
Horizon 2020

Project Acronym and Title: 5GhOSTS – 5th Generation Security for Telecom
Services

THE TRUST MODEL FOR
MULTI-TENANT 5G TELECOM

SYSTEMS RUNNING VIRTUALIZED
MULTI-COMPONENT SERVICES

Deliverable number: D1.3

Version 0.9/1.0

Funded by the European Union’s Horizon 2020 research and innovation programme
under the Marie Sklodowska-Curie Grant Agreement No. 814035

Project Acronym: 5GhOSTS
Project Full Title: 5th Generation Security for Telecom Services
Call: H2020-MSCA-ITN-2018
Grant Number: 814035
Project URL: https://5ghosts.eu/

Editor: Christoph Baumann, Ericsson

Deliverable nature: Report (R)

Dissemination level: Public (PU)

Contractual Delivery Date: 2021-02-28

Actual Delivery Date 2021-07-19

Number of pages: 54

Keywords: 5G, Trust Model, Security, Privacy, Virtual Network Function, Container, Kubernetes,
Confidential Computing, Trusted Execution

Authors: Merve Turhan, merve.turhan@ericsson.com, Ericsson
Gianluca Scopelliti, gianluca.scopelliti@ericsson.com, Ericsson
Christoph Baumann, christoph.baumann@ericsson.com, Ericsson
Jan Tobias Mühlberg, jantobias.muehlberg@cs.kuleuven.be, KU Leuven
Mykyta Petik, mykyta.petik@kuleuven.be, KU Leuven
Eddy Truyen, Eddy.Truyen@cs.kuleuven.be, KU Leuven

Peer review: Jan Tobias Mühlberg, jantobias.muehlberg@cs.kuleuven.be, KU Leuven
Hans Eriksson, hans.eriksson@ericsson.com, Ericsson

Abstract

In the 5GhOSTS project we analyze and improve the security of service-based implementations of 5G networks, with
a special focus on security and privacy aspects of the development and deployment of containerized Virtual Network
Functions (VNFs). Research and development activities in 5GhOSTS center around three novel use cases, Vehicle to
Infrastructure (V2I), Smart Office, and Remote Surgery, all of which impose challenging requirements regarding low-
latency, privacy, and service resilience on our work. We address these requirements by developing a Kubernetes-based
edge platforms for 4/5G, which is informed by comprehensive security and privacy threat modelling by both researchers
from the domains of telecommunications law and computer security.
In this deliverable we focus on the trust model for our 4/5G edge platform, and survey security and privacy preserving
technologies that will enable us to implement this trust model with Kubernetes-based VNF deployments, ensuring the
integrity and overall security of the deployed VNFs in the presence of strong attackers and even untrusted infrastructure,
and thereby protecting the data and privacy of users of the service.
The survey leads us to four specific research tracks that the 5GhOSTS project will follow-up on in the near future. In
particular, we will further investigate the security of orchestration, isolation and attestation mechanisms, focusing on ad-
vanced and efficient approaches to runtime attestation, extend isolation primitives to intra-container isolation, incident de-
tection and recovery, work explicitly towards securing communications interfaces between VNFs, and high-performance
and low-latency approaches to integrate these mechanisms. Our work will be backed up by formal research into verifying,
e.g., specific isolation approaches, interfaces, as well as security policies. Furthermore, we aim to work towards building
a technology stack that enables privacy impact assessment of user-facing services.

https://5ghosts.eu/
merve.turhan@ericsson.com
gianluca.scopelliti@ericsson.com
christoph.baumann@ericsson.com
jantobias.muehlberg@cs.kuleuven.be
mykyta.petik@kuleuven.be
Eddy.Truyen@cs.kuleuven.be
jantobias.muehlberg@cs.kuleuven.be
hans.eriksson@ericsson.com

Executive Report Summary

In the 5GhOSTS project we analyze and improve the security of service-based implementations of 5G networks, with
a special focus on security and privacy aspects of the development and deployment of containerized Virtual Network
Functions (VNFs). Research and development activities in 5GhOSTS center around three novel use cases, Vehicle to
Infrastructure (V2I), Smart Office, and Remote Surgery, all of which impose challenging requirements regarding low-
latency, privacy, and service resilience on our work. We address these requirements by developing a Kubernetes-based
edge platforms for 4/5G, which is informed by comprehensive security and privacy threat modelling by both researchers
from the domains of telecommunications law and computer security. These efforts have been elaborated on in previous
project output (cf. [1, 2, 3]). In this deliverable we focus on the trust model for our 4/5G edge platform, and survey
security and privacy preserving technologies that will enable us to implement this trust model with Kubernetes-based
VNF deployments, ensuring the integrity and overall security of the deployed VNFs in the presence of strong attackers
and even untrusted infrastructure, and thereby protecting the data and privacy of users of the service.
In Chapter 2 we present a threat and trust modelling effort for our V2I use case, presenting the different actors and their
trust relations. For example, the user side covers driver, pedestrian, and the road sensor infrastructure such as traffic lights
or cameras. As we illustrate, attackers must be considered as distrusted and all systems must take a precaution against
attackers. Attackers can easily reach the user side, attempt to spoof other users’ identity, or compromise them as a step
stone to attack the edge platform. That is why the user side actors do not trust each other. However, the users must semi-
trust the edge service provider and mobile network operator, because they depend on a lot of information and functionality
from them. For example, in the traffic management service use case, they should share data, and get optimized directions
with lower traffic or real-time information about their immediate environment. Conversely, Mobile Network Operator
(MNO) distrust the user side. However they semi-trust the edge manager as it is one of a few well-identified customers
of the MNO’s edge and mobile network infrastructure. Nevertheless, if protections against a compromise of either side
are dropped, this may pose a risk if such a compromise actually occurs. Overall, there are no completely trusted actors
in the V2I edge cloud scenario. Explicating and understanding this is important for our choices of technology. To satisfy
the security and privacy needs of all actors we need to aim for a notion of a Zero Trust Architecture, where active security
controls give novel guarantees about authenticity and integrity to the stakeholders involved in each interaction, establishing
an immediate notion of trustworthiness.
In Chapter 3 we then review technology and architectural choices to harden and to securely deploy and use Kubernetes
containers that implement VNFs. While our focus there is on Trusted Execution Technology (TEEs) and similar ap-
proaches that enable a notion of confidential computing, where VNFs can execute securely with a minimal Trusted Com-
puting Base, we present these approaches in the context of established means of reducing the attack surface of containers,
static vulnerability detection, and secure image deployment. Our survey identifies a number of weaknesses and shortcom-
ings in established approaches to use TEEs in combination with Kubernetes containers in general and VNF scenarios in
particular. These relate to overall system performance, the need for support for highly dynamic and heterogeneous for our
specific use cases, and unclear security objectives and attacker models, which need to be reworked and put in context to
enable use cases in 5G edge.
The survey leads us to four specific research tracks that the 5GhOSTS project will follow-up on in the near future. In
particular, we will further investigate the security of orchestration, isolation and attestation mechanisms, focusing on ad-
vanced and efficient approaches to runtime attestation, extend isolation primitives to intra-container isolation, incident de-
tection and recovery, work explicitly towards securing communications interfaces between VNFs, and high-performance
and low-latency approaches to integrate these mechanisms. Our work will be backed up by formal research into verifying,
e.g., specific isolation approaches, interfaces, as well as security policies. Furthermore, we aim to work towards building
a technology stack that enables privacy impact assessment of user-facing services.

Contents

1. Introduction 1
1.1. Use Cases . 1

1.1.1. Vehicle to Infrastructure (V2I) . 1
1.1.2. Smart Office (SO) . 2
1.1.3. Remote Surgery (RS) . 2

1.2. Privacy and data protection in 5G . 2

2. Privacy, Security, and Trust in 5G Networks 3
2.1. Privacy Requirements . 3

2.1.1. EU legal and policy framework applicable to 5G . 3
2.1.2. Implementing privacy, security and data protection risk mitigating measures in 5G networks . . . 4
2.1.3. Conclusions . 5

2.2. Threat Model . 5
2.2.1. Describing the Scenario and Trust Relations Analysis . 5
2.2.2. Identifying Assets . 6
2.2.3. Data Flow Diagram . 10
2.2.4. Identifying Threats . 12

2.3. Trust Model . 14
2.4. Technical Implications and Scope of 5GhOSTS . 15

3. Secure Distribution and Integrity Protection of Virtualized Network Functions 17
3.1. Overview . 17

3.1.1. Worker nodes . 18
3.1.2. Image/container lifecycle . 19

3.2. Specialized Threat Model . 20
3.2.1. Cluster: users and privileges . 20
3.2.2. Node: users and privileges . 21
3.2.3. Image registry: users and privileges . 21
3.2.4. Trust model . 22

3.3. Container Image Security . 23
3.3.1. Reducing the attack surface . 23
3.3.2. Detecting vulnerabilities statically . 24
3.3.3. Image selection, secure transmission and storage . 24
3.3.4. Integrity verification and remote attestation . 25

3.4. Attack Surface and TCB Assessment . 27
3.4.1. Prevention and detection of malicious activity on the node . 28
3.4.2. Prevention and detection of malicious activity from other containers 29
3.4.3. Prevention and detection of anomalies during the execution of the target container 33

3.5. Trusted Computing Architectures / Confidential Computing for 5G . 34
3.5.1. Trusted Execution Environments . 35

4. Summary and Outlook 40

A. Appendix 46
A.1. Threats to Edge Application . 46
A.2. Threats to Edge Platform . 51

List of Figures

2.1. Assets of the V2I Edge Computing Platform . 9
2.2. Data Flow Diagram . 11
2.3. Trust model for the V2I edge cloud scenario . 15

3.1. An overview of a multi-tenant Kubernetes cluster in the cloud and the different actors that interact with it. 18
3.2. High-level view of the essential software components needed to run containers on a Kubernetes worker

node . 19
3.3. Image/container lifecycle . 20
3.4. Trust relations between the most relevant actors of the Kubernetes cluster 23
3.5. Manifest file of the hello-world image, obtained using the Docker command line interface. Source:

https://docs.docker.com/engine/reference/commandline/manifest/ 26
3.6. Overview of Connaisseur’s process flow. Source: [4] . 26
3.7. Kata’s architecture. Source: https://katacontainers.io . 32
3.8. gVisor’s approach. Source: https://gvisor.dev/docs/ . 32
3.9. Differences between a Process-based TEE and a VM-based TEE. In a process-based TEE, only a small

portion of code and data (the “trusted application”) is protected in an enclave. In a VM-based TEE,
instead, a whole virtual machine (the “secure VM”) is protected by the hardware, including the OS and
all the processes running on it. 35

3.10. A comparison on Intel SGX, AMD SEV and Enclavisor from different dimensions. Source: [5] 36

List of Tables

https://docs.docker.com/engine/reference/commandline/manifest/
https://katacontainers.io
https://gvisor.dev/docs/

List of Acronyms

AESM Application Enclave Services Manager
AWS Amazon Web Services
CFA Control-Flow Attestation
CFG Control-Flow Graph
CFI Control-Flow Integrity
CNCF Cloud Native Computing Foundation
CoT Chain-of-Trust
CRD Custom Resource Definition
CRI Container Runtime Interface
CSP Cloud Service Provider
CVE Common Vulnerabilities and Exposures
DAC Discretionary Access Control
DCAP Data Center Attestation Primitives
DCT Docker Content Trust
EDL Enclave Definition Language
EDP Enclave Development Platform
EPC Enclave Page Cache
EPID Enhanced Privacy ID
GID Group ID
GKE Google Kubernetes Engine
IMA Integrity Measurement Architecture
MAC Mandatory Access Control
OCI Open Container Initiative
OPA Open Policy Agent
OS Operating System
RoT Root-of-Trust
PSP Pod Security Policy
RBAC Role-Based Access Control
ROP Return-Oriented Programming
SDK Software Development Kit
SecL-DC Security Libraries for Data Center
SEV Secure Encrypted Virtualization
SGX Software Guard Extensions
TEE Trusted Execution Environment
TCB Trusted Computing Base
TDX Trust Domain Extensions
TPM Trusted Platform Module
TXT Trusted Execution Technology
UID User ID
VM Virtual Machine
WAMR WebAssembly Micro Runtime

1. Introduction

The 5GhOSTS project analyzes and improves the security of service-based implementations of 5G networks, relevant to
protect the EU’s critical communication infrastructure. Starting from the emerging 3GPP’s service-based architecture for
5G networks, which includes virtualization of mobile and core network functions, the project aims to improve the security
of virtualization technologies: containers, lightweight Virtual Machines and orchestration frameworks. Unlike previous
evolutions in the telecommunications sector, the 5th Generation of Telecommunication Systems (5G) presents diverse and
novel requirements for technologies such as heterogeneous air interfaces, Software Defined Networking, Network Func-
tions Virtualization, Mobile Edge Computing and Fog Computing, as well as algorithms to optimize the management of
such complex networks. As a result, the 5G evolution will mainly be built on layers of software services. The telecom
industry is migrating to virtualized and orchestrated environments, allowing the deployment of Virtual Network Func-
tions (VNFs) on cloud infrastructure enabling the concept of network slicing. The main motivation driver for this move is
sustainability through cost and energy reduction as well as full automation of telecom systems operations facilitating dy-
namic and scalable adaptation to service demands. State-of-the-art light-weight virtualization and container orchestration
frameworks clearly contribute to this driver, but do not meet the stringent security requirements of telecommunication
systems.
Together with 5GhOSTS D1.4, ”Privacy Requirements for 5G Telecom Systems Running Virtualized Multi-Component
Services” [3], this deliverable develops as threat model and trust model for the deployment of Virtual Network Functions
(VNFs) in 5G networks. We then review the state-of-the-art regarding secure and privacy-preserving techniques to im-
plement VNFs, involving the 5GhOSTS use cases from 5GhOSTS D1.2 [1], and taking our base orchestration framework
from 5GhOSTS D3.1 [2] as an example. This work is thus based on the main results of the 5GhOSTS requirements
analysis, which revealed three crucial requirements to be considered: Firstly, we emphasize on low-latency and resilience
requirements the necessitate distributed deployment of container-based VNFs across multiple data networks in the edge,
hence a study of existing Kubernetes-based edge platforms for 4/5G has been commenced. Secondly to facilitate security
and privacy threat modelling by both researchers in law and computer science, a system model has been created at two
levels of abstraction. At the highest level, existing standards and relevant grey literature have been incarnated into an
integrated model consisting of the application, platform and network layers; at the second level, a Kubernetes-specific
model of the application and platform layers has been created. Thirdly, a categorization of security threats according to
three security challenges (i.e., life-cycle-management of container images, inter-container communication and container
storage) identifies which threats are the most relevant and the most pervasive.

1.1. Use Cases

In 5GhOSTS D1.2 [1] we define the scope and focus of our research to be on 5G Edge Computing. 5G Edge refers to
an approach to distributed computing that emphasizes on locating applications and the general-purpose compute, storage,
and associated switching and control functions needed to run them relatively close to end users and/or IoT endpoints. In
the context of ETSI, the term Multi-edge computing (MEC) is also used. Edge computing offers a service environment
with ultra-low latency and high-bandwidth as well as direct access to real-time network information enabling applications
to be context enriched and hence embellished to offer context-related services for the user or for the network provider.
This allows local content, services and applications to be accelerated, increasing their responsiveness and performance. As
we will study the balance between low latency communication and security operations, we focus on three applications:
Vehicle to Infrastructure (V2I), Smart Office (SO), including augmented and virtual reality (AR/VR) applications, and
Remote Surgery (RS).

1.1.1. Vehicle to Infrastructure (V2I)

In this use case, V2I applications transmits messages containing V2I application information that relate to a traffic situation
to a roadside unit. Ultra-low end-to-end latency will be a challenge for functionalities like warning signals and traffic flow
optimization, whereas higher data rates will be required to share video information between cars and infrastructure. Edge
computing infrastructure, located at the edge of the network – and typically at network aggregation points – allows
direct communication from vehicle to vehicle, infrastructure and pedestrians, by using the mobile operators’ networks

Deliverable D1.3
1

1. Introduction 1.2. Privacy and data protection in 5G

to complement centralized clouds with distributed edge clouds. This provides support for low-latency or location based
V2I services possible such as hyper-local HD roadmaps, optimized side-link congestion control, low-latency V2V relays,
location-based analytics, and more.

1.1.2. Smart Office (SO)

This application focuses on services that need high-speed execution of bandwidth-intensive applications, processing of a
vast amount of data in a cloud, and instant communication by video. Ultra-high traffic volume, and for some applications
latency, are the main challenges applicable for this application in addition to instant video communication requiring a se-
cure enterprise environment/localized content. SO targets a clear and usually well-controlled set of subscribers inherently
localized within the premises of the enterprise and/or where the core operations are carried out.

1.1.3. Remote Surgery (RS)

Remote surgery applications have a traffic behavior characterized by irregular bursts of data where request response delays
are very critical. Edge computing seeks to optimize the response time to have remote surgery services transferred with as
short a delay as possible. The main challenges for this application is to guarantee high service reliability and a low latency
in service response time for delay-critical applications.

1.2. Privacy and data protection in 5G

In [3], we provide a comprehensive analysis of potential legal challenges to privacy, data protection, and security in the
5G value chain running virtualized multi-component services based on three use cases, and develop privacy requirements
for such services. Specifically, we describe and analyze technological novelties relevant to the challenges to privacy,
security, and data protection in the 5G core network. Major privacy-disrupting technological novelties in 5G are assessed
and the applicable legal framework is outlined, providing a legal qualification of roles and responsibilities of stakeholders,
and discussing the influence of novel technologies on compliance with EU law. In [3]. we further examine the scope of
applicable laws at the EU level, namely that of the ePrivacy Directive, European Electronic Communications Code, and
GDPR, as well as the potential impact of the draft ePrivacy Regulation. The deliverable identifies and explains the poten-
tial risks to user’s rights to security, privacy, and data protection in 5G networks based on the use cases, and analyzes and
suggests possible techniques, strategies, and best practices to mitigate the legal risks regarding privacy and data protection
in 5G. Potential legal challenges arise from the implementation of SDN and network function virtualization (NFV), intro-
ducing new stakeholders in 5G networks, usage of cloud-based solutions, the status of electronic communication service
providers, and the problem of identifying processors and controllers of personal databases on GDPR requirements. A
comprehensive summary of the legal requirements and challenges regarding privacy and data protection is provided in
section 2.1.

Summary and Outline Based on our security and privacy requirements, this deliverable explicates the threat model
and trust model for 5G deployments, and outlines the technical implications and scope of 5GhOSTS. As we illustrate, 5G
edge computing solutions face a multitude of challenges due to security threats and data protection regulations. Conse-
quently a need arises for technology to, on the one hand thwarts prevalent threats to security and privacy, but on the other
hand simplifies the enforcement and audit of compliance to privacy requirements. Any such solution additionally must
have low impact on performance, so as to not hinder low-latency edge applications.
We review state-of-the-art techniques to guarantee secure distribution and integrity protection of VNFs, based on a re-
fined thread model for multi-tenancy in Kubernetes clusters. Our survey emphasizes on techniques that employ modern
concepts in the context of Confidential Computing, Trusted Computing, and Trusted Execution, which are capable of
providing extended security and privacy protection in future highly dynamic 5G scenarios.
Our analysis opens up four exiting and interconnected directions of research, involving the integration of novel tech-
niques for intra-container isolation and attestation, performance and network security, and approaches to privacy impact
assessment, which will be researched by the 5GhOSTS consortium.

Deliverable D1.3
2

2. Privacy, Security, and Trust in 5G Networks

In this section we provide a summary of our Deliverable D1.4 [3], outlining the results of our analysis of potential legal
challenges to privacy, data protection, and security in the 5G value chain running virtualized multi-component services.
Please refer to that deliverable [3] for a comprehensive discussion of our methodology and further references. We then
develop a trust model and specific threat models that reflect our security and privacy requirements.

2.1. Privacy Requirements

The implementation of virtualization, SDN, NFV, and wider reliance on IP and cloud technologies as the primary means
of data transportation creates a plethora of privacy challenges in 5G networks. 3GPP, an international standardization
body, defines the 5G system architecture as the one consisting of a core network and a radio access network (RAN).
RAN enables radio communication between the network and user’s devices, such as mobile phones. The core network
handles the transportation of the data and contains network functions (NF). Important virtualization-related novelties lie in
the core network, including the application of network slicing technology which contributes to network optimization. In
5GhOSTS we concentrate on the core network since the majority of disrupting technologies are contained there. 5G may
become the encompassing channel of communication for nearly all data and create a situation where almost all individuals
will be using 5G network through one of their devices.

Related research, as we elaborate in [3], has identified following classification of privacy categories in 5G networks:

Data privacy: incorporates all data generated and transferred by the consumers through 5G mobile networks. Special
attention is paid to the protection of sensitive personal data, such as health or biometric data;

Location privacy: the above-mentioned omnipresence of 5G-enabled sensors and devices allows the precise geoloca-
tion and tracking of users. Such tracking can be performed by various actors in 5G networks, such as third-party
application developers, cloud and edge computing service providers, and telecommunication providers themselves,
among others;

Identity privacy: since 5G networks involve an enormous number of interconnected devices and their users, it is es-
sential to ensure the protection of subscribers’ identities. Subscriber’s identity includes the usage of International
Mobile Subscriber Identity (IMSI – used for identification and location of subscribers) by user’s device and the risk
of exposing the IMSI to potential attackers. Identity also includes the profile data used in various third-party apps,
most importantly healthcare, fitness, banking and shopping apps, which gather and store large amounts of sensitive
data.

2.1.1. EU legal and policy framework applicable to 5G

With the General Data Protection Regulation, European Electronic Communications Code and ePrivacy Directive, the
rules on data protection and electronic communications in Member States have been significantly harmonized. These laws
serve as a lex specialis for the processing of personal data and regulation of electronic communications. The decisions of
the Court of Justice of the European Union, opinions and guidelines of Article 29 Working Party European Data Protection
Supervisor, and BEREC (Body of European Regulators for Electronic Communications) affect the implementation and
application of privacy, security and data protection legislation and thus are crucial for developing privacy requirements
for 5G networks.

When developing privacy requirements for 5G Telecom Systems running virtualized multi-component services the legal
provisions related to protecting user’s privacy and personal data protection must be certainly paid exceptional attention.
Considering various types and categories of data to be transferred through 5G networks and the technical challenges to
distinguish between the types and categories of data the privacy requirements must be developed with keeping in mind
the possibility that any piece of data transferred via 5G networks may be considered personal data. The application of
EU data protection and privacy rules in mobile communications is a broad topic. Data protection and privacy in the EU
is regulated primarily by the GDPR as lex generalis. However, when it comes to 5G networks, there is a number of other
relevant legal acts to be assessed, such as the European Electronic Communications Code.

Deliverable D1.3
3

2. Privacy, Security, and Trust in 5G Networks 2.1. Privacy Requirements

In 5G networks various third parties will be involved in processing personal data such as CSPs and third-party application
developers. How to coordinate between and balance the competing interests of these actors is one of the most important
legal questions to be addressed in the context of data protection and privacy of individuals, especially in light of the data
protection by design obligation in Article 25 GDPR. Different laws – both national and European – may apply depending
on the exact legal qualification of stakeholders, thus there is a need for legal certainty, which includes stability, consistency,
and clarity of the law. Insufficient legal safeguards to activities of new stakeholders in mobile networks also raise legal
issues related to loss of control of data, loss of data ownership, and ambiguity of liability of processors and controllers of
personal data. These challenges may greatly affect the protection of user’s rights with regard to the privacy and personal
data.

Transferring personal data via cloud-based means and virtualized networks results in a complicated technical environment
with multiple stakeholders who pursue different interests and apply different security standards. SDN providers, together
with Cloud Service Providers (CSPs) become important stakeholders on the 5G Telecom market and will process personal
data of end-users, as well as other data – such as machine-to-machine communications – which may contain personal data
of other individuals.

We discuss the implications of the EU legal framework, specifically, privacy as a human and fundamental right, initial Eu-
ropean efforts in harmonization of privacy legislation, the GDPR, and the ePrivacy Directive, in the 5GhOSTS Deliverable
D1.3 [3].

2.1.2. Implementing privacy, security and data protection risk mitigating measures in 5G networks

Following our analysis, privacy, security and data protection in virtualized 5G networks largely depends on actors oper-
ating in 5G value chain. Their decisions, management practices, procedures applied will have a decisive impact on the
functioning of 5G networks. Since some of the security and privacy requirements issued by 3GPP are not applied by
default or are optional, the overall effectiveness of security depends on to what extent the operators of 5G networks will
enforce these standards. Anonymization, pseudonymization and implementation of data protection by design contribute
to the GDPR-compliant security and privacy in 5G networks. The personal data processed via 5G networks may prove
to have a high commercial value. The new cloud, edge computing, virtualization and software-reliant generation of mo-
bile networks is vulnerable to software bugs, data leaks, lack of coordination between different parties involved in the
processing of personal data, and cyber attacks.

Implementation of effective privacy preserving technologies, data protection measures and security standards is not just
a requirement of law but a necessity enabling the operation of 5G network as a whole. As was noted by S. Rizou, E.
Alexandropoulou-Egyptiadou and K. E. Psannis ”the scope of privacy protection would be not only the effort to avoid the
administrative fines of millions of euro, but to establish from the beginning of 5G technology, a fair integrated treatment
for data protection rights” [6]. Adherence to GDPR requirements namely to principles relating to processing personal
data, principle of data protection by design and by default is crucial for ensuring the privacy and data protection. Users
must be able to easily obtain full and clear information on the processing of personal data, the data controllers, purposes of
the processing, profiling and automated decision-making, and the ways to exercise their rights to rectification and erasure
of data. Considering the use of edge computing and cloud services and the option of distributed processing of personal
data in 5G networks, traceability mechanisms have to be implemented, which may prove to be a substantial challenge. The
fact that 5G contributes to the generation of an immense amount of personal data highlights the importance of effective
data minimization measures.

There is no exhaustive list of actions or privacy-preserving technologies necessary to achieve compliance with legal
requirements. The privacy-disruptive novelties introduced by 5G networks require the development of new and efficient
privacy enhancing and privacy preserving technologies to cope with the growing among of data and interoperability
issues. Researchers have proposed a number of technical and organizational measures as well as privacy risk mitigation
techniques to enhance privacy, protection of data and security in 5G networks.

It has been noted that existing trust models may not be fully suitable for 5G networks, and the development of new models
is required, which consider the presence of many novel actors and vendors providing various services in 5G. Some of the
network actors may use external cloud services and it is important to prevent unlawful cross-border transfer of data.
Identity management in 5G would also change due to reliance on many small IoT devices that are not capable of bearing
a standard identity module. Identity management is important to protect the security of the network as well as personal
data stored on the devices themselves. Compliance with principles of lawfulness, fairness and transparency will ensure
that users’ data is not processed and is not transferred to third parties without the user’s informed consent. Researchers
note the potential conflict between privacy and computing trust.

Deliverable D1.3
4

2. Privacy, Security, and Trust in 5G Networks 2.2. Threat Model

2.1.3. Conclusions

In summary, 5G networks highlight the importance of the development of authorized and regulated certification mecha-
nisms envisaged by GDPR. The success of 5G networks depends on its ability to guarantee security, privacy and protection
of personal data. While there is a need to balance compliance with legislative provisions and over-protection of the net-
work, it is essential to apply rigorous assessment of any privacy-preserving technologies and techniques to ensure the
protection of users’ rights. The GDPR was designed as a risk-based future-proof legislation to tackle not-yet-known
threats to privacy and data protection. 5G however, poses a substantial privacy-disruption threat if not implemented in the
correct way, namely by applying the principle of data protection by design and by default in all steps, including research,
standardization, development, deployment and operations of the 5G network. Some researchers argue that GDPR may
prove inadequate to address the threats to privacy and users’ right posed by the Internet of Everything and an ‘always
connected’ society led by the commercialization of personal data. The deployment of 5G infrastructure will likely require
a re-assessment of trust relationships within the-network, which then leads to the development of new, comprehensive,
and use-case-sensitive trust models which would be the technical basis for Data Protection Impact Assessment (DPIA).
In the following section of this deliverable D1.3, we develop the trust model and define specific threat models that such
impact assessments can be based on.

2.2. Threat Model

The privacy requirements outlined above are founded on a strong security posture of the 5G network in general and edge
computing platforms in particular. The goal of this section is to analyze security threats for a specific 5G use case and
thus lay the ground work for the trust model underlying the 5GhOSTS project.
In 1.1, we summarize the identified three 5G Ultra-Reliable Low-Latency Communications (URLLC) applications and
use cases, i.e., Virtual/Augmented Reality (VR/AR), Vehicle to Infrastructure (V2I), and Remote Surgery (RS), poised to
induce a significant surge in demand for both computational and communication resources.
The new use cases contain new relationships and reveal new risks that need to be understood and controlled. It refers
to the need for a trust model that can describe the system, identify the assets, perform threat analysis. This deliverable
begins by briefly describing the Intelligent Transportation System and its components. It focuses on the V2I scenario
and explains how the actors interact with each other. Then a STRIDE analysis is performed to identify possible threats
and possible mitigations against them. Based on this analysis we highlight threats of particular relevance for the privacy
requirements and define a trust model as a basis for future work.

2.2.1. Describing the Scenario and Trust Relations Analysis

To simplify the threat modeling activity, this work assumes a smart road environment as a practical edge computing
use case. All the involved actors are listed below. We assume here that a Mobile Network Operator (MNO) supplies the
physical and virtual infrastructure for both 5G mobile network communication and edge computing capabilities. The edge
platform itself is controlled by an edge manager and it hosts a number of services to end users developed and deployed
by edge application providers. The user side communicates with these applications on the MEC platform via the mobile
network. Attacker are assumed to be able to interact with the all of the other components in a direct or indirect fashion.

Actor Description / Examples

Mobile Network Operator
(Infrastructure Provider)

Verizon, AT&T, T-Mobile, British Telecom, Vodafone, etc., potentially in cooperation
with cloud providers (MS Azure, Amazon AWS, Google Cloud, IBM)

Edge Manager Management and Orchestration of Service Providers
Edge Application Provider Traffic Management: collecting of all information from car, traffic sign, pedestrian

and giving the instruction to them
Insurance Company: store all the driver information health driver license, collecting
from driver preference and analysis the who is guilty in case of damage
Localization Service: provide real-time map and traffic data, as well as localized
information and services

Deliverable D1.3
5

2. Privacy, Security, and Trust in 5G Networks 2.2. Threat Model

Actor Description / Examples

Edge Application Users Smart Cars: GPS, LIDAR, Video Camera, Radar. the smart cars have a lot of sensor
radar and camera environment. They give a lot of information to the MEC in real-
time, and they need to output the information continuously in order to prevent any
incidents on the road.
Pedestrians: collecting traffic information from the service provider, e.g., for aug-
mented reality application.
Roadside IoT Devices: Traffic lights and signs, cameras, sensors (e.g., electromag-
netic, optical, acoustic, air quality, weather)

Attacker They may target all the actors in the scenario, their typical motivations and goals
include:

• Stealing sensitive end user information (PII)
• Disrupting critical infrastructure and services
• Gaining control of the system to ransom it
• Deploying illicit software on the computing infrastructure (DDoS clients, Crypto

currency miners)

2.2.2. Identifying Assets

An asset is anything that has value to an individual or organization and therefore requires protection. A good security
posture should focus on protecting valuable data and infrastructure, as it is no use to waste effort protecting non-valuable
things. In order to determine all relevant assets to protect, it is not enough though to just focus on valuable targets of the
attacker.Typically, successful attacks consist of stages where certain information, e.g., credentials, serve as stepping step
stones to compromise the desired system assets. Hence one of the main goals of thread modeling is to identify all the
possible avenues for attackers to achieve their objectives. The process process can then be applied recursively to all step
stone assets discovered earlier.
For the V2I Edge Computing Platform we identified a large number of assets in this way. We categorize them into
six categories as shown in Fig. 2.1: Edge Platform Provider, Edge Application Provider, Management and Orchestra-
tion (MANO), MNO, Edge Computing and Communication Infrastructure, as well as assets out of scope of this threat
modeling process. We list all identified assets below.

Asset Group Examples Explanation

Application
Software

• Container Image
• Machine Code running in

container (Execution context)
– code
– files
– stack
– registers (incl. instruction

pointer, stack pointer)
– static variables
– heap memory

• Container Image distribution
infrastructure

Application Software covers what is required for an application to run on the
Edge platform. The software itself could be a traditional program or a machine
learning model, e.g., used in an intelligent transport system. Container images
are pulled from the Container Image distribution infrastructure and run in the
container. The term “Execution context” refers to the environment for running
machine code on a computer’s instruction set architecture. It includes code,
files, stack, heap, static variables, and registers.

Life Cycle
Management Proxy
(LCM)

LCM Proxy for user applications The user application life-cycle management proxy allows device applications
to request on-boarding, instantiation, termination of user applications and when
supported, relocation of user applications in and out of the MEC system.

Edge Cloud Services • Edge Service API
• Service Registry
• Traffic Rules Control
• DNS handling

Edge Cloud Services are responsible for the communication within the edge
cloud, managing the edge services, and traffic rules control. Service registry
monitors the edge application life-cycle.

Deliverable D1.3
6

2. Privacy, Security, and Trust in 5G Networks 2.2. Threat Model

Asset Group Examples Explanation

5G Core Functions • AMF (Access and Mobility
Management Function)

• SMF (Session Management
Function)

5G core functions manage the edge platform and user plane communication re-
quirements in synchronization with the mobile network core component. AMF
is responsible for handling connection, mobility management, access authoriza-
tion and authentication. SMF is responsible for User Equipment IP address
allocation and management.

Edge Computing
and Communication
Infrastructure

• Virtualization Infrastructure
• VIM (Virtualization

Infrastructure Manager)
• gNB (gNodeB, 5G base station)
• UPF (User Plane Function)
• Mobile Network

This asset group comprises computing and communication infrastructure, e.g.
software system of gNB, virtualization. The User Plane Function is responsible
for packet routing and forwarding to the Edge Cloud and Mobile network. It
allows users to communicate with edge applications.

Physical System • Computing, Network, Storage
hardware of edge platform

• Antennas / Base station hardware
• Cooling system
• Energy / Power supply

This is the physical hardware and its support systems that make up the edge
computing infrastructure. Antennas / base stations are part of the 5G mobile
network and allow end users connect to the edge platform.

Stored Data Application data:

• Keys, credentials
• Sensor data
• Machine learning models
• End User Data (Personally

Identifiable information, PII):
– User identifiers and addresses
– User payment information
– User geo-location
– User health information, e.g.,

sleepiness, medical problems
– User preferences, e.g.,

frequent routes, home, work
address

Control plane data:

• etcd

• Edge Service data:
– Service registry
– Connection data
– Traffic rules and DNS

configuration

5G service data:

• Connection and session data
• IP allocation

An Edge platform stores a multitude of different data. For applications, e.g.,
IoT devices send sensor data to the edge platform to be analyzed immediately
or be used for training later on, e.g., in machine learning models. Such
models and their weights must also be stored. For the ITS, users can share
private information (PII) to edge platforms such as geolocation, driver health
information, their current route. These should be stored securely and are subject
to data protection regulations. Many apps require secrets to enable secure
communication between components such as connection strings, SSH private
keys, and X.509 private keys and stored in edge platform.

Besides such application data, the edge platform must also provide stor-
age for control plane, edge service, and 5G core function data.

etcd is the distributed key-value store used to hold and manage the crit-
ical information of cluster.

Deliverable D1.3
7

2. Privacy, Security, and Trust in 5G Networks 2.2. Threat Model

Asset Group Examples Explanation

Log Information Application logs:

• Monitoring policy violations
• Performance monitoring

(Response Time, Processing
Time)

• Authentication successes and
failures

• Session management failures
• Application errors
• Application code, file, and/or

memory changes
• Suspicious behavior

Kubernetes Logs:

• Cluster Logs
• Events Logs
• Audit Logs

There are two main categories of logs in the edge platform, application logs and
Kubernetes logs. The application logs records what happens in the container
runtime. There are many policies in place such as network policy or image pol-
icy. If third any policy violations occur, those should be recorded. Suspicious
behavior includes events such as application runtime errors, connectivity prob-
lems, performance issues, third party service error messages, file system errors,
file upload virus detection, and configuration changes, all of which which should
be logged.
Kubernetes logs are more related to the control plane of the edge plat-
form. Kubernetes Cluster Logs are responsible for kube-apiserver,
kube-scheduler, etcd, kube-proxy, Kubelet logs. Kubernetes Events
Logs monitor what happens in the cluster such as a container being created or
starting or errors such as the exhaustion of resources. Kubernetes Audit Log
record who or what issued API requests, what the request was for, and the re-
sult.

System Resources
(provided by host
OS or HW)

• System Counter and timers
• Network Date and Time
• Random Number Generators
• Virtualization support
• HW crypto support
• Enclaves / TEEs
• HW accelerators (GPU, FPGA,

NPU, TPU, NIC, etc.)
• System calls and drivers

System Resources include the hardware functionality that needs to be configured
correctly by the edge platform provider to provide virtualized cloud computing
capabilities. Moreover, they include hardware resources offered to edge appli-
cations. For example, a trusted execution environment, such as enclaves, can be
offered by the Edge platform. Also, for machine learning applications hardware
acceleration may be provided using GPUs, FPGAs, or similar.

Management and
Orchestration

• Admin credentials
• Orchestration scripts, e.g., helm

charts
• Pod specifications
• Image policies
• Network policies
• RBAC roles and policies
• Admission controllers
• Pod security policies
• ResourceQuota and LimitRange
• Service Level Agreements
• Service Billing System

Management and Orchestration services manage the edge platform by config-
uring network and system resources, and determine different policies for the
operation of the cloud platform. Image policies specify which images are al-
lowed to be run on our cluster. Network policies specify how groups of pods
can communicate with each other and with other network endpoints. RBAC
roles and policies are used to assign access to a computer or network resources in
the Kubernetes Cluster. ResourceQuota is a object provides constraints that limit
aggregate resource consumption per namespace. It covers Compute Resource
Quata Storage Resource Quota, Object Count Quota. Service level agreement
is an agreement between the service provider and the service user that describes
how services should be executed and its execution terms. SLA should state the
amount of memory consumption (storage), estimated execution time, mainte-
nance duration and processing cost. A Service Billing System is used to record
the usage of edge resources by the application providers in order to charge them
accordingly.

Network Inter-Container Network (Data
Plane)

It covers all communication between edge applications and with end users.

Control Plane Network It covers to all communication necessary to run the k8s cluster, e.g., between
kubelets and the API server, or for fetching images. Also MANO communica-
tion and communication between 5G core functions and the core network are
considered part of the control plane.

Out of Scope • External Configuration Data
• Software Developers for the

Edge Service Application
• Edge platform admins and

operators
• Cluster Administrator
• Application Manager

We do not consider assets for our threat model that are external to the edge plat-
form itself, as we cannot take precautions within the platform to protect their
security. For example the current date and time or position of the edge platform
are usually provided by external sources (e.g., GPS, internet time) or set man-
ually by the infrastructure provider. While this information can be protected
within the platform, we have to trust the external information and do not con-
sider how to validate its authenticity. Also we do not consider the personnel
operating the edge platform as assets here, hence threats like social engineering
attacks are out of scope as well.

Deliverable D1.3
8

2. Privacy, Security, and Trust in 5G Networks 2.2. Threat Model

Figure 2.1: Assets of the V2I Edge Computing Platform

Deliverable D1.3
9

2. Privacy, Security, and Trust in 5G Networks 2.2. Threat Model

2.2.3. Data Flow Diagram

Data-flow diagrams (DFDs) are graphical representations of the systems and should specify each element, their interac-
tions and helpful context. DFDs consist of elements (data stores and processes) connected by data flows, interacting with
external entities (those outside the developer’s or the organization’s control). We considered a Kubernetes-based edge
platform that is hosted on virtualization and communication infrastructure provided by the MNO. The corresponding data
flow diagram is shown in Figure 2.2. It shows the assets listed above and their relations with each other as follows:

• Data stores represent files, databases, registry keys, and the like.
• Processes are computations or programs run by a computer.
• Managed Entities are separate collection of processes and data, managed by an actor in their entirety
• External entity represents user and operator side.
• A trust boundary is a location in the DFD where data changes its level of trust.

While the DFD should be largely self-explanatory given the description of the assets above, we still want to highlight
some facts about the V2I edge computing platform DFD:

• Shared Services and 5G Core Services communicate with all other components, as symbolized by the four con-
nected data flow arrows.

• We assume a zero-trust policy for all edge applications and services hence all pods and services are within separate
trust boundaries.

• General purpose storage and system resources are depicted as shared services outside of the trust boundaries of the
services and applications that use them.

• It is an important question how edge applications communicate with each other. While the platform offers the
service registry as a broker of communication between different services, proxied communication may break low-
latency requirements. It is therefore conceivable that pods of different edge applications are permitted to communi-
cate with each other directly, if only temporarily.

• The Kubernetes Control plane is not explicitly shown in the DFD but is part of the MANO process. Its configuration
artifacts and control state are stored in the corresponding storage node which covers etcd and other databases used
by management and orchestration.

• The virtualization infrastructure needs to trust its manager VIM and the k8s cluster trusts MANO commands, hence
in the DFD they are within the same trust boundary, respectively.

• Since the Edge Platform Provider may not fully trust the Infrastructure Provider, there is a trust boundary between
the edge platform and the infrastructure layer. However, the Edge Platform Admin still needs access to both VIM
and MANO to efficiently operate the edge platform.

• It could be conceivable that different actors are responsible for providing the virtualization infrastructure for the
edge cloud on one hand and the 5G mobile network on the other. For simplification, we assume here that the MNO
provides both.

Deliverable D1.3
10

2. Privacy, Security, and Trust in 5G Networks 2.2. Threat Model

Fi
gu

re
2.

2:
D

at
a

Fl
ow

D
ia

gr
am

Deliverable D1.3
11

2. Privacy, Security, and Trust in 5G Networks 2.2. Threat Model

2.2.4. Identifying Threats

Threat modeling is a structured approach of identifying and prioritizing potential threats. We used the STRIDE method to
perform a threat analysis for the V2I scenario. STRIDE is an acronym that stands for Spoofing, Tampering, Repudiation,
InformationDisclosure, Denial of Service, and Elevation of Privilege. The STRIDE threats are the opposite of some of
the properties we would like our system to have:authenticity, integrity, non-repudiation, confidentiality, availability, and
authorization respectively.

The full result of the STRIDE analysis can be found in the Appendix. Below we highlight threats to the Edge Application
and the Edge Platform that we deem most relevant in the context of 5GhOSTS. Possible technical solutions to counter
these threats are discussed subsequently and listed in the appendix as well.

2.2.4.1. Selected Threats to Edge Application

We first highlight threats to applications running on the edge. As these edge services handle end user data, their security
is of utmost importance for data protection and privacy. It has to be ensured that data is being processed only in ways that
have been consented to. To this end it is crucial to ensure that only approved applications running in trustworthy execution
contexts get access to the user data. This notion of application and system integrity and authenticity is being threatened
by the following issues.

SpoofingImage The identity of a service image fetched from the local image repository can be spoofed, e.g., by pre-
senting fake tags, replacing the image in repository or image cache, or by intercepting it during transmission. This
could occur due to a privileged attacker with control plane access, or by compromising the image repository, e.g.,
due to lack of proper authentications. Consequently, a compromised image may be pulled instead of the desired
one, containing vulnerabilities or even malware.

SpoofingSysResource The compromised edge cloud provider can provide broken or fake enclaves to the app by
obtaining attestation keys, e.g., via Plundervolt [7] or transient execution attacks like Foreshadow or SGXpectre
[8].

TamperingImage A container image is maliciously modified, customized, or replaced in the time between creation and
deployment. This could occur due to an external attacker intercepting transmission of the image or compromising
the image repository. A compromised image repository may deploy outdated versions of a given image, potentially
undoing patches and fixes of past vulnerabilities, thus re-enabling the exploitation of previously discovered soft-
ware security flaws in the application. Another possibility is a compromised edge cloud orchestrater, purposefully
deploying the wrong, potentially malicious images that may strive to modify sensitive information or attempt to at-
tack its users. Attackers with sufficient admin privileges may configure malicious admission controllers that infect
deployed images via mutating web-hooks.

TamperingExecContext The majority of software security vulnerabilities are memory safety violations, i.e., program-
ming errors that break the memory abstraction of unsafe high-level programming languages such as C. Examples
for such errors are buffer overflows, use after free, memory race conditions, uninitialized variables and null-pointer
references. Memory safety violations may crash a program or lead to unexpected changes in program behavior.
In the worst case they may enable remote code execution and thus break system integrity. Such vulnerabilities
allow attackers to manipulate the control flow of applications by providing it with specially crafted input val-
ues. Usually, affecting the control flow requires a memory safety violation first, i.e., overwriting executable code or
function pointers, smashing the stack to overwrite return addresses (return-oriented programming, ROP), or corrupt-
ing application data to change the outcome of conditional program branches (data-oriented programming, DOP).
Rowhammer and code injection attacks can also allow manipulation of the execution context. Achieving remote
code execution within a container of an application allows an attacker to send requests to other services or the k8s
API server on behalf of it.

TamperingSysResource On a host computation node the edge cloud provider or an application with elevated priv-
ilege may sneakily modify the virtual environment provided to the application, subverting its assumptions that
underlie security-related functionality. For instance, address space and file management could be manipulated to
slightly change an application’s behavior. The OS could provide a faulty system time or counters, compromising
functionality based on having a precise notion of time and date. Finally, a privileged attacker could provide fake
crypto primitives, fake enclaves, or weak entropy random numbers to weaken cryptography and thus downgrade
application security.

Instead of attacking the data processing architecture attackers may also target user data directly. The following threats

Deliverable D1.3
12

2. Privacy, Security, and Trust in 5G Networks 2.2. Threat Model

have the potential to violate data integrity which is mandated by data protection regulations like GDPR.

TamperingAppDataUser This threat has two threat vectors: data in use and data at rest.

• Data in use: Software vulnerabilities may allow attackers to tamper with an application’s execution contexts
or even take control of its control flow and privileges by malicious parties. Subsequently the attacker may
obtain a write primitive and modify mission-critical or sensitive data application data including personal data
that is being processed. Through its exposed API an application may also be targeted by confused deputy
attacks, attempting to trick it into using its privileges to tamper with the desired data. Also, Rowhammer
attacks can corrupt application data in RAM on the same node.

• Data at rest: If there are applications that require root privileges on the node or if an application can get
privileges due to vulnerabilities on the host, these apps may replace stored data of other applications with
former versions of it as well as tamper with the data. Depending on the application this may enable security
exploits if the authenticity (freshness) of the data is not checked.

TamperingAppDataAdmin The edge cloud provider has write privileges on all storage nodes for the edge application
and can thus manipulate app data at rest. Integrity protection helps to discover such manipulations but cannot
guarantee the availability of data. Nevertheless, a cloud provider has usually a self-interest to provide reliable and
robust data storage.

Besides data integrity, also the confidentiality of personal information and other application data must be ensured. At-
tackers may attempt to leak end user data directly or via the stepping stone of credentials to gain unauthorized access data
stored in the edge cloud, in direct violation of data protection requirements.

InfoDisclExecContextUser Any software security vulnerability (such as control-flow hijacking, remote code execu-
tion, memory safety violation) may lead to the disclosure of sensitive application data such as cryptographic keys,
if exploited by an attacker. Also Memory Reuse, Side-channel, and Confused Deputy attacks, among others, may
cause the leak of information to co-located malicious applications or external attackers. Using third-party libraries
in the software may contribute to such threats of the execution context.

InfoDisclExecContextAdmin As the Edge cloud provider holds a privileged access in the node, it can dump applica-
tion data in use from RAM and registers. Memory dump analysis can then be used to extract important information
from these dumps.

InfoDisclAppDataUser Many apps require secrets to enable secure communication between components such as in-
clude connection strings and SSH private keys. If these secrets are stored in image or configuration files, anyone
with access to these files can easily parse it to learn these secrets. Also, if a comprised app obtained a memory read
primitive on a host or storage node, it could be able to access confidential data of other apps.

InfoDisclAppDataAdmin An edge cloud provider may typically get access to any unencrypted information stored on
disks and simply copy such data. Even if disks are encrypted, backups and system logs of running applications may
contain decrypted information which may thus be available to honest but curious infrastructure providers.

ElevPrivAppData Because of the weak config of authorization (RBAC exploited by app admin, application admin can
add some roles/tag etc), the app can get privileged access to application data in storage nodes.

Finally, we point out two more threats posed by weaknesses in application design.

RepudationApplog For different reasons, such as privacy regulations and intrusion detection, it is necessary to keep
logs of all accesses to a storage node. A compromised application may try to falsify such logs in order to hide any
previous transgressions.

TamperingDataPlane Any compromised edge orchestrater may strive to weaken network configurations and isolation,
e.g., redirect traffic to unauthorized recipients. Also, by default, inter-pod communication is not authenticated,
encrypted, or integrity-protected, hence a privileged attacker could stage man-in-the-middle attacks. The design of
network services, functions, and other edge cloud applications should follow a rigorous security design, featuring
principles of compartmentalization, defense in depth, least privilege, and zero trust. If a design violates these
principles, vulnerabilities in one part of an application may allow an attacker to spread to other parts of the edge
platform.

The repudiation threat interferes with data protection regulations that mandate that all data processing should be auditable.
The tampering threat highlights that different edge applications must not blindly trust one another and should be isolated
from each other to avoid the compromise of data or data processing.

Deliverable D1.3
13

2. Privacy, Security, and Trust in 5G Networks 2.3. Trust Model

2.2.4.2. Selected Threats to Edge Platform

While our main focus is on the protection of edge applications themselves, the security of the edge platform is the base on
which application security is built. In the appendix we provide the full threat model, here we just present a small selection
of threats.

From the previous section it should be obvious that the edge cloud provider holds powerful privileges that might threaten
privacy and user data protection if they were to be abused. Therefore it is crucial to prevent attackers from obtaining any
of these privileges as illustrated by the following threat vectors.

ElevPrivExecContext Excessive privileges given to application containers, unsafe configurations like writable host-
Path mounts, as well as vulnerabilities in the virtualization infrastructure, operating system, and the container
runtime may allow a malicious application to escape its sandbox and acquire root privileges on the node. Such
privileges may allow the attacker to spread to other parts of the edge cloud system. Subsequently also data and
service integrity, confidentiality, and availability may be threatened.

ElevPrivMANO Compromised apps or external attackers may be able to assign privileged roles to themselves in the
cluster due to weak design, e.g., having permissions to create arbitrary role bindings, or in collusion with a tenant
admin. Also, getting access to a pod’s service account may allow attackers to perform actions using that pod’s
privileges.

Edge cloud providers also have an accountability for the processing happening on their platform. Therefore logging and
auditing capabilities must be in place. However their integrity is threatened by the following issues.

RepudiationLogs Compromised edge applications or external attackers can try to take actions to prevent logs from
being useful, including filling up the log to make it hard to find an attack or forcing logs to “roll over”. They may
also do things to set off so many alarms that the real attack is lost in a deluge of noise. Sending logs over a network
exposes them integrity threats as well. The tampering of logs is a step stone for repudiation of (formerly) logged
events.

RepudiationMANO A privileged attacker with admin access may reconfigure the MANO and disable or clear the event
logs.

Having outlined threats to the edge application and edge cloud provider, we can now define our trust model for the V2I
edge cloud platform.

2.3. Trust Model

Below we consider the notion of trust between different actors in the V2I system. However, we do not want to use binary
system trust relations like trusted and untrusted between our actors, as this notion seems too simplistic and does not take
into account expected behaviors and acceptance of risks. Instead, we define four levels of trust as follows:

• Distrusted: Not trusted at all, considered malicious or with harmful intentions

• Untrusted: Unclear if malicious or benign, one must not rely on any of their behavior and only grant restricted
access to services and data. This is usually how service providers view their users.

• Semi-trusted: This is similar to the honest-but-curious attacker model, i.e., we do not expect active attacks from
such an actor but passive attacks like eavesdropping, dumping or inferring data, etc., may be expected. At the same
time there is some risk of the actor becoming compromised or being hacked, i.e., they become untrusted. However
they are trusted to at least provide availability of the system according to their best efforts.

• Trusted: Completely reliable and honest, hence allowed to receive confidential information. With a trusted actor
one deems the risk of compromise very low. Thus no countermeasures against such eventualities need to be taken,
often because they might also not be very practical or feasible.

Figure 2.3 shows the different actors in the V2I system and their trust relations. The user side covers driver, pedestrian,
and the road sensor infrastructure such as traffic lights or cameras. As shown in the diagram, attackers must be considered
as distrusted and all systems must take a precaution against attackers. Attackers can easily reach the user side, attempt
to spoof other users’ identity, or compromise them as a step stone to attack the edge platform. That is why the user side
actors do not trust each other. However, the users must semi-trust the edge service provider and mobile network operator,
because they depend on a lot of information and functionality from them. For example, in the traffic management service
use case, they should share data, and get optimized directions with lower traffic or real-time information about their
immediate environment.

Deliverable D1.3
14

2. Privacy, Security, and Trust in 5G Networks 2.4. Technical Implications and Scope of 5GhOSTS

Figure 2.3: Trust model for the V2I edge cloud scenario

Edge application providers store private user information, and they must protect it according to privacy regulations like
GDPR. They should not fully trust anyone. As a result, the user side is untrusted by them. However, the provider should
semi-trust edge manager as the edge manager is responsible for the configuration and management of the platform and
edge services consumed by the applications.
Each edge application decides on a case by case basis whether to trust other applications. The general principle is that
every application only trusts its own code. They should follow the zero-trust policy and only trust other applications if
they are authenticated and deemed trustworthy after an audit by the application developers.
Mobile network operators distrust the user side. However they semi-trust the edge manager as it is one of a few well-
identified customers of the MNO’s edge and mobile network infrastructure. If the Edge cloud provider and MNO are the
same entity, the trust relation between them could become trusted. Nevertheless, if protections against a compromise of
either side are dropped, it may pose a risk if such a compromise actually occurs. Hence there are no completely trusted
actors in the V2I edge cloud scenario.

2.4. Technical Implications and Scope of 5GhOSTS

As we have seen in the preceding sections, 5G edge computing solutions face a multitude of challenges due to security
threats and data protection regulations. Consequently a need arises for technology to, on the one hand thwarts prevalent
threats to security and privacy, but on the other hand simplifies the enforcement and audit of compliance to privacy
requirements. Any such solution additionally must have low impact on performance, so as to not hinder low-latency edge
applications. Within the 5GhOSTS project we have started to evaluate potential technologies and while many solutions to
the security threats exist, the issues of privacy and low latency do not seem to be fully addressed by them yet, opening the
possibility for improvements by our research.
To give an outline of the security solutions we again distinguish threats to the application and the edge platform separately.
For the former, one of the most prominent technologies are Trusted Execution Environments (TEEs), e.g., Intel SGX
enclaves. On one hand this technology supports data protection, in particular privacy, because all data processing occurs
in a “black box” that is only accessible to the application handling the data itself. Hence TEEs thwart information
disclosure threats both from other applications and the edge platform provider. On the other hand, attestation capabilities
allow the application provider to assert that the correct application has been loaded on a trustworthy computing platform,
thus thwarting tampering threats to the image or execution platform. We are planning to expand on these benefits by
studying runtime attestation schemes that allow to assert dynamically that applications are still in a good state, not having
succumbed to runtime attacks abusing memory safety vulnerabilities and the like.
Besides TEEs, also other container runtimes that employ Micro-VMs may serve to limit the exposure to a potentially
compromised cloud provider. Firstly, returning to hardware-based virtualization reduces the exposure to the host OS,
hence offering less opportunity for tampering or information disclosure. Secondly, novel VM encryption and attestation
technologies like AMD SEV or Intel TDX can turn Micro-VMs into TEEs themselves creating an alternative to process-
based SGX enclaves. So far it is unclear which of the technologies is the best fit for edge computing applications in terms
of security and performance.
Another application security trend that we are following is the increasing support for intra-process resource isolation, a

Deliverable D1.3
15

2. Privacy, Security, and Trust in 5G Networks 2.4. Technical Implications and Scope of 5GhOSTS

technique that allows to further compartmentalize an application into mutually distrusting components. Limiting the mem-
ory access capability of these components according to the least privilege principle, the impact of security vulnerabilities
can be reduced along with the size of the trusted computing base of an application.
One of the main concerns for the edge cloud provider is to prevent privilege escalation of applications, as such could
lead to attackers seizing control of the platform. Hence, computing nodes and container runtimes need to be hardened
according to best practices. Besides that, secure Micro-VM-based container runtimes like Kata Containers give better
protection against privilege escalation due to an additional layer of hardware-based isolation, but may introduce perfor-
mance overheads compared to bare-metal solutions. Also runtime attestation techniques may help the edge cloud provider
to assess the health of applications. However, such approaches must take data protection into account and not allow the
cloud provider to learn details about the data processing occurring within the application’s execution environment.
Another headache for edge cloud providers is the correct configuration of the Kubernetes cluster to ensure robust tenant
isolation. Separation mechanisms like network policies need to be configured in such a way that only legitimate com-
munication between application pods is possible. Formal methods may verify the correct design and implementation of
such policies. Furthermore, correct configurations need to be enforced dynamically and protected against tampering by
compromised tenant admins. While AI-based techniques for anomaly detection allow to monitor operation and expose
transgressions in the cluster, such approaches can only detect ongoing attacks but not prevent them from occurring. In-
stead, custom admission controllers, e.g., deployed by the Open Policy Agent (OPA), have the potential to restrict the
actions of applications and admins according to the least privilege principle. Again, formal methods may help to guide
the rule design for such admission controllers.
Having outlined the scope of relevant technologies for the 5GhOSTS project, we will next dive deeper into some of
the mentioned solutions. Subsequently we will explore the area of container integrity, focusing on image authenticity,
attestation, trusted execution environments and secure container runtimes.

Deliverable D1.3
16

3. Secure Distribution and Integrity Protection of Virtualized Network
Functions

To avoid having to re-write and re-deploying the entire application every time updates are made to the Multi-Access
Edge Computing (MEC, [9]) platform or any program component, MEC platform functions could be implemented as
microservices with each microservice as a separate entity with no dependency on other microservices forming the MEC
application [10, 11]. The microservices interact with each other to implement the logic of the application and communicate
via network calls to enforce separation and avoid tight coupling. Consequently, each microservice exposes an application
programming interface (API) for other microservices to communicate in collaborative way. This permits scaling of only
those microservices that need scaling while keeping the rest of the application untouched. In addition, a microservice
based approach provides better fault isolation such that the failure of a specific application instance only affects those
services for which it is required.

Since microservice-based applications can contain hundreds of microservices, an efficient Execution environment that
microservice applications use is of paramount importance to ensure that the advantages associated with microservice are
accrued. Running multiple services on a single OS instance may risk having conflicting library versions and application
components, not mentioning the fact that one microservice failure could affect the availability of others. Using VMs could
solve such problems but using individual VMs for each microservice will exact a heavy cost, since each requires its own
OS. Furthermore, running multiple application components within a single VM may lead to application problems due to
component conflicts. With containers on the other hand, a single OS instance running either on a physical machine or a
VM can support multiple containers, each running within its own separate execution environment. Container orchestration
frameworks of which Kubernetes has become the de-facto standard, eliminate infrastructure complexities associated with
deploying, scaling, and managing containerized microservice applications by automating processes involved in running
containers, and providing networking support for inter-connecting microservices. This makes containers more suitable for
microservice architecture than VMs. However, kernel-specific libraries are still shared among containers which may still
lead to minimal conflicts. This problem is graver in telecommunication deployments as the kernel needs to be customized
to support dedicated performance acceleration hardware.

In D3.1 [2] we discussed the Kubernetes container orchestration framework, with more focus on the worker node where the
workload containers are deployed. The various components of the worker node that play an important role with regards to
container networking performance and security are then discussed in detail. These notably include container runtimes and
Container Networking Interface (CNI) plugins. Network policies, a Kubernetes native resource for configurable network
isolation is then evaluated to assess its impact on the performance of inter-container communication. We further discussed
Data Plane Development Kit (DPDK), a set of data-plane libraries that achieve fast packet processing by bypassing the
heavy layers of the Linux kernel networking stack are as well discussed, followed by a context-aware policy enforcement
engine, Open Policy Agent (OPA). D3.1 [2] concluded with a reference architecture and a data flow diagram to illustrate
how the various components highlighted in the document interact.

In this deliverable we build upon D3.1 [2] and discuss approaches to harden Kubernetes deployments against attacks. In
this Chapter we first survey established mitigations against attacks that harm the integrity and confidentiality of container
deployments. We then discuss these mitigations in the context of our trust model and use-case requirements, and elaborate
on extended security and privacy preserving technologies and their applicability for 5G edge VNF deployments.

3.1. Overview

In our architecture (Figure 3.1), we model a multi-tenant Kubernetes cluster in the cloud. We assume that all the control
plane components run on a separate, secure environment directly managed by the cluster administrator. The worker nodes,
instead, are Virtual Machines (VMs) that might be located in many different places and administrated by many different
providers. Each VM runs the operating system plus the Kubernetes software and the container runtimes at the very least.
Furthermore, container images are stored in one or more image registries. A registry can be either public or private, and
it can be situated inside the cluster (e.g., as a microservice) or outside (e.g., as an external repository managed directly by
tenants or by a third party).

Deliverable D1.3
17

3. Sec. Distrib. & Integrity Prot. of VNFs 3.1. Overview

Figure 3.1: An overview of a multi-tenant Kubernetes cluster in the cloud and the different actors that interact with it.

We identify four logical actors that are responsible for the installation and configuration of the cluster, as well as the
deployment of workloads:

• Cloud Service Provider (CSP). A CSP is an entity that manages the cloud infrastructure where the worker nodes
are running. As the name indicates, they provide the infrastructure (hardware, virtualization layer, networking) to
the other actors of the system. We consider a variable number of CSPs in our general architecture, i.e., the VMs in
the cluster do not necessarily belong to the same CSP.

• VM Admin. The VM administrator is responsible for setting up and managing the VMs that are provided by the
CSPs and used as worker nodes. Some of the tasks done by this actor are the following: installing and configuring
the OS, the Kubernetes software and container runtimes, setting up the users with their permissions. The VM admin
has no privileges on the Kubernetes control plane.

• Cluster Admin. The cluster administrator is responsible for setting up and managing the cluster. Some of the
tasks done by this actor are the following: initializing the cluster, joining the worker nodes, installing the necessary
plugins and/or admission controllers, configuring the tenants’ privileges, managing the security aspects of the cluster
such as tenant isolation, authentication, authorization. The cluster admin has limited privileges on the VMs, which
are mostly used for the initial setup of the cluster.

• Tenant. A tenant is someone able to deploy workloads (i.e., applications) to the cluster. We consider a variable
number of tenants. Each tenant must be isolated from the others, for example by assigning each a different names-
pace. Additionally, tenants have limited privileges on the cluster (e.g., to deploy pods), but no direct access on any
of the VMs.

3.1.1. Worker nodes

A worker node is a VM where containers can be scheduled for execution. We identify the following layers on each node:

• Hardware layer, i.e., the hardware infrastructure that provides the resources used by the VM.
• Hypervisor layer, i.e., the abstraction layer that allows to run multiple VMs on the same hardware infrastructure.
• Operating system layer, i.e., the Operating System (OS) and other software installed on the VM. This also includes

the high-level and low-level container runtimes, as described below.

Deliverable D1.3
18

3. Sec. Distrib. & Integrity Prot. of VNFs 3.1. Overview

Figure 3.2: High-level view of the essential software components needed to run containers on a Kubernetes worker node

• Orchestrator layer, i.e., the Kubernetes components: kubelet and kube-proxy.

• Application layer, i.e., the containers running on the node.

Figure 3.2 shows how the various software components interact to manage the execution of containers. The Kubernetes
components, more precisely the kubelet, are connected to the high-level container runtime through the Container Runtime
Interface (CRI), which consists of protocol buffers, gRPC API, and libraries used for communication. This allows the
kubelet to be compatible with several different runtimes, provided that they comply with the CRI. The high-level container
runtime receives commands from the kubelet to manage the images (e.g., pull, list, inspect) and the container
lifecycle (e.g., create, start, stop, delete, list, inspect). The most popular high-level container runtimes
are containerd (the default runtime), CRI-O, and Docker (now deprecated).

Containers are executed in isolated environments provided by low-level container runtimes. Each container runs a con-
tainer image, a lightweight and standalone package that includes everything needed to run an application: code, runtime,
system tools, system libraries and settings. The Open Container Initiative (OCI) project defines standards for images and
container environments. First, the image-spec standard defines the structure of a container image. Tools such as Docker
allow to create an OCI-compliant image by taking as input the source code and a configuration file (called Dockerfile).
Second, the runtime-spec standard outlines how to spawn and run OCI images. Therefore, any low-level container runtime
must comply with the runtime-spec standard, and is able to manage any image that comply with the image-spec standard.
The most popular is runc, which is also the default runtime used in Kubernetes. However, there are many different low-
level runtimes that provide different levels of security and performance. We discuss low-level container runtimes more in
detail in section 3.4.2.3.

3.1.2. Image/container lifecycle

A container that is executed in a Kubernetes cluster follows multiple stages (Figure 3.3). We distinguish between two
main phases, Development and Operations. The former includes all the steps involved in the creation and distribution of
container images, starting from writing the source code up to publishing the image to a registry. The latter concerns the
execution of a container, from its creation to its disposal.

In the Development phase, we categorize three distinct steps:

• Develop. This phase concerns the development of the application’s source code.

• Build. In this step, the container image is created. This image must comply to the OCI standard, and it includes the
code developed in the previous phase plus any other dependencies and settings.

• Release. This phase involves the release and distribution of the image. This consists of pushing the image to a
specific image repository. Optionally, some additional operations are done before or after the image is pushed. For
example, the image can be signed for integrity protection (section 3.3).

Deliverable D1.3
19

3. Sec. Distrib. & Integrity Prot. of VNFs 3.2. Specialized Threat Model

Figure 3.3: Image/container lifecycle

Regarding the Operation phase, we identify the following stages:

• Fetch. In this phase, a new container is created and set up, the corresponding image is fetched from the registry (or
from a local cache) and loaded inside the container.

• Execute. This step involves the execution of the container. This includes all the different states that a container
might have over time, e.g., running, paused, etc.

• Dispose. In this phase, the container is stopped and deleted. This happens, for example, if the container has
completed its job, it needs to be migrated to another node, or a during a rolling update.

3.2. Specialized Threat Model

An attack aimed to disrupt the integrity of an image/container can be targeted at different components of our architecture
(Figure 3.1). We distinguish between attacks targeted at the cluster’s control plane, at the nodes, and at the image registries.
Attacks directly targeted to the actors’ workplaces (e.g., the tenants’ development platform) are considered out of scope.
Network attacks such as man-in-the-middle attacks or data tampering are possible, but they are not the main focus, as
we assume that each connection is protected with respect to confidentiality, integrity, and authenticity (e.g., using the
encrypted TLS communication protocol).

For each kind of target (i.e., cluster, node, registry), we classify the users that interact with it, describing their privileges.
The principle of least privilege is applied: every user must have nothing more than the minimal set of privileges and
permissions that is needed to perform their tasks. By having a clear separation of users and privileges, we can build more
easily a trust model between the actors of the system.

This section is structured as follows: subsections 3.2.1, 3.2.2 and 3.2.3 discuss about the privileges of users interacting
with the cluster, nodes, and image registries respectively. Subsection 3.2.4, instead, presents our refined trust model.

3.2.1. Cluster: users and privileges

The Kubernetes control plane can be configured using role-based access control to assign roles (and privileges) to each
user (or group of users). In our architecture, only the cluster administrator and the tenants directly communicate with the
control plane. Assuming a proper configuration of the cluster, other external users have no privileges, i.e., every attempt
to query the API server results with a 401 Unauthorized or a 403 Forbidden response.

More in detail, we distinguish between the following users and privileges:

Deliverable D1.3
20

3. Sec. Distrib. & Integrity Prot. of VNFs 3.2. Specialized Threat Model

A. Cluster Admin: The cluster administrator has full privileges over the whole cluster. A malicious cluster admin
(or any other user that has somehow gained such privileges) can completely take over the entire cluster. Possible
attacks on integrity are: joining malicious nodes to the cluster and scheduling one or more pods to run on such
nodes, intercepting and altering any resource objects provided by a tenant, giving administrative privileges to a
tenant, tampering with sensitive data (e.g., secrets).

B. Tenant: A tenant can deploy workloads on the cluster. Normally, tenants are assigned to different namespaces and
they cannot interfere with each other. However, containers belonging to different tenants can still run on the same
node. Thus, if a malicious container can somehow “escape” the isolation of the container runtime, it can affect
the integrity of both the host OS and other containers on the same node. Moreover, a malicious container might
affect others by exploiting their public or private interfaces (e.g., a microservice that is used by other tenants via
inter-namespace communication). If the targeted container has some additional privileges on the cluster, the tenant
could also escalate their privileges to gain additional powers and tamper with other tenants.

C. End User: End users cannot directly communicate with the control plane, as explained above. Yet, these users can
still interact with the cluster via the public interfaces offered by certain containers (e.g., a web server). Attacks can
exploit certain vulnerabilities in such containers to disrupt their integrity. Similarly, from a container that has been
successfully exploited by the attacker, it is possible to perform other attacks on the cluster, as described in point B.

3.2.2. Node: users and privileges

A node is a VM that is used by the control plane to schedule the execution of containers. We assume that all the VMs
of the cluster only serve this purpose, i.e., no other software is installed or running except for the Kubernetes software
(kubelet, kube-proxy), the container runtimes (both high and low level) and the containers themselves. Additionally, no
one except for the cluster admin and VM admin has a user account on the VMs.

We identify the following users of a node:

A. Cloud Service Providers: The CSP provides the hardware resources, virtualization, and communication infras-
tructure, on top of which VMs are executed. They should not have any direct access nor privileges on a VM.

B. VM Admin: The VM admin has full privileges over the whole node/VM. A malicious VM admin (or any other
user that has somehow gained such privileges) can completely take over the node, potentially affecting the cluster as
well. Possible integrity attacks are: tampering with the memory, tampering with the local container image’s cache,
installing a custom malicious kubelet or container runtime, giving root access to other users.

C. Cluster Admin: The cluster admin is configured to have root access only on a subset of commands needed to
configure the node in the cluster (e.g., kubeadm). Nevertheless, as described in the previous section, the cluster
admin can join an arbitrary number of external nodes to the cluster, in which they have full admin privileges.
Therefore, on such nodes, the same attacks as explained in point B. are possible.

D. Tenant: A tenant is not a “classic” user of a node. They do not have user accounts, but they can run their containers
on the node, through the Kubernetes control plane. Thus, there is no direct interaction between a tenant and a node,
since the control plane acts as a sort of man-in-the-middle between the two. Normally, the control plane decides
by itself on which node the container should be scheduled for execution, basing on the resources available on the
nodes at a given time. However, the tenant could force the execution on a specific node by properly setting some
constraints in the Pod spec, such as nodeName, nodeSelector, nodeAffinity or podAffinity. A malicious container
could then try to “escape” the isolation of the container runtime to perform attacks on the node itself and on other
containers.

E. End User: The end user of a node is anyone that wants to directly access the node via a public interface, without
any privileges. Besides the containers running on the node, the end user can only interact with the kubelet, and
(optionally) an SSH server that is typically used by the VM admin and cluster admin to configure the VM. However,
assuming that proper configuration is in place and no escalation of privileges is possible, every attempt to connect
with such services would fail, if not properly authenticated.

3.2.3. Image registry: users and privileges

An image registry is a database for storing container images along with their metadata. Images can be pushed (write) or
pulled (read). In both cases, a specific image repository and an image reference (tag or digest) must be provided, e.g.,
rustlang/rust:latest, where rustlang/rust is the name of the image repository and latest is the tag.

Deliverable D1.3
21

3. Sec. Distrib. & Integrity Prot. of VNFs 3.2. Specialized Threat Model

Push operations always require write privileges on that specific image repository. Instead, pull operations can be done
without any privileges on public repositories, but they require read privileges on private ones.

We classify the following users of an image registry:

A. Registry Admin: The registry administrator has full access over the registry. Therefore, they can perform both read
and write operations on all the image repositories in the registry, regardless of whether they are public or private. A
malicious registry admin (or any other user that has somehow gained such privileges) can violate the integrity of all
the stored images.

B. User: Authenticated users of a registry have full control (r/w) over their own images. Additionally, they can also
pull images from public repositories, but they do not have write privileges on them. If the registry resides within the
cluster and is private, tenants are the only users. If, instead, the registry is publicly accessible (e.g., Docker Hub),
anyone can create an account and become a user.

C. Guest: We define guest an unauthenticated user who accesses the registry. This works only if the registry is public,
since on private registries authentication is always required. By not having any privileges, guests are only allowed
to pull from public repositories.

3.2.4. Trust model

As showed in the previous sections, there are many actors that are in some way involved in the instantiation and operation
of a multi-tenant, cloud-based Kubernetes cluster. In order to better understand which are the most critical security aspects
(especially in terms of integrity) and which solutions need to be implemented to build a more robust system, this section
presents a trust model between the most relevant actors of the system.

We consider three different levels of trust:

• Trusted. “A trusts B” means that B is completely reliable and honest to A, hence no particular security mechanisms
are required or necessary.

• Semi-trusted. “A semi-trusts B” means that A expects a good behavior from B in general, but at the same time B
cannot be considered fully trusted as they can be compromised by external attackers, or simply they are not able to
provide guarantees about certain aspects. In our case, we consider a sort of “honest but curious” attacker model:
we trust B for availability, we expect a good behavior in terms of integrity (unless a compromise happens), but
confidentiality is not provided or required.

• Untrusted. “A does not trust B” means that it is unclear for A if B is malicious or benign, therefore A should take
the appropriate countermeasures to ensure that B cannot cause any harm.

A fourth trust level would be distrusted or malicious, however none of the relations between the actors we are considering
can be distrusted. For example, if a tenant considered the cluster administrator malicious, they simply would not use the
cluster at all. External attackers, instead, are obviously distrusted by anyone in the system.

Figure 3.4 shows the trust relations between the relevant actors of our system. Some arrows are not displayed, meaning
that those relations are not relevant in our context (e.g., the VM admin to the cluster admin, or a CSP to any other actors).
This trust model considers each actor as a distinct physical entity; however, the color of some arrows would be different if
the same person or organization covered multiple roles. For example, if a tenant manages their own private image registry,
the arrow between tenant and registry administrator would be green on both sides, i.e., there is full trust as they are the
same person.

The CSPs provide the infrastructure on top of which the cluster is running. Generally, a sort of “contract” between a CSP
and a VM admin is established, in which the latter pays for the services offered by the former. Therefore, the VM admin
semi-trusts the CSPs for the availability of such infrastructure. Conversely, the CSPs does not rely on the functionality of
the VMs or their services, so no trust relation is required.

There is a tight connection between the cluster administrator and the VM admin, since the VMs configured by the latter
are used by the former in the Kubernetes cluster. Hence, there should be a semi-trust relation from the cluster admin to
the VM admin, because it is expected that the latter configures the VMs properly and does not install some malware.

The cluster admin should not trust tenants, as a tenant might be malicious or compromised by an external attacker. For
the same reason, tenants do not trust each other. A tenant, instead, has to semi-trust the cluster admin and the VM admin,
as the operation of their workloads depends on the Kubernetes control plane and the nodes where the containers run.

Concerning the container images stored on a registry, the tenant needs to semi-trust the registry administrator. On the other
hand, a registry administrator does not trust their users, and the same considerations made for the cluster admin-tenant

Deliverable D1.3
22

3. Sec. Distrib. & Integrity Prot. of VNFs 3.3. Container Image Security

Figure 3.4: Trust relations between the most relevant actors of the Kubernetes cluster

relation apply here.
Finally, tenants must not trust end users, as an attacker can easily reach the end-user side. Similarly, end users do not trust
each other. Instead, an end user semi-trusts a tenant (and, from them, the whole infrastructure).

3.3. Container Image Security

Existing approaches to secure containerized services focus on the Build phase or the Release and Fetch phases of the
image/container lifecycle. Techniques applied in the first phase aim at hardening containers by reducing their attack
surface and by statically detecting and eliminating vulnerabilities. The Release and Fetch phases, methods to secure
transmission and storage, and to verify the integrity of deployed containers are being used. In this section we review a
number of these approaches.

3.3.1. Reducing the attack surface

To reduce the attack surface as much as possible, it is important to build a container image that contains only the necessary
components needed to run the main application. Moreover, the application should be run with the minimum set of
privileges that is required for its correct execution (least privilege principle).
Some of the best practices that should be applied in this direction are:

• Use a minimal base image. There are plenty of images that can be chosen as base image, from general-purpose
(e.g., ubuntu) to more specialized ones (e.g., python). Usually, such images also have multiple tags, used

Deliverable D1.3
23

3. Sec. Distrib. & Integrity Prot. of VNFs 3.3. Container Image Security

not only to identify a specific version (e.g., ubuntu:18.04) but also to provide different variants in terms of
installed packages and features. The base image should be selected according to the application’s requirements, but
at the same time it should be kept as minimal as possible in order to decrease the size of the container image and
consequently reduce the attack surface. It is also highly recommended not to use base images released by unknown
(and therefore untrusted) authors.

• Install only the essential packages. The container image should only contain the minimal set of packages required
by the application. As an example, when installing a package with apt-get install it is useful to specify the
--no-install-recommends flag, which prevents the installation of all the packages that are recommended
but not necessary to have along with the one being installed.

• Remove temporary files and packages. Sometimes, certain packages or files are only required during the building
phase of the image, but not when the container is running (e.g., a language tool chain). To reduce the size of the
image, as well as the attack surface, it is recommended to remove such components when they are no longer needed.
A convenient feature of a Dockerfile is called multi-stage builds, which allows to build intermediate images used for
different tasks. For instance, it is common to build an intermediate image to compile an application from its source
code. That is, the intermediate image is used as the “building environment” and includes all the dependencies (tool
chains, compilers, etc.) needed to build the application; the compiled executable is then simply copied from the
intermediate to the final image.

• Change default user. The default user of a container image is typically root. This might be a huge security
concern, not only for the container itself but also for the host OS. A good practice when defining a Dockerfile
is to create a new user with known User ID (UID) and Group ID (GID), and then switch user (using the USER
instruction) when the root privileges are no longer required.

• Perform regular updates. For increased security, it is a good practice to keep the image up to date, not only
regarding the application itself but also the base image and all the installed packages. More recent versions of a
package might patch some vulnerabilities discovered over time. Thus, keeping the image up to date would increase
its overall security.

3.3.2. Detecting vulnerabilities statically

Once the image is built, scanners can be used to check if it contains some known Common Vulnerabilities and Exposures
(CVEs). This procedure can be performed at different stages of the image/container lifecycle: before the distribution
of the image (Release phase), possibly integrated with the CI/CD pipeline; in the image registry, after the distribution;
during the admission in the Kubernetes cluster (Fetch phase). Different stages concern different actors: tenant, registry
administrator and cluster administrator respectively.

There are several image scanners available in the market, all of them sharing similar functionalities. As an example,
Docker provides a built-in tool that can be invoked via the docker scan command, which could be seamlessly inte-
grated in the CI/CD pipeline. For the Fetch phase, instead, some of the scanners can be used in conjunction with admission
controllers that accept or reject an image basing on the scan results (see section 3.4.2.2). Popular image registries such as
Docker Hub contain a built-in image scanner, which is typically offered to the users as a premium service.

3.3.3. Image selection, secure transmission and storage

Security in transit and at rest. When an image is sent over the network (i.e., during the Release and Fetch phases
of the container/image lifecycle) it is important to protect the communication channel to avoid common attacks such
as data tampering, man-in-the-middle attacks, eavesdropping, etc. The mainstream solution nowadays consists of using
authenticated TLS channels to preserve the confidentiality, integrity and authenticity of data in transit.

Security of images at rest is equally important. An image stored in a registry should be protected with proper mechanisms
of access control, in order to give read/write access to an image repository only to authorized users. This behavior should
be implemented and enforced by the registry administrator. For increased security, tenants might want to store their own
images in a private registry, in which they have exclusive access. A private registry could also be installed in the cluster,
in this case access is restricted to the tenants and cluster administrator.

Normally, when an image is fetched from a registry, it is stored in a local cache inside the node. This way, subsequent
requests of the same image can use the local copy instead of pulling it again from the registry, reducing the start-up
time of a container and the traffic load on the network. Unfortunately, local caches do not implement any access control
mechanism, allowing a tenant to potentially use other tenants’ images. Privileged users in the node might also corrupt

Deliverable D1.3
24

3. Sec. Distrib. & Integrity Prot. of VNFs 3.3. Container Image Security

the local cache, injecting malicious images and/or tampering with existing ones. An effective defense mechanism against
these problems is to enable the AlwaysPullImages admission controller in the cluster, which forces the kubelet to ignore
the local cache and always fetch the images from the registries. However, this solution might bring additional start-up
latencies, which might not be acceptable in some critical scenarios; therefore, custom solutions might involve a local
cache deployed on the cluster, complemented with an admission controller for access control enforcement.

To add another layer of security both in transit and at rest, images could also be encrypted (to preserve confidentiality)
and/or authenticated (to preserve integrity and authenticity). This chapter mainly focuses on image integrity, hence we
will not discuss image encryption. Instead, we examine image signing in section 3.3.4.

Image identifiers. An image repository is uniquely identified by the following tuple:
<registry url,owner name,repository name>, where registry url is the URL of the registry
where the image is stored, owner name is the name of the user who owns the image, and repository name is
the name of the image repository. A repository might contain several images; each image in a repository is uniquely
identified by a label, either a tag or a digest. When a tenant deploys a container to a cluster, they select the image to use
by specifying the image repository and label.

An image is labeled with a tag during its creation. Tags are not uniquely assigned, i.e., the same tag can be reassigned
to another image in the same repository. For this reason, tags are defined mutable. The mutability of tags might create
some inconsistencies when the same tag is used more than once. If a tag is reused, then it is possible that different storage
locations (registries, local caches, etc.) contain different versions of the same image. This may cause some undesired
consequences in a cluster, e.g., that different replicas of the same container run different images. Solutions to this problem
are: use semantic version tags such as v1.2.3, to assign a specific version to each image and avoid tag reuse; set the
ImagePullPolicy of a container to Always and/or enable the AlwaysPullImages admission controller, to bypass the local
caches and always fetch an image from the registry; use digests instead of tags.

A digest is an SHA-256 hash over the content of a container image, used both as a reference and an integrity check (see
section 3.3.4). Every time a new version of the image is built, the resulting digest would consequently be different, as the
content of the image would change. Therefore, in contrast with tags, digests are immutable. Digests, however, are not
human-friendly as they are not easily readable, and it is easy to make mistakes in the resource specification. Therefore, it
is recommended to use digests when automated deployment tools are in place (e.g., a CI/CD pipeline) to reduce risk of
misconfiguration, while semantic tags could be a better choice when manual configuration or monitoring are required.

3.3.4. Integrity verification and remote attestation

The integrity of a container image can be violated in different ways and different moments of time. When a new container
is scheduled for execution, the corresponding image is fetched by the kubelet and loaded inside the container, ready for
execution. In this section, we look at techniques to ensure that (1) the fetched image is authentic, and (2) the image is not
tampered with before the Execute phase.

3.3.4.1. Integrity verification

We rely on cryptographic techniques to ensure the integrity of images. Hash functions are used to calculate the digest of
an image, while asymmetric encryption is used to apply a digital signature over the image’s metadata.

Digests. Digests are used as integrity measurement and verification of an image. As shown in Figure 3.5, the image
manifest contains hash values of the configuration file (config) and each layer that composes the image (layers), as
well as a global digest of the whole image that can be also used as a reference, as explained above. These values are
used as integrity checks: all the digests are recalculated after the pulling phase, and if a certain layer or the configuration
file are corrupted the hash would not match the one included in the manifest, causing an integrity violation. Clearly, an
attacker that has control over the manifest file can modify the reference digests accordingly, and a corrupted image would
still bypass the integrity verification. However, any attempt of tampering would fail if the tenant references the image
by digest in the Pod spec, because the recalculated global digest would not match the reference provided by the tenant.
The attacker now would need additional powers to also modify this digest, either targeting the tenant’s workstation, the
Kubernetes control plane, the network, or the node where the image is being pulled.

Deliverable D1.3
25

3. Sec. Distrib. & Integrity Prot. of VNFs 3.3. Container Image Security

Figure 3.5: Manifest file of the hello-world image, obtained using the Docker command line interface. Source:
https://docs.docker.com/engine/reference/commandline/manifest/

Figure 3.6: Overview of Connaisseur’s process flow. Source: [4]

Image signing. Integrity verification using digests is a very simple and effective mechanism, but if the image is
referenced by tag the checks are not enough to protect its integrity. Hence, another method is to apply a digital signature
on an image, and thereafter verify this signature when the image is being deployed on the cluster. This is a more powerful
integrity mechanism as images are now linked to a specific identity, which can be the identity of the tenant that is deploying
the workload or some trusted 3rd party. In this way, the control plane could also decide to accept or reject images according
to the identity of the owner, for example rejecting an image that has a unknown or no signature (see section 3.4.2.2).

Deliverable D1.3
26

https://docs.docker.com/engine/reference/commandline/manifest/

3. Sec. Distrib. & Integrity Prot. of VNFs 3.4. Attack Surface and TCB Assessment

The key aspect of image signing is to cryptographically link an image tag with its digest. This is done by applying a
digital signature over some trust data, which is then stored along with the image and retrieved during the Fetch phase.
This technique allows tenants to reference images by tag, yet retaining the same integrity guarantees as with referencing
images by digest, as explained above.

At the time of writing, Kubernetes does not support any signature-based integrity verification natively. However, as k8s
is highly customizable, several projects exist to enable this functionality. One of the most popular is Connaisseur [4], a
mutating admission controller that exploits a feature called Docker Content Trust (DCT), used for signature verification.
DCT allows a user to digitally sign an image with a specific tag before pushing it to a registry. It is built on top of
Notary, a tool for publishing and managing trusted collections of content. As shown in Figure 3.6, Connaisseur intercepts
all the deployment requests to the cluster and checks the images included in the request. For each image, it queries the
Notary server to retrieve the image’s trust data. If such data is not present or is invalid, the whole deployment is rejected.
Otherwise, the tag is transformed in a trusted and cryptographically verified digest, which is later used to fetch the image.
Connaisseur also provides a configurable image policy, used for example to allow the deployment of certain unsigned
images, or to accept signatures only by specific signers.

A similar project is Portieris [12], which shares the same mechanism as Connaisseur but also supports simple signatures,
a scheme that does not rely on DCT and Notary but simply performs signature verification given a known public key.

A basic verification mechanism is also implemented in the CRI-O container runtime. However, this is not a cluster-wide
solution since it has to be enabled on each node separately. Moreover, the verification is not performed on cached images,
but only on those fetched from a registry.

3.3.4.2. Remote attestation

Signature-based integrity verification techniques are very effective to ensure that only authorized and authentic images
enter the cluster during the fetching phase. Yet, this does not protect the loading process, i.e., the container creation and
start. Assuming that the image is correctly downloaded on a node, there is a small window before the container is executed
in which the image can be altered or replaced. A privileged user on the node might have write access to the local image
cache, thus being able to tamper with an image after the integrity check. Alternatively, a malicious container runtime
might run a different image and/or skip the integrity checks.

To ensure that a process is running an authentic software, Remote Attestation can be leveraged. As the name suggests,
it is a technique used to verify the correctness of an application running on a remote node. It consists of obtaining a
cryptographic proof of the identity of a process, which generally includes the hash of the application’s binary plus some
metadata. This proof is generated and signed by a specialized hardware component, defined the Root-of-Trust (RoT) of
a node; as such, no software can forge, or tamper with, attestation messages. The verifier (i.e., whoever wants to verify
the application) receives the proof and (1) checks if the message is authentic by verifying the signature, (2) compares the
identity of the application with the expected (reference) value, ensuring that they match. If both steps have positive result,
the whole attestation succeeds.

Remote Attestation can ensure the integrity of an image during all the steps up to the loading phase included. Hence, if
used on the whole cluster, it can replace (and provide better security compared to) the techniques described so far. Yet,
to do this, nodes must provide the hardware capabilities to perform attestations, and the verification mechanism must be
properly integrated with Kubernetes. In addition, there are also performance concerns that must be considered. It is worth
noting that Remote Attestation is static, i.e., the integrity is verified only over a binary/package file and not on runtime’s
code and data. Hence, runtime inconsistencies cannot be detected by this technique.

Currently, there is no native support for the attestation of containers in Kubernetes. However, some external projects
implement this functionality; for example, [13] and [14] provide a framework to attest Docker containers using a TPM-
based approach (see section 3.4.1.2). Other projects, instead, use Trusted Execution Environments (TEEs) to deploy
confidential workloads, in which remote attestation is integrated to provide a tenant and/or end users the guarantee that
their code and data are protected at runtime. We discuss in detail about TEEs and containers in section 3.5.

3.4. Attack Surface and TCB Assessment

During its execution time, the integrity of a container should be enforced to counter the possible presence of malicious
activity in the cluster. We focus on identify threats coming from the same node where the container, defined as target
container, is executing. Here, the attack surface includes:

Deliverable D1.3
27

3. Sec. Distrib. & Integrity Prot. of VNFs 3.4. Attack Surface and TCB Assessment

• The node, i.e., the host OS plus running software/modules such as the kubelet, container runtimes, etc. Attacks
might come from inside (e.g., malicious software, privileged user) or outside the node (e.g., an attacker that exploits
a certain service publicly exposed).

• Other containers running on the same node. A container might be able to break the isolation mechanisms provided
by the low-level runtime and affect the target container directly or through the host OS.

• The target container itself, which is susceptible to attacks if it contains vulnerabilities.

Essentially, attacks performed anywhere on the node can potentially disrupt the integrity of the target container. Therefore,
security mechanisms must be implemented in order to reduce the attack surface, to enforce a defense-in-depth approach,
as well as to detect ongoing attacks. In each of the following subsections, we explore solutions that focus on specific
components, respectively: the host OS; other containers running on the same node as the target container; the target
container itself.

3.4.1. Prevention and detection of malicious activity on the node

As already mentioned in section 3.2.2, a worker node should only serve the purpose to execute the containers that are part
of the Kubernetes cluster. Therefore, the VM admin should take care of the configuration of the VMs in order to reduce
the attack surface as much as possible.

Such prevention techniques should be complemented by detection approaches to ensure at runtime that a node is not
compromised. We will discuss about node attestation, i.e., obtaining a cryptographic proof that a remote node is working
as expected. For example, this proof might demonstrate that the node at a given time is running a genuine version of the
OS, and no unknown software is running. This proof can then be used by the control plane to increase the trustworthi-
ness of the node, which can therefore be used to schedule the execution of critical workloads that require high security
guarantees. Conversely, if the attestation of a node fails, the control plane might migrate all the containers running on that
node elsewhere, preventing at the same time the execution of new containers until a new, successful attestation response
is received.

3.4.1.1. Reducing the attack surface

To reduce the attack surface, it is essential to remove all the unnecessary software and packages from the OS. The VM
only needs to run the Kubernetes software with its dependencies (e.g., the container runtimes), along with a few optional
components such as logging tools.

To this purpose, several OS distributions specifically optimized for running containers are available for use. Some of the
most popular ones are the following:

• Google Container-Optimized OS [15]. This minimal OS can be used in the Google Cloud Platform environment,
and it is the default OS image in Google Kubernetes Engine (GKE). It comes with the Docker runtime, and it
provides some interesting security features such as small footprint and automatic updates. It does not include a
package manager, nor it supports the execution of non-containerized applications or the installation of third-party
kernel modules. Unfortunately, this OS distribution cannot be used outside the Google’s cloud environment.

• Amazon Bottlerocket [16]. Bottlerocket is a Linux-based open-source operating system used in Amazon Web
Services (AWS). It is similar to Google’s OS, and it can be used with no additional cost within AWS. Since it is
open source, it is possible to produce custom builds of the OS to fit the customers’ needs, for example by installing
specific container runtimes.

• Rancher k3OS [17]. This is a Linux distribution specifically designed to run k3s, a lightweight version of Kuber-
netes [18]. This OS is designed to be managed by kubectl once the node is bootstrapped, meaning that the node
itself only needs to join a cluster, and after that all the aspects of the OS can be managed from the Kubernetes’
control plane. The k3OS operator is a component used for automatic upgrades and maintenance of k3OS and k3s.

• Red Hat Enterprise Linux CoreOS [19]. This lightweight OS, initially developed as a stand-alone product, is
now part of OpenShift, Red Hat’s hybrid cloud platform. It uses CRI-O instead of Docker as high-level container
runtime.

To ease the configuration of multiple nodes at the same time, it is possible to use automated tools that adopt an
Infrastructure-As-Code approach, such as Terraform [20] and Ansible [21]. In this scenario, the VM admin can spec-
ify the desired configuration of a VM in a declarative way using configuration files, which are taken as input by these

Deliverable D1.3
28

3. Sec. Distrib. & Integrity Prot. of VNFs 3.4. Attack Surface and TCB Assessment

tools to automatically set up the VM. This is particularly useful in a Kubernetes cluster, where all the worker nodes need
the same configuration. Additionally, it is easier to create new nodes or replace faulty ones.

3.4.1.2. Node attestation

A Trusted Platform Module (TPM) [22] is a small hardware component that contains cryptographic keys, small storage, a
crypto unit, and a random number generator. Its primary purpose is to verify the integrity of software in a platform, com-
puting cryptographic measurements over software configurations that are used as integrity evidences. If a measurement
matches a known expected value, then the software can be considered trusted. Otherwise, the software might be corrupted
and some countermeasures should be taken to avoid possible attacks, e.g., block its execution.
Using a TPM, we can create a Chain-of-Trust (CoT) that starts from the TPM itself (the Root-of-Trust) and continues
to the BIOS, GRUB, up to the OS kernel. Moreover, the CoT can be extended to the application layer thanks to kernel
components such as Integrity Measurement Architecture (IMA) [23], allowing to verify the integrity of user processes as
well.
Intel Trusted Execution Technology (TXT) [24] leverages the TPM and other hardware extensions to provide verified
launch, secret protection, and attestation of a platform. That is, this technology ensures high protection against hypervisor
attacks, BIOS and firmware attacks, malicious root-kits, and so on. Hardware-based enforcement mechanisms can block
the launch of a software component whose measurement does not match the expected value. Besides, measurements can
be also provided at runtime, so that a local or remote user can attest the platform and ensure that each software component
has been verified during startup.
Solutions such as Intel Security Libraries for Data Center (SecL-DC) [25] and Azure Attestation [26] create an infrastruc-
ture for the remote attestation of platforms. Clients can then verify at runtime the state of a cloud environment and decide
to deploy security-sensitive tasks only on verified nodes.
Node attestation can be integrated with Kubernetes to build trust over the nodes of a cluster. In short, trusted nodes whose
attestation has succeeded can be distinguished from untrusted ones by applying a label to them, so that the control plane
can be aware of which nodes are trusted and which ones not. Then, scheduling decisions can be made to deploy pods
that require special care only to trusted nodes. Identifying such pods can be done in several ways, for example by adding
annotations in the Pod specification. Note that the nodes not marked as trusted are not necessarily malicious; for example,
some nodes might simply not provide the hardware features required for the attestation (e.g., missing TPM).
Intel SecL-DC provides some extensions to integrate its attestation framework with Kubernetes [27], implementing a
custom controller and scheduler, as well as declaring new Custom Resource Definitions (CRDs), to enforce the behavior
illustrated above.

3.4.2. Prevention and detection of malicious activity from other containers

In a multi-tenant cluster, containers of different tenants might run on the same node. In this scenario, a malicious or
compromised container might potentially affect other tenants’ containers in the same node either directly or indirectly
(i.e., through the host OS). For this reason, it is important to enforce the isolation between containers, and between a
container and the host.
Particularly, we look at three prevention techniques: section 3.4.2.1 discusses about how to limit the capabilities of a
container in a node; section 3.4.2.2 explains how a cluster administrator can control which container images are used
on the cluster; section 3.4.2.3 shows how to increase container isolation using specific low-level container runtimes. In
section 3.4.2.4, instead, we introduce a tool to monitor the execution of containers and detect possible malicious activity.

3.4.2.1. Limit the capabilities of containers

Host resources. Container isolation is achieved using Linux namespaces, a feature used to partition kernel resources
so that processes can only see (and consume) resources that belong to their own namespace, without being able to access
the resources of other namespaces.
There are different kinds of namespaces, such as PID, network, user, and IPC namespaces. Normally, each container has
its own namespaces to ensure isolation from other containers and the host itself. However, some containers can share
one or more namespaces; for example, all the containers belonging to the same pod share the same network namespace,
allowing them to communicate through the loopback interface. Beside namespaces, a container has its own filesystem,
which is isolated from the host using chroot.

Deliverable D1.3
29

3. Sec. Distrib. & Integrity Prot. of VNFs 3.4. Attack Surface and TCB Assessment

It is possible for a user to break this isolation, by allowing a container to share the same resources as the host for legitimate
reasons. For instance:

• A container can be executed within some of the host’s namespaces, namely network, PID and IPC. In Kubernetes,
this is realized by setting hostNetwork, hostPID and hostIPC in the Pod specification.

• A container can expose its services on the same network as the host, even if they do not share the same network
namespace. In Kubernetes, this is achieved by setting hostIP, hostPort and protocol in the Pod specifica-
tion (spec.containers.ports).

• A container can access the host filesystem through mounted volumes. This is done in Kubernetes by setting
hostPath in the Pod specification (spec.volumes).

Resource sharing can be a security threat if not used carefully. As an example, a container running as root has full access
to all its filesystem, including mounted volumes as well. Hence, if a volume containing critical data is shared between
multiple containers, a malicious container can overwrite such data to violate the integrity of other containers.

Security context. In Kubernetes, a security context is used to define privilege and access control settings of pods
and containers. This is achieved by specifying a securityContext field in the Pod and/or Container specifica-
tion. At Pod level, the securityContext field is a PodSecurityContext object, while at Container level it is
a SecurityContext object. Although they are different objects, they share some common fields; the rule is that the
same field specified at Container level overrides the one specified at Pod level.

Some of the settings that can be specified in PodSecurityContext and SecurityContext objects are the follow-
ing (between brackets, we specify if they can be set at Pod level, Container level or both):

• [both] runAsUser and runAsGroup. Specify the UID and GID used for running the entry point of the container
process. Can be leveraged to enforce Discretionary Access Control (DAC).

• [both] runAsNonRoot. If true, the kubelet will validate the image at runtime to ensure that it does not run with
UID 0 (root), failing to start the container if it does.

• [pod] fsGroup. This special group is used to set the owning GID of volumes owned by the pod. If this field is set,
the kubelet will change the ownership of such volumes, and new files created in the volume will be owned by this
group as well. Note that not all volume types allow the kubelet to change the ownership of a volume.

• [container] privileged. If true, runs the container in privileged mode. All processes running on a privileged
container are equivalent to root on the host.

• [container] allowPrivilegeEscalation. This flag controls whether a process can gain more privileges than
its parent or not. This can happen by invoking the execve system call in Linux. With this flag set as false, the
kubelet will enforce the use of the no new privs option when the new container starts.

• [container] readOnlyRootFilesystem. If true, the container’s root filesystem will be mounted as read-only.

• [container] capabilities. This field allows to specify the container’s Linux capabilities, used to grant or
remove certain privileges to a process. That is, an unprivileged process might gain a set of additional capabilities
that are typically only assigned to a privileged process. Conversely, a privileged process might be deprived of some
capabilities.

• [both] seLinuxOptions. SELinux [28] is a kernel module used to enable Mandatory Access Control (MAC).
This field specifies the SELinux context to be applied to the containers. Note that the kernel module must be enabled
in the host, otherwise this field will not have effect.

• [both] seccompProfile. This field sets the seccomp profile of a container. It is used to restrict the container’s
system calls by allowing only the ones that are needed for its execution. Alternatively, seccomp profiles can also be
used to observe which system calls are used by a container without blocking them.

Additionally, AppArmor [29] profiles can also be used to further restrict a container’s access to resources. However, since
this feature in Kubernetes is still in beta, it is not included in the securityContext but can be defined as an annotation
in the Pod’s metadata. As with SELinux, to use AppArmor profiles the kernel module must be enabled in the host OS.

Enforcing pod’s security settings. Namespace and filesystem isolation, as well as a proper configuration of secu-
rity contexts, are a powerful way to enforce container isolation. However, it is a tenant’s responsibility to configure the
specification of their own pods. In a multi-tenant cluster, this means that a malicious (or sloppy) tenant can deploy a pod
with additional capabilities, e.g., to run as root in privileged mode. Obviously, this can be a huge threat for other tenants.

Deliverable D1.3
30

3. Sec. Distrib. & Integrity Prot. of VNFs 3.4. Attack Surface and TCB Assessment

Fortunately, there are tools to automatically enforce pods’ security settings in Kubernetes. The core essence of such tools
is defining policies to specify some constraints that every pod should satisfy, e.g., “containers are not allowed to run as
root”. An admission controller is then responsible to verify if the request sent by a tenant complies with the policies. If it
does not, the admission controller can either reject or mutate the request.
The built-in solution in Kubernetes are Pod Security Policies (PSPs), consisting of:

• PodSecurityPolicy resource objects, a cluster-level resource that controls security aspects of the pod spec-
ification, defining a set of conditions that a pod must satisfy in order to be accepted into the system. Essentially,
these conditions concern the security context and host resources as described above. A PodSecurityPolicy
resource can target specific pods using Role-Based Access Control (RBAC).

• The PSP admission controller, which validates requests to create and update pods on the cluster basing on the
PodSecurityPolicy resources.

It is important mentioning that PSP has been deprecated from Kubernetes 1.21 due to some serious usability problems
and will be removed in a future release. However, several external admission controllers for policy enforcement exist
nowadays, such as K-rail [30], Kyverno [31], and Open Policy Agent (OPA) Gatekeeper [32]. Besides, a new built-in
feature temporarily called PSP Replacement Policy is already under development, and will be available in the future
releases of Kubernetes.

3.4.2.2. Restrict image usage

For increased security, the cluster administrator can control what images are used by tenants, to avoid unknown, vulnera-
ble, or malicious images running in the cluster. Policies, together with admission controllers and/or image scanners, can
be defined to restrict image usage, for example rejecting images that:

• Have some high or critical CVEs
• Come from certain registries or repositories
• Are owned by certain vendors/users
• Are not signed
• Have a certain tag (e.g., latest)
• Contain certain software (e.g., blacklisted base images or packages)

It is essential that the control plane checks the security properties of the images during the admission phase, before they
enter the cluster. Policy-enforcing admission controllers such as OPA [32] and Kritis [33] can enforce this behavior,
rejecting images that do not meet the policy requirements. However, they need to be manually integrated with an image
scanner to actively check for vulnerabilities. Other admission controllers also provide this functionality, such as Anchore
[34], Sysdig OPA Image Scanner [35], and Clair [36].

3.4.2.3. Increase container isolation

Instead of rejecting untrusted images, another approach would be to run them on a highly isolated environment in which
defense in depth is enforced so that even if an image is malicious, it cannot affect the host system. For containers, this can
be achieved by using specific low-level container runtimes that aims to increase container isolation.

Categories of low-level container runtimes. In Kubernetes, the default low-level container runtime is runC,
which is optimized for performance and thus does not provide any additional security features other than namespace and
filesystem isolation, as explained in 3.4.2.1. In a similar way, crun is a C implementation of runC that achieves higher
performance, but provides the same level of isolation.
Some runtimes propose a micro-VM approach, consisting of running the container in a lightweight virtual machine along
with a guest kernel to provide all the features required by the application. Micro-VMs do not need to include all the
devices and functionalities of traditional VMs; hence, they have a smaller memory footprint and a reduced startup time,
allowing to spawn new VMs on demand whenever it is needed. Hardware virtualization offers a strong isolation between
the host and the container environment, logically separating memory, I/O, and network. However, a communication
channel between host and micro-VM is still needed, mainly used to control the container’s lifecycle and privileges (e.g.,
start/stop, cgroups/capabilities). The two most popular micro-VM runtimes are Kata [37] (Figure 3.7) and Firecracker
[38].

Deliverable D1.3
31

3. Sec. Distrib. & Integrity Prot. of VNFs 3.4. Attack Surface and TCB Assessment

Figure 3.7: Kata’s architecture. Source: https://katacontainers.io

Figure 3.8: gVisor’s approach. Source: https://gvisor.dev/docs/

A different technique is called sandboxing. It consists of adding one layer of abstraction between the containerized
application and the host kernel, using a library OS running in the container environment. All the system calls invoked by
the application are therefore intercepted by the guest OS and executed in user space; as a result, the application cannot
directly interact with the host. Since the guest OS can provide many functionalities on its own without the need to access
the host kernel, several system calls can be blocked from the container runtime by using a seccomp profile, thus reducing
the attack surface. This approach is used by gVisor [39] (Figure 3.8).

Micro-VM and sandboxing approaches increase the isolation of a containerized application, protecting the host system
from malicious or compromised workloads. While a micro-VM exploits strong hardware isolation, sandboxing adds a
software layer between the application and the host, as well as a reduced attack surface. However, better security entails
worse performance: it has been tested experimentally that both approaches have a longer startup time and worse runtime
performance compared to runC and crun [40, 41, 42].

Deliverable D1.3
32

https://katacontainers.io
https://gvisor.dev/docs/

3. Sec. Distrib. & Integrity Prot. of VNFs 3.4. Attack Surface and TCB Assessment

Integration with Kubernetes. As all the runtimes we have seen so far comply with the OCI specification, they can
seamlessly replace the default runC. Yet, to use a specific low-level container runtime, it first needs to be installed on
the nodes, and the high-level container runtime must be properly configured. Additionally, the Kubernetes’ control plane
needs to be aware of which runtime must be used for each container, according to the Pod specification.

Starting from Kubernetes v1.20, RuntimeClass has become a stable feature, used to deal with the selection of low-level
container runtimes. Assuming that the VM admin has installed the runtimes on the nodes and configured the high-level
container runtimes accordingly, the cluster administrator can create a RuntimeClass resource object for each new low-
level runtime, indicating a custom name (e.g., gVisor) and the corresponding handler that will be used to spawn containers.
Once RuntimeClasses are configured in the cluster, they can be used by specifying the runtimeClassName field in
the Pod spec. If the RuntimeClass does not exist, or the high-level runtime cannot run the handler for some reason, the
pod will fail to start.

By default, the control plane assumes that a certain RuntimeClass is supported by all the nodes in the cluster. If
this is not the case, two additional things are required: (1) ensure that the nodes supporting the RuntimeClass
have a common label, and (2) reference this label in the RuntimeClass resource specification by setting the
scheduling.nodeSelector field. This way, pods running with that RuntimeClass will not be scheduled on nodes
that do not support it. Besides, the overhead field can be defined for each RuntimeClass, used to take into account the
additional resources (e.g., CPU and memory) needed to run a pod on the corresponding low-level runtime, ensuring that
such resources are accounted for when making scheduling decisions.

3.4.2.4. Detect malicious activity

So far, we looked at prevention techniques that the cluster administrator can enable to have a better control of what is
running in the cluster. Yet this is not enough if a malicious container is somehow able to circumvent the restrictions it is
subject to, or if a container that was considered trusted suddenly becomes compromised by an external attacker. As such,
runtime monitoring tools should be used to detect malicious activity in the cluster.

Falco [43] can be used for this purpose. It is an open source runtime security tool part of the Cloud Native Computing
Foundation (CNCF). Essentially, Falco monitors the usage of system calls by userspace processes, generating alerts if the
behavior of a process does not comply with a set of rules declared by the user (i.e., the cluster administrator in our case).
It uses a driver to monitor the system call information, which can be installed as a kernel module, an eBPF probe, or as
userspace instrumentation. This information is then collected and parsed by a software component that runs in user space,
which sends alerts if anomalies are detected. A configuration file is used to define how Falco is run, the rules to assert,
and how to perform alerts.

Falco is a very powerful tool to detect unusual activity at runtime. For example, it can be used to detect privilege escalation,
execution of shell and SSH binaries, namespace changes, spawning of new processes, read/writes to certain directories,
etc. Alerts can be as simple as logs written to standard output or a file, or they can be calls to remote HTTP/RPC endpoints.
Therefore, even though Falco is only a detection tool per se, it can be used in cooperation with other tools to actively take
countermeasures as soon as an alert is generated.

Starting from version 0.13.0, Falco can additionally manage Kubernetes audit events as event sources. Kubernetes pro-
vides a log of all the requests sent to the API server, hence the audit log can track all the changes made to the cluster. This
allows Falco to actively monitor the cluster’s activity, including the creation and update of pods. Consequently, Falco can
be used to enforce pod’s security settings as well.

3.4.3. Prevention and detection of anomalies during the execution of the target container

The previous sections discussed cluster-wide solutions that either the VM admin or the cluster admin (or both) can imple-
ment to increase the overall security of the Kubernetes cluster. This section, instead, focuses on the tenants’ perspective,
describing solutions and countermeasures that they can adopt in order to both prevent and detect possible attacks.

3.4.3.1. Deploy bug-free code

A comprehensive discussion about developing bug-free code is far beyond the scope of this deliverable. In general,
this issue concerns all the software and is therefore not strictly related to containers and Kubernetes. Over the years,
several solutions have been proposed and implemented, such as memory-safe programming languages [44, 45, 46], C/C++
extensions [47, 48, 49], formal techniques [50, 51, 52], and testing [53, 54]. Each approach has its pros and cons, and

Deliverable D1.3
33

3. Sec. Distrib. & Integrity Prot. of VNFs 3.5. Trusted Computing Architectures / Confidential Computing for 5G

thus none of them can be adopted as the universal solution. When prevention is insufficient, detection techniques can be
exploited to reveal anomalies or detect attacks during the execution of an application (see 3.4.3.3 and 3.4.3.4). In this
case, vulnerabilities are discovered only after the application is released, and can be fixed in future releases.

3.4.3.2. Create robust container images

We refer to section 3.3 for a broad discussion about container image security.

3.4.3.3. Logging and monitoring

The simplest detection mechanism is logging, useful to understand what is happening inside an application. Some options
are available in Kubernetes, from basic logging (i.e., printing some text to standard output, and then checking the logs
with kubectl logs), to collecting the logs at node or cluster level. However, checking the logs requires manual work
and does not scale with big deployments.

Monitoring resources such as memory and CPU usage can be another way to detect anomalies in a container. An unex-
pectedly high amount of resources consumed might be an indicator that something is not working properly. The detection,
again, can be done manually using web-UI dashboards such as Kubernetes Dashboard or Grafana, or using alerts that are
automatically triggered when a certain event occurs, e.g., when the usage of a certain resource crosses a specified thresh-
old. Compared to logging, this method does not require to inspect each container separately, as the whole workload can
be monitored at the same time with the help of visual components such as charts, plots, diagrams. It is difficult to detect
whether the integrity of a container has been violated or not just by looking at the resource usage; in many cases, an attack
may not cause significant deviations from the normal utilization, keeping it undetected.

3.4.3.4. Control-flow attestation

Another approach to detect runtime attacks is by monitoring the control flow of an application. Control-Flow In-
tegrity (CFI) has been proposed since several years [55]. It is a technique used to ensure that a program follows a
predetermined Control-Flow Graph (CFG) [56], calculated at compile time or retrieved statically from the program’s bi-
nary. CFI techniques usually consist of adding checks to the program’s binary, which are executed at runtime to verify
whether the destination address of an indirect branch is valid or not, with respect to the CFG.

Using a similar mechanism, new techniques for Control-Flow Attestation (CFA) (also known as Runtime Attestation)
are emerging in recent years. CFA aims to provide to a remote verifier a trace of the execution of a program, which is
then checked against the CFG to verify that the program is following a valid path. Deviations from the CFG might be an
indicator that an attack is in progress, therefore CFA can be used as a powerful detection tool to promptly stop any attack
attempts as soon as they are discovered.

Analogously to Remote Attestation, CFA aims to provide a remote party a proof of authenticity of a program; the differ-
ence is that CFA performs checks and measurements on the behavior of the program at runtime, thus providing stronger
integrity guarantees than Remote Attestation, which can only guarantee the authenticity of a program during boot time.

Several projects implement CFA for small devices such as microcontrollers [57, 58, 59, 60, 61, 62, 63, 64], some of them
proposing variations to the CFG to also detect data-flow alterations, others introducing hardware modifications instead
of using software checks. Concerning high-end systems, ScaRR [65] is a CFA implementation based on a novel model
for representing the execution path of a program, which guarantees fast verification of attestation evidences. Another
approach [66] uses a different mechanism to detect Return-Oriented Programming (ROP) attacks, using taint tracking and
TPM-based attestation for remote verification.

Currently, there are no solutions for integrating CFA in Kubernetes; as such, future work might be carried out in this
direction. This technique can provide strong integrity guarantees of containerized applications, even in the presence of
critical vulnerabilities. However, it is worth noting that CFA may cause non-negligible performance penalties that must
be considered when deploying a performance-critical workload.

3.5. Trusted Computing Architectures / Confidential Computing for 5G

A technology that emerged in recent years are TEEs [67], where code and data of a process are isolated inside a dedicated
area of the memory to provide runtime protection in terms of confidentiality and integrity.

Deliverable D1.3
34

3. Sec. Distrib. & Integrity Prot. of VNFs 3.5. Trusted Computing Architectures / Confidential Computing for 5G

Often, memory isolation is combined with runtime memory encryption in order to defend not only against software attack-
ers but also against attacker with access to physical memory. The size of the protected data and programs may vary wildly,
from key protection facilities for trusted cryptographic operations to whole VMs running in a TEE. Commonly, trusted
execution environments also have attestation capabilities, i.e., they allow application deployers to obtain cryptographic
proofs that their software was deployed as intended in an authentic TEE.
We provide a broad overview of different TEE technologies in 3.5.1; in the remainder of this section, instead, we focus
on Intel Software Guard Extensions (SGX) [68], the most popular TEE in use nowadays.

3.5.1. Trusted Execution Environments

Code and data of a running application protected by a TEE are encrypted by the CPU and stored on protected memory
pages. Only the CPU can decrypt the content of the TEE instance, using dedicated keys that cannot be directly accessed
in software. This means that the host system, or anything that is located outside the TEE instance, cannot access what
is running inside. This causes a reduction of the Trusted Computing Base (TCB): an application running in a TEE
instance does not need to trust the underlying system, but only the hardware and the code within the TEE instance. In
other words, an application can run securely even in compromised/untrusted nodes, if the protection mechanisms of the
TEE are in place. In addition, Remote Attestation is performed to ensure that a remote workload is indeed running in a
protected environment. It consists of obtaining a cryptographic proof attesting that the workload is running untampered
in a TEE instance; this proof is generated and digitally signed by the hardware, so that the remote verifier can attest its
authenticity. The attestation response not only attests that the workload is correctly running in a TEE instance, but also
includes information about the identity of the workload. Thus, the verifier can then validate the authenticity of the running
application. Some TEE technologies such as SGX also attest the platform’s (TCB) state, to ensure that it is up-to-date.

Figure 3.9: Differences between a Process-based TEE and a VM-based TEE. In a process-based TEE, only a small
portion of code and data (the “trusted application”) is protected in an enclave. In a VM-based TEE, instead, a whole

virtual machine (the “secure VM”) is protected by the hardware, including the OS and all the processes running on it.

Different TEE solutions come with very different architectures. We distinguish between two main families of TEEs, as
shown in Figure 3.9:

• Process-based. Process-based TEEs allow running a process (or part of it) in a TEE instance, called enclave. Other
processes, the OS and the hypervisor are all outside of the enclave, thus making the TCB small. The hardware
isolates and protects the enclave from the host, as a sort of reverse sandbox; crossing the boundary between enclave
and host (e.g., to execute system calls) is possible through a well-defined interface, though a context switch from

Deliverable D1.3
35

3. Sec. Distrib. & Integrity Prot. of VNFs 3.5. Trusted Computing Architectures / Confidential Computing for 5G

protected to unprotected code (or vice-versa) is generally costly in terms of performance. A legacy application
cannot run in a process-based TEE as-is, but it needs some refactoring, either at source code level or at binary level,
depending on the solution used. The most popular process-based TEEs is Intel SGX.

• VM-based. VM-based TEEs use a completely different approach, that is running an entire VM in a TEE instance.
This solution is clearly less lightweight than process-based TEEs, as the TCB now includes an entire OS. However,
VM-based TEEs have some advantages: there is no enclave boundary between a process and the OS, which means
less performance penalties to e.g., execute system calls; besides, an application does not need any redesign or
refactoring to run in a secure VM. AMD Secure Encrypted Virtualization (SEV) [69] and the new Intel Trust
Domain Extensions (TDX) [70] use an VM-based TEE approach.

Figure 3.10: A comparison on Intel SGX, AMD SEV and Enclavisor from different dimensions. Source: [5]

Custom solutions can be implemented combining process-based and VM-based technologies to get the advantages of
both approaches, while at the same time trying to overcome their limitations. This is the case of Enclavisor [5], a research
project built on top of AMD SEV to run single processes in enclaves. In short, it consists of a small, trusted software layer
that runs inside a secure VM to manage an arbitrary number of enclaves within it, each of them isolated from the others.
In addition, Enclavisor removes the OS from the TCB by running it on a separate (normal) VM, sharing a portion of
memory with the secure VM for the execution of system calls. Figure 3.10, extracted from Enclavisor’s paper, highlights
the limitations of SGX and SEV and shows how Enclavisor tries to mix their approaches to get the benefits of both.

3.5.1.1. Developing an SGX application

Essentially, there are two ways to develop an SGX application:

1. Use an Software Development Kit (SDK) or an abstraction framework to develop a new enclaved application from
scratch, or to re-factor existing applications.

2. Use a middleware such as a library OS to run legacy applications in an enclave with little to no modifications,
depending on the middleware used.

The first approach requires more manual work, but it allows to move to the enclave only the critical part of the application,
leaving outside of the TCB most of the code. The second approach, instead, has a much bigger TCB since the whole
application would run in the enclave, as well as the middleware component. Hence, any vulnerability in the code would
potentially compromise the application. However, a middleware might provide additional features such as an encrypted
filesystem, and it might also introduce some performance improvements such as reducing the number of context switches
between the enclave and the untrusted world.

SDKs and abstraction frameworks. Only a few SDKs are available for writing SGX applications. The most
popular are:

• Intel SGX SDK [71]. The official SDK provided by Intel, written in C/C++. The application is divided in two
parts: the untrusted component and the enclave. The former is responsible for creating and initializing the lat-
ter. Communication between the two components is made using special function calls called ECALLs (from the
untrusted world to the enclave) and OCALLs (the other way around). These functions are declared in a special
Enclave Definition Language (EDL) file. Moreover, the SDK comes with special tools such as sgx edger8r to
parse the EDL file and generate glue code, and sgx sign to sign enclaves.

• Rust SGX SDK [72]. This SDK enables the development of enclave application using Rust, a modern and efficient
programming language that provides memory safety by design. It runs on top of the Intel SGX SDK, meaning that
the development of an SGX application is analogous as before, but it comes with extra security guarantees thanks
to Rust’s memory safety.

• Fortanix Enclave Development Platform (EDP) [73]. This SDK is entirely written in Rust and it is fully integrated
with the Rust compiler, which means that we can build an SGX enclave using the usual Rust tools, e.g., cargo, and

Deliverable D1.3
36

3. Sec. Distrib. & Integrity Prot. of VNFs 3.5. Trusted Computing Architectures / Confidential Computing for 5G

most of Rust’s standard library. Writing an enclaved application is straightforward: the code looks exactly like
a normal application, while the SDK makes the SGX bindings at compile time. An untrusted component that
creates and initializes the enclave at runtime is still required, however EDP provides a default component called
ftxsgx-runner that can be used for this purpose. If needed, a custom runner can be easily implemented as
well. The usercall interface is used by the enclave to communicate with the external world (a mechanism similar to
ECALLs/OCALLs in the SGX SDK), e.g., to perform system calls.

On top of these SDKs, high-level frameworks can be built to ease the development of enclaved applications across different
TEEs, as well as to provide APIs for some operations such as Remote Attestation. One of the most popular projects in
this regard is Open Enclave [74], which is an open source project that aims to generalize the development of enclaved
applications across TEEs from different vendors. Currently, it supports Intel SGX, while support for other TEEs is under
development. Another project is Google Asylo [75], with analogous goals.

Middleware approaches. We distinguish between the following middleware approaches to port legacy applications
in SGX:

• Library OSes. This approach consists of including an entire library OS in the application’s binary. It brings the
largest TCB but requires zero changes on the legacy application’s code. Furthermore, a library OS can bring several
performance improvements, and can provide an API for some common tasks such as attestation. Nowadays, the
most popular projects that use this model are Graphene [76], Occlum [77], Mystikos [78], Anjuna [79], and Fortanix
[80].

• Runtimes. This method is based on running a runtime inside the enclave, which is essentially a software that allows
the execution of other applications. Examples of runtimes are: EGo [81], targeted to applications written using Go;
interpreters for languages such as Python [82] and Javascript [83]; WebAssembly runtimes such as WebAssembly
Micro Runtime (WAMR) [84]. A runtime can run a legacy application inside the enclave without requiring any code
modifications. Compared to a library OS, this approach may cause more performance penalties, however a runtime
running inside the enclave might as well come with additional features. For example, projects such as Enarx [85],
TWINE [86], Veracruz [87] and Oak [88] use a WebAssembly runtime to run an application inside the enclave, but
they also provide new functionalities such as deployment of encrypted workloads and automatic attestation.

• Wrappers. This model, adopted by Panoply [89] and SCONE [90], provides wrappers to functions that cannot
be executed inside the enclave. The idea is that the application does not call those functions directly; instead, it
calls the wrappers, which perform a context switch to successfully execute low-level system calls and any other
instructions that need to be executed outside of the enclave. This approach requires some modifications in the
legacy application, either at source code level or at binary level, to link the API calls to the wrappers instead of the
real functions.

3.5.1.2. Run an SGX enclave from a container

There are essentially two ways to run an SGX enclave from within a Docker container:

• Manually building the container image to include the enclave and any other dependencies. This method is not
different from running the SGX enclave in the host machine. The steps necessary to create and run the enclave are
the same, which depend on the approach used as explained in the previous section (e.g., using a framework such as
Intel SGX SDK).

• Using special tools to automatically convert a normal container image to an SGX-enabled one. These tools
exploit the middleware approach (see previous section), making modifications in the container image to run the
application in an SGX enclave. For example, such tool is provided by SCONE, Fortanix and Graphene, each of
them using their own middleware solution.

In both cases, the container must be able to access the SGX device in the host machine. To do so, it is suf-
ficient to link the device to the container at startup time: for example, using Docker one would use the flag
--device=/dev/sgx enclave in the docker run command. Additionally, the Application Enclave Services
Manager (AESM) service (a component used to perform some common tasks such as attestation) should be made avail-
able to the enclave if needed. It is possible to run the AESM service inside the container itself or use the instance running
in the host by mounting the /var/run/aesmd volume in the container’s filesystem.

Deliverable D1.3
37

3. Sec. Distrib. & Integrity Prot. of VNFs 3.5. Trusted Computing Architectures / Confidential Computing for 5G

3.5.1.3. Integration of TEEs in Kubernetes

To integrate an TEE in Kubernetes, two fundamental points must be addressed:

• Management of TEE resources. The control plane must be aware of the TEE. First, TEE-enabled nodes should
be identified and marked with a special label. Second, a plugin should monitor the (limited) TEE resources in a
node such as the amount of encrypted memory available. Third, a scheduler should assign TEE-enabled pods to
TEE-enabled nodes that have enough resources.

• Management of TEE features such as attestation. Each TEE comes with different features, and each feature
might also provide different alternatives (for example, attestation in SGX has two modes, Enhanced Privacy ID
(EPID) [91] and Data Center Attestation Primitives (DCAP) [92]). The control plane should be aware of all these
features. Concerning attestation, for instance, a tenant could attest their own enclaves themselves, but it would
be preferred if the control plane managed the attestation of all the TEE-enabled pods directly, in order to make
the TEE completely transparent to the tenant, as well as to automatically take countermeasures on enclaves whose
attestation failed. The tenant in this case could simply query the control plane to verify that the attestation has
succeeded. Other features might require special care and actions by the control plane as well, such as sealing of
sensitive data.

Next, we focus on SGX: we explain how an orchestrater such as Kubernetes can be made aware of SGX enclaves and
nodes, and we introduce existing solutions that also enable other functionalities.

Management of SGX resources. Previous work [93] gave a detailed explanation on how to make a Kubernetes
cluster aware of SGX. In summary, the paper points out the following aspects:

• Identify SGX-enabled nodes. Device plugins can be used in Kubernetes to detect hardware resources in a node
(e.g., GPU). Hence, a device plugin for SGX can be installed in a cluster to mark nodes as able to run SGX enclaves
by exposing their Enclave Page Cache (EPC) resources (i.e., the encrypted memory available on a node) to the
cluster.

• Provide metrics on resource usage. It is essential to provide metrics to monitor the EPC usage on each node,
to be able to schedule pods in a node without exceeding the maximum encrypted memory available. Although
SGX supports over-commitment of the EPC, the performance impact to move enclaves in and out of the encrypted
memory would be enormous, therefore it should be avoided. To provide these metrics, the paper suggests modifying
the SGX driver to expose the total number of EPC pages available and the number of EPC pages used at a certain
time. After that, a probe deployed as a DaemonSet in the cluster can be used to fetch the metrics and make them
available to the control plane.

• Schedule the execution of SGX pods on SGX nodes. To do this, an SGX-aware scheduler must be installed on the
cluster. This scheduler would check the SGX metrics to identify SGX-enabled nodes available for the execution of
new SGX-enabled pods. Kubernetes supports multiple schedulers to run concurrently on the same cluster, therefore
it is easy to deploy custom schedulers.

• Enforce limits on EPC usage. It is important to prevent pods from abusing the EPC, to avoid over-commitment
and allow all pods to use a fair amount of EPC resources. The paper proposes making slight modifications in the
SGX driver and the kubelet to monitor the EPC usage of pods, identifying the ones that are not respecting the usage
declared in the pod specification (under spec.containers.resources.limits) and allowing the control
plane to take countermeasures such as preemption. A proper EPC usage enforcement would require the execution
of a dedicated cgroup controller in the kernel, however the paper argues that this solution would require a huge
engineering and development effort.

Existing solutions. Several SGX plugins are available for Kubernetes, developed in the context of research [93], by
organizations that wanted to support SGX in their cloud infrastructure [94, 95], or for commercial use [96]. Recently,
Intel released its own official SGX plugin too [97]. All of these plugins implement similar functionalities, as explained
in the paragraph above. However, none of them currently implement a per-container enforcement of EPC memory usage,
allowing a malicious tenant to potentially saturate all the EPC in a node. This issue is particularly critical on multi-tenant
clusters, and therefore needs special attention. Fortunately, work is in progress to implement a proper enforcement of EPC
usage on Intel’s plugin [98].

SGX plugins give the ability to run and manage SGX enclaves in a Kubernetes cluster. Yet, some manual effort from
the tenants and the cluster admin is still required, as there is no support for additional functionalities such as automatic

Deliverable D1.3
38

3. Sec. Distrib. & Integrity Prot. of VNFs 3.5. Trusted Computing Architectures / Confidential Computing for 5G

conversion of a container image to enable SGX, remote attestation, establishment of secure channels between enclaves,
data sealing, etc.
Other solutions try to go beyond these limitations, aiming to provide Kubernetes the security guarantees of Intel SGX in
a more transparent way. The most relevant projects are:

• Inclavare containers [99]. Developed by Alibaba Cloud and Ant Group and cooperated with Intel, Inclavare
containers is an open source, low-level container runtime that enables confidential computing with Intel SGX.
It is fully OCI compliant, meaning that it can be seamlessly used within Kubernetes to run any OCI container
images. It can run an unmodified application in the enclave, currently supporting Occlum, Graphene and WAMR
as middleware solutions. Additionally, it constructs a general infrastructure for the attestation of workloads.

• Marblerun [100]. Marblerun is an open source framework developed by Edgeless Systems for creating distributed
confidential applications using a service mesh approach. A tenant who wants to deploy a workload can submit
a Manifest file declaring the topology of the distributed application, then Marblerun takes care of all the rest,
namely the initialization and attestation of all the microservices, and the setup of encrypted connections between
microservices using mutual TLS terminated within the enclaves. After the initialization phase, the tenant can, at any
time, get an attestation statement of the whole application. That is, the attestation provides the guarantee that every
microservice is correctly running inside an SGX enclave and attested, and all the connections between microservices
are encrypted and authenticated. The same attestation statement can be also obtained by end users directly. The
Marblerun’s control plane also offers persistence of data using virtual sealing keys that allow microservices to be
migrated on other nodes while still being able to unseal their data. Additionally, it manages certificate provision,
secrets management and recovery.

3.5.1.4. Limitations of TEEs

The adoption of TEEs in Kubernetes gives a tenant strong confidentiality and integrity guarantees of their workloads,
especially in a multi-tenant cluster in which tenants are mutually distrusting. Besides, an TEE would remove from the
TCB the cloud service providers, the VM admin, and to some extent even the cluster administrator. Nevertheless, some
aspects need to be considered:

• Heterogeneity. As previously described, each TEE targets a specific processor, e.g. SGX for Intel and SEV for
AMD. In a cloud infrastructure, nodes from different hardware vendors might be used, and some nodes might
not even provide the hardware requirements for a specific TEE. As such, some tasks would be challenging, e.g.,
supporting multiple TEEs, running critical pods on specific zones, migrating pods, and so forth.

• Limited resources. The hardware resources of a TEE are not unlimited. For example, the maximum EPC available
in SGX is currently only about 128 to 256 MB. Additionally, AMD SEV only allows at most 15 secure VMs to run
concurrently, as each running VM is identified by a 4-bit ID. In both cases, over-using the TEE resources would lead
to severe performance degradation. These limitations might be removed in the future; for instance, the upcoming
Intel Ice Lake processors will support up to 1 TB of EPC.

• Performance degradation. Running a workload in a TEE would unavoidably reduce its performance, compared to
running it natively [101, 102, 103]. A VM-based TEE is less susceptible to performance degradation than a process-
based TEE, as the OS runs in the TEE instance together with the application, and therefore there are no additional
penalties for e.g., executing system calls. In general, crossing the boundary with the TEE instance has a high cost,
which considerably impacts on the performance of specific operations such as I/O. CPU-intensive applications such
as machine learning algorithms are less affected instead.

• Lack of functionalities. In process-based TEEs, some system functionalities might not be available inside the en-
clave for security reasons, as the kernel is outside of the TCB and therefore it cannot be trusted. For example, in For-
tanix EDP features such as environment variables, time and timeouts, filesystem operations, and multi-processing
are not supported. Nevertheless, a middleware approach such as a library OS might provide some of them in a
secure way.

• Security. Some threats are not part of the attacker model of a TEE, such as physical/hardware attacks and denial-
of-service attacks. Certain TEEs also suffer from serious vulnerabilities: Intel SGX has been the target of numerous
attacks [104] such as cache attacks, branch prediction attacks, and speculative execution attacks; AMD SEV, in-
stead, does not ensure memory integrity, which might lead to tampering with the encrypted memory of a secure VM
[105] or even extracting secrets from it [106].

Deliverable D1.3
39

4. Summary and Outlook

In the 5GhOSTS project we analyze and improve the security of service-based implementations of 5G networks, with
a special focus on security and privacy aspects of the development and deployment of containerized Virtual Network
Functions (VNFs). Research and development activities in 5GhOSTS center around three novel use cases, Vehicle to
Infrastructure (V2I), Smart Office, and Remote Surgery, all of which impose challenging requirements regarding low-
latency, privacy, and service resilience on our work. We address these requirements by developing a Kubernetes-based
edge platforms for 4/5G, which is informed by comprehensive security and privacy threat modelling by both researchers
from the domains of telecommunications law and computer security. These efforts have been elaborated on in previous
project output (cf. [1, 2, 3]). In this deliverable we focus on the trust model for our 4/5G edge platform, and survey
security and privacy preserving technologies that will enable us to implement this trust model with Kubernetes-based
VNF deployments, ensuring the integrity and overall security of the deployed VNFs in the presence of strong attackers
and even untrusted infrastructure, and thereby protecting the data and privacy of users of the service.
In Chapter 2 we present a threat and trust modelling effort for our V2I use case, presenting the different actors and their
trust relations. For example, the user side covers driver, pedestrian, and the road sensor infrastructure such as traffic lights
or cameras. As we illustrate, attackers must be considered as distrusted and all systems must take a precaution against
attackers. Attackers can easily reach the user side, attempt to spoof other users’ identity, or compromise them as a step
stone to attack the edge platform. That is why the user side actors do not trust each other. However, the users must semi-
trust the edge service provider and mobile network operator, because they depend on a lot of information and functionality
from them. For example, in the traffic management service use case, they should share data, and get optimized directions
with lower traffic or real-time information about their immediate environment. Conversely, Mobile Network Operator
(MNO) distrust the user side. However they semi-trust the edge manager as it is one of a few well-identified customers
of the MNO’s edge and mobile network infrastructure. Nevertheless, if protections against a compromise of either side
are dropped, this may pose a risk if such a compromise actually occurs. Overall, there are no completely trusted actors
in the V2I edge cloud scenario. Explicating and understanding this is important for our choices of technology. To satisfy
the security and privacy needs of all actors we need to aim for a notion of a Zero Trust Architecture, where active security
controls give novel guarantees about authenticity and integrity to the stakeholders involved in each interaction, establishing
an immediate notion of trustworthiness.
In Chapter 3 we then review technology and architectural choices to harden and to securely deploy and use Kubernetes
containers that implement VNFs. While our focus there is on Trusted Execution Technology (TEEs) and similar ap-
proaches that enable a notion of confidential computing, where VNFs can execute securely with a minimal Trusted Com-
puting Base, we present these approaches in the context of established means of reducing the attack surface of containers,
static vulnerability detection, and secure image deployment. Our survey identifies a number of weaknesses and shortcom-
ings in established approaches to use TEEs in combination with Kubernetes containers in general and VNF scenarios in
particular. These relate to overall system performance, the need for support for highly dynamic and heterogeneous for our
specific use cases, and unclear security objectives and attacker models, which need to be reworked and put in context to
enable use cases in 5G edge.
The survey leads us to four specific research tracks that the 5GhOSTS project will follow-up on in the near future. In
particular, we will further investigate the security of orchestration, isolation and attestation mechanisms, focusing on ad-
vanced and efficient approaches to runtime attestation, extend isolation primitives to intra-container isolation, incident de-
tection and recovery, work explicitly towards securing communications interfaces between VNFs, and high-performance
and low-latency approaches to integrate these mechanisms. Our work will be backed up by formal research into verifying,
e.g., specific isolation approaches, interfaces, as well as security policies. Furthermore, we aim to work towards building
a technology stack that enables privacy impact assessment of user-facing services.

Deliverable D1.3
40

Bibliography

[1] 5GhOSTS, “D1.2: Use cases and initial conceptualization of the 4 ESRs’ research projects, inter-project relations,
and interdisciplinary common approach,” Confidential Project Deliverable, 2020.

[2] ——, “D3.1: Design and configuration of a base orchestration framework,” Confidential Project Deliverable, 2021.
[3] ——, “D1.4: Privacy requirements for 5G telecom systems running virtualized multi-component services,” Public

Project Deliverable, 2021.
[4] “Connaisseur: An admission controller that integrates Image Signature Verification into a Kubernetes cluster,”

https://github.com/sse-secure-systems/connaisseur, accessed: Jul 13th, 2021.
[5] J. Gu, X. Wu, B. Zhu, Y. Xia, B. Zang, H. Guan, and H. Chen, “Enclavisor: A hardware-software co-design for

enclaves on untrusted cloud,” IEEE Transactions on Computers, 2020.
[6] S. Rizou, E. Alexandropoulou-Egyptiadou, and K. E. Psannis, “Gdpr interference with next generation 5g and iot

networks,” IEEE Access, vol. 8, pp. 108 052–108 061, 2020.
[7] K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck, F. Piessens, and D. Gruss, “Plundervolt: How a little bit of

undervolting can create a lot of trouble,” IEEE Security Privacy, vol. 18, no. 5, pp. 28–37, 2020.
[8] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “Sgxpectre: Stealing intel secrets from sgx enclaves via

speculative execution,” in 2019 IEEE European Symposium on Security and Privacy (EuroS P), 2019, pp. 142–157.
[9] M. ETSI, “Multi-access edge computing (mec) framework and reference architecture,” ETSI GS MEC, vol. 3, p. V2,

2019.
[10] D. Sabella, V. Sukhomlinov, L. Trang, S. Kekki, P. Paglierani, R. Rossbach, X. Li, Y. Fang, D. Druta, F. Giust et al.,

“Developing software for multi-access edge computing,” ETSI white paper, vol. 20, pp. 1–38, 2019.
[11] D. Sabella, A. Reznik, and R. Frazao, Multi-access edge computing in action. CRC Press, 2019.
[12] “Portieris: A Kubernetes Admission Controller for verifying image trust with Notary,” https://github.com/IBM/

portieris, accessed: Jul 13th, 2021.
[13] M. De Benedictis and A. Lioy, “Integrity verification of docker containers for a lightweight cloud environment,”

Future Generation Computer Systems, vol. 97, pp. 236–246, 2019.
[14] W. Luo, Q. Shen, Y. Xia, and Z. Wu, “Container-ima: a privacy-preserving integrity measurement architecture for

containers,” in 22nd International Symposium on Research in Attacks, Intrusions and Defenses ({RAID} 2019),
2019, pp. 487–500.

[15] “Google Container-Optimized OS Overview,” https://cloud.google.com/container-optimized-os/docs/concepts/
features-and-benefits, accessed: Jul 13th, 2021.

[16] “Amazon Bottlerocket: Linux-based operating system purpose-built to run containers,” https://aws.amazon.com/
bottlerocket/, accessed: Jul 13th, 2021.

[17] “Rancher k3OS: Purpose-built OS for Kubernetes, fully managed by Kubernetes.” https://github.com/rancher/k3os,
accessed: Jul 13th, 2021.

[18] “K3s: The certified Kubernetes distribution built for IoT & Edge computing ,” https://k3s.io, accessed: Jul 13th,
2021.

[19] “Red Hat Enterprise Linux CoreOS,” https://access.redhat.com/documentation/en-us/openshift container
platform/4.1/html/architecture/architecture-rhcos, accessed: Jul 13th, 2021.

[20] “Terraform: Deliver Infrastructure as Code,” https://www.terraform.io/, accessed: Jul 13th, 2021.
[21] “Red Hat Ansible Automation Platform,” https://www.ansible.com/, accessed: Jul 13th, 2021.
[22] J. D. Osborn and D. C. Challener, “Trusted platform module evolution,” Johns Hopkins APL Technical Digest

(Applied Physics Laboratory), vol. 32, no. 2, pp. 536–543, 2013.
[23] R. Sailer, X. Zhang, T. Jaeger, and L. Van Doorn, “Design and implementation of a tcg-based integrity measurement

architecture.” in USENIX Security symposium, vol. 13, no. 2004, 2004, pp. 223–238.
[24] W. Futral and J. Greene, “Fundamental principles of intel® txt,” in Intel® Trusted Execution Technology for Server

Platforms. Springer, 2013, pp. 15–36.

Deliverable D1.3
41

https://github.com/sse-secure-systems/connaisseur
https://github.com/IBM/portieris
https://github.com/IBM/portieris
https://cloud.google.com/container-optimized-os/docs/concepts/features-and-benefits
https://cloud.google.com/container-optimized-os/docs/concepts/features-and-benefits
https://aws.amazon.com/bottlerocket/
https://aws.amazon.com/bottlerocket/
https://github.com/rancher/k3os
https://k3s.io
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html/architecture/architecture-rhcos
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html/architecture/architecture-rhcos
https://www.terraform.io/
https://www.ansible.com/

Bibliography Bibliography

[25] “Intel Security Libraries for Data Center (SecL-DC),” https://01.org/intel-secl, accessed: Jul 13th, 2021.

[26] “Microsoft Azure Attestation,” https://docs.microsoft.com/en-us/azure/attestation/overview, accessed: Jul 13th,
2021.

[27] “Kubernetes extensions for Intel Secl-DC,” https://github.com/intel-secl/k8s-extensions, accessed: Jul 13th, 2021.

[28] B. McCarty, SELinux. O’Reilly Japan, 2005.

[29] “AppArmor: Linux kernel security module,” https://apparmor.net, accessed: Jul 13th, 2021.

[30] “K-Rail: Kubernetes security tool for policy enforcement,” https://github.com/cruise-automation/k-rail, accessed:
Jul 13th, 2021.

[31] “Kyverno: Kubernetes Native Policy Management,” https://github.com/kyverno/kyverno, accessed: Jul 13th, 2021.

[32] “Gatekeeper: Policy Controller for Kubernetes,” https://github.com/open-policy-agent/gatekeeper, accessed: Jul
13th, 2021.

[33] “Kritis: Deploy-time Policy Enforcer for Kubernetes applications,” https://github.com/grafeas/kritis, accessed: Jul
13th, 2021.

[34] “Kubernetes Dynamic Webhook controller for interacting with Anchore Engine,” https://github.com/anchore/
kubernetes-admission-controller, accessed: Jul 13th, 2021.

[35] “Kubernetes Admission Controller for Image Scanning using OPA,” https://github.com/sysdiglabs/
opa-image-scanner, accessed: Jul 13th, 2021.

[36] “Clair: Vulnerability Static Analysis for Containers,” https://github.com/quay/clair, accessed: Jul 13th, 2021.

[37] A. Randazzo and I. Tinnirello, “Kata containers: An emerging architecture for enabling mec services in fast and
secure way,” in 2019 Sixth International Conference on Internet of Things: Systems, Management and Security
(IOTSMS). IEEE, 2019, pp. 209–214.

[38] A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer, P. Piwonka, and D.-M. Popa, “Firecracker:
Lightweight virtualization for serverless applications,” in 17th {usenix} symposium on networked systems design
and implementation ({nsdi} 20), 2020, pp. 419–434.

[39] “gVisor: application kernel for containers that provides efficient defense-in-depth,” https://gvisor.dev, accessed: Jul
13th, 2021.

[40] W. Viktorsson, C. Klein, and J. Tordsson, “Security-performance trade-offs of kubernetes container runtimes,” in
2020 28th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS). IEEE, 2020, pp. 1–4.

[41] G. E. de Velp, E. Rivière, and R. Sadre, “Understanding the performance of container execution environments,” in
Proceedings of the 2020 6th International Workshop on Container Technologies and Container Clouds, 2020, pp.
37–42.

[42] E. G. Young, P. Zhu, T. Caraza-Harter, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “The true cost of con-
taining: A gvisor case study,” in 11th {USENIX} Workshop on Hot Topics in Cloud Computing (HotCloud 19),
2019.

[43] “Falco: Cloud Native Runtime Security,” https://falco.org, accessed: Jul 13th, 2021.

[44] J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java language specification. Addison-Wesley Professional,
2000.

[45] A. A. Donovan and B. W. Kernighan, The Go programming language. Addison-Wesley Professional, 2015.

[46] S. Klabnik and C. Nichols, The Rust Programming Language (Covers Rust 2018). No Starch Press, 2019.

[47] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner, “Memory safety without runtime checks or garbage collection,”
in Proceedings of the 2003 ACM SIGPLAN conference on Language, compiler, and tool for embedded systems,
2003, pp. 69–80.

[48] G. C. Necula, S. McPeak, and W. Weimer, “Ccured: Type-safe retrofitting of legacy code,” in Proceedings of the
29th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, 2002, pp. 128–139.

[49] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “Softbound: Highly compatible and complete spatial
memory safety for c,” in Proceedings of the 30th ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2009, pp. 245–258.

[50] B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and F. Piessens, “Verifast: A powerful, sound,
predictable, fast verifier for c and java,” in NASA formal methods symposium. Springer, 2011, pp. 41–55.

Deliverable D1.3
42

https://01.org/intel-secl
https://docs.microsoft.com/en-us/azure/attestation/overview
https://github.com/intel-secl/k8s-extensions
https://apparmor.net
https://github.com/cruise-automation/k-rail
https://github.com/kyverno/kyverno
https://github.com/open-policy-agent/gatekeeper
https://github.com/grafeas/kritis
https://github.com/anchore/kubernetes-admission-controller
https://github.com/anchore/kubernetes-admission-controller
https://github.com/sysdiglabs/opa-image-scanner
https://github.com/sysdiglabs/opa-image-scanner
https://github.com/quay/clair
https://gvisor.dev
https://falco.org

Bibliography Bibliography

[51] M. Ouimet and K. Lundqvist, “Formal software verification: Model checking and theorem proving,” Embedded
Systems Laboratory Technical Report ESL-TIK-00214, 2007.

[52] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald, “Formal methods: Practice and experience,” ACM
computing surveys (CSUR), vol. 41, no. 4, pp. 1–36, 2009.

[53] C. Kaner, J. Falk, and H. Q. Nguyen, Testing computer software. John Wiley & Sons, 1999.

[54] A. Takanen, J. D. Demott, C. Miller, and A. Kettunen, Fuzzing for software security testing and quality assurance.
Artech House, 2018.

[55] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow integrity principles, implementations, and appli-
cations,” ACM Transactions on Information and System Security (TISSEC), vol. 13, no. 1, pp. 1–40, 2009.

[56] F. E. Allen, “Control flow analysis,” ACM Sigplan Notices, vol. 5, no. 7, pp. 1–19, 1970.

[57] S. Zeitouni, G. Dessouky, O. Arias, D. Sullivan, A. Ibrahim, Y. Jin, and A.-R. Sadeghi, “Atrium: Runtime attes-
tation resilient under memory attacks,” in 2017 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). IEEE, 2017, pp. 384–391.

[58] T. Abera, N. Asokan, L. Davi, J.-E. Ekberg, T. Nyman, A. Paverd, A.-R. Sadeghi, and G. Tsudik, “C-flat: control-
flow attestation for embedded systems software,” in Proceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, 2016, pp. 743–754.

[59] B. Kuang, A. Fu, L. Zhou, W. Susilo, and Y. Zhang, “Do-ra: data-oriented runtime attestation for iot devices,”
Computers & Security, vol. 97, p. 101945, 2020.

[60] G. Dessouky, T. Abera, A. Ibrahim, and A.-R. Sadeghi, “Litehax: lightweight hardware-assisted attestation of
program execution,” in 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE,
2018, pp. 1–8.

[61] J. Hu, D. Huo, M. Wang, Y. Wang, Y. Zhang, and Y. Li, “A probability prediction based mutable control-flow
attestation scheme on embedded platforms,” in 2019 18th IEEE International Conference On Trust, Security And
Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engi-
neering (TrustCom/BigDataSE). IEEE, 2019, pp. 530–537.

[62] G. Dessouky, S. Zeitouni, T. Nyman, A. Paverd, L. Davi, P. Koeberl, N. Asokan, and A.-R. Sadeghi, “Lo-fat: Low-
overhead control flow attestation in hardware,” in Proceedings of the 54th Annual Design Automation Conference
2017, 2017, pp. 1–6.

[63] N. Koutroumpouchos, C. Ntantogian, S.-A. Menesidou, K. Liang, P. Gouvas, C. Xenakis, and T. Giannetsos,
“Secure edge computing with lightweight control-flow property-based attestation,” in 2019 IEEE Conference on
Network Softwarization (NetSoft). IEEE, 2019, pp. 84–92.

[64] I. D. O. Nunes, S. Jakkamsetti, and G. Tsudik, “Tiny-cfa: A minimalistic approach for control-flow attestation
using verified proofs of execution,” arXiv preprint arXiv:2011.07400, 2020.

[65] F. Toffalini, E. Losiouk, A. Biondo, J. Zhou, and M. Conti, “Scarr: Scalable runtime remote attestation for complex
systems,” in 22nd International Symposium on Research in Attacks, Intrusions and Defenses ({RAID} 2019), 2019,
pp. 121–134.

[66] L. Davi, A.-R. Sadeghi, and M. Winandy, “Dynamic integrity measurement and attestation: towards defense against
return-oriented programming attacks,” in Proceedings of the 2009 ACM workshop on Scalable trusted computing,
2009, pp. 49–54.

[67] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted execution environment: what it is, and what it is not,” in
2015 IEEE Trustcom/BigDataSE/ISPA, vol. 1. IEEE, 2015, pp. 57–64.

[68] V. Costan and S. Devadas, “Intel sgx explained.” IACR Cryptol. ePrint Arch., vol. 2016, no. 86, pp. 1–118, 2016.

[69] D. Kaplan, J. Powell, and T. Woller, “Amd memory encryption,” White paper, 2016.

[70] “Intel Trust Domain Extensions (TDX),” https://software.intel.com/content/www/us/en/develop/articles/
intel-trust-domain-extensions.html, accessed: Jul 13th, 2021.

[71] “Intel SGX SDK,” https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions/sdk.
html, accessed: Jul 13th, 2021.

[72] H. Wang, P. Wang, Y. Ding, M. Sun, Y. Jing, R. Duan, L. Li, Y. Zhang, T. Wei, and Z. Lin, “Towards memory
safe enclave programming with rust-sgx,” in Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019, pp. 2333–2350.

[73] “Fortanix Enclave Development Platform (EDP),” https://edp.fortanix.com/, accessed: Jul 13th, 2021.

Deliverable D1.3
43

https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions/sdk.html
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions/sdk.html
https://edp.fortanix.com/

Bibliography Bibliography

[74] “Open Enclave SDK,” https://openenclave.io/sdk/, accessed: Jul 13th, 2021.
[75] “Asylo: An open and flexible framework for enclave applications,” https://asylo.dev, accessed: Jul 13th, 2021.
[76] C.-C. Tsai, D. E. Porter, and M. Vij, “Graphene-sgx: A practical library {OS} for unmodified applications on

{SGX},” in 2017 {USENIX} Annual Technical Conference ({USENIX}{ATC} 17), 2017, pp. 645–658.
[77] Y. Shen, H. Tian, Y. Chen, K. Chen, R. Wang, Y. Xu, Y. Xia, and S. Yan, “Occlum: Secure and efficient multitasking

inside a single enclave of intel sgx,” in Proceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems, 2020, pp. 955–970.

[78] “Mystikos: Tools and runtime for launching unmodified container images in Trusted Execution Environments,”
https://github.com/deislabs/mystikos, accessed: Jul 13th, 2021.

[79] “Anjuna confidential cloud platform,” https://www.anjuna.io/, accessed: Jul 13th, 2021.
[80] “Fortanix Runtime Encryption,” https://fortanix.com/products/runtime-encryption, accessed: Jul 13th, 2021.
[81] “EGo: Build confidential Go apps with ease,” https://www.ego.dev/, accessed: Jul 13th, 2021.
[82] H. Wang, M. Sun, Q. Feng, P. Wang, T. Li, and Y. Ding, “Towards memory safe python enclave for security

sensitive computation,” arXiv preprint arXiv:2005.05996, 2020.
[83] D. Goltzsche, C. Wulf, D. Muthukumaran, K. Rieck, P. Pietzuch, and R. Kapitza, “Trustjs: Trusted client-side

execution of javascript,” in Proceedings of the 10th European Workshop on Systems Security, 2017, pp. 1–6.
[84] “WebAssembly Micro Runtime (WAMR),” https://github.com/bytecodealliance/wasm-micro-runtime, accessed:

Jul 13th, 2021.
[85] “Enarx,” https://enarx.dev/, accessed: Jul 13th, 2021.
[86] J. Ménétrey, M. Pasin, P. Felber, and V. Schiavoni, “Twine: An embedded trusted runtime for webassembly,” arXiv

preprint arXiv:2103.15860, 2021.
[87] “Veracruz: privacy-preserving compute,” https://github.com/veracruz-project/veracruz, accessed: Jul 13th, 2021.
[88] “Project Oak: Meaningful control of data in distributed systems,” https://github.com/project-oak/oak, accessed: Jul

13th, 2021.
[89] S. Shinde, D. Le Tien, S. Tople, and P. Saxena, “Panoply: Low-tcb linux applications with sgx enclaves.” in NDSS,

2017.
[90] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind, D. Muthukumaran, D. O’keeffe, M. L.

Stillwell et al., “{SCONE}: Secure linux containers with intel {SGX},” in 12th {USENIX} Symposium on Oper-
ating Systems Design and Implementation ({OSDI} 16), 2016, pp. 689–703.

[91] S. Johnson, V. Scarlata, C. Rozas, E. Brickell, and F. Mckeen, “Intel® software guard extensions: Epid provisioning
and attestation services,” White Paper, vol. 1, no. 1-10, p. 119, 2016.

[92] V. Scarlata, S. Johnson, J. Beaney, and P. Zmijewski, “Supporting third party attestation for intel® sgx with intel®
data center attestation primitives,” White paper, 2018.

[93] S. Vaucher, R. Pires, P. Felber, M. Pasin, V. Schiavoni, and C. Fetzer, “Sgx-aware container orchestration for
heterogeneous clusters,” in 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS).
IEEE, 2018, pp. 730–741.

[94] “Confidential computing nodes on Azure Kubernetes Service,” https://docs.microsoft.com/en-us/azure/
confidential-computing/confidential-nodes-aks-overview, accessed: Jul 13th, 2021.

[95] “Alibaba’s SGX plugin for Kubernetes,” https://partners-intl.aliyun.com/help/doc-detail/177706.htm, accessed: Jul
13th, 2021.

[96] “SCONE’s SGX plugin for Kubernetes,” https://sconedocs.github.io/helm sgxdevplugin, accessed: Jul 13th, 2021.
[97] “Intel’s SGX plugin for Kubernetes,” https://intel.github.io/intel-device-plugins-for-kubernetes/cmd/sgx plugin/

README.html, accessed: Jul 13th, 2021.
[98] “Intel SGX plugin for Kubernetes: implementing EPC usage enforcement ,” https://github.com/intel/

intel-device-plugins-for-kubernetes/pull/654, accessed: Jul 13th, 2021.
[99] “Inclavare Containers: An open source enclave container runtime and security architecture for confidential com-

puting scenarios,” https://inclavare-containers.io/en, accessed: Jul 13th, 2021.
[100] “Marblerun: The control plane for confidential computing,” https://www.marblerun.sh/, accessed: Jul 13th, 2021.
[101] A. T. Gjerdrum, R. Pettersen, H. D. Johansen, and D. Johansen, “Performance of trusted computing in cloud

infrastructures with intel sgx.” in CLOSER, 2017, pp. 668–675.

Deliverable D1.3
44

https://openenclave.io/sdk/
https://asylo.dev
https://github.com/deislabs/mystikos
https://www.anjuna.io/
https://fortanix.com/products/runtime-encryption
https://www.ego.dev/
https://github.com/bytecodealliance/wasm-micro-runtime
https://enarx.dev/
https://github.com/veracruz-project/veracruz
https://github.com/project-oak/oak
https://docs.microsoft.com/en-us/azure/confidential-computing/confidential-nodes-aks-overview
https://docs.microsoft.com/en-us/azure/confidential-computing/confidential-nodes-aks-overview
https://partners-intl.aliyun.com/help/doc-detail/177706.htm
https://sconedocs.github.io/helm_sgxdevplugin
https://intel.github.io/intel-device-plugins-for-kubernetes/cmd/sgx_plugin/README.html
https://intel.github.io/intel-device-plugins-for-kubernetes/cmd/sgx_plugin/README.html
https://github.com/intel/intel-device-plugins-for-kubernetes/pull/654
https://github.com/intel/intel-device-plugins-for-kubernetes/pull/654
https://inclavare-containers.io/en
https://www.marblerun.sh/

Bibliography Bibliography

[102] S. Mofrad, F. Zhang, S. Lu, and W. Shi, “A comparison study of intel sgx and amd memory encryption technology,”
in Proceedings of the 7th International Workshop on Hardware and Architectural Support for Security and Privacy,
2018, pp. 1–8.

[103] T. Dinh Ngoc, B. Bui, S. Bitchebe, A. Tchana, V. Schiavoni, P. Felber, and D. Hagimont, “Everything you should
know about intel sgx performance on virtualized systems,” Proceedings of the ACM on Measurement and Analysis
of Computing Systems, vol. 3, no. 1, pp. 1–21, 2019.

[104] A. Nilsson, P. N. Bideh, and J. Brorsson, “A survey of published attacks on intel sgx,” arXiv preprint
arXiv:2006.13598, 2020.

[105] L. Wilke, J. Wichelmann, M. Morbitzer, and T. Eisenbarth, “Sevurity: No security without integrity: Breaking
integrity-free memory encryption with minimal assumptions,” in 2020 IEEE Symposium on Security and Privacy
(SP). IEEE, 2020, pp. 1483–1496.

[106] M. Morbitzer, M. Huber, J. Horsch, and S. Wessel, “Severed: Subverting amd’s virtual machine encryption,” in
Proceedings of the 11th European Workshop on Systems Security, 2018, pp. 1–6.

[107] Y. Jang, J. Lee, S. Lee, and T. Kim, “Sgx-bomb: Locking down the processor via rowhammer attack,” in
Proceedings of the 2nd Workshop on System Software for Trusted Execution, ser. SysTEX’17. New York, NY,
USA: Association for Computing Machinery, 2017. [Online]. Available: https://doi.org/10.1145/3152701.3152709

[108] M. Schwarz, S. Weiser, and D. Gruss, “Practical enclave malware with intel SGX,” CoRR, vol. abs/1902.03256,
2019. [Online]. Available: http://arxiv.org/abs/1902.03256

[109] P. Stewin and I. Bystrov, “Understanding dma malware,” in Detection of Intrusions and Malware, and Vulnerability
Assessment, U. Flegel, E. Markatos, and W. Robertson, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 21–41.

Deliverable D1.3
45

https://doi.org/10.1145/3152701.3152709
http://arxiv.org/abs/1902.03256

A. Appendix

A.1. Threats to Edge Application

Category Threats Affected Assets Possible Countermeasures

Spoofing SpoofingImage: The identity of a service image
fetched from the local image repository can be
spoofed, e.g., by presenting fake tags, replacing
the image in repository or image cache, or by in-
tercepting it during transmission. This could oc-
cur due to a privileged attacker with control plane
access, or by compromising the image repository,
e.g., due to lack of proper authentications. Con-
sequently, a compromised image may be pulled
instead of the desired one, containing vulnerabil-
ities or even malware.

Container Image,
Container Image
Distribution
Infrastructure,
Execution Context,
Application Data

• Sign the images according to Trusted Image
Policy

• Use digests to identify images
• Admission controllers to validate images /

check signatures
• Authentication and Access Control
• Vulnerability Scan Images by image registry
• Monitor containers across their life cycle
• Attestation of images in TEEs

SpoofingAppData: A compromised application
or external attacker can use stolen other leaked
credentials (API keys, tokens, crypto keys) to
pretend to be another application.

Application Data • Authentication and Access Control
• Least privilege application design
• Network Policies
• Rotate Credentials regularly

SpoofingSysResource: The compromised edge
cloud provider can provide broken or fake en-
claves to the app by obtaining attestation keys,
e.g., via Plundervolt [7] or transient execution at-
tacks like Foreshadow or SGXpectre [8].

System Resources,
Application Data,
Execution Context

• Attest that system software version up-to-
date, e.g., microcode update and BIOS update

• Restricted access to power control for appli-
cations

• Software countermeasures against transient
execution attacks

SpoofingDataPlane: IP/ARP/DNS spoofing in
the cluster can be achieved via privileged net-
working, e.g., by pods having improper per-
mission, by a malicious or compromised con-
tainer/pod achieving container-to-host break-out,
etc. In some cases, e.g., ARP spoofing, it is
enough for an external attacker to obtain remote
code execution within a pod in the cluster, to be
able to spoof the traffic of other pods.

Inter-Container
Network (Data Plane)

• Authentication
• Limit pod permissions
• Monitor and restrict traffic between pods
• Mutually authenticated TLS connections be-

tween containers

Tampering TamperingImage: A container image is mali-
ciously modified, customized, or replaced in the
time between creation and deployment. This
could occur due to an external attacker inter-
cepting transmission of the image or compro-
mising the image repository. A compromised
image repository may deploy outdated versions
of a given image, potentially undoing patches
and fixes of past vulnerabilities, thus re-enabling
the exploitation of previously discovered soft-
ware security flaws in the application. Another
possibility is a compromised edge cloud orches-
trater, purposefully deploying the wrong, poten-
tially malicious images that may strive to mod-
ify sensitive information or attempt to attack its
users. Attackers with sufficient admin privileges
may configure malicious admission controllers
that infect deployed images via mutating web-
hooks.

Container Image,
Container Image
Distribution
Infrastructure,
Application Data

• Authentication and Access Control
• Vulnerability scanning of images
• Least privilege design principle
• Monitor containers across their life cycle
• Policies for admission controllers

Deliverable D1.3
46

A. Appendix A.1. Threats to Edge Application

Category Threats Affected Assets Possible Countermeasures
TamperingExecContext: The majority of soft-
ware security vulnerabilities are memory safety
violations, i.e., programming errors that break
the memory abstraction of unsafe high-level pro-
gramming languages such as C. Examples for
such errors are buffer overflows, use after free,
memory race conditions, uninitialized variables
and null-pointer references. Memory safety vi-
olations may crash a program or lead to unex-
pected changes in program behavior. In the worst
case they may enable remote code execution and
thus break system integrity. Such vulnerabilities
allow attackers to manipulate the control flow of
applications by providing it with specially crafted
input values. Usually, affecting the control flow
requires a memory safety violation first, i.e.,
overwriting executable code or function pointers,
smashing the stack to overwrite return addresses
(return-oriented programming, ROP), or corrupt-
ing application data to change the outcome of
conditional program branches (data-oriented pro-
gramming, DOP). Rowhammer and code injec-
tion attacks can also allow manipulation of the
execution context. Achieving remote code exe-
cution within a container of an application allows
an attacker to send requests to other services or
the k8s API server on behalf of it.

Execution Context,
Application Data

• Bounds Checking
• Assign NULL to pointer after freeing mem-

ory
• Compiler Hardening Options
• Memory-Safe Languages
• Memory and Address Sanitizer tools
• Stack Smashing Protection
• Canary Values
• Shadow Stack
• Hardware support for Memory Safety and

Control Flow Integrity
• Static code analysis
• Data Execution Protection
• Memory Layout Randomization
• Program Diversification
• Reduce container attack surface, limit impact:

– no unused code
– no bash/CLI
– no SSH access

TamperingAppDataUser: This threat has two
threat vectors: data in use and data at rest.

• Data in use: Software vulnerabilities may al-
low attackers to tamper with an application’s
execution contexts or even take control of its
control flow and privileges by malicious par-
ties. Subsequently the attacker may obtain a
write primitive and modify mission-critical or
sensitive data application data including per-
sonal data that is being processed. Through
its exposed API an application may also be
targeted by confused deputy attacks, attempt-
ing to trick it into using its privileges to tam-
per with the desired data. Also, Rowhammer
attacks can corrupt application data in RAM
on the same node.

• Data at rest: If there are applications that
require root privileges on the node or if an
application can get privileges due to vulner-
abilities on the host, these apps may replace
stored data of other applications with former
versions of it as well as tamper with the data.
Depending on the application this may enable
security exploits if the authenticity (fresh-
ness) of the data is not checked.

Application data Data in Use:

• Memory Integrity Protection
• In-Process Memory Isolation
• Software security measures (see above)

Data at Rest:

• Secure Storage with proper Authentication
and Authorization

• Storage node hardening
• Distributed / redundant storage systems, e.g.,

Ceph
• Cryptographic integrity / freshness protection

TamperingAppDataAdmin: The edge cloud
provider has write privileges on all storage nodes
for the edge application and can thus manipu-
late app data at rest. Integrity protection helps to
discover such manipulations but cannot guaran-
tee the availability of data. Nevertheless, a cloud
provider has usually a self-interest to provide re-
liable and robust data storage.

Application data • External trusted storage
• Secure Storage with proper Authentication

and Authorization, using TEEs to protect cre-
dentials

• Tamper-proof logging and audit, e.g., dis-
tributed ledger

• Cryptographic Integrity / Freshness protec-
tion

Deliverable D1.3
47

A. Appendix A.1. Threats to Edge Application

Category Threats Affected Assets Possible Countermeasures
TamperingSysResource: On a host computation
node the edge cloud provider or an application
with elevated privilege may sneakily modify the
virtual environment provided to the application,
subverting its assumptions that underlie security-
related functionality. For instance, address space
and file management could be manipulated to
slightly change an application’s behavior. The
OS could provide a faulty system time or coun-
ters, compromising functionality based on hav-
ing a precise notion of time and date. Finally,
a privileged attacker could provide fake crypto
primitives, fake enclaves, or weak entropy ran-
dom numbers to weaken cryptography and thus
downgrade application security.

System Resources,
Container Image,
Application Data,
Execution Context

• Attestation
• Trusted Execution Environments and Trusted

Platform Modules
• Micro-VMs or Unikernels to reduce hosts OS

dependencies

TamperingDataPlane: Any compromised edge
orchestrater may strive to weaken network con-
figurations and isolation, e.g., redirect traffic to
unauthorized recipients. Also, by default, inter-
pod communication is not authenticated, en-
crypted, or integrity-protected, hence a privi-
leged attacker could stage man-in-the-middle at-
tacks. The design of network services, functions,
and other edge cloud applications should follow
a rigorous security design, featuring principles
of compartmentalization, defense in depth, least
privilege, and zero trust. If a design violates these
principles, vulnerabilities in one part of an appli-
cation may allow an attacker to spread to other
parts of the edge platform.

Inter-Container
Network (Data Plane),
Application Data

• Mutually authenticated TLS connections be-
tween containers

• Network Policies
• Secure Application and Network Design

Repudiation RepudationAppLog: For different reasons, such
as privacy regulations and intrusion detection, it
is necessary to keep logs of all accesses to a stor-
age node. A compromised application may try
to falsify such logs in order to hide any previous
transgressions

Application Log • Secure Log Design

Information
Disclosure

InfoDisclImage: Private images may be leaked
from storage nodes or images caches with im-
proper authentication or access control. Privi-
leged attackers may dump the image from mem-
ory or leak it by monitoring control plane traffic.

Container Image,
Container Image
Distribution
Infrastructure

• Access Control
• Authentication
• Encrypted storage and transmission
• Trusted Execution Environments

InfoDisclExecContextUser: Any software secu-
rity vulnerability (such as control-flow hijacking,
remote code execution, memory safety violation)
may lead to the disclosure of sensitive application
data such as cryptographic keys, if exploited by
an attacker. Also Memory Reuse, Side-channel,
and Confused Deputy attacks, among others, may
cause the leak of information to co-located ma-
licious applications or external attackers. Us-
ing third-party libraries in the software may con-
tribute to such threats of the execution context.

Execution Context,
Application Data

• In-Process Memory Isolation
• Software security measures

(see TamperingExecContext above)

InfoDisclExecContextAdmin: As the Edge
cloud provider holds a privileged access in the
node, it can dump application data in use from
RAM and registers. Memory dump analysis can
then be used to extract important information
from these dumps.

Execution Context,
Application Data

• Trusted Execution Environments
• Trusted Platform Module and Key Protection

Technology
• Secure Multiparty Computation
• Homomorphic Encryption

Deliverable D1.3
48

A. Appendix A.1. Threats to Edge Application

Category Threats Affected Assets Possible Countermeasures
InfoDisclAppDataUser: Many apps require se-
crets to enable secure communication between
components such as include connection strings
and SSH private keys. If these secrets are stored
in image or configuration files, anyone with ac-
cess to these files can easily parse it to learn
these secrets. Also, if a comprised app obtained
a memory read primitive on a host or storage
node, it could be able to access confidential data
of other apps.

Application data • Secure image design & secret handling
• Trusted Execution Environments
• Encrypted storage

InfoDisclAppDataAdmin: An edge cloud
provider may typically get access to any unen-
crypted information stored on disks and simply
copy such data. Even if disks are encrypted,
backups and system logs of running applications
may contain decrypted information which may
thus be available to honest but curious infrastruc-
ture providers.

Application Data • Trusted Execution Environments
• Encrypted storage
• Micro-VMs or Unikernels to reduce host OS

interactions

InfoDisclSysResource: Side channel attacks
may compromise TEEs and steal protected ap-
plication data. Advanced attackers may be able
to subvert the highest-privilege system software
to install stealthy persistent threats, e.g., root-kits
that monitor the system and exfiltrate application
data.

System Resources,
Container Image,
Application Data,
Execution Context

• Secure Boot and Attestation
• TEEs with protective measures against side

channels

InfoDisclDataPlane: If an attacker can monitor
or intercept data plane traffic (e.g., via privileged
network capabilities or having access to network-
ing hardware), they might leak sensitive applica-
tion information, e.g., via man-in-the-middle at-
tacks or network analysis on metadata. Having
access to the eBPF facility of the host system may
also allow to exploit potential vulnerabilities in
that system and learn about the network activities
or message contents of co-hosted applications.

Inter-Container
Network (Data Plane),
Application Data

• Encrypted data plane traffic
• Mutually authenticated communication
• Restricted networking capabilities
• Disable user mode eBPF access

Denial of
Service

DoSImage: A compromised application with ac-
cess to a local image repository can try to fetch
big images or a lot of images at the same time,
polluting the image caches and thus delaying the
image delivery for other application in the same
node. Also, without proper access control, the
external or privileged app can delete or overwrite
the images, preventing other applications from
loading (quickly). Furthermore, naming or tag
conflicts may prevent the accessing the right im-
ages. If an attacker manages to take control of
an image repository, it may refuse an app to fetch
any images.

Container Image,
Container Image
Distribution
Infrastructure

• Dynamic scaling of image distribution infras-
tructure

• Monitoring and Anomaly Detection
• Limit resource consumption of a container
• Resource isolation, i.e., no sharing of reposi-

tories and caches
• Resource Quotas and Limit Ranges

DoSExecContext: Malicious applications may
try to crash a node, stopping co-hosted applica-
tions and causing delays by the need to restart
them. For instance, the SGX-Bomb attack [107]
uses the Rowhammer method against enclave
memory to trigger a processor lockdown. A
noisy neighbor application may try to monopo-
lies CPU, network, and memory system capacity
to adversely affect performance of network ser-
vices.

Execution Context • Attest latest updates are installed
• Intel Resource Director Technology
• Resource Quotas and Limit Ranges
• Monitoring and Anomaly Detection

DoSAppData: A compromised app can create a
lot of traffic to slow down the storage service so
that other apps cannot access their data in time.
Attackers may attempt to delete application data.

Application data • Resource Quotas and Limit Ranges
• Intel Resource Director Technology
• Monitoring and Anomaly Detection
• Backup strategy

Deliverable D1.3
49

A. Appendix A.1. Threats to Edge Application

Category Threats Affected Assets Possible Countermeasures
DoSSysResource: The edge cloud provider can
prevent the app to use enclaves (downgrading).
A noisy neighbor application may try to monop-
olize low-level system resources like the SGX en-
clave page cache, or hardware accelerators to ad-
versely affect performance of network services.

System Resources • Separate pod placement via affinity rules
• Resource Quotas and Limit Ranges

DoSDataPlane: Edge applications may contain
libraries that support a multitude of different
secure communication protocols and versions,
some of them outdated and vulnerable. Net-
work attackers may then downgrade the security
of connections by forcing a fallback to vulnerable
protocols or versions. Even if communication is
secure and networks are logically isolated, ma-
licious “noisy neighbors” may intentionally de-
grade the quality of service of co-hosted edge ap-
plications by making excessive use of network re-
sources. An adversary with privileged network
access may also deny a service network connec-
tivity by dropping its packets.

Inter-Container
Network (Data Plane)

• Minimal Application Design
• Resource Quotas and Limit Ranges
• Intel Resource Director Technology
• Monitoring and Anomaly Detection
• Restrict networking capabilities

Elevation of
Privilege

ElevPrivAppData: Because of a weak configu-
ration of authorization (RBAC exploited by app
admin, application admin can add some roles/tag
etc, insecure storage of credentials), a compro-
mised application could get privileged access to
application data in storage nodes.

Application data • Configuration Hardening
• Least Privilege principle
• OPA (control what roles and tags can be as-

signed)

ElevPrivMANO: A Kubernetes cluster offers a
lot of configuration options, many of them rele-
vant for system integrity and isolation of different
workloads. If there are vulnerabilities or insuffi-
cient hardening in the cluster, an attacker, e.g., a
neighboring tenant admin, may elevate their man-
agement and orchestration privileges to interfere
with an application, e.g., by reconfiguring its se-
curity posture, leaking k8s secrets, or impeding
its performance. Similar threats are posed by
compromised cluster admins.

Management and
Orchestration,
Edge App Provider
assets

• Authentication
• Authorization
• OPA (limit admin actions)
• Monitoring and Anomaly Detection

ElevPrivDataPlane: Applications may give at-
tackers inadvertent access to services and compo-
nents by exposing insufficiently protected APIs to
other tenants or even public networks. By default,
all pods within a cluster may communicate with
each other. Subsequently, attackers may leak sen-
sitive information or abuse further vulnerabilities
to achieve remote code execution.

Inter-Container
Network (Data Plane),
Application Data,
Execution Context

• Restrict and audit API exposure
• Network policies
• Monitor network traffic
• Anomaly Detection
• Authentication and Access Control

Deliverable D1.3
50

A. Appendix A.2. Threats to Edge Platform

A.2. Threats to Edge Platform

Category Threats Affected Assets Possible Countermeasures

Spoofing SpoofingPhysical: A Fake Base Station (FBS)
transmitting synchronization signals with suffi-
cient transmission power to surpass neighboring
legitimate cells may attract end users to connect
to it. If the FBS also provides a fake edge com-
puting platform with corresponding fake applica-
tions, it may lead to leakage of private informa-
tion targeted for the legitimate edge platform.

Application Data • Authentication of Edge platform and services
towards end user

• Integrity protection and authentication of
broadcasting messages

• False Base Station detection and take-down

SpoofingControlData: Any compromised appli-
cation or the external attacker can use leaked con-
trol plane credentials to pretend to be a control
plane process. This may give full control of the
edge cloud to an attacker with access to, e.g., the
API server or etcd database.

Control Data,
Edge App Provider
assets

• Restricted connections only from the Kuber-
netes API

• Enable RBAC with Least Privilege
• Monitoring and Anomaly Detection
• Integrity monitoring
• Rotating credentials regularly

SpoofingMANO: If a compromised application
admin can create an admin role that is not re-
stricted (weak authentication and access control),
they can thus access MANO functionality. Also,
if the authentication of accesses to MANO is not
enabled, access credentials can easily be spoofed
by malicious applications. Similar threats are
posed due to stolen MANO credentials.

Management and
Orchestration,
Edge Cloud Provider
assets,
Edge App Provider
assets

• Authentication
• Enable RBAC with Least Privilege
• OPA (restrict what application admins can

do)
• Monitoring and Anomaly Detection

SpoofingDataPlane: A Kubernetes cluster typ-
ically performs domain name resolution via a
CoreDNS service that is controlled by rules
stored as a ConfigMap object. If an attacker is
able to modify this file, they may poison it and
take over the identity of other, legitimate services
in the cluster.

Inter-Container
Network (Data Plane)

• Authentication
• Access Control
• Monitoring and Anomaly Detection

Tampering TamperingPhysical: The system integrity of
edge platforms deployed in public spaces may be
tampered with by attackers accessing the hard-
ware in the real world. In order to perform main-
tenance activities and provide technical support,
edge platforms cannot be completely sealed off.
Possible avenues for attackers are then accessing
the system through debug ports or other physical
interfaces. Another option are bit fault attacks on
memory.

Physical System,
Edge Cloud Provider
assets,
Edge App Provider
assets,
Management and
Orchestration

• Ruggedized Hardware
• Physical Security and Surveillance
• Disable unused ports
• Authentication
• Memory integrity protection
• Enclaves with memory encryption

TamperingMANO: If a compromised app or
external attacker can obtain a privileged access
to MANO due to vulnerable configurations or
colluding tenant admins, they can reconfigure
the management scripts or policies of MANO.
Moreover, they can use Kubernetes controllers
to schedule or persist malicious software on the
cluster. Also, confused deputy attacks, memory
safety vulnerabilities, and remote code execution
against the MANO implementation can corrupt
the management scripts or policies.

Management and
Orchestration,
Edge Cloud Provider
assets,
Edge App Provider
assets

• Authentication and Access Control
• Least Privilege
• Monitoring and Anomaly Detection
• OPA (restrict what admins can do)

TamperingControlPlane: An adversary with
sufficient networking privileges on a node or the
cluster, potentially having obtained suitable com-
munications keys, may attempt to interfere with
control messages, modifying, adding, or remov-
ing packets over the control plane network.

Control Plane
Network,
Management and
Orchestration,
Edge Cloud Provider
assets

• Enable Control Plane encryption and integrity
protection

• Best practices, e.g., credential rotation
• Monitoring and Anomaly detection

Deliverable D1.3
51

A. Appendix A.2. Threats to Edge Platform

Category Threats Affected Assets Possible Countermeasures
TamperingControlData: Due to weak config-
uration of the edge cloud, the control data can
be changeable without authentication by compro-
mised apps, tenant admins, or external attackers.

Control Data,
Management and
Orchestration

• Authentication and Access Control
• OPA (restrict what admins can do)
• Monitoring and Anomaly detection

Repudiation RepudiationLogs: Compromised edge applica-
tions or external attackers can try to take actions
to prevent logs from being useful, including fill-
ing up the log to make it hard to find an attack
or forcing logs to “roll over”. They may also do
things to set off so many alarms that the real at-
tack is lost in a deluge of noise. Sending logs
over a network exposes them integrity threats as
well. The tampering of logs is a step stone for
repudiation of (formerly) logged events.

Kubernetes Audit Logs • Secure Log Design
• Monitoring and Anomaly detection

RepudiationMANO: A privileged attacker with
admin access may reconfigure the MANO and
disable or clear the event logs.

Management and
Orchestration,
Kubernetes Audit Logs

• Monitoring and Anomaly detection
• Access control (RBAC)
• OPA (restrict what admins can do)

Information
Disclosure

InfoDisclAppData: Kubernetes allows applica-
tions to store secrets like credentials and tokens
in the etcd database. Attackers with the privilege
to retrieve secrets, e.g., via access to an applica-
tion’s service account, may retrieve correspond-
ing k8s secrets from the API service. Moreover,
attackers with sufficient admin privileges may be
able to install malicious admission controllers as
validating webhooks to leak secrets, e.g., from
API server requests.

Kubernetes Secrets,
Application Data

• Access control (RBAC)
• Monitoring and Anomaly Detection
• OPA (restrict what admins can do)

InfoDisclPhysical: Third-party personnel or in-
siders can steal or access storage media physi-
cally. Using cold boot techniques, they can ac-
cess clear-text memory in RAM even if disks are
encrypted. Physical side channels information
may be used to extract sensitive information by
statistical analysis. External attacker can leak in-
formation with power / EM / sound analysis in
close proximity to the edge hardware.

Physical System,
Edge Cloud Provider
assets,
Edge App Provider
assets

• Disk encryption
• Physical security
• Disabling ports / physical hardening
• Monitoring / alarms
• Sound / EM Shielding

InfoDisclImage: Private images can be leaked
from repositories or registries with improper au-
thentication or access control. Attackers control-
ling a compromised pod may use its credentials
to pull private images from the repository.

Container Image • Authentication and Access Control (RBAC)
• OPA (restrict which images can be pulled)
• Anomaly Detection

InfoDisclMANO: A compromised app or an ex-
ternal attacker which obtain privileged access can
easily leak information from MANO, e.g., user
information, logs, credentials, configuration in-
formation, container images, and orchestration
scripts. Memory safety vulnerabilities, as well as
Confused Deputy and Side Channel attacks can
lead the leakages of the configuration informa-
tion, management scripts, or policies of MANO.
Such information may serve as a stepping stone
for further attacks.

Management and
Orchestration

• Authentication and Access Control (RBAC)
• Monitoring and Anomaly Detection
• OPA (restrict what admins can do)
• Software security hardening

InfoDisclControlData: Attackers with access to
the API server, the K8s dashboard pod, or the
Kubelet API may retrieve control data and cluster
status information, accessible even without au-
thentication. This discovery effort could expose
the state of the edge cloud to the reader and serve
as a stepping stone for further attacks. Also net-
work probing and mapping could be attempted by
malicious applications to this end.

Control Data,
Management and
Orchestration

• Authentication
• Monitoring and Anomaly Detection
• Network Policies

Deliverable D1.3
52

A. Appendix A.2. Threats to Edge Platform

Category Threats Affected Assets Possible Countermeasures
InfoDisclControlPlane: An adversary with suf-
ficient admin privileges on a node or the cluster,
potentially having obtained suitable communica-
tions keys, may attempt to monitor the control
plane traffic in order to leak sensitive informa-
tion, e.g., k8s secrets or access credentials.

Control Data,
Application Data

• Enable Control Plane encryption and authen-
tication

• Rotate credentials regularly

InfoDisclExecContext: Edge platform providers
must harden the configuration of container run-
times to ensure the desired information flow sep-
aration between different tenants that share the
same compute nodes. Any shortcomings in this
area may lead to leakages of sensitive host or ten-
ant information. For instance, an insecure run-
time configuration of containers may allow to
mount sensitive directories on the host.

Control Data,
Management and
Orchestration,
Application Data

• Hardened host configuration
• Secure container runtimes

InfoDiscl5G: Malicious edge applications may
attempt to obtain data belonging to the 5G core
functions (AMF, SMF) deployed alongside appli-
cations on the edge platform. A successful attack
may leak sensitive user information or credentials
to access the core network itself.

5G Core Functions • Network policies
• Authentication and Access Control
• Monitoring and Anomaly Detection

Denial of
Service

DoSMANO: Attackers with sufficient admin
privileges may make the cluster unavailable, e.g.,
by shutting down nodes and crucial services.

Management and
Orchestration

• Authentication and Authorization
• OPA (restrict what admins can do)

DoSControlPlane: Compromised applications
with sufficient access permissions could overload
the Edge API server by sending a large number
of requests. The control plane network operation
can be delayed with noisy neighbor attacks on the
data plane, if there are no separate network inter-
faces.

Control Plane
Network,
Management and
Orchestration

• Configure encryption and authentication to
secure control plane components

• Quotas and Rate limiting
• Separate network interfaces
• DoS Detection and Response

DoSControlData: Compromised apps can create
a lot of traffic to slow down the storage service so
that control data cannot be accessible. Attackers
with sufficient privileges may attempt to destroy
deployments or configuration data.

Control Data • Quotas and Rate limiting
• Anomaly Detection
• OPA (restrict what admins can do)
• Backup and redundancy routines

DoSPhysical: An external attacker may try to
sabotage the edge system by physically tamper-
ing with the edge hardware or its support compo-
nents, e.g., power supply and cooling.

Physical System,
Edge Computing and
Communication
Infrastructure

• Physical Security and Monitoring
• Ruggedized Hardware
• Fallback Power Supply

DoS5G: Targeting the 5G core functions sched-
uled on the edge cloud, attackers may attempt to
disrupt end user connections to the edge or even
the mobile network in general. For example, the
hand-over procedure implemented by AMF could
be affected.

5G Core Functions • Network policies
• Authentication and Access Control
• Monitoring and Anomaly Detection

Elevation of
Privileges

ElevPrivControlPlane: If there is privileged
networking in absence of authentication, man-
in-the-middle attacks could intercept control net-
work traffic and steal developer or administrator
credentials within that traffic. Misconfiguration
of the communication infrastructure, e.g., UPF,
may allow unauthorized external access to edge
platform.

Control Plane Network • Configure encryption and authentication to
secure control plane components

• Monitor network utilization
• Intrusion detection

ElevPrivDataPlane: Applications that have
privileged networking capabilities or work in col-
lusion with a compromised tenant admin may cir-
cumvent network policies to reach restricted parts
of the application communication network.

Data Plane Network,
Application Data

• Monitoring and Anomaly Detection
• Restrict network capabilities
• Authentication and Access Control
• OPA (restrict what admins can do)

Deliverable D1.3
53

A. Appendix A.2. Threats to Edge Platform

Category Threats Affected Assets Possible Countermeasures
ElevPrivExecContext: Excessive privileges
given to application containers, unsafe config-
urations like writable hostPath mounts, as well
as vulnerabilities in the virtualization infrastruc-
ture, operating system, and the container runtime
may allow a malicious application to escape its
sandbox and acquire root privileges on the node.
Such privileges may allow the attacker to spread
to other parts of the edge cloud system. Subse-
quently also data and service integrity, confiden-
tiality, and availability may be threatened.

Virtualization
Infrastructure,
Management and
Orchestration

• Container Hardening
• Restricting privileged containers
• Secure runtimes (Kata, etc.)
• Anomaly Detection

ElevPrivImage: Attackers who have obtained
certain admin privileges may deliberately run
compromised images on the cluster that may in
turn attack other applications or the cluster itself.
Moreover, the privilege to deploy pods or con-
trollers on the cluster may allow to allocate re-
sources for running malicious software such as
bot nets or crypto miners. Such undesired con-
tainers may also be injected stealthily as side cars
into existing legitimate pods or be disguised as
legitimate pods with familiar names in the kube-
system namespace.

Container Images,
Execution context,
MANO,
Virtualization
Infrastructure

• Admission Controllers
• Anomaly Detection

ElevPrivSysResource: An application with ac-
cess to special system resources may abuse such
resource to attack the host system and elevate its
privileges. For example, malicious applications
running in enclaves may attempt to stealthily
exploit memory safety violations in the host
[108]. Another example is the use of peripheral
DMA capabilities to circumvent memory isola-
tion [109].

System Resources,
Edge Cloud Provider
assets

• Admission control to system resources
• SR-IOV and IOMMU memory access restric-

tions on DMA

ElevPrivControlData: If a comprised edge ap-
plication obtains control of kubelet, it can ma-
nipulate control data and may send privileged re-
quests to the API server.

Control Data • Authentication and Access Control
• Monitoring and Anomaly Detection

ElevPrivPhysical: If an external attacker can
reach the physical edge system, they may access
the system through USB and debug ports or other
physical interfaces. By tampering with the boot
process they may get full control of the system.

Physical System,
Edge Computing and
Communication
Infrastructure,
Edge Cloud Provider
assets,
Edge Application
Provider assets

• Secure Boot
• Physical Security and Surveillance
• Disable unused ports
• Ruggedized Hardware

ElevPrivMANO: Compromised apps or external
attackers may be able to assign privileged roles to
themselves in the cluster due to weak design, e.g.,
having permissions to create arbitrary role bind-
ings, or in collusion with a tenant admin. Also,
getting access to a pod’s service account may al-
low attackers to perform actions using that pod’s
privileges.

Management and
Orchestration,
Edge Cloud Provider
assets,
Edge Application
Provider assets

• Authentication and Access control
• OPA (restrict what admins can do)
• Anomaly detection

ElevPriv5G: If an attacker manages to compro-
mise a pod running the 5G core services (AMF
and SMF) they get full access to all user data han-
dled by these functions. Moreover the attacker
may obtain credentials allowing lateral move-
ment into the 5G core network or user devices.

5G core functions,
User data

• Network Policies
• Authentication and Access control
• Software security hardening
• Monitoring and Anomaly Detection

Deliverable D1.3
54

The 5GhOSTS project

July 19, 2021

5GhOSTS-D1.3-0.9/1.0

Horizon 2020

	1 Introduction
	1.1 Use Cases
	1.1.1 Vehicle to Infrastructure (V2I)
	1.1.2 Smart Office (SO)
	1.1.3 Remote Surgery (RS)

	1.2 Privacy and data protection in 5G

	2 Privacy, Security, and Trust in 5G Networks
	2.1 Privacy Requirements
	2.1.1 EU legal and policy framework applicable to 5G
	2.1.2 Implementing privacy, security and data protection risk mitigating measures in 5G networks
	2.1.3 Conclusions

	2.2 Threat Model
	2.2.1 Describing the Scenario and Trust Relations Analysis
	2.2.2 Identifying Assets
	2.2.3 Data Flow Diagram
	2.2.4 Identifying Threats

	2.3 Trust Model
	2.4 Technical Implications and Scope of 5GhOSTS

	3 Secure Distribution and Integrity Protection of Virtualized Network Functions
	3.1 Overview
	3.1.1 Worker nodes
	3.1.2 Image/container lifecycle

	3.2 Specialized Threat Model
	3.2.1 Cluster: users and privileges
	3.2.2 Node: users and privileges
	3.2.3 Image registry: users and privileges
	3.2.4 Trust model

	3.3 Container Image Security
	3.3.1 Reducing the attack surface
	3.3.2 Detecting vulnerabilities statically
	3.3.3 Image selection, secure transmission and storage
	3.3.4 Integrity verification and remote attestation

	3.4 Attack Surface and TCB Assessment
	3.4.1 Prevention and detection of malicious activity on the node
	3.4.2 Prevention and detection of malicious activity from other containers
	3.4.3 Prevention and detection of anomalies during the execution of the target container

	3.5 Trusted Computing Architectures / Confidential Computing for 5G
	3.5.1 Trusted Execution Environments

	4 Summary and Outlook
	A Appendix
	A.1 Threats to Edge Application
	A.2 Threats to Edge Platform

