architectural design, we used the Attribute Driven Design method (ADD [9, 4]).
ADD is a decomposition method that is based on understanding how to achieve quality
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goals through proven architectural approaches. Roughly spoken, the design process con-
sisted of the following steps. First, we have mapped the system functionality onto the basic
decomposition of the system: AGV en transport agents and the local virtual environment.
Then, we have iteratively decomposed the agents and the local virtual environment. In
each decomposition step, we selected an architectural element of the software architecture
and we determined the architectural drivers (i.e. the target functional and quality attribute
requirements for that element). The order in which we have refined the architectural ele-
ments was essentially based on the incremental development of the application. We started
with the functionality for one AGV to drive, then followed collision avoidance, next order
assignment, deadlock avoidance, etc. For each decomposition, we have selected suitable
architectural patterns to refine the architectural element. Where applicable, we have used
the specification of the mechanisms for adaptivity to decompose architectural elements.
The decomposition ended when a suitable level of detail was reached to allow the devel-
opers to build the software.

We now give an overview of the main views of the software architecture. Subsequently,
we explain the deployment view, the high-level module decomposition view of the AGV
software, and finally the collaboration component views of the AGV agent and the local
virtual environment of AGVs. [6] provides the complete documentation of the software
architecture of the AGV transportation.

4.2 Deployment View

Fig. 2 gives a general overview of the AGV transportation system and shows how
the application software is allocated to computer hardware. The software consists of two
types of subsystems: transport base system and AGV control system. The relationship
of the deployment view is allocated-to [10]. Software elements are allocated to hardware
elements, e.g., a transport base system is allocated to a transport base.

Monitor, Machine Warehouse
Management
& C Q v
AGYV Control
System
Transport
& Base System
Operator
& ol
AGYV Control
System AGV Control
AGV Control AGV Control
System System
D Transport Base ———  Wired Network
External System
KEY & AGV “ Connection
O Access Point — — — Wireless Ethemet

Figure2 Deployment view of the AGV transportation system
4.2.1 Elements and their Properties

The Transport Base System provides the software to manage transports in the AGV
system. The transport base system handles the communication with the warehouse man-
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agement system. It receives transport requests and assigns the transports to suitable AGVs,
and it reports the status and completion of the transports to the warehouse management
system. The transport base system executes on the transport base, i.e. a stationary com-
puter. The transport base system provides a public interface that allows an external monitor
system to observe the status of the AGV transportation system.

The AGV Control System provides the control software to command an AGV machine
to handle transports and to perform maintenance activities. Each AGV control system is
deployed on a computer that is installed on a mobile AGV. AGV control systems provide a
public interface that allows a monitor to observe the status of the AGVs, and let a service
operator take over the control of the vehicle when necessary.

Communication Network. All the subsystems can communicate via a wireless network.
The warehouse management system interacts with the AGV transportation system via the
wired network. To debug and monitor the system, AGVs and the transport base can be
accessed remotely via an external monitor system.

4.2.2 Rationale

The main motivation for the top level decomposition of the transportation system is
the separation of functionality for transport assignment (ensuring that the work is done)
from functionality for executing transports (doing the work). By providing each AGV
vehicle with an AGV control system, AGVs become autonomous entities that can exploit
opportunities that occur in their vicinity, and that can enter and leave the system without
interrupting the rest of the system. Endowing AGVs with autonomy is a key property for
flexibility and openness in the system.

The separation of functionality for transport assignment and executing transports also
supports incremental development. In the initial stage of the project, we developed a basic
version of the AGV control system that provided support for performing transports and
avoiding collisions. For testing, we manually assigned transports to AGVs. In the next
phase, when we extended the functionalities of AGVs and integrated automated transport
assignment, the top level decomposition served as a means to assign the work to develop-
ment teams.

4.3 Module Decomposition of the AGV Control System

Fig. 3 shows the primary presentation of the module uses view of the AGV control
system.

The relation in the module uses view is uses. An element uses another element if
the correctness of the first element depends on the correct implementation of the second
element [10].

4.3.1 Elements and their Properties

AGV Agent. An AGV agent is responsible for controlling an AGV vehicle. The main
functionalities of an AGV agent are: (1) obtaining transport tasks; (2) handling jobs; (3)
avoiding collisions; (4) avoiding deadlock; (5) maintaining the AGV machine (charging
battery, calibrating etc.); (6) parking when the AGV is idle.

Local Virtual Environment. The local virtual environment offers a medium that the AGV
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Figure3 Module uses view of the AGV control system

agent can use coordinate its behavior with other agents. It also shields the AGV agent from
low-level issues, such as the communication of messages to remote agents and the physical
control of the AGV. Particular responsibilities of the local virtual environment are: (1) rep-
resenting and maintaining relevant state of the physical environment and the AGV vehicle;
(2) representing additional state for coordination purposes; (3) enabling the manipulation
of state; (4) synchronization of state with neighboring local virtual environments; (5) pro-
viding support to signal state changes; (6) translating the actions of the AGV agent to
actuator commands of the AGV vihicle; (7) translating and dispatching messages from and
to other agents.

ObjectPlaces Middleware & E’nsor. The ObjectPlaces middleware enables communica-
tion with software systems on other nodes, providing a means to synchronize the state of
the local virtual environment with the state of local virtual environments on neighboring
nodes. E’nsor is the low-level control software of the AGV vehicle. The E’nsor software
provides an interface to command the AGV vehicle and to read out its status. The E’nsor
interface defines instructions to move the vehicle over a particular distance and possibly
execute an action at the end of the trajectory. Example actions are nove( Segnent x)
that instructs the AGV to drive over segment x and pi ck( Segnent y) thatinstructs the
vehicle to drive over segment y and pick a load at the end of the segment. The physical
execution of the commands is managed by E’nsor. As such, the AGV agent can control the
movement and actions of the AGV at a fairly high-level of abstraction.

4.3.2 Design Rationale

The layered decomposition of the AGV control system separates responsibilities. The
AGYV agent is a self-managing entity that is able to flexibly adjust its behavior with chang-
ing circumstances in the system. The local virtual environment provides an abstraction that
allows agents to interact and coordinate their behavior in a way that is not possible in the
physical environment. Separation of responsibilities helps to manage complexity. Since
AGYV agents only interact with other agents situated in their vicinity, state has only to be
synchronized between neighboring local virtual environments. The ObjectPlaces middle-
ware takes the burden of mobility. An alternative for indirect coordination through the
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local virtual environment is an approach where the functionality to control an AGV vehi-
cle is assigned to an AGV agent only, and where AGV agents coordinate through message
exchange. Such a design however, would put the full complexity of coordination in the
AGV agent, resulting in a more complex architecture.

4.4 Collaborating Components of the AGV Agent

We now zoom in on the software architecture of agents. We focus on the AGV agent.
Fig. 4 shows a collaborating components view of the AGV agent. The collaborating com-
ponents view shows the software system as a set of interacting runtime components that
use a set of shared data repositories to realize the required system functionalities [28].
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Figure4 Collaborating components view of the AGV agent

4.4.1 Elements and their Properties

The Current Knowledge repository contains state that the agent uses for decision mak-
ing and communication. Current knowledge consists of static state and dynamic state. An
example of static state is the value of LockAheadDistance. This parameter determines the
length of the path AGVs have to reserve when they move on to drive smoothly and avoid
collisions; we elaborate on path locking in section 6. Examples of dynamic state are state
collected from the observation of the environment such as the positions of neighboring
AGVs, state of commitments related to collaborations with other agents, and runtime state
related to the agent itself such as the battery status of the AGV. The current knowledge
repository offers a shared interface to the communication and decision making compo-
nents that can concurrently read and write state. The perception component is connected
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to a separate interface to update the agents dynamic state according to the representations
derived from observing the local virtual environment.

Perception enables the AGV agent to sense the local virtual environment according to the
perception requests of communication and decision making, and to update the agent’s cur-
rent knowledge accordingly. AGV agents use different foci to sense the state of the local
virtual environment that represents state in the physical environment (e.g., the positions
of neighboring AGVs) and state that relates to virtual representations (e.g., fields that are
used for transport assignment, see section 5).

The Communication component handles the agents communicative interactions with other
agents. The main functionality of communication in the AGV transportation is handling
messages to assign transports. The communicating component encapsulates the behavior
of the communication component, including the protocols and the communication lan-
guage used by the AGV agent. The protocols are specified as statecharts, we discuss an
example in section 5.

The Decision Making component handles the agent’s actions. Due to the complexity of
decision making of the AGV agent, we have modeled the decision making component as
a hybrid architecture that combines a blackboard pattern with sequential processing. This
architecture combines complex interpretation of data with decision making at subsequent
levels of abstraction. The current knowledge repository serves as blackboard, while the
action controller coordinates the selection of a suitable action. After job selection (execute
transport, charge battery, etc.), the action selection component selects an action at a fairly
high-level (move, pi ck, etc.). We have designed the action selection component as a free-
flow tree [21, 26] extended with the notions of role and situated commitment [28]. The
main roles of the AGV agent are wor k, char ge, and par k. The main situated commit-
ments are wor ki ng commi t nent and char gi ng conmmi t nent . Action generation
transforms the selected high-level action into a concrete action (e.g., move( Segnent
x) ). Collision avoidance and deadlock avoidance are responsible to lock the trajectory
associated with the selected action. As soon as the trajectory is locked, the selected action
is passed to the execution component that invokes the action in the local virtual environ-
ment. If during the subsequent phases of decision making the selected action can not be
executed, feedback is sent to the action controller that will inform the appropriate com-
ponent to revise its decision. For example, if for a selected action nove( segnent x)
the collision avoidance module detects that there is a long waiting time for this segment,
it informs the action controller that in turn instructs the action generation component to
consider an alternative route.

4.4.2 Design Rationale

The current knowledge repository enables the data accessors to share state and to com-
municate indirectly. Communication and decision making act in parallel, each component
in its own pace, supporting flexibility. Communication in the AGV application happens at
a much higher pace than action selection. This difference in execution speed is exploited
to continuously reconsider transport assignment in the period between an AGV starts mov-
ing towards a load and the moment when the AGV picks the load (a detailed explanation
follows in section 5).

In the initial phase of the project, we used a free-flow tree for integral decision making.
However, with the integration of collision avoidance and deadlock avoidance, it became
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clear that the complexity of the tree was no longer manageable. Therefore we decided to
apply an architecture that allows incremental decision making. At the top level, a free-flow
tree is still used to select an action preserving the advantage of adaptive action selection
with a free-flow tree. At the following levels, collision avoidance and deadlock avoidance
are taken into account. Each component in the chain is able to send feedback to the action
controller to revise the decision. This feedback loop further helps to improve flexible
decision making.

4.5 Collaborating Components of the Local Virtual Environment

We now zoom in on the software architecture of the local virtual environment. We focus
on the local virtual environment of the AGVs. Fig. 5 shows the collaborating components
view of the local virtual environment.
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Figure5 Collaborating components view of the local virtual environment of AGVs

4.5.1 Elements and their Properties

State. The state of the local virtual environment is divided into three categories:

1. Static state: this is state that does not change over time. Examples are the layout of
the factory floor, which is needed for the AGV agent to navigate, and ( AGVi d, | Pnumnber)
tuples used for communication. Static state must never be exchanged between local
virtual environments since it is common knowledge and never changes.
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2. Observable state: this is state that can be changed in one local virtual environment,
while other local virtual environments can only observe the state. An AGV obtains
this kind of state from its sensors directly. An example is an AGV’s position. Local
virtual environments are able to observe another AGV’s position, but only the local
virtual environment on the AGV itself is able to read it from its sensor, and change
the representation of the position in the local virtual environment. No conflict arises
between two local virtual environments concerning the update of observable state.

3. Shared state: this is state that can be modified in two local virtual environments con-
currently. An example is a hull map with marks that indicate where AGVs intend to
drive—we explain the use of hull maps in detail when we discuss collision avoidance
in section 6. When the local virtual environments on different machines synchronize,
the local virtual environments must generate a consistent and up-to-date state in both
local virtual environments.

Perception Manager handles perception in the local virtual environment. The perception
manager’s task is straightforward: when the agent requests a percept, e.g., the current po-
sitions of neighboring AGVs, the perception manager queries the necessary information
from the state repository of the local virtual environment and returns the percept to the
agent.

Action Manager handles agents’ actions. AGV agents can perform two kinds of actions.
One kind are AGV commands, for example moving over a segment and picking up a load.
These actions are handled fairly easily by translating them and passing them to the E’nsor
control software. A second kind of actions manipulate the state of the local virtual environ-
ment. Putting marks in the local virtual environment is an example. An action that changes
the state of the local virtual environment may in turn trigger state changes of neighboring
local virtual environments (see Synchronization below).

Communication Manager is responsible for exchanging messages between agents. Agents
can communicate with other agents through the virtual environment. A typical example is

an AGV agent that communicates with a transport agent to assign a transport. Another

example is an AGV agent that requests the AGV agent of a waiting AGV to move out

of the way. The communication manager translates the high-level messages to low-level

communication instructions that can be sent through the network and vise versa (resolving

agent names to IP numbers, etc.).

Synchronization has a dual responsibility. It periodically polls E’nsor and updates the
state of the local virtual environment accordingly. An example is the maintenance of the
actual position of the AGV in the local virtual environment. Furthermore, synchronization
is responsible for synchronizing state between local virtual environments of neighboring
machines. We give examples of state synchronization when we discuss task assignment
and collision avoidance in the following sections.

4.5.2 Design Rationale

Different functionalities provided by the local virtual environment are assigned to dif-
ferent components. This helps architects and developers to focus on specific aspects of the
functionality of the local virtual environment.

Changes in the system (e.g., AGVs that enter/leave the system) are reflected in the state
of the local virtual environment, releasing agents from the burden to handle such dynam-
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ics. As such, the local virtual environment—supported by the ObjectPlaces middleware—
supports openness.

Since an AGV agent continuously needs up-to-date data about the system (position of
the vehicles, battery status, etc.), we decided to keep the relevant state of the vehicle and
it context in the local virtual environment synchronized with the actual state. Therefore,
E’nsor and the ObjectPlaces middleware are periodically polled to update the status of the
system. As such, the state repository maintains an accurate representation of the relevant
local state of the system to the AGV agent.

5 TRANSPORT ASSIGNMENT

We now explain transport assignment in the AGV transportation system. We have
developed two different approaches for adaptive transport assignment: FiTA (field-based
transport assignment) employs computational fields in the virtual environment to guide
AGVs to loads, and DynCNET which is an extention of the well-known contract net pro-
tocol (CNET [24]), with “Dyn” referring to support for dynamic task assignment. In this
section, we give an overview of FiTA and DynCNET and we compare both approached
based on: (1) the performance (throughput and bandwidth usage), (2) a number of im-
portant quality attributes (flexibility—adapt to dynamics that happen during transport as-
signment, openness—take into account agents that enter/leave the system in the process of
transport assignment, and robustness to message loss), and (3) the complexity and support
to engineer the approaches. In the experiments, CNET is used as a reference protocol.

51 FTA

The basic idea of field-based transport assignment is to let each idle AGV follow the
gradient of a field that guides it toward a load that has to be transported. The AGV agents
continuously reconsider the situation of the environment and transport assignment is de-
layed until the load is picked, which benefits the flexibility of the system. To explain FiTA,
we use the scenario shown in Fig. 6.

Fields. Transport assignment is achieved by the interaction between AGV agents and
transport agents. Physically, transport agents execute at the transport base, but concep-
tually transport agents are situated in the local virtual environment of the transport base
system and occupy the position of the load of its associated transport in the local virtual
environment. Both AGV and transport agents emit fields in the local virtual environment,
see Fig. 6. Transport fields attract idle AGVs. However, to avoid multiple AGVs driving
toward the same transport, AGVs emit repulsive fields. AGV agents combine received
fields and follow the gradient of the combined fields, that guide them toward pick locations
of transports. Fields have a certain range and contain information about the source agent.
AGV fields have a fixed range, while the range of transport fields is variable. Fields are
refreshed at regular times, according to a predefined refresh rate.

AGYV agents store received fields. When an AGV agent perceives fields, it stores the data
contained in these fields in a field-cache. The field-cache consists of a number of cache-
entries. Each cache entry contains the identity of the received field, the most recent data
contained in that field and a freshness. The freshness is a measure of how up-to-date the
cached data is. For example, in Fig. 6 the field-cache of AGV A will consists of three
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Figure7 Two successive scenarios in which AGV A follows the gradient of the combined fields.
For clarity, we have not drawn the fields.

entries, one for transport u, one for transport w, and one for AGV B.

AGV agents construct calculated-fields to decide their movement. An AGV agent con-
structs a calculated-field to decide in which direction to drive from a node. A calculated-
field is a combination of the received fields, which are stored in the field-cache. The
lower the freshness of a cache-entry, the lower the influence of the associated field on
the calculated-field. The calculated-field is constructed from the last selected node on the
AGV'’s path and contains values for each outgoing segment. An AGV agent follows the
calculated-field in the direction of the smallest value. This can be considered as following
the gradient of the calculated-field downhill.

In the top part of Fig. 7, AGV A constructs a calculated-field on the node in front.
Although transport w is closer, the calculated-field will guide AGV A toward transport
u. This is the result of the repulsive effect of AGV B. It would have been ineffective for
AGV A to drive toward transport w, since AGV B is closer and is maneuvering toward this
transport.

Adaptive task assignment. Final transport assignment is delayed until an AGV actually
reaches a pick location and picks up the load. This allows agents to adapt the assignment of
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transports while the AGVs drive toward loads. By delaying transport assignment, FiTA can
cope with changing circumstances that arise. An example is shown in the bottom part of
Fig. 7 where a new transport suddenly pops up. While AGV A is driving toward transport
u, a new transport p appears close to AGV A. Since no transport has been assigned to AGV
A yet, it can drive toward transport p.
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Figure 8 Generation of move actions of the AGV agent in FiTA. The elements in the shaded
area deal with field management.

5.1.1 Software Architecture

We limit the discussion to the components of the AVG agent that are involved in the
generation of move actions in FiTA. Fig. 8 shows the collaborating components view. We
discuss the various elements in turn.

Router. The router uses a map of the warehouse layout with nodes and segments to calcu-
late paths and distances from one node to another. For testing, we have used a static router
that uses the A* algorithm [14]. However, the approach is compatible with a dynamic
router that would take into account dynamic runtime information such as traffic distribu-
tion.

Field Cache: This repository stores the information of fields of other AGV agents and
transport agents in cache-entries.

Field Calculator. The field calculator constructs a calculated-field from the last selected
target node by combining the received fields from the field-cache. The field calculator
makes use of the router to calculate the values of the calculated-field on different positions.
The gradient of the calculated-field is used as driving direction on the target node.

Field Update. The field update component is responsible to update the fields for the AGV
agent. During task assignment, the move action generator periodically invokes requests for
field updates.

Move Action Generation. The move action generation component is activated by the ac-
tion selection component (see Fig. 4) and generates concrete move actions. During task
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assignment, move action generator uses the calculated field of the field calculator to guide
the AGV to a load. When the AGV has picked a load, it will inform the transport agent
and execute the transport. The generated move action is passed to the Collision and Dead-
lock Avoidance components that lock the required path to execute the selected action (see
Fig. 4). As soon as the path is locked, the action is invoked in the local virtual environment.

Spreading fields. The local virtual environment is responsible for spreading the fields.
Field management requires synchronization among local virtual environments. The spread-
ing of fields takes into account the status of the agents such as the positions of AGVs and
the priorities of transports.

5.2 DynCNET Protocol

We now explain DynCNET, a protocol-based approach for task assignment. We start
by explaining a number of general properties of the protocol. Then we give an overview
of the default sequence of the protocol. Next we explain how the agents dynamically can
switch the assignment of tasks. We use the AGV transportation scenario depicted in Fig. 9
to illustrate the steps of the protocol. The DynCNET protocol describes communicative
interactions among AGV agents and transport agents and is part of the agents’ communi-
cation module, compare Fig. 4.

D
."-.

4¢— Path with Crossroad g Transport Base System
KEY =D AcV O  Transport Location
WD Loaded AGV @ Transport Location with Load

Figure9 Scenario to illustrate DynCNET.

General Properties. DynCNET is an m x n protocol. An initiator that offers a task can
interact with m participants, i.e. the candidate agents that can execute the task. On the
other hand, each participant can interact with n initiators that offer tasks. In the AGV
transportation system, an initiator corresponds with a transport agent that represents a task
(i.e., atransport) in the system and the participant corresponds with an AGV agent that can
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execute tasks. We denote the area where an initiator (or participant) searches for partici-
pants (or initiators) the area of interest of the initiator (or participant). The dotted circles
in Fig. 9 show the current areas of interest of AGV A (top) and transport = (bottom). For
transport z, there are currently two candidate AGVs to execute the transports: F and G
(AGV E is delivering a load). For AGV A on the other hand, there are three possible trans-
ports to execute: u, v, and w. Due to the dynamics in the system, the set of candidate tasks
(initiators) and agents that can execute a task (participants) can change over time. E.g.,
in the right part of Fig. 11, AGV E has just dropped its load and becomes a candidate to
execute transport .

Default Sequence. The left part of Fig. 10 shows an UML interaction diagram with the
default message sequence of DynCNET. The default protocol consists of four steps: (1)
the initiator sends a call for proposals; (2) the participants respond with proposals; (3) the
initiator notifies the provisional winner; and finally, (4) the selected participant informs the
initiator that the task is started. These four steps are basically the same as in the standard
CNET protocol. The flexibility of DynCNET is based on the possible revision of the pro-
visional task assignment between the third and fourth step of the protocol.

Switching Initiators and Participants. To explain how agents can switch tasks when the
conditions in the environment change, we use the UML state diagram shown of Fig. 10.
This state diagram shows a compact representation of the behavior of the initiator and par-
ticipant agents in the protocol. First we look at the protocol from the perspective of the
participant, then we look from the point of view of the initiator.

Switching Initiators. Consider the situation in Fig. 9 where AGV A has a provisional
agreement to execute transport w. While AGV A drives toward the pick location of w,
a new transport p enters the system, see the left part of Fig. 11. This new transport
is an opportunity for AGV A. DynCNET enables participants to switch initiators and
exploit such opportunities. When a participant is ready to execute a task, it enters the
Vot i ng state where it answers cf p’s with pr oposal s. When the participant receives a
provi si onal —accept message (step 3 in the interaction diagram of Fig. 10), it enters
the I nt ent i onal state, see the right part of Fig. 10. As soon as the participant starts
the task, it sends a bound message to the initiator to inform this latter that the execution
of the task is started. The participant is then committed to execute the task. However, if
a new opportunity occurs before the task is started, i.e. the participant receives a bet t er
of f er, the participant changestothe Swi t ch I ni ti at or stateandretracts from
the provisional task assignment to switch to the more suitable task (Swi t chTask() ).

Switching Participants. Consider the situation in Fig. 9 where the transport agent x has a
provisional agreement with AGV agent G. While AGV G drives toward the pick location
of transport 2, AGV E becomes available, see the right part of Fig. 11. This new AGV is
an opportunity for transport z. DynCNET enables initiators to switch participants and ex-
ploit such opportunities. When an initiator has sent a cf p and received the pr oposal s
from the participants, it sends a pr ovi si onal -accept message (step 3 in Fig. 10) and
enters the Assi gned state, see the right part of Fig. 10. As soon as the initiator receives a
bound message from the selected participant it enters the state Execut i ng in which the
task is effectively started. However, if a new opportunity occurs before the task is started,
i.e. the initiator receivesa bet t er of f er from a participant, the initiator changes to the
Switch Partici pant state. In this state the initiator sends an abort to the provi-
sionally assigned participant and switches to the more suitable participant.

Taskl nScope() and TaskQut Scope() are functions that notify the participant when
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new tasks enter and leave its area of interest. Such functionality can be provided by the per-
ception module of the participant that monitors the area of interest of the agent in the envi-
ronment. Similarly, Parti ci pant| nScope() and Parti ci pant Qut Of Scope()
notify the initiator when new participants enter and leave its area of interest. [7] elaborates
on these functions in the AGV application.

Convergence. A potential risk of DynCNET is that the assignment of tasks oscillates be-
tween participants and no tasks are executed. In the AGV application, oscillations were
avoided by limiting and differentiating the areas of interest for initiators (transport agents)
and participants (AGV agents). In particular, the area of interests of AGV agents covered
up to 1/10th of the total area of the map and the area of transport agents was 4 times smaller
as that of AGV agents.

Synchronization messages. To handle synchronization, confirmation messages are used.
For example, when an initiator switches participants it first sends an abort to the participant
that has provisionally accepted, see the state diagram of Fig. 10. This latter then sends a
message to confirm the abort.
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Figure 10 Left: High-level interaction diagram of DynCNET. Shaded areas in the activation
boxes represent periods when agents can switch the provisional agreement. Right: Statechart dia-
gram of DynCNET. Agents’ switch the provisional agreement in the shaded states.

However, if this participant has already started the task (transition | nt ent i onal to
Execut e) but the initiator has not yet received the bound message, it refuses the abort.
The switch will then be canceled. Due to space limitations, we made abstraction of these
synchronization messages in our explanation. [23] discusses synchronization in detail.

5.3 FiTA and DynCNET Test Results

We have tested DynCNET and FiTA on the map of an AGV transportation system that
is implemented by Egemin at EuroBaltic. The size of the physical layout is 134 m x 134
m. The map has 56 pick and 50 drop locations. We used a standard transport profile that
Egemin uses for testing purposes. This profile generates 140 transports with a random
pick location and a random drop location per hour real time. Each transport is assigned a
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Figure 11 Left: task p provides an opportunity for AGV A. Right: AGV E becomes available
for task x.

random priority that increases over time. The system uses 14 AGVs. The average driving
speed of AGVs is 0.7 m/s, while load manipulations take an average time of 5 s.

For the tests, we used an AGV simulator?. Tests where executed on a cluster of 40
machines: P4 2Ghz, 512MB RAM, Debian Stable 3.0. Every simulation was run for
200.000 timesteps, corresponding to approximately 4 hours real time, i.e. one timestep
represents 20 ms in real time. All displayed test results are average values over 20 to 40
simulation runs.

5.3.1 Test Results

We have measured communication load (number of messages sent per transport), re-
action time (average waiting time per transport as a function of simulated timesteps), and
throughput (number of finished transports as a function of simulated timesteps). Since taks
are generated randomly and priorities are assigned randomly, we have verified the statistic
significance we have calculated 95 % confidence intervals [27] denoted with error bars in
the graphs. The small intervals indicate that the test results are sufficiently reliable.

Communication Load. To compare the communication load, we have measured the av-
erage number of messages sent per finished transport. The left part of Fig. 12 shows the
results of the test. The number of messages of DynCNET and FiTA are approximately the
same, while the communication load of CNET is about half of the load of the dynamic
mechanisms.

Average Waiting Time and Throughput. The right part of Fig. 12 shows the test results
for average waiting time for transports. Average waiting time is expressed as the number
of timesteps a transport has to wait before an AGV picks up the load. After a transition
period (around 20.000 timesteps), DynCNET and FiTA outperform CNET. The difference
increases when time elapses. FiTA is slightly better than DynCNET over the full test
range. A possible explanation is that idle AGVs in FiTA immediately start moving when
they sense a field of a task, while in DynCNET AGVs only start moving after they are
provisionally committed to execute a task.

After four hours in real-time, the throughput of CNET was 380 transports, DynCNET

8AGV  Simulator, 2007, AgentWise, DistriNet Labs, Katholieke Universiteit Leuven,
www.cs.kuleuven.ac.bel~distrinet/taskf orces/agentwise/agvsimul ator/
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Figure 12 Left: amount of messages being sent per finished transport. Right: average waiting
time

has handled 467 transports, and FiTA 515 transports. For the 467 executed transports of
DynCNET, we measured an average of 414 switches of transport assignments performed
by transport agents and AGV agents.

5.3.2 Discussion

DynCNET and FiTA have similar performance characteristics. Both outperform CNET
on all performance measures, the cost is a doubling of required bandwidth. Both DynC-
NET and FiTA support flexible assigning of tasks. In FiTA, the choices of the AGV agents
are implicitly determined by the combination of the sensed fields. DynCNET provides ex-
plicit points of choice for transport and AGV agents. We used the priorities of transports
and the distance between AGVs and loads to switch transports. More advanced approaches
can be considered, e.g., AGV agents may (to some extent) favour transports that are located
near to one another increasing the change to find a closely located transport when the orig-
inal assignment for some reason switches. Both DynCNET and FiTA support openness,
i.e. both mechanisms allow initiators to take into account new participants that become
available and vice versa. Whereas FiTA inherently supports openness (the combination
of fields adapts when fields disappear or new fields appear), the DynCNET protocol in-
cludes explicit functions (ParticipantinScope, etc.) that notify initiators and participants
when other agents enter or leave their area of interest. Neither flexibility, nor openness is
supported by CNET.

Robustness to Message Loss. Robustness to message loss is the ability of a task assign-
ment approach to withstand message loss (i.e., graceful degrade). In FiTA, the freshness of
the received fields is taken into account to determine the attraction and repulsion of fields.
When an agent misses an update of a field due to the loss of a message, the previous values
(with less importance) is used to calculate the combined field. As such, FiTA is (to some
degree) robust to message loss. DynCNET (as CNET) on the other hand fails when a mes-
sage gets lost and the prescribed sequence of messages is disrupted. As such, DynCNET
require additional support for robustness to message loss. Exception handling in protocol
design is a non-trivial problem [18].

Mechanism Engineering. No common engineering approaches are currently available for
designing and developing FiTA. On the other hand, DynCNET allows to specify the behav-
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ior of the agents by means of common engineering diagrams such as interaction diagrams
and statecharts, allowing engineers to reason on the assignment of tasks. Parameter tuning
of DynCNET and FiTA requires similar efforts.

The tradeoff between robustness to message loss and engineering comfort is an important
criteria for selecting a task assignment approach in practice.

6 COLLISION AVOIDANCE

We now explain how AGVs avoid collisions. In the centralized approach, collision
avoidance is realized as follows: for each AGV in the system, a series of hulls are calculated
that represent the physical area the AGV occupies along the path it is going to drive. A
hull projection projects a hull over a part of the path the AGV intends to drive on. When
two or more hull projections overlap, AGVs are in collision range and all except one AGV
are commanded to wait.

6.1 Decentralized Mechanism for Collision Avoidance

In a decentralized architecture, a central arbitrator does not exist. However, the virtual
environment enables the agents to act as if they are situated in a shared environment, while
the local virtual environments take the burden of coordination. Fig. 13 shows a series of
screenshots of a simulation run in a realistic map. In Fig. 13(a), two AGVs, A and B,
are approaching one another. Both AGVs are projecting hulls in the environment. At this
point, no conflict is detected (we explain the circles below). In Fig. 13(b), AGV B has
projected further ahead, and is now in conflict with the hull projection of AGV A. If we
assume that AGV A has already reserved the trajectory occupied by its hull, AGV A is
given priority to AGV B that must wait. In 13(c), AGV A is taking the curve, passing
AGV B. Finally, in 13(d), AGV A has parked at the bottom, and AGV B is moving.

We now describe the collision avoidance mechanism in more detail. First, we focus
on how the agent avoids collision without being aware of the actual underlying collision
avoidance protocol, then we study the work behind the scenes (i.e. the protocol) in the
virtual environment.

In order to drive, the agent takes the following actions:

1. The agent selects the path it intends to follow over the layout and determines how
much of this path it wants to lock. This is determined by LockAheadDistance pa-
rameter®,

2. The agent marks the path it intends to drive with a requested hull projection. This
projection contains the agents id and a priority, that depends on the current transport
the AGV is handling.

3. The agent perceives the local virtual environment to observe the result of its action.

4. The agent examines the perceived result. There are two possibilities: (a) The hull is
marked as “locked” in the environment; it is safe to drive; (b) The hull is not marked
as locked. This means that the agent’s hull projection conflicted with that of another

bBesides the LockAheadDistance, the AGV also applies basic rules for deadlock avoidance such as locking a
bi-directional path until the end. Yet, we do not further elaborate on deadlock avoidance here.
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Figure 13 (a) Two AGVs approaching, (b) A conflict is detected, (c) One AGV passes safely,
(d) The second AGV can pass as well. The hull projection circles in (a) are used to determine the
AGVs in collision range.

agent. The agent may not pass; at this point the agent may decide to wait and look
again at a later time, or remove its hull projection and take another path altogether.

The local virtual environment plays an important role in this coordination approach: it
must make sure that a hull projection becomes locked eventually. To this end, the local vir-
tual environment of the AGV agent that requests a new hull projection, executes a collision
avoidance protocol with local virtual environments of nearby AGVs.

It is desirable to make the set of nearby AGVs not larger than necessary, since it is
not scalable to interact with every AGV in the system. On the other hand, the set must
include all AGVs with which a collision is possible: safety must be guaranteed. A solution
to this problem is shown in Fig. 13(a). The local virtual environment of a requesting
AGV will interact with the local virtual environments of other AGVs whose hull projection
circle overlaps with the hull projection of the requesting AGV. The hull projection circle
is defined by a center point, which is the position of the AGV itself, and a radius, which is
determined by the furthest point of the AGV’s hull projection. If two such circles overlap,
this indicates that the two AGVs might collide. We call the set of AGVs with overlapping
hull projection circles the requested AGVs.

The local virtual environment of the requesting AGV executes the following protocol
with the local virtual environment’s of requested AGVs. The protocol is a variant on well-
known mutual exclusion protocols based on voting.
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1. The local virtual environment of the requesting AGV sends the requested hull pro-
jection to the local virtual environments of all requested AGVs.

2. The local virtual environments of requested AGVs check whether the projection
overlaps with their hull projection. There are three possibilities for each of the re-
quested AGVs. (a) If no hull projections overlap, the local virtual environment of
the requested AGV sends an “allowed” message to the local virtual environment of
the requesting AGV. (b) If the requesting AGV’s hull projection overlaps with the
requested AGV’s hull projection, and the requested AGV’s hull is already locked,
the local virtual environment of the requested AGV sends a “forbidden” message
to the local virtual environment of the requesting AGV. (c) If the requesting AGV’s
hull projection overlaps with the requested AGV’s hull projection, and the requested
AGV’s hull is not locked, ties are broken by the priorities of the hulls, i.e. the local
virtual environment of the requested AGV replies “allowed” if the priority of its hull
is lower than the hull of the requesting AGV and it replies “forbidden” otherwise.

3. The local virtual environment of the requesting AGV waits for all “votes” to come
in. If all local virtual environments of the requested AGVs have voted “allowed”,
the hull projection can be locked and the state of the local virtual environment is
updated. If not, the local virtual environment of the requesting AGV waits a random
amount of time and then tries again from step 1.

If at any time, the agent removes the requested hull from the virtual environment, the
protocol is aborted. The approach used for collision avoidance shows how the virtual
environment serves as a flexible coordination medium for the agents.

6.2 Software Architecture: Communicating Processes for Collision Avoidance

We now illustrate how collision avoidance is dealt with in the software architecture.
Fig. 14 shows the communication processes view for collision avoidance.

The communicating processes view presents the basic modules of the AGV control
system and overlay them with the main processes and repositories involved in collision
avoidance. We discuss the main architectural elements involved in collision avoidance in
turn.

The Perception Process is part of the agent’s perception component (see Fig. 4). If the
perception process receives a request for perception, it requests the up-to-date data from
the local virtual environment and updates the agent’s current knowledge.

The Perception Generator Process is part of the perception manger (see Fig. 5). This
process is responsible for handling perception requests, it derives the requested data from
the state repository of the local virtual environment according to the given foci. Current
state of the AGV vehicle and state from other nodes that is needed by the AGV agent is
maintained by dedicated synchronization processes.

Collision Avoidance Process is part of the AGV agent’s decision making component. The
collision avoidance process calculates the required hull projection for collision avoidance,
and projects the hull in local virtual environment. Once the hull is locked, the collision
avoidance process invokes a move command in the local virtual environment.
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Figure14 Communicating processes for collision avoidance

The Action Manager Process is part of the action manager component. The action man-
ager process collects the actions invoked in the local virtual environment and dispatches
them to the applicable processes. For a hull projection, the action manager process passes
the actions to the collision avoider process of the local virtual environment. A move action
is passed to the E’nsor process.

Objectplaces repository is a repository of data objects in the ObjectPlaces middleware
(see Fig. 3) that contains the hulls the AGV agent has requested.

NodeProperties is a data repository in the middleware in which relevant properties of the
node are maintained, an example is the AGV’s current position. Maintenance of node prop-
erties in the repository is handled by the Property Maintainer Process. This process is a
synchronization process of the local virtual environment that is part of the synchronization
component (see Fig. 5). The data objects of the NodeProperties repository are used by
the middleware to synchronize the state among local virtual environment on neighboring
nodes. For example, the current position in the node properties repository is used by the
ObjectPlaces middleware to determine whether the AGV is within collision range of other
AGVs.

The Collision Avoider is a helper process of the action manager process that projects the
requested hull in the objectplaces repository and initiates the collision avoidance protocol
in the middleware.
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The Protocol Interaction Process is part of ObjectPlaces and is responsible for executing
the mutual exclusion protocol for collision avoidance. This process maintains the state of
the agent’s hull in the objectplaces repository.

The Hull Maintainer and Position Maintainer Processes are part of the synchronization
component. The hull maintainer process monitors the hull object in the objectplaces repos-
itory and keeps the state of the hull in the state repository of the local virtual environment
consistent. The position maintainer process maintains in a similar way the actual position
of the vehicle.

Finally, the E’nsor Process is part of E’nsor (see Fig. 3). The E’nsor process (1) period-
ically provides updates of the vehicles physical state (such as position and battery status),
and (2) translates the high-level actions from the action manager process into low-level
commands for the vehicle actuators.

7 ARCHITECTURE EVALUATION

For the evaluation of the software architecture of the AGV transportation system we
used the Architecture Tradeoff Analysis Method (ATAM) [7, 6]. The main goal of the
ATAM is to examine whether the software architecture satisfies system requirements, in
particular the quality requirements. We applied the ATAM for one concrete application, in
casu a tobacco warehouse transportation system that was used as a test case in the project.
We start this section with a brief overview of the ATAM evaluation and an introduction
of the tobacco warehouse application. Then, we discuss the analysis of architectural ap-
proaches for two important quality scenarios of the system.

7.1 ATAM Workshop

In preparation to the ATAM evaluation, three stakeholders together with one of the
evaluators held a four-days Quality Attribute Workshop (QAW [3]). A QAW is a facilitated
method that engages stakeholders to discover the driving quality attributes of a software-
intensive system. During the QAW, the participants developed a utility tree [11]. A utility
tree characterizes the important quality requirements in a four-level tree structure where
each level provides more specific information about important quality goals, with leaves
specifying measurable quality attribute scenarios. Each scenario is assigned a ranking that
expresses its priority relatively to the other scenarios.

The ATAM itself was conducted by a team of three evaluators and nine stakeholders,
including a project manager, two architects, a project engineer, two developers, a ser-
vice and a simulation engineer, and a representative for the customer. The workshop took
one day and followed the standard ATAM phases, i.e., presentations of ATAM, business
drivers, architecture and architectural approaches. Next the quality attribute utility tree
was discussed with the stakeholders and two quality scenarios were analyzed in detail (see
below). The workshop initiated a number of additional activities. A number of tests were
conducted to investigate the main risks that were identified during the workshop. An extra
analysis of risks and tradeoffs of the software architecture was performed with a reduced
number of stakeholders. Finally, the architects finished the architecture documentation and
the evaluators presented the main workshop results. [6] presents the integral report.
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7.2 Tobacco Warehouse Transportation System

In the tobacco application, AGVs have to bring bins with tobacco to different process-
ing machines and storage locations. The warehouse measures 75 x 55 meters with a layout
of approximately 6000 nodes. The installation provides 12 AGVs that use navigation with
magnets in the floor. AGVs use opportunity charging and a 11 Mbps wireless ethernet
is available for communication. Transports are generated by a warehouse management
system at an average load of 120 transports/hour.

The system is subject to a number of technical constraints, including the use of .NET as
development framework, backwards compatibility with E’pia the general purpose frame-
work developed by Egemin that provides basic support for persistency, security, logging,
etc., and compatibility with E’nsor the low-level control software deployed on AGVs. Fi-
nally, the load of the wireless network is restricted to 60 % of its full capacity.

7.3 Analysis of Architectural Approaches

During the ATAM, the architectural approaches that address the high-priority quality
scenarios were elicited and analyzed. A number of architectural risks (i.e. problematic
architectural decisions), sensitivity points (i.e. architectural decision that involve archi-
tectural elements that are critical for achieving the quality attributes), and tradeoff points
(i.e. architectural decisions that affect more than one attribute) of the software architecture
were identified. We give an overview of two important quality attribute scenarios that were
analyzed: one scenario concerning flexibility (transport assignment) and another scenario
concerning performance (bandwidth usage).

7.3.1 Architectural Analysis of Flexibility

Fig. 15 shows an overview of the analysis of architectural decisions for the main quality
attribute scenario of flexibility (F2.1).

Analysis of Architectural Approach

Scenario #: F2.1 | As long as a transport has not been picked up, the system
dynamically changes that transport's assignment to the most

suitable AGV.
Attributes Flexibility
Environment Nommal operation
Stimulus A transport has not been picked up and the transport's

assignment can be improved.

Response The system dynamically changes the assignment of the
transport to the most suitable AGV.

Architectural decisions Sensitivity Tradeoff Risk

AD 1 Negotiating agents T

AD 2 Locality S1

AD 3 DynCNET protocol for R1

transport assignment

Figure15 Analysis architectural approaches for a flexibility scenario
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The table shows the main architectural decisions (AD) that achieve the quality attribute
scenario, and specifies sensitivity points, tradeoffs, and risks associated with the architec-
tural decisions. We briefly explain the various architectural decisions:

AD 1 To assign transports, multiple AGV agents negotiate with multiple transport agents.
Agents continuously reconsider the changing situation, until a load is picked. The con-
tinuous reconsideration of transport assignments improves the flexibility of the system.
However, it also implies a significant increase of communication. This was registered as
tradeoff T1.

AD 2 For decision making, agents take only into account local information in the envi-
ronment. The most suitable range varies per type of information, and can vary over time
for particular types of information, e.g., candidate transports, vehicles to avoid collisions,
etc. The determination of this range for various functionalities is a sensitivity point. This
sensitivity point was denoted as S1.

AD 3 The DynCNET protocol is documented at a high-level of abstraction. At the time
of the ATAM, several important decisions were not taken yet. The difficulty of parameter
tuning to ensure convergence and optimal behavior was unclear. This lack of clearness was
registered as risk R1.

7.3.2  Architectural Analysis of Bandwidth Usage
Fig. 16 shows an overview of the analysis of architectural decisions for the main qual-

ity attribute scenario of bandwidth usage (P2.1). We give a brief explanation of the various
architectural decisions:

Analysis of Architectural Approach

Scenario #: P2.1 | The amount of communication, with maximal 12 AGVs and a
maximal load of 140 transporta per hour, does not exceed 60 %
of the bandwidth of the 11 Mbps communication channel.

Attributes Performance

All operation modes with i 12 AGVs and a maximal
load of 140 transports per hour.

Stimulus Communication among subsystems.

Response Communication load should not exceed 60 % of the bandwidth
of the 11 Mbps communication channel.

Architectural decisions Sensitivity Tradeoff Risk

AD 1 Choice for .NET remoting S2

AD 2 Agents located on T2 R2

machine controls AGV

AD 3 DynCNET protocol for T3

transport assignment

AD 4 Two step deadlock R3

prevention mechanism

AD 5 Unicast communication in S3

the middleware

Figure 16 Analysis architectural approaches for a bandwidth usage scenario

AD 1 The AGV transportation system software is built on top of the .NET framework. This
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choice was a business constraint but also an evident choice since the E’pia library that is
used for logging, persistence, security, etc., also uses .NET. The overhead induced by the
choice for the point-to-point communication approach of .NET remoting was registered as
a sensitivity point S2.

AD 2 Each AGV vehicle is controlled by an agent that is physically deployed on the ma-
chine. This decentralized approach induces a risk with respect to the required bandwidth
for inter-agent communication. This was recorded as risk R2. An AGV agent can flexibly
adapt its behavior to dynamics in the environment. AGVs controlled by autonomous agents
can enter/leave the system without interrupting the rest of the system. However, flexibility
and openness comes with a communication cost. This tradeoff was noted as T2.

AD 3 The DynCNET protocol for transport assignment enables flexible assignment of
transports among AGVs. Yet, the continuous reconsideration of transport assignment im-
plies a communication cost. This tradeoff was denoted as T3.

AD 4 AGV agents use a two phase deadlock prevention mechanism. AGV agents first
apply static rules to avoid deadlock, e.g. agents lock unidirectional paths over their full
length. These rules however, do not exclude possible deadlock situations completely. If
an agent detects a deadlock, it contacts the other involved agents to resolve the problem.
Yet, the implications of the deadlock mechanism on the communication overhead are at
the time of the ATAM not fully understood. This lack of insight was denoted as risk R3.

AD 5 The ObjectPlaces middleware uses unicast communication. However, some mes-
sages have to be transmitted to several agents, causing overhead. Support for multicast
is possible, yet, this implies that the basic support of .NET remoting would no longer be
usable. This potential problem was registered as sensitivity point S3 (see also S2).

7.3.3 Testing Communication Load

The analysis of the architectural approaches improved the understanding of the trade-
off between flexibility and communication load. To further investigate this tradeoff, we
conducted a number of tests after the ATAM workshop. Besides the simulation tests of
the two approaches for transport assignment (see section 5), we tested the efficiency of the
middleware in the AGV application by measuring bandwidth usage of a system in a real
factory layout.

45 T T T T T T T T T T
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25 —

Usage [% 11 Mbps]
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05 —

0 20 40 60 80 100 120 140 160 180
Time [min]

Figure 17 Bandwidth usage in a test setting

Fig. 17 shows the results of four consecutive test runs. We measured the amount of data
sent over the network by each AGV, and averaged this per minute to obtain the bandwidth
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usage relative to the bandwidth of a 11 Mbps IEEE 802.11 network. The first test (Time:
10-30 min.) has three AGVs, of which two were artificially put in deadlock (a situation
which is avoided in normal operation), because then the collision avoidance protocol is
continually restarted, and never succeeds. This is a peak load of the system. The second test
(40-60 min.) has three AGVs driving around freely. The third test (130-150 min.) has five
AGVs driving around freely. The fourth test (160-180 min.) has five AGVs, all artificially
put in deadlock. During the time in between test runs, AGVs were repositioned manually.
On average, the bandwidth usage doubles when going from three to five AGVs. This is
because the AGVs need to interact relatively more to avoid collisions. Based on these test
results, Egemin experts consider the bandwidth usage acceptable for an extrapolation to
12 AGVs, taking into account a maximal bandwidth of 60 % of 11 Mbps, and given that
bandwidth optimizations were not applied yet.

7.4 Demonstrator of AGV Transportation System

As a proof of concept, we have developed a demonstrator of the decentralized AGV
transportation system. The demonstrator with two AGVs is developed in .Net and supports
the basic functionality for executing transport orders. The core of the action selection mod-
ule of the AGVs is set up as a free-flow tree. A monitor enables remote access of the AGVs
and generates a fusion view that represents the status of the local virtual environments of
both AGVs. Fig. 18 shows a snapshot of the AGVs in action with the fusion view.

QAN D E Al

Figure 18 Demonstrator with AGVSs in action

More information and demonstration movies of the prototype implementation can be
found at the project website [13].

7.5 Applicability of the Software Architecture to Other Domains

The software architecture presented in this paper is developed for AGV transportation
systems. In this section, we explain how parts of this particular software architecture can
be transferred to other contexts. On the other hand, we also identify important issues that
constrain the practicality of the architecture to other domains.

Two important properties of AGV transportation systems are: (1) there is an inherent
distribution of resources and activity in the system, and (2) the control software has to
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operate in a highly dynamic environment. Domains that share these properties are peer-to-
peer applications (such as file sharing systems), manufacturing control, traffic monitoring
and control, and large-scale wireless sensor networks.

We discuss the applicability of parts of the software architecture to other domains from
two perspectives. First we explain how the notion of virtual environment can provide a
means to tackle complexity. Next, we discuss how a number of architectural approaches to
achieve flexibility and openness can help to deal with the dynamics in the system.

Managing Complexity. The most crucial architectural decision to manage complexity in
the AGV transportation system is the introduction of the virtual environment. The virtual
environment allows the separation of two concerns: controlling the AGVs by means of
selecting proper actions, and managing the coordination among the vehicles. The concept
of a virtual environment as an active entity in the design of a decentralized system is an
architectural approach that can be translated to other related domains.

Flexibility and Openness. The choice for a situated MAS is central to the way flexibility
and openness are achieved in the software architecture of the AGV transportation system.
A number of important architectural approaches to achieve these qualities are: separat-
ing decision making from communication in the agent architecture, task assignment with
DynCNET and FiTA, and the ObjectPlaces middleware.

Separating decision making from communication in the software architecture of the
agents allows both functions to act in parallel and at a different pace. This architectural
approach supports flexible coordination among agents and can be useful in domains where
the speed of action selection in the environment is orders of magnitude lower than the
speed of communication.

Task assignment in a decentralized architecture is a complex coordination problem.
We presented DynCNET and FiTA as two alternative solutions. Both these approaches
are suitable for domains that are characterized by delayed commencement of tasks, i.e. an
agent that has to execute a task has to perform a significant effort before it can effec-
tively execute that task. Two additional assumptions are: the environment needs to provide
continual communication access, and there should be enough agents to execute the tasks
that enter the system, i.e. the agents can handle the load of the system. We believe that
DynCNET is applicable in other domains that share these properties. For FiTA, there is
one important additional constraint. FiTA requires that the strength of the fields can be
expressed proportional to the real distance between tasks and agents rather than to the Eu-
clidian distance. This constraint ensures that agents that use FiTA do not get stuck in local
minima. As such, the approach is less suitable for domains where agents are less restricted
in their movements in space.

Finally, the ObjectPlaces middleware provides support for gathering and maintaining
context information and setting up protocol-based communication in mobile and ad-hoc
networks. An important part of this middleware was developed in the context of the EMC?
project, however, the middleware is independent of the AGV transportation system and as
such can be useful in other related domains as well.

8 RELATED WORK

AGYV control is subject of active research since the mid 1980s. Most research has been
conducted in the domain of Al and robotics. Recently, a number of researchers have ap-
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plied MAS, yet, most of this work is applied in small-scale projects.

Al and Robotics Approaches. The problems of routing and scheduling of AGVs is dif-
ferent from conventional path finding and scheduling problems. Scheduling and routing
of AGVs is a time-critical problem, while a graph problem usually is not. Besides, the
physical dimensions of the AGVs and the layout of the map must be taken into account.

Roughly spoken, three kinds of methods are applied to solve the routing and scheduling
problem. Static methods use a shortest path algorithm to calculate routes for AGVs, see
e.g. [12]. In case there exists an overlap between paths of AGVs, only one AGV is allowed
to proceed. The other AGVs have to wait until the first AGV has reached its destination.
Such algorithms are simple, but not efficient. Time-window-based methods, maintain for
each node in the layout a list of time-windows reserved by scheduled AGVs. An algorithm
routes vehicles through the layout taking into account the reservation times of nodes, see
e.g. [16]. Dynamic methods apply incremental routing. An example algorithm is given
in [25]. This algorithm selects the next node for the AGV to visit (towards its destination)
based on the status of the neighboring nodes (reserved or not) and the shortest travel time.
This is repeated until the vehicle reaches its destination. Measurements show that the
algorithm is significant faster than non-dynamic algorithms, yet, the calculated routes are
less efficient.

Contrary to the decentralized approach we have applied in the EMC? project, tradi-
tional scheduling and routing algorithms usually run on a central traffic control system
from where commands are dispatched to the vehicles [20]. Moreover, most approaches
are intended to find an optimal schedule for a particular setting. Such approaches are very
efficient when the tasks are known in advance as for example the loading and unloading
of a ship in a container terminal. In our work, scheduling and routing are going concerns,
with AGVs operating in a highly dynamic environment.

Multiagent System Approaches. [19] presents a decentralized approach for collision-free
movements of vehicles. In this approach, agents use cognitive planning to steer the AGVs
through the warehouse layout. [5] discusses a behavior-based approach for decentralized
control of automatic guided vehicles. In this work, conflict resolution with respect to colli-
sion and deadlock avoidance is managed by the agents based on local information. In [17],
Lindijer applies another agent-based approach to determine conflict-free routes for AGVs.
The author motivates his approach by considering quality requirements, including safety,
flexibility, and scalability. Central to the approach is the concept of semaphore that is used
as a traffic control component that guards shared infrastructure resources in the system such
as an intersection. The system is validated with simplified scale models of real AGVs.

Arora and his colleagues have published a number of papers that describe the control
of AGV systems with an agent-based decentralized architecture [1, 2]. Vehicles select
their own routes and resolve the conflicts that arise during their motion. Control laws
are applied to find save conditions for AGVs to move. [8] discusses a variation on the
field-based approach where agents construct a field in their direct neighborhood to achieve
routing and deadlock avoidance in a simplified AGV system. Hoshino et al. [15] study a
transportation system in which cranes unload a container ship and pass the loads to AGVs
that bring them to a storage depot. Each AGV and crane is represented by an agent. The
authors investigate various mechanisms for AGV agents to select a suitable crane agent.
Off-line simulations allow to determine the optimal vehicle combination for a particular
throughput. Such approach is restricted to domains where no disturbances are expected.

Contrary to our research, the discussed agent-based approaches are only validated in
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simulations and under a number of simplifying assumptions. Applying decentralized con-
trol in a real industrial setting involves numerous complicating factors that deeply affect
the scheduling and routing of AGVs. Most of the related work focusses on isolated con-
cerns in AGV control. For a practical application however, different concerns have to be
integrated, which is not a trivial problem. One lesson we learned is that communication
is a major bottleneck in a decentralized AGV control system. Most related work only
considers simple layouts with a small number of AGVs, and abstracts from communica-
tion costs. An important difference between our research and the discussed approaches is
that we have applied an architecture-centric design for the AGV application in the EMC?
project. Scheduling and routing are integrated in the software architecture with other con-
cerns such as deadlock avoidance and maintenance of the AGVs. Most related work does
not consider software architecture explicitly. As a consequence, little attention is payed to
the tradeoffs between qualities. In the EMC? project the tradeoffs between quality goals
were the drivers for the system design.

9 CONCLUSIONS

In this paper, we gave an overview of the architectural design of situated MAS for
AGV control. The AGV and transport agents that coordinate through a virtual environment
allowed us to shape the software architecture of the transport application to provide the
required functionalities of the system and achieve the important quality goals flexibility
and openness. We conclude this paper with some lessons we learned from applying MAS
in this complex real-world application.

Qualities and tradeoffs. A main motivation for applying a MAS to the AGV trans-
portation system was to investigate whether the decentralized architecture could improve
flexibility and openness. Obviously, an industrial AGV transportation system is subject
to various quality requirements and business constraints. The decentralized architecture
introduces new tradeoffs between the various system requirements. Important lessons we
learned are (1) the motivation to apply a MAS should be driven by quality goals; (2) con-
sidering MAS from a software architecture point of view compels stakeholders to deal
explicitly with tradeoffs between quality requirements from the early start of a project.

Integration with legacy systems. Most industrial software systems require an integra-
tion with legacy systems, and this was the case for the AGV transportation system as well.
We reused various parts of the existing AGV control software in the decentralized archi-
tecture, examples are the low-level control software for AGVs and the layout of maps.
This saved a lot of work. Lessons we learned are: (1) the integration with legacy software
is a matter of fact when agent technology is applied in an industrial setting; (2) software
architecture provides the means to reason about, and deal with the integration of legacy
software in an agent-based system.

Stepwise integration. Switching from a centralized architecture toward an agent-based
decentralized architecture is a big step with far reaching effects for the company, not only
for the software but for the whole organization. A lesson we learned is: integration of
an agent-based approach should be done in a controlled way, step-by-step. At the time
of writing this paper, Egemin is re-factoring the basic AGV control architecture and as
a fist step plans to integrate one of the adaptive transport assignment approaches in the
architecture.

Evaluation. The evaluation of the software architecture contributed to a better un-
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derstanding of the strengths and weaknesses of the decentralized architecture. Besides
qualities, the functional behavior of the system must be evaluated. It is well-known that
giving guarantees about the global behavior of a decentralized system is hard. Lessons
we learned are: (1) a disciplined evaluation of the software architecture of the agent-based
system is invaluable; (2) debugging a decentralized system is hard; (3) simulations are the
main vehicle to give (to a certain extent) guarantees about global system properties.

The connection between software architecture and MAS provides a promising venue for
future research. In this paper, we have put forward flexibility and openness as important
qualities to apply situated MAS. However, MAS are generally considered to be useful for
other qualities as well, such as robustness and scalability. It would be interesting to investi-
gate how these qualities translate to architectural approaches and how the qualities tradeoff
with other qualities in the system.
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