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1  

Introduction 

1.1 Critical illness 

Patients who suffer from severe illness or life-threatening conditions that require intensive follow-up and/or 

specific treatment are admitted to intensive care units (ICUs). There are millions of patients admitted to ICUs 

every year worldwide. Conditions leading to ICU admission include sepsis, major surgery, severe burns, serious 

trauma, heart failure, etc. Given the deadly impact of these diseases, many critically ill patients do not survive, 

with variable rates of ICU mortality depending on the chronic health and acute disease [1]. In addition, patients 

who survive the acute phase often suffer from prolonged consequences of their critical episode, hallmarked by 

vulnerability to infections, prolonged organ dysfunction, muscle weakness, and cognitive impairment, all leading 

to a decreased quality of life. In the ICU, a group of professionals including intensivists, specialized nurses, 

physiotherapists, and pharmacists take care of these patients to optimize their organ functions, allow the patients 

to survive their critical condition, and improve long-term outcome. ICUs are equipped with monitors to assess 

and register vital organ functions on a continuous basis to facilitate the treatment of these patients. Support of 

vital organ systems through effective drugs or mechanical devices is often necessary, including inotropic drugs 

or vasopressors for cardiovascular support, mechanical ventilation, extracorporeal membrane oxygenation, or 

kidney replacement therapy.  

1.2 Kidney function during critical illness 

1.2.1 Acute kidney injury 

Acute kidney injury (AKI) is defined by a sudden decrease of renal excretory function leading to an acute 

aggregation of wastes and disturbance of the fluid and electrolyte balance of the body. Patients with AKI show 

different symptoms depending on the underlying cause and may suffer from oliguria, swelling, tiredness, nausea, 

coma, vomiting and even cardiac arrhythmia. Elderly people with diabetes mellitus, heart failure, and/or anemia 

are at risk for developing AKI. 

AKI is a disease that is caused by many different pathophysiological pathways.  In the ICU, the most 

frequent etiologies for AKI are sepsis and hypovolemia [2]. Other possible causes include cardiac failure, 

hepatorenal syndrome, interstitial nephritis, glomerulonephritis or postrenal obstruction of the urinary tract.  

In 2012, the Kidney Disease: Improving Global Outcomes (KDIGO) was proposed with an aim to unify 

AKI diagnostic criteria in 2012 [3]. Depending on the level of increased serum creatinine from its baseline and 

the amount of urinary output volume, KDIGO guidelines classify AKI into three stages of increasing severity 

(Table 1.1).   



2 | Introduction 

 

Table 1.1 AKI definition according to KDIGO criteria 

Stage  Serum creatinine criteria Urine output criteria 

1 Increase by 1.5 – 1.9 times baseline within 7 

days OR 

Increase by ≥ 0.3 mg/dL (26.5 μmol/L) 

within 48 hours 

Less than 0.5 mL/kg/h for 6 – 12 hours 

2 Increase by 2 – 2.9 times baseline Less than 0.5 mL/kg/h for ≥ 12 hours 

3 Increase by ≥ 3 times baseline OR 

Increase to ≥ 4 mg/dL (353.6 μmol/L) OR 

Kidney replacement therapy initiation OR 

In patients < 18 years, decrease in estimated 

GFR to <35 mL/min/1.73m2 

Less than 0.3 mL/kg/h for ≥ 24 hours  

OR Anuria for ≥ 12 hours 

Abbreviations: KDIGO, Kidney Disease: Improving Global Outcomes; AKI, acute kidney injury; GFR, 

glomerular filtration rate. 

 

AKI is important, since it is one of the most prevalent complications in critically ill patients, with 

prevalence varying between 20-57% depending on the patient population and use of AKI definition criteria [2, 

4, 5]. Furthermore, AKI is associated with a worse outcome, with ICU mortality greater than 50% [4] and 

association of four-fold to six-fold increased mortality than the general inpatient population [6, 7]. Additionally, 

AKI is associated with a longer length of stay [7, 8], higher financial cost [7, 9], and increased risk of chronic 

kidney disease and kidney failure [10, 11].  

Current treatments for AKI are mainly preventive and supportive with hemodynamic management, 

treatment of infections, avoiding hyperglycemia and nephrotoxic medications, and replacing the kidney function 

until recovery in case of kidney failure. As AKI is associated with a worse outcome and treatment is mainly 

preventive, early detection of AKI may avoid possible complications, increase the possibility of kidney function 

recovery, and ultimately improve patient outcome and quality of life. 

For critically ill patients, a variety of prediction models for AKI have been proposed [12–20]. Based on 

the large multi-center randomized controlled trial EPaNIC database [21], Flechet et al. developed the 

AKIpredictor, a series of models to predict AKI using advanced machine learning techniques [20]. The different 

AKIpredictor models each use a different set of features, as they become available at different time points during 

the clinical course: before admission, upon admission, on the first morning after admission, and after 24 hours. 

The models can predict AKI at any stage (1-2-3) or only the most severe stages (2-3). The AKIpredictor is 

available as an online calculator [22]. The accuracy of AKIpredictor was first assessed in a validation cohort, 

where it demonstrated remarkable results and outperformed the commonly used AKI biomarker serum 

Neutrophil gelatinase-associated lipocalin (NGAL) [20]. In addition, the AKIpredictor was able to predict severe 

AKI (defined as AKI stage 2 or 3 based on the KDIGO serum creatinine criteria and/or urinary output criteria) 
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with a similar discrimination but a higher net benefit as compared to physicians [23]. Even while the 

AKIpredictor has demonstrated a robust performance in retrospective and prospective patient cohorts, further 

external validation in different clinical settings would still be useful to demonstrate external validity. 

Once AKI has occurred, the evolution of AKI and its recovery is also of importance as it is strongly 

associated with mortality, progressive renal dysfunction [24] and end-stage kidney disease [25]. Therefore, 

accurate prediction of the course of AKI recovery may improve general ICU and post-ICU care.  

The ability of several kidney biomarkers to predict AKI recovery has been disappointing [26–34], which 

may be partially explained by the heterogeneous patient population with different pathophysiological causes of 

AKI and the timing of recovery definition. With the growth of electronic health records, several clinical 

prediction models are proposed for patients with AKI. However, the majority of them prioritized mortality 

prediction rather than renal recovery prediction [35–42]. Although clinical prediction model may be a promising 

tool, large databases frequently lack a good AKI recovery evaluation as the recovery definition is not uniform, 

and baseline serum creatinine is frequently unknown [43], which poses difficulties for the development of AKI 

recovery prediction models.  

Nevertheless, there were two studies with special focus on developing AKI recovery prediction models 

[44, 45]. In particular, Itenov et al. developed and validated an AKI recovery prediction model in critically ill 

patients with AKI on ICU admission by using the Cox regression models [44]. The model had a fair predictive 

performance which may partially be explained by the fact that AKI recovery was defined within a pre-specified 

timepoint of 28 days, while some patients might still be undergoing recovery from critical illness in the ICU. In 

addition, they only investigated patients with AKI on ICU admission, but AKI may happen unexpectedly at any 

time during the ICU stay. In the other study, Lee et al. proposed an AKI recovery prediction model for dialysis-

requiring AKI patients by using logistic regression and classification and regression tree (CART) [45]. However, 

there were some limitations. First, only poor discrimination was demonstrated, which may not meet the high 

standard of clinical practice. Second, they defined kidney recovery as kidney replacement therapy independence, 

but even AKI patients without KRT are associated with unfavorable outcomes [2]. Finally, no external validation 

was performed, which might lead to over-optimistic results. Given the shortcomings of currently available AKI 

recovery prediction models, there is a need for a better AKI recovery prediction model.  

1.2.2 Augmented renal clearance 

In contrast to AKI, augmented renal clearance (ARC) is at the other end of the renal clearance spectrum, where 

patients may have high renal clearance which is frequently induced by a stress-induced hyperdynamic state. 

Although there is no universally accepted ARC definition, it is commonly described as having a measured urinary 

creatinine clearance (CrCl) greater than 130 ml/min/1.73m2. Critically ill patients frequently have ARC, with 

prevalence ranging between 20 and 65 percent [46]. Even though many studies reported no major difference in 

the clinical outcome or mortality between patients with and without ARC [47–52], it has been demonstrated that 

ARC may result in less exposure to drugs that are often prescribed, including beta-lactams, vancomycin, and 

anticoagulants [53, 54]. Additionally, in order to increase exposure and lower the chance of treatment failure, it 

has also been suggested that antibiotic doses should be raised in patients with ARC [55]. 

It is currently unclear what physiological mechanism causes ARC in critically ill patients. Systemic 

inflammatory response syndrome (SIRS) and kidney functional reserve (KFR) are the two primary hypotheses 
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underlying the emergence of ARC [46, 56]. The first theory suggests that the cytokines and pro-inflammatory 

mediators released during SIRS, coupled with intensive fluid therapy and inotropic drugs, enhance cardiac output 

and renal blood flow and elevate glomerular filtration rate (GFR). The second theory proposes that KFR may 

play a role. KFR is the term used to describe the kidney's ability to enhance GFR in response to specific 

physiological or pathological stimuli, such as pregnancy and high-protein diet [57]. Instead of a single mechanism, 

the combination of SIRS and enhanced KFR is believed by many researchers to be a possible cause of ARC [46]. 

There are some strategies for managing ARC patients. First, to make up for the increased excretion, the 

dosage of renally excreted drugs might need to be raised, by giving a higher dose, shortening the dosage interval 

or increasing the total duration of therapy. In addition, therapeutic drug monitoring can be routinely performed 

to adjust regimens when needed. Finally, another option is to switch to a medication that is not primarily excreted 

by the kidneys. 

Age, gender, surgery/trauma/neuro-related diagnoses, and illness severity score are some of the 

variables that can screen individuals for the risk of ARC. Several studies [47, 49–51, 55, 58–66] consistently 

demonstrated a strong relationship between age and ARC. In addition, a significant correlation between ARC 

and male gender was seen in a number of studies [47, 50, 55, 58, 60–62, 64, 66]. Some research [50, 58, 60, 62, 

63] have identified an association between ARC and surgery/trauma/neuro-related diagnoses. Finally, some 

studies [51, 63, 66] reported that a lower severity score was a risk factor for ARC.  

Due to the high prevalence and strong association with adverse consequences in critically ill patients, it 

is important to predict the onset of ARC. Therefore, several studies [61, 63, 67, 68] have been conducted to 

predict the onset of ARC, but most of them were based on a small and selected subgroup of critically ill patients 

and not externally validated. Additionally, they predicted the onset of ARC once for the entire ICU stay, while 

some patients may develop ARC intermittently during their ICU stay. To address the abovementioned 

shortcomings, using the large multi-center M@tric database [69], Gijsen et al. developed a tool to predict the 

onset of ARC on the next ICU day named “ARC predictor” [62], by employing a generalized estimating equation 

(GEE) logistic regression algorithm and backward feature selection method. Six routinely collected clinical 

variables are included in the ARC predictor: age, sex, day from ICU admission, serum creatinine of the previous 

day, trauma related diagnosis on ICU admission (True/False), and cardiac surgery related diagnosis on ICU 

admission (True/False). Based on the given six features, the ARC predictor generates the predicted probability 

of ARC, which is then converted into a prediction for ARC on the following ICU day with a predetermined 

classification threshold. Although the threshold is by default set at 20% since this value maximized sensitivity 

and specificity in the original study, it can be manually altered. 

In the validation cohort, the ARC predictor outperformed the two previous reference models (ARC 

Score [68] and ARCTIC Score [61]) with good discrimination and calibration and a broad clinical usefulness 

range. The ARC predictor is now accessible to the general public as an online predictor (Figure 1.1) [70]. 

Although the ARC predictor demonstrated significant promise in the original development study, additional 

external validation in an independent study cohort is required before it can be used in clinical practice. 
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Figure 1.1 Screenshot of the ARC predictor website, www.arcpredictor.com 

 

1.2.3 Creatinine clearance 

Daily evaluation of kidney function in the ICU is routinely performed because of the high prevalence of AKI and 

ARC in critically ill patients. The glomerular filtration rate (GFR) is a quantification of the filtration function of 

kidney. It reflects the volume of fluid that is filtered through the kidneys per unit of time. In clinical practice, 

GFR is usually estimated based upon patients characteristics and serum creatinine by the Cockcroft-Gault 

equation [71], the Modification of Diet in Renal Disease (MDRD) study equation [72], or the Chronic Kidney 

Disease Epidemiology Collaboration (CKD-EPI) equation [73] (Table 1.2). However, these frequently used 

formulas were not developed in ICU setting, and it is well known that they are not appropriate for accurate 

estimations of the kidney function of critically ill patients [52, 64, 74–76], especially in those patients with 

prolonged ICU stay [77].  
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Table 1.2 Equations kidney function estimation 

measured CrCl (ml/min/1.73m2) = 𝑈𝐶𝑟(𝑚𝑔/𝑑𝐿)  ×  𝑈𝑂(𝑚𝑙/𝑑𝑎𝑦)/𝑆𝐶𝑟 (𝑚𝑔/𝑑𝐿)/1440(𝑚𝑖𝑛/𝑑𝑎𝑦) ×

1.73/(0.007184 × ℎ𝑒𝑖𝑔ℎ𝑡(𝑐𝑚)0.725 × 𝑤𝑒𝑖𝑔ℎ𝑡(𝑘𝑔)0.425) 

eCrClCG (ml/min) = [(140 − 𝑎𝑔𝑒(𝑦𝑒𝑎𝑟𝑠)) × 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑘𝑔)]/𝑆𝐶𝑟(𝑚𝑔/𝑑𝐿) × 72) × 0.85(𝑖𝑓 𝑓𝑒𝑚𝑎𝑙𝑒) 

eGFRMDRD (ml/min/1.73m2) = 175 ×  𝑆𝐶𝑟(𝑚𝑔/𝑑𝐿)–1.154 × 𝑎𝑔𝑒 (𝑦𝑒𝑎𝑟𝑠)–0.203 × 0.742 (𝑖𝑓 𝑓𝑒𝑚𝑎𝑙𝑒) ×

1.212 (𝑖𝑓 𝑏𝑙𝑎𝑐𝑘) 

eGFRCKD-EPI (ml/min/1.73m2) = 141 ×  𝑚𝑖𝑛(𝑆𝐶𝑟(𝑚𝑔/𝑑𝐿)/𝜅, 1)𝛼  ×  𝑚𝑎𝑥(𝑆𝐶𝑟(𝑚𝑔/𝑑𝐿)/𝜅, 1)−1.209 ×

0.993𝑎𝑔𝑒(𝑦𝑒𝑎𝑟𝑠) ×  1.018 (𝑖𝑓 𝑓𝑒𝑚𝑎𝑙𝑒)  ×  1.159 (𝑖𝑓 𝑏𝑙𝑎𝑐𝑘) 

CrCl, creatinine clearance; UCr, urine creatinine; UO, urine output; SCr, serum creatinine; eCrClCG, creatinine clearance estimated by the 

‘Cockcroft-Gault’ equation; eGFRMDRD, glomerular filtration rate estimated by the ‘4-variable Modification of Diet in Renal Disease’ 

equation; eGFRCKD-EPI, glomerular filtration rate estimated by the ‘Chronic Kidney Disease Epidemiology Collaboration’ equation; α = -

0.329 if female and -0.411 if male; κ = 0.7 if female and 0.9 if male; min(𝑆𝐶𝑟(𝑚𝑔/𝑑𝐿)/𝜅, 1), minimum between 𝑆𝐶𝑟(𝑚𝑔/𝑑𝐿)/𝜅 and 1; 

max(𝑆𝐶𝑟(𝑚𝑔/𝑑𝐿)/𝜅, 1), maximum between 𝑆𝐶𝑟(𝑚𝑔/𝑑𝐿)/𝜅 and 1 

 

Therefore, it is preferable to assess kidney function by measurement of GFR rather than using 

estimations. While adequate tools to measure real-time GFR are currently not available, GFR is best determined 

by urinary clearance of filtration markers. Inulin is the gold standard of exogeneous filtration marker, since inulin 

is not secreted, reabsorbed, nor metabolized by the kidney [78]. However, the usage of inulin is constrained by 

its price and lack of availability.  

Creatinine is a suitable endogenous filtration marker, since it is neither reabsorbed nor metabolized by 

the kidney and only minimally excreted by the tubules. Creatinine clearance (CrCl) can be calculated with urine 

output, serum creatinine, and urinary creatinine (measured on 8- to 24-hour sample [79]). However, the need of 

several hours for CrCl calculation hinders quick decision-making on renally excreted drug administration. 

Additionally, by the time urinary CrCl is available, the calculation has already fallen behind the actual kidney 

function as it reflects the CrCl during the previous interval and is less reliable because the kidney function is 

known to vary quickly in critically ill patients [80]. Therefore, kidney function prediction may enable more 

appropriate treatment approaches by providing a more precise evaluation of kidney function. 

Several studies developed kidney function prediction models with a focus on predicting AKI and ARC. 

However, both AKI and ARC are based on categorized definitions while the kidney function is a continuous 

parameter. Predicting CrCl for the entire kidney function spectrum is more in accordance with clinical and 

physiological reality. To the best of our knowledge, no prediction models for daily prediction of CrCl have been 

proposed. 

1.3 Big data and machine-learning 

Over the past decades, ICUs have been computerized through the implementation of electronic health records 

(EHR). Advancements in storage capacity, computation ability, and global internet, have definitely promoted the 

roll-out of these systems worldwide, and have gradually reduced the implementation cost [81].  
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In the first place, EHRs are used to optimize individual patient care as they can efficiently present the 

latest, accurate, and comprehensive information about patients to healthcare providers. In addition, EHRs make 

it easier to efficiently share data across multiple health care organizations in multi-center studies. Finally, EHRs 

generate sufficient amounts of patient data that are necessary to find associations with adequate statistical power.  

The amount of clinical data gathered from ICU patients is huge. All vital organs are continuously 

monitored in a high-resolution fashion, and many EHRs also record the type and dosage of administered drugs, 

laboratory results, clinical notes. These result in large ‘volume’ of a wide ‘variety’ of data continuously 

accumulating at a high ‘velocity’ in ICUs. The three Vs comprise the key concepts of ‘big data’, which refers to 

datasets that are too large or complex to be handled by traditional data-processing software. Big data must add 

‘value’ by generating novel insights and revealing undiscovered patterns in order to be useful. In addition, data 

‘veracity’ is of equal importance. If the source of data is contaminated, research findings can be misleading. As 

a result, these last two Vs have been recently added to the big data definition [82]. In particular, these data appear 

to be extremely useful to build predictive models for a variety of conditions and outcomes [83]. 

Having big data is not enough; we also need advanced analytic capabilities and artificial intelligence to 

derive useful insights and valuable information from millions of data points. Artificial intelligence refers to 

techniques that aim to mimic a human’s behavior regardless of the methods, including simple rule-based if-else 

conditions, advanced machine-learning algorithms, and powerful deep-learning techniques. Machine learning is 

a specific field of artificial intelligence where the computer system learns based upon previous examples. Next, 

it infers from what it has learned, and predicts for previously unseen conditions based on the learned mechanism. 

Machine learning is used in various fields such as physiologic waveform analysis, image analysis, and natural 

language processing.   

In order to predict a certain event or outcome, supervised machine learning can be used. In this technique, 

a model learns the relationship between the given input data and one or more target outcomes. Target outcomes 

must be well indicated (often called labeled). In medicine, supervised learning can be used to identify people 

who are more likely to develop a disease and as such would benefit the most from specialized medical care. 

Examples of supervised algorithms include linear models (e.g., logistic regression, lasso, ridge) and tree-based 

algorithms (such as decision tree, random forest, and gradient boosting method). 

According to the property of prediction target, supervised learning can be further divided into two 

subtypes: classification and regression. In a classification task, a model is trained to determine which category 

the new patient falls into. For example, if researchers want to know whether acute kidney injury (AKI) can be 

predicted by several routinely collected clinical data, classification algorithms can be applied to a dataset 

containing clinical data of interest and a label indicating the presence of AKI (‘with AKI’ or ‘without AKI’). 

Regression can be used to construct prediction models for a continuous outcome. For instance, in a study to 

predict creatinine clearance (CrCl) of the next ICU day for each critically ill patient, regression algorithms can 

be utilized on a dataset including relevant clinical data and a label indicating the exact creatinine clearance on 

the next ICU day. 
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1.4 Development of machine-learning models in ICU 

1.4.1 Feature engineering  

Regardless of prediction tasks, it is necessary to include relevant data, and it is believed that meaningful data can 

produce better predictive performance than raw data. The process of extracting useful information from the raw 

data by using the domain knowledge is called feature engineering. The feature engineering process can involve 

basic derivatives or sophisticated data transformations. The slope of a linear regression model, for example, can 

be used to identify data trends, where different temporal window sizes could be chosen to provide a thorough 

insight about the patient’s physiological stability. Complex transformation such as Fast-Fourier Transform (FFT) 

[84], which provides frequency information of the raw data by decomposing a signal into a combination of several 

spectral components, has also showed success in audio, video, and electrocardiogram (ECG) signal processing 

[85]. As an extension from the FFT, cepstrum analysis [86] describing the changing rate of information in 

different frequency bands has gained success in a variety of fields including speech recognition, radar and sonar 

applications, and analysis of electroencephalogram (EEG). 

1.4.2 Feature selection  

Having abundant features may not be helpful [87], and it is necessary to perform feature selection, which refers 

to a process to reduce the number of features by removing noisy, redundant, or less important features while 

keeping the most important features during the model development stage. Feature selection is one of the most 

important procedures in machine learning, since it significantly and directly influences the predictive 

performance. Feature selection is especially important in medicine when the incidence of a disease is low, and 

each disease presentation may have abundant features. This unique condition makes model development prone 

to overfitting, which refers to the situation where a prediction model performs well on the data used for model 

development and yields poor performance on unseen data. Additionally, feature selection has a profound impact 

on clinical utility. Specifically, compared with a powerful model depending on several monitoring data with 

difficult calculations, a relatively less powerful model that is only based on simple features with high-availability 

data and trivial calculations may be preferred as it is much easier to implement in the clinical practice. 

Furthermore, feature selection changes the way of interpreting prediction results. A successful feature selection 

sheds light on the most relevant features and bring novel insights, while a poor feature selection results in a 

prediction model containing unreasonable features that clinicians are reluctant to utilize.  

Two types of feature selection methods are frequently used: intrinsic (or embedded) and wrapper 

methods [88, 89]. Intrinsic methods automatically select features during the model training phase. There are two 

types of regularization: L1 (Lasso) and L2 (Ridge) regularizations. L1 regularization has a stronger tendency to 

turn coefficients to zero and to create sparse models [90]. Tree-based models automatically search for the most 

important features via their contributions to predictive performance or the decrease in uncertainty (impurity) over 

all the trees. Therefore, the most important features can be chosen by looking at how frequently a feature is used. 

Intrinsic methods are preferred in cases where the dataset is small. 

Wrapper methods pick the most important features by trying different combinations of feature subsets 

for a specific machine-learning algorithm on a given dataset. These methods are computationally expensive and 

prone to overfitting, but they usually demonstrate better performance than filter methods. Backward feature 
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selection is one of the wrapper methods, where it starts with a full feature subset. At each step, the feature that 

causes the least reduction in performance after removal is discarded from the feature subset. The removal process 

is also repeated until the stopping criteria are met. Wrapper methods typically show better performance given a 

large dataset [91]. 

Despite the efficiency and simplicity of automatic feature selection methods, one should not solely rely 

on them. Integration of the knowledge from experts in the field can largely reduce the computation time and 

increase the chance of building a robust model. For instance, there may be no logical justification to include a 

feature in the model, even when it is coincidentally very predictive for a prediction task. In this scenario, spurious 

correlation will successfully deceive automatic feature selection methods, while domain experts will recognize 

the lack of rationality. 

1.4.3 Machine-learning algorithms 

The method for feature selection has to be considered together with the choice of machine-learning algorithm. 

There are various machine-learning algorithms that all have their advantages and disadvantages. There is no 

single algorithm that consistently outperforms the others. Consequently, the choice of algorithm depends on the 

research question, input and output data characteristics, and training and running time requirement. The methods 

relevant to or employed in this thesis are listed below, and they were categorized into two subtypes: linear and 

tree-based algorithms.  

1.4.3.1 Linear models 

1.4.3.1.1 Logistic regression 

Logistic regression is the most commonly used machine-learning algorithm for binary medical outcomes due to 

its simplicity [92]. As indicated in its name, it utilizes a ‘logistic function’ (or logit) to convert the probability to 

log odds (Figure 1.2). Logistic regression is used to estimate the relationship between a dependent categorical 

variable and one or several independent variable(s) (in nominal, ordinal, or continuous formats). The logistic 

regression can be represented in a mathematical way as follows:  

Given 𝑁 independent variables 𝑥𝑖, the predicted probability of having an event 𝑝(𝑦 = 1) is 

𝑝(𝑦 = 1) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(∑ 𝛼𝑖 × 𝑥𝑖

𝑁

𝑖=1

+ 𝛽) 

where 𝛼𝑖  represents the coefficient for the corresponding independent  𝑥𝑖 , 𝛽  is known as the intercept, 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1+𝑒−𝑥, and 𝑒 is the mathematical constant 

Logistic regression can also be rewritten with logit function and log-odds instead of sigmoid function and 

probability: given 𝑁 independent variables 𝑥𝑖, the log-odds for having an event is 

ln (
𝑝(𝑦 = 1)

1 − 𝑝(𝑦 = 1)
) = ∑ 𝛼𝑖 × 𝑥𝑖

𝑁

𝑖=1

+ 𝛽 

where 𝛼𝑖 represents the coefficient for the corresponding independent 𝑥𝑖 , 𝛽 is known as the intercept, ln (𝑥) is 

the natural logarithm with mathematical constant 𝑒 as its base. 
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The 𝛼𝑖  describes the effect on the prediction, when having a 1-unit increase in the corresponding 

independent variables 𝑥𝑖 , while keeping the remaining variables constant. When there are multiple independent 

variables included in the analysis, we call this ‘adjusted’, and the corresponding coefficient 𝛼𝑖 is the multivariate 

effect, given the effect of other independent variables. The odds-ratio of an independent variable 𝑥𝑖  can be 

calculated by applying the exponential function to its corresponding coefficient (𝑒𝛼𝑖).  

Logistic regression has strengths. First, logistic regression is easy to implement, which can save 

resources including the human resources to maintain and to integrate the model into applications and reduce the 

time needed to make a prediction which plays a crucial role in real-time applications. Second, logistic regression 

is easy to interpret while other machine-learning models have been known for their ‘black-box’ characteristics.  

Nevertheless, logistic regression has some limitations. First, as a linear model, logistic regression does 

not automatically account for the non-linear functions between the variables. Since it is the inherent limitation of 

logistic regression, the additional terms must be introduced explicitly, or more advanced machine-learning 

algorithms should be considered if non-linear relationship needs to be described. Second, logistic regression 

requires the absence of multicollinearity in the dataset. Multicollinearity means that there are highly correlated 

independent variables in the dataset. Violating this assumption gives wrong interpretation about the coefficients, 

weakens the statistical power, and results in less trustworthy p-values. Third, the independence of observations 

is still another crucial assumption that logistic regression requires. In other words, observations must be 

independent from one another and cannot be matched data or repeated measurements. 

 

Figure 1.2 Visualization of the logit function (left) and sigmoid function (right) 

1.4.3.2 Tree-based algorithms 

Tree-based algorithms are based on a series of conditional rules (Yes/No) to approximate the outcome of interest. 

They can be used for both classification and regression. Additionally, tree-based algorithms can handle multi-

output problems where the data of a patient is used as input and two or more prediction outputs are generated. 

Finally, by the virtue of a series of conditional rules, tree-based algorithms can depict a non-linear relationship. 

In this thesis, we focus on three algorithms: decision tree, random forest, and gradient boosting method.  

1.4.3.2.1 Decision tree 

Decision tree is an algorithm that has only one tree-and resembles a human decision-making process (Figure 

1.3). A decision tree starts at a node (root) where a question needs to be answered before the data can be split 

into two branches (sizes are not necessarily the same). After the answer is given and the data is split, another 
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question is asked, and the already-split data is further decomposed into two parts. This procedure is repeated 

continuously until the stopping criteria are met. Finally, the input data will arrive at a specific terminal node (also 

called leaf) with corresponding predicted value(s), which could be predicted probability or continuous predicted 

outcome of interest for classification and regression tasks respectively.  

Although a decision tree can be easily explained with visualization of the entire tree structure, it has 

some limitations. First, it frequently produces a tree that is extremely complex and cannot be generalized when 

tested on other datasets. To overcome this overfitting problem, some mitigations can be considered, such as 

selecting the most important features in advance, pruning the tree, limiting the minimum samples in each node, 

or specifying the maximum depth of the tree. Second, the fact that there is only one tree contributes to the 

instability of the decision tree. An entirely different decision tree could be produced even with a minor variation 

in the dataset. Third, a decision tree skewed toward the dominant class may be produced by a dataset with unequal 

numbers of cases from various classes. This issue can be solved by under-sampling the majority class, 

oversampling the minority class, or by penalizing minority-group errors more severely. 

 

 

Figure 1.3 Example of a decision tree to predict the risk of acute kidney injury. AKI, acute kidney injury  

 

1.4.3.2.2 Random forest 

Random forest [93, 94] is a tree-based ensemble method. Ensemble methods are based on a concept that better 

performance can be achieved by combining the results from multiple models (often called base learners, as 

indicated in Figure 1.4) [95]. Given the tree-based nature, random forests can handle both classification and 

regression tasks. Instead of building multiple decision trees sequentially, random forest builds all trees 

simultaneously with bagging method. Bagging, bootstrapping or bootstrap aggregating, is a technique that 

randomly samples with replacement from the training set [96]. While some data may be sampled more than once 

using this technique, it is guaranteed that one sampling will not affect the others (mathematically, the covariance 

between any two samplings is zero), allowing each tree to grow independently from the others. Additionally, 
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since the sample size is maintained by recycling the utilized examples, the bagging approach reduces the issue 

of a dataset with a small population, which is a common circumstance in most clinical investigations. 

Random forest has many strengths. First, it is resistant to outliers because it averages out the effects of 

extreme values locally. Second, it is effective at representing non-linear relationships. Third, it has low risk of 

overfitting because each tree overfit data in a different way, therefore the mistakes of one tree are compensated 

by the other trees. Finally, given that there are no intricate mathematical computations involved in the prediction 

procedure, a random forest can perform efficiently during the testing phase (only a series of conditional questions 

needs to be answered). 

Random forest has some limitations. First, a random forest is computationally expensive and requires a 

lot of calculation and training time because each tree can grow deeply and there are many of them. This is 

especially true when there are lots of high dimensional training data. Second, continuous variables and categorical 

variables with a large number of distinct values tend to be preferred by random forest. Third, random forest is 

less interpretable than decision tree. 

 

Figure 1.4 Example of a random forest to classify the new patient 

 

1.4.3.2.3 Gradient boosting trees 

As opposed to random forest, gradient-boosting trees [97] grow trees sequentially (Figure 1.5). The boosting 

approach is founded on the notion that each new tree is constructed to remedy the errors of its predecessors [98]. 

Based on the gradient descent procedure, which is an optimization technique that iteratively proceeds in the 

direction of steepest descent when reducing the loss function, the gradient-boosting trees algorithm corrects the 

errors when adding new trees. In the end, heavy weights (more focus) are given on difficult examples, and 

examples that are easy to predict receive small weights (less focus).  

The gradient-boosting trees algorithm has many strengths. First, it is a tree-based ensemble method that 

can handle both classification and regression problems and can describe the non-linear relationship between 

independent and dependent variables. Second, gradient-boosting trees method usually outperforms random forest 

[97], which may be partly attributed to the ability to capture complex relationships by iteratively correcting the 

errors of predecessors. Third, no data pre-processing techniques are needed as the technique can work with data 

containing missing values, and neither standardization nor normalization is necessary. 



 

13 

 

Gradient-boosting trees method has some limitations. First, gradient boosting trees method is more 

prone to overfitting, when the model parameters are not properly fine-tuned. However, model generalizability 

can be increased by optimization of the model's parameters and regularization. Second, gradient-boosting trees 

method is less interpretable than decision tree. Although the relevance of each feature may be quantified, it is not 

always evident how one feature interacts with the others and influences the outcome of the prediction. Third, 

training gradient-boosting trees can take a long time, since each tree grows sequentially instead of parallelly. 

 

Figure 1.5 Example of a gradient boosting trees method where each new tree is built to correct the errors of its predecessors 

in each new iteration. 

 

1.4.4 Evaluation metrics 

After the development of prediction models, it is necessary to assess the predictive performance. Numerous 

evaluation measures exist; each provides different perspectives, and when reported altogether, they can provide 

a thorough picture of the model performance. Due to the inherent difference between classification and regression 

prediction targets, they have to be evaluated differently.  

1.4.4.1 Classification 

1.4.4.1.1 Confusion matrix 

A confusion matrix can be created using the number of patients actually having the event (ground truths) and the 

number of patients that were predicted to have the event (prediction outcomes). The number of patients that are 

(in)correctly predicted as positive or negative is shown in a confusion matrix as true positives (TP), true negatives 

(TN), false positives (FP), and false negatives (FN), as shown in the Table 1.3. True positive rate, true negative 

rate, positive predictive value, and negative predictive value can be further defined as follows.  
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Table 1.3 Confusion matrix for binary classification  

  Prediction outcomes 

  Positive Negative 
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True positive rate (TPR, sensitivity, recall): the probability of a positive predicted event, given the condition that 

the event is truly positive.  

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

True negative rate (TNR, specificity): the probability of a negative predicted event, given the condition that the 

event is truly negative.  

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

False positive rate (FPR, fall-out): the probability of a positive predicted event, given the condition that the event 

is truly negative.  

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

False negative rate (FNR, miss rate): the probability of a negative predicted event, given the condition that the 

event is truly positive.  

𝐹𝑁𝑅 =
𝐹𝑁

𝐹𝑁 + 𝑇𝑃
 

Positive likelihood ratio (LR+): the probability of a positive event predicted to be positive, divided by the 

probability of a negative event predicted to be positive.  

𝐿𝑅+=
𝑇𝑃𝑅

𝐹𝑃𝑅
 

Negative likelihood ratio (LR−): the probability of a positive event predicted to be negative, divided by the 

probability of a negative event predicted to be negative. 

𝐿𝑅−=
𝐹𝑁𝑅

𝑇𝑁𝑅
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Positive predictive value (PPV, precision): the proportion of true positive results to all the positive prediction 

results. 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Negative predictive value (NPV): the proportion of true negative results to all the negative prediction results. 

𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

 

1.4.4.1.2 Accuracy 

The simplest and most popular method for determining whether or not a prediction model is reliable is to directly 

examine the model accuracy, which can be defined with the confusion matrix as follows: 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
. 

However, the occurrence of an event or disease may be extremely rare in a medical context, making it 

inappropriate to evaluate model performance only on accuracy. In the case of a disease having a 5% prevalence 

in a dataset, for example, a simple estimate that the patient would be free from disease can obtain a very high 

accuracy of 95%. As a consequence, judging model performance solely on accuracy is clearly insufficient. The 

clinical usefulness of the evaluation should also be considered, along with other evaluation metrics like 

discrimination and calibration.  

1.4.4.1.3 Discrimination 

Discrimination evaluates a model’s ability to discriminate patients with a specific condition (or event) from those 

without it. It is commonly measured with the area under the receiver operating characteristic (ROC) curve. 

1.4.4.1.3.1 Receiver operating characteristic (ROC) curve and area under the ROC curve (AUROC) 

The receiver operating characteristic (ROC) curve is a graph showing the sensitivity and the corresponding 1-

specificity at all classification thresholds (Figure 1.6) [99]. Since the output of a classifier can be continuous 

predicted probability of an event, a classification threshold is needed to decide whether the final prediction result 

belongs to the positive or negative class. Instead of using a fixed threshold, the classification threshold can be 

tailored to the intended usage of the classifier and the acceptable risk for a positive or negative misclassification, 

based on the corresponding sensitivity and specificity at each classification threshold. It is noteworthy that there 

is a trade-off between the sensitivity and specificity. For example, a low classification threshold contributes to a 

high sensitivity at the cost of specificity, and it would be preferred if the cost of a false positive case is lower 

than the cost of a false negative, and vice versa.  

Although the choice of optimal classification threshold depends on the intended usage, common ways 

of deciding the optimal classification threshold include (i) using the threshold that corresponding to the top-left 

corner of the ROC curve, since a perfect model should have 100% sensitivity and 100% specificity, and (ii) using 

the threshold that maximizes the Youden index, which is the sensitivity difference between a model and the 

diagonal axis for a specific specificity. These two methods both try to simultaneously maximize the sensitivity 

and specificity. The only difference is that the first method has a quadratic term in calculation of Euclidean 

distance to the top-left corner, whose clinical meaning remains unknown [100].  
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To estimate the overall performance of a model at all classification thresholds, the area under the ROC 

curve (AUROC) can be calculated. AUROC is a continuous measurement ranging from zero to one, where an 

AUROC of 0.5 represents a random model that is not different from flipping a coin, and an AUROC of one 

depicts a perfect model that makes no mistakes. The closer the AUROC is to one, the better the model’s 

discrimination. There is no consensus about the adequate AUROC, which depends on the research question, 

intended usage, and reference for comparison. A prediction model with moderate or even poor discrimination 

may still be beneficial by saving resources (e.g., money, time, and human resources) and thus have a high clinical 

usefulness.  

 

Figure 1.6 Example of a receiver operating characteristic curve. AUROC, area under the ROC curve; ROC curve, receiver 

operating characteristic curve 

 

1.4.4.1.3.2 Precision-recall curve and area under the PR curve (AUPRC) 

Precision-recall curve is a curve for evaluating the precision (positive predictive value) and corresponding recall 

(sensitivity) at all classification thresholds (Figure 1.7). Similar to the ROC curve, the classification threshold 

can be chosen based on the desired recall or precision. The major difference from ROC curve is that the precision 

recall curve considers the skewness in class distributions, since it evaluates the proportion of true positive cases 

in all positive predictions. If a dataset is imbalanced, the ROC curve may demonstrate over-optimistic results, 

while the precision recall curve allows for an unbiased interpretation of model performance [101, 102]. Unlike 

the ROC curve where only one curve is present, a ‘baseline’ model that predicts all patients as positive is usually 

added for comparison purposes in a precision recall curve. The further away that a model’s curve is from the 

‘baseline’ model’s curve, the better its performance.  

It is possible to utilize the threshold that maximizes the F1 score to select the best classification threshold 

that balances the importance of precision and recall. The F1 score is defined as follows. 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
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Like the ROC curve, calculating the area under the precision recall curve (AUPRC) allows one to assess 

model performance. A well-performing model should have an AUPRC close to one, and a poor-performing 

model would have an AUPRC close to the event prevalence. 

 

Figure 1.7 Example of a precision-recall curve, where the solid line indicates the model’s precision-recall curve, while the 

dashed line represents the number of positive cases over the total number of patient-days. AUPRC, area under the precision 

recall curve; Baseline, the number of positive cases over the total number of patient-days 

1.4.4.1.4 Calibration 

Calibration assesses the degree of agreement between the predicted probabilities and observed outcome 

proportions [103]. For example, for a well calibrated model, out of the patients predicted to have a 0.4 probability 

of having the outcome, close to 40% actually do have the outcome. It is suggested to present the calibration in a 

graphical manner as a calibration plot (Figure 1.8), which is a curve with predicted probability on the x-axis and 

observed outcome proportion on the y-axis. In classification tasks, a locally weighted least squares regression 

smoother (LOESS) method should be applied to transform the patients’ binary outcomes into continuous outcome 

proportions between zero and one (smoothing) by combining patients with similar predicted probabilities [104]. 

Since the diagonal axis of a calibration plot represents a perfectly calibrated prediction model, a model is 

considered well-calibrated if its calibration plot is not significantly different from the diagonal axis in a test of 

statistical significance. If a systematic deviation of a calibration plot from the diagonal axis is observed, the 

model is considered not well-calibrated. For instance, if the calibration plot is systematically above the diagonal 

axis, it means that the model has under-estimated the predicted probability of an event. And the opposite holds 

for an over-estimation situation. When miscalibration happens, a calibration of the uncalibrated model may be 

considered (re-calibration) by using Platt Scaling or Isotonic Regression [105, 106]. 

Calibration can be additionally characterized by the calibration slope and the calibration-in-the-large 

[103]. The calibration slope is calculated by the slope of a linear regression model, and it examines the spread of 

predicted probability of being positive. A calibration slope smaller than one represents that the predicted 

probability is too extreme (e.g. the predictions are either too high or too low), which is commonly observed in 

external validation studies where extreme values are present due to overfitting. The opposite is true for a 

prediction range that is too small. Calibration-in-the-large measures the overall calibration between predicted 
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probability and observed outcome, and it is calculated by the difference between average predicted probability 

and average observed outcome proportion. A positive calibration-in-the-large suggests underestimation, while a 

negative one represents over-estimation. In conclusion, a well-calibrated model should have calibration slope 

close to one and calibration-in-the-large close to zero.  

 

Figure 1.8 Example of a calibration curve, where the solid line indicates the model’s calibration curve, and the black dashed 

line represents the calibration curve for a perfectly calibrated model. CS, calibration slope; CITLs, calibration-in-the-large  

 

1.4.4.1.5 The decision curve 

While discrimination and calibration are commonly reported in general prediction models, the decision curve 

(Figure 1.9), which provides information of the clinical usefulness of a model, is not commonly reported. As 

aforementioned, the output of a classifier is a continuous predicted probability, so a classification threshold needs 

to be set to classify the predictions as positive or negative. In a general prediction task, a default classification 

threshold of 0.5 is commonly used, since the importance of correctly classifying new inputs as positive or 

negative is equal. However, this is rarely the case in clinical practice. Missing one patient with the disease (FN) 

may have more adverse impact than misclassifying a patient as positive (FP), or vice versa. Therefore, an optimal 

classification threshold must be decided from not only a statistical perspective but also a clinical viewpoint. Once 

a classification threshold is decided, we can evaluate the clinical usefulness by comparing the potential benefits 

of utilizing the prediction model versus the default policy without the prediction model [107]. We may further 

study the clinical utility for all potential classification thresholds and visually display their relationship as a 

"decision curve" [108], similar to the ROC curve. 

For a specific classification threshold 𝑝𝑡 , the clinical usefulness can be quantified by the net benefit with 

the following equation, which considers the potential benefit and harm of true-positive and false-positive with a 

weighting factor. 

𝑁𝑒𝑡 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 =
𝑇𝑃

𝑁
−

𝐹𝑃

𝑁
×

𝑝𝑡

1 − 𝑝𝑡
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where N is the sample size of the dataset, TP is the number of true-positive predictions, FP is the number of false-

positive predictions, and 
𝑝𝑡

1−𝑝𝑡
 is the odds of the classification threshold 𝑝𝑡 . 

𝑝𝑡

1−𝑝𝑡
 works as a weight to give 

different importance to FP from TP. For instance, if the classification threshold is set to 0.3, the harm of the FP 

is considered to be 
3

7
 as import as the benefit of the TP. 

As indicated above, the net benefit of a model has to be compared with that of two default policies: 

treat-all and treat-none. A model is considered clinically useful if the model’s net benefit is larger than that of 

both two default policies. The net benefit of treat-all varies with disease prevalence and classification threshold. 

Treat-none always classifies patient as negative (TP and FP are always zero), so the net benefit of treat-none is 

zero for all possible classification thresholds.  

We can further investigate the range of classification threshold where a model is considered clinically 

useful. The wider the clinical usefulness range, the more situations a model can be applied to. Since the 

importance of potential harms to potential benefits is different from patient to patient, a personalized 

classification threshold may be necessary. If a model has a wide clinical usefulness range, it can be potentially 

helpful for more patients in more situations.  

 

Figure 1.9 Example of a decision curve, where the solid line, dashed-dotted line, and dashed line indicate the net benefit of 

the prediction model, the default policy “treat-all”, and the default policy “treat-none” respectively 

 

1.4.4.2 Regression  

1.4.4.2.1 Error, mean absolute error, and root mean square error 

In a regression task we are interested in how closely our predictions match the ground truth, which is best 

indicated via direct comparison between the predicted and expected outcome of interest (often called as error). 

The commonly used error evaluation metrics include mean absolute error (MAE) and root mean square error 

(RMSE). Both summarize how much the predictions on average deviated from the real numerical outcome values, 

with RMSE more sensitive to large errors due to its square function. Since they both represent deviations, the 
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smaller the error measurements, the better the performance. Importantly, neither metric allows for the 

interpretation of error direction (overestimation or underestimation). 

 

1.4.5 Internal validation and external validation 

A prediction model is supposed to learn an underlying relationship from previous examples, to extrapolate from 

what it has learned, and to provide reliable predictions for previously unseen patients. Consequently, model 

performance should not be evaluated only on the patients used for model development but also on independent 

patient groups [109]. The procedure to evaluate performance outside the patients used for model development is 

called validation. There are two forms of validation: internal validation and external validation, depending on 

whether the development and validation datasets are independent. 

1.4.5.1 Internal validation 

Internal validation is a process to examine internal validity of a model in the same setting where the model 

development is performed. Internal validation is a crucial and indispensable step for the development of a 

prediction model, since it provides less biased measurement of model performance and helps reducing the risk 

of overfitting. In addition, a proper internal validation ensures the reproducibility. The most common internal 

validation methods include split-sample validation and K-fold cross validation [110].  

1.4.5.1.1 Split-sample validation 

Split-sample validation simply divides the dataset into two parts: one for model development and the other for 

validation of model performance. The dataset can be divided in any way, but certain details, such as the sample 

size ratio between the development set and validation set, should be focused on. Additionally, event incidence 

should be examined to ensure that it is high enough for both development and validation sets. A decent prediction 

model cannot be trained if the incidence in the development set is too low, and the performance cannot be trusted 

if the incidence in the validation set is not sufficient. One way to ensure the event incidence in both parts is to 

use stratified sampling, which forces the different partitions to have the same proportion of the target outcome.  

Despite the simple computation and efficiency of split-sample validation, there is a limitation that the 

model and its performance may not be stable and reliable, since only part of the dataset is used for model 

development and the rest for model validation. Hence, more advanced internal validation methods such as K-

fold cross validation are preferrable.  

1.4.5.1.2 K-fold cross validation 

Based on the concept of split-sample validation, K-fold cross validation is a validation method with a higher 

stability (Figure 1.10). First, the dataset is split into K folds. Subsequently, a model is trained on all but one fold 

and tested on the remaining fold. This training and testing procedure is repeated K times until all the folds have 

been used independently for testing. In the end, there are K testing measurements, and a corresponding 

confidence interval can be drawn.  

The choice of the integer K is arguable. On the one hand, a large K is time-consuming and 

computationally demanding, since the training and testing procedures have to be repeated more times to evaluate 

model performance. The most extreme case is leave-one-out cross validation, where all but one patients are used 

for development, and validation is performed on one patient in each fold. On the other hand, a small K has the 
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drawback of not having a large sample size for training, and thus the testing performance is likely to be poor. 

Additionally, since the number of repetitions is lower for a small K, the testing performance is less stable. 

Commonly chosen Ks are 5, 10, or 20 folds. 

 

 

Figure 1.10 Example of K-fold cross validation, where k=5. The data are first split into five sets. Consequently, the model is 

trained and tested for five iterations. For each iteration, model is trained on four folds (i.e., the training sets, indicated in 

white) and tested on the reserved one fold (i.e., the testing test, indicated in grey). Finally, the model performance is 

summarized by the measurements from the testing set in each iteration.   

 

1.4.5.2 External validation 

As a result of the same setting, internal validation is still partially similar to development set and not 

systematically different, and thus internal validation can still provide over-optimistic results. Therefore, the 

optimal approach is to investigate a model’s generalizability (or transportability) in an independent dataset [111]. 

There are many external validation methods with different settings, e.g., temporal validation, geographical 

validation, and validation in different patient populations. Temporal validation refers to model validation in a 

period that is different from the time the model was developed, e.g., ten years after model development. 

Geographical validation evaluates model performance in different locations from the place the model was built, 

e.g., other ICU units, other hospitals, and other countries. Validation in different patient populations may yield 

radically different results even at the same place during the same period, such as patients undergoing sepsis or 

cardiac surgery. 

When external validation is performed, care should be taken with the sample size and disease prevalence. 

If the sample size of a study is too small, only low statistical power can be obtained, and model performance may 

be easily distorted by random effects. However, a large sample size also increases the chance of detecting 

differences that are not clinically relevant. Disease prevalence also matters. For instance, the classical rules of 

thumb for classification tasks indicate that at least 100 samples (preferably 200) should be in each group to draw 

concrete conclusions. Therefore, the acquired external validation results have to be carefully interpreted along 

with the sample size and disease prevalence. 
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1.5 Application of prediction models to clinical practice 

Powerful prediction models with high accuracy are desirable, but simply having them on computers is insufficient. 

In the ideal situation, predictions run automatically at the patient's bedside rather than having clinicians spend 

time gathering patient data, manually entering data into models, and then turning prediction results into useful 

treatment plans. This way, the predictions could free up doctors to concentrate more on treating patients. 

The general interest in machine learning predictions in the ICU population is reflected in a huge increase 

in the number of publications reporting machine learning models, with 48% of all reports published after 

2015[112]. Nevertheless, few examples were successfully brought into the clinical practice. In a systematic 

review where Fleuren et al. introduced a clinically applicable scale (from level 1 to level 9) to assess the readiness 

of prediction models to be brought into clinical practice [113]. They showed that 93% of the developed models 

were not externally validated (level 4 or below), 5% were with external validation (level 5), 1% were integrated 

into workflow without exposure to clinicians (level 6), 1% were compared against related clinical outcomes 

(level 8), and none of them were integrated in the clinical workflow and evaluated at different centers (level 9). 

The low clinical readiness of these prediction models may be explained by the numerous challenges. 

The first problem has to do with gathering well-structured patient data. It is preferable to use large amounts of 

high-quality data from several centers in order to create robust prediction models. However, the format and 

labeling of data from various centers may be radically different in their EHR systems, which makes it difficult to 

be integrated. Differences in data description and abbreviation may exist even in the same hospital. Therefore, 

researchers proposed Hierarchical Data Format—Version 5 (HDF5), a standardized format for transferring 

clinical data across various ICUs, as a solution to this problem [114]. The use of standardized formats would 

reduce the barrier to integration for large amounts of existing data. 

The second issue relates to the lack of robustness in prediction models. A model that performs 

astonishingly only on the original dataset but not anywhere else is of limited usage. Preventing overly optimistic 

performance by boosting effective reporting from the start is one strategy to mitigate this. As a result, the 

Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) 

Initiative developed a TRIPOD statement consisting of a checklist of 22 items, to increase the transparency of 

the reporting of the prediction model study [115]. The enhanced reporting is anticipated to improve the quality 

of the research and increase attention and resources for promising models. 

The third issue is the black-box characteristics of prediction models while clinicians prefer strong 

evidence-based scientific support to deliver meaningful intervention and to adapt their treatment strategies to 

vulnerable ICU patients. However, many complex models were built with good accuracy at the expense of poor 

interpretability. In order to increase interpretability, a variety of techniques have been proposed, such as 

permutation importance [116] and Shapley Additive exPlanations (SHAP) [117], both of which showed 

consistency within the literature and clinical interpretation [118–120]. More reliable models are anticipated to be 

delivered at the patient's bedside with the use of these technologies to improve interpretability. 

1.6 Conclusion 

As a result of the expansion of electronic health records and the development of machine-learning algorithms, 

numerous models have been proposed for the prediction of kidney function in critically ill patients. The current 
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focus of prediction models for kidney function is mainly on the prediction of AKI and ARC. Although some 

models were shown to have good predictive performance, more external validations in large independent datasets 

are still needed, before the models can be implemented into clinical practice. In addition, AKI recovery prediction 

may also be helpful to guide therapeutic management as persisting acute kidney injury is associated with many 

unfavorable consequences. However, currently available AKI recovery prediction models have their limitations, 

and there is a need for a better AKI recovery prediction model. Finally, as a surrogate of the entire kidney function 

spectrum, CrCl may be more relevant than AKI and ARC. Since CrCl is measured based on 8- to 24-hour samples, 

prediction models for CrCl may enable more appropriate treatment approaches by providing a more accurate 

assessment of kidney function. Nevertheless, to the best of our knowledge, no prediction models for the daily 

prediction of CrCl have been proposed. 
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2  

Objectives 

2.1 General aim  

The general aim of this thesis is to develop and validate prediction models for kidney function in critically ill 

adults by applying machine-learning methods to routinely collected clinical data and translate the developed 

models into decision support applications for future usage in the clinical practice.  

 

2.2 Research objectives 

This thesis is divided into 3 primary sections, with each concentrating on a common medical condition or 

measurement in the intensive care unit (ICU). The first part deals with prediction of development and recovery 

of acute kidney injury (AKI) (Chapter 3, Chapter4). The second part covers daily prediction of augmented renal 

clearance (ARC) (Chapter 5). The third part focuses on daily creatinine clearance (CrCl) (Chapter 6, Chapter 7, 

Chapter 8, and Chapter 9). 

 

Objective 1: the first objective of this thesis includes (I) the external validation of an existing machine-learning 

prediction model for the onset of AKI during the first week of ICU stay in critically ill adults from a large 

independent dataset. (Chapter 3), (II) development and validation of machine-learning prediction models for 

AKI recovery at hospital discharge in critically ill adults with ICU-acquired acute kidney injury stage 3, and to 

compare the performance with the most studied biomarker for acute kidney injury. (Chapter 4) 

 

Objective 2: the second objective of this thesis is to externally validate an existing machine-learning prediction 

model for the presence of ARC on the next ICU day in critically ill coronavirus disease 19 patients. (Chapter 5) 

 

Objective 3: the third objective of this thesis includes (I) to investigate the daily kidney function fluctuations in 

critically ill adults (Chapter 6), (II) to develop and validate machine-learning models for daily prediction of 

short-term CrCl in critically ill adults, with a comparison with the reference assuming CrCl remains unchanged 

(Chapter 7), (III) to perform an observational prospective study to compare the predictive performance of the 

developed CrCl prediction models with ICU physicians (Chapter 8), and (IV) to develop a prototype software 

with integration of the developed CrCl models that can visualize the prediction results along with explanations 

for CrCl of the next ICU day (Chapter 9). 
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3  

External validation of the AKIpredictor in critically ill adults  

 

Adapted from: Chao-Yuan Huang, Fabian Güiza, Greet De Vlieger, Geert Meyfroidt. “External validation of 

the AKIpredictor in critically ill adults”. Intensive Care Medicine. 2022;48(7):952-953. doi:10.1007/s00134-

022-06746-6  
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3.1 Letter to the Editor  

The early detection of acute kidney injury (AKI) in the intensive care unit (ICU) remains challenging. AKI is 

defined by a rise in serum creatinine and/or a reduced urine output, both late markers of the potential underlying 

kidney damage. There is a need to identify patients with high risk of developing AKI, so that early preventive or 

therapeutic interventions could be employed or studied, such as reducing or avoiding nephrotoxic drugs and 

optimizing blood pressure and fluid balance.  

The AKIpredictor includes a series of models that predict AKI development within one week after ICU 

admission by using clinical data available at different time points. The AKIpredictor models demonstrated good 

performance, outperformed commonly used AKI biomarker neutrophil gelatinase-associated lipocalin (NGAL) 

in a validation cohort [1], and are available as an online calculator (www.akipredictor.com) [2]. When compared 

against ICU physicians in a prospective clinical trial, the AKIpredictor achieved similar discrimination and higher 

net benefit, thus outperforming physicians [3]. In the present study, we validated the AKIpredictor in a more 

recent ICU setting on a large heterogeneous cohort from the University Hospitals Leuven, included in the M@tric 

database [4], containing high-quality and complexly interrelated data from all adult patients annually admitted to 

the ICU from 2013 to 2018. Approval for the use of these patient data was obtained from the Ethics Committee 

of University Hospitals Leuven (S61364). 

Kidney Disease: Improving Global Outcomes (KDIGO) serum creatinine and not urine output criteria 

were used to classify AKI stage 1 or higher. For better interpretation and comparison with earlier studies, 

predictive performance was examined by using the same evaluation metrics: area under the receiving operating 

characteristics (AUROC) curve (including sensitivity and specificity), calibration plot (including calibration 

slope (CS), and calibration-in-the-large (CITL)), and decision curve analysis.  

Of the 20930 patients in the validation cohort, 11290 patients met the inclusion criteria (Figure 3.1). In 

total, 1239 patients (10.97%) developed AKI within one week after ICU admission. Complete descriptive 

statistics are available in Table 3.1. As shown in Figure 3.2, the AKIpredictor demonstrates good discrimination 

(AUROC: 0.75; CS: 0.75; CITL: -0.04), comparable to (but slightly lower than) the original study (AUROC: 

0.80; CS: 0.78; CITL: -0.01) [1]. At the classification threshold of 14.5% that maximized sensitivity and 

specificity of 64% and 82% in the original study, the sensitivity and specificity are 55.53% and 79.64% 

respectively. Decision curve analysis demonstrates potential clinical usefulness across a broad range of 

classification thresholds (7.07% – 38.38%). The original classification threshold of 14.5% can still retain clinical 

utility.  

The results demonstrate robustness of the AKIpredictor models, even while the original database where 

the models have been learned dates back ten years [5], during which clinical environment and health care 

processes evolved considerably. Based on these findings, the AKIpredictor can be a promising tool to identify 

AKI patients at an early stage. In the future, AKIpredictor could be combined with biomarkers to enhance 

performance. Whether improved stratification of patients with higher risk of AKI can benefit their outcomes, 

requires future prospective studies. 

http://www.akipredictor.com/
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Figure 3.1 Study cohort. SCr, serum creatinine; AKI, acute kidney injury; AKI-3, acute kidney injury stage 3 

 

 

Figure 3.2 Predictive performance (left) ROC curve (middle) calibration curve (right) decision curve. ROC, receiver 

operating characteristic; CS, calibration slope; CITL, calibration-in-the-large 
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Table 3.1. Descriptive statistics 

 All patients (n=11290) AKI (n=1239) Not AKI (n=10051) p-value 

Age, years, median (IQR) 62.88 (51.42 – 72.44) 67.75 (58.85 – 77.25) 62.25 (50.55 – 71.56) <0.01 

Gender male, number (%) 6719 (59.51) 708 (57.14) 6011 (59.80) 0.08 

Height, cm, median (IQR) 170 (164 – 176) 169 (162 – 175) 170 (164 – 177) <0.01 

Weight, kg, median (IQR) 71 (60 – 82) 72 (61 – 83) 71 (60 – 82) 0.15 

BMI, median (IQR) 24.57 (21.67 – 27.76) 24.97 (22.16 – 28.66) 24.49 (21.60 – 27.70) <0.01 

APACHE II score, median (IQR) 15 (12 – 19) 16 (15 – 23) 15 (12 – 18) <0.01 

Diabetes, number (%) 655 (5.80) 114 (9.20) 541 (5.38) <0.01 

Baseline serum creatinine, mg/dl, median (IQR) 0.97 (0.79 – 1.01) 0.96 (0.78 – 1.00) 0.97 (0.79 – 1.02) <0.01 

Elective admission, number (%) 3577 (31.68) 391 (31.56) 3186 (31.70) 0.95 

Sepsis on ICU admission, number (%) 1523 (13.49) 222 (17.92) 1301 (12.94) <0.01 

Mechanical ventilation on day1, number (%) 5996 (53.11) 831 (67.07) 5165 (51.39) <0.01 

Mechanical hemodynamic support on ICU admission, 

number (%) 
33 (0.29) 17 (1.37) 16 (0.16) <0.01 

Pharmacological hemodynamic support on ICU 

admission, number (%) 
5216 (46.20) 740 (59.73) 4476 (44.53) <0.01 

Deceased at ICU discharge, number (%) 665 (5.89) 233 (18.81) 432 (4.30) <0.01 

Length of stay in ICU, days, median (IQR) 3.00 (2.00 – 7.00) 6.00 (3.00 – 12.50) 3.00 (2.00 – 6.00) <0.01 

Deceased at hospital discharge, number (%) 1326 (11.74) 332 (26.80) 994 (9.89) <0.01 
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Length of stay in hospital, days, median (IQR) 18.00 (10.00 – 35.00) 24.00 (13.50 – 47.00) 17.00 (10.00 – 34.00) <0.01 

AKI, acute kidney injury; BMI, body mass index; APACHE II score, Acute Physiology And Chronic Health Evaluation score; ICU, intensive care unit; P-values were 

calculated by Mann–Whitney U test and Fisher's Exact Test for continuous and categorical data respectively. Baseline serum creatinine was back calculated with the 

Modification of Diet in Renal Disease (MDRD) equation, with an assumed normal baseline estimated Glomerular filtration rate (eGFR) of 75 mL/min/1.73m2. Mechanical 

hemodynamic support was defined as the presence of LVAD, BiVAD, ECMO, IABP. Pharmacological hemodynamic support was defined as any vasopressor or inotropic 

medication. Mechanical ventilation (MV) was defined as any form of MV/assisted ventilation with or without PEEP, with or without muscle relaxants, spontaneous breathing 

with positive end-expiratory pressure (PEEP)
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3.A. Appendix 

3.A.1 Supplementary methods 

Baseline serum creatinine was estimated by Modification of Diet in Renal Disease (MDRD) formula with an 

assumed normal glomerular filtration rate (GFR) of 75 mL/min per 1.73 m2. 

 

3.A.2 Supplementary figures 

 

Figure 3.A.1 The cumulative number of AKI patients over time.  

 

Figure 3.A.2 The number of patients with a new diagnosis of AKI based upon a rise in serum creatinine on each ICU day.  
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Figure 3.A.3 AUROC (left) and AUPRC (right) with more patients included over time. There was no statistically significant 

difference (DeLong's test p-value=0.54) between the ROC curve until day3 and the ROC curve until day4. 

 
Figure 3.A.4 The cumulative number of true positive and false positive patients with classification threshold of 7.0 %.  

 

 

 
Figure 3.A.5 The cumulative number of true positive and false positive patients with classification threshold of 
14.75 %. 



 

42 | Chapter 3 

 

 
Figure 3.A.6 The cumulative number of true positive and false positive patients with classification threshold of 
22.5 %. 

 
Figure 3.A.7 The cumulative number of true positive and false positive patients with classification threshold of 
30.25 %. 

 
Figure 3.A.8 The cumulative number of true positive and false positive patients with classification threshold of 
38.0 %. 
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Abstract 

Purpose: Acute kidney injury (AKI) recovery prediction remains challenging. The purpose of the present study 

is to develop and validate prediction models for AKI recovery at hospital discharge in critically ill patients with 

ICU-acquired AKI stage 3 (AKI-3).  

Methods: Models were developed and validated in a development cohort (n=229) and a matched validation 

cohort (n=244) from the multicenter EPaNIC database to create prediction models with the least absolute 

shrinkage and selection operator (Lasso) machine-learning algorithm. We evaluated the discrimination and 

calibration of the models and compared their performance with plasma neutrophil gelatinase-associated lipocalin 

(NGAL) measured on first AKI-3 day (NGAL_AKI3) and reference model that only based on age. 

Results: Complete recovery and complete or partial recovery occurred in 33.20% and 51.23% of the validation 

cohort patients respectively. The prediction model for complete recovery based on age, need for kidney 

replacement therapy (KRT), diagnostic group (cardiac/surgical/trauma/others), and sepsis on admission had an 

area under the receiver operating characteristics curve (AUROC) of 0.53. The prediction model for complete or 

partial recovery based on age, need for KRT, platelet count, urea, and white blood cell count had an AUROC of 

0.61. NGAL_AKI3 showed AUROCs of 0.55 and 0.53 respectively. In cardiac patients, the models had higher 

AUROCs of 0.60 and 0.71 than NGAL_AKI3’s AUROCs of 0.52 and 0.54. The developed models demonstrated 

a better performance over the reference models (only based on age) for cardiac surgery patients, but not for 

patients with sepsis and for a general ICU population. 

Conclusion: Models to predict AKI recovery upon hospital discharge in critically ill patients with AKI-3 showed 

poor performance in the general ICU population, similar to the biomarker NGAL. In cardiac surgery patients, 

discrimination was acceptable, and better than NGAL. These findings demonstrate the difficulty of predicting 

non-reversible AKI early. 
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4.1 Introduction  

Acute kidney injury (AKI) reflects an abrupt decline in renal function, resulting in a reduced capacity to regulate 

extracellular volume and to clear circulating substances. It is one of the most prevalent complications of critical 

illness and has a strong association with short- and long-term mortality. Patients with AKI suffer from longer 

lengths of stay, lower quality of life and heavier financial burden [1–5] The reported incidence of AKI in the 

intensive care unit (ICU) varies widely, depending on the population, and the use of different AKI definitions 

[6–10]. AKI criteria were first defined by the RIFLE criteria in 2004 and later modified by the Kidney Disease: 

Improving Global Outcomes (KDIGO) AKI criteria proposed in 2012 [11]. Current strategies for established 

AKI are mostly supportive, such as kidney replacement therapy (KRT) in case of metabolic complications or 

fluid overload, while the early initiation of KRT does not appear to be beneficial [12]. Predicting AKI recovery 

for critically ill patients could be useful so that clinicians can (I) identify patients with non-reversible AKI early, 

(II) provide patient and family counseling, and (III) make early post-discharge renal care plans. 

Biomarkers have been studied to predict AKI development, but limited data exist on the possibility to 

predict AKI recovery [13–17]. Recently, the growth of electronic health records (EHR) created the possibility to 

use a large amount of data for clinical prediction models. Several models have been built to predict AKI 

development [18–25]. Outcome prediction tools in patients with AKI, have focused on predicting mortality 

instead of renal recovery [26–33].  

Biomarkers and EHR-based models to predict AKI recovery [13–17, 34, 35] often show poor 

discrimination in the development cohort [35] and lack internal and/or external validation [13–16, 35] which 

could overestimate the performance and result in low generalizability. Most studies included only patients with 

AKI stage 3 or on KRT [13, 15–17, 35], and only two studies investigated all stages of AKI with AKI based 

upon the KDIGO criteria [14, 34]. The mortality and risk to develop end-stage kidney disease increases with AKI 

stages and thus predicting AKI recovery in AKI-3 patients is more clinically meaningful than prediction in less 

severe forms of AKI. 

Here we develop and validate prediction models for AKI-3 recovery at hospital discharge by using 

routinely collected clinical data up to the first day of AKI-3 in general adult ICU patients. In addition, we 

evaluated the performance of the biomarker plasma neutrophil gelatinase associated lipocalin (NGAL) measured 

on the first day of AKI-3 (NGAL_AKI3) to predict AKI recovery and combined the clinical data model and 

NGAL model. All models were also evaluated in subgroups of patients with cardiac surgery and patients with 

sepsis on admission due to the high incidence of AKI [36, 37]. 

 

4.2 Methods 

4.2.1 Prediction tasks and AKI definition  

There are two prediction tasks in this study: 1) complete recovery and 2) complete or partial recovery at hospital 

discharge. We investigated both prediction tasks in ICU patients with AKI-3. AKI was diagnosed and staged 

based on the KDIGO serum creatinine criteria [11]. Baseline SCr was defined as the lowest SCr value three 

months up to one week before ICU admission for emergency admissions, and the lowest SCr value three months 

before ICU admission for elective admissions. If no pre-ICU SCr values were available, baseline SCr was 
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backcalculated with the Modification of Diet in Renal Disease (MDRD) equation with an assumption of a normal 

baseline estimated Glomerular filtration rate (eGFR) of 75 mL/min/1.73m2 [38]. Complete recovery was defined 

as the absence of any stage of AKI and being alive without KRT at hospital discharge. Partial recovery was 

defined as AKI stage 1 or 2 and being alive without KRT at hospital discharge. 

4.2.2 Study database 

This study was a secondary analysis of the EPaNIC multicenter randomized controlled trial (RCT). The EPaNIC 

study compared early and late initiation of parenteral nutrition in 4640 adults admitted to seven ICUs between 

August 2007 and November 2010 [39]. Written informed consent was collected from all patients or their 

designated representatives. The institutional review board at each participating center and Belgium authorities 

approved the protocol and the consent forms (file number S50404). The present study is a preplanned 

continuation of a first study on AKI development [18] and makes use of the same predefined matched 

development and validation cohorts. As detailed in Appendix 4.A.1.7, the original EPaNIC database was split 

into cohorts matched for demographics, severity of illness, feeding strategy and relevant clinical outcomes. 

Patients were excluded if they had 1) history of end-stage kidney disease, 2) baseline SCr ≥ 4 mg/dL, 3) no 

available SCr measurements to stage AKI, 4) no monitoring or no medication data. For the present study, only 

patients with AKI-3 during their ICU stay were included. 

4.2.3 Features for AKI recovery prediction 

Only data up to the first day of AKI-3 in the ICU were used to predict AKI-3 recovery (Figure 4.1). The following 

data were used: 1) Admission data (only one value available during ICU stay): demographics, diagnosis, 

comorbidities, 2) Time-series data: heart rate, blood pressure, blood temperature, blood gas analysis data, 

laboratory test data, interventions, illness severity scores, 3) With the following medication data on the previous 

day of the first AKI-3 (true/false): non-steroid anti-inflammatory drugs, antiviral drugs, antifungal drugs, 

diuretics, vancomycin, β-lactam antibiotic, radiocontrast, aminoglycosides, ciclosporin/tacrolimus, ace inhibitors, 

vasopressors/inotropes, 4) Time-relevant data: Number of days with aforementioned medication data, first day 

of AKI-3. A list of all considered data is available at Appendix 4.A.1.1. Static data were retrieved from the 

EPaNIC study database (Filemaker Pro®; FileMaker Inc, FileMaker International), while the remaining data 

were retrieved from the patient data management system database (Microsoft SQL Server®; Microsoft®, 

Redmond, Washington, USA). 
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Figure 4.1 Example indicating the temporal relationship between the predictors and the prediction target. In the example, the 

patient developed AKI-3 on day3, and only data up to day3 were used as predictors. The prediction target of the model was 

the AKI recovery status (complete recovery, partial recovery, or non-recovery) at hospital discharge. 

 

The minimum, maximum, mean, standard deviation, and linear regression slope were used to create 

derived characteristics from the time-series data. All the features with more than 10% missing values were 

excluded. For the remaining features, missing values were imputed with the mean for continuous data and the 

mode for categorical data. Finally, continuous data were standardized to zero mean and unit variance, and 

categorical data without order relation were converted into a form with binary data for each category.  

4.2.4 Machine-learning algorithm and feature selection methods 

The prediction models were trained with least absolute shrinkage and selection operator (Lasso), a machine-

learning algorithm (Appendix 4.A.1.2), with features selected based on their known associations with renal 

function, correlation-based feature selection method (CfsSubsetEval) from Weka 3.8.4 system [40], and 

permutation importance measurements [41] (Appendix 4.A.1.3). In addition, the clinical meaningfulness of the 

selected features was confirmed with thorough discussion with 2 experienced ICU physicians. 

4.2.5 Biomarker NGAL alone and in combination with prediction models 

Plasma NGAL was measured on the first day of AKI-3 using the Human Lipocalin-2/NGAL Quantikine ELISA 

Kit (R&D Systems, Inc., Abingdon, UK). This kit uses a quantitative sandwich enzyme immunoassay technique 

with a measurable range from 0.2 to 10 ng/mL. We evaluated the predictive performance of plasma NGAL alone 

and in combination with the developed prediction models. NGAL_AKI3 was also assessed in the subgroups of 

patients with cardiac surgery and patients diagnosed with sepsis on ICU admission using the criteria of the 

American College of Chest Physicians–Society of Critical Care Medicine [42].  

4.2.6 Metrics for predictive performance 

Predictive performance was evaluated in terms of discrimination and calibration. Discrimination was reported by 

visualizing the receiver operating characteristics (ROC) curve with indication of the area under the receiver 

operating characteristics curve (AUROC). The closer the AUROC is to one, the better the discrimination. 

Calibration was evaluated visually and with the calibration slope, and calibration in the large [43]. A well-
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calibrated model should have a calibration plot close to the diagonal axis, a calibration slope close to one, and a 

calibration in the large close to zero.  

4.2.7 Model validation  

At the model development stage, we internally validated the models by 100 repetitions of stratified 10-fold cross 

validation. At the model validation stage, models trained on the development cohort were applied on the 

previously unseen matched validation cohort to assess the generalizability. To examine the model usefulness, the 

developed models were compared with the reference models that were only based on age. Models were also 

evaluated in the predefined subgroups.  

4.2.8 Descriptive statistical analysis and software used 

All analyses were done in python 3.7.4 with the scikit-learn library 0.23.1. Continuous data were presented as 

means and interquartile ranges (IQR) while categorical data were expressed as numbers and percentages (%). To 

evaluate statistical significance of differences, Mann–Whitney U test and Fisher's Exact Test were used for 

continuous and categorical data respectively. A two-tailed P-value less than or equal to 0.05 was considered 

statistically significant. 

4.3 Results 

4.3.1 Study cohort: development and validation cohort  

In total, 473 patients were included in this study (Figure 4.2). No significant difference between development 

(n=229) and validation cohorts (n=244) was observed in terms of baseline characteristics, AKI-relevant variables, 

and patient outcomes (Table 4.A.1) except for the surgery/trauma (p<0.01), transplant diagnostic groups 

(p=0.01), and early parenteral nutrition strategies (p=0.02). In the development and validation cohorts, 43.67% 

(100/229) and 43.03% (105/244) died before hospital discharge. Additionally, 37.55% (86/229) and 33.20% 

(81/244) patients completely recovered from AKI-3, while 51.09% (117/229) and 51.23% (125/244) patients 

completely or partially recovered from AKI-3. Age was the only patient characteristic consistently found 

significantly different between the recovery and non-recovery groups in both development and validation cohorts 

for both prediction tasks (Table 4.A.2 and Table 4.1). 

 

Figure 4.2 Consort diagram. ESKD, end-stage kidney disease; SCr, serum creatinine; AKI, acute kidney injury; 

AKI-3, acute kidney injury stage 3 



 

51 

 

Table 4.1 Patient characteristics and clinical outcomes of the two groups stratified by AKI recovery status in the validation cohort 

 

Validation 

cohort 

(n=244) 

Complete 

recovery 

(n=81) 

Not complete 

recovery 

(n=163) 

p-value 

Complete or 

partial 

recovery 

(n=125) 

Not complete 

or partial 

recovery 

(n=119) 

p-value 

Age, years, 

median (IQR) 

69.24 (57.87 

– 76.45) 

64.28 (53.87 

– 73.23) 

70.94 (60.05 

– 78.22) 
<0.01 

65.02 (56.00 

– 73.48) 

71.86 (59.64 

– 78.85) 
0.01 

Gender male, 

number (%) 
148 (60.66) 48 (59.26) 100 (61.35) 0.78 72 (57.60) 76 (63.87) 0.36 

BMI, median 

(IQR) 

25.95 (23.03 

– 29.39) 

26.30 (23.41 

– 30.37) 

25.51 (22.70 

– 29.26) 
0.09 

26.30 (23.39 

– 30.37) 

25.39 (22.70 

– 28.82) 
0.03 

With true 

baseline, 

number (%) 

133 (54.51) 46 (56.79) 87 (53.37) 0.68 60 (48.00) 73 (61.34) 0.04 

Baseline 

serum 

creatinine, 

mg/dl, median 

(IQR) 

0.97 (0.76 – 

1.09) 

0.98 (0.80 – 

1.13) 

0.96 (0.75 – 

1.06) 
0.12 

0.96 (0.77 – 

1.07) 

0.97 (0.75 – 

1.16) 
0.53 

Malignancy, 

number (%) 
54 (22.13) 15 (18.52) 39 (23.93) 0.41 22 (17.60) 32 (26.89) 0.09 

Chronic 

Kidney 
60 (24.59) 22 (27.16) 38 (23.31) 0.53 25 (20.00) 35 (29.41) 0.10 
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Disease, 

number (%) 

Diabetes, 

number (%) 
63 (25.82) 15 (18.52) 48 (29.45) 0.09 28 (22.40) 35 (29.41) 0.24 

Elective 

admission, 

number (%) 

49 (20.08) 17 (20.99) 32 (19.63) 0.87 22 (17.60) 27 (22.69) 0.34 

Early 

parenteral 

nutrition 

strategies, 

number (%) 

108 (44.26) 37 (45.68) 71 (43.56) 0.79 56 (44.80) 52 (43.70) 0.90 

Sepsis on ICU 

admission, 

number (%) 

146 (59.84) 43 (53.09) 103 (63.19) 0.17 68 (54.40) 78 (65.55) 0.09 

Mechanical 

hemodynamic 

support on 

ICU 

admission, 

number (%) 

20 (8.20) 7 (8.64) 13 (7.98) 1.00 7 (5.60) 13 (10.92) 0.16 

Pharmacologi

cal 

hemodynamic 

228 (93.44) 79 (97.53) 149 (91.41) 0.10 114 (91.20) 114 (95.80) 0.20 
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support on 

ICU 

admission, 

number (%) 

Cardiac 

surgery 

diagnostic 

group, 

number (%) 

65 (26.64) 25 (30.86) 40 (24.54) 0.36 34 (27.20) 31 (26.05) 0.89 

Medical 

diagnostic 

group, 

number (%) 

76 (31.15) 28 (34.57) 48 (29.45) 0.46 39 (31.20) 37 (31.09) 1.00 

Neuro 

diagnostic 

group, 

number (%) 

5 (2.05) 2 (2.47) 3 (1.84) 1.00 2 (1.60) 3 (2.52) 0.68 

Surgery/Trau

ma diagnostic 

group, 

number (%) 

89 (36.48) 23 (28.40) 66 (40.49) 0.07 42 (33.60) 47 (39.50) 0.35 

Transplant 

diagnostic 
9 (3.69) 3 (3.70) 6 (3.68) 1.00 8 (6.40) 1 (0.84) 0.04 
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group, 

number (%) 

First AKI-3 

day, days, 

median (IQR) 

2.00 (1.00 – 

4.00) 

2.00 (1.00 – 

3.00) 

2.00 (1.00 – 

4.00) 
0.75 

2.00 (1.00 – 

3.00) 

2.00 (1.00 – 

4.00) 
0.18 

With KRT 

when first 

AKI-3 in ICU, 

number (%) 

161 (65.98) 51 (62.96) 110 (67.48) 0.57 74 (59.20) 87 (73.11) 0.03 

Deceased at 

ICU 

discharge, 

number (%) 

81 (33.20) 0 (0.00) 81 (49.69) <0.01 0 (0.00) 81 (68.07) <0.01 

LOS in ICU, 

days, median 

(IQR) 

15.00 (8.00 – 

30.00) 

20.00 (11.00 

– 32.00) 

14.00 (7.00 – 

29.00) 
0.02 

17.00 (10.00 

– 29.00) 

14.00 (8.00 – 

30.50) 
0.58 

With KRT at 

ICU 

discharge, 

number (%) 

94 (38.52) 9 (11.11) 85 (52.15) <0.01 17 (13.60) 77 (64.71) <0.01 

Deceased at 

hospital 

discharge, 

number (%) 

105 (43.03) 0 (0.00) 105 (64.42) <0.01 0 (0.00) 105 (88.24) <0.01 
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LOS in 

hospital, days, 

median (IQR) 

36.00 (16.00 

– 63.00) 

52.00 (30.00 

– 75.00) 

26.00 (12.00 

– 54.00) 
<0.01 

44.00 (27.00 

– 67.00) 

20.00 (9.00 – 

48.00) 
<0.01 

With KRT at 

hospital 

discharge, 

number (%) 

77 (31.56) 0 (0.00) 77 (47.24) <0.01 0 (0.00) 77 (64.71) <0.01 

Abbreviations: AKI-3, acute kidney injury stage 3; ICU, intensive care unit; IQR, interquartile range; LOS, length of stay; KRT, kidney replacement therapy. 
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4.3.2 Features selected for AKI recovery  

We removed 36.67% (154/420) features with 10% missingness. The remaining 266 features were subjected to 

the feature selection methods, as shown in Figure 4.A.1. The majority of the excluded features were generated 

with feature engineering techniques used to capture the dynamics of the signals. Based on known associations 

with renal function, the correlation-based feature selection method, and permutation importance, five features 

were chosen for complete recovery prediction: age, sepsis on admission, surgery/trauma diagnostic group, KRT 

on the first AKI-3 day in ICU, and cardiac surgery diagnostic group. Following the same strategy, five features 

were selected for complete or partial recovery: age, KRT on the first AKI-3 day in ICU, minimum platelet count 

before first AKI-3, maximum urea before first AKI-3, and maximum white blood cell count before first AKI-3. 

Univariate analyses of the selected features and the two prediction targets in the development and validation 

cohorts are presented in Table 4.A.3 and Table 4.A.4. Comparisons of features between development and 

validation cohorts are presented in Table 4.A.5 and Table 4.A.6. There were no missing features for complete 

recovery prediction and a maximum of 5.24% and 1.64% missing features respectively in the development and 

validation cohorts for complete or partial recovery prediction (Table 4.A.7). 

4.3.3 Model performance: complete recovery prediction 

In the validation cohort (Table 4.2, Figure 4.3, and Table 4.A.8), the model demonstrated an AUROC of 0.53, 

a calibration slope of 0.27, and a calibration in the large of -0.07. In the subgroup analyses (Figure 4.A.2 and 

Figure 4.A.3), the model had an AUROC of 0.60 and 0.56 for cardiac and septic patients respectively. As 

illustrated in Figure 4.4, the predicted probabilities of complete recovery were not significantly different in the 

patients with recovery as compared to those without recovery in the validation cohort nor in the cardiac and septic 

patients separately (p-values for general ICU patients, cardiac patients, and septic patients were 0.43, 0.17, and 

0.27). The reference model that was only based on age resulted in higher AUROCs of 0.62 for both general ICU 

patients and septic patients and a lower AUROC of 0.56 in cardiac patients, as shown in Figure 4.5.  

  



 

57 

 

 

 

Figure 4.3 Model performance for complete recovery prediction in the validation cohort. (left) ROC curve (right) 

calibration curve (blue) in general ICU patients (orange) in cardiac patients (green) in septic patients 

 

 

Figure 4.4 Predicted probabilities of prediction model for (left) complete recovery and (right) complete or partial 

recovery in the validation cohort. Reported p values are calculated based on Mann–Whitney U test. (blue) in 

general ICU patients (orange) in cardiac patients (green) in septic patients 
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Figure 4.5 The performance of the reference model only based on age for complete recovery prediction in the 

validation cohort. (left) ROC curve (right) calibration curve (blue) in general ICU patients (orange) in cardiac 

patients (green) in septic patients 

 

4.3.4 Model performance: complete or partial recovery prediction 

In the validation cohort (Table 4.2, Figure 4.6, and Table 4.A.8), the model demonstrated an AUROC of 0.61, 

a calibration slope of 0.32, and calibration in the large close to zero. In the subgroup analysis (Figure 4.A.4 and 

Figure 4.A.5), the AUROCs were 0.71 and 0.58 for cardiac and septic patients respectively. As depicted in 

Figure 4.4, a significant difference of predicted probabilities between the patients with recovery as compared to 

those without recovery was only found for general ICU patients and cardiac patients in the validation cohort (p-

values for general ICU patients, cardiac patients, and septic patients were <0.01, <0.01, and 0.10). The reference 

model that was only based on age showed similar AUROCs of 0.60 and 0.57 for general ICU patients and septic 

patients and a lower AUROC of 0.57 in cardiac patients, as indicated in Figure 4.7. 
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Table 4.2 Summary of discrimination for prediction model, biomarker NGAL measured on first AKI-3 day, and prediction model with biomarker NGAL measured on first AKI-3 day 

 

AUROC 

Development cohort Validation cohort 

Complete 

recovery 

Prediction 

model 

General ICU patients 0.73 ± 0.01 0.53 

Cardiac patients 0.67 ± 0.02 0.60 

Septic patients 0.69 ± 0.01 0.56 

Biomarker 

NGAL_AKI3 

General ICU patients 0.53 0.55 

Cardiac patients 0.51 0.52 

Septic patients 0.51 0.63 

Prediction 

model with 

biomarker 

NGAL_AKI3 

General ICU patients 0.72 ± 0.01 0.54 

Cardiac patients 0.65 ± 0.02 0.6 

Septic patients 0.69 ± 0.01 0.58 

Complete or 

partial recovery 

Prediction 

model 

General ICU patients 0.74 ± 0.01 0.61 

Cardiac patients 0.75 ± 0.01 0.71 

Septic patients 0.70 ± 0.01 0.58 

Biomarker 

NGAL_AKI3 

General ICU patients 0.52 0.53 

Cardiac patients 0.51 0.54 

Septic patients 0.53 0.61 
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Prediction 

model with 

biomarker 

NGAL_AKI3 

General ICU patients 0.73 ± 0.01 0.61 

Cardiac patients 0.76 ± 0.02 0.71 

Septic patients 0.69 ± 0.02 0.59 

Mean ± standard deviation was obtained from 100 repetitions of stratified 10-fold cross validation. AUROC, area under the receiver operating characteristic curve; 

NGAL_AKI3, neutrophil gelatinase-associated lipocalin measured on the first AKI-3 day.
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Figure 4.6 Model performance for complete or partial recovery prediction in the validation cohort. (left) ROC 

curve (right) calibration curve (blue) in general ICU patients (orange) in cardiac patients (green) in septic patients 

 

 

Figure 4.7 The performance of the reference model only based on age for complete or partial recovery prediction 

in the validation cohort. (left) ROC curve (right) calibration curve (blue) in general ICU patients (orange) in 

cardiac patients (green) in septic patients
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4.3.5 Performance of NGAL alone and in combination with prediction models 

There were 3.93% and 2.46% missing NGAL_AKI3 values in the development and validation cohorts. In the 

subgroup analysis (Table 4.A.9 and Table 4.A.10), non-cardiac patients and septic patients had significantly 

higher NGAL_AKI3 levels compared to cardiac patients and non-septic patients (p-values<0.01). Table 2 

summarizes the AUROCs of the prediction models, NGAL_AKI3, and their combination for complete recovery 

prediction and complete or partial recovery prediction. For complete recovery prediction in the validation cohort, 

the respective AUROCs were 0.53, 0.55, and 0.54 for the general ICU population. The AUROCs were 0.60, 0.52, 

and 0.60 for cardiac patients, and 0.56, 0.63, and 0.58 for septic patients. For complete or partial recovery 

prediction, the respective AUROCs were 0.61, 0.53, and 0.61 for the general ICU population. The AUROCs 

were 0.71, 0.54, and 0.71 for cardiac patients, and 0.58, 0.61, and 0.59 for septic patients. More details about the 

predictive performance are available at Table 4.A.11. 

4.3.6 Lasso coefficients and permutation importance 

Judging from the magnitude of the lasso coefficients and permutation importance, for both complete recovery 

and complete or partial recovery prediction tasks, age and KRT on the first AKI-3 day were consistently among 

the three most important features not only in the development cohort but also in the validation cohort (Figure 

4.A.6, Figure 4.A.7, Figure 4.A.8, and Figure 4.A.9). 

 

4.4 Discussion 

In this retrospective study of critically ill adults with AKI-3 in the ICU, we developed and validated prediction 

models for complete recovery and complete or partial recovery at hospital discharge, with mean AUROCs of 

0.53 and 0.61 in the validation cohort. The models’ performance dropped substantially in the validation cohort. 

This finding highlights the need for validation in previously unseen patients to evaluate a model’s generalizability 

and to prevent overoptimistic results.  

In the subgroup analyses of the validation cohort, compared to the entire validation cohort, better model 

performance was observed in the cardiac patients, likely because one third of the EPaNIC database consisted of 

cardiac patients which is a more homogeneous subpopulation. Although the developed models demonstrated 

better performance for both prediction tasks in cardiac patients than general ICU patients of validation cohort, 

these findings still need prospective validation in independent cohorts. The features selected in this study were 

in line with prior work. To be more specific, age has been consistently considered an independent feature for 

renal recovery prediction [27, 28, 31, 32, 34, 35, 44]. Platelet count, shown to be associated with AKI, mortality, 

and renal recovery [45–49] was used to predict KRT dependence and mortality [50]. Surgical patients also have 

a higher probability of renal recovery, compared to medical patients [29, 44]. White blood cell count was strongly 

associated with renal recovery [30, 31, 33, 51]. Sepsis was indicated to be relevant to survival and renal recovery 

[52–54]. Finally, blood urea level, reflecting the underlying kidney function, has also been used for renal recovery 

prediction [31].  

The observed significantly higher NGAL levels in septic patients confirms previous findings [55]. In 

the general ICU population and in cardiac patients, the developed complete or partial recovery prediction model 

achieved better discrimination than NGAL, which was in line with previous studies evaluating biomarkers for 
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AKI recovery [13–17]. Overall, including NGAL into the prediction models did not improve performance of the 

models in this study, as opposed to findings of previous studies [13–17]. However, four of these studies lacked 

an external validation cohort [13–16], and it is questionable whether the reported small performance 

improvements are clinically relevant and worth the expensive biomarker costs.  

Our study confirms the low incidence of complete recovery from AKI-3 at hospital discharge, with the 

majority of AKI-3 patients deceased at hospital discharge, which is in line with the previous studies where 

mortality was found to be high [54, 56] in AKI patients with need of KRT. Although clinical prediction models 

have been widely studied for other research questions, there are limited number of prediction models for AKI 

recovery [13–17, 34, 35]. Among the studies with at least one AKI recovery prediction model, five studies 

reported fair discrimination but were specifically designed to examine predictive performance of biomarkers 

instead of clinical prediction models [13–17]. Itenov et al. [34] developed and validated an AKI recovery 

prediction model with fair performance, but they defined AKI recovery within a pre-defined timepoint of 28 days, 

when some patients are still recovering from critical illness in the ICU. Similarly, Lee et al. obtained poor 

discrimination with a 0.64 AUROC without external validation, which as discussed, might be an optimistic result 

[35].  

Although we included granular clinical data accompanied with advanced feature selection methods and 

a machine learning algorithm, poor performance was found after validation in previously unseen patients, 

especially for complete recovery prediction, where the developed model did not outperform the reference model 

that was only based on age. This could be partially explained by the fact that although development and validation 

cohorts were matched in the beginning, significant difference between the cohorts was observed for 

surgical/trauma diagnostic group, one of the features used for complete recovery prediction, and for early parental 

nutrition strategies, which was associated with late recovery and more complications, compared to late parenteral 

nutrition strategies [39]. A systematic review reported similar performance drops with AUROCs below 0.7 at 

external validation in previous AKI mortality prediction studies [57]. This lack of accurate and generalizable 

prediction models for AKI outcome could indicate that conditions and events after diagnosis of AKI might be 

more important for AKI recovery than those preceding the diagnosis. Therefore, by integrating information after 

AKI-3 onset, the prediction accuracy might be improved [58], but at the expense of shortening the time window 

for clinical intervention. 

Our study has many strengths. First, our prediction models are the first proposed for AKI-3 patients that 

predict AKI-3 recovery at hospital discharge. Second, both AKI-3 recovery and AKI definitions followed 

KDIGO consensus criteria with baseline SCr and patient outcome examined carefully. Third, validation in 

previously unseen patients were conducted to fairly report model performance and examine model 

generalizability. Fourth, not only static data but also time-series data with feature engineering techniques were 

considered. Fifth, the sparse models with only five features in each prediction task increase the usability. Sixth, 

transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) 

statement was used as a reporting benchmark [59]. Seventh, we compared the performance of the prediction 

models against the NGAL biomarker and evaluated the predictive ability of NGAL when being added to the 

developed models. Finally, both discrimination and calibration were reported to give complete understanding of 

model performance. 
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There are several limitations in our study. First, the small dataset prohibited us from using more 

advanced machine-learning algorithms such as random forest and neural network models that typically require 

larger sets of examples, but the lasso models with sparse features are easier to interpret and more robust when 

used in different patient populations. Second, due to the retrospective nature of this study, there was no impact 

analysis, and no causal relation conclusions can be drawn. Third, the study is based on a database from a RCT 

dating back to 2010, which limits its generalizability. Fourth, not all patients had true baseline SCr available, 

where it was substituted by back-calculation based on the MDRD equation recommended by KDIGO. However, 

our results remained unchanged with or without true baseline SCr (Appendix 4.A.5.2). Finally, development and 

validation cohort were not perfectly matched, in particular with regards to surgery/trauma and transplant 

diagnostic groups and timing of initiation of parenteral nutrition. Since the EPaNIC database was divided into 

matched development and validation cohorts before applying the inclusion and exclusion criteria of the present 

study, some imbalances could not be avoided in this subgroup of patients with AKI-3. In addition, the EPaNIC 

trial demonstrated that late initiation of parenteral nutrition resulted in a lower incidence of AKI, less need of 

KRT and shorter duration of KRT in the ICU. Therefore, it cannot be excluded that these imbalances might have 

contributed to the performance decrease in the validation cohort. 

4.5 Conclusion 

Using clinical data collected until the first day of AKI-3, we have built prediction models for AKI recovery at 

hospital discharge with AUROC of 0.61. NGAL measured on the first AKI-3 day demonstrated similar-to-worse 

performance than the developed models. Although the proposed models were developed and validated carefully 

by cross validation and in previously unseen validation cohort, these findings demonstrate the difficulty of 

predicting non-reversible AKI at an early stage. Larger studies with inclusion of more data after AKI-3 are needed 

to examine whether the machine-learning models can make better predictions. 
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4.A Appendix 

4.A.1 Supplementary methods 

4.A.1.1 Features for AKI recovery prediction 

• Demographics: Age, Baseline serum creatinine, Gender (male/female), Height, Weight, Pre-admission 

hemoglobin, With true baseline (True/False) 

• Diagnosis: Diagnostic group on admission (Cardiac surgery, Medical, neuro, Non-cardiac non-

transplant surgery/Trauma, Transplant), Sepsis on admission 

• Comorbidities: Chronic kidney disease (yes/no), Diabetes (yes/no), History of malignancy (yes/no) 

• Blood gas analysis data: Partial pressure of carbon dioxide, Partial pressure of oxygen, Bicarbonate, 

Calculated oxygen saturation, Lactate, Glucose, Sodium, Potassium, pH value  

• Lab test data: Bilirubin, Serum creatinine, C-reactive protein level, Lactate, Plasma urea level, 

Hematocrit, White blood cell count, Red blood cell count, Platelet count, Chloride  

• Interventions: Mechanical hemodynamic support upon ICU admission (True/False), Pharmacological 

hemodynamic support upon ICU admission (True/False), With renal replacement therapy on first AKI-

3 day (True/False), Respiratory support (True/False), Early initiation of parenteral nutrition strategies 

(True/False) 

• Illness severity scores: Child-Pugh Score, New York Heart Association (NYHA) Score, Sequential 

Organ Failure Assessment (SOFA) score, Acute Physiology and Chronic Health Evaluation (APACHE) 

II score 

• Medication data: non-steroid anti-inflammatory drugs, antiviral drugs, antifungal drugs, diuretics, 

vancomycin, β-lactam antibiotic, radiocontrast, aminoglycosides, ciclosporin/tacrolimus, ace inhibitors, 

vasopressors/inotropes 

4.A.1.2 Machine-learning algorithm: least absolute shrinkage and selection operator (Lasso) 

Lasso is a linear regression algorithm where the feature coefficients are fitted under the constraint that their 

magnitude should be as small as possible. Compared to unconstrainted linear regression algorithms, lasso models 

are more prone to turning coefficients to exactly zeros. Keeping only the most important features makes the lasso 

models easier to interpret and more generalizable to different datasets. 

4.A.1.3 Feature selection methods: correlation-based feature selection method and permutation importance 

The correlation-based feature selection method iteratively adds features to the subset. The features in the subset 

are highly correlated to the prediction target but have low correlation among themselves. Permutation importance 

measures the decrease in the model score when the feature’s values are randomly shuffled. The bigger the drop 

in model score, the more dependent the model is on the feature and the more predictive the feature is for the 

outcome parameter. Unless stated otherwise, the area under the receiver operating characteristics curve 

(AUROC) was the score used to evaluate the permutation importance. 

4.A.1.4 Features selected for complete recovery prediction 

With renal replacement therapy on first day of AKI-3 was added based on known associations from the literatures 

(Figure 4.A.1). Cardiac diagnostic group was added for better interpretability. Age, surgery/trauma diagnostic 

group, with anti-inflammatory medication on the previous day of AKI-3, and sepsis on ICU admission were 
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selected by correlation-based feature selection method. With anti-inflammatory medication on the previous day 

of AKI-3 was removed due to unbalanced data, where only two patients were found to have anti-inflammatory 

medication on the previous day of AKI-3. 

4.A.1.5 Features selected for complete or partial recovery prediction 

Age was added based on literature (Figure 4.A.1). Eight features selected by correlation-based feature selection 

method: 1) With renal replacement therapy on first day of AKI-3, 2) Maximum of SOFA score before first AKI-

3, 3) Number of days with vasopressors/inotropes medication before AKI-3, 4) Maximum of hemoglobin before 

first AKI-3, 5) Minimum of calculated oxygen saturation of the previous day of first AKI-3, 6) Linear regression 

slope of serum creatinine before first AKI-3, 7) Maximum of urea before first AKI-3, 8) Standard deviation of 

white blood cell count before first AKI-3. Four features were removed due to low permutation importance: 1) 

Minimum of calculated oxygen saturation of the previous day of first AKI-3, 2) Number of days with 

vasopressors/inotropes medication before AKI-3, 3) Linear regression slope of serum creatinine before first AKI-

3, 4) Maximum of hemoglobin before first AKI-3. Finally, standard deviation of white blood cell count before 

first AKI-3 was replaced with maximum of white blood cell count before first AKI-3 due to the strong correlation 

(spearman correlation coefficient=0.73) and the easier calculation. Maximum of SOFA score before first AKI-3 

was replaced with maximum of SOFA coagulation score before first AKI-3 due to relatively higher correlation 

(spearman correlation coefficient=0.60) than other SOFA sub scores, and it was further replaced with minimum 

of platelet count before first AKI-3 to have a broader continuous range with more details.  

4.A.1.6 Early initiation of parenteral nutrition strategies 

Since early initiation of parenteral nutrition has been shown to lead to late recovery and more complications in 

the EPaNIC study, we hypothesized that AKI recovery incidence might be influenced by the randomization of 

feeding strategies and that forcing the randomization of feeding strategies into the models would improve the 

prediction. To test the hypothesis, prediction models with and without forcing early initiation of parenteral 

nutrition strategies were built and their predictive performance was compared. 

4.A.1.7 The database split including the differences in cohort sizes 

The present study is a preplanned continuation of a first study on AKI development [18] and makes use of the 

same predefined matched development and validation cohorts. To perform the matching, the entire dataset was 

randomly permuted and split into two sets of equal size and the patient characteristics listed in Table 4.A.12 

were statistically compared. This procedure was repeated until two sets of 2194 and 2195 patients were obtained 

such that no statistical difference at the 0.05 level was observed between any of the characteristics. One set was 

thereafter referred to as the development cohort and the other as the validation cohort. However, as the majority 

of the data required for modeling was also available for the patients without monitoring information, it was later 

decided to include these extra 251 patients in the validation cohort. 

4.A.2 Supplementary results 

4.A.2.1 Results of forcing early initiation of parenteral nutrition strategies 

No significantly differences were observed for early initiation of parenteral nutrition strategies for both prediction 

tasks in both cohorts (p-values were all above 0.05 as indicated in Table 4.A.2 and Table 4.1). Forcing early 

initiation of parenteral nutrition strategies into the models did not influence the prediction performance, except 
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for the small changes in the subgroups of complete prediction task (Table 4.A.13). For the complete or partial 

complete prediction, since lasso algorithm turned the coefficient of early initiation of parenteral nutrition 

strategies to zero, no performance changes were found.  

 

4.A.2.2 Model performance: complete recovery prediction 

The internal validation in the development cohort of the complete recovery at hospital discharge models, resulted 

in 0.73 ± 0.01 AUROC, 1.16 ± 0.03 calibration slope, and 0.01 ± 0.01 calibration in the large (Figure 4.A.10 

and Table 4.A.14). As illustrated in Figure 4.A.11, a significant difference of predicted probabilities between 

the recovery and non-recovery groups was consistently observed in the development cohort (p-values for general 

ICU patients, cardiac patients, and septic patients were 0.02, 0.03, and <0.001). 

 

4.A.2.3 Model performance in the development cohort: complete or partial recovery prediction 

Upon internal validation in the development cohort, the models for complete or partial recovery at hospital 

discharge, obtained 0.74 ± 0.01 AUROC, 1.00 ± 0.03 calibration slope, and 0.00 ± 0.01 calibration in the large 

(Figure 4.A.12 and Table 4.A.14). As depicted in Figure 4.A.11, a significant difference of predicted 

probabilities between the recovery and non-recovery groups was consistently observed in the development cohort 

(p-values for general ICU patients, cardiac patients, and septic patients were 0.01, <0.001, and <0.001) 
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4.A.3 Supplementary tables 

Table 4.A.1 Patient characteristics and clinical outcomes stratified by development and validation cohorts 

 
All patients (n=473) Development cohort (n=229) 

Validation cohort 

(n=244) 
p-value 

Age, years, median (IQR) 67.68 (57.53 – 75.70) 66.26 (56.56 – 75.38) 69.24 (57.87 – 76.45) 0.16 

Gender male, number (%) 289 (61.10) 141 (61.57) 148 (60.66) 0.85 

BMI, median (IQR) 25.95 (23.03 – 29.39) 26.12 (22.86 – 29.41) 25.95 (23.03 – 29.39) 0.64 

With true baseline, number (%) 269 (56.87) 136 (59.39) 133 (54.51) 0.31 

Baseline serum creatinine, mg/dl, 

median (IQR) 
0.96 (0.76 – 1.08) 0.96 (0.75 – 1.07) 0.97 (0.76 – 1.09) 0.39 

Malignancy, number (%) 93 (19.66) 39 (17.03) 54 (22.13) 0.17 

Chronic Kidney Disease, number (%) 102 (21.56) 42 (18.34) 60 (24.59) 0.12 

Diabetes, number (%) 114 (24.10) 51 (22.27) 63 (25.82) 0.39 

Elective admission, number (%) 98 (20.72) 49 (21.40) 49 (20.08) 0.73 

Early parenteral nutrition strategies, 

number (%) 
234 (49.47) 126 (55.02) 108 (44.26) 0.02 

Sepsis on ICU admission, number (%) 266 (56.24) 120 (52.40) 146 (59.84) 0.12 

Mechanical hemodynamic support on 

ICU admission, number (%) 
45 (9.51) 25 (10.92) 20 (8.20) 0.35 

Pharmacological hemodynamic support 

on ICU admission, number (%) 
443 (93.66) 215 (93.89) 228 (93.44) 0.85 

Cardiac surgery diagnostic group, 

number (%) 
145 (30.66) 80 (34.93) 65 (26.64) 0.06 

Medical diagnostic group, number (%) 142 (30.02) 66 (28.82) 76 (31.15) 0.62 

Neuro diagnostic group, number (%) 11 (2.33) 6 (2.62) 5 (2.05) 0.77 
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Surgery/Trauma diagnostic group, 

number (%) 
143 (30.23) 54 (23.58) 89 (36.48) <0.01 

Transplant diagnostic group, number 

(%) 
32 (6.77) 23 (10.04) 9 (3.69) 0.01 

First AKI-3 day, days, median (IQR) 2.00 (1.00 – 4.00) 2.00 (1.00 – 4.00) 2.00 (1.00 – 4.00) 0.13 

With KRT when first AKI-3 in ICU, 

number (%) 
314 (66.38) 153 (66.81) 161 (65.98) 0.92 

Deceased at ICU discharge, number 

(%) 
160 (33.83) 79 (34.50) 81 (33.20) 0.77 

LOS in ICU, days, median (IQR) 16.00 (8.00 – 31.00) 16.00 (8.00 – 32.00) 15.00 (8.00 – 30.00) 0.66 

With KRT at ICU discharge, number (%) 182 (38.48) 88 (38.43) 94 (38.52) 1.00 

Deceased at hospital discharge, number 

(%) 
205 (43.34) 100 (43.67) 105 (43.03) 0.93 

LOS in hospital, days, median (IQR) 34.00 (16.00 – 62.00) 32.00 (17.00 – 59.00) 36.00 (16.00 – 63.00) 0.72 

With KRT at hospital discharge, number 

(%) 
153 (32.35) 76 (33.19) 77 (31.56) 0.77 

Complete recovery, number (%) 167 (35.31) 86 (37.55) 81 (33.20) 0.34 

Complete or partial recovery, number 

(%) 
242 (51.16) 117 (51.09) 125 (51.23) 1.00 

Abbreviations: AKI-3, acute kidney injury stage 3; ICU, intensive care unit; IQR, interquartile range; LOS, length of stay; KRT, kidney replacement therapy; BMI, body 

mass index 
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Table 4.A.2 Patient characteristics and clinical outcomes of the two groups stratified by AKI recovery status in the development cohort  

 Development 

cohort (n=229) 

Complete 

recovery 

(n=86) 

Not complete 

recovery 

(n=143) 

p-

value 

Complete or 

partial 

recovery 

(n=117) 

Not complete 

or partial 

recovery 

(n=112) 

p-

value 

Age, years, median (IQR) 
66.26 (56.56 – 

75.38) 

61.98 (50.83 – 

72.70) 

68.56 (60.19 – 

77.29) 
<0.01 

65.27 (51.34 – 

73.18) 

68.47 (60.95 – 

78.00) 
<0.01 

Gender male, number (%) 141 (61.57) 50 (58.14) 91 (63.64) 0.48 69 (58.97) 72 (64.29) 0.42 

BMI, median (IQR) 
26.12 (22.86 – 

29.41) 

25.34 (22.81 – 

29.34) 

26.42 (23.61 – 

29.46) 
0.29 

26.12 (23.23 – 

29.38) 

26.04 (22.67 – 

29.76) 
0.91 

With true baseline, number (%) 136 (59.39) 51 (59.30) 85 (59.44) 1.00 63 (53.85) 73 (65.18) 0.11 

Baseline serum creatinine, mg/dl, 

median (IQR) 

0.96 (0.75 – 

1.07) 

0.96 (0.74 – 

1.05) 

0.96 (0.76 – 

1.10) 
0.68 

0.93 (0.74 – 

1.03) 

0.96 (0.77 – 

1.15) 
0.11 

Malignancy, number (%) 39 (17.03) 15 (17.44) 24 (16.78) 1.00 19 (16.24) 20 (17.86) 0.86 

Chronic Kidney Disease, number 

(%) 
42 (18.34) 15 (17.44) 27 (18.88) 0.86 17 (14.53) 25 (22.32) 0.17 

Diabetes, number (%) 51 (22.27) 19 (22.09) 32 (22.38) 1.00 23 (19.66) 28 (25.00) 0.35 

Elective admission, number (%) 49 (21.40) 20 (23.26) 29 (20.28) 0.62 25 (21.37) 24 (21.43) 1.00 

Early parenteral nutrition 

strategies, number (%) 
126 (55.02) 43 (50.00) 83 (58.04) 0.27 62 (52.99) 64 (57.14) 0.60 

Sepsis on ICU admission, number 

(%) 
120 (52.40) 54 (62.79) 66 (46.15) 0.02 66 (56.41) 54 (48.21) 0.24 

Mechanical hemodynamic support 

on ICU admission, number (%) 
25 (10.92) 5 (5.81) 20 (13.99) 0.08 6 (5.13) 19 (16.96) 0.01 

Pharmacological hemodynamic 

support on ICU admission, 

number (%) 

215 (93.89) 80 (93.02) 135 (94.41) 0.78 108 (92.31) 107 (95.54) 0.41 
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Cardiac surgery diagnostic group, 

number (%) 
80 (34.93) 24 (27.91) 56 (39.16) 0.09 35 (29.91) 45 (40.18) 0.13 

Medical diagnostic group, number 

(%) 
66 (28.82) 22 (25.58) 44 (30.77) 0.45 30 (25.64) 36 (32.14) 0.31 

Neuro diagnostic group, number 

(%) 
6 (2.62) 1 (1.16) 5 (3.50) 0.41 2 (1.71) 4 (3.57) 0.44 

Surgery/Trauma diagnostic group, 

number (%) 
54 (23.58) 31 (36.05) 23 (16.08) <0.01 37 (31.62) 17 (15.18) <0.01 

Transplant diagnostic group, 

number (%) 
23 (10.04) 8 (9.30) 15 (10.49) 0.82 13 (11.11) 10 (8.93) 0.66 

First AKI-3 day, days, median 

(IQR) 

2.00 (1.00 – 

4.00) 

2.00 (1.00 – 

3.00) 

2.00 (1.00 – 

5.00) 
0.27 

2.00 (1.00 – 

3.00) 

2.00 (1.00 – 

7.00) 
0.05 

With KRT when first AKI-3 in ICU, 

number (%) 
153 (66.81) 46 (53.49) 107 (74.83) <0.01 63 (53.85) 90 (80.36) <0.01 

LOS in ICU, days, median (IQR) 
16.00 (8.00 – 

32.00) 

15.50 (8.00 – 

30.00) 

16.00 (9.00 – 

32.00) 
0.83 

14.00 (8.00 – 

27.00) 

18.00 (9.50 – 

35.00) 
0.10 

With KRT at ICU discharge, 

number (%) 
88 (38.43) 6 (6.98) 82 (57.34) <0.01 11 (9.40) 77 (68.75) <0.01 

LOS in hospital, days, median 

(IQR) 

32.00 (17.00 – 

59.00) 

41.50 (25.50 – 

71.50) 

27.00 (15.50 – 

54.00) 
<0.01 

36.00 (22.00 – 

67.00) 

24.00 (13.50 – 

51.50) 
<0.01 

Abbreviations: AKI-3, acute kidney injury stage 3; ICU, intensive care unit; IQR, interquartile range; LOS, length of stay; KRT, kidney replacement therapy; BMI, body mass 

index 
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Table 4.A.3 Complete recovery prediction feature list and univariate association in the development and validation cohorts  

 Development 

cohort (n=229) 

Complete 

recovery 

(n=86) 

Not complete 

recovery 

(n=143) 

p-value 
Validation 

cohort (n=244) 

Complete 

recovery 

(n=81) 

Not complete 

recovery 

(n=163) 

p-value 

Age, years, 

median (IQR) 

66.26 (56.56 – 

75.38) 

61.98 (50.83 – 

72.70) 

68.56 (60.19 – 

77.29) 
<0.01 

69.24 (57.87 – 

76.45) 

64.28 (53.87 – 

73.23) 

70.94 (60.05 – 

78.22) 
<0.01 

Surgery/Trauma 

diagnostic 

group, number 

(%) 

54 (23.58) 31 (36.05) 23 (16.08) <0.01 89 (36.48) 23 (28.40) 66 (40.49) 0.07 

Sepsis on ICU 

admission, 

number (%) 

120 (52.40) 54 (62.79) 66 (46.15) 0.02 146 (59.84) 43 (53.09) 103 (63.19) 0.17 

With KRT when 

first AKI-3 in 

ICU, number 

(%) 

153 (66.81) 46 (53.49) 107 (74.83) <0.01 161 (65.98) 51 (62.96) 110 (67.48) 0.57 

Cardiac surgery 

diagnostic 

group, number 

(%) 

80 (34.93) 24 (27.91) 56 (39.16) 0.09 65 (26.64) 25 (30.86) 40 (24.54) 0.36 

A significant difference between the recovery and non-recovery group was found in all features except for cardiac diagnostic group in the development cohort, while only age 

showed a significant difference in the validation cohort. Abbreviations: AKI-3, acute kidney injury stage 3; ICU, intensive care unit; IQR, interquartile range; KRT, kidney 

replacement therapy. 
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Table 4.A.4 Complete or partial recovery prediction feature list and univariate association in the development and validation cohorts  

 Development 

cohort (n=229) 

Complete or 

partial recovery 

(n=117) 

Not complete 

or partial 

recovery 

(n=112) 

p-value 
Validation 

cohort (n=244) 

Complete or 

partial recovery 

(n=125) 

Not complete 

or partial 

recovery 

(n=119) 

p-value 

Age, years, 

median (IQR) 

66.26 (56.56 – 

75.38) 

65.27 (51.34 – 

73.18) 

68.47 (60.95 – 

78.00) 
<0.01 

69.24 (57.87 – 

76.45) 

65.02 (56.00 – 

73.48) 

71.86 (59.64 – 

78.85) 
0.01 

Maximum of 

white blood cell 

count before first 

AKI-3, × 10⁹/L, 

median (IQR) 

14.12 (9.89 – 

19.45) 

13.40 (9.63 – 

18.04) 

14.98 (11.32 – 

21.99) 
0.04 

14.29 (9.35 – 

19.80) 

14.65 (8.79 – 

19.80) 

14.10 (9.47 – 

19.68) 
0.52 

Maximum of 

urea before first 

AKI-3, mg/dL, 

median (IQR) 

120.00 (84.00 – 

175.50) 

106.00 (76.50 – 

144.00) 

139.00 (94.00 – 

210.00) 
<0.01 

116.00 (84.00 – 

167.00) 

114.00 (84.00 – 

158.00) 

122.00 (84.00 – 

177.00) 
0.73 

Minimum of 

platelet before 

first AKI-3, × 

10⁹/L, median 

(IQR) 

89.00 (61.00 – 

138.00) 

99.50 (74.00 – 

156.00) 

74.00 (50.00 – 

109.50) 
<0.01 

95.00 (51.00 – 

158.00) 

96.00 (55.00 – 

167.50) 

93.00 (45.00 – 

140.00) 
0.23 

With KRT when 

first AKI-3 in 

ICU, number (%) 

153 (66.81) 63 (53.85) 90 (80.36) <0.01 161 (65.98) 74 (59.20) 87 (73.11) 0.03 

A significant difference was found in all features in the development cohort, while only age and KRT on the first day of AKI-3 showed significant difference in the validation 

cohort. Abbreviations: AKI-3, acute kidney injury stage 3; ICU, intensive care unit; IQR, interquartile range; KRT, kidney replacement therapy.  
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Table 4.A.5 Comparison of complete recovery prediction features between the development and validation cohorts 

 All patients (n=473) 
Development cohort 

(n=229) 
Validation cohort (n=244) p-value 

Age, years, median (IQR) 67.68 (57.53 – 75.70) 66.26 (56.56 – 75.38) 69.24 (57.87 – 76.45) 0.16 

Cardiac surgery diagnostic 

group, number (%) 
145 (30.66) 80 (34.93) 65 (26.64) 0.06 

Surgery/Trauma diagnostic 

group, number (%) 
143 (30.23) 54 (23.58) 89 (36.48) <0.01 

Sepsis on ICU admission, 

number (%) 
266 (56.24) 120 (52.40) 146 (59.84) 0.12 

With KRT when first AKI-3 

in ICU, number (%) 
314 (66.38) 153 (66.81) 161 (65.98) 0.92 

A Significant difference between development and validation cohorts was found in surgical/trauma diagnostic group for complete recovery prediction. Abbreviations: AKI-3, 

acute kidney injury stage 3; ICU, intensive care unit; IQR, interquartile range; KRT, kidney replacement therapy.  
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Table 4.A.6 Comparison of complete or partial recovery prediction features between the development and validation cohorts 

 

 All patients (n=473) 
Development cohort 

(n=229) 
Validation cohort (n=244) p-value 

Age, years, median (IQR) 67.68 (57.53 – 75.70) 66.26 (56.56 – 75.38) 69.24 (57.87 – 76.45) 0.16 

Maximum of white blood 

cell count before first AKI-

3, × 10⁹/L, median (IQR) 

14.21 (9.63 – 19.63) 14.12 (9.89 – 19.45) 14.29 (9.35 – 19.80) 0.60 

Maximum of urea before 

first AKI-3, mg/dL, median 

(IQR) 

118.00 (84.00 – 172.00) 120.00 (84.00 – 175.50) 116.00 (84.00 – 167.00) 0.48 

Minimum of platelet before 

first AKI-3, × 10⁹/L, median 

(IQR) 

93.00 (56.00 – 143.00) 89.00 (61.00 – 138.00) 95.00 (51.00 – 158.00) 0.83 

With KRT when first AKI-3 

in ICU, number (%) 
314 (66.38) 153 (66.81) 161 (65.98) 0.92 

No features revealed significant difference between development and validation cohorts for complete or partial recovery prediction. Abbreviations: AKI-3, acute kidney injury 

stage 3; ICU, intensive care unit; IQR, interquartile range; KRT, kidney replacement therapy.  
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Table 4.A.7 Number of missing complete or partial recovery prediction features in the development and validation cohorts 

 Development cohort (n=229) Validation cohort (n=244) 

Age 0 0 

Maximum of white blood cell count before first 

AKI-3 
6 (2.62%) 1 (0.41%) 

Maximum of urea before first AKI-3 6 (2.62%) 0 

Minimum of platelet before first AKI-3 12 (5.24%) 4 (1.64%) 

With KRT when first AKI-3 in ICU 0 0 

Abbreviations: AKI-3, acute kidney injury stage 3; ICU, intensive care unit; IQR, interquartile range; KRT, kidney replacement therapy;  
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Table 4.A.8 Performance of prediction model for complete recovery and complete or partial recovery in the validation cohort 

Measurement 
Complete recovery prediction 

Mean ± standard deviation 

Complete or partial recovery prediction 

Mean ± standard deviation 

Number of patients 244 244 

Recovery incidence 33.20% 51.23% 

AUROC 0.53 0.61 

Sensitivity¹ 0.48 0.55 

Specificity¹ 0.56 0.57 

Calibration slope 0.27 0.32 

Calibration in the large -0.07 -0.00 

Classification Threshold (%) 40.55 50.71 

Abbreviations: AUROC, area under the receiver operating characteristic curve; Mean ± standard deviation was obtained from 100 repetitions of stratified 10-fold cross 

validation. ¹Evaluated at the threshold that maximized sensitivity and specificity in the development cohort  
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Table 4.A.9 Comparison of NGAL measured on the first AKI3 day between cardiac and non-cardiac subgroups 

 

Development 

cohort 

(n=229) 

Cardiac AKI-

3 patients 

(n=80) 

Non-cardiac 

AKI-3 

patients 

(n=149) 

p-value 

Validation 

cohort 

(n=244) 

Cardiac AKI-

3 patients 

(n=65) 

Non-cardiac 

AKI-3 

patients 

(n=179) 

p-value 

NGAL measured 

on first AKI-3 day, 

median (IQR) 

653.64 

(407.10 – 

1147.17) 

575.40 

(380.50 – 

967.96) 

719.79 

(414.43 – 

1311.09) 

<0.01 

720.04 

(450.77 – 

1241.83) 

594.94 

(386.66 – 

785.31) 

856.03 

(480.47 – 

1374.62) 

<0.01 

Abbreviation: NGAL, neutrophil gelatinase-associated lipocalin; AKI3, acute kidney injury stage 3 

 

 

Table 4.A.10 Comparison of NGAL measured on the first AKI3 day between septic and non-septic subgroups 

 

Development 

cohort 

(n=229) 

Septic AKI-3 

patients 

(n=120) 

Non-septic 

AKI-3 

patients 

(n=109) 

p-value 

Validation 

cohort 

(n=244) 

Septic AKI-3 

patients 

(n=146) 

Non-septic 

AKI-3 

patients 

(n=98) 

p-value 

NGAL measured 

on first AKI-3 day, 

median (IQR) 

653.64 

(407.10 – 

1147.17) 

819.88 

(485.14 – 

1365.58) 

553.89 

(377.44 – 

919.94) 

<0.01 

720.04 

(450.77 – 

1241.83) 

881.43 

(497.20 – 

1488.16) 

602.44 

(432.24 – 

965.98) 

<0.01 

Abbreviation: NGAL, neutrophil gelatinase-associated lipocalin; AKI3, acute kidney injury stage 3 
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Table 4.A.11 Summary of prediction performance for prediction model, biomarker NGAL_AKI3, and prediction model with biomarker NGAL_AKI3  

 

Development cohort Validation cohort 

AUROC 
Calibration 

slope 

Calibration in 

the large 
AUROC 

Calibration 

slope 

Calibration in the 

large 

Complete 

recovery 

Prediction 

model 

General ICU patients 0.73 ± 0.01 1.16 ± 0.03 0.01 ± 0.01 0.53 0.27 -0.07 

Cardiac patients 0.67 ± 0.02 0.76 ± 0.26 -0.03 ± 0.04 0.6 0.9 0.06 

Septic patients 0.69 ± 0.01 1.05 ± 0.11 0.03 ± 0.02 0.56 0.46 -0.12 

Biomarker 

NGAL_AKI3 

General ICU patients 0.53 0.82 0. 16 0.55 0.5 -0.02 

Cardiac patients 0.51 -0.17 -0.24 0.52 -0.52 -0.34 

Septic patients 0.51 0.42 -0.03 0.63 0.66 -0.08 

Prediction 

model with 

biomarker 

NGAL_AKI3 

General ICU patients 0.72 ± 0.01 1.15 ± 0.03 0.01 ± 0.01 0.54 0.31 -0.08 

Cardiac patients 0.65 ± 0.02 0.32 ± 0.40 -0.11 ± 0.08 0.6 0.83 0.05 

Septic patients 0.69 ± 0.01 1.01 ± 0.12 0.04 ± 0.02 0.58 0.51 -0.12 

Complete 

or partial 

recovery 

Prediction 

model 

General ICU patients 0.74 ± 0.01 1.00 ± 0.03 0.00 ± 0.01 0.61 0.32 0 

Cardiac patients 0.75 ± 0.01 1.03 ± 0.09 -0.01 ± 0.01 0.71 0.84 0.03 

Septic patients 0.70 ± 0.01 0.89 ± 0.10 0.03 ± 0.01 0.58 0.32 -0.03 

Biomarker 

NGAL_AKI3 

General ICU patients 0.52 0.67 0.22 0.53 0.32 0.11 

Cardiac patients 0.51 -0.12 -0.08 0.54 -0.72 -0.28 

Septic patients 0.53 0.28 0.03 0.61 0.45 0.04 
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Prediction 

model with 

biomarker 

NGAL_AKI3 

General ICU patients 0.73 ± 0.01 0.99 ± 0.03 0.00 ± 0.01 0.61 0.42 -0.02 

Cardiac patients 0.76 ± 0.02 0.93 ± 0.09 -0.00 ± 0.01 0.71 0.8 0.03 

Septic patients 0.69 ± 0.02 0.85 ± 0.10 0.02 ± 0.01 0.59 0.37 -0.04 

Mean ± standard deviation was obtained from 100 repetitions of stratified 10-fold cross validation. AUROC, area under the receiver operating characteristic curve; 

NGAL_AKI3, neutrophil gelatinase-associated lipocalin measured on the first AKI-3 day 
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Table 4.A.12 Parameters that were matched between the development and validation cohorts in the matching.  

Age 

Gender 

APACHE II score 

Cardiac surgery diagnostic group 

Sepsis 

AKI stage 

AKI-3 

Renal replacement therapy 

LOS in ICU 

LOS in hospital 

Hospital mortality 

Day-90 mortality 

Randomization for parenteral nutrition strategies 
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Table 4.A.13 Comparison of prediction performance in the validation cohort, before and after forcing the early initiation of parenteral nutrition strategies into the models 

 

Before forcing the early initiation of parenteral 

nutrition strategies into the models 

After forcing the early initiation of parenteral nutrition 

strategies into the models 

AUROC 
Calibration 

slope 

Calibration in 

the large 
AUROC 

Calibration 

slope 

Calibration in the 

large 

Complete 

recovery 

Prediction 

model 

General ICU patients 0.53 0.27 -0.07 0.53 0.17 -0.06 

Cardiac patients 0.6 0.9 0.06 0.63 0.93 0.05 

Septic patients 0.56 0.46 -0.12 0.54 0.28 -0.13 

Prediction 

model with 

biomarker 

NGAL_AKI3 

General ICU patients 0.54 0.31 -0.08 0.54 0.18 -0.06 

Cardiac patients 0.6 0.83 0.05 0.63 0.92 0.05 

Septic patients 0.58 0.51 -0.12 0.56 0.24 -0.14 

Complete 

or partial 

recovery 

Prediction 

model 

General ICU patients 0.61 0.32 0 0.61 0.32 0 

Cardiac patients 0.71 0.84 0.03 0.71 0.84 0.03 

Septic patients 0.58 0.32 -0.03 0.58 0.32 -0.03 

Prediction 

model with 

biomarker 

NGAL_AKI3 

General ICU patients 0.61 0.42 -0.02 0.61 0.42 -0.02 

Cardiac patients 0.71 0.8 0.03 0.71 0.8 0.03 

Septic patients 0.59 0.37 -0.04 0.59 0.37 -0.04 

AUROC, area under the receiver operating characteristic curve; NGAL_AKI3, neutrophil gelatinase-associated lipocalin measured on the first AKI-3 

  



 

83 

 

Table 4.A.14 Performance of prediction model for complete recovery and complete or partial recovery in the development cohort 

Measurement 
Complete recovery prediction 

Mean ± standard deviation 

Complete or partial recovery prediction 

Mean ± standard deviation 

Number of patients 229 229 

Recovery incidence 37.55% 51.09% 

AUROC 0.73 ± 0.01 0.74 ± 0.01 

Sensitivity¹ 0.63 ± 0.03 0.71 ± 0.03 

Specificity¹ 0.73 ± 0.03 0.69 ± 0.02 

Calibration slope 1.16 ± 0.03 1.00 ± 0.03 

Calibration in the large 0.01 ± 0.01 0.00 ± 0.01 

Classification Threshold (%) 40.82 50.43 

Abbreviations: AUROC, area under the receiver operating characteristic curve; Mean ± standard deviation was obtained from 100 repetitions of stratified 10-fold cross 

validation. ¹Evaluated at the threshold that maximized sensitivity and specificity in the development cohort 
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4.A.4 Supplementary figures 

 

 

 

Figure 4.A.1 Feature selection flow diagram for (left) complete recovery (right) complete or partial recovery 

using the development cohort 

 

 

 

Figure 4.A.2 Cardiac subgroup analysis of the validation cohort for complete recovery prediction 

 

 

Figure 4.A.3 Septic subgroup analysis of the validation cohort for complete recovery prediction 
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Figure 4.A.4 Cardiac subgroup analysis of the validation cohort for complete or partial recovery prediction 

 

 

Figure 4.A.5 Septic subgroup analysis of the validation cohort for complete or partial recovery prediction 
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Figure 4.A.6 Magnitude of Lasso coefficients and permutation importance for complete recovery prediction in the 

development cohort 
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Figure 4.A.7 Magnitude of Lasso coefficients and permutation importance for complete or partial recovery prediction in 

the development cohort 

 

 

Figure 4.A.8 Permutation importance for complete recovery prediction in the validation cohort 
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Figure 4.A.9 Permutation importance for complete or partial recovery prediction in the validation cohort 

 

 

Figure 4.A.10 Model performance for complete recovery prediction in the development cohort. (left) ROC 

curve (right) calibration curve.   
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Figure 4.A.11 Predicted probabilities of prediction model for (left) complete recovery and (right) complete or partial 

recovery in the development cohort.  

Reported p values are calculated based on Mann–Whitney U test. Predicted probabilities were the averages of 

100 repetitions of stratified 10-fold cross validation. (blue) in general ICU patients (orange) in cardiac patients 

(green) in septic patients 

 

 

Figure 4.A.12 Model performance for complete or partial recovery prediction in the development cohort. (left) 

ROC curve (right) calibration curve. 
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Figure 4.A.13 Cardiac subgroup analysis of the development cohort for complete recovery prediction 

 

 

 

Figure 4.A.14 Septic subgroup analysis of the development cohort for complete recovery prediction 

 

Figure 4.A.15 Cardiac subgroup analysis of the development cohort for complete or partial recovery prediction  
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Figure 4.A.16 Septic subgroup analysis of the development  

 

4.A.5 Supplementary discussion 

4.A.5.1 The role of early initiation of parenteral nutrition strategies in AKI recovery prediction 

Although early initiation of parenteral nutrition strategies was shown to lead to late recovery and more 

complications in the EPaNIC study, no significant differences were observed in both AKI prediction tasks in 

both cohorts of this study. In addition, after the addition of early initiation of parenteral nutrition strategies into 

the prediction models, only small changes in the predictive performance were observed in the subgroups for 

complete recovery prediction. Therefore, we rejected the hypothesis that forcing the randomization of feeding 

strategies into the models would improve the prediction.  

 

4.A.5.2 The results with “True baseline serum creatinine (True/False)” in the developed model 

Please see below the results with “True baseline serum creatinine (True/False)” added to the developed models, 

where the AUROC remains unchanged in both prediction tasks. 

 

Complete recovery: 

The developed model with “True baseline serum creatinine (True/False)” 
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Complete or partial recovery: 

The developed model with “True baseline serum creatinine (True/False)” 
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4.A.5.3 The comparison of prediction results with different machine learning algorithms: random forest, 

gradient boosting, and support vector machine   

Random forest: 

Ten-fold cross validation for complete recovery prediction: 

 

Ten-fold cross validation for complete or partial recovery prediction: 

 

Validation cohort results for complete recovery prediction: 
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Validation cohort results for complete or partial recovery prediction: 

 

Gradient boosting: 

Ten-fold cross validation for complete recovery prediction: 

 

 

Ten-fold cross validation for complete or partial recovery prediction: 
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Validation cohort results for complete recovery prediction: 

 

Validation cohort results for complete or partial recovery prediction: 

 

Support vector machine (SVM): 

Ten-fold cross validation for complete recovery prediction: 
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Ten-fold cross validation for complete or partial recovery prediction: 

 

 

Validation cohort results for complete recovery prediction: 

 

 

Validation cohort results for complete or partial recovery prediction: 

 

 

For random forest, gradient boosting, and support vector machine, the validation cohort results demonstrated 

slightly better AUROCs of 0.55, 0.57, and 0.58 in the complete recovery prediction, and similar AUROCs of 

0.60, 0.61, and 0.59 in the complete or partial recovery prediction. Despite the slightly better discrimination of 

other algorithms for complete recovery prediction, before moving to the validation cohort, Lasso algorithm 

showed similar to better discrimination and decent calibration in the ten-fold cross validation, so we believe the 

choice of Lasso algorithm was appropriate.



 

97 

 

GRANT SUPPORT AND CONFLICT OF INTEREST 

C-Y.Huang receives a grant from the Taiwan-KU Leuven scholarship. J.Gunst holds a postdoctoral research 

fellowship supported by the University Hospitals Leuven. G. De Vlieger receives a clinical fellowship grant of 

the Flanders Research Foundation (1701719 N). G.Meyfroidt received a grant of the Flanders Research 

Foundation as senior clinical investigator. This work was supported by the Methusalem program of the Flemish 

government (through the University of Leuven to G. Van den Berghe, METH/08/07 and to G. Van den Berghe 

and I.Vanhorebeek, METH14/06).  

All the authors declare no competing interests that are relevant to the content of this article. 

ACKNOWLEDGMENT AND PERSONAL CONTRIBUTION 

Study concept and design Meyfroidt, Güiza 

Data acquisition 
Huang, Güiza, Wouters, Gunst, Casaer, 

Vanhorebeek, Derese, Van den Berghe 

Statistical analysis Huang 

Interpretation of results All authors 

Drafting of the manuscript Huang, Güiza, De Vlieger, Meyfroidt 

Manuscript revision All authors 

Principal investigator Meyfroidt 

Chao-Yuan Huang and Fabian Güiza have contributed equally to this work. The authors would like to thank the 

members of the EPaNIC research group for helpfully providing the EPaNIC database, which was used to develop 

the AKI recovery prediction models.  



 

98 | Chapter 4 

 

BIBLIOGRAPHY  

1.  Chertow GM, Burdick E, Honour M, et al (2005) Acute kidney injury, mortality, length of stay, and 

costs in hospitalized patients. J Am Soc Nephrol 16:3365–3370. https://doi.org/10.1681/ASN.2004090740 

2.  Lysak N, Bihorac A, Hobson C (2017) Mortality and cost of acute and chronic kidney disease after 

cardiac surgery. Curr. Opin. Anaesthesiol. 30:113–117 

3.  Silver SA, Chertow GM (2017) The Economic Consequences of Acute Kidney Injury. Nephron 

137:297–301 

4.  Dasta JF, Kane-Gill S (2019) Review of the Literature on the Costs Associated With Acute Kidney 

Injury. J. Pharm. Pract. 32:292–302 

5.  Alshaikh HN, Katz NM, Gani F, et al (2018) Financial Impact of Acute Kidney Injury After Cardiac 

Operations in the United States. Ann Thorac Surg 105:469–475. 

https://doi.org/10.1016/j.athoracsur.2017.10.053 

6.  Jiang L, Zhu Y, Luo X, et al (2019) Epidemiology of acute kidney injury in intensive care units in 

Beijing: The multi-center BAKIT study. BMC Nephrol 20:468. https://doi.org/10.1186/s12882-019-1660-z 

7.  Gammelager H, Christiansen CF, Johansen MB, et al (2012) One-year mortality among Danish 

intensive care patients with acute kidney injury: a cohort study. Crit Care 16:R124. 

https://doi.org/10.1186/cc11420 

8.  Fujii T, Uchino S, Takinami M, Bellomo R (2014) Validation of the kidney disease improving global 

outcomes criteria for AKI and comparison of three criteria in hospitalized patients. Clin J Am Soc Nephrol 9:848–

854. https://doi.org/10.2215/CJN.09530913 

9.  Koeze J, Keus F, Dieperink W, et al (2017) Incidence, timing and outcome of AKI in critically ill 

patients varies with the definition used and the addition of urine output criteria. BMC Nephrol 18:70. 

https://doi.org/10.1186/s12882-017-0487-8 

10.  Ronco C, Bellomo R, Kellum JA (2019) Acute kidney injury. Lancet 394:1949–1964 

11.  Khwaja A (2012) KDIGO clinical practice guidelines for acute kidney injury. Nephron - Clin. Pract. 

120:c179-84 

12.  Gaudry S, Hajage D, Benichou N, et al (2020) Delayed versus early initiation of renal replacement 

therapy for severe acute kidney injury: a systematic review and individual patient data meta-analysis of 

randomised clinical trials. Lancet (London, England) 395:1506–1515. https://doi.org/10.1016/S0140-

6736(20)30531-6 

13.  Srisawat N, Murugan R, Lee M, et al (2011) Plasma neutrophil gelatinase-associated lipocalin predicts 

recovery from acute kidney injury following community-acquired pneumonia. Kidney Int 80:545–552. 

https://doi.org/10.1038/ki.2011.160 

14.  Dewitte A, Joannès-Boyau O, Sidobre C, et al (2015) Kinetic eGFR and novel AKI biomarkers to 

predict renal recovery. Clin J Am Soc Nephrol 10:1900–1910. https://doi.org/10.2215/CJN.12651214 



 

99 

 

15.  Fiorentino M, Tohme FA, Murugan R, Kellum JA (2019) Plasma Biomarkers in Predicting Renal 

Recovery from Acute Kidney Injury in Critically Ill Patients. Blood Purif 48:253–261. 

https://doi.org/10.1159/000500423 

16.  Srisawat N, Wen X, Lee MJ, et al (2011) Urinary biomarkers and renal recovery in critically ill patients 

with renal support. Clin J Am Soc Nephrol 6:1815–1823. https://doi.org/10.2215/CJN.11261210 

17.  Pike F, Murugan R, Keener C, et al (2015) Biomarker enhanced risk prediction for adverse outcomes in 

critically Ill patients receiving RRT. Clin J Am Soc Nephrol 10:1332–1339. 

https://doi.org/10.2215/CJN.09911014 

18.  Flechet M, Güiza F, Schetz M, et al (2017) AKIpredictor, an online prognostic calculator for acute 

kidney injury in adult critically ill patients: development, validation and comparison to serum neutrophil 

gelatinase-associated lipocalin. Intensive Care Med 43:764–773. https://doi.org/10.1007/s00134-017-4678-3 

19.  Malhotra R, Kashani KB, Macedo E, et al (2017) A risk prediction score for acute kidney injury in the 

intensive care unit. Nephrol Dial Transplant 32:814–822. https://doi.org/10.1093/ndt/gfx026 

20.  Chiofolo C, Chbat N, Ghosh E, et al (2019) Automated Continuous Acute Kidney Injury Prediction and 

Surveillance: A Random Forest Model. Mayo Clin Proc 94:783–792. 

https://doi.org/10.1016/j.mayocp.2019.02.009 

21.  Zimmerman LP, Reyfman PA, Smith ADR, et al (2019) Early prediction of acute kidney injury 

following ICU admission using a multivariate panel of physiological measurements. BMC Med Inform Decis 

Mak 19:16. https://doi.org/10.1186/s12911-019-0733-z 

22.  Tomašev N, Glorot X, Rae JW, et al (2019) A clinically applicable approach to continuous prediction 

of future acute kidney injury. Nature 572:116–119. https://doi.org/10.1038/s41586-019-1390-1 

23.  Li Y, Yao L, Mao C, et al (2018) Early Prediction of Acute Kidney Injury in Critical Care Setting Using 

Clinical Notes. In: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). pp 683–

686 

24.  Chen Y, Feng F, Li M, et al (2019) Development of a risk stratification-based model for prediction of 

acute kidney injury in critically ill patients. Med (United States) 98:e16867. 

https://doi.org/10.1097/MD.0000000000016867 

25.  Parreco J, Soe-Lin H, Parks JJ, et al (2019) Comparing machine learning algorithms for predicting acute 

kidney injury. Am Surg 85:725–729. https://doi.org/10.1177/000313481908500731 

26.  Dharan KS, John GT, Antonisamy B, et al (2005) Prediction of mortality in acute renal failure in the 

tropics. Ren Fail 27:289–296. https://doi.org/10.1081/JDI-200056612 

27.  Chertow GM, Soroko SH, Paganini EP, et al (2006) Mortality after acute renal failure: Models for 

prognostic stratification and risk adjustment. Kidney Int 70:1120–1126. https://doi.org/10.1038/sj.ki.5001579 

28.  Demirjian S, Chertow GM, Zhang JH, et al (2011) Model to predict mortality in critically ill adults with 

acute kidney injury. Clin J Am Soc Nephrol 6:2114–2120. https://doi.org/10.2215/CJN.02900311 



 

100 | Chapter 4 

 

29.  da Hora Passos R, Ramos JGR, Mendonça EJB, et al (2017) A clinical score to predict mortality in 

septic acute kidney injury patients requiring continuous renal replacement therapy: The HELENICC score. BMC 

Anesthesiol 17:21. https://doi.org/10.1186/s12871-017-0312-8 

30.  Kim Y, Park N, Kim J, et al (2019) Development of a new mortality scoring system for acute kidney 

injury with continuous renal replacement therapy. Nephrology 24:1233–1240. https://doi.org/10.1111/nep.13661 

31.  Kang MW, Kim J, Kim DK, et al (2020) Machine learning algorithm to predict mortality in patients 

undergoing continuous renal replacement therapy. Crit Care 24:42. https://doi.org/10.1186/s13054-020-2752-7 

32.  Lin K, Hu Y, Kong G (2019) Predicting in-hospital mortality of patients with acute kidney injury in the 

ICU using random forest model. Int J Med Inform 125:55–61. https://doi.org/10.1016/j.ijmedinf.2019.02.002 

33.  Xu Z, Luo Y, Adekkanattu P, et al (2019) Stratified mortality prediction of patients with acute kidney 

injury in critical care. In: Studies in Health Technology and Informatics. IOS Press, pp 462–466 

34.  Itenov TS, Berthelsen RE, Jensen JU, et al (2018) Predicting recovery from acute kidney injury in 

critically ill patients: Development and validation of a prediction model. Crit Care Resusc 20:54–60 

35.  Lee BJ, Hsu C yuan, Parikh R, et al (2019) Predicting Renal Recovery After Dialysis-Requiring Acute 

Kidney Injury. Kidney Int Reports 4:571–581. https://doi.org/10.1016/j.ekir.2019.01.015 

36.  Thiele RH, Isbell JM, Rosner MH (2015) AKI associated with cardiac surgery. Clin. J. Am. Soc. 

Nephrol. 10:500–514 

37.  Peerapornratana S, Manrique-Caballero CL, Gómez H, Kellum JA (2019) Acute kidney injury from 

sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int. 96:1083–1099 

38.  Kellum JA (2014) How can we define recovery after acute kidney injury? Considerations from 

epidemiology and clinical trial design. Nephron - Clin Pract 127:81–88. https://doi.org/10.1159/000363681 

39.  Casaer MP, Mesotten D, Hermans G, et al (2011) Early versus Late Parenteral Nutrition in Critically Ill 

Adults. N Engl J Med 365:506–517. https://doi.org/10.1056/NEJMoa1102662 

40.  Witten IH, Frank E, Hall MA, Pal CJ (2016) Data Mining: Practical Machine Learning Tools and 

Techniques. Elsevier 

41.  Strobl C, Boulesteix AL, Zeileis A, Hothorn T (2007) Bias in random forest variable importance 

measures: Illustrations, sources and a solution. BMC Bioinformatics 8:25. https://doi.org/10.1186/1471-2105-8-

25 

42.  Bone RC, Balk RA, Cerra FB, et al (1992) Definitions for sepsis and organ failure and guidelines for 

the use of innovative therapies in sepsis. In: Chest. pp 1644–1655 

43.  Steyerberg EW (2009) Evaluation of performance. In: Clinical Prediction Models: A Practical Approach 

to Development, Validation, and Updating. Springer New York, New York, NY, pp 255–280 

44.  Kellum JA, Sileanu FE, Bihorac A, et al (2017) Recovery after acute kidney injury. Am J Respir Crit 

Care Med 195:784–791. https://doi.org/10.1164/rccm.201604-0799OC 

45.  Fan H, Zhao Y, Zhu JH, et al (2015) Thrombocytopenia as a predictor of severe acute kidney injury in 

patients with heat stroke. Ren Fail 37:877–881. https://doi.org/10.3109/0886022X.2015.1022851 



 

101 

 

46.  Kertai MD, Zhou S, Karhausen JA, et al (2016) Platelet Counts, Acute Kidney Injury, and Mortality 

after Coronary Artery Bypass Grafting Surgery. Anesthesiology 124:339–352. 

https://doi.org/10.1097/ALN.0000000000000959 

47.  Koo CH, Eun Jung D, Park YS, et al (2018) Neutrophil, Lymphocyte, and Platelet Counts and Acute 

Kidney Injury After Cardiovascular Surgery. J Cardiothorac Vasc Anesth 32:212–222. 

https://doi.org/10.1053/j.jvca.2017.08.033 

48.  Griffin BR, Jovanovich A, You Z, et al (2019) Effects of Baseline Thrombocytopenia and Platelet 

Decrease Following Renal Replacement Therapy Initiation in Patients With Severe Acute Kidney Injury. Crit 

Care Med 47:e325–e331. https://doi.org/10.1097/CCM.0000000000003598 

49.  Wu M, Luan YY, Lu JF, et al (2020) Platelet count as a new biomarker for acute kidney injury induced 

by hemorrhagic shock. Platelets 31:94–102. https://doi.org/10.1080/09537104.2019.1581921 

50.  Li DH, Wald R, Blum D, et al (2020) Predicting mortality among critically ill patients with acute kidney 

injury treated with renal replacement therapy: Development and validation of new prediction models. J Crit Care 

56:113–119. https://doi.org/10.1016/j.jcrc.2019.12.015 

51.  Han SS, Ahn SY, Ryu J, et al (2014) U-shape relationship of white blood cells with acute kidney injury 

and mortality in critically Ill patients. Tohoku J Exp Med 232:177–185. https://doi.org/10.1620/tjem.232.177 

52.  Uchino S, Kellum JA, Bellomo R, et al (2005) Acute renal failure in critically ill patients: A 

multinational, multicenter study. J Am Med Assoc 294:813–818. https://doi.org/10.1001/jama.294.7.813 

53.  Bagshaw SM (2006) Epidemiology of renal recovery after acute renal failure. Curr. Opin. Crit. Care 

12:544–550 

54.  Bagshaw SM, Laupland KB, Doig CJ, et al (2005) Prognosis for long-term survival and renal recovery 

in critically ill patients with severe acute renal failure: a population-based study. Crit Care 9:R700. 

https://doi.org/10.1186/cc3879 

55.  Bagshaw SM, Bennett M, Haase M, et al (2010) Plasma and urine neutrophil gelatinase-associated 

lipocalin in septic versus non-septic acute kidney injury in critical illness. Intensive Care Med 36:452–461. 

https://doi.org/10.1007/s00134-009-1724-9 

56.  Czempik P, Cieśla D, Knapik P, Krzych Ł (2018) Mortality of patients with acute kidney injury 

requiring renal replacement therapy. Adv Clin Exp Med 27:327–333. https://doi.org/10.17219/acem/65066 

57.  Ohnuma T, Uchino S (2017) Prediction models and their external validation studies for mortality of 

patients with acute kidney injury: A systematic review. PLoS One 12:e0169341. 

https://doi.org/10.1371/journal.pone.0169341 

58.  Beaubien-Souligny W, Wald R (2019) Predicting Outcomes in Acute Kidney Injury Survivors: 

Searching for the Crystal Ball. Kidney Int. Reports 4:520–521 

59.  Moons KGM, Altman DG, Reitsma JB, et al (2015) Transparent reporting of a multivariable prediction 

model for individual prognosis or diagnosis (TRIPOD): Explanation and elaboration. Ann Intern Med 162:W1–

W73. https://doi.org/10.7326/M14-0698 



 

102 | Chapter 4 

 

 

 

 

 



 

103 

 

5  

External Validation of the Augmented Renal Clearance Predictor 

in Critically Ill COVID-19 Patients  

 

Adapted from: Chao-Yuan Huang, Fabian Güiza, Matthias Gijsen, Isabel Spriet, Dieter Dauwe, Yves Debaveye, 

Marijke Peetermans, Joost Wauters, Greet Van den Berghe, Geert Meyfroidt, Greet De Vlieger. “External 

Validation of the Augmented Renal Clearance Predictor in Critically Ill COVID-19 Patients”. Submitted for 

publication. 

 

Presented as: 

• Poster presentation at the 42nd Annual Congress of the Belgian Society of Intensive Care Medicine (SIZ), 

Brussels, Belgium, June, 2022 

 

 

 

  



 

104 | Chapter 5 

 

Abstract 

Aim: The ARC predictor, a prediction model developed to predict onset of augmented renal clearance (ARC) on 

the next intensive care unit (ICU) day, showed good performance and outperformed two existing models in a 

general ICU setting. The aim is to externally validate the ARC predictor in critically ill coronavirus disease 19 

(COVID-19) patients. 

Methods: This is a retrospective, single-center, observational study in critically ill COVID-19 adults admitted 

to the ICU of the University Hospitals Leuven from February 2020 to January 2021. Patient-days with available 

serum creatinine (SCr) on any given ICU day and measured creatinine clearance (CrCl) on the next ICU day 

were enrolled. ARC prediction was based on six clinical data: age, sex, day from admission, SCr, trauma, and 

cardiac surgery. Model was evaluated by discrimination, calibration, and decision curve. 

Results: A total of 120 patients (1064 patient-days) were included, and ARC was found in 57 (47.5%) patients, 

corresponding to 246 (23.1%) patient-days. The ARC predictor demonstrated good discrimination and calibration 

(area under the receiver operating characteristics curve of 0.86, calibration slope of 1.18, and calibration-in-the-

large of 0.14) and wide clinical usefulness range (4.04–81.82%). At the default classification threshold of 20% 

in the original study, the sensitivity and specificity were 72% and 81%.  

Conclusions: The ARC predictor is able to accurately predict ARC in the critically ill COVID-19 patients, based 

on six routinely collected clinical data. These results imply the potential of ARC predictor to optimize renally 

cleared drug dosages in this specific ICU population. 
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5.1 Introduction  

Augmented renal clearance (ARC) is common in critically ill patients, with prevalence varying between 20-65% 

[1]. Currently, there is no generally accepted ARC definition, but it is commonly defined by urinary creatinine 

clearance (CrCl) being larger than 130 ml/min/1.73m2 [1], measured from the past 8- to 24-hour window 

depending on the urine collection time [2]. It has been shown that ARC leads to a decreased exposure to 

commonly used antibiotics such as beta-lactams and vancomycin [3–5], as well as anticoagulants [6]. 

Consequently, it has been suggested that increased antibiotic doses are necessary in patients with ARC to increase 

exposure and decrease the risk of treatment failure [7].  

Given the adverse consequences of ARC, the ARC predictor was developed to predict the presence of 

ARC on the next intensive care unit (ICU) day. The ARC predictor outperformed two existing models (ARC 

Score [8] and ARCTIC Score [9]) in the validation cohort [10], and has been made publicly available as an online 

calculator [11]. Despite the success of the ARC predictor in the general ICU setting, and despite its potential as 

a tool to optimize drug dosing, its performance in other independent patient populations remains to be 

investigated before it can be recommended for broad clinical use [12]. 

Since the beginning of 2020, ICUs worldwide have been overwhelmed by a large number of critically 

ill coronavirus disease 19 (COVID-19) patients. More than 525 million people have been infected, and over six 

million people have died from COVID-19 [13]. Patients with COVID-19 are mainly characterized by respiratory 

illness, but many critically ill COVID-19 patients may also suffer from reduced kidney function with an acute 

kidney injury (AKI) prevalence of 18-81% [14]. In addition, it was recently reported that ARC, the other extreme 

of renal function spectrum, also occurs frequently in COVID-19 population with prevalence of 25-72% [15].  

To the best of our knowledge, only the epidemiology of ARC has been described in critically ill COVID-

19 patients [15–19], and there are currently no studies investigating ARC prediction model performance in this 

patient population. Therefore, we aim to externally validate the ARC predictor in previously unseen critically ill 

COVID-19 patients. 

 

5.2 Methods 

5.2.1 Study databases with inclusion and exclusion criteria 

Model validation was performed in adult COVID-19 pneumonia patients admitted to critical care in the 

University Hospitals Leuven from February 2020 to January 2021, with a positive polymerase chain reaction 

(PCR) for SARS-coronavirus-2 on a respiratory sample. Ethical approval was obtained from the Ethics 

Committee (EC) Research UZ/KU Leuven (S66365) with study title of “Machine learning tools in critically ill 

COVID-19 patients: external validation of the Acute Kidney Injury and Augmented Renal Clearance predictors” 

on 8th April 2022, and the need for informed consent form was waived because of the non-interventional nature 

of the study. The study was conducted in compliance with the principles of the Declaration of Helsinki and its 

later revisions. Patients were excluded if they had end-stage kidney disease defined as chronic hemodialysis 

and/or kidney transplant upon ICU admission. Patient-days were excluded if they had 1) no available serum 

creatinine (SCr) measured on the ICU day prior to the day for which the prediction is made, 2) no measured CrCl 

on the ICU day for which the prediction is made, 3) kidney replacement therapy (KRT) on the day for which the 
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prediction is made, 4) onset of intermittent dialysis during the previous ICU days, 5) incomplete ICU day (day0), 

and/or 6) KRT on the day prior to the day for which the prediction is made. 

5.2.2 ARC definition 

Daily CrCl was measured for each ICU day based on the daily 24h urine output (UO), urinary creatinine (UCr), 

and SCr with correction for an average body surface area: CrCl (ml/min/1.73m2) = UCr (mg/dL) × 24h UO 

(ml/day) / SCr (mg/dL) / 1440 (min/day) × 1.73 / (0.007184 × height (cm)0.725 × weight (kg)0.425). If more than 

one value was available on the same ICU day, mean was applied for UCr and SCr, and summation was applied 

to UO. ARC was defined as a measured CrCl larger than 130 ml/min/1.73m². Data were retrieved from the patient 

data management system database (Microsoft SQL Server®; Microsoft®, Redmond, Washington, USA). After 

application of the exclusion criteria, there were no patient-days with missing values for any ARC predictor feature. 

5.2.3 ARC predictor 

The ARC predictor is a model developed by Gijsen et al. [10] to predict ARC on the next ICU day based on six 

routinely collected clinical variables: age, sex, day from ICU admission, SCr of the previous day, trauma related 

diagnosis on ICU admission (True/False), and cardiac surgery related diagnosis on ICU admission (True/False), 

by using a generalized estimating equation (GEE) logistic regression with backward feature selection. The ARC 

predictor calculates the predicted probability with the provided six features, which can then be translated into a 

prediction for ARC on the next ICU day according to a prespecified classification threshold. This classification 

threshold is set by default at 20%, which maximized sensitivity and specificity in the original study, although the 

threshold can also be manually adapted. 

5.2.4 Evaluation metrics for predictive performance 

For better interpretation and comparison with the original study, model performance was evaluated by using the 

same evaluation metrics: receiving operating characteristics (ROC) curve (including area under the ROC curve 

(AUROC), sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio, 

and negative likelihood ratio), calibration plot (including calibration slope (CS), and calibration-in-the-large 

(CITL)) [20], and decision curve analysis [21]. Precision-recall (PR) curve (including area under the PR curve 

(AUPRC) was also examined. To further investigate the importance of each ARC predictor feature and to 

examine whether all features were still predictive for this study cohort, 100 repetitions of AUROC-based 

permutation importance were measured [22]. Boxplot was used to compare the predicted probabilities between 

(i) the patient-days with and without ARC during the entire ICU stay and on each ICU day within two weeks 

after ICU admission, and (ii) the patients with and without ARC where the predicted probabilities were averaged 

over their ICU stay, regardless of presence of ARC on that day. Additionally, percentage of ARC days and 

number of ARC days in ARC patients were investigated and visualized with boxplot. 

5.2.5 Descriptive analyses and software used 

All analyses were performed in Python 3.7.4 (Python Software Foundation, http://www.python.org) with SciPy 

version 1.7.3 (SciPy.org) and Scikit-learn library 1.0.2 (scikit-learn.org). Descriptive statistics were used to 

describe the study population, with continuous data presented as medians and interquartile ranges (IQR) and 

categorical data expressed as counts and percentages (%). To evaluate statistical significance of differences, GEE 
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model was used with patient identification number as grouping variable. A two-tailed P-value less than or equal 

to 0.05 was considered statistically significant. 

5.3 Results 

5.3.1 Study cohort 

In total, 120 patients (1064 patient-days) were included, among which ARC was found on at least one ICU day 

in 57 (47.5%) patients, corresponding to 246 patient-days (23.1%) (Figure 5.1). The descriptive statistics per 

patient and per patient-day are shown in Table 5.1 and Table 5.A.1. Seventy-two percent of the study cohort 

were male patients. Baseline SCr was missing in 178 (16.73%) patient-days, corresponding to 20 (16.67%) 

patients, and imputed with median baseline SCr of 0.86 mg/dL. The median (interquartile range, IQR) age was 

67 (59 – 75) years, median (IQR) body mass index (BMI) was 28.7 (25.8 – 33.1) kg/m2, and median (IQR) ICU 

length of stay (LOS) was 14 (9 – 24) days. Patients with ARC were significantly younger (61 (57 – 67) vs. 73 

(65 – 78) years, p < 0.01), had lower baseline serum creatinine (0.9 (0.7 – 0.9) vs. 0.9 (0.9 – 1.1), p < 0.01), and 

lower Acute Physiology and Chronic Health Evaluation II (APACHE II) score (18 (13 – 23)) vs. 19 (17 – 27), p 

< 0.01). In ARC patients, the median (IQR) first day of ARC was 1 (1 – 2) day from ICU admission, median 

(IQR) percentage of ARC days was 61.54% (25 – 100%), and median (IQR) days with ARC was 2 (1 – 6) days 

(Figure 5.A.1). Patient-days with ARC had significantly higher CrCl (152.7 (138.3 – 175.6) vs. 74.8 (52.3 – 

102.2) ml/min/1.73m2, p < 0.01). In comparison to the original ARC predictor development cohort, this study 

cohort consisted of 10% more males (72.5 vs. 62.5%), had comparable ages (67 vs. 65 years), and showed an 

ICU LOS almost twice as long (14 vs. 8 days).  

 

Figure 5.1. Consort diagram. ESKD, end-stage kidney disease; CrCl, creatinine clearance; KRT, kidney replacement therapy; 

SCr, serum creatinine; ICU, intensive care unit 
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Table 5.1 Patient characteristics and clinical outcomes  

Variables  
All patients  

(n=120) 

ARC  

(n=57, 47.50%) 

Not ARC  

(n=63, 52.50%) 
p-

value 

Age, years, median (IQR) 67 (59 – 75) 61 (57 – 67) 73 (65 – 78) <0.01 

Gender male, number (%) 87 (72.5) 40 (70.2) 47 (74.6) 0.59 

Height, m, median (IQR) 1.7 (1.6 – 1.8) 1.8 (1.7 – 1.8) 1.7 (1.6 – 1.8) 0.03 

Weight, kg, median (IQR) 85.0 (71.5 – 104.0) 86.0 (70.0 – 104.0) 85.0 (73.5 – 101.5) 0.63 

BMI, median (IQR) 28.7 (25.8 – 33.1) 28.1 (26.1 – 32.8) 29.0 (25.8 – 34.3) 0.71 

Baseline serum creatinine, 

mg/dl, median (IQR) 
0.9 (0.8 – 1.0) 0.9 (0.7 – 0.9) 0.9 (0.9 – 1.1) <0.01 

APACHE II score, median 

(IQR) 
19 (15 – 25) 18 (13 – 23) 19 (17 – 27) <0.01 

Day from ICU admission, 

day, median (IQR) 
6.0 (3.5 – 10.0) 6.5 (4.0 – 10.0) 6.0 (3.2 – 10.5) 0.73 

Creatinine clearance, 

ml/min/1.73m^2, median 

(IQR) 
91.3 (54.7 – 132.5) 

133.8 (106.4 – 

165.0) 
55.9 (27.8 – 81.9) <0.01 

Length of stay in ICU, 

days, median (IQR) 
14 (9 – 24) 15 (8 – 24) 14 (10 – 24) 0.11 

BMI, body mass index; APACHE II score, Acute Physiology and Chronic Health Evaluation II score; IQR, 

interquartile range 

 

5.3.2 ARC predictor external validation performance 

The ARC predictor demonstrated good discrimination comparable to the original study (AUROC: 0.86 vs. 0.89) 

but slightly worse calibration (CS: 1.18 vs. 0.95; CITL: 0.14 vs. 0.12) (Figure 5.2). At the classification threshold 

of 20% that maximized sensitivity and specificity in the original study, the sensitivity, specificity, positive 

predictive value, negative predictive value, positive likelihood ratio, and negative likelihood ratio are 72.36%, 

81.17%, 53.61%, 90.71%, 3.84, and 0.34 respectively (Figure 5.3), in comparison to 87.9%, 76.9%, 48.3%, 

96.3%, 3.8, and 0.16 in the original study. Decision curve analysis demonstrated potential clinical usefulness 

across a broad range of classification thresholds (4.04 – 81.82%), similar to the original study (1 – 71%). The 

ARC predictor showed a higher AUPRC of 0.62 than the baseline AUPRC of 0.23 (Figure 5.A.2). As described 

in Figure 5.4, regardless of the day from ICU admission, the predicted probabilities were significantly higher in 

patients and patient-days with ARC, compared to patients and patient-days without ARC. On each ICU day 
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within the first two weeks of ICU admission, predicted probabilities were significantly higher in patient-days 

with ARC than patient-days without ARC (Figure 5.A.3). 

 

  

Figure 5.2. ARC predictor performance represented by (i) ROC curve (left) (ii) calibration curve (middle) (iii) decision curve 

(right). AUROC, area under the receiver operating characteristics curve; CS, calibration slope; CITL, calibration in the large  

 

 

Figure 5.3. Confusion matrix with numbers and percentages of ICU days with true/false positives/negatives. ARC, 

augmented renal clearance  
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Figure 5.4. Comparison of predicted probabilities of ARC on the next ICU day between (left) patient-days with and without 

ARC and (right) patients with and without ARC during their ICU stay, with predicted probabilities average over their ICU 

stay, regardless of presence of ARC on that day. ARC, augmented renal clearance 

 

5.3.3 ARC predictor feature importance 

In the present study cohort, SCr of the previous day was the most important feature, followed by day from 

admission, age, and sex, with median permutation importance of 0.28, 0.10, 0.04, and 0.02 (Figure 5.A.4). Since 

all patients were admitted due to the respiratory insufficiency resulted from COVID-19, they were all without 

trauma and cardiac surgery related diagnosis on ICU admission and thus with zero permutation importance for 

these two features. 

5.4 Discussion 

In this external validation study, we found that ARC predictor had good performance in predicting the presence 

of ARC on the next ICU day in critically ill COVID-19 patients. Specifically, the robustness of the ARC predictor 

was confirmed by the comparable ARC predictor discrimination demonstrated in this study compared to the 

original study and by the significantly higher predicted probabilities in patients and patient-days with ARC. 

Nevertheless, the calibration plot expressed that the ARC predictor slightly underestimated the ARC risk in this 

population. Finally, the decision curve analysis showed a similar wide clinical usefulness range and that the 

default classification threshold of 20% that maximized the sensitivity and specificity in the original study was 

still able to attain clinical usefulness in this critically ill COVID-19 population. These results demonstrated the 

potential of the ARC predictor for risk stratification and drug dose adjustment in this specific population of 

critically ill patents.  

Despite the fact that only one percent decrease in discrimination was found and that the clinical 

usefulness range was still wide, worse calibration was identified. This was expected and understandable, given 

the significantly different patient characteristics between this critically ill COVID-19 cohort and the original 

ARC predictor development cohort. The development cohort also consisted of trauma and cardiac surgery 
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patients and included no COVID-19 patients, which are known to display substantially longer ICU stays than 

general ICU patients [23]. In addition to the worse calibration, lower sensitivity compared to the original study 

was also detected, which both indicated that the ARC predictor underestimated the risk of ARC. This 

underestimation of ARC risk may be partially explained by the fact that the two features contributing to a higher 

predicted probability, trauma-related and cardiac-related diagnosis at admission, were zeros in our cohort. 

Nevertheless, COVID-19 patients might experience systemic inflammatory response syndrome, which could 

(in-)directly overlap with the mechanism of ARC [15] and could consequently increase the ARC risk.  

Based on the permutation importance plot, we noticed that the SCr of the previous day was the most 

important feature, which was reasonable since it directly and timely reflected the time-variant renal function. The 

second most important feature was day from ICU admission. We found that ARC occurred relatively early, which 

was opposed to the findings of Beunders et al. who found that ARC occurred late on median (IQR) day 28 (21–

42) following ICU admission during COVID-19 infections [16] but in line with the previous studies in general 

ICU patients (the highest ARC prevalence was observed on day 5) and critically ill COVID-19 patients (median 

(IQR) first day of ARC was day 2 (3–5) of ICU stay) [1, 18]. Afterwards, age was ranked the third most important 

feature, which was expected since age has consistently shown a significant association with ARC in many studies 

[7, 9, 31–34, 10, 24–30]. Age might be more relevant in this patient population, since it has been noticed that 

some COVID-19 variants are more prevalent in young patients [35, 36]. Also, the association between male 

gender and ARC is well-known [7, 9, 10, 25, 27, 29–31, 34]. Finally, the permutation importance plot revealed 

an important message that these four ARC predictor features were with positive permutation importance and thus 

were all effectively contributing to the final robust predictive performance. 

Our study has many strengths. First, not only discrimination, but also calibration and clinical usefulness 

were investigated, which were considered the key measures to evaluate model performance [37]. Second, the 

reporting of this study was performed following the Transparent Reporting of a Multivariate Prediction Model 

for Individual Prognosis or Diagnosis (TRIPOD) guidelines [38]. Third, this study was based on a large high-

quality COVID-19 cohort without any missing value in the ARC predictor features, and thus no imputation 

methods were applied, so the presented results are reliable and trustworthy. Fourth, the reported permutation 

importance helped understanding the contribution of each ARC predictor feature in this study cohort. Finally, 

the higher predicted probabilities in patients and patient-days with ARC were explicitly investigated, either as a 

whole in the entire ICU stay regardless of the ICU days, or on each ICU day within two weeks after ICU 

admission. 

There are still several limitations in our study. First, by virtue of the retrospective study nature, there 

was no impact analysis about whether or not the ARC predictor could help attaining pharmacokinetic targets, 

optimizing renally cleared drug dosage, and/or improving patient outcome. Second, this is a single-center study 

in Belgium, while the optimum is to validate the ARC predictor performance in a larger multi-center international 

setting. Third, there might be a selection bias resulting from the exclusion criteria where patient-days with need 

for temporary KRT, unavailable SCr on the previous day, and/or unavailable CrCl on the present ICU day were 

removed, but it is an inherent bias resulting from the same inclusion and exclusion criteria as the original study, 

and these inclusion/exclusion criteria were necessary to ensure that only reliable CrCls were used for performance 

evaluation.  Fourth, we did not evaluate whether ARC predictor might improve drug dosage. Future studies are 
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needed to assess whether the ARC predictor is able to improve the drug dosage of antibiotics and low molecular 

weight heparins. 

5.5 Conclusion 

We have demonstrated the robustness of ARC predictor in predicting the presence of ARC on the next ICU day 

in previously unseen critically ill COVID-19 patients, based on six routinely collected clinical variables in the 

ICU. Despite the promising performance, these findings should be prospectively validated in independent patient 

populations before the ARC predictor can be implemented for risk stratification or used to inform optimized 

dosing strategies in routine clinical ICU practice. 
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5.A Appendix 

5.A.1 Supplementary tables 

Table 5.A.1 Patient characteristics and clinical outcomes (per patient-day) 

Variables  
All patient-days 

(n=1064) 

ARC  

(n=246, 23.12%) 

Not ARC  

(n=818, 76.88%) 

p-

value 

Age, years, median (IQR) 65 (60 – 72) 60 (52 – 65) 70 (60 – 73) 0.03 

Gender male, number (%) 805 (75.7) 173 (70.3) 632 (77.3) 0.35 

Height, m, median (IQR) 1.8 (1.6 – 1.8) 1.8 (1.7 – 1.8) 1.7 (1.6 – 1.8) 0.19 

Weight, kg, median (IQR) 85.0 (75.0 – 104.0) 86.0 (70.0 – 105.0) 85.0 (76.5 – 103.0) 0.73 

BMI, median (IQR) 28.7 (26.2 – 32.1) 28.4 (26.3 – 32.1) 28.7 (26.2 – 31.9) 0.19 

Baseline serum creatinine, 

mg/dl, median (IQR) 
0.9 (0.8 – 0.9) 0.9 (0.7 – 0.9) 0.9 (0.8 – 1.0) <0.01 

APACHE II score, median 

(IQR) 
19 (15 – 25) 17 (14 – 22) 19 (16 – 25) <0.01 

Day from ICU admission, 

day, median (IQR) 
9.0 (4.0 – 18.0) 8.0 (4.0 – 13.0) 10.0 (5.0 – 20.0) <0.01 

Creatinine clearance, 

ml/min/1.73m^2, median 

(IQR) 
91.9 (60.4 – 127.9) 

152.7 (138.3 – 

175.6) 
74.8 (52.3 – 102.2) <0.01 

Length of stay in ICU, days, 

median (IQR) 
22 (13 – 38) 18 (11 – 23) 24 (15 – 44) <0.01 

Statistically significant difference was examined by using univariable generalized estimating equation (GEE) 

model, with ICU admission number as clustering variable, and days with ARC as reference group. BMI, body 

mass index; APACHE II score, Acute Physiology and Chronic Health Evaluation II score; IQR, interquartile 

range 
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5.A.2 Supplementary figures 

 

Figure 5.A.1 Percentage of ARC days (left) and number of days with ARC (right) in ARC patients; ARC, 

augmented renal clearance 

 

Figure 5.A.2 Precision recall curve. AUPRC, area under the precision recall curve. Baseline, the number of 

positive cases (patient-days with presence of augmented renal clearance) over the total number of patient-day 

 



 

115 

 

 

Figure 5.A.3 Comparison of predicted probabilities of ARC on each ICU day between patient-days with and 

without ARC, within the first two weeks of ICU admission. The black and grey numbers above the figure 

indicated the numbers of patient-days with and without ARC on each ICU day. ARC, augmented renal clearance 

 

 

Figure 5.A.4 Boxplots of permutation importance of all augmented renal clearance predictor features with 100 

repetitions. AUROC, area under the receiver operating characteristics curve
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6.1 Letter to the Editor  

It is well known that the kidney function can change rapidly during critical illness, with either sudden increases 

[1] or decreases [2] in renal clearance that may have potentially important consequences for drug dosage 

adjustments involving renally excreted drugs. However, the true incidence and degree of these fluctuations have 

never been described systematically. In this study, we aim to investigate kidney function fluctuations as defined 

by the daily differences in creatinine clearance (CrCl) in critically ill adults. 

 For the present study, data were retrieved from patients included in the large multicenter EPaNIC 

randomized controlled trial [3] that compared two parenteral nutrition strategies in 4640 critically ill adults 

between 2007 and 2010. The Ethics Committee of University Hospitals Leuven approved the use of these patient 

data for additional analyses (S50404). Daily CrCl was calculated by multiplying the urinary creatinine (UCr) 

(measured on 24-hour urine collection) with the 24-hour urine output (UO), divided by the serum creatinine (SCr) 

times the collection time (1440 minutes), without correcting for body surface area (BSA).  

𝐶𝑟𝐶𝑙 (𝑚𝑙/𝑚𝑖𝑛) =  
𝑈𝐶𝑟 × 𝑈𝑂

𝑆𝐶𝑟 × 1440
 

As the University Hospitals Leuven were the only EPaNIC center where CrCl was calculated daily, 

patients from other centers were excluded. Laboratory results were exported from patient data management 

system database (Microsoft SQL Server®; Microsoft®, Redmond, Washington, USA), and the remaining data 

were retrieved from EPaNIC trial database (Filemaker Pro®; FileMaker Inc, FileMaker International). As a 

measure of daily fluctuations in CrCl, we calculated the difference between the CrCl of each pair of two 

consecutive days. In case the absolute difference in CrCl of 2 consecutive days was less than 20 ml/min, the daily 

fluctuation was labeled as ‘stable’. A difference larger than 20 ml/min was defined as ‘unstable’. We decided to 

use 20 ml/min as a cutoff as this is a meaningful difference for drug dosing and because the CrCl variability in 

healthy volunteers has been reported with mean differences of 21.7 ml/min/1.73m² and variations of 18.7% [4]. 

Depending on the direction of the fluctuation, we used the categories ‘unstable-upward’ if the CrCl on the next 

consecutive day was >20 ml/min higher than the previous day, or ‘unstable-downward’ if the CrCl on the next 

consecutive day was >20 ml/min lower compared to the day before. We also investigated the relative change in 

CrCl, defining a relative instable CrCl as a change of > 20% between two consecutive CrCl values. Finally, we 

examined CrCl fluctuations in the first week of ICU admission separately. 

 Of the 4389 patients in the study cohort, 2825 patients, corresponding to 18494 patient-days, met the 

inclusion criteria (Figure 6.A.1). Descriptive statistics are available in Table 6.A.1. In terms of absolute 

instability (Figure 6.1a), CrCl remained stable in 65% of days, while 19% were unstable-upward and 16% were 

unstable-downward. Across the CrCl range, the percentage of stable days decreased approximately linearly with 

increasing CrCl values, such that stability was above 70% for CrCl below 75 ml/min and around 30% for CrCl 

above 180 ml/min. Additionally, more than 50% of the days were unstable-downward for CrCl above 180 ml/min, 

and the percentage of unstable-upward days was 20% for CrCl in a range of 45–180 ml/min. When we used the 

relative definition of a 20% difference (Figure 6.1b), the percentages of stable, unstable-upward, and unstable-

downward days were 58%, 25%, and 17%, respectively, with an overall CrCl stability ranging around 60% 

throughout the CrCl range. The percentage of unstable-upward cases declined roughly linearly across the CrCl 

range, ranging from more than 30% for CrCl below 60 ml/min to about 6% for CrCl beyond 180 ml/min. 
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Additionally, for CrCl below 180 ml/min, the percentage of unstable-downward cases remained low, around 15%, 

and it rose to 37% for CrCl above 180 ml/min. For absolute and relative differences alike, more instability was 

observed in the first week of ICU stay (Figure 6.1c and Figure 6.1d). Specifically, for patient-days within the 

first week of ICU admission, 39% were unstable, including 23% unstable-upward and 16% unstable-downward 

days for absolute difference, and 50% were unstable, including 31% unstable-upward and 19% unstable-

downward days for relative difference.  

To conclude, our findings confirm that potentially clinically significant changes in kidney function may 

occur on a daily basis in critically ill patients on approximately 35–40% of days, depending on the definition of 

instability. This instability mainly occurs in the first week of ICU admission and is more pronounced when the 

CrCl is higher. The measured CrCl is known to overestimate the glomerular filtration rate (GFR) as compared to 

inulin clearance, but it has been shown the most reliable and cheap method to assess the GFR on a daily basis in 

the ICU [5]. While these findings have to be confirmed in independent cohorts of critically ill patients, additional 

investigations are needed to determine the factors associated with fluctuations in renal clearance.   
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Figure 6.1 Percentage of patient-days during the entire ICU stay (a, b) and within the first week of ICU admission (c, d) with 

stable, unstable-upward, or unstable-downward CrCl for different CrCl ranges. The number and percentage of patient-days 

for each CrCl ranges are indicted above the figure. a, c The blue, orange, and green bars represent respectively: an increase 

larger than 20 ml/min in the CrCl of the next day compared to the current day (unstable-upward), a decrease larger than 20 

ml/min in the CrCl of the next day compared to the current day (unstable-downward), and an absolute difference smaller than 

20 ml/min between the CrCl of the next and the current day (stable). ΔCrCl, CrCl of the next day minus CrCl of the current 

day; b, d The blue, orange, and green bars represent respectively: an increase larger than 20% in the CrCl of the next day 

compared to the current day (unstable-upward), a decrease larger than 20% in the CrCl of the next day compared to the 

current day (unstable-downward), and an absolute difference smaller than 20% between the CrCl of the next and the current 

day (stable). ΔCrCl, (CrCl of the next day-CrCl of the current day)/(CrCl of the current day); CrCl, creatinine clearance.



 

125 

 

6.A Appendix 

6.A.1 Supplementary tables 

Table 6.A.1 Patient characteristics and clinical outcomes 

 Study cohort (n=2825) 

Age, years, median (IQR) 67.59 (56.16 – 75.61) 

Gender male, number (%) 1747 (61.84) 

Emergency admission, number (%) 1272 (45.03) 

APACHE II score, median (IQR) 22 (16 – 32) 

Reason for admission  

    Cardiac surgery, number (%) 1655 (58.58) 

    Medical disease, number (%) 114 (4.04) 

    Neurology and neurosurgery, number (%) 119 (4.21) 

    Trauma and other surgery, number (%) 662 (23.43) 

    Transplantation, number (%) 275 (9.73) 

ICU mortality, number (%) 162 (5.73) 

Length of stay in ICU, days, median (IQR) 5 (3 – 11) 

APACHE II score, Acute Physiology and Chronic Health Evaluation II score; IQR, interquartile range; ICU, intensive care 

unit  
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6.A.2 Supplementary figures 

 

 

Figure 6.A.1 Study cohort. CrCl, creatinine clearance; KRT, kidney replacement therapy; ICU, intensive care unit. 
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Abstract 

Purpose: In critically ill patients, measured creatinine clearance (CrCl) is the most reliable method to evaluate 

glomerular filtration rate, but may vary subsequently on a day-to-day basis. We developed and externally 

validated models to predict CrCl one day ahead, and compared them with current clinical practice assuming the 

CrCl remains stable. 

Methods: A gradient boosting method (GBM) machine-learning algorithm was used to develop the models on 

data from 2825 patients from the EPaNIC multicenter randomized controlled trial database. Three models were 

developed: a “Core” model based on demographic, admission diagnosis, and daily laboratory results; a 

“Core+BGA” model adding blood gas analysis results; and a “Core+BGA+Monitoring” model also including 

high-resolution monitoring data. Model performance was evaluated against the true CrCl by absolute difference, 

and root-mean-square error (RMSE). We externally validated the models on 9576 patients from the University 

Hospitals Leuven, included in the M@tric database. 

Results: All three developed models showed smaller RMSEs than the current clinical practice. Assuming the 

same CrCl of the day of prediction showed 20.6 (95% CI 20.3-20.9) ml/min absolute difference with true CrCl 

and 40.1 ml/min RMSE in the external validation cohort, while the developed model having the smallest RMSE 

(the Core+BGA+Monitoring model) had 18.1 (95% CI 17.9-18.3) ml/min absolute difference with true CrCl and 

28.9 ml/min RMSE.  

Conclusion: Prediction models based on routinely collected clinical data in the ICU were able to accurately 

predict next day CrCl. These models could be useful for hydrophilic drug dosage adjustment or stratification of 

patients at risk. 
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7.1 Introduction  

Critical illness often affects the kidney function. Epidemiologic studies have shown that 40-60% of ICU patients 

have episodes of acute kidney injury (AKI) [1, 2], and in 20-65% of the patients, days with an augmented renal 

clearance (ARC) occur [3]. Accurate assessment of kidney function is crucial for patient risk stratification and 

drug dosage adjustment, especially for renally cleared drugs such as vancomycin and β-lactam anti-microbials. 

Most often, the renal function is evaluated through the serum creatinine, and renal clearance is estimated based 

upon the modification of diet in renal disease study (MDRD) [4], or chronic kidney disease epidemiology 

collaboration (CKD-EPI) [5] formulas. However, these commonly used estimation formulas were derived from 

non-critically ill patients and thus have their limitations to properly estimate the kidney function in the intensive 

care unit (ICU) setting [6–10]. Creatinine clearance (CrCl) measured from a 24-h urine collection reflects best 

the renal function in both reduced and augmented renal clearance in routine clinical practice [3, 11]. Especially 

in long-stay patients, there is a gap between the estimated renal clearance based upon the serum creatinine and 

the measured creatinine clearance [11]. As the kidney function may change rapidly in critically ill patients [12, 

13], even a calculated CrCl based on the urinary CrCl of the past 24h may lag behind the true kidney function. 

Potentially, accurate prediction of the kidney function of the next 24h could allow for more suitable therapeutic 

interventions. 

Existing machine-learning predictions for renal function have focused on predicting the onset of AKI 

[14–22], because of its high incidence [23] and strong associations with higher mortality, longer length of stay, 

and heavier financial burden [24, 25]. Other models [26–30] predict ARC, which is commonly defined as the 

presence of CrCl greater than 130 ml/min/1.73m^2 and has significant consequences concerning the 

pharmacokinetics of hydrophilic drugs. Studies have demonstrated that ARC patients need higher antibiotic doses 

[31], have more treatment failure [32], and a doubled risk of subtherapeutic vancomycin serum concentrations 

[33].  AKI and ARC prediction models were based on categorized definitions. As the glomerular filtration rate 

(GFR) is in fact continuous, being able to predict the entire kidney function spectrum corresponds better with the 

clinical and physiological reality. 

Despite the importance and need of continuous kidney function prediction, to the best of our knowledge, 

no prediction models for daily prediction of CrCl in critically ill patients exist. Hence, this study aims to develop 

and validate prediction models that apply machine learning algorithm to routinely collected patient data to predict 

CrCl one day ahead. To evaluate the model usefulness, the developed models were also compared with the current 

clinical practice that uses the CrCl from the day of prediction. 
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7.2 Methods 

7.2.1 Prediction tasks and CrCl definition 

This study aims to predict the CrCl of the next patient day. CrCl was calculated by daily 24h urine output (UO), 

urinary creatinine (UCr), and serum creatinine (SCr) without correction for an average body surface area: CrCl 

(ml/min) = Urine creatinine (mg/dL) × 24h Urine output (ml/day) / Serum creatinine (mg/dL) / 1440 (min/day). 

In an additional analysis, the same methodology was applied to develop models to predict the average CrCl over 

the next two days ahead (Appendix 7.A.1). 

7.2.2 Study databases with inclusion and exclusion criteria 

The large multicenter EPaNIC randomized controlled trial (RCT) database [34], where two parenteral nutrition 

strategies were compared in 4640 critically ill adults between August 2007 and November 2010, was used for 

model development. This study was conducted on the basis of prior informed consent by all patients or their legal 

representatives, and the consent forms included the permission to use the data for additional research (S50404). 

For this secondary study, patients were eligible for inclusion if they had no kidney replacement therapy (KRT) 

before ICU. Patient-days were excluded if there were 1) no CrCl measurements on the next day, 2) no CrCl 

measurements on the day of prediction, 3) KRT on the day of prediction, 4) KRT in the previous week, and/or 

5) all patient days beyond 90 days in the ICU were excluded.  

External validation was performed on a dataset of 20930 patients of the University Hospitals Leuven 

who were included in the large multicenter M@tric database between 2013 and 2018 [35]. The M@tric database 

contains high-quality data from all adult patients admitted to the ICUs of the three largest university hospitals in 

Belgium. Ethical approval for the M@tric database collection was received from the Ethics Committee (EC) of 

University Hospitals Ghent. Approval for the use of these patient data in the present study was obtained from the 

EC of University Hospitals Leuven (S61364). The study was conducted in compliance with the principles of the 

Declaration of Helsinki and its later revisions. The same exclusion criteria as described above for the EPaNIC 

development dataset were applied. 

7.2.3 Feature engineering 

Only data up to the day of predicting CrCl were used as input to the models. The considered data included: 1) 

Admission data: demographics, diagnosis, and comorbidities, 2) Time-series data such as minute-by-minute 

monitoring data and daily or hourly laboratory results, 3) Medication-related data, 4) Time-related data: day of 

the week, and day from ICU admission. Data were retrieved from both the EPaNIC study database (Filemaker 

Pro®; FileMaker Inc, FileMaker International) and the patient data management system (PDMS) database 

(Microsoft SQL Server®; Microsoft®, Redmond, Washington, USA).  

The minimum, maximum, mean, standard deviation, linear regression slope, Fast Fourier transform 

(FFT), cepstrum analysis, autoregressive analyses, and first-order derivative were applied to derive 

characteristics from the timestamped data. All the features with more than 10% missing values were excluded. 

For the remaining features, missing values were imputed with the mean and the mode from the development 

cohort for continuous data and categorical data respectively. Finally, continuous data were standardized to zero 

mean and unit variance, and categorical data without order relation were converted into a form with binary data 

for each category. 
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7.2.4 Machine-learning algorithm, feature selection methods, and clinical prediction 

models 

The prediction models were trained with the gradient-boosting regressor method [36], with features selected 

based on data availability in the PDMS system, backward elimination method [37], and thorough discussions 

with two experienced ICU physicians (GDV and GM). Hyperparameters were fine-tuned with Optuna 

hyperparameter optimization software [38].  

For each prediction task, three models with progressively more features were developed which are meant to be 

utilized sequentially, based on the data availability at the bedside.  

• A “Core model” using only admission data and daily routine laboratory results. 

• A “Core+BGA model” that adds to the above, blood gas analysis data. 

• A “Core+BGA+Monitoring model” that adds to the above, monitoring data (heart rate, mean arterial 

blood pressure, and respiratory rate). 

7.2.5 Internal and external validation 

Models were developed and internally validated on the EPaNIC database with 10-fold cross validation. At the 

external validation stage, models trained on the entire EPaNIC database were applied on the previously unseen 

external validation cohort to assess generalizability. To examine the model usefulness, model performance was 

further compared against the current clinical practice: using as prediction for one-day ahead the same CrCl value 

of the day of prediction. This reference CrCl was henceforth referred to as Prediction day’s CrCl. To assess 

daily fluctuations in CrCl, we calculated the difference between the CrCl of each pair of two consecutive days. 

It was labeled as stable if the absolute difference was less than 20 ml/min and unstable if more than 20 ml/min, 

as this is a meaningful difference for drug dosing and because the CrCl variability in healthy volunteers has been 

reported with mean differences of 21.7 ml/min/1.73m² and variations of 18.7% [39]. 

7.2.6 Evaluation metrics for predictive performance 

Absolute difference between the predicted and actual CrCls, and root-mean-square error (RMSE) were computed 

for all available patient-days, stable days, and unstable days for each model in both cohorts. RMSE measures the 

errors between the model predictions and the target CrCl values and is sensitive to large errors. Predictive 

performance was also evaluated visually with scatter plots and plots of daily absolute difference and RMSE for 

all available patient-days, stable days, and unstable days during the first week of ICU stay. As multiple patient-

days were available in many patients, no overall p-value can be calculated as this may be biased by repeated 

measures, but we compared the absolute difference on a day-by-day basis with the Diebold-Mariano test [40]. 

Count-based feature importance of the developed models was visualized with bar plots.  

7.2.7 Descriptive analyses and software used 

Python 3.7.4 (Python Software Foundation, http://www.python.org), SciPy version 1.3.1 (SciPy.org), and Scikit-

learn library 0.24.2 (scikit-learn.org) were used for all analyses. The study population was described using 

descriptive statistics, with continuous data presented as medians and interquartile ranges (IQR) and categorical 

data expressed as counts and percentages (%). Mann–Whitney U test and Fisher's Exact Test were used to 
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evaluate statistical significance of differences for continuous and categorical data respectively. Significance 

levels were set at the 5% level. 

 

7.3 Results 

7.3.1 Study cohorts  

7.3.1.1 Development cohort 

For the model development, data were retrieved from 2825 patients, equivalent to 18494 patient-days (Figure 

7.A.1). The descriptive statistics were shown in Table 7.1. Median (interquartile range, IQR) age was 67.6 (56.2–

75.6) years, median (IQR) Acute Physiology and Chronic Health Evaluation II (APACHE II) score was 22 (16–

32), the majority was with cardiac surgery (n=1655, 58.6%), and median (IQR) average CrCl over the entire ICU 

stay was 93.5 (58.2–131.8) ml/min. The median ICU length of stay (IQR) was 5 (3–11) days, and 162 (5.7%) 

patients died before ICU discharge. There were 6371 (34.5%) unstable days.  

7.3.1.2 External validation cohort 

For the external validation of the developed models, data from 9576 patients were used, corresponding to 53943 

patient-days. The age was younger (median (IQR) 65.6 (54.6–75.0) years, p<0.01), emergency admission was 

less frequently (n=3231, 33.7%, p<0.01) , APACHE II score was lower (median (IQR) 17 (13–21), p<0.01), 

cardiac surgery was still the major admission diagnosis but occurred less often (n=3229, 33.7%, p<0.01), and 

average CrCl over the entire ICU stay was similar (median (IQR) 93.1 (56.2–133.6) ml/min, p=0.7) (Table 7.1). 

The ICU length of stay was shorter (median (IQR) 4 (2–9) days, p<0.01), and the ICU mortality was lower 

(n=200, 2.1%, p<0.01). There were 16514 (30.6%) unstable days. 
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Table 7.1 Patient characteristics and clinical outcomes  

 Development 

cohort (n=2825) 

Validation cohort 

(n=9576) 

p-value 

Age, years, median (IQR) 67.6 (56.2–75.6) 65.5 (54.6–75.0) <0.01 

Gender male, number (%) 1747 (61.8) 5816 (60.7) 0.3 

Mean creatinine clearance over the 

entire ICU stay, ml/min, median (IQR) 
93.5 (58.2–131.8) 93.1 (56.2–133.6) 0.7 

Emergency admission, number (%) 1272 (45.0) 3231 (33.7) <0.01 

APACHE II score, median (IQR) 22 (16–32) 17 (13–21) <0.01 

Reason for admission    

Cardiac surgery, number (%) 1655 (58.6) 3229 (33.7) <0.01 

Medical disease, number (%) 114 (4.0) 2316 (24.2) <0.01 

Neurology, number (%) 119 (4.2) 363 (3.8) 0.3 

Trauma and other surgery, 

number (%) 
662 (23.4) 2859 (29.9) <0.01 

Transplantation, number (%) 275 (9.7) 809 (8.4) 0.04 

ICU mortality, number (%) 162 (5.7) 200 (2.1) <0.01 

Length of stay in ICU, days, median 

(IQR) 
5 (3–11) 4 (2–9) <0.01 

ICU, intensive care unit; APACHE II score, Acute Physiology and Chronic Health Evaluation II score 

 

7.3.2 Features selected for CrCl prediction 

Among the ten most predictive variables of the three models, seven were related to CrCl, one to urea level, and 

the remaining two were the baseline characteristics age and body mass index (BMI) (Figure 7.1). For the three 

models, the top ten most important features were features already available in the Core model. In other words, 

neither BGA nor monitoring data related features were among the top ten most important features of any model. 

The full set of features was presented in Appendix 7.A.2. 
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Figure 7.1 Top ten most important features of different models. The red, green, and blue bar plots are the results for the Core, 

Core+BGA, and Core+BGA+Monitoring models, respectively.  

 

7.3.3 Externally validated model performance 

The developed models performed well in both the internal validation (Figure 7.A.2, Figure 7.A.3, and Table 

7.A.1) and the external validation (Figure 7.2, Figure 7.3, and Table 7.2). Specifically, for all patient-days, the 

model having the smallest RMSE in the validation cohort was the Core+BGA+Monitoring model, which 

exhibited 18.1 (95% CI 17.9-18.3) ml/min absolute difference and 28.9 ml/min RMSE, while the prediction day’s 

CrCl assuming a constant CrCl led to a 20.6 (95% CI 20.3-20.9) ml/min absolute difference and 40.1 ml/min 

RMSE. The Core and Core+BGA models showed absolute difference of 18.5 (95% CI 18.4-18.7) and 18.5 (95% 

CI 18.3-18.7) ml/min, and RMSE of 29.0 and 29.2 ml/min.  
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Table 7.2 Summary of absolute difference between the predicted and actual creatinine clearances, and root-mean-square error 

for the developed models and the reference on all days, stable days, and unstable days in the validation cohort 

 

All days Stable days Unstable days 

Absolute 

difference 

(ml/min) 

(95% CI) 

Root-

mean-

square 

error 

(ml/min) 

Absolute 

difference 

(ml/min) 

(95% CI) 

Root-

mean-

square 

error 

(ml/min) 

Absolute 

difference 

(ml/min) 

(95% CI) 

Root-

mean-

square 

error 

(ml/min) 

Prediction day’s 

CrCl 

20.6 

(20.3-

20.9) 

40.1 
7.6 (7.5-

7.6) 
9.3 

50.1 

(49.3-

50.9) 

71.1 

Core model 

18.5 

(18.4-

18.7) 

29.0 

11.4 

(11.3-

11.5) 

15.1 

34.8 

(34.3-

35.2) 

47.3 

Core+BGA model 

18.5 

(18.3-

18.7) 

29.2 

11.0 

(10.9-

11.1) 

14.6 

35.4 

(34.9-

35.9) 

47.9 

Core+BGA+Monito

ring model 

18.1 

(17.9-

18.3) 

28.9 

10.5 

(10.4-

10.6) 

13.9 

35.5 

(35.0-

36.0) 

47.9 

 

During the stable days, the model having the smallest RMSE was the Core+BGA+Monitoring model, 

demonstrating 10.5 (95% CI 10.4-10.6) ml/min absolute difference and 13.9 ml/min RMSE, while the prediction 

day’s CrCl showed 7.6 (95% CI 7.5-7.6) ml/min absolute difference and 9.3 ml/min RMSE. The model had a 

larger absolute difference of 3 ml/min on average than the prediction day’s CrCl. The Core and Core+BGA 

models manifested 11.4 (95% CI 11.3-11.5) and 11.0 (95% CI 10.9-11.1) ml/min absolute difference, and 15.1 

and 14.6 ml/min RMSE.  

However, on the days when renal function was unstable, the model having the smallest RMSE was the 

Core model exhibiting 34.8 (95% CI 34.3-35.2) ml/min absolute difference and 47.3 ml/min RMSE, whereas the 

prediction day’s CrCl showed 50.1 (95% CI 49.3-50.9) ml/min absolute difference and 71.1 ml/min RMSE. The 

model had a smaller absolute difference of 15 ml/min on average than the prediction day’s CrCl. The Core+BGA 

and Core+BGA+Monitoring models demonstrated 35.4 (95% CI 34.9-35.9) and 35.5 (95% CI 35.0-36.0) ml/min 

absolute difference, and 47.9 and 47.9 ml/min RMSE.  

These differences in prediction performance for stable and unstable days remained when analyzing the 

daily predictions during the first week of ICU stay only as evidenced in Figure 7.2, where there was significant 

difference in absolute difference between the Core+BGA+Monitoring model and the reference. The majority of 

the predictions was located near to the diagonal axis, denoting a good agreement between predicted and actual 

CrCls (Figure 7.3). The results of the two days ahead average CrCl predictions were discussed in Appendix 

7.A.2. 
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Figure 7.2 Temporal absolute difference (a) and root-mean-square error (b) of different models on all days, stable days, and 

unstable days within the first week of ICU admission in the validation cohort. The red, green, blue, and orange bars represent, 

respectively, the Core, Core+BGA, Core+BGA+Monitoring models, and the reference that assumes CrCl will remain the 

same compared to the day of prediction. Error bars represent 95% confidence intervals.  
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Figure 7.3 Relationships between predicted and actual CrCls for different models in the validation cohort. The red, green, 

and blue scatter plots show the results for the Core, Core+BGA, and Core+BGA+Monitoring models, respectively. The black 

dashed and white solid lines represent the lowess-based regression lines for the developed models and the diagonal axis. 

RMSE, root mean square error; CrCl, creatinine clearance 

 

7.4 Discussion 

In this study, we presented three models to predict daily CrCl in critically ill adults, based on information derived 

from routinely collected clinical data, and that the predictive performance remained similar when adding high-

resolution data. The developed models were externally validated on previously unseen patients with good 

performance. Finally, the models demonstrated smaller RMSE than using the CrCl of the day of prediction 

(reflecting the current clinical practice), mainly during the days with high CrCl instability. The worse 

performance of the models than the reference during the days with low CrCl instability was not of clinical 

relevance, as the difference in absolute difference was only 3 ml/min on average. To the best of our knowledge, 

this study presents the first machine-learning algorithm for daily CrCl prediction in the ICU, by using routinely 

collected clinical data.  

There are many reasons why there is a need for such daily prediction of CrCl during the entire ICU stay. 

First, measured urinary CrCl is currently considered the most suitable method to estimate the GFR [41], as many 

studies have shown the limited ability of estimation methods in proper assessment of kidney function in the ICU 

setting [6–9]. Second, a minimum of eight-hour time window of urine collection is necessary to ensure a reliable 

urinary CrCl measurement [42]. Consequently, the kidney function might have already changed by the time urine 

collection is complete. This delayed kidney function information could endanger patients by giving the 

physicians a false impression of renal function when prescribing drugs, as we observed here that the strategy that 

uses the measured CrCl of the past 24 hours leads to large estimation errors (RMSE of 40.1 ml/min). Third, 

several hydrophilic antibiotics are mainly eliminated by the kidneys, so dosage adjustment is necessary to prevent 

drug toxicity in reduced renal clearance patients [43] and treatment failure in ARC patients [32].  

Having a reference to compare against helps understanding whether the models could have clinical 

usefulness. Compared to the current clinical practice of assuming the same CrCl as the day of prediction, our 

developed models reduced the RMSE from 40.1 to 28.9 ml/min. Importantly, in the subgroup of patient-days 

with stable renal function (comprising 60-70% of all patient-days), the developed models demonstrated a 

clinically insignificant larger absolute difference compared to the actual CrCl, around 3 ml/min on average, than 
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the reference assuming the same CrCl as the day of prediction. Noticeably, in the subgroup of patient-days with 

unstable renal function (comprising 30-40% of all patient-days), the developed models had clinically relevant 

smaller absolute differences compared to the actual CrCl, around 15 ml/min on average. This subgroup analysis 

of days with high CrCl instability clearly exhibited our models’ capability of better capturing the dynamics of 

kidney function. Nevertheless, despite the large reduction in prediction errors during the unstable days, whether 

or not the models help in improving patient outcomes still needs to be investigated prospectively.   

Our study has many strengths. First, the use of a general ICU population instead of specific subset of 

patients makes it more generally applicable, and the daily prediction truthfully reflected the fluctuating kidney 

function on each patient day, allowing for risk stratification and drug dose adjustment. Second, the reporting of 

this study was performed following the Transparent Reporting of a Multivariate Prediction Model for Individual 

Prognosis or Diagnosis (TRIPOD) guidelines [44]. Third, both internal and external validation were performed, 

and the developed models were compared against a reference to fairly report the model performance and 

robustness without overoptimism. Fourth, not only static data but also timestamped data applied with advanced 

feature engineering techniques were progressively included with increasing data resolution. Finally, the use of a 

very large validation dataset of approximately 54000 patient-days from over 9500 mixed critically ill patients 

attests to the robustness of the findings. 

There are several limitations in our study. First, the development cohort was based on a RCT database 

in Belgium dating back to 2010, which might limit its generalizability in other settings. However, model 

performance remained unchanged when externally validated on a very large database with patient data collected 

up to 2018. Second, the use of high-resolution data might be difficult to implement in hospitals with limited 

resources, and some settings might even struggle to have the necessary data for the lower resolution Core model. 

Third, there might be a selection bias resulting from the exclusion from the analyses of patient-days with KRT 

on the day of prediction and in previous week, or of patient-days when less than 2 consecutive CrCls were 

available, or patient-days after the first 90 days in ICU. These exclusion criteria were necessary to ensure reliable 

CrCl prediction models could be developed. Fourth, this study was based on retrospective data, and the developed 

models still need prospective validation in independent cohorts. Fifth, the model performance was not compared 

against novel biomarkers such as cystatin C that may be less biased, but measured CrCl is a fast and cheap test, 

which are important characteristics as the measurements were performed on a daily basis. Sixth, the measurement 

of creatinine changed from the Jaffe method in the development cohort to the enzymatic method in the validation 

cohort, and it was found that the Jaffe method yielded higher creatinine values than the enzymatic method, 

particularly at low creatinine concentrations [45]. However, the Jaffe and enzymatic creatinine methods were 

shown with adequate overall agreement (r=.9994, r=.9998 in serum and urine respectively), and thus the influence 

of changed creatinine measurements was expected low. Finally, the developed models were not implemented as 

bedside tools, integrated into clinical practice, and transferred to other centers yet, but it was beyond the scope 

of this work and remains a challenging topic for future studies. 

7.5 Conclusion 

We have shown that CrCl can be accurately predicted one day in advance on a daily basis during ICU stay, with 

models developed based on routinely collected clinical data. We have also demonstrated the robustness of the 

developed models on previously unseen patients in external validation. The developed models’ usefulness has 
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also been shown in comparisons with a reference reflecting current clinical practice, mainly on the patient-days 

with high renal function instability. Despite the promising performance, these findings should be prospectively 

validated in independent patient populations, before these prediction models can be further used for risk 

stratification or incorporated into a pharmacokinetic model to support a more optimized dose regimen. 

 

7.A Appendix 

7.A.1 Supplementary methods 

For prediction of average CrCl of two days ahead, to assess daily fluctuations in CrCl, we calculated the 

difference between the CrCl of two consecutive days of three consecutive days. It was labeled as stable if either 

of the two absolute differences was less than 20 ml/min and unstable if both were more than 20 ml/min. 

7.A.2 Supplementary results 

For the average CrCl of two days ahead prediction task, the majority of the predictions was located near to the 

diagonal axis, denoting a good agreement between predicted and actual CrCls (Figure 7.A.4). When analyzing 

the daily predictions during the first week of ICU stay only as shown in Figure 7.A.5, the models were with 

lower RMSEs for all days and unstable days. The worse performance on stable days was not of clinical relevance 

as the difference was small, around 4 ml/min on average. 

7.A.2.1 Complete feature list: One-day-ahead prediction 

For the one-day-ahead Core model, a total of 26 features were used. 4 were derived from serum creatinine, 3 

were derived from creatinine clearance, 3 were derived from medication/intervention (aminoglycosides 

medication on the day of prediction, number of days with respiratory support in all past days during ICU stay, 

and number of days with vasopressors/inotropes medication in all past days during ICU stay), 2 were derived 

from bilirubin, 2 were derived from urine output, 2 were derived from urine creatinine, 1 was derived from urea, 

1 was derived from hematocrit, 1 was derived from c-reactive protein, 1 was derived from Sequential Organ 

Failure Assessment (SOFA) score, 1 was day of the week, 1 was gender, 1 was age, 1 was day from ICU 

admission, 1 was APACHE II score on the first day of ICU, and 1 was body mass index. 

For the one-day-ahead Core+BGA model, a total of 65 features were used. 7 were derived from BGA 

pH value, 7 were derived from BGA bicarbonate, 6 were derived from BGA partial pressure of oxygen, 6 were 

derived from BGA lactate, 4 were derived from serum creatinine, 3 were derived from creatinine clearance, 3 

were derived from medication/intervention (aminoglycosides medication on the day of prediction, number of 

days with respiratory support in all past days during ICU stay, and number of days with vasopressors/inotropes 

medication in all past days during ICU stay), 3 were derived from BGA sodium, 3 were derived from BGA 

potassium, 3 were derived from BGA partial pressure of carbon dioxide, 2 were derived from BGA glucose, 2 

were derived from bilirubin, 2 were derived from urine output, 2 were derived from urine creatinine, 2 were 

derived from BGA hemoglobin, 1 was derived from urea, 1 was derived from hematocrit, 1 was derived from c-

reactive protein, 1 was derived from SOFA score, 1 was day of the week, 1 was gender, 1 was age, 1 was day 

from ICU admission, 1 was APACHE II score on the first day of ICU, and 1 was body mass index. 
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For the one-day-ahead Core+BGA+Monitoring model, a total of 74 features were used. 7 were derived 

from BGA pH value, 7 were derived from BGA bicarbonate, 6 were derived from BGA partial pressure of oxygen, 

6 were derived from BGA lactate, 5 were derived from heart rate, 4 were derived from serum creatinine, 3 were 

derived from creatinine clearance, 3 were derived from medication/intervention (aminoglycosides medication on 

the day of prediction, number of days with respiratory support in all past days during ICU stay, and number of 

days with vasopressors/inotropes medication in all past days during ICU stay), 3 were derived from BGA sodium, 

3 were derived from BGA potassium, 3 were derived from BGA partial pressure of carbon dioxide, 2 were 

derived from BGA glucose, 2 were derived from bilirubin, 2 were derived from urine output, 2 were derived 

from urine creatinine, 2 were derived from respiratory rate, 2 were derived from mean arterial blood pressure, 2 

were derived from BGA hemoglobin, 1 was derived from urea, 1 was derived from hematocrit, 1 was derived 

from c-reactive protein, 1 was derived from SOFA score, 1 was day of the week, 1 was gender, 1 was age, 1 was 

day from ICU admission, 1 was APACHE II score on the first day of ICU, and 1 was body mass index. 

7.A.2.2 Complete feature list: Average-of-two-days-ahead prediction 

For the prediction of average CrCl of two days ahead, a total of 67 features were employed in the Core model. 8 

were derived from urea, 7 were derived from serum creatinine, 6 were derived from chloride, 6 were derived 

from platelet, 6 were derived from SOFA score, 4 were derived from urine output, 4 were derived from urine 

creatinine, 4 were derived from hematocrit, 4 were derived from creatinine clearance, 4 were derived from c-

reactive protein, 3 were derived from white blood cell count, 2 were derived from medication/intervention, 2 

were derived from bilirubin, 1 was age, 1 was weight, 1 was APACHE II score on the first day of ICU, 1 was 

transplant diagnostic group on ICU admission, 1 was gender, 1 was day from ICU admission, and 1 was day of 

the week. 

For the prediction of average CrCl of two days ahead, a total of 130 features were employed in the 

Core+BGA model. 8 were derived from BGA partial pressure of oxygen, 8 were derived from urea, 8 were 

derived from BGA pH value, 7 were derived from serum creatinine, 7 were derived from BGA bicarbonate, 7 

were derived from BGA sodium, 6 were derived from BGA hemoglobin, 6 were derived from chloride, 6 were 

derived from BGA potassium, 6 were derived from BGA lactate, 6 were derived from platelet, 6 were derived 

from SOFA score, 6 were derived from BGA glucose, 5 were derived from BGA partial pressure of carbon 

dioxide, 4 were derived from urine output, 4 were derived from BGA calculated oxygen saturation, 4 were 

derived from urine creatinine, 4 were derived from hematocrit, 4 were derived from creatinine clearance, 4 were 

derived from c-reactive protein, 3 were derived from white blood cell count, 2 were derived from 

medication/intervention, 2 were derived from bilirubin, 1 was age, 1 was weight, 1 was APACHE II score on the 

first day of ICU, 1 was transplant diagnostic group on ICU admission, 1 was gender, 1 was day from ICU 

admission, and 1 was day of the week. 

For the prediction of average CrCl of two days ahead, a total of 149 features were employed in the 

Core+BGA+Monitoring model. 9 were derived from heart rate, 8 were derived from BGA partial pressure of 

oxygen, 8 were derived from urea, 8 were derived from BGA pH value, 7 were derived from serum creatinine, 7 

were derived from BGA bicarbonate, 7 were derived from BGA sodium, 6 were derived from BGA hemoglobin, 

6 were derived from chloride, 6 were derived from BGA potassium, 6 were derived from BGA lactate, 6 were 

derived from mean arterial blood pressure, 6 were derived from platelet, 6 were derived from SOFA score, 6 
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were derived from BGA glucose, 5 were derived from BGA partial pressure of carbon dioxide, 4 were derived 

from respiratory rate, 4 were derived from urine output, 4 were derived from BGA calculated oxygen saturation, 

4 were derived from urine creatinine, 4 were derived from hematocrit, 4 were derived from creatinine clearance, 

4 were derived from c-reactive protein, 3 were derived from white blood cell count, 2 were derived from 

medication/intervention, 2 were derived from bilirubin, 1 was age, 1 was weight, 1 was APACHE II score on the 

first day of ICU, 1 was transplant diagnostic group on ICU admission, 1 was gender, 1 was day from ICU 

admission, and 1 was day of the week. 

 

7.A.3 Supplementary tables 

Table 7.A.1 Summary of absolute difference between the predicted and actual creatinine clearances (CrCls), and root-mean-

square error for different models and the reference on all days, stable days, and unstable days for the one-day-ahead prediction 

task in the development cohort 

 

All days Stable days Unstable days 

Absolute 

difference 

(ml/min) 

(95% CI) 

Root-

mean-

square 

error 

(ml/min) 

Absolute 

difference 

(ml/min) 

(95% CI) 

Root-

mean-

square 

error 

(ml/min) 

Absolute 

difference 

(ml/min) 

(95% CI) 

Root-

mean-

square 

error 

(ml/min) 

Prediction 

d y’s CrCl 

22.5 

(22.0-

23.0) 

42.1 
7.8 (7.7-

7.9) 
9.5 

50.6 

(49.4-

51.8) 

70.6 

Core model 

19.9 

(19.5-

20.2) 

32.6 

11.1 

(10.9-

11.3) 

14.8 

36.5 

(35.6-

37.4) 

51.7 

Core+BGA 

model 

19.9 

(19.5-

20.3) 

32.8 

10.8 

(10.6-

11.0) 

14.3 

37.2 

(36.3-

38.1) 

52.2 

Core+BGA+M

onitoring 

model 

19.6 

(19.2-

19.9) 

32.5 

10.3 

(10.2-

10.5) 

13.7 

37.1 

(36.2-

38.0) 

52.1 
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Table 7.A.2 Summary of absolute difference between the predicted and actual creatinine clearances (CrCls), and root-mean-

square error for different models and the reference unstable-upward and unstable-downward days for the one-day-ahead 

prediction task in the development cohort 

 

Unstable-upward days Unstable-downward days 

Absolute 

difference 

(ml/min)  

(95% CI) 

Root-mean-

square error 

(ml/min) 

Absolute 

difference 

(ml/min) 

(95% CI) 

Root-mean-

square error 

(ml/min) 

Prediction d y’s CrCl 48.3 (46.9-49.8) 65.3 53.4 (51.4-55.3) 76.4 

Core model 37.6 (36.1-39.1) 58.1 35.2 (34.3-36.1) 42.8 

Core+BGA model 38.2 (36.7-39.7) 58.5 36.1 (35.2-37.0) 43.6 

Core+BGA+Monitori

ng model 
38.1 (36.7-39.6) 58.5 35.9 (35.0-36.8) 43.3 

Unstable-upward days were the days of prediction where an increase larger than 20 ml/min in the CrCl of the next day was 

present; unstable-upward days were the days of prediction where a decrease larger than 20 ml/min in the CrCl of the next day 

was found; CrCl, creatinine clearance 

Table 7.A.3 Summary of absolute difference between the predicted and actual creatinine clearances (CrCls), and root-mean-

square error for different models and the reference unstable-upward and unstable-downward days for the one-day-ahead 

prediction task in the validation cohort 

 

Unstable-upward days Unstable-downward days 

Absolute 

difference 

(ml/min)  

(95% CI) 

Root-mean-

square error 

(ml/min) 

Absolute 

difference 

(ml/min) 

(95% CI) 

Root-mean-

square error 

(ml/min) 

Prediction d y’s CrCl 46.1 (45.3-46.8) 58.4 54.9 (53.5-56.4) 83.9 

Core model 34.5 (33.8-35.3) 50.6 35.0 (34.4-35.6) 43.2 

Core+BGA model 34.1 (33.3-34.9) 50.2 37.0 (36.5-37.6) 45.1 

Core+BGA+Monitori

ng model 
34.9 (34.1-35.6) 50.7 36.3 (35.7-36.8) 44.2 

Unstable-upward days were the days of prediction where an increase larger than 20 ml/min in the CrCl of the next day was 

present; unstable-upward days were the days of prediction where a decrease larger than 20 ml/min in the CrCl of the next day 

was found; CrCl, creatinine clearance 
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7.A.4 Supplementary figures 

 

Figure 7.A.1 Consort diagram for prediction of one-day-ahead CrCl. CrCl, creatinine clearance; KRT, kidney replacement 

therapy; ICU, intensive care unit 

 

 

 

 

Figure 7.A.2 Relationships between predicted and actual CrCls for different models for the one-day-ahead prediction task in 

the development cohort. The red, green, and blue scatter plots show the results for the Core, Core+BGA, and 

Core+BGA+Monitoring models. The black dashed and white solid lines represent the lowess-based regression lines for the 

developed models and the diagonal axis. RMSE, root mean square error; CrCl, creatinine clearance 
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Figure 7.A.3 Temporal absolute difference (upper) and root-mean-square error (lower) of different models on all days, stable 

days, and unstable days within the first week of ICU admission for the one-day-ahead prediction task in the development 

cohort. The red, green, blue, and orange bars represent, respectively, the Core, Core+BGA, Core+BGA+Monitoring models, 

and the reference that assumes CrCl will remain the same compared to the day of prediction. Error bars represent 95% 

confidence intervals. 

 

 

 

Figure 7.A.4 Relationships between predicted and actual CrCls for different models for the average of two days ahead 

prediction task in the validation cohort. The red, green, and blue scatter plots show the results for the Core, Core+BGA, and 

Core+BGA+Monitoring models. The black dashed and white solid lines represent the lowess-based regression lines for the 

developed models and the diagonal axis. RMSE, root mean square error; CrCl, creatinine clearance 
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Figure 7.A.5 Temporal absolute difference (upper) and root-mean-square error (lower) of different models on all 

days, stable days, and unstable days within the first week of ICU admission for the average of two days ahead 

prediction task in the validation cohort. The red, green, blue, and orange bars represent, respectively, the Core, 

Core+BGA, Core+BGA+Monitoring models, and the reference that assumes CrCl will remain the same compared 

to the day of prediction. Error bars represent 95% confidence intervals.  
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Abstract 

Purpose: Critical illness often affects the kidney function with either an increase or decrease of the glomerular 

filtration rate on a day-to-day basis. The measured creatinine clearance (CrCl) is currently the best surrogate for 

the glomerular filtration rate. A set of machine-learning models to predict CrCl on a daily basis (the CrCl 

predictor) was recently developed. The aim of the present study was to prospectively validate the CrCl predictor 

and compare its accuracy with predictions made by ICU physicians.  

Methods: We conducted a prospective study in a tertiary ICU. ICU physicians prospectively predicted patients’ 

CrCl of the next day, which were collected via a questionnaire survey. Mean absolute error (MAE) and root mean 

square error (RMSE) with respect to the true CrCl were used to compare the predictive performance of the 

physicians and the CrCl predictor.  

Results: A total of 54 physicians answered 1298 questionnaires for 197 patients corresponding to 704 patient-

days. All three models of the CrCl predictor had lower RMSEs than the physicians’ predictions. Specifically, 

ICU physicians showed 21.8 (95% CI 20.2-23.4) ml/min MAE and 36.4 ml/min RMSE, while the CrCl predictor 

model having the lowest RMSE (the Core+BGA+Monitoring model) demonstrated 19.0 (95% CI 17.8-20.3) 

ml/min MAE and 29.9 ml/min RMSE. 

Conclusion: The CrCl predictor showed a good accuracy in a prospective validation and performed at least as 

well as the ICU physicians. These findings suggest that CrCl predictor can be a promising tool to adjust renally 

cleared drug dosage and stratify patients at risk. 

  



 

155 

 

8.1 Introduction  

Critical illness often affects the kidney function as the glomerular filtration rate (GFR) may be increased or 

reduced depending on the premorbid stage and the clinical setting. A reduction of the GFR may lead to acute 

kidney injury (AKI), which occurs in 20-57% of the patients depending on the patient population and the use of 

different criteria of the AKI definition [1–4]. The presence of AKI associates with four-fold to six-fold increased 

mortality than the general inpatient population [5, 6], and prolongs the length of stay [6, 7]. On the other extreme 

of the kidney function is the augmented renal clearance (ARC), which is identified in 20-65% of critically ill 

patients [8]. ARC leads to an increased clearance of several drugs such as  anticoagulants [9] and commonly used 

antibiotics such as beta-lactams and vancomycin [10–12], leading to  a higher risk of treatment failure [13]. 

Predicting the renal clearance on the next day may guide physicians to optimize treatment. The measured 

creatinine clearance (CrCl) based on the urinary volume and the concentration of creatinine in serum and urine 

is currently the best surrogate for GFR during critical illness [14]. 

Recently, with the vast adoption of electronic health records and rapid growth of machine-learning 

algorithms, many models have been built to predict the onset of two extremes of kidney function spectrum: AKI 

[15–23] and ARC [24–28]. Recently we also developed a set of prediction models for the CrCl. This CrCl 

predictor predicts the CrCl of the next ICU day, based on routinely collected clinical information. The external 

validity and usefulness of the CrCl predictor models were confirmed through a comparison with the reference 

reflecting the current clinical practice (Chapter 7).  

As a next step on the road to implementing these models into clinical practice, a prospective validation 

and comparison of the accuracy of the prediction models to the physicians’ predictions is needed. Therefore, the 

aims of this study are to examine the external validity of the CrCl predictor, to investigate the accuracy of 

physicians in predicting short-term CrCl, and to compare the performance between them. 

8.2 Methods 

8.2.1 Study cohort 

This prospective study was conducted in the surgical ICUs of the University Hospitals Leuven, Belgium from 

January to April 2022. Data collection and usage for the purpose of this study was approved by the Ethics 

Committee (EC) of University Hospitals Leuven (S65759 and S66669). Furthermore, this study was conducted 

in compliance with the principles of the Declaration of Helsinki laid down in the 1964 and its later amendments. 

We included all critically ill adults admitted to the surgical ICUs of the University Hospitals Leuven who did not 

receive kidney replacement therapy (KRT) before ICU admission. Patient-days were excluded if 1) no CrCl 

measurements were available on the next day, 2) no CrCl measurements were available on the day of prediction, 

3) KRT was performed on the day of prediction, 4) KRT was performed in the previous week, 5) patients with 

shorter than 24-hour ICU length of stay, and/or 6) weekend or holidays (because of the workload of ICU 

physicians on call). 

8.2.2 Study endpoints 

The main objective of this study was to compare the predictive accuracy of ICU physicians and machine-learning 

models in predicting CrCl of the next day. The secondary objective was to examine whether the level of seniority 

and/or confidence level had an association with the predictive accuracy. 
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8.2.3 Prediction targets and CrCl definitions 

CrCl was defined by serum creatinine (SCr), urine creatinine (Ucr), and 24-hour urine output (UO) without 

correction for body surface area: 

𝐶𝑟𝐶𝑙 (𝑚𝑙/𝑚𝑖𝑛) =  
𝑈𝐶𝑟 × 𝑈𝑂

𝑆𝐶𝑟 × 1440
 

8.2.4 CrCl predictor predictions  

After the data collection at the end the study period of 3 months was finalized, one-day-ahead CrCl was predicted 

on each patient day, using the CrCl predictor models developed earlier (Chapter 7): the Core model using only 

admission data and daily routine laboratory results, the Core+BGA model that adds to the above, blood gas 

analysis data, and the Core+BGA+Monitoring model that adds to the above, monitoring data (heart rate, mean 

arterial blood pressure, and respiratory rate). More information about the features included in each model can be 

found in the original development study (Chapter 7). Missing values were imputed with the mean for continuous 

data and the mode for categorical data from the original study. 

8.2.5 ICU physicians’ predictions 

All attending physicians of the surgical ICU team (junior resident, senior resident, and staff member) were asked 

to fill out questionnaires on a daily basis (Figure 8.A.1) in which they predicted the CrCl of the next day, and 

reported their levels of confidence (low, medium, or high confidence) with this prediction. The questionnaires 

were distributed to physician’s office in each ICU unit, filled out by every physician for each patient under their 

care on each day, and collected two times a day (at noon and in the afternoon) to ensure a higher response rate. 

ICU physicians were asked to fill in the questionnaire, which composed of the following questions. 

• What is your prediction for CrCl (ml/min) on the next ICU day?  

• How confident are you about your prediction? (low, medium, or high confidence)  

The physicians’ age, gender, time of ICU experience, and seniority level were also collected (Figure 8.A.2). The 

impact of seniority level and level of confidence on the predictive accuracy were investigated.  

8.2.6 Evaluation metrics 

Root-mean-square error (RMSE) and mean absolute error (MAE) between the predicted and actual CrCls were 

used to evaluate the predictive accuracy. Predictive performance was visualized and evaluated with scatter plots 

for the entire ICU stay, and plots of daily RMSE and MAE during the first week of ICU stay. 

8.2.7 Statistical analysis 

Data were presented as median with interquartile ranges (IQR) and counts with percentages (%) for continuous 

and categorical data in the descriptive statistics. All statistical analyses were conducted with Python version 3.7 

(python.org), SciPy version 1.3.1 (scipy.org), and Scikit-learn version 0.24.2 (scikit-learn.org). Significance 

levels were set at the 5% level using the Mann–Whitney U test and Fisher’s Exact Test for continuous data and 

categorical data respectively. 

http://www.python.org/
file:///C:/Users/u0110268/Documents/CrCl%20prospective%20study/paper/SciPy.org
file:///C:/Users/u0110268/Documents/CrCl%20prospective%20study/paper/scikit-learn.org
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8.3 Results 

8.3.1 Study cohort 

Of the 459 patients who were included in this study, 262 patients were left out because all their patient-days were 

excluded so 197 patients remained for further analysis (Figure 8.1). Patients’ characteristics were reported in 

Table 8.1. Median (interquartile range, IQR) age was 65 (55–75) years, 126 (64.0%) patients were male, median 

(IQR) Acute Physiology and Chronic Health Evaluation II (APACHE II) score was 16 (13–20), the major 

admission diagnosis was trauma and other surgery (n=81, 41.1%), and median (IQR) CrCl over the entire ICU 

stay was 97.0 (49.2–130.9) ml/min. The median (IQR) length of stay until the end of study were 7 (5–12) days, 

and 16 (8.1%) patients died before the end of study. In comparison to the original CrCl predictor development 

cohort, this study cohort consisted of comparable males (61.8% vs. 64.0%), had comparable medium ages (67 

vs. 65 years), and showed a five-point lower median APACHE II score (22 vs. 16). 

 

 

Figure 8.1 Consort diagram. CrCl, creatinine clearance; ICU, intensive care unit 
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Table 8.1 Patient characteristics and clinical outcomes  

 
All patients (n=197) 

Age, years, median (IQR) 65 (55 – 75) 

Gender male, number (%) 126 (64.0) 

Day from ICU admission, median (IQR) 5.0 (3.5 – 6.6) 

BMI, median (IQR) 24.7 (22.5 – 27.8) 

Mean creatinine clearance over the ICU stay, ml/min, 
median (IQR) 

97.0 (49.2 – 130.9) 

Baseline serum creatinine, mg/dl, median (IQR) 0.9 (0.7 – 1.1) 

APACHE II score, median (IQR) 16 (13 – 20) 

Diabetes, number (%)*  

Emergency admission, number (%)*  

Sepsis on ICU admission, number (%)*  

Pharmacological hemodynamic support on ICU 
admission, number (%)* 

 

Reason for admission  

    Cardiac surgery, number (%) 37 (18.8) 

    Medical disease, number (%) 44 (22.3) 

    Neurology, number (%) 14 (7.1) 

    Trauma and other surgery, number (%) 81 (41.1) 

    Transplantation, number (%) 21 (10.7) 

Deceased during the study, number (%) 16 (8.1) 

Length of stay until the end of study, median (IQR) 7 (5 – 12) 

*The following variables are currently being retrieved: diabetes, emergency admission, sepsis on ICU admission, 

pharmacological hemodynamic support on ICU admission. 

 

8.3.2 CrCl predictor predictions 

All features were with less than 10% missing values, except for three features relating to respiratory rate and one 

feature derived from glucose level. The CrCl predictor was robust in this external validation cohort (Table 8.2): 

the Core+BGA+Monitoring model having the smallest RMSE showed 19.0 (95% CI 17.8-20.3) ml/min MAE 

and 29.9 ml/min RMSE, in comparison to 18.1 (95% CI 17.9-18.3) ml/min MAE and 28.9 ml/min RMSE in the 

validation cohort of the original study. The Core and Core+BGA models showed MAE of 19.7 (95% CI 18.4-

20.9) and 19.4 (95% CI 18.1-20.7) ml/min, and RMSE of 30.5 and 30.6 ml/min, in contrast to MAE of 18.5 (95% 

CI 18.4-18.7) and 18.5 (95% CI 18.3-18.7) ml/min, and RMSE of 29.1 and 29.2 ml/min in the validation cohort 

of the original study. 
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Table 8.2 Summary of mean absolute error between the predicted and actual creatinine clearances, and root-mean-square 

error for the developed models and the physicians’ predictions for the one-day-ahead prediction task 

 

Study cohort for the one-day-ahead CrCl prediction task 

Mean absolute error 

(ml/min) (95% CI) 

Root-mean-square error 

(ml/min) 

Physicians' predictions 21.8 (20.2-23.4) 36.4 

Core model 19.7 (18.4-20.9) 30.5 

Core+BGA model 19.4 (18.1-20.7) 30.6 

Core+BGA+Monitoring model 19.0 (17.8-20.3) 29.9 

  

8.3.3 ICU physicians’ predictions 

Overall, 54 physicians completed 1298 questionnaires for 197 patients corresponding to 704 patient-days. From 

the 37 junior residents, 664 predictions were available in 182 patients. From the 8 senior residents 524 were 

available in 152 patients, and from the 9 staff members, 110 predictions were available in 63 patients (physicians’ 

characteristics in Table 8.A.1). The median (IQR) hour to fill out the questionnaires was 2 (1–2) p.m. Clinicians 

completed the questionnaires for a median (IQR) of 8 (4–14) patients under their care.  

The predictions made by ICU physicians demonstrated MAE of 21.8 (95% CI 20.2-23.4) ml/min and 

RMSE of 36.4 ml/min. In particular (Table 8.A.2), junior residents, senior residents, and staff members showed 

MAEs of 23.3 (95% CI 20.9-25.7), 20.9 (95% CI 18.5-23.3), and 16.9 (95% CI 13.5-20.4) ml/min, and RMSEs 

of 39.1, 34.8, and 25.0 ml/min respectively. Finally, the predictive performance of predictions made with low or 

medium confidence was clinically similar to that of predictions made with high confidence (MAE 22.4 (95% CI 

20.6-24.2) vs. 20.0 (95% CI 16.6-23.3) ml/min, and RMSE 36.2 vs. 36.9 ml/min, for low or medium confidence 

and high confidence, respectively) (Table 8.A.3).  

We evaluated the predictive performance during the first week of ICU stay separately. The CrCl 

predictor showed lower RMSE than the physicians, while the MAEs were not statistically significant (Figure 

8.2). For both the CrCl predictor and ICU physicians alike, most predictions were close to the diagonal axis, 

indicating good agreement between predicted and true CrCls (Figure 8.3). In Appendix 8.A.1, the results of the 

two-day average CrCl predictions were presented, with the primary findings remaining the same. 
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Figure 8.2 Temporal absolute difference (upper) and root-mean-square error (lower) of different within the first week of ICU 

admission. The orange, red, green, and blue bars represent, respectively, the ICU physicians’ predictions, Core, Core+BGA, 

and Core+BGA+Monitoring models. Error bars represent 95% confidence intervals.  

 

 

Figure 8.3 Relationships between predicted and actual CrCls for different models. The orange, red, green, and blue scatter 

plots show the results for the ICU physicians’ predictions, Core, Core+BGA, Core+BGA+Monitoring models, respectively. 

The dashed and solid lines represent the lowess-based regression lines for the predictions and the diagonal axis. RMSE, root 

mean square error; CrCl, creatinine clearance 

 

8.4 Discussion 

In this study, we prospectively validated CrCl predictor in previously unseen critically ill adults and we found a 

comparable accuracy as in the original development study. Subsequently, we demonstrated that the CrCl 

predictor had lower RMSE than the ICU physicians’ predictions. In particular, the CrCl predictor had slightly 

smaller RMSEs than the staff members and senior residents, and a much smaller RMSE than the junior residents. 

The absence of statistically significant MAEs within the first week of ICU admission indicated that the CrCl 

predictor performed at least as equally well as physicians. To the best of our knowledge, this study presents the 

first comparison between machine-learning algorithm and ICU physicians for daily CrCl prediction in the ICU.   
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The lower RMSE of the CrCl predictor and the absence of statistically significant MAEs within the first 

ICU week are noteworthy, given many factors favoring the physicians. First, physicians saw patients and thus 

had more information that were not available in the electronic health record [29], which might provide a more 

comprehensive understanding of patient condition. Second, the CrCl predictor based on the past information until 

7AM, while most ICU physicians gave their predictions at 2PM, giving them seven hours of additional 

information about the patient circumstances. Besides, not all physicians succeeded in delivering a timely 

prediction before 2PM, regardless of the reason. As a result, ICU physicians may have anticipated better based 

on the treatment they provided on the day of prediction, which was not accessed by the CrCl predictor.  

As our recently developed CrCl prediction model is the first model to predict CrCl, we did not find any 

study comparing the accuracy of ICU physicians with prediction models in predicting continuous kidney function. 

This underlines the importance of this work and future research. One prospective study investigating the onset 

of AKI is the nearest comparison [30]. Flechet et al. described a set of models for AKI, named AKIpredictor [23, 

31], outperforming ICU physicians with similar discrimination and higher net benefit in an ICU population. 

Importantly, there are inherent differences between the present study from the previous work. First, the 

AKIpredictor was based on categorized AKI definitions, while the CrCl predictor focused on continuous kidney 

function. Consequently, the AKIpredictor could serve as a screening tool to identify patients with high risk of 

decreases in kidney function, and the CrCl predictor may help tailor the treatment to every patient with critical 

illness. Additionally, the AKIpredictor predicted AKI within the first week of ICU admission with an aim to 

identify the patients who may benefit the most with the focused care, and the CrCl predictor predicted on each 

ICU day in order to potentially facilitate daily renally cleared drug administration in the future.  

The results of this study are promising for the future, showing many advantages of the CrCl predictor. 

First, the CrCl predictor’s predictions are objective and time-invariant, as opposed to physicians’ predictions, 

which are prone to be affected by emotion, stress, tiredness, and the limited time. Most importantly, physicians 

rely on a series of mental procedures, which cannot be quantified, reproduced, and studied for further 

improvement. Second, the performance not statistically significant different from the ICU physicians suggested 

that the CrCl predictor could at least perform equally well as physicians. In contrary to humans that cannot 

process more than three or four independent variables at the same time [32], machine-learning algorithms may 

identify hidden patterns based on large amounts of clinical data from multiple sources. Third, the CrCl predictor 

provides consistent predictions for all patients and could serve as an efficient, time-reducing and scalable 

screening tool to identify patients with high kidney function instability [33] based on the predictions generated 

for every patient on each day of their ICU stay.  

However, there are several limitations in this study. First, this is a single-center Belgian study and the 

results may not be generalizable to other centers with different clinical settings. However, prospective validation 

of a machine-learning model in the same setting is needed before moving to other settings [34]. Second, the 

exclusion of patient-days with KRT on the day of prediction and in the previous week, or patient-days with less 

than two consecutive CrCls available precluded the short stayers and could have resulted in a selection bias. 

Nonetheless, the initiation and cessation of KRT has a huge effect on the SCr levels, resulting to the fact that 

CrCl in these circumstances is not a good surrogate of the GFR. Third, it remains unknown whether the use of 

the CrCl predictor can help improving the dosing adjustment of renally cleared drugs and stratification of high-

risk patients, but it is out of the scope of this study and should be investigated in future studies. 
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8.5 Conclusion 

We have demonstrated the robustness of the CrCl predictor on previously unseen patients in external validation. 

The ICU physicians’ predictions had larger RMSEs than the CrCl predictor, with smaller RMSEs in higher 

seniority levels. The absence of statistically significant MAEs indicated that the CrCl predictor could perform at 

least as well as the ICU physicians. The findings suggest the potential added value of the CrCl predictor to 

physicians’ predictions, especially for junior residents, and the possibility of implementation of the CrCl 

predictor into clinical decision support system to facilitate risk stratification and drug dosage adjustment 

involving renally cleared drugs in critically ill adults. 

 

 



 

163 

 

8.A Appendix 

8.A.1 Supplementary results 

8.A.1.1 For prediction of average CrCl of two days ahead: Study cohort 

Data from 77 patients from the one-day-ahead study cohort were further left out because of the lack of prediction 

target, average CrCl of two days ahead, so 120 patients remained for further analysis (Figure 8.A.3). Patients’ 

characteristics were reported in Table 8.A.4. Median (interquartile range, IQR) age was 65 (56 – 74) years, 77 

(64.2%) patients were male, median (IQR) Acute Physiology and Chronic Health Evaluation II (APACHE II) 

score was 16 (13 – 21), the major admission diagnosis was trauma and other surgery (n=45, 37.5%), and median 

(IQR) CrCl over the entire ICU stay was 89.1 (47.4 – 120.1) ml/min. The median (IQR) length of stay until the 

end of study were 10 (8 – 16) days, and 15 (12.5%) patients died before the end of study. In comparison to the 

original CrCl predictor development cohort, this study cohort consisted of comparable males (64.2% vs. 60.9%), 

had comparable medium ages (65 vs. 67 years), and showed a nine-point lower median APACHE II score (16 

vs. 25). 

8.A.1.2 For prediction of average CrCl of two days ahead: CrClpredictor predictions 

All features were with less than 10% missing values, except for four features relating to respiratory rate, one 

feature derived from Sequential Organ Failure Assessment (SOFA) score, one feature derived from respiratory 

support, and one feature derived from glucose level. The CrCl predictor was still robust in this external validation 

cohort (Table 8.A.5). In particular, the Core+BGA+Monitoring model having the smallest RMSE showed 17.8 

(95% CI 16.3-19.3) ml/min MAE and 31.3 ml/min RMSE, in comparison to 16.6 (95% CI 16.4-16.7) ml/min 

MAE and 23.9 ml/min RMSE in the validation cohort of the original study. The Core and Core+BGA models 

showed MAE of 18.1 (95% CI 16.5-19.6) and 17.7 (95% CI 16.2-19.2) ml/min, and RMSE of 31.8 and 31.4 

ml/min, in contrast to MAE of 16.8 (95% CI 16.7-17.0) and 16.35 (95% CI 16.2-16.5) ml/min, and RMSE of 

24.4 and 23.8 ml/min in the validation cohort of the original study. 

8.A.1.3 For prediction of average CrCl of two days ahead: ICU physicians’ predictions 

Overall, 51 physicians completed 796 questionnaires for 120 patients corresponding to 428 patient-days. The 35 

junior residents made 402 predictions for 112 patients, The 8 senior residents made 334 predictions for 100 

patients, and 8 staff members made 60 predictions for 34 patients (physicians’ characteristics in Table 8.A.6).  

Regardless of seniority level, the predictions made by ICU physicians demonstrated MAE of 21.1 (95% 

CI 19.3-23.0) ml/min and RMSE of 36.7 ml/min. In particular, junior residents, senior residents, and staff 

members showed MAEs of 22.6 (95% CI 19.8-25.3), 19.5 (95% CI 16.8-22.2), and 20.6 (95% CI 14.8-26.5) 

ml/min, and RMSEs of 36.1, 31.9, and 30.9 ml/min respectively (Table 8.A.7). Finally, the predictive performance 

of predictions made with low or medium confidence was clinically similar to that of predictions made with high 

confidence (MAE 21.2 (95% CI 19.3-23.2) vs. 20.6 (95% CI 14.8-26.4) ml/min, and RMSE 33.2 vs. 38.2 ml/min, 

for low or medium confidence and high confidence, respectively) (Table 8.A.8).  

In the subgroup of predictions during the first week of ICU stay, the CrCl predictor showed lower RMSE 

than the predictions of physicians, but the MAE was not significant (Figure 8.A.4). For both the CrCl predictor 

and ICU physicians’ predictions, most predictions were close to the diagonal axis indicating good agreement 

between predicted and true CrCls (Figure 8.A.5). 



 

164 | Chapter 8 

 

8.A.2 Supplementary tables 

Table 8.A.1 Physicians’ characteristics for the one-day-ahead prediction task 

 
Physicians 

Number of participants 54 

Age, year, median (IQR) 29 (29 - 30) 

Male gender, number (%) 33 (61.1) 

Seniority level, number (%) 
 

    Junior resident 37 (68.5) 

    Senior resident 8 (14.8) 

    Staff member 9 (16.7) 
 

Table 8.A.2 Description of physicians’ predictions per seniority and confidence levels for the one-day-ahead prediction task 

 

Junior resident 
(n=664 questionnaires, 
566 days, 182 patients, 

37 physicians) 

Senior resident 
(n=524 questionnaires, 
521 days, 152 patients, 

8 physicians) 

Staff member 
(n=110 questionnaires, 
110 days, 63 patients, 9 

physicians) 

Mean 
absolute 

error 
(ml/min) 

(95% CI) 

Root-
mean-
square 
error 

(ml/min) 

Mean 
absolute 

error 
(ml/min) 

(95% CI) 

Root-
mean-
square 
error 

(ml/min) 

Mean 
absolute 

error 
(ml/min) 

(95% CI) 

Root-
mean-
square 
error 

(ml/min) 

Physicians' predictions 
23.3 

(20.9-
25.7) 

39.1 
20.9 

(18.5-
23.3) 

34.8 
16.9 

(13.5-
20.4) 

25.0 

Core model 
20.2 

(18.4-
22.0) 

31.2 
19.7 

(17.6-
21.7) 

31.1 
16.5 

(13.5-
19.5) 

23.1 

Core+BGA model 

20.0 
(18.2-
21.9) 

31.4 
19.2 

(17.1-
21.3) 

31.0 
16.4 

(13.3-
19.6) 

23.5 

Core+BGA+Monitoring 
model 

19.5 
(17.7-
21.3) 

30.5 
19.0 

(16.9-
21.0) 

30.5 
16.7 

(13.6-
19.8) 

23.5 
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Table 8.A.3 Performance of clinicians split by confidence level for the one-day-ahead prediction task 

 
Physicians 

Number of questionnaires 1298 

Low or medium confidence 
 

    Number (%) 966 (74.4) 

    MAE (ml/min) 22.4 (20.6-24.2) 

    RMSE (ml/min) 36.2 

High confidence 
 

    Number (%) 332 (25.6) 

    MAE (ml/min) 20.0 (16.6-23.3) 

    RMSE (ml/min) 36.9 

MAE, mean absolute error; RMSE, root mean square error 
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Table 8.A.4 Patient characteristics and clinical outcomes for the average of two days ahead prediction task 

 
All patients (n=120) 

Age, years, median (IQR) 65 (56 – 74) 

Gender male, number (%) 77 (64.2) 

Day from ICU admission, median (IQR) 5.8 (4.5 – 8.5) 

BMI, median (IQR) 24.7 (22.3 – 27.1) 

Mean creatinine clearance over the ICU stay, ml/min, 
median (IQR) 

89.1 (47.4 – 120.1) 

Baseline serum creatinine, mg/dl, median (IQR) 0.9 (0.7 – 1.1) 

APACHE II score, median (IQR) 16.0 (13.0 – 20.5) 

Diabetes, number (%)*  

Emergency admission, number (%)*  

Sepsis on ICU admission, number (%)*  

Pharmacological hemodynamic support on ICU admission, 
number (%)* 

 

Reason for admission  

    Cardiac surgery, number (%) 20 (16.7) 

    Medical disease, number (%) 26 (21.7) 

    Neurology, number (%) 13 (10.8) 

    Trauma and other surgery, number (%) 45 (37.5) 

    Transplantation, number (%) 16 (13.3) 

Deceased during the study, number (%) 15 (12.5) 

Length of stay until the end of study, median (IQR) 10 (8 – 16) 

*The following variables are currently being retrieved: diabetes, emergency admission, sepsis on ICU admission, 

pharmacological hemodynamic support on ICU admission.  
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Table 8.A.5 Summary of mean absolute error between the predicted and actual creatinine clearances, and root-mean-square 

error for the developed models and the physicians’ predictions for the average CrCl of two days ahead prediction task 

 

Study cohort for the average CrCl of two days ahead 

prediction task 

Mean absolute error 

(ml/min) (95% CI) 

Root-mean-square error 

(ml/min) 

Physicians' predictions 21.1 (19.3-23.0) 34.0 

Core model 18.1 (16.5-19.6) 28.4 

Core+BGA model 17.7 (16.2-19.2) 28.0 

Core+BGA+Monitoring model 17.8 (16.3-19.3) 28.0 

 

Table 8.A.6 Physicians’ characteristics for the average of two days ahead prediction task 

 
Physicians 

Number of participants 51 

Age, year, median (IQR) 29 (29 - 30) 

Male gender, number (%) 32 (62.8) 

Seniority level, number (%) 
 

    Junior resident 35 (68.6) 

    Senior resident 8 (15.7) 

    Staff member 8 (15.7) 
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Table 8.A.7 Description of physicians’ predictions per seniority and confidence levels for the average of two days ahead 

prediction task 

 

Junior resident 
(n=402 questionnaires, 
344 days, 112 patients, 

35 physicians) 

Senior resident 
(n=334 questionnaires, 
331 days, 100 patients, 

8 physicians) 

Staff member 
(n=60 questionnaires, 
60 days, 34 patients, 8 

physicians) 

Mean 

absolute 

error 

(ml/min) 

(95% CI) 

Root-

mean-

square 

error 

(ml/min) 

Mean 

absolute 

error 

(ml/min) 

(95% CI) 

Root-

mean-

square 

error 

(ml/min) 

Mean 

absolute 

error 

(ml/min) 

(95% CI) 

Root-

mean-

square 

error 

(ml/min) 

Physicians' predictions 

22.6 

(19.8-

25.3) 

36.1 

19.5 

(16.8-

22.2) 

31.9 

20.6 

(14.8-

26.5) 

30.9 

Core model 

18.6 

(16.4-

20.8) 

29.3 

17.9 

(15.6-

20.3) 

28.3 

15.0 

(10.8-

19.2) 

22.3 

Core+BGA model 

18.1 

(15.9-

20.3) 

28.6 

17.8 

(15.5-

20.1) 

27.9 

15.1 

(10.4-

19.8) 

23.7 

Core+BGA+Monitoring 

model 

18.3 

(16.2-

20.5) 

28.8 

17.7 

(15.4-

20.0) 

27.8 

14.7 

(10.2-

19.1) 

22.8 
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Table 8.A.8 Performance of clinicians split by confidence level for the average of two days ahead prediction task 

 
Physicians 

Number of questionnaires 796 

Low or medium confidence 
 

    Number (%) 676 (84.9) 

    MAE (ml/min) 21.2 (19.3-23.2) 

    RMSE (ml/min) 33.2 

High confidence 
 

    Number (%) 120 (15.1) 

    MAE (ml/min) 20.6 (14.8-26.4) 

    RMSE (ml/min) 38.2 

MAE, mean absolute error; RMSE, root mean square error 
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8.A.3 Supplementary figures 

 

Figure 8.A.1 Prediction questionnaire 
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Figure 8.A.2 Physician questionnaire 
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Figure 8.A.3 Consort diagram for prediction of average CrCl of two days ahead. CrCl, creatinine clearance; ICU, intensive 

care unit 

 

 

Figure 8.A.4 Temporal mean absolute error (left) and root-mean-square error (right) of different models within the first week 

of ICU admission for the average of two days ahead prediction task. Error bars represent 95% confidence intervals. There 

was no significant difference in mean absolute error between the predictions made by each of the CrCl predictor models and 

the physicians on each day of the first week of ICU admission. 
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Figure 8.A.5 Relationships between predicted and actual CrCls for different models for the average of two days ahead 

prediction task. The orange, red, green, and blue scatter plots show the results for the ICU physicians’ predictions, Core, 

Core+BGA, Core+BGA+Monitoring models, respectively. The dashed and solid lines represent the lowess-based regression 

lines for the predictions and the diagonal axis. MAE, mean absolute error; RMSE, root mean square error; CrCl, creatinine 

clearance 
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9  

Development of a prototype software to visualize the temporal 

evolution and prediction of kidney function 

 

Adapted from: Chao-Yuan Huang, Fabian Güiza, Greet De Vlieger, Geert Meyfroidt. “Development of a 

prototype software to visualize the temporal evolution and prediction of kidney function”. Ready for submission. 
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Abstract 

Purpose:  Continuous kidney function prediction is important and necessary for drug dosage adjustment of 

renally cleared drugs and for risk stratification of patients with high kidney function instability. Therefore, we 

have developed the creatinine clearance (CrCl) predictor to predict short-term kidney function using machine-

learning algorithm and regularly collected clinical data. However, technical knowledges are still required to use 

the CrCl predictor. Consequently, we aim to develop a prototype software that automatically performs the 

prediction algorithm in the background and visualizes the prediction results along with explanations in a user-

friendly manner.  

Methods: The study cohort described in Chapter 7 was utilized to evaluate the functionality of the prototype 

program. We integrated the CrCl predictor into a software that can automatically make predictions for CrCl of 

the next ICU day. We visualized the temporal kidney function evolution and CrCl predictions along with the 

confidence intervals. Additionally, individual prediction explanation plot can be generated to increase model 

interpretability. The software was developed in Python 3.7.4 with Kivy version 1.11.1 library. 

Results:  We constructed a prototype software that can automatically collect necessary data from the patient data 

management system databases, pre-process the collected data, transform the pre-processed data into informative 

features, make predictions for the CrCl of the next ICU day, and present results with user-friendly graphical user 

interface in a real-time manner.  

Conclusion: The proposed software successfully integrates the previously developed CrCl predictor and 

visualizes the prediction results along with explanations in a continuous way. Future studies are still warranted 

to investigate whether this software can help improving the kidney function management, patient care and 

outcome in clinical practice.  
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9.1 Introduction  

In critically ill patients, clinically significant changes in kidney function were found to happen to 35-40% of days 

during the ICU stay (Chapter 6) [1]. In particular, acute kidney injury (AKI) and augmented renal clearance 

(ARC) happen frequently with reported prevalence of 40-60% and 20-65% in critically ill patients [2–4]. They 

both have adverse effects such as treatment failure and drug toxicity [3, 5], especially for renally cleared drugs 

such as vancomycin and β-lactam anti-microbials [6–8], as well as anticoagulants [9, 10]. The currently used 

consensus to diagnose AKI is based on serum creatinine (SCr) and urine output (UO) [11], both of which have 

their limitations. Specifically, muscle mass and hydration status have an impact on SCr [12], while diuretics 

influence UO. For ARC, the, commonly used definition is based on the creatinine clearance (CrCl) measured 

from a 24-hour urine collection, which slows down decision-making and renally excreted drug administration. 

Hence, there is a need for kidney function prediction to allow for quick decision making and timely drug dosage 

adjustment. However, most prediction models for kidney function were built to predict the onset of two extremes 

of kidney function spectrum: AKI [13–21] and ARC [22–26]. Since the kidney function is continuous, predicting 

the full range of kidney function is more in line with clinical and physiological reality.  

Therefore, in a previous study (Chapter 7), we developed the CrCl predictor models for daily prediction 

of measured CrCl on the next day. The measured CrCl based on urinary volume and creatinine concentrations in 

serum and urine is currently the best surrogate for glomerular filtration rate (GFR) during critical illness [27]. In 

an external validation cohort, the developed models had smaller prediction errors than the reference reflecting 

the current clinical practice that assumed CrCl remained, mainly on the days when the kidney function was 

unstable. Subsequently, a prospective validation demonstrated that the CrCl predictor had a comparable accuracy 

to that observed in the original model development study and had smaller prediction errors than the predictions 

made by the treating physicians (Chapter 8).  

Despite the many successes of the developed CrCl predictor and its potential as a tool to optimize drug 

dosing regimen and to stratify patients at risk, the implementation in clinical settings may be hampered by the 

time-consuming data retrieval and pre-processing procedures. As a result, the goal of this study is to create a 

prototype software that incorporates the previously developed CrCl prediction model and visualizes the 

prediction results and corresponding explanations in a user-friendly way, with an ultimate goal to facilitate the 

kidney function evaluation of critically ill patients.  

9.2 Methods 

To examine the functionality of the prototype software, the study cohort included in the Chapter 7 was used. 

9.2.1 CrCl definition  

The following formula was used to determine CrCl, without correction for body surface area: CrCl (ml/min) = 

Urine creatinine (UCr) (mg/dL) × 24h UO (ml/day) / SCr (mg/dL) / 1440 (min/day). When multiple values were 

available on the same ICU day, summation was used for UO, and mean was applied to UCr and SCr. The UOs 

and CrCls measured on the first patient-days were corrected by hours in ICU due to the incomplete urine output 

collection. 
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9.2.2 CrCl predictor 

The CrCl predictor included a series of models that predict CrCl on the next ICU day utilizing more features with 

increasing data resolution (Core model, Core+BGA model, and Core+BGA+Monitoring model) (Chapter 7). 

The Core model used only admission data and daily routine laboratory results. The Core+BGA model added to 

the above, blood gas analysis data. The Core+BGA+Monitoring model added to the above, monitoring data (heart 

rate, mean arterial blood pressure, and respiratory rate). The gradient-boosting trees method was used for model 

development, with features chosen after careful deliberation with two knowledgeable ICU physicians, 

consideration of the data availability, and the backward elimination method. In this study, as a proof of concept, 

only the most complete Core+BGA+Monitoring model was integrated in the software. 

9.2.3 Prediction confidence interval 

To indicate uncertainty levels of the prediction, prediction intervals were created by employing the quantile 

regression [28]. In contrast to the least squares method that calculates the conditional mean, quantile regression 

seeks to estimate the conditional quantiles. In this software, an upper bound of 0.975 quantile and a lower bound 

of 0.025 quantile were set by default, so that 95% confidence intervals can be generated, but the threshold can 

also be adapted, with different hyperparameters used in the CrCl predictor model development. 

9.2.4 Individual prediction explanation  

Machine-learning models have been notorious for the black-box characteristics. However, clinicians prefer 

strong evidence-based scientific backing to provide meaningful intervention and to modify their treatment 

approaches to vulnerable ICU patients. Therefore, many explanation techniques have been proposed for 

individual predictions, such as permutation importance [29], SHapley Additive exPlanations (SHAP) [30], and 

local interpretable model-agnostic explanations (LIME) [31]. Their consistency within literature and clinical 

interpretation have been showed [32–34]. LIME was used in this software for model explanation purpose due to 

its model-agnostic characteristics that treats the model as a black box and making no assumptions about the 

model, and self-explanatory visualization.  

9.2.5 Software development 

The software was developed in Python 3.7.4 (Python Software Foundation, http://www.python.org) with Kivy 

library 1.11.1 (kivy.org). Data were retrieved from the patient data management system (PDMS) database 

(Microsoft SQL Server®; Microsoft®, Redmond, Washington, USA), which allowed for a safe and efficient 

transmission of the necessary patient data and enabled the real-time applications.  

9.2.6 User interface 

To ensure the software comfortability for users to interact with, and to reduce the potential cognitive load, the 

software user interface was iteratively improved based on the comments given by the two ICU physicians of the 

University Hospitals Leuven (GDV and GM). 
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9.3 Results 

9.3.1 Overall functionality 

The patients assessed by the prototype software had their data queried and predictions computed successfully. 

Figure 9.1 provides a graphical description of all activities included in the proposed software, which consists of 

three screens: the password-protected user login screen (Figure 9.2), the hospital number entry screen (Figure 9.3), 

and the main screen where the CrCl prediction and kidney function evolution are visualized (Figure 9.4). 

Furthermore, a popup window containing a prediction explanation plot can be generated on demand (Figure 9.5). 

 

Figure 9.1. Activity diagram of the developed software. The upper, middle, and lower regions indicate the activities that are 

performed in the user login screen, hospital number entry screen, and the main screen respectively. 
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Figure 9.2. Screenshot of the password-protected user login screen 

 

 

Figure 9.3. Screenshot of the screen for hospital number entry  
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Figure 9.4. Screenshot of the main screen  

 

 

Figure 9.5. Screenshot of the popup window containing a prediction explanation plot 

 

9.3.2 User login screen 

When conducting a clinical trial, it is necessary to have a password-protected login screen, in order to defend 

against any unauthorized access to crucial patient information. As a result, to meet the high clinical security level, 

the stored registered user credentials are encrypted with Secure Hash Algorithm 256 (SHA-256), a powerful 

cryptographic hash function. Contrary to several other well-known hashing algorithms such as MD5 message-

digest algorithm and Secure Hash Algorithm 1 (SHA-1), SHA-256 has no known security flaws. 
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9.3.3 Hospital number entry screen 

The hospital number entry screen allows to choose the specific patient of interest. Since one patient may have 

multiple ICU admissions, to identify the correct admission, the entered patient identification number is further 

matched with the closest ICU admission datetime, based on which the corresponding patient data are retrieved 

directly from the PDMS database. Subsequently, for the deidentification purpose, the entered patient 

identification number is replaced by the study number.  

9.3.4 Main screen 

The main screen contains two parts. In the upper header panel, the corresponding username and study number 

for the patient under investigation are indicated in the header for clarification purpose. Furthermore, there is a 

menu bar providing the following functions: 1) logoff user account, 2) change hospital number, and 3) explain 

prediction results. The first and the second functions change the current screen to the password-protected user 

login screen and the hospital number entry screen respectively, and the third function shows a popup window 

including a prediction explanation plot for the current prediction result.  

In the middle main panel, there are four traces for true CrCl, predicted CrCl, SCr, and UO on each ICU 

day, where the vertical white line represents the current ICU day. The SCr and UO traces are represented in 

yellow and blue. For the CrCl traces, the true CrCl and predicted CrCl are indicated in red and green individually, 

with the green shaded area indicating the confidence intervals. The parameters’ names and corresponding units 

are displayed on the left-hand side, and their minimum, maximum, and last available values are shown on the 

right-hand side. Every day at 7 a.m., based on the past information since ICU admission, the prediction for the 

following day is made and added to the graph.  

9.3.5 Prediction explanation plot 

Features that are positively correlated with the one-day-head CrCl are shown in red, otherwise blue. The length 

of bars indicates the magnitude of the corresponding linear regression coefficient of the model fitted locally to 

the predictions from the original model. The longer the bar is, the more important the corresponding feature is to 

the prediction of one-day-ahead CrCl. 

9.3.6 Visualization examples of individual prediction 

To demonstrate the prototype software’s performance, we selected three cases where the CrCls were at medium, 

high, and low ranges respectively. First, Figure 9.4 and Figure 9.5 show screenshots of the main screen and 

prediction explanation plot for a 83-year-old woman. Her last available [minimum-maximum] SCr was 0.45 

[0.45-0.7] mg/dL, last available [minimum-maximum] UO was 750 [500-2500] ml/day, and last available 

[minimum-maximum] CrCl was 93.2 [59.0-93.2] ml/min. It was predicted that the woman would have 86.9 [95% 

CI 51.1-127.8] ml/min CrCl on the next ICU day. Regarding the prediction explanation, the most important three 

features were “CrCl of the previous day”, “Mean of CrCl of all past days during ICU stay”, and “Age”. 

Specifically, a “CrCl of the previous day” in a range between 81.7 and 124.0 ml/min positively correlated to the 

one-day-ahead CrCl, contributing the most to the prediction result. Furthermore, a “Mean of CrCl of all past days 

during ICU stay” in a range between 47.8 and 81.2 ml/min and an age larger than 74 years negatively correlated 

to the one-day-ahead CrCl. 
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Second, Figure 9.6 and Figure 9.7 show screenshots of the main screen and prediction explanation plot 

for a 35-year-old man. His last available [minimum-maximum] SCr was 0.54 [0.38-0.93] mg/dL, last available 

[minimum-maximum] UO was 4350 [900-4600] ml/day, and last available [minimum-maximum] CrCl was 

198.03 [28.7-294.5] ml/min. It was predicted that the man would have a 206.5 [95% CI 103.4-253.5] ml/min 

CrCl on the next ICU day. Regarding the prediction explanation, the most important three features were “CrCl 

of the previous day”, “Mean of CrCl of all past days during ICU stay”, and “Age”. Specifically, a “CrCl of the 

previous day” larger than 124.0 ml/min, a “Mean of CrCl of all past days during ICU stay” larger than 122.3 

ml/min, and an age smaller than 54 years positively correlated to the one-day-ahead CrCl. 

 

Figure 9.6. The main screen for an example of a 35-year-old man. 

 

 

Figure 9.7. The prediction explanation plot for an example of a 35-year-old man. 
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Third, Figure 9.8 and Figure 9.9 show screenshots of the main screen and prediction explanation plot for 

a 68-year-old man. His last available [minimum-maximum] SCr was 2.36 [2.36-3.05] mg/dL, last available 

[minimum-maximum] UO was 1100 [300-2200] ml/day, and last available [minimum-maximum] CrCl was 23.9 

[7.6-23.9] ml/min. It was predicted that the man would have a 26.5 [95% CI 15.7-38.2] ml/min CrCl on the next 

ICU day. Regarding the prediction explanation, the most important three features were “CrCl of the previous 

day”, “Mean of CrCl of all past days during ICU stay”, and “Mean of SCr of all past days during ICU stay”. 

Specifically, a “CrCl of the previous day” lower than 47.5 m/min, a “Mean of CrCl of all past days during ICU 

stay” lower than 47.8 ml/min, and a “Mean of SCr of all past days during ICU stay” larger than 1.27 mg/dL 

negatively correlated to the one-day-ahead CrCl. 

 

Figure 9.8. The main screen for an example of a 68-year-old man. 

 

 

Figure 9.9. The prediction explanation plot for an example of a 68-year-old man. 
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Interestingly, from the above three examples, it is noteworthy that the predicted 95% confidence 

intervals are wider when the CrCls are larger, ranging from 23 ml/min in third example with low CrCl values, to 

76 ml/min in the first example with medium CrCl values, and to 150 ml/min in the second example with high 

CrCl values. This finding reflects the true physiology that the kidney function instability is more pronounced at 

higher CrCl values (Chapter 6).  

The median (IQR) ICU length of stay was 4 (2-9) days in the study cohort included in Chapter 7. For 

patients staying 2, 4, and 9 days, retrieving and processing the data and generating the prediction results took 2, 

7, and 25 seconds on a computer with 12-core central processing unit (CPU), while the software processing time 

was 43 minutes for a patient that stayed in the ICU for 133 days. 

9.4 Discussion 

In this study, we have showed that daily predictions of short-term CrCl made by the previously developed CrCl 

predictor can be integrated into a graphical user interface software for individual patients on each day of their 

ICU stay, without any manual entry of patient data. Additionally, the prediction results were presented in a user-

friendly manner, and explanations for model predictions can be generated if necessary, increasing its clinical 

utility. 

This study has many strengths. First, all modeling methods were integrated including data collection, 

data preprocessing, feature engineering, model prediction, and result presentation. Consequently, this software 

completely avoids any manual patient data entry and requires no prior technical knowledges, additional tool, or 

support from the IT professionals. Second, a self-explanatory prediction explanation plot can be generated on 

demand for each patient on each ICU day. Individual prediction explanation is necessary for clinical applications, 

so that clinicians can trust the provided prediction results and use them to tailor treatment strategies for individual 

vulnerable patients. Furthermore, the explanation plot reflecting the real-time response to the given treatment 

may improve the kidney function knowledges for the treating physicians. Third, the time needed for a prediction 

was short, and thus it was expected that the software can run smoothly in a real-time setting. Specially, less than 

30 seconds were needed to display the results for 75% of the included patients. Fourth, once the entered user 

credentials are validated, the software has direct access to the PDMS system. The use of data queried from the 

PDMS system made this software simple to be transferred to other centers with similar electronic health records 

settings. Additionally, despite not implemented yet, the prediction results and/or the corresponding prediction 

explanations can be saved to the PDMS system so that they can be directly accessible at the patient bedside or 

on other devices and linked to other applications (Figure 9.10).  
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Figure 9.10. An illustration of the CrCl predictor’s potential to save results back to the database. 

 

This study has some limitations. First, by virtue of the software development and non-interventional 

nature of the study, it is currently unknown whether the software could aid in achieving pharmacokinetic aims, 

optimizing renally cleared medication dosage, and/or improving patient outcomes. Second, this is a single-center 

study in Belgium, but this is a pilot study to examining the feasibility of model-based software. Third, missing 

values were automatically imputed with the mean for continuous data and the mode for categorical data from the 

original study without further consideration, which may lead to an erroneous patient profile. However, this 

imputation method was to ensure the least efforts made by the clinicians, and future software versions may take 

this into account and allow users to impute individually. Fourth, while the CrCl predictor has three prediction 

models, only the most complete model was included in the software. Nevertheless, there was only a slight 

performance difference between the three models in the previous studies (Chapter 7 and Chapter 8), and it was 

simple to remove features in the future after the integration of the most complete model. Finally, given the day-

by-day prediction nature of the original CrCl predictor, the current software can only make predictions on a daily 

basis. Future versions of the software may consider integrating prediction models with higher temporal resolution 

such as predicting kidney function every 8 hours [35].  

9.5 Conclusion 

In this study, we developed a prototype software for kidney function management of critically ill patients. The 

prototype software can automatically predict CrCl for the next ICU day that is not available in the clinical 

environment yet and display the results and correspond explanations in a user-friendly manner. The developed 

software is ready to be prospectively validated in a real-time setting. Once the technical validation is finished, 

future interventional studies can be conducted to examine whether the use of this software in the clinical practice 

can help improving the kidney function management, patient care and outcome. 
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10  

Discussion 

In critically ill patients, both increased and decreased renal clearance occur frequently, and kidney function may 

vary during the course of critical illness. Acute kidney injury (AKI) is a highly prevalent syndrome occurring in 

many conditions that cause severe critical illness, and has an association with worse short- and long-term clinical 

outcomes. Fluctuations in renal clearance influence the plasma levels and clearance of renally excreted drugs, 

leading to unfavorable consequences such as drug toxicity and treatment failure. Predicting these fluctuations in 

kidney function could allow for more personalized drug dosage, and less treatment failure, potentially leading to 

better clinical outcomes. In addition, even though the prevention and management of AKI are mainly supportive, 

early predictions of a reducing or fluctuating kidney function can stratify patients according to their risk, and 

may aid in developing targeted therapies to prevent or mitigate the course of kidney injury.  

The focus of current machine-learning models in this field has been the prediction of consensus-based 

classifications of changes in renal function, such as AKI or augmented renal clearance (ARC). Some of these 

models have demonstrated good predictive performance and outperformed the physicians in external validation, 

but still could benefit from additional external validations in independent datasets before they can be applied to 

different clinical settings. Furthermore, since the kidney function is continuous, predicting the complete spectrum 

of kidney function is more in accordance with clinical and physiological reality. 

In this thesis, we applied advanced data analytical techniques and machine-learning algorithms to gain 

insights into kidney function in critically ill patients. The first objective focuses on AKI, and we validated a 

machine-learning model, the AKIpredictor, for early prediction of AKI within the first week of ICU admission. 

Additionally, we developed and validated prediction models for AKI recovery at hospital discharge in patients 

with AKI stage 3 during their ICU stay. In the second objective, we validated a prediction model for the onset of 

ARC on the next ICU day for coronavirus disease 19 (COVID-19) pneumonia patients admitted to critical care 

in the University Hospitals Leuven from February 2020 to January 2021. In the third objective, we first 

investigated the daily kidney function instability in critically ill patients. In addition, we developed and validated 

models for daily prediction of short-term measured creatinine clearance (CrCl). Furthermore, we externally 

validated the CrCl prediction models and compared their performance against ICU physicians in a prospective 

observational study. Finally, we developed a prototype software to incorporate the developed CrCl prediction 

models and to visualize the prediction results along with the prediction explanations in a user-friendly interface. 

 

10.1 Prediction of acute kidney injury development and recovery  

10.1.1 Main findings  

According to epidemiologic research, 40–60% of critically ill patients have AKI depending on the use of AKI 

definition criteria and study cohort [1, 2]. AKI has been shown associated with ICU mortality greater than 50% 

[3], longer length of stay [4, 5], and higher financial cost [4, 6]. The current consensus to define AKI is based on 

the Kidney Disease: Improving Global Outcomes (KDIGO) AKI criteria proposed in 2012, which categorize 

AKI by serum creatinine (SCr) and urine output (UO).  
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Given the high prevalence and strong association of AKI with adverse events, early prediction of AKI may 

be beneficial. As a result, many prediction models have been developed for critically ill patients [7–15]. 

Specifically, Le et al. developed a prediction model to predict severe AKI 48 hours in advance using 

convolutional neural networks, which showed superior performance than the XGBoost-based model and 

sequential organ failure assessment (SOFA) scoring system [7]. Additionally, Gao et al. developed multiple 

prediction models using different machine-learning algorithms and time before the onset of AKI (24, 48, and 72 

hours), and they explained the feature impact by the SHAP analysis [13]. The ensemble model was demonstrated 

with the best AUROC of 0.92 to predict AKI 24 hours in advance. Furthermore, Sato et al. proposed a prediction 

model using one-dimensional convolutional neural networks, which achieved higher performance compared to 

the other models, with AUROCs of 0.74 and 0.84 for stage-1 and stage-2 AKI respectively [11]. Finally, based 

on a large multi-center EPaNIC randomized controlled trial [16], Flechet et al. developed a series of prediction 

models named “AKIpredictor” to predict the presence of AKI during the first week of ICU stay [15] and made it 

accessible as a web-based application [17]. Four models were developed, each utilizing a unique set of features 

as they became available at different stages along the clinical course: prior to admission, upon admission, the 

first morning following admission, and after 24 hours. The models were able to predict any stage (1–2–3) and 

severe stages of AKI (2–3). The AKIpredictor’s accuracy was tested in a validation cohort, where it excelled 

serum neutrophil gelatinase-associated lipocalin (NGAL), the most studied AKI biomarker at that time. 

Following that, Flechet et al. conducted another prospective observational study to compare the AKIpredictor 

with ICU physicians’ predictions, where AKIpredictor demonstrated comparable discrimination and a higher net 

benefit for severe AKI (2–3) predictions [18]. Although the AKIpredictor represented a significant advancement 

in the early prediction of AKI, additional external validations were needed to evaluate its generalizability in 

various patient populations before it could be applied in clinical practice. 

In Chapter 3, we externally validated the AKIpredictor of Flechet et al. [15] on a large heterogeneous cohort 

from the University Hospitals Leuven included in the M@tric database [19], with high-quality and intricately 

linked data from every adult patient admitted to the ICU from 2013 to 2018. In this external validation study, the 

AKIpredictor showed comparable predictive performance to that observed in the original model development 

research. This finding confirmed the AKIpredictor models’ robustness despite the fact that the original database 

from which the models were developed was ten years old, a period during which the clinical setting and medical 

procedures underwent significant change. 

AKI recovery prediction may also be helpful to guide clinical practice as persisting AKI is associated with 

higher short- and long-term mortality [20], chronic kidney disease [21], end-stage kidney disease [22], and need 

for kidney replacement therapy (KRT). However, the development of AKI recovery prediction models remains 

challenging, partially attributed to the differences in baseline SCr definitions, patient populations being studied, 

recovery evaluation time points, and definitions for recovery [23]. Particularly, the prediction models developed 

by Itenov et al. demonstrated fair AKI recovery predictive performance using the Cox regression [24], which 

may result from the pre-specified recovery timepoint of 28 days and predictions made on ICU admission. 

Additionally, Lee et al. developed classification and regression tree (CART) and logistic regression models for 

predicting AKI recovery [25], but only poor discrimination was demonstrated without external validation. Hence, 

in Chapter 4, with an aim to identify patients with high chance of AKI recovery, we developed and validated 

machine-learning prediction models for AKI recovery at hospital discharge in critically ill patients with AKI 
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stage 3 during their ICU stay using routinely collected clinical data. Models were developed and validated on a 

development cohort and a matched validation cohort from the critically ill adults admitted to ICUs of the 

University Hospitals Leuven, included in the EPaNIC randomized controlled trial (RCT) database. Two models 

were developed: one for complete recovery prediction and the other one for complete or partial recovery 

prediction. Complete recovery was defined as the absence of any stage of AKI and being alive without KRT at 

hospital discharge, and partial recovery was defined as AKI stage 1 or 2 and being alive without KRT at hospital 

discharge. Model performance was compared with plasma NGAL measured on first AKI-3 day (NGAL_AKI3) 

and a reference model that only based on age. 

Five features were selected for each task based on the identified associations with kidney function 

recovery from the literatures, machine-learning techniques (Lasso, correlation-based feature selection method, 

and permutation feature importance), and discussion with two experienced ICU physicians. In the validation 

cohort, the developed AKI recovery prediction models only showed similar poor discrimination as the 

NGAL_AKI3 for the general ICU population, which were worse than the reference models that only based on 

age. For cardiac surgery patients, the developed models had better performance over NGAL_AKI3 and the 

reference models that only based on age. 

 

10.1.2 Current impact of the research and future perspectives   

The study presented in Chapter 3 shows the necessity of the AKIpredictor, given the high prevalence of AKI in 

this mixed population of critically ill adults (10.97%), and the significantly higher mortality and ICU length of 

stay in patients with AKI (18% vs. 4%, p<0.01, and 6 days vs.3 days, p<0.01). Besides, Chapter 3 confirms the 

generalizability of the AKIpredictor, implying that its potential as a promising tool to identify AKI patients and 

to prevent potential kidney damage at an early stage. Further interventional studies are needed to evaluate whether 

the use of AKIpredictor in clinical practice can improve outcome.  

It is noteworthy that this external validation study performed in Chapter 3 is retrospective and single-

center, while a prospective international multicenter study is required to fully reflect the clinical usefulness of 

the AKIpredictor. Importantly, since the AKIpredictor was developed based on a multicenter database from 

Belgium, it is expected that the AKIpredictor may not achieve the same performance in patients from other 

countries due to the difference in genetic and environmental factors, both of which have an association with the 

kidney function. After a thorough understanding of which patient populations and under what conditions the 

AKIpredictor may perform worse, the addition of a correction term or recalibration of the AKIpredictor may be 

followed to make the AKIpredictor more applicable to the studied patient population.  

In Chapter 3, we exclusively focused on critically ill adults with any stage of AKI, since care should be 

taken to prevent any stage of AKI, given the strong association of all stages of AKI with unfavorable long-term 

outcomes [2]. Besides, since the AKIpredictor models on the website application predict the risk of all stages of 

AKI, the investigation of all AKI stages enabled a better benchmarking with other studies. However, the 

AKIpredictor was also developed to predict severe stages of AKI, and patients with severe stages of AKI may 

benefit more from a focused therapy. Future studies may examine the generalizability of the AKIpredictor on 

predicting the risk of severe AKI stages. 



 

198 | Discussion 

 

Only KDIGO SCr criteria were used for AKI definition in Chapter 3, as the AKIpredictor was originally 

developed with SCr criteria only, and adhering to the original study’s methodology enabled better interpretation 

and comparison. Furthermore, in a prospective study where UO criteria were added to SCr criteria, the 

AKIpredictor showed worse discrimination (median area under the receiver operating characteristic curve 

(AUROC): 0.78 vs. 0.76, 0.94 vs. 0.87, and 0.93 vs. 0.85 upon admission, on day 1, and after 24 hours 

respectively) [18]. Finally, hourly registration of the UO is often difficult in clinical setting. However, the UO 

criteria were demonstrated to be equally essential to the SCr criteria. In particular, Koeze et al. found that the 

addition of UO criteria to the SCr criteria may double the prevalence of AKI in critically ill patients and identify 

individuals with AKI eleven hours earlier [26]. Hence the generalizability of the AKIpredictor with inclusion of 

UO criteria remains to be investigated. 

The relatively poor performance of the models in Chapter 4 suggested that it was difficult to predict AKI 

recovery upon hospital discharge at an early stage, which may be partially explained by the following factors. 

First, we exclusively focused on critically ill patients with AKI-3 during their ICU stay. Despite the strong 

associations with adverse outcomes and the high clinical relevance, only a small number of AKI-3 patients were 

available, and only a small proportion of these patients actually recovered within the timeframe of the follow-up. 

Additionally, with the small dataset and low recovery prevalence, to reduce the risk of overfitting, we were 

limited to using a small number of features and relatively simple machine-learning algorithm (i.e., Lasso) for 

each prediction task, which may not suffice to capture the complex kidney function recovery signals. To address 

the imbalanced and limited dataset issue, one technique that synthesizes new examples from the existing ones 

may be considered in future studies. In particular, as a type of data augmentation, synthetic minority 

oversampling method (SMOTE) has demonstrated its value in enhancing the prediction performance [27, 28]. 

However, care should be taken when using this technique, since it has the potential drawbacks of introducing 

false information due to the generation of fake data and the potential for overfitting due to the strong similarity 

between produced data. Once more patient data are available, we suggest future researchers to consider 

employing more sophisticated machine-learning algorithms, such as tree-based algorithms or deep learning 

techniques, which are expected to give better performance for the underlying complicated research question.  

Second, in a systematic review where Ohnuma et al. investigated the mortality prediction models for 

patients with AKI [29], they found out that the majority of the AKI mortality prediction models exhibited poor 

discrimination with an AUROC below 0.7 in the external validation. This absence of reliable and generalizable 

prediction models for AKI outcomes may suggest that the information available until the time of AKI diagnosis 

may not be adequate to anticipate patients’ outcomes at a distant time point in the future. Additionally, it is 

anticipated that events and patient’ conditions that occur after an AKI diagnosis may be more important for AKI 

recovery than those that occur before the diagnosis due to the effectiveness of treatments given after the presence 

of AKI, which may weaken the initial strong associations of AKI-3 with adverse outcomes. Therefore, future 

studies may consider combining data after the onset of AKI-3 such as the treatment and corresponding response, 

to enhance prediction accuracy. However, this potential increase in performance comes at the cost of a smaller 

window for clinical intervention, which lowers its clinical value. 
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10.2 Prediction of augmented renal clearance development 

10.2.1 Main findings  

Augmented renal clearance (ARC) occurs in 20-65% of the critically ill patients [30] and has been linked to 

reduced exposure to commonly administered medications such as beta-lactams, vancomycin, and anticoagulants 

[31, 32] and more treatment failure [33]. Although there is no universal agreement on how to define ARC, it is 

typically defined as a measured urinary creatinine clearance (CrCl) larger than 130 ml/min/1.73m2 based on a 

24-hour urine collection. However, kidney function is known to vary rapidly in critically ill patients, and by the 

time the 24-hour urine collection is finished, the kidney function may have already changed.  

Given the significance and necessity of ARC prediction, many prediction models have been developed to 

predict the onset of ARC [34–38], the majority of which was based on a small and specific subgroup of critically 

ill patients and was not externally validated. Specifically, the prediction model developed by Udy et al. is a point-

based scoring system to predict ARC based on the adjusted odds ratios [38]. The model demonstrated decent 

predictive performance with an AUROC of 0.89, but it may not be generalizable as only 71 septic and traumatized 

critically ill patients were included. Another scoring system for ARC prediction proposed by Barletta et al. was 

also point-based [37]. Despite the decent discrimination with an AUROC of 0.81, model development was based 

on 133 critically ill trauma patients, whose external validity might be questionable in other patient populations. 

Therefore, based on a large multi-center M@tric database [19], Gijsen et al. developed and externally validated 

a prediction model named “ARC predictor” to predict the onset of ARC on the next ICU day for critically ill 

patients [34]. Nevertheless, despite the excellent performance in the original study, the generalizability of the 

ARC predictor still has to be investigated in more external validations before it can be applied to clinical practice.  

Hence, in Chapter 5, the ARC predictor was externally validated using the adult COVID-19 pneumonia 

patients admitted to critical care in the University Hospitals Leuven from February 2020 to January 2021. The 

similar ARC predictor predictive performance demonstrated in this study as compared to the original study served 

as confirmation of the ARC predictor’s robustness. Results from Chapter 5 demonstrated the ARC predictor’s 

generalizability; performance was unaffected by the different patient characteristics between the critically ill 

COVID-19 dataset and the original ARC predictor development cohort. 

10.2.2 Current impact of the research and future perspectives 

The findings in Chapter 5 first confirmed the high prevalence of ARC, showing that ARC was found on at least 

one ICU day in 57 (47.5%) patients, corresponding to 246 (23.1%) patient-days. As a result, ARC should be 

considered carefully when adjusting the dosage of renally excreted drugs. Importantly, although only slightly 

worse discrimination was observed compared to the original study, the calibration plot indicated that the ARC 

predictor underestimated the risk of ARC. This may be partly attributed to the unidentified increased risk of ARC 

resulting from the systemic inflammatory response syndrome (SIRS) that COVID-19 patients might experience, 

which were originally associated with the two ARC predictor features: trauma-related and cardiac-related 

diagnosis at admission. The results suggested that the ARC predictor requires an adjustment to the considered 

features to more appropriately reflect the influence of SIRS.  

The ARC predictor’s robustness was confirmed through the excellent predictive performance in the 

external validation. However, before using the ARC predictor for drug dosage optimization in clinical practice, 
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a prospective multicenter validation is still warranted to ensure the ARC predictor’s generalizability in cohorts 

with different patient characteristics. In addition, whether the ARC predictor can help optimizing the drug dosing 

and improving the patient outcome remains to be investigated in large RCT, where several steps are necessary, 

including real-time testing in different clinical settings, implementation into clinical workflow with examination 

of model performance, safety, and effect on patients’ outcome. 

Currently, the ARC predictor is available online to facilitate external evaluation across different centers 

(Figure 10.1) [39]. The website has been assessed more than 910 times by more than 720 users from 60 countries 

since October 2021. The majority of the users were from United States, China, Belgium, Netherlands, and United 

Kingdom. Despite the convenient access as a website, patient data still need to be manually entered. To maximize 

the utility of the ARC predictor, it is ideal to automate every step of the process, including data extraction from 

the electronic health record, data processing of raw data, feature engineering, data entry into the prediction model, 

and results loading into a database or pharmacokinetic model. Knowledge in intensive care medicine, clinical 

information technology, pharmacometrics, and data science are necessary to complete this challenging task. As 

a consequence, close collaboration between intensivists, specialists in clinical databases, pharmacometricians, 

and data scientists would be required.  

 

Figure 10.1 User statistics of the ARC predictor website from September 2021 to August 2022 

Geographic reports of the users (upper panel) and line chart of the monthly usage (lower panel) 
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10.3 Prediction of creatinine clearance  

10.3.1 Main findings  

The kidney function changes rapidly in critically ill patients, with either sudden increases or decreases in renal 

clearance. Nevertheless, the actual incidence of kidney function instability has never been described 

systematically in critically ill adults.  

Hence, in Chapter 6, we examined the daily fluctuations of kidney function, as defined by the daily 

differences in CrCl, in critically ill adults admitted to ICUs of the University Hospitals Leuven, included in the 

EPaNIC RCT database. Our results showed that in 35-40% of days, critically ill adults may experience potentially 

clinically relevant alterations in kidney function on a daily basis. This instability was more noticeable when the 

CrCl of the current day was higher and generally happened in the first week after ICU admission. The findings 

from Chapter 6 suggest that current clinical practice assuming the CrCl remains stable may put patients at risk 

for receiving inappropriate dosages for renally cleared drugs such as commonly used antibiotics such as beta-

lactams and vancomycin, and may increase the risk of drug toxicity and/or treatment failure.  

Because of the high prevalence of clinically relevant kidney function changes and strong associations of 

adverse outcomes of AKI and ARC in critically ill patients, kidney function prediction is important. However, 

the majority of research about kidney function prediction focused on predicting AKI and ARC. Despite the 

success of these models (e.g., AKIpredictor [15, 18, 40] and ARC predictor [34]), the kidney function is in fact 

continuous instead of categorized. Predicting the complete kidney function spectrum is more in accordance with 

clinical and physiological reality. However, to the best of our knowledge, there is currently no prediction model 

for continuous kidney function.  

Given the necessity and importance of continuous kidney function prediction, in Chapter 7, we 

developed and validated a set of machine-learning models for daily prediction of CrCl using routinely collected 

clinical data, named “CrCl predictor”. Three models were developed on critically ill adults admitted to ICUs of 

the University Hospitals Leuven, included in the EPaNIC RCT database, progressively including features with 

increasing data resolution: the Core model using only admission data and daily routine laboratory results, the 

Core+BGA model that adds to the above, blood gas analysis data, and the Core+BGA+Monitoring model that 

adds to the above, monitoring data (heart rate, mean arterial blood pressure, and respiratory rate). The CrCl 

predictor was able to predict CrCl of the next day and average CrCl of the next two days. Model performance 

was compared against the reference reflecting the current clinical practice: assuming the same CrCl value on the 

day of prediction. The results showed that the CrCl predictor demonstrated good performance when tested on a 

large external validation dataset of 20930 patients of the University Hospitals Leuven who were included in the 

large multicenter M@tric database between 2013 and 2018. 

Before implementation of the CrCl predictor in the clinical practice, there are still some necessary steps, 

one of which is to verify the model’s generalizability by external validation in more studies with different clinical 

settings [41]. Additionally, the clinical usefulness of the model needs to be examined. It is unclear whether the 

model can perform at least as well as ICU physicians and whether it can provide complementary information to 

physicians with different seniority levels. The comparison with healthcare professionals is essential in order to 

investigate the potential added values as a clinical decision support tool. For instance, the AKIpredictor 
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developed by Flechet et al. was prospectively validated and compared with ICU physicians [18], where the 

AKIpredictor was demonstrated to have comparable discrimination as physicians and thus had the potential 

added value of identifying patients at risk of AKI, especially when the physicians were less confident. 

Therefore, in Chapter 8, we conducted a prospective observational study to compare the predictive 

performance of the CrClpredictor and ICU physicians for daily prediction of CrCl in 197 critically ill adults 

admitted to surgical ICUs of the University Hospitals Leuven between January 2022 and April 2022. The 

observed comparable prediction errors to the original development study confirmed the external validity of the 

CrCl predictor. Additionally, it was shown that the ICU physicians had larger prediction errors than the CrCl 

predictor. Specifically, the CrCl predictor had slightly smaller prediction errors than the staff members and senior 

residents, and much lower prediction errors than the junior residents. The absence of statistically significant 

differences indicated that the CrCl predictor could perform at least as well as the ICU physicians. These results 

suggested the potential added value of the CrCl predictor to physicians’ predictions, especially for junior 

residents. Future studies are still needed to examine its potential as an efficient and scalable screening tool to 

identify patients with high risk of changing kidney function.  

Despite the good performance in the external validations of the previous two studies, it remains to be 

investigated whether the CrCl predictor can help improve patient care and outcome. To allow for evaluation of 

the CrCl predictor in a real clinical setting in future studies, the models have to be directly available at the patient 

bedside. Therefore, in Chapter 9, we developed a prototype software that integrated the developed CrCl predictor 

model and visualized the prediction results along with prediction explanations in a user-friendly manner. The 

prototype software successfully queried the data and calculated the predictions for the patients included in 

Chapter 7. Specifically, the software displayed the predicted one-day-ahead CrCl made by the CrCl predictor 

along with a 95% confidence interval (CI). To provide a complete understanding of the patient’s kidney function 

trajectory, the temporal evolution of SCr, UO, and actual CrCl were also integrated. Finally, an individual 

prediction explanation plot corresponding to the prediction result can be generated on demand for each patient 

on each day of their ICU stay, for the promotion of prediction model transparency. 

10.3.2 Current impact of the research and future perspectives 

The findings presented in Chapter 6 highlighted the risk of assuming that kidney function remains the same on 

the following ICU day. However, as a first step to future studies, the study did not examine the clinical 

implications of high CrCl fluctuations. Therefore, whether high CrCl fluctuations correspond to a less adequate 

drug dosing regimen for renally cleared drugs such as vancomycin and β-lactam anti-microbials, and thus a 

poorer patient outcome remains to be investigated in future studies. If the association between high CrCl 

fluctuations and adverse consequences is confirmed, an additional covariate reflecting kidney function stableness 

may be incorporated in pharmacokinetic (PK) models for a potentially more tailored drug dosing regimen [42].  

Personalized medicine is an ambitious aim, but the work in Chapter 7 represents a huge step toward 

realizing it. The prediction of the entire kidney function spectrum shifted the focus from the prevention of the 

most extreme kidney function conditions (e.g., AKI and ARC) to the daily optimization of kidney function 

management in all critically ill patients. From the clinical viewpoint, the predictions made by the CrCl predictor 

can be added as a covariate in the PK model to help optimizing the drug exposure. From the research perspective, 

the CrCl predictor could help identifying patients with high kidney function instability who might benefit from 
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innovative interventions, providing rigorous study population definition and reducing the cost and administration 

work [43]. After the identification, the factors associated with large fluctuations in renal clearance can also be 

determined and further studied.  

Although the CrCl predictor has demonstrated good performance not only in a retrospective comparison 

with a reference reflecting the current clinical practice in the patients from a large dataset [19] (Chapter 7) but 

also in a prospective comparison against ICU physicians (Chapter 8), more large multicenter prospective studies 

are still warranted to examine its validity. More external validations of the CrCl predictor are important, 

regardless of the setting. In the same setting, clinical environment and measurement procedures may evolve 

considerably over time, which may inevitably worsen the accuracy of the CrCl predictor [44], so repeated 

evaluation in the same setting is suggested before application to new settings [45]. When the CrCl predictor is 

tested in different settings, more decreases in generalizability are expected, and model updating may be 

considered to ensure a better fit in the external validation population [46]. Although some researchers advocated 

model updating, others regarded updated models as developing new models, and thus the validity of updated 

models has to be confirmed in internal and external validation [47].  

In addition to more external validations, as abovementioned, future studies involving the CrCl predictor 

may use the predicted CrCl as a covariate in PK models to facilitate dosage adjustment of renally cleared drugs. 

Since the data used to develop the PK model are mostly small and sparse, in order to have sufficient 

measurements to build a reliable PK model, the chosen drug should be commonly administrated renally cleared 

medication such as beta-lactams and vancomycin. For instance, Kim et al. integrated time-varying kidney 

function estimation as a covariate in development of population PK model for vancomycin prediction [42]. They 

found out that the inclusion of covariates that explained changes in kidney function improved the PK model 

structure and provided a better explanation for vancomycin pharmacokinetics. Since the kidney function 

estimation methods have been demonstrated with limited capacity to accurately reflect kidney function in 

critically ill patients [48–52], it is expected that the use of predicted CrCl made by the CrCl predictor as a 

covariate in PK model will offer better vancomycin prediction results, but it remains to be investigated in future 

studies. Once the added value of CrCl predictor in PK model target attainment is confirmed, a large multicenter 

RCT can be set up to see whether the help of the CrCl predictor in target attainment can result in a better clinical 

outcome.  

The performed prospective observational study in Chapter 8 to compare model performance to standard 

of care is an indispensable step before workflow implementation [53]. Without the comparison, we would not 

have discovered the potentially added clinical value of the CrCl predictor to the junior physicians’ predictions, 

so it is strongly recommended to test the promising models in a prospective study. However, according to a recent 

system review [54], only 1.8% of the clinical prediction model studies have prospectively tested their models. It 

may be partly attributed to the complexity of massive amounts of high-dimensional data, the lack of external 

validations and high-quality clinical data, and the unclear understanding of clinical context, all of which hinder 

the further extension of potential models. Therefore, the author would advocate more close collaborations 

between the data scientists and ICU physicians in the future. Only by combining the knowledges from both sides 

will we be able to overcome these barriers and bring prediction models into clinical practice to examine whether 

they aid physicians in their decision making. 
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In Chapter 9, as a proof of concept, the most complete model (i.e., the Core+BGA+Monitoring model) 

of the CrCl predictor was integrated into the prototype software, since it was considered simpler to first integrate 

the most complete model and change to simpler models with less features in a later phase if necessary. Despite 

the integration of the most complete model, the software only took less than 30 seconds to calculate the 

predictions for the patients staying less than 9 days in the ICU, consisting of 75% of the study cohort in Chapter 

7. Nonetheless, only small differences in predictive performance with other models were found in the previous 

studies (Chapter 7 and Chapter 8), so future versions of the software may consider adding the simpler models 

(i.e., Core and Core+BGA models), which may further improve the already efficient real-time execution, reduce 

the need of powerful computers, and increase the clinical applicability in other ICUs. 

In chapter 9, predicted CIs were generated for each prediction result, and it was found that the predicted 

CIs were wider when the CrCls were larger, reflecting the true physiology that kidney function instability is more 

pronounced at higher CrCl values (Chapter 6) [55]. The indication of predicted CIs is crucial, since it provides 

physicians extra information about the uncertainty level of the CrCl predictor. If the CIs are wide which 

represents that the CrCl predictor is less certain, the physicians need to be more careful when using the predictions, 

and it is suggested to examine the corresponding prediction explanation plots to ensure that the predictions are 

reasonable and trustworthy. Given that the model uncertainty level and model interpretability might influence 

the trust of physicians on the predictions, the design of the CIs and prediction explanation plots are considered 

necessary, and it is expected that this extra information would become routine and potentially mandatory in 

clinical prediction models of the future.  

 In the studies presented in Chapter 6-9, we used measured CrCl to indicate the kidney function, since 

it has been described that although CrCl measurements overestimate the glomerular filtration rate (GFR), they 

are still reliable (AUROC: 0.93-0.98 depending on the range of GFR as compared with the golden standard inulin 

clearance) [56]. In addition, measured CrCl is a fast and cost-effective assay, which are important characteristics 

as the examination of kidney function in these studies was performed on a daily basis. Finally, it was stated in 

the KDIGO AKI guidelines that CrCl is still the best clinical surrogate marker of kidney function, and patients 

with AKI should have it checked whenever possible [57]. However, the kidney function fluctuations may be 

partially explained by the inadequacy of SCr and its derivatives, as it is known to be inadequate to assess the 

GFR during critical illness [58]. Therefore, future studies may be conducted to assess to what extent the measured 

CrCl reflects the actual kidney function. Afterwards, a correction term may be applied to the CrCl (such as kinetic 

estimated GFR that may better describe kidney function than the MDRD equation in acute setting [59, 60]), and 

the CrCl predictor may be relearned. 

In Chapter 6-9, kidney function was evaluated on a daily basis, since the use of 24-hour urine collection 

for measured CrCl provides the most reliable understanding of patient’s kidney function. A higher temporal 

resolution may be considered in future studies, since a minimum urine collection period of 8 hours was suggested 

[61–63]. The adoption of short-duration CrCls may promote quicker decision-making processes and more timely 

drug dosing regimens. Furthermore, it gives rise to larger sample sizes within the same study period, attesting to 

more robust findings. However, care should be taken because the use of 8-hour collection may result in less 

accurate indication of kidney function, given the variability in urine output. And it might be infeasible to 

accurately collect urine output every 8 hours, which causes the risk of inducing more missing values and lowering 

the data quality and reliability.  
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In this thesis, we specifically focused on the development, validation, and application of prediction 

models, without inclusion of the biomarker tests, except for the comparison with the most studied AKI biomarker 

NGAL in Chapter 4. However, despite the efficiency and low cost of prediction models, we do not contend that 

prediction models are superior to the biomarker tests. Instead, a combination of different assays, including but 

certainly not limited to the prediction results and biomarker assessment, could be the next step toward 

personalized medicine. 

Importantly, in this thesis, we focused on model performance using quantitative objective evaluation 

metrics such as AUROC for discrimination of classifiers and RMSEs for accuracy of regressors. Further steps 

are needed to evaluate whether the use of these prediction models in clinical practice is associated with patient 

outcome.  

   

 

10.4 General conclusions 

In this thesis, we applied machine learning algorithms and data analytic techniques to the routinely collected 

clinical data, to gain insights into the kidney function assessment in critically ill patients. First, we validated a 

machine-learning model for the early identification of AKI, the AKIpredictor, in critically ill adults. The 

identified robustness of the AKIpredictor highlighted its potential as a promising tool to identify AKI patients at 

an early stage. Additionally, we developed and validated prediction models for AKI recovery at hospital 

discharge in critically ill patients with AKI stage 3 during their ICU stay. The poor predictive performance 

suggested that it was difficult to predict non-reversible AKI at an early stage. Second, we demonstrated that a 

previously developed prediction model for ARC, the ARC predictor, had robust predictive performance when 

externally validated on COVID-19 pneumonia patients admitted to critical care in the University Hospitals 

Leuven from February 2020 to January 2021. Third, we investigated the incidence and degree of fluctuations of 

daily kidney function in critically ill adults, which has been known to change rapidly but without systematic 

description. Moreover, we developed and validated models for daily prediction of measured CrCl, the CrCl 

predictor, in critically ill patients. The CrCl predictor demonstrated good performance when evaluated on a large 

external validation dataset and performed as least equally well as the treating physicians. Finally, to increase the 

usability in the clinical practice, we developed a prototype software that integrated the CrCl predictor and 

visualized the prediction results along with prediction explanations in a user-friendly interface.   
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Summary 

In critically ill patients, both increased and decreased renal clearance are highly prevalent and may vary during 

the course of critical illness. Acute kidney injury is a type of organ failure that is highly prevalent in many 

conditions that cause severe critical illness, and has an association with worse short- and long-term clinical 

outcomes. Fluctuations in renal clearance will influence the plasma levels and clearance of renally excreted drugs, 

and may result in unfavorable consequences such as drug toxicity and treatment failure. Predicting these 

fluctuations in kidney function could allow for more personalized drug dosage, and less treatment failure, 

potentially leading to better clinical outcomes. In addition, even though the prevention and management of AKI 

are mainly supportive, early predictions of a reducing or fluctuating kidney function could act as in silico 

biomarkers, to stratify patients according to their risk, and may aid in developing targeted therapies to prevent or 

mitigate the course of kidney injury. Despite the importance of kidney function prediction models, the focus of 

current predictions for kidney function made by machine-learning models has been on predicting the 

development of AKI or augmented renal clearance. Although some models have been demonstrated with good 

predictive performance and outperformed the physicians in external validation, they still need more external 

validations in independent datasets before they can be applied to clinical practice. Furthermore, since kidney 

function is continuous, predicting the complete spectrum of kidney function is more in accordance with clinical 

and physiological reality. 

The general objective of this thesis is to apply advanced data analysis techniques and machine-learning 

algorithms to routinely collected clinical data from critically ill patients to develop and validate prediction models 

for kidney function. This thesis consisted of three primary objectives, where we focused on common medical 

phenomena and measurements with important clinical implications in the ICU.  

In the first part, we performed an external validation of a prediction model for acute kidney injury 

(AKI), the AKIpredictor, in critically ill adults of the University Hospitals Leuven who were included in the 

large multicenter M@tric database between 2013 and 2018. This M@tric database contains high-quality and 

intricately interconnected data from all adult patients annually admitted to the ICU from 2013 to 2018. Even 

though this external validation dataset was collected 10 years after the original development cohort, the 

AKIpredictor still demonstrated its robustness. These results verified the AKIpredictor’s potential to be a useful 

tool for the early detection of AKI patients. 

AKI’s progression and recovery are crucial since they are closely related to end-stage kidney disease 

and progressive renal dysfunction. Nevertheless, large databases frequently lack a good AKI recovery evaluation 

because the recovery definition is not uniform and baseline serum creatinine is frequently unknown, which 

presents difficulties for the development of AKI recovery prediction models. Using a large multicenter EPaNIC 

randomized controlled trial database, where two parenteral nutrition strategies were compared in 4640 critically 

ill adults between August 2007 and November 2010, we developed and externally validated prediction models 

for AKI recovery at hospital discharge in critically ill patients with AKI stage 3 during their ICU stay. For the 

overall ICU population, the developed AKI recovery models only exhibited similarly unsatisfactory 

discrimination to the plasma neutrophil gelatinase-associated lipocalin (NGAL) measured on the first day of AKI 

stage 3, which was poorer than the reference that only based on age. For patients with cardiac surgery, the 
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developed models had better performance over NGAL_AKI3 and the reference. The model is of limited clinical 

utility due to its poor predictive performance, which may be caused by the multiple pathophysiological processes 

but also by the definition of AKI recovery, which is still debated. 

In the second part, we carried out an external validation of a prediction model for augmented renal 

clearance (ARC), the ARC predictor, in adult COVID-19 pneumonia patients admitted to critical care at the 

University Hospitals Leuven from February 2020 to January 2021. ARC affects 20-65% of critically ill patients 

and is associated with decreased exposure to commonly used antibiotics and anticoagulants. Therefore, in this 

study, we externally validated the ARC predictor in a recent critically ill COVID-19 cohort. Despite the slightly 

worse calibration, the ARC predictor showed robust performance with good discrimination and a wide clinical 

usefulness range. The robust performance is noteworthy, given the large differences in patient characteristics 

between this critically ill COVID-19 cohort and the original ARC predictor development cohort (the cohort in 

the presented study showed an ICU length of stay almost twice as long, 14 vs. 8 days). The promising 

performance identified in this study confirmed the ARC predictor’s potential to be a useful tool for the 

identification of patients with high risk of ARC. 

In the third part, we focused on the evaluation of daily kidney function instability and prediction of 

daily kidney function, based on daily measured creatinine clearance (CrCl). It is well known that kidney function 

can change rapidly during critical illness, and that this change may have important implications for modifying 

the dosage of drugs that are excreted through the kidneys. Nevertheless, the actual incidence and degree of 

fluctuations have never been described systematically. Therefore, in this project, we investigated daily changes 

in kidney function as defined by the daily differences in CrCl in critically ill adults admitted to the ICUs of the 

University Hospitals Leuven, included in the EPaNIC RCT database. Using a large amount of daily creatinine 

clearance measurements, we discovered that on approximately 35–40% of days, critically ill patients may 

experience potentially clinically significant changes in kidney function on a daily basis. Furthermore, this 

instability was more pronounced in the first week of ICU admission and at higher CrCl values. Future studies in 

independent cohorts of critically ill patients are needed to confirm these findings and to examine the factors 

associated with fluctuations in renal clearance. 

In patients with critical illness, potentially clinically significant changes in kidney function were found 

to happen to 35-40% of days during the ICU stay in the previous study. However, the current methods for kidney 

function estimation had limited capacity to accurately reflect kidney function in critically ill patients, since they 

were developed based on healthy people. Additionally, these methods were based on measurements from the 

past, which may lead to an estimated kidney function lagging behind the actual kidney function. Therefore, we 

developed and validated models for daily prediction of measured CrCl, named “CrCl predictor”, in critically ill 

adults admitted to ICUs of the University Hospitals Leuven, included in the EPaNIC RCT database. Three 

models with progressively more features with increasing data resolution were developed. All models 

demonstrated good performance when tested on a large external validation dataset of 20930 patients of the 

University Hospitals Leuven who were included in the large multicenter M@tric database between 2013 and 

2018. The same good performance was observed when the model was compared with the reference reflecting 

current clinical practice, which assumed that CrCl remained unchanged. 
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To understand the external validity in independent datasets and the added value of these models to 

physicians’ predictions, we conducted a prospective observational study in 197 critically ill adults admitted to 

surgical ICUs of the University Hospitals Leuven between January 2022 and April 2022. Treating physicians of 

the surgical ICU team were asked to predict CrCl and to report their corresponding levels of confidence via a 

well-designed questionnaire survey. The predictions made by ICU physicians were compared with the ones made 

by the developed CrCl predictor models, where the CrCl predictor showed robust performance with comparable 

accuracy to that observed in the original model development study. Furthermore, the CrCl predictor demonstrated 

slightly smaller prediction errors than the staff members and senior residents, and a much smaller prediction error 

than the junior residents. The lack of statistically significant differences implied that the CrCl predictor could 

perform at least as well as the ICU physicians. These findings suggested the potential added value of the CrCl 

predictor to physicians’ predictions, especially for junior residents, and the potential of the CrCl predictor as a 

covariate to be integrated in the PK model to help optimize the renally cleared drug exposure.   

Despite the good performance in the comparison with the reference reflecting current clinical practice 

and the ICU physicians, whether the CrCl predictor can help improve the patient care and outcome remains to 

be investigated in future interventional studies. For the purpose of evaluating the model performance in a real 

clinical setting, we developed a prototype software that integrated the developed CrCl predictor models and 

visualized the prediction results along with prediction explanations in a user-friendly manner. Prediction 

explanation is crucial since physicians prefer sufficient evidence-based scientific support, in order to provide 

reasonable intervention and to modify their treatment strategies for vulnerable ICU patients. The developed 

software was designed to function normally in a real-time setting, which was able to calculate the predictions 

within less than 30 seconds for the patients staying less than 9 days in the ICU, consisting of 75% of the study 

cohort in Chapter 7. Nevertheless, a prospective study is still needed to technically validate its functionality. 

Once a technical validation is finished, the developed software will be ready for an interventional study to 

investigate whether patient kidney function management and/or patient outcome can be improved with the 

additional patient kidney function information provided by the developed software. 

In conclusion, this thesis focused on the application of advanced data analysis techniques and machine-

learning algorithms to routinely collected clinical information from critically ill patients, in order to gain new 

insights into kidney function of critically ill patients. Many research questions have been thoroughly studied, 

encompassing the development and validation of prediction models for kidney function, examination of daily 

kidney function fluctuations, prospective comparison of models with ICU physicians, and integration of the 

developed kidney function prediction models into a user-friendly software. The developed prototype software 

provides the possibility for interventional study and assessment of the research findings’ efficacy and safety, as 

well as their impact on kidney function management, patient care, and outcome. 
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Training” 

2019 Python software engineering 

2019 Linux scripting 

2019 Linux for HPC 
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2019 Creating effective research posters 

2019 HPC introduction 

2019 Python for data science 

2019 Managing your PhD 

2018 Central lecture research integrity  

2018 Online statistics 

2019 English intonation and pronunciation 

2019 Presentation Skills for Biomedical Researchers 

2019 Version control 

2018 Writing Skills for Biomedical Researchers 
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