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ABSTRACT Sampling rate offsets (SROs) between devices in a heterogeneous wireless acoustic sensor
network (WASN) can hinder the ability of distributed adaptive algorithms to perform as intended when they
rely on coherent signal processing. In this paper, we present an SRO estimation and compensation method
to allow the deployment of the distributed adaptive node-specific signal estimation (DANSE) algorithm
in WASNs composed of asynchronous devices. The signals available at each node are first utilised in a
coherence-drift-based method to blindly estimate SROs which are then compensated for via phase shifts in
the frequency domain. A modification of the weighted overlap-add (WOLA) implementation of DANSE
is introduced to account for SRO-induced full-sample drifts, permitting per-sample signal transmission via
an approximation of the WOLA process as a time-domain convolution. The performance of the proposed
algorithm is evaluated in the context of distributed noise reduction for the estimation of a target speech
signal in an asynchronous WASN.

INDEX TERMS Sampling rate offsets, coherence drift, signal enhancement, weighted overlap-add, wireless
acoustic sensor networks

I. Introduction
Wireless acoustic sensor networks (WASNs) have been a
subject of great interest in recent years as they provide a
number of advantages over centralised systems performing
audio signal processing tasks [1]. Novel algorithmic solu-
tions aim to utilise the increased flexibility and scalability
of WASNs in order to tackle various audio signal processing
challenges in a distributed fashion, bypassing the need for a
data fusion centre with which all nodes communicate.

This paper focuses on distributed signal estimation, where
each node in the WASN aims to estimate a node-specific
desired signal. The distributed adaptive node-specific signal
estimation (DANSE) algorithm was originally formulated
in [2], [3] to tackle this problem. This algorithm is designed

to allow each node of a fully connected WASN to achieve
centralised performance upon convergence by iteratively
computing its own multichannel Wiener filter (MWF) while
only exchanging single-channel signals with other nodes.
DANSE can significantly reduce the required number of
signals communicated between nodes in a WASN with many
sensors per node, compared to a centralised MWF where
nodes communicate with a single fusion centre. Although the
DANSE algorithm has been tested under various conditions
and for different tasks [4], a key aspect allowing its robust
deployment in real-world scenarios has yet to be addressed,
namely, signals asynchronicity.

In many practical applications such as teleconferencing
systems or smart domotics, the WASN is heterogeneous, i.e.,
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composed of various interconnected devices such as laptops,
tablets, or hearing aids. Each device samples the incoming
acoustic information at a specific rate via its own analog-to-
digital converter based on an internal clock, the sampling rate
of which may differ from the nominal value provided by the
manufacturer [5]. The sampling rate mismatch between two
devices can be quantified as the sampling rate offset (SRO),
generally expressed in parts-per-million (PPM). SROs in the
range of ±500 PPM have been measured between commonly
used devices and reported in [5]. The same study showed that
SROs can slowly vary through time, e.g., when the devices
undergo significant temperature changes or fluctuations in
supply voltage.

SROs lead to an increasing time-drift between signals
sampled by different clocks, which inhibits their use in
algorithms that rely on coherent signal processing [6]. No-
tably, the performance of signal enhancement algorithms
based on the MWF such as the DANSE algorithm depends
on the computation of accurate spatial covariance matrices.
DANSE can thus be expected to be sensitive to a lack of
synchronicity between locally recorded microphone signals
and signals received from other nodes. In fact, literature
around DANSE has so far assumed that all nodes involved in
the algorithm have exactly the same sampling rate [2], [3],
[7]–[9]. The asynchronicity problem in WASNs has recently
been investigated in the context of algorithms other than
DANSE [10], [11].

In this paper, we propose a methodology to relax the
synchronicity assumption in DANSE, bringing this algo-
rithm closer to robust deployment in real-life scenarios.
The presence of SROs is addressed in a fully connected
WASN where node and source positions are fixed. Time-
invariant SROs are considered, assuming that no temperature
or supply voltage changes occur during the convergence
phase of the algorithm. Per-node-pair SRO estimation is
performed blindly based on a coherence-drift method [12],
[13]. The weighted overlap-add (WOLA) implementation of
the generalised eigenvalue decomposition (GEVD-)DANSE
algorithm [14] is modified to permit detection of full-sample
drifts (FSDs) via per-sample signal broadcasting. This is
achieved by approximating the WOLA process used for local
signal fusion (analysis, filtering in the short-time Fourier
transform (STFT) domain, and synthesis) as a single time-
domain convolution operation. This method allows to retain
the low complexity of WOLA processing for the more
costly steps of GEVD-based filter update and desired signal
estimation. The estimated SROs and the detected FSDs are
then compensated for via phase shifts in the STFT-domain.
The performance of the proposed algorithm is evaluated in
the context of distributed noise reduction for the estimation
of a target speech signal.

The paper is organised as follows. In Section II, the
centralised GEVD-MWF is reviewed. The key aspects of
the theory and implementation of the DANSE algorithm are
summarised in Section III. The proposed method for SRO

estimation and compensation within the DANSE framework
is presented in detail in Section IV. The performance of the
proposed method is then analysed by means of simulations
in asynchronous WASNs in Section V. Finally, conclusive
remarks are formulated in Section VI.

II. GEVD-MWF-based signal estimation
A WASN composed of K nodes is considered, where each
node k ∈ K = {1, . . . ,K} has Mk ≥ 1 microphones. The
total number of microphones in the network is denoted by
M =

∑
k∈K Mk. In the acoustic scene, one localised static

desired signal source (e.g., a talker) and J ≥ 1 localised
static noise sources are present. The signals recorded by node
k can be represented in the STFT domain at frame i and
frequency bin ν via an additive-noise signal model:

yk[ν, i] = sk[ν, i] + nk[ν, i], (1)

where yk[ν, i], sk[ν, i], and nk[ν, i] are Mk-dimensional
vectors corresponding to the microphone signals, the desired
signal components of these signals, and the noise compo-
nents, respectively. The additive noise is assumed to be
uncorrelated with the desired signal.

In centralised processing, the signal vector available at the
fusion centre is defined as an M -dimensional stacked version
y[ν, i] =

[
yT
1 [ν, i], . . . ,y

T
K [ν, i]

]T
of the node-specific mi-

crophone signals where (·)T denotes the transpose operation.
Similarly to (1), this vector can be expressed as y[ν, i] =

s[ν, i] + n[ν, i] with n[ν, i] =
[
nT
1 [ν, i], . . . ,n

T
K [ν, i]

]T
and

s =
[
sT1 [ν, i], . . . , s

T
K [ν, i]

]T
.

The objective of node k is then to estimate a local
desired signal dk[ν, i] based on y[ν, i]. Define without loss
of generality (w.l.o.g.) the desired signal dk[ν, i] at node
k to be the desired signal component of the first local
microphone signal, i.e., dk[ν, i] = eTdk

s[ν, i], where edk

selects the appropriate channel of s[ν, i]. An optimal filter
w̄k[ν, i] can be obtained by minimising the mean squared
error (MSE) between the desired signal and the filtered
microphone signals:

w̄k[ν, i+1] = argmin
wk[ν]

E
{∣∣dk[ν, i]−wH

k [ν]y[ν, i]
∣∣2} , (2)

where (·)H denotes complex conjugation and E{·} the
expected value operation. The closed-form solution of (2)
is the MWF:

w̄k[ν, i+ 1] =
(
R̄yy[ν, i]

)−1
R̄ss[ν, i]edk

, (3)

where R̄yy[ν, i] = E{y[ν, i]yH [ν, i]} is the network-
wide microphone signal covariance matrix and R̄ss[ν, i] =
R̄yy[ν, i]− R̄nn[ν, i], where R̄nn[ν, i] = E{n[ν, i]nH [ν, i]}
is the network-wide noise-only covariance matrix. Assum-
ing short-term stationarity of the signals, the covariance
matrices can be estimated by averaging over observations
of y[ν, i]yH [ν, i]. In a speech enhancement scenario with
stationary noise, the on-off behaviour of the desired signal
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can be exploited via a voice activity detector (VAD) [15],
[16] to isolate noise-only observations of y[ν, i]. The esti-
mation of R̄yy[ν, i] and R̄nn[ν, i] can then be performed via
exponential averaging:

VAD = 1 :

R̂yy[ν, i] = βR̂yy[ν, i− 1] + (1− β)y[ν, i]yH [ν, i],

VAD = 0 :

R̂nn[ν, i] = βR̂nn[ν, i− 1] + (1− β)y[ν, i]yH [ν, i],

(4)

where the real-valued number β acts as a forgetting factor,
0 ≪ β ≤ 1, typically chosen close to 1 to preserve spatial
coherence between microphone signals [1].

In the presence of a single desired signal source, the
signal model implies that R̄ss[ν, i] should be a rank-1
matrix [17]. However, the estimated R̂ss[ν, i] = R̂yy[ν, i]−
R̂nn[ν, i] generally has a rank larger than 1. A GEVD-
based approach was proposed in [17] to obtain a rank-1
approximation of R̂ss[ν, i]. The GEVD of the matrix pencil
{R̂yy[ν, i], R̂nn[ν, i]} yields:

R̂yy[ν, i] = Q̂[ν, i]Σ̂[ν, i]Q̂H [ν, i],

R̂nn[ν, i] = Q̂[ν, i]Q̂H [ν, i],
(5)

with Q̂[ν, i] an M ×M matrix of which the columns are the
generalised eigenvectors (GEVCs) and Σ̂[ν, i] is a diagonal
matrix of which the diagonal elements are the corresponding
generalised eigenvalues (GEVLs). The GEVLs in Σ̂[ν, i] are
assumed to be ordered by decreasing magnitude. A rank-1
approximation of R̄ss[ν, i] can then be obtained by using (5)
and nullifying the M − 1 smallest GEVLs. Substituting
into (3) then leads to the GEVD-MWF:

ŵk[ν, i+ 1] = Q̂−H [ν, i]Λ[ν, i]Q̂H [ν, i]edk
, (6)

with Λ[ν, i] = diag{1− 1/σ̂1[ν, i], 0, . . . , 0}, where diag{·}
transforms a vector into a diagonal matrix and σ̂1[ν, i] is the
largest GEVL. Finally, the desired signal at frequency bin ν
and frame i is estimated as d̂k[ν, i] = ŵH

k [ν, i+ 1]y[ν, i].

III. The DANSE algorithm
The DANSE algorithm [2] provides a distributed implemen-
tation of the MWF described in Section II as an adaptive
algorithm where nodes iteratively update their local filter
estimates. Different node-updating schemes exist: (i) sequen-
tial updating [2], (ii) simultaneous updating [3], and (iii)
asynchronous updating [3]. Strategies (i) and (ii) rely on a
network-wide update protocol that coordinates the updates,
unlike strategy (iii) [3]. Since the presence of unknown SROs
between nodes challenges the deployment of a coordination
protocol, asynchronous updating is assumed in the following.
To avoid limit cycles due to asynchronous updating [3],
relaxed filter updates can be performed [18]. Computational
delays due to data transmission, reception, and processing
are assumed to be negligible in this paper.

As described in [14], the DANSE algorithm can be im-
plemented using weighted overlap-add (WOLA) processing

to efficiently perform short-time Fourier analysis and syn-
thesis [19]. Using WOLA, time-domain microphone signals
are processed on a frame-by-frame basis. WOLA analysis
consists of applying an N -point DFT to a windowed frame
of a time-domain signal, with the frame size equal to the
DFT size, effectively transforming the time-domain signal
frame into an STFT-domain signal frame. In DANSE, all
filtering can be conducted in the STFT domain, resulting in
a lower computational complexity as compared to a time-
domain implementation [14]. Each new WOLA frame then
corresponds to a new DANSE iteration where the nodes
update their filter estimate. As a WOLA implementation
of DANSE is assumed in the following, the variable i
simultaneously denotes the STFT frame index as well as
the DANSE iteration index, i.e., nodes update their filter
estimates at each new i.

Although a variety of network topologies can exist, a
fully connected WASN is assumed in this paper. All the
nodes that can communicate with node k are grouped in
the set Kk = K\{k}. The DANSE algorithm in a fully
connected WASN operates in two main stages: signals fusion
and broadcasting on the one hand, and filters updates on
the other hand [2]. At each frame i, each node k fuses its
Mk local microphone signals into a single-channel signal
zk[ν, i] ∀ ν ∈ {1 . . . N} using a fusion vector pk[ν, i] before
broadcasting it to the other nodes, which reduces the per-
node communication cost by a factor Mk (i.e., a factor M/K
over the entire network) compared to the centralised MWF
of Section II. An appropriate definition of pk[ν, i] guarantees
convergence of the DANSE algorithm to the centralised
MWF solution [2]. In the WOLA implementation, a time-
domain fused signal denoted by żk[n] is obtained via WOLA
synthesis (inverse DFT followed by windowing) and overlap-
add of the fused signal frames zk[ν, i], where n denotes
the sample index. The time-domain signal żk[n] is then
broadcast to other nodes, as summarised in Algorithm 1.

The STFT-domain signals available at node k at iteration
i are grouped into the vector:

ỹk[ν, i] =
[
yT
k [ν, i] | zT−k[ν, i]

]T
(7)

where yk[ν, i] contains the local microphone signals and
z−k[ν, i] is a stacked version of all the microphone sig-
nals received from other nodes. As in the centralised case
(cfr. (1)), ỹk[ν, i] can be written as a sum of a desired signal
component s̃k[ν, i] and a noise component ñk[ν, i]. Node k
aims to compute the i-th STFT frame of its desired signal es-
timate d̂k[ν, i] via multichannel filtering of ỹk[ν, i]. The filter
at node k is denoted by w̃k[ν, i] = [wT

kk[ν, i] | gT
k−k[ν, i]]

T ,
where wkk[ν, i] is applied to the local microphone signals
yk[ν, i] and gk−k[ν, i] is applied to the fused microphone
signals z−k[ν, i]. The filter at node k at iteration i + 1 is
obtained by minimising the MSE between the desired signal
and its estimate:
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w̃k[ν, i+ 1] = argmin
wk[ν]

E
{∣∣dk[ν, i]−wH

k [ν]ỹk[ν, i]
∣∣2} ,

(8)
and the i-th STFT frame of desired signal estimate is then
d̂k[ν, i] = w̃H

k [ν, i + 1]ỹk[ν, i]. Equation (8) has the same
structure as (2), be it with a different definition of the
filter wk[ν] and input vector ỹk[ν, i], hence its solution
again corresponds to an MWF. With the covariance matrices
R̃ykyk

[ν, i] and R̃nknk
[ν, i] defined and estimated per node

instead of centrally as in (4), a GEVD is applied to the matrix
pencil {R̃ykyk

[ν, i], R̃nknk
[ν, i]} and, similarly to (6), the

filter is computed as:

w̃k[ν, i+ 1] = Q̃−H
k [ν, i]Λ̃k[ν, i]Q̃

H
k [ν, i]edk

, (9)
where, at frequency ν and iteration i, Q̃k[ν, i] is an (Mk +
K − 1) × (Mk +K − 1) matrix of which the columns are
the GEVCs, Λ̃k[ν, i] = diag {1− 1/σ̃k1[ν, i], 0, . . . , 0} and
σ̃k1[ν, i] is the largest GEVL. Finally, to ensure convergence
of wkk[ν, i] towards the corresponding elements of the
centralised MWF, the fusion vector at iteration i is defined
as pk[ν, i] = wkk[ν, i], such that:

zk[ν, i] = wH
kk[ν, i]yk[ν, i]. (10)

The WOLA implementation of the DANSE algorithm
is summarised in Algorithm 1, where the Mk local time-
domain microphone signals at node k are denoted by ẏk[n].
The time-domain signal obtained after WOLA synthesis
and overlap-add of consecutive frames d̂k[ν, i] is denoted
by ˙̂

dk[n]. The time-domain fused signals are grouped in
the vector ż−k[n] = [ż1[n] . . . żk−1[n] żk+1[n] . . . żK [n]]

T .
The WOLA window shift, corresponding to the number of
new samples recorded between two consecutive DANSE
iterations, is denoted by Ns.

In the presence of SROs, the time misalignments between
the local microphone signals and the fused microphone
signals from other nodes lead to incorrect covariance matrix
updates which, in turn, inhibit the computation of useful filter
estimates via (9). In the following section, we propose a
method for SRO estimation and compensation applicable to
the WOLA implementation of the DANSE algorithm.

IV. SRO estimation and compensation
The SRO between node k and q is denoted by εkq such that
fs,q = fs,k(1+εkq), where fs,k and fs,q are the sampling rate
of node k and q, respectively. In the following, it is assumed
that the SROs are time-invariant and that signals recorded by
the same node are synchronised. Although a fully connected
WASN is assumed, this SRO estimation and compensation
method can be also adopted in other network topologies.

A. Coherence-drift-based SRO estimation
In order to allow any node k ∈ K to blindly estimate
the SROs {εkq}q∈Kk

using the signals it can access in the
DANSE algorithm, we use a coherence-drift method based

Algorithm 1 WOLA-based DANSE in a synchronised, fully
connected WASN (50% window overlap).

1: Initialise w̃k[ν, 0] ∀ k ∈ K;
2: Each node k ∈ K performs, starting simultaneously:
3: for i = 1, 2, 3, . . . do
4: Record Ns new samples of ẏk[n] since i− 1;
5: WOLA analysis on N most recent ẏk[n] samples to

obtain yk[ν, i];
6: Perform signal fusion via (10) to obtain zk[ν, i];
7: WOLA synthesis on zk[ν, i] and overlap-add with

previous frame to obtain Ns new żk[n] samples;
8: Transmit Ns most recent żk[n] samples to Kk;
9: Build ż−k[n] from samples received from Kk;

10: WOLA analysis on N most recent ż−k[n] samples to
obtain z−k[ν, i];

11: Build ỹk[ν, i] = [yT
k [ν, i] | zT−k[ν, i]]

T ;
12: Compute R̃ykyk

[ν, i] and R̃nknk
[ν, i] via (4);

13: Compute the filter estimates w̃k[ν, i+ 1] via (9);
14: Compute new frame d̂k[ν, i];
15: WOLA synthesis on d̂k[ν, i] and overlap-add with the

previous frame to build ˙̂
dk[n].

16: end for

on principles introduced in [12] and [13]. At frame i and at
node k, considering one other node q ∈ Kk, the available
STFT-domain signals are (i) the local microphone signals
yk[ν, i] and (ii) the received fused signal zq[ν, i]. The first
local microphone signal yk,1[ν, i] is used in the following
(w.l.o.g.).

The sampling rate mismatch can simply be approxi-
mated in the STFT-domain via the linear phase drift (LPD)
model [20], [21] at any frequency bin ν ∈ {1, . . . , N}, i.e.:

žq[ν, i] ≈ zq[ν, i] · exp
(
j
2π

N
νεkq[i]Nc[i]

)
, (11)

where žq[ν, i] is the εkq[i]-compensated version of zq[ν, i]
(synchronised with yk,1[ν, i]) and Nc[i] is the central sample
index of frame i. The product τkq[i] = εkq[i]Nc[i] is the av-
erage accumulated time-drift between zq[ν, i] and yk,1[ν, i].
The LPD model relies on the assumption that the SRO-
induced time drift is constant within one frame, implying
that the model best approximates the effect of SROs for small
εkq[i].

Based on (11), εkq[i] can be estimated by node k as
follows. First, we define the instantaneous estimate of the
cross-power spectral density (PSD) Ψkq[ν, i] as Ψkq[ν, i] =
yk,1[ν, i] · z∗q [ν, i], where ·∗ denotes complex conjugation.
Similarly, the instantaneous auto-PSD estimates are defined
as Ψkk[ν, i] = |yk,1[ν, i]|2 and Ψ̃qq[ν, i] = |zq[ν, i]|2. An
instantaneous estimate of the coherence between yk1[ν, i] and
zq[ν, i] can then be obtained as:

Γkq[ν, i] =
Ψkq[ν, i]√

Ψkk[ν, i] · Ψ̃qq[ν, i]
. (12)
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The SRO can now be estimated by defining the product
PΓ,kq[ν, i] between the instantaneous coherence estimate at
frame i and at frame i− ld as:

PΓ,kq[ν, i] = Γkq[ν, i] · Γ∗
kq[ν, i− ld]. (13)

Based on the LPD model and assuming static sources, it can
be shown that an SRO estimate ε̂kq[i] proportional to the
phase of PΓ,kq[ν, i] [12], [13] is obtained as:

∠ {PΓ,kq[ν, i]} =
2π

N
νldNsε̂kq[i], (14)

where ∠{·} denotes the phase. Increasing the value of ld
is equivalent to estimating the average SRO over a longer
period of time, setting a trade-off between robust estimation
and the ability to track time-varying SROs. Since fixed SROs
are considered here, ld may be safely set to a relatively large
value, bearing in mind that SRO estimation can only begin
after ld frames. Temporal averaging can be applied before
computing the phase to smoothen the estimation:

P̄Γ,kq[ν, i] = αP̄Γ,kq[ν, i− 1] + (1− α)PΓ,kq[ν, i], (15)
where α is a scalar, 0 ≪ α ≤ 1, set close to 1.

Since (14) and (15) are defined for all frequency bins ν,
the SRO can be estimated, for example, as the least squares
(LS) solution over all relevant frequency bins [22]. Since
this LS solution is, however, prone to inaccuracies due to
the periodicity of the phase, it has been proposed in [13] to
interpret P̄Γ,kq[ν, i] as a generalised cross-PSD. The integer
time lag λmax[i] that maximises the absolute value of the
generalised cross-correlation p̄iΓ,kq[λ] = F−1{P̄Γ,kq[ν, i]},
with F−1{·} denoting the inverse DFT, can then be used to
estimate the SRO as:

ε̂kq[i] = −λmax[i]

ldNs
= − 1

ldNs
· argmax

λ
|p̄iΓ,kq[λ]|. (16)

Higher SRO estimation accuracy can be obtained by deter-
mining the non-integer value λ[i] that maximises |piΓ,kq[λ]|,
via an interpolation method such as a golden section search
in the interval [λmax[i] − 0.5, λmax[i] + 0.5], as proposed
in [13], and substituting λmax[i] by λ[i] in (16).

B. SRO compensation and full-sample drifts
The SRO estimates obtained via the method described in
Section IV-A are now used to perform SRO compensa-
tion on the elements of z−k[ν, i] before updating w̃k[ν, i]
as described in Section III. Using the LPD model, SRO
compensation can be performed at any node k based on
{ε̂kq[i]}q∈Kk

by applying the appropriate phase shift to each
element of z−k[ν, i] as:

žq[ν, i] = zq[ν, i] · exp
(
j
2π

N
ντ̂kq[i]

)
∀ q ∈ Kk, (17)

where τ̂kq[i] = Ns

∑i
ι=0 ε̂kq[ι] is the estimated average ac-

cumulated time-drift between zq[ν, i] and yk1[ν, i] (cfr. (11)).

An important aspect comes into play tFSDkq = 1/(fs,k|εkq|)
seconds after the simultaneous initialisation of the WASN,
namely when the accumulated SRO-induced time drift τkq[i]
between node k and node q becomes greater than one
sample. Such event is referred to in the following as a full-
sample drift (FSD). At that time, if εkq > 0, the growing
time drift between node k and node q leads to a situation
where node q has recorded one more sample than node k,
as depicted in Figure 1. Conversely, if εkq < 0, node q has
recorded one less sample than node k.

1 2 3 4 5 6 7 8 9 10
Sample index at node k

# samples
at node q

Node q
Node k

Signal

1 2 3 4 5 6 7 9 10 11

FIGURE 1. Schematic representation of a full-sample drift (indicated by
the circle) generated by an SRO εkq > 0 between node k and q ∈ Kk.

When correctly detected, an FSD can be compensated for
by applying a corrective phase shift ϕFSD

kq [ν, i] to zq[ν, i] as:

ϕFSD
kq [ν, i] =


exp

(
−j 2πN ν

)
if one more sample at q,

exp
(
j 2πN ν

)
if one less sample at q,

1 otherwise.
(18)

The SRO estimation itself can be biased by the presence
of one or more FSDs between frame i − ld and frame i.
These can be accounted for by multiplying PΓ,kq[ν, i] by
the accumulated FSD phase shift:

ϕac
kq[ν, i] =

i∏
ι=i−ld

ϕFSD
kq [ν, ι]. (19)

The rest of the SRO estimation process remains unchanged,
following (15) and (16).

However, the accumulated effect of FSDs becomes partic-
ularly problematic when considering the WOLA implemen-
tation of DANSE [14], where a fused time-domain signal
żq[n] is transmitted in frames of Ns samples from node q
to node k (cfr. Algorithm 1). For clarity of exposition, we
assume an even DFT size N and a 50% WOLA window shift
such that Ns = N/2. A problematic phenomenon referred
to as full-frame drift (FFD) occurs when Ns uncompensated
FSDs accumulate. If εkq > 0 (resp. εkq < 0) and after
tFFDkq = Nst

FSD
kq seconds, node q has recorded Ns more (resp.

less) samples than node k since the synchronous initialisation
of both nodes. At that time, node q has thus transmitted two
(resp. no) new żq[n] frames since the last update of node k
(see circles on Figure 2). Consequently, to perform its next
update, node k skips (resp. duplicates) one zq[ν, i] frame.

An FFD cannot be compensated for via a phase shift
based on (18) if Ns is close to N . For instance, with 50%
WOLA window shift, the corrective phase shift of (18)
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FIGURE 2. Schematic representation of a full-frame drift (highlighted by
circles), with εkq > 0 and 50% WOLA window shift.

needed to compensate for Ns FSDs at once simplifies to
exp(±j 2πN νNs) = ±1 ∀ν. Even if FFDs compensation were
possible, before an FFD occurs node k receives a single Ns

samples-long frame of żq[n] between two consecutive filter
updates, as in Figure 2. Node k is, therefore, unable to detect
FSDs by comparing the number of local ẏk[n] samples with
the number of received żq[n] samples since its previous up-
date (as both are equal to Ns). The uncompensated growing
drift between elements of ỹk[ν, i] then leads to increasingly
erroneous updates of the covariance matrices.

If disregarded, FFDs can significantly perturb the conver-
gence of DANSE as well as the SRO estimation process.
The detection of FSDs within the WOLA implementation of
DANSE is discussed in the following section.

C. Full-sample drift detection
In order to enable detection and compensation of FSDs
within the WOLA implementation of DANSE, we intro-
duce a modification of the DANSE fusion and broadcasting
mechanism to allow per-sample transmission of fused sig-
nals between nodes, while retaining WOLA frame-by-frame
processing for the computationally costly steps of GEVD-
based filter update and desired signal estimate computation.
In principle, using this per-sample transmission, node k can
easily detect FSDs for the i-th filter update by comparing the
number of local ẏk[n] samples with the number of received
żq[n] samples from node q since its previous update, then
compensate for them via the corrective phase shifts of (18).

We propose to approximate the WOLA filtering process
(analysis, STFT-domain filtering, and synthesis) by its so-
called distortion function T (ζ) [23], where ζ is the Z-
transform variable. This function relates the output of the
WOLA filterbank to its input when no decimation and
expansion is performed, i.e., using maximal window overlap.
At frame i, the distortion function T i

q,m(ζ) corresponding to
the m-th microphone of node q can be obtained as:

T i
q,m(ζ) =

1

Ns
[ζ1−N . . . 1]Di

q,m [1 . . . ζ1−N ]
T
, (20)

with Di
q,m = Hs ·F−1 ·diag{wqq,m[i]} ·F ·Ha, where F−1

and F are the inverse DFT and DFT matrix, respectively,
wqq,m[i] = [wqq,m[1, i], . . . , wqq,m[N, i]]

T denotes the local
filter coefficients at frame i for the m-th microphone of node
q with all frequency bins stacked into one vector, Hs =
diag{flip{hs}}, and Ha = diag{ha}, respectively, where
hs and ha denote the WOLA synthesis and analysis time-

domain windows, respectively, and flip{·} reverses the order
of the elements of a vector.

The time-domain equivalent of the distortion function
T i
q,m(ζ) in (20) is a (2N − 1)-tap impulse response denoted

by tiq,m. From (20), it can be seen that each element of tiq,m
is obtained by summing over the corresponding diagonal
of the matrix Di

q,m. The complete WOLA analysis and
synthesis process can then be approximated by a convolution
with tiq,m. This means that the n-th sample of the time-
domain fused signal żq[n] can be obtained as:

żq[n] =

Mq∑
m=1

(
ẏ(n)
q,m ∗ tiq,m

)
[n+ 2N − 1] (21)

where the time-domain vector ẏ(n)
q,m contains the most recent

N samples recorded by the m-th microphone of node q
and (a ∗ b)[c] denotes the c-th sample of the convolu-
tion between time-domain signals a and b. Note that the
distortion function does not need be computed at every
frame i, especially once the filters have converged after
several DANSE iterations. The iteration indices at which
the distortion function is updated with the most recent filter
wqq[ν, i] are grouped in the set IT.

Although the proposed T (ζ)-approximation introduces the
same N − 1 samples input-output delay as the standard
WOLA implementation of DANSE [14], it has the advantage
to circumvent the Ns samples delay introduced by frame-by-
frame processing [19] since no downsampling is performed.
Additionally, the use of per-sample broadcasting reduces
the amount of transmitted data as each compressed signal
sample is transmitted only once. This differs from the usual
WOLA scheme where the overlap-add operation necessitates
the transmission of Ns additional data points per N -samples
block of compressed signal (as in Algorithm 1).

Using the T (ζ)-approximation, any node is able to broad-
cast its fused signal on a per-sample basis. This modification
of the DANSE algorithm, although coming at the expense
of some additional computational complexity with respect
to a purely WOLA-based implementation, enables the de-
ployment of DANSE in asynchronous WASNs where FSDs
can be detected as soon as they occur. An overview of the
DANSE algorithm with per-sample fused signal broadcasting
using the T (ζ)-approximation is provided in Figure 3.

D. Complete system
As SRO estimation is necessary for SRO compensation, both
should be performed in parallel. An open-loop strategy is
proposed, as depicted in Figure 4, which consists of three
parts: SRO estimation, FSD detection, and SRO compensa-
tion. First, the SRO-uncompensated fused signal zq[ν, i] is
used to estimate ε̂kq[i]. Every time an FSD is detected, a flag
is raised and the FSD phase shift of (18) is included when
performing SRO estimation and compensation, leading to the
signal žq[ν, i], which is used to update the DANSE filter.
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FIGURE 3. Proposed WOLA-based DANSE processing at node k ∈ K with
per-sample fused signal broadcasting. [i] WOLA analysis applied to local
microphone signals ẏk[n] and fused signals from other nodes ż−k[n]. [ii]
Covariance matrix update and [iii] computation of filter w̃k[ν, i + 1]. [iv]
Computation of new desired signal estimate frame d̂k[ν, i + 1], followed
by WOLA synthesis and overlap-add. [v] Computation of distortion
functions {T i

k,m(ζ)}Mk
m=1 from filter wkk[ν, i]. [vi] Computation of new

żk[n] samples and per-sample broadcasting to other nodes.

FIGURE 4. SRO estimation and compensation block-scheme at node
k ∈ K, including full-sample drift detection (“flag”) and compensation.

Algorithm 2 provides a complete description of WOLA-
based DANSE with SRO estimation and compensation,
including the T (ζ)-approximation for FSD detection. There,
the STFT-domain SRO-compensated fused signals vector
is denoted by ž−k[ν, i] and the SRO-compensated version
of ỹk[ν, i] becomes y̌k[ν, i] = [yT

k [ν, i] | žT−k[ν, i]]
T . The

estimates of E{y̌k[ν, i]y̌
H
k [ν, i]} and E{ňk[ν, i]ň

H
k [ν, i]} are

denoted by Řykyk
[ν, i] and Řnknk

[ν, i], respectively. The
filter estimate after SRO compensation is finally obtained
similarly to (9), i.e., performing a GEVD on the matrix pen-
cil {Řykyk

[ν, i], Řnknk
[ν, i]}, and is denoted by w̌k[ν, i+1].

Algorithm 2 WOLA-based DANSE with SRO compensation
in a fully connected heterogeneous WASN.

1: Initialise w̃k[ν, 0] ∀ (k, ν) ∈ K × {1, . . . , N};
2: Each node k ∈ K performs, starting simultaneously:
3: for every new locally recorded sample ẏ[n] do
4: Compute żk[n] via (21) and transmit to nodes in Kk.
5: end for
6: for i = 1, 2, 3, . . . do
7: if i ∈ IT then
8: Update {T i

k,m(ζ)}Mk
m=1 via (20) using wkk[ν, i];

9: else
10: {T i

k,m(ζ)}Mk
m=1 = {T i−1

k,m(ζ)}Mk
m=1;

11: end if
12: Shift WOLA window (Ns new samples since i− 1);
13: WOLA analysis on local signals to obtain yk[ν, i];
14: WOLA analysis on fused signals to obtain z−k[ν, i];
15: for q ∈ Kk do
16: Detect FSDs based on number of new żq[n] samples

and compute ϕac
kq[ν, i] ∀ ν via (18) and (19);

17: Compute ε̂kq[i] via (16);
18: Compute žq[ν, i] (Figure 4) and build ž−k[ν, i];
19: end for
20: Build y̌k[ν, i] = [yT

k [ν, i] | žT−k[ν, i]]
T ;

21: Compute Řykyk
[ν, i] and Řnknk

[ν, i];
22: Compute w̌k[ν, i+ 1] via (9), then d̂k[ν, i].
23: WOLA synthesis on d̂k[ν, i] and overlap-add with the

previous frame to build ˙̂
dk[n].

24: end for

V. Numerical experiments
The performance of Algorithm 2 is demonstrated and com-
pared to Algorithm 1 via numerical experiments. The acous-
tic environment is depicted in Figure 5. A WASN of K = 4
nodes is considered, with {Mk}4k=1 = {1, 3, 2, 5} micro-
phones with a 20 cm inter-microphone spacing. A 5×5×5
m3 room with a uniform absorption coefficient of 0.9 is
considered, resulting in a T60 = 0.15 s reverberation time.
One localised speech source and two localised uncorrelated
stationary white noise sources are present (note that the
validity of Algorithm 2 can also be demonstrated in the pres-
ence of a non-stationary noise source such as babble noise).
The speech signal consists of 3 s long LibriSpeech [24]
snippets, each separated by 2 s of silence and starting
with 0.25 s of silence. The power of each source is set to
obtain a -3 dB signal-to-noise ratio (SNR) at the reference
microphone of node 1. All signals last 15 s and are simulated
by convolving the source signals with 4096 samples room
impulse responses obtained using the randomised image
method [25]. The nominal sampling rate is set to 16 kHz.

The filters are initialised as selecting the local reference
microphone signal, i.e., w̃k[ν, 0] = [1 0]T ∀ k ∈ K. The co-
variances matrices are updated using β = 0.978 (cfr. (4)). All
WOLA processing is performed using N = 1024-samples
square-root Hann windows with 50% overlap (note that the
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conclusions presented here in terms of speech enhancement
are also valid for other frame lengths, e.g., N = 512 or 2048
samples). FSDs are detected using the WOLA approximation
described in Section IV-C, where the distortion function
T i
k,m(ζ) in (20) is updated based on the filter wkk[ν, i] every

30 DANSE iterations. The covariance matrices are estimated
via (4) assuming an ideal VAD, which avoids the influence
of VAD errors on the results. In practice, the VAD obviously
needs to be estimated from the microphone signals [15], [16].
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FIGURE 5. Layout of acoustic scenario used in the simulations.
Microphones (◦) are grouped in nodes (⃝) numbered 1 to 4. Two noise
sources (+) and one desired source (⋄) are present.

The clock of node 1 is set as the reference, with fs,1 = 16
kHz. The SRO for all other nodes k ∈ {2, 3, 4} is defined
with respect to this reference. Three degrees of network
asynchronicity are considered based on the measured SROs
values reported in [5]. First, small SROs are considered by
setting {ε1k}4k=2 = {20,−20, 40} PPM. Second, more asyn-
chronicity is applied by setting {ε1k}4k=2 = {50,−50, 100}
PPM. Finally, a strongly asynchronous network is simulated
by setting {ε1k}4k=2 = {200,−200, 400} PPM. Fixed SROs
are simulated at any node by resampling the signals appro-
priately. The SRO estimation method uses ld = 10 in (13)
and α = 0.95 in (15), resulting in a ± 3 PPM accuracy.

The performance at each node is quantified using the ex-
tended short-term objective intelligibility (eSTOI) [26] with
the clean speech component of the first local microphone as
reference. This metric is particularly relevant as opposed to,
e.g., SNR, as intelligible speech is of central interest in most
speech enhancement applications. The eSTOI is computed
on the signal segment starting from WOLA frame i = 15 to
reduce the impact of initial filter updates. For each degree
of asynchronicity, Figure 6 shows the eSTOI at each node
for the local reference microphone signal (without any noise
reduction), the desired signal estimate from Algorithm 1
without SRO compensation, and the desired signal estimate
from Algorithm 2 with the proposed SRO compensation with
or without compensating for FSDs. The eSTOI obtained us-
ing the synchronised and centralised GEVD-MWF (cfr. (6))
is provided for comparison.

The results show that the presence of SROs in the WASN
significantly deteriorates the performance of WOLA-based
GEVD-DANSE. The single-microphone node (M1 = 1) is
particularly sensitive to the presence of SROs as it heavily
relies on the information provided by other nodes to compute
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FIGURE 6. eSTOI obtained at each node from Figure 5 with small SROs
(top), moderate SROs (middle), or large SROs (bottom). Local noisy
reference microphone signals without any processing (lightest), DANSE
estimates in the presence of SROs (light), DANSE estimates with SRO
estimation and compensation, without FSD compensation (dark) and with
(darkest), and MWF SRO-free centralised estimates (dashed).

its desired signal estimate. This occurs regardless of the
considered SRO, which shows the negative impact of even
relatively small SROs. Conversely, nodes including many
microphones (e.g., M4 = 5), show almost no sensitivity to
SROs, suggesting that these nodes are able to rely solely on
their locally recorded signals to perform noise reduction with
a comparable performance as in the centralised case. For all
considered SRO magnitudes, each node using the proposed
method with FSD compensation is able to restore the cen-
tralised performance that GEVD-DANSE would showcase
in an SRO-free WASN.

VI. Conclusion
In this contribution, the WOLA-based implementation of the
GEVD-DANSE algorithm has been rendered robust to the
presence of SROs by combining a coherence-based SRO
estimation technique with an approximation of the WOLA
process to allow FSDs detection and compensation via per-
sample broadcasting of fused signals. The performance of
the proposed method has been assessed through numerical
experiments in the context of speech enhancement. in terms
of intelligibility of the desired signal estimate at each node.
The results show that even relatively small SROs (if not
estimated and compensated for) can have a detrimental
impact on the ability of DANSE to recover the desired signal
at nodes that significantly rely on collaboration with other
nodes. However, it is shown that, in an asynchronous WASN,
the proposed SRO estimation and compensation method
practically restores the performance that the GEVD-DANSE
algorithm would showcase in a fully synchronised network.
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